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1 Introduction

Lectures by Stephen New, office MC 5419, office hours 2:30-3:20 MWF (also after about 5:30 MWF if you
tell him ahead of time).

Course outline found on his website.

Collaboration encouraged but acknowledge help (aside from him and books). (Write your own assignment
though.) Assignments will be challenging, exam easier. (Foreknowledge of topics will be given for the exam.)

Warm thanks to Andrej Vukovic for the notes for the lecture I missed.

A somewhat vague introduction (formality later):

Definition 1.1. A Lie grape is both a C° manifold and a grape G with smooth grape operations. (i.e.
multiplication m: G x G — G and inversion v: G — G are smooth).

Ezxzample 1.2.
e R™ under +



o T" =S! x ... x S! under component-wise multiplication

e M, (R) under +

e GL,(R) under matrix multiplication
Definition 1.3. A Lie algebra is a vector space g with an operation [-,-]: g X g — g which is alternating,
bilinear, and satisfies the Jacobi identity. i.e. for X, Y, Z € g we have

e [X,Y] = —[Y, X] (or equivalently, in the presence of bilinearity, [X, X| = 0).

e X.Y+Z]=[X,Y]+[X,Z] and [X,cY] = ¢[X,Y], etc.

o [X,)Y],Z]+]Y,Z],X]+[[Z,X],Y]=0.

FEzxzample 1.4.
o M,(R) with [X,Y]=XY -YX.
e The set of smooth vector fields on a manifold M with [X,Y] = XY — Y X as differential operators.

e When G is a Lie grape the set of left-invariant vector fields on G is a Lie algebra, which we identify
with g = T.G; we call this the Lie algebra of G.

There is a map called the exponential map from g = T.G to G given (roughly) by taking a tangent vector
X € T.G, using it to induce a left-invariant vector field X on all of G, finding the integral curve o of X with
a(0) = e and o/(t) = X («a(t)), and setting exp(X) = «(1).

One can show that exp: g — G is a local diffeomorphism. For the classical matrix Lie grapes

GL(n,R) = { A € M,(R) : det(A) #0}
SL(n,R) = { A € GL,(R) : det(A) =1}
O(n,R)={A€CGL,(R): ATA=1T}
SO(n,R) = { A € O(n,R) : det ( y=1}

Un)={Ae€GL(n,C): A*A=1}

etc. we can identify the Lie algebra g with a matrix algebra

sl(n,R) ={A e M,(R) :tr(A) =0}

etc., and then exp: g — G is given by

3‘r—x

o0
exp(4) = Z

Definition 1.5. A representation of a grape is a grape homomorphism p: G — Perm(X) for some set X, or
p: G — GL(n,R) or p: G — GL(V) for some vector space V.

This gives an action of G on X or R” or V: for a € G and € X or R” or V we write a -z = p(a)(x);
this gives a G-module structure on V.

Given a representation p: G — GL(V) we get p = dp: T.G — T, GL(V); i.e. p: g — gl(V).

A representation p: G — GL(V') induces a character x: G — R given by x(a) = tr(p(a)); one can show
that for a Lie grape a representation is determined by its character. In the finite-dimensional case, one can
always decompose a representation into irreducible subrepresentations.



1.1 Stuff we probably won’t get to

A compact Lie grape G has a maximal torus T (i.e. a torus subgrape of maximal dimension) that is unique
up to conjugation; its dimension is called the rank of the grape.
Example 1.6. SU(3) has maximal torus T' = { diag(exp(i2nt1), exp(i2nts), exp(i27ts)) : > t; = 0}, which has
Lie algebra

t= {diag(tl,tg,tg,) 1t € R}
with exp(t1,ta,t3) = (exp(i27ty), exp(i27ta), exp(i2nt3)). A given representation p: G — GL(n, R) reduces
TODO 1. Is thisR or C?

to give p: T — GL(n,C). The irreducible representations of T are known, and are all 1-dimensional. The
irreducible representations are classified by weights in t. The set of weights 2 C t is an integral lattice in t
related to the kernel of the exponential map. For SU(3) we have Q = ker(exp) = { diag(k1, k2, k3) : each k; €
7,5 k;=0}.
For u; = diag(1, —1,0) and uy = diag(0, 1, —1) the “angle” is given by
_1 U1 - U2 2

@ = =
(u1,ug) = cos e Tal 3

The integral span of these (ignoring the diag) gives a lattice of equilateral triangles. The weights of the
adjoint representation are called roots: for a € G we define c,: G — G by cq(x) = ara™!; the gives a map
de,: g — g, which gives the adjoint representation Ad: G — GL(g) (with Ad(a) = de,).

In SU(3) the weights of Ad are tuy, fug, £(u; + uz).

2 Manifolds

Definition 2.1. Suppose M is a topological space.
e We say M is second-countable if there is a countable basis for the topology on M.
o We say M is Hausdorff if for all p,q € M there are disjoint open sets U,V C M with p € U and ¢ € V.

e We say M is locally homeomorphic to R™ if for all p € M there is an open U C M containing p, open
V C R™, and a homeomorphism ¢: U — V.

Such ¢ are called (local coordinate) charts on M at p. A set of charts whose domains cover M is called
an atlas on M.

Remark 2.2. Note that when ¢: U C M — o(U) CR™ and ¢: V C M — (V) C R™ are charts at p (so
peUNV)thenoyp t: oUNV)—»(UNV)is a homeomorphism between two open sets in R"; such a
map 1 o ¢! is called a change in coordinates map or a transition map.

Definition 2.3. An n-dimensional topological manifold is a topological space M that is separable, Hausdorff,
and locally homeomorphic to R™.

Definition 2.4. An n-dimensional smooth (or C*°) manifold is an n-dimensional topological manifold which
has an atlas whose transition maps are C*°.

FEzxzample 2.5. Some C° manifolds:
e R" (with one chart, the identity map)
e S"={zeR"!:|z| =1} (using, for example, the 2n + 2 charts
wr:{ (@1, ., Tnp1) €ES" x>0} > B={yeR": |yl <1}
given by ¢r(21,...,Tnt1) = (T1,-+, Tp—1, Tkt 1y -+, Tny1) and
Yr: {(x1,...,Tpy1) €S"Tiay, <0} — B

given by the same formula).



o P =R\ {0})/(R\{0})={[z]:2 € R"™\ {0} } where [z] = {tx:0#t € R} using the n + 1
charts ¢ : U, — R™ where U, = {[z1,...,2Zn11] : 2k # 0} and

T Tk—1 Lhk+1 Tn+1
@([xlwnamn#*l}):(w”a ) +7"'7 "'H’)
Lk Lk Lk Lk

e Every open subset of a manifold is also a manifold (of the same dimension). If N, M are manifolds
then so is N x M. In particular, we get

™=8"x---x8!

Remark 2.6. If M is both an n-dimensional and an m-dimensional manifold then m = n. (One can see this
by looking at the Jacobians of the transition maps.) If M is n-dimensional we write dim(M) = n.

Definition 2.7. Suppose N and M are C* manifolds with dim(N) = n and dim(M) = m. Suppose
f+ N — M. We say that f is smooth or C* at p € M when there is some (and hence for all) charts
0:UCN— @(N)CR"and ¢: VC M — (V) CR™ with p € U and f(p) € V such that po fop~!is
smooth (C*) at ¢(p).

In this case we define the rank of f at p to be equal to the rank of D(v)fo~1)(¢(p)). We sometimes
denote the matrix D(¢fo~1)(o(p)) by Df(p).

There are a few different sensible notions of submanifold.

Definition 2.8. Let M be a smooth manifold. A regular submanifold of M is a subset N C M which is
a manifold such that for all p € N there are charts ¢: U C N — o(U) CR"atpon N and ¢: VC M —
(V) CR™ at p on M such that

e U=VNN
e o(p) =0 and ¥(p) = 0 (if you want)
e For z = (z1,...,2,) € (U) CR"™ we have Y~ (z1,...,2,) = (z1,...,2,0,...,0).

Definition 2.9. Suppose N and M are C*°-manifolds with dim(N) = n, dim(M) = m, and n < m. A
function f: N — M is called an immersion when f is smooth and has maximal rank everywhere (i.e.
rank Df(p) = n for all p € N). An immersed submanifold of M is the image f(N) of some injective
immersion; we use the topology and charts induced by the map f (so that f: N — f(N) is a diffeomorphism).

Note that immersions need not be injective. Note also that the topology on an immersed submanifold
N C M need not be the subspace topology inherited from M.

Definition 2.10. Suppose N and M are C*° manifolds with dim(N) = n and dim(M) = m; suppose
f: N — M. We say that f is an embedding (or a regular immersion) when f is an injective immersion and
the topology on f(N) induced by the map f agrees with the subspace topology on f(NN). The image f(N) of
such an embedding f: N — M is called an embedded submanifold of M.

Example 2.11. Consider the map f: (—m,m) — R? given by f(t) = (sin(t),sin(2t)) (image looks like an
infinity sign). The image is an immersed submanifold but not an embedded submanifold because of the
behaviour around the origin.

Ezample 2.12. Consider f: R — T? = S! x S* given by f(t) = (exp(iat), exp(ibt)) with a,b € R. If a # 0 and
g ¢ Q then the image of f is dense in T?; this is an immersed manifold but not an embedded manifold.

Theorem 2.13. Suppose f: N — M 1is an injective itmmersion of smooth manifolds; suppose that N is
compact. Then f is an embedding.



Proof. Consider f(N) with the subspace topology. Suppose K C N is closed (and hence compact, since
N is compact). Since K is compact and f: N — f(N) C M is continuous, we get that f(K) is compact.
Since f(K) is compact and M is Hausdorff, we get that f(K) is closed. So f sends closed sets to closed
sets; so, since f: N — f(IN) is bijective, we get that f is open, and thus a homeomorphism N — f(N).

0 Theorem 2.13

Theorem 2.14 (Rank theorem). Suppose N, M are C* manifolds with dim(N) = n and dim(M) = m.
Suppose f: N — M is a smooth map of constant rank r around p (i.e. rank(Df(p)) = r for all x in
some neighbourhood of p). Then there exist a chart ¢: U C N — @o(U) C R™ at p on N and a chart
P:VC M — (V) CR™ at f(p) on M such that p(p) = 0 and ¥(p) = 0 (if you want) and for all
r = (21,...,2,) € p(U) we have Yo~ (x1,...,2,) = (¥1,...,2.,0,...,0). (In particular, if the rank is
globally constant, then for all ¢ € f(N) we have K = f~1(q) = {z € N : f(x) = q} is a closed regular
embedded submanifold of M.)

Corollary 2.15. Ewvery injective immersion f: N — M of smooth manifolds is locally an embedding.
Corollary 2.16. If f: N — M is an embedding of smooth manifolds then f(N) is a reqular submanifold.

Remark 2.17. One can define variations on the definition of a manifold. For example, an n-dimensional
complex or C-manifold is a 2n-dimensional topological manifold with charts such that the transition maps
are all holomorphic. One could also define C* or analytic manifolds.

TODO 2. Section?

3 Lie grapes and Lie algebras

Definition 3.1. A Lie grape is a set G which is both a C* manifold and a grape such that the grape
operations multiplication m: G — G and inversion v: G — G are smooth.

FEzxzample 3.2.
e R™ under addition
e M, (R) under addition

e R* or C* or S! under multiplication

T™ under (component-wise) multiplication

GL(n,R) = {A € M,(R) : A is invertible } is a Lie grape under multiplication. Indeed, M, (R) is
diffeomorphic to (and can be identified with) R using the map F': M, (R) — R given by

Uy
F(ula"'7un) =

Unp

where each u;, € R™. The determinant map ¢: M, (R) — R given by ¢(X) = det(X) is a polynomial in
the entries of X (and so is C*). So GL(n,R) = ¢ 1(R\ {0}) is open in M, (R), and is thus endowed
with a smooth structure.

Note as well that the map m(X,Y) = XY is polynomial in the entries of X and Y, and is thus smooth;

also
1

v(z) = m Adj(X)

is a quotient of a polynomial by a non-zero polynomial in the entries of X, and is thus smooth.

Definition 3.3. Suppose H and G are Lie grapes. A map f: H — G is called a Lie grape homomorphism
when f is a smooth grape homomorphism. (Isomorphisms and isomorphic are defined accordingly.)



Ezxample 3.4.
e The map F': M,(R) — R™ above given by

Uy
F(u1,...,un) =

Up
is an isomorphism of Lie grapes.
e The determinant map ¢: GL(n,R) — R? is a Lie grape homomorphism.
e For a € R™ we can define ¢: R — T" given by ¢(t) = (exp(iait),...,exp(ia,t)) and ¢: R — T™ given
by ¥(t1,...,t,) = (exp(iaity),...,exp(iast,)) are Lie grape homomorphisms.

Definition 3.5. Suppose G is a Lie grape. An (immersed) Lie subgrape of G is the image p(H) of a Lie
grape homomorphism ¢: H — G which is an immersion. An embedded (or regular immersed) Lie subgrape
of G is the image p(H) of some Lie grape homomorphism ¢: H — G which is an embedding.

Theorem 3.6. Suppose H and G are Lie grapes; suppose ¢: H — G is a homomorphism of Lie grapes.
Then ¢ has constant rank.

Proof. For a € H we let {,: H — H be left-multiplication by a (so ¢,(x) = az for x € H). For all a,z € H
we have ¢(ax) = ¢(a)p(x); i.e. p(la(x)) = Ly(q)(@(x)). So, implicitly fixing charts, we apply chain rule to
the above to get that

Dyp(ax) - Dlo(x) = Dlya)(p(x)) - Dep(x)

Since £, and £,(q) are diffeomorphisms (with inverses £,-1 and £, (4))-1, respectively), the matrices Df,(x)
and D/, q)((r)) are invertible. So

rank(Dep(ax)) = rank(Dp(z))

for all a,z € H. In particular, taking a = x~! gives rank(Dy(z)) = rank(Dep(e)) for all z € H.
O Theorem 3.6

FEzample 3.7. Show that the grapes

SL(n,R) = { A € GL(n,R) : det(A) =1} special linear grape)

O(n,R) ={ A€ GL(n,R): ATA=1T} orthogonal grape)
SO(n,R)={A€0(n,R):det(A) =1} special orthogonal grape)
GL(n,C general linear grape over C)

Un)={AeGL(n,C): A"A=1} unitary grape)
SU(n)={AcUN):det(A) =1} special unitary grape)
GL(n,H general linear grape over the quaternions)

AN N N N N N N N

symplectic grape)

are regular Lie subgrapes of GL(m, R) for some m. (Here A* = (A)T and H = {a+bi+cj+dk :a,b,c,d € R}
with i2 = j2 = k2 = —1 with i2 = j2 = k? = ijk = —1 and ij = k, jk = i, ki = jk.)
We do some sample computations:

(SL(n,R)) The determinant map ¢: GL(n,R) — R* is a Lie grape homomorphism and SL(n,R) = ker(¢p).
So SL(n,R) is a closed, regular Lie subgrape.

Ezercise 3.8 (Possibly worthwhile). Compute the Jacobian of ¢ and show directly that the rank is 1.
(O(n,R)) Consider the map ¢: GL(n,R) given by ¢(X) = X7 X.



Claim 3.9. ¢ has constant rank.

Proof. For A € GL(n,R) we let La, Ra: GL(n,R) — GL(n,R) be left- and right-multiplication by A,
respectively. Then for A, X € GL(n,R) we have

p(Ra(z)) = p(XA) = ATXTXA = Lar (Ra(p()))
So by the chain rule (again implicitly fixing charts) we have
D@(XA)- DRA(X) = DLar(XTXA) - DRA(#(X)) - Dio(X)

Then since R4 and Lz are diffeomorphisms we get that rank(D¢(X A)) = rank(D¢(X)) for all X. In
particular for A = X! we get rank(Dy(X)) = rank(Dp(I)). O Claim 3.9

Hence O(n,R) is a closed regular Lie subgrape of GL(n,R) because O(n,R) = ¢~ 1(I).
(SO(n,R)) It’s the kernel of the determinant map.
Exercise 3.10. Check the rest.

Remark 3.11. We can also define complex Lie grapes. Some examples include GL(n, C), SL(n, C), O(n, C),SO(n,C) =
{ A€ M,(C): ATA = I,det(A) =1},Sp(2n, C).

Fact 3.12. The only connected compact complex Lie grapes are complex tori.

Ezxercise 3.13. Which of the real Lie grapes exhibited above are compact?

Definition 3.14. Suppose M is a C* manifold of dimension n and p € M. A tangent vector on M at p is a
set of ordered pairs (¢, u) with one pair for each chart ¢ at p and each u € R™ obtained from the following
procedure: pick a smooth curve a: (—e,e) = M with «(0) = p, and define &’(0) to be the set of pairs (¢, u)
where given a chart ¢ at p we let u = 5/(0) where 8(t) = p(«a(t)). The space of tangent vectors on M at p is
denoted by T, M.

Remark 3.15. When 1 is another chart and (¢, v) is another pair induced by «, we have v = +/(0) where

so Y'(t) = D(ve1)(B(t)) - B'(t), and v = v'(0) = D(~1)(p(p))u. Thus v and v are related by

Definition 3.16. Suppose M is a C*° manifold and p € M. A derivation on M at p is a linear map
D: C3°(M,R) — R such that D(fg) = D(f)-g+ f- D(g) for f,g € C;°(M,R) where C;°(M,R) is the space
of locally smooth functions on M at p; i.e. smooth functions g: U C M — R where U is open in M with
p € U, and two such functions g: U C M — R and h: V C M — R are considered equivalent when they
agree in some open W C U NV with pe W.

Remark 3.17. A tangent vector X € T, M acts as a derivation on M at p as follows: choose a locally smooth
curve a: (—¢,e) - M with a(0) = p and /(0) = X. Then we define X (g) = h’(0) where h(t) = g(a(t)).
Note that if X is given locally in the chart ¢ at p by v € R™ then u = /(0) where (t) = p(«a(t)); so
h(t) = g(a(t)) = (g9~ )(B®)), and k(£) = D{ge)(B(1)) - B'(t). So X(g) = K'(0) = Dlgp™ 1) (p(p)) - .
If we write gp~! simply as g and z = ¢(p) then

n —1
X(g) = Dlge ) elw) - u =Y 2wy,



ie.

> uid?

= Us;

= O

Because of this formula, it is customary to write the standard basis vectors in R” (with u € R™) as 8%1, cee %;

SO

- 0
u = 21%%

Definition 3.18. Suppose f: N — M is a smooth map of smooth manifolds. Then f induces a linear map
Je: TyN — TyyM for each p € N. (The map f, is also denoted df or Df.) Indeed, given X € T, N we
choose a: (—e,e) — N with «(0) = p and &/(0) = X, and then define f.X = 5'(0) where 3(¢) = f(a(t)).

TODO 3. Roman d?

Remark 3.19. If X is given locally in ¢ by u € R™ then u = +/(0) where v(t) = ¢(a(t)). Then B(t) =
fle(t)) = (fe™1)(v(1)), and B'(t) = D(fe™)(y(t)) - 7' (£); so

f:X =p'(0) =D(fo ")(e(p)) - u

Theorem 3.20.

1. Suppose f: M — N and g: N — L are smooth maps of smooth manifolds. Then (go f)x = g« ©
Jo: TyM = Topp)) L

2. Suppose f: N — M is smooth; suppose g: U C M — R where U C M is open with f(p) € U. (Or
suppose g: M — R is smooth.) Then for X € T,N we have (f.X)(g) = X(go f).

Definition 3.21. Suppose M is a smooth manifold. A wector field on M is a map X: M — UpeM oM
such that X(p) € T,M for all p € M. We sometimes write X, to denote X (p). A vector field X on M is
given locally (in a chart ¢: U C M — ¢(U) C R™) by a vector u = u(x) € R™ at each point z € o(U). We
say that X is continuous (or smooth, or C*)) when for some (hence for every) chart ¢ the resulting function
u(z) is continuous (or smooth, or C¥). The space of all smooth vector fields on M is denoted T'(M, TM).

Remark 3.22. When f: N — M is a smooth map of smooth manifolds and X € I'(N,TN), we don’t
necessarily have a well-defined vector field on M: if f is not injective we might have p # ¢ in N wth
f(p) = flq) but fu X, # fuXqin TpyM = Ty M. If f is surjective then f,X is well-defined as a vector field
on f(N)C M. If f: N — M is a diffeomorphism then f, gives a well-defined map I'(N,TN) — I'(M,TM).
If f: N — M is an injective immersion then f is a smooth diffeomorphism as a map f: N — f(N) (where
the latter is endowed with the topology and smooth structure induced from N via f).

Theorem 3.23. Suppose M is a smooth manifold; suppose X, Y € T'(M,TM). Then there exists a (unique)
smooth vector field Z on M such that Z(g) = X(Y(g)) — Y(X(g)) for all smooth maps g: M — R.

Proof. Suppose X,Y are given locally in a chart ¢: U — ¢(U) by vectors u,v € R™. Write x = ¢(p) and

gp~ ! as g. Then

X(Y(g))—Y(X(g)) :Zuzaix Zvj% —Zvig Zujﬁ
i=1 v\ j=1 J i=1 v\ j=1
B dv; Oy 4 0%g Ou; Og 4 0%g
Z i (83:1 oz T O0x;0z; B ; vi Ox; O, U Ox;0z;

" O[O ou; dg
ZZ(&’BZ i 8952 >8xj

=1 5=1




Thus X(Y(g)) — Y(X(g)) = Z(g) where Z is the smooth vector field given locally in the chart ¢ by

" — Z (8113 8u] ) ai
1

j=11i=

(where again % is the ;' standard basis vector). i.e.

w=Dv-u—Du-v
O Theorem 3.23

Ezercise 3.24. Check that if you change coordinates that w satisfies the rule.

Fact 3.25. A tangent vector is determined by its action as a derivation. Hence a smooth vector field is
determined by its action on locally smooth functions. Using smooth bump functions this shows that a smooth
vector field is determined by its action on global smooth functions.

Definition 3.26. The vector field Z in the above theorem is called the Lie bracket of X and Y and is
denoted [X,Y].

Theorem 3.27. Suppose f: N — M is a smooth map of smooth manifolds. Suppose X,Y € I'(N,TN);
suppose U,V € T'(M,TM) satisfy

feXp = Us(p)
fYp = Vi)
for allp € N. Then (f.«[X,Y)]), = ([U,V])p for allp € N.
Ezercise 3.28. Prove this. Hint: if f,g: R >R and h =go f then b’ = (¢’ o f) - f'.

Proof. For any smooth map ¢g: M — R and for all p € N we have

U9)(f(p)) = Us)(9) = (f+Xp)(9) = Xp(g o f) = X(g© f)(p)
(The third equality was an exercise.)
TODO 4. ref?

Hence for all smooth g: M — R we have X(go f) = U(g) o f. Thus for all smooth g: M — R and all
p € N we have

[l X, Y]p(g) = [X, Y}p(g of)
= Xp(Y(go f)) —Yp(X(g0f))
= Xp(V(g) o f) = Y,(Ulg) o f)
=Usp)(V(9)) = Vi) (U(g)) (by our earlier equalities, with g replaced by V(g) and U(g))
= [U:V]rm)(9)
So fu[X,Y],(9) = [U, V] (g) for all smooth g: M — R. So f.[X,Y], = [U, V]s)- O Theorem 3.27

Definition 3.29. A Lie algebra is a vector space V over a field F' equipped with a binary operation [, -]
called the Lie bracket satisfying:

(Skew-symmetry) [a,b] = —[b,a] for all a,b eV
(Bilinearity) [ta,b] = t[a,b] and [a +b,c] = [a,c] + [b,c] for all a,b,c € V and all t € F
(Jacobian identity) [[a,b],c] + [[b, c], a] + [[c,a],b] = 0 for all a,b,c € V.

We define a Lie algebra homomorphism and a Lie algebra isomorphism in the expected way.



Remark 3.30. Bilinearity of the Lie bracket in the second parameter follows from bilinearity of the first and
skew-symmetry.

FEzxzample 3.31.
e M, (F) is a Lie algebra under [A4, B] = AB — BA. Indeed,

[[4, B],C] = [A, B]C — C[A, B]
= (AB — BA)C — C(AB — BA)
= ABC — BAC — CAB + CBA
([B,C],A] = BCA— CBA — ABC + ACB
[C, A], B] = CAB — ACB — BCA + BAC

e When M is a smooth manifold, the space of smooth vector fields I'(M, T M) is a Lie algebra with Lie
bracket given by [X,Y](g) = X(Y(g9)) — Y(X(g)) for smooth g: M — R.

Definition 3.32. Suppose G is a Lie grape. For a € G let £,: G — G denote left multiplication: £,(x) = a - x.

Note that ¢,: G — G is a diffeomorphism (with inverse ¢,-1) and so d¢, = (¢,). defines a linear map
from I'(G,TG) = T'(G, TG).

Definition 3.33. For a smooth vector field X on G, we say X is left-invariant when d¢, X = X for all
a € G;ie dly Xy = Xy for all a,b € G.

Remark 3.34. If X is a left-invariant vector field on G with X (e) = X, = A € T.G then we must have
X(p) = X, = d{,A for all p € G. On the other hand, given A € T.G, if we define X (p) = X, = d¢, A for
p € G then X is a left-invariant vector field; indeed

TODO 5. smoothness?

dﬁaXb = dfa(dgbA) = (d@a o dgb)A = d(fa o gb)A = déabA = Xab
()

where (*) was an exercise.
TODO 6. ref?

Note also that when X and Y are left-invariant vector fields on G the Lie bracket [X, Y] is also left-invariant.
Indeed
dl,[X,Y] = [dl,X,de, Y] = [X,Y]

by the previous theorem.

Definition 3.35. For a Lie grape G we define the Lie algebra of G to be the vector space g = T.G with Lie
bracket defined by [A, B] = [X,Y]. where X and Y are the (unique) left-invariant vecor fields on G with
X.=Aand Y, = B.

Remark 3.36. Using standard identifications from differential geometry, when G is a (real) Lie subgrape of
GL(n,F) where F € {R,C,H }, then for any p € G we can identify T,,G with the set of o/(0) € M,,(F) where
« is a locally smooth map a: (—¢,¢) — G with «(0) = p.

We briefly describe the identifications. When U is an open set in R™ we get that U is a smooth manifold
with atlas consisting of one chart ¢ where ¢: U — U is the identity map. So a vector X = o/(0) € T,U is
given by the one vector u = /(0) € R™ where B(t) = ¢(a(t)) = a(t); so u = ’(0) € R™. So we identify
T,U =R".

Also when M is an (immersed) submanifold of R™ and f: M — R™ is the inclusion given by f(p) = p, we
identify T, M = f.(T, M) C R™. Indeed, for X = o/(0) where a: (—¢,e) = M we have f,.X = '(0) where
B(t) = f(a(t)) = a(t). So fo.X = a/(0) € R™.

Finally we identify M, (R) with R" (and M, (C) with R2"" and M, (H) with R*"").

So if a(t) = (A (1) then '(t) = (AL,(t))sy.
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Theorem 3.37. Suppose G is a Lie subgrape of GL(n,F) for F e {R,C,H} so that
g="T/G={d'(0) € M,(F) : « is a locally smooth map (—¢,e) — G,a(0) =1} C M,(F)
Then

1. For A € g = TG the (unique) left-invariant vector field U on G with U(I) = A is given by U(P) =
Up = PA (matriz multiplication).

2. For A,B € g =T;G C M,(F) the Lie bracket of A and B is given by the commutator [A, Bl = AB— BA
(matriz multiplication).

Proof.
Case 1. Suppose G = GL(n,R) C M, (R), so g = gl(n,R) = M, (R).

1. Suppose A € g = M, (R); let U be the left-invariant vector field on G = GL(n,R) with U; = A.
Then for all P € G we have U(P) = Up = DLpA where Lp is left-multiplication by P and
DLp =dLp = (Lp).. (Note that DLp when written as a matrix is n? x n?2.)

We have for X € M, (R) that LpX = PX; so

(Lp)ke(x) = (LpX)ke = (PX)ke =Y PomXome

So
O(Lp)ke

(DLp)ke,ij(x) = X,

(x) = 6j,0Px,i

So
(UP)k,é = (DLPA)k:,Z = Z(DLP kl,ij ’L] Z(S] Zsz i ZPIW il = (PA)

,J
Thus U(P) = Up = PA.
2. Next, given A, B € g = T;G we must calculate [4, B] = [U,V]; where U(z) = Ux = XA and
V(X)=Vy = XB.
We have [U,V]=DV -U - DU -V. So
[U, Vs = (DV -U — DU - V)
=DV -U)pe — (DU - V)i

We have U(X) = X A; so

Ue(X Zka me
and U,
X, ) = oAie
So
[U, V]ke = Z ik BjeUij — Y 6inAjdVig = > (BjelUj — AjiVij) = (U(2)B = V(2) A)re
j J
Thus

[U,V(z)=U(z)-B-V(x)- A
for all . Hence [A,B] =[U,V];=U(I)-B-V(I)- A= AB — BA.
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Case 2. Suppose G is a Lie subgrape of GL(n,R). We identify g = T;G with F,.T'G C GL(n,R) =
M, (R) where F: G — GL(n,R) is the inclusion map F(P) = P. For P € G let Lp: G — G and
Mp: GL(n,R) — GL(n,R) be the left-multiplication maps; so the following diagram commutes:

LP
F F

GL(n,R) -2 GL(n,R)

Let X and Y be the left-invariant vector fields on G with X; = A and Y; = B (or, more precisely, with
F.X1=Aand F.Y; = B). Let U and V be the left-invariant vector fields on GL(n,R) C M, (R) with
Ur = A and Vi = B (we now suppress the identification).

1. Need to show that Xp = PA (or more precisely that F,Xp = PA). Indeed, we have
F*Xp = DFmp = DFDLPX] = D(FOLP)X] = D(MPOF)X[ = DMPDFX] = DMPA = UP = PA

2. Need to show that [A, B] = AB — BA; more precisely, that F.[X,Y]; = AB — BA. Since
F.Xp=PA=Up=Upp) and F.Yp = PB = Vp = Vp(p), Theorem 3.27 shows that indeed

F[X,Y]; =[U,V]; = AB - BA

Case 3. Suppose G is a Lie subgrape of GL(n,C) or GL(n,H). Consider GL(n,C) as a Lie subgrape of
GL(2n,R) using the injective homomorphism F: GL(n,C) — GL(2n,R) given by

) A -B
A+’LBl—><B A)

Likewise we consider GL(n, H) as a Lie subgrape of GL(2n, C) using the map F': GL(n,H) — GL(2n,C)
given by
, A -C
A+Cj— (C’ 1 )
for A, B € M,(R); i.e.

0 Theorem 3.37

A+ Bi+ (C+ Di)j — <A+BZ O+Dl>

C+Di A-DBi

A

Aside 3.38. det <B

B) = det(A+iB).

Alternative proof of Case 1.

1. Suppose G = GL(n,R); suppose A € g = M,(R). Let U be the left-invariant vector field on G with
Ur = A; that is Up = DLpA (where Lp: G — G is X — PX). Since Lp is linear we get that
DLp(X) = Lp as a linear map. So Upa = DLpA = LpA = PA.

2. Now suppose A, B € g = M, (R) and let U and V be the corresponding left-invariant vector fields with
Ur = Aand V7 = B. Recall that [U, V](X) = DV(X)U(X)-DU(X)V(X). Wehave V(X) = Vx = XB.
So V = Rp which is linear, and DV (X) = Rp as a linear map. Similarly DU(X) = R4. So we have

[U,V](X) = DV(X)U(X) — DU(X)V(X) = Rp(XA) — RA(XB) = XAB — XBA = X(AB — BA)
Thus the Lie bracket of A and B in g is

[A,B] = [U,V](I) = I(AB — BA) = AB — BA O
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4 Exponential map

Theorem 4.1 (Existence and uniqueness of solutions to ODEs). Suppose U C R™ be open with p € U;
suppose I C R is open with s € I. Suppose F': U x I — R™ is smooth.

1. Suppose J C I and K C I are intervals with s € J N K; suppose a: J — U is smooth with o(s) =
and o' (t) = F(a(t),t) for allt € J and B: K — U is smooth with B(s) =p and '(t) = F(B(t),t) for
allt € K. Then o(t) = B(t) for allt € JNK.

2. There is a unique mazimal open interval J C I with s € J and a (unique) smooth curve a: J — U with
a(s) =p and o/ (t) = F(a(t),t) for allt € J.
If we rule out time-variance of the vector field and relativize to a smooth manifold, we get:
Corollary 4.2. Suppose X is a smooth vector field on a smooth manifold M.

1. Suppose p € M and I,J C R are two intervals with 0 € I NJ. Suppose a: I — M is smooth with
a(0) =p and &/ (t) = Xy for allt € I and B: J — M is smooth with 3(0) = p and §'(t) = Xo ) for
allt € J. Then a(t) = S(t) forallt € INJ.

2. For all p € M there is a unique mazimal parameter interval I C R with 0 € I and a (unique) smooth
curve a: I — M such that o(0) = p and o/ (t) = X for allt € I. We call this o the integral curve
for X on M at p.

Ezample 4.3.
1. Find the integral curve for u(z,y) = (1,y) on (—1,1) x (o 2) at p = (0,1).
We need «a(t) = (z(t), y(t)) such that o/(t) = u(a(t)); i
(@' (1), y' (1) = u(z(t),y(t)) = (1,y(t))

so z'(t) =1 and ¢/(t) = y(t). We also want a(0) = p = (0,1); i.e. z(0) =0 and y(0) = 1.

To get 2'(t) =1 and z(0) = 0 we need z(t) =t + c and 0 = 0 + ¢; hence z(t) = t. To get y'(t) =y and
y(0) = 1, we write dv — 4 rearrange and integrate to get

dt
1

/fdy:/dt
Y

and hence In(y) =t + ¢, so y = exp(t + ¢). To get y(0) =1 we get y(t) = exp(t). Thus the integral
curve is a(t) = (z(t), y(t)) = (¢,exp(t)) with maximal parameter interval I = (—1,1n(2)).
1

—~

2. Find the integral curve for v(z,y) = (1,%%) on R? at p = (0,1).

We need 2/(t) = 1 with 2(0) = 0 and ¥/'(¢) = (y (t)) with y(0) = 1. To get 2'(t) = 1 and 2(0) = 0 we
again get z(t) = t. To get y/(t) = (y(t))? we need ” = (y(t))? hence

/—yiQdy: /—dt

and (y(t))~! = ¢ —t. To get y(0) = 1 we need ¢ = 1; hence y(t) = 7. Thus the integral curve is
1
alt) = (z(t),y(t) = | t, 13

which in particular has an asymptote at © = 1; so the maximal parameter interval is I = (—o0, 1).

Theorem 4.4. Suppose G is a Lie grape and let g = T.G. Suppose A € g, and let X be the left-invariant
vector field on G with X, = A. Let a: I — G be the mazximal integral curve for X on G at e. Then
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1. The maximal parameter interval s I = R.
2. The map a: R — G is a Lie grape homomorphism (with o/ (0) = Xy0) = Xe = A).
3. If p: R — G is a Lie grape homomorphism with ¢'(0) = A € g then ¢(t) = a(t) for all t € R.

Proof. Fix s € I; then for t € I such that s+t € I if we let 3(t) = a(s +1) and y(t) = a(s)a(t) = Lo (a(t)),
then 5(0) = a(s) and v(0) = a(s)a(0) = a(s)e = «a(s); furthermore we have

Bl(t)=a'(s+1)
= Xa(s+t)
= X3

Y (t) = dly s (a(t))a' (1)
= dlo(s)((t)) Xa
= Xa(s)a(t)
=Xy

So by uniqueness of integral curves we have 5(t) = v(t) for all ¢; i.e. a(s + 1) = a(s) - a(t).

1. If the maximal interval were I = (—a,b) ; R, then we could extend the parameter interval to
J = (—2a,2b) by defining a(s +t) = a(s)a(t) for any s,t € I.

2. Since the formula a(s +t) = a(s)a(t) holds for all s,t € R we get that « is a grape homomorphism.

3. Suppose p: R — G is a Lie grape homomorphism with ¢'(0) = A. Then for fixed s we have
90(8 + t) = @(S)Sﬁ(t) = Eap(s)‘ﬁ(t)‘ So

§ (5 ) = Sols+1) = Al (6(0) - /(1)

and at t = 0 we have
<p/(s) = nga(S)(O) (A) = ch(s)
Since ¢(0) = e and ¢'(s) = X (,) for all s we get ¢ = a by uniqueness of integral curves. [ Theorem 4.4

Aside 4.5. The 2-sphere cannot be a Lie grape; the hairy ball theorem says that there is no nowhere vanishing
vector field on S?, whereas a left-invariant vector field generated from a non-zero tangent vector at e is
nowhere vanishing.

Also the tangent bundle to a Lie grape is trivial (i.e. is isomorphic to G x R™), and that of the sphere is
not.

Definition 4.6. Suppose G is a Lie grape, A € g, and X is the left-invariant vector field on G with X, = A.
The flow of X on G is the map F: G x R — G given by F(p,t) = a,(t), where a,: R — G is the (unique)
integral curve for X on G at p.

Definition 4.7. Suppose G is a Lie grape with Lie algebra g. We define the exponential map exp: g — G as
follows: given A € g = T.G we define exp(A4) = ¢(1) where p: R — G is the unique Lie grape homomorphism
with ¢'(0) = A. (i.e. ¢ is the integral curve at e of the left-invariant vector field generated by A.)

Remark 4.8. We could have made all the above definitions and theorems using right multiplication and
right-invariant vector fields. So the Lie grape homomorphism ¢: R — G with ¢/(0) = A (in part (3) of
Theorem 4.4) is also equal to the integral curve for the unique right-invariant vector field Y on G with Y, = 4
(i.e. Y, = drpA, where r,: G — G is & — x - p). The vector fields X and Y may be different, but they have
the same integral curve through e; this integral curve coincides with the Lie grape homomorphism with
¢'(0) = A

Aside 4.9. The simplest Lie grapes besides R™ to picture are the torus or the cylinder.
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Recall that for A € M,,(F) with F € R, C, we define

oo
exp(A Z

ET“}—!

1
_I+A+?A2+

Note that this series converges absolutely in M, (F) and uniformly in any compact set; indeed, if m = max;;|A;;|
an dmy = maxij|(Ae)ij| then since A**! = A*. A we must have my,1 < n-my-m. So by induction we get

hence if

we have

‘
1
max|Se|i; < Z i (nm)* = exp(nm)
k=0

Also when A, B € M,,(C) commute we have exp(A + B) = exp(A) exp(B) because

o0

1 1
exp(A+B) = Y —( A+B’”:ZW(TZ)A’“BW"“:

m=0 m,k

and

exp(A) exp(B) = (Z ];Ak> (Z ;Be> = Z ﬁAkBZ
E ¢ ke T

k pm—k

m,k

_ 1 k pm—k
=> AP
k,m

where we substitute m — k = £. It follows that for all A € M, (F) we have exp(A) is invertible (with
(exp(A))~! = exp(—A)); we also get that for s, € R we have exp((s + t)A) = exp(sA) exp(tA). Also for

P € GL(n,F) and A € M,,(F) we have

o0 1 B o0 1 B o0 1 B B
exp(PAP™! Z (PAP DE=3" HPAkP 1= P(Z MA’“)P L= Pexp(A)P~?
k=0 k=0 k=0

We also have - exp(At) = Aexp(At) = exp(At)A.
Our final observation:

Proposition 4.10. For A € M, (F) we have

det(exp(A)) = exp(tr(A))

Proof. Choose P € GL(n,C) so PAP~! = J € M,(C) is in Jordan form. So J is upper triangular and the

diagonal entries are the eigenvalues A1,..., A, € C of A. Then
1
k!
exp(PAP™Y) =exp(J) =) J*
k=0
is upper triangular with diagonal entries exp(A1),...,exp(\y); so

det(exp(A)) = det(Pexp(A)P~ ') = det(exp(PAP™1)) = det(exp(J
as desired.
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Alternate proof. Let p: M, (F) be ¢(X) = det(X). Then for ¢ € {1,...,n} we have

P(X) =det(X) = > (—1)X; 0 det(X ) =3~ X (Adj X))y
i=1 i=1
where X (% is the matrix obtained from X by removing the i** row and ¢** column, and Adj(X) is the
adjugate matrix. (Recall that X - Adj(X) = Adj(X) - X =det(X)-1.)
Then since Adj(X )y = (—1)"* det(X ) does not depend on X;; we get that
dp
anj

Thus if we define ¢(t) = det(exp(At)) then

(X) = (Adj(X))e.k

/(1) = Dplexp(A) - < (exp(41)

= > (Adj(exp (A1) (exp(AL) - A)ss
k.l

=) (Adj(exp(At))) ek (exp(At))k i Aig
k0,0

= Z(det(exp(At)) 1) A
0

=) det(exp(At)) - 6, Aie
0,i

= det(exp(At))Ag,
¢

= det(exp(At)) tr(A)

= tr(A) det(exp(At))
Thus g(t) is the unique solution to the differential equation g(t) = tr(A) - g(¢) with g(0) = det(exp(0)) =
det(I) =1. So

g(t) = exp(t - tr(A))

In particular when ¢t = 1 we get det(exp(A)) = exp(tr(A)). O Proposition 4.10

Corollary 4.11. Suppose G is a Lie subgrape of GL(n,F) where F € {R,C}. Then

1. For A € g C M, (F) the unique grape homomorphism ¢: R — G with ©'(0) = A is given by o(t) =
exp(At).

2. The Lie algebra g C M, (F) is given by

g={Ae€ M,(F):exp(At) € G for allt e R}

3. The exponential map exp: g — G is a local diffeomorphism (from an open set U C g with 0 € U to an
open set VC G with [ € V).

Proof.

1. For G = GL(n,G) and if ¢: R — G is given by ¢(t) = exp(At), we have that exp(At) is invertible, so

¢ indeed has codomain G. Also ¢(s +t) = exp((s +t)A) = exp(sA) exp(tA) = p(s)p(t); so ¢ is a Lie
grape homomorphism and ¢’(t) = exp(At) - A, and in particular ¢’(0) = A.
When G C GL(n,R) with A € g C M,,(R), we let X and U be the left-invariant vector fields on G
and GL(n,F) with X; = Uy = A. Then for P € G we have Xp = PA =Up and if p: R — G and
¥: R — GL(n,R) are the two unique grape homomorphisms with ¢’(0) = A and 9'(0) = A, then
©'(t) = Xy = Uys); thus since ' (t) = Uy ) the uniqueness theorem for differential equations
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TODO 7. ref

we have ¢(t) = ¢(t) for all . But we know from the previous paragraph that ¥ (t) = exp(At); the result
follows.

2. If A € g then p: R — G given by ¢(t) = exp(At) is the Lie grape homomorphism with ¢’(0) = A (which
is equal to the integral curve for the left-invariant vector field X with X; = A € g); so exp(At) € G for
all ¢.

Conversely if exp(At) € G for all t then a(t) = exp(At) is a smooth curve in G with a(0) = I. So
A=a/(0) € TIG =g.

3. Check that local inverse of exp: g — G is log: V C G — g given by

(71)k+1

Ak:
k

log(I+ A) = Z

k=1

Alternatively, if we suppose that exp: g — G is smooth (which isn’t particularly easy to prove) then
to show that exp is a local diffeomorphism by the inverse function theorem it suffices to show that
D exp = exp, is invertible at 0 € g. (Here we do this for abstract Lie grapes, so exp may not have a nice
concrete form.) We have that exp: g — G, so exp, : Tog — T1G; under standard identifications we may
write exp,: g — g. The map exp: g — G is defined as follows: given A € g we define exp(A) = (1)
where ¢: R — G is the unique Lie grape homomorphism with ¢’(0) = A. For A € g we defined exp, (A4)
as follows: choose a smooth curve a: (—¢,¢) — g with a(0) = 0 and o/ (0) = A, and set exp, (4) = 5/(0)
where B(t) = exp(a(t)). We choose a(t) = At; so a(0) = 0 and o’(0) = A. Then exp,(A) = 5'(0)
where ((s) = exp(As) for each s € R. By part (1) the unique ¢s: R — G with ¢.(0) = As is given by
s > exp(As).

Note that if ps: R — G is given by @s(t) = ¢(st) then ¢, is a Lie grape homomorphism, and
OL(t) = ¢'(st) - 55 80 ¥ (0) = ¢'(0) - s = As. So by uniqueness we get 15(t) = @s(t) = p(st). Thus

B(s) = 1s(1) = p(s - 1) = @(s)

so f'(s) = ¢(s) for all s. So exp,(A) = 5'(0) = ¢’'(0) = A. Since exp, (A) = A for all A we get that
exp,: g — g is the identity map. O Corollary 4.11

Theorem 4.12. The Lie algebras of the classical matrix grapes are as follows:

gl(n,R) = M,(R)
sl(n,R)={Ae M,(R):tr(4) =0}
o(n,R)={Ae€ M,(R): A+ A=0}
so(n,R)={Aec M,(R): A"+ A=0,tr(A) =0}
={AeM,(R): A'+A=0}
=o(n,R)
gl(n,C) = M, (C)
sl(n,C)={A e M,(C):tr(A) =0}
u(n,C)={A € M,(C): A*+A=0}
su(n,C) = {A € M,(C): A*+ A=0,tr(4) =0}
gl(n, H) = M, (H)
sp(n,H) ={Ac M,(H): A*A=1}

Proof.
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TODO 8. Description? Transpose case?
For sl(n,R) we have

But

sl(n,R) = { A € M, (R) : exp(At) € SL(n,R) for all ¢}

exp(At) € SL(n,R) for all ¢
= det(exp(At) =1 for all ¢
= exp(tr(A)t =1 for all ¢
= tr(A)exp(tr(A)t) =0 for all ¢

(taking derivatives). So tr(A) = 0 (taking t = 0). Conversely

A)=0

At =0 for all ¢
xp(tr(A)t) =1 for all ¢
det(exp(At)) =1 for all ¢
exp(At) € SL(n,R) for all ¢

tr
tr

I

FOr o(n,R) we have

Now

Conversely

o(n,R) ={A e M,(R) :exp(At) € O(n,R) for all ¢}

exp(At) € O(n,R) for all ¢

(exp(At))T (exp(At)) = I for all ¢

(exp(ATt)) exp(At) = I for all t

exp(ATt) AT exp(At) + exp(ATt) exp(At)A = 0 for all ¢
AT+ A=0

11T

AT+ A=0
= ATt =—Atfor all t
= exp(ATt) = exp(—At) = (exp(At))~* for all ¢
= (exp(At))” (exp(At)) = I for all ¢
= exp(At) € O(n,R) for all ¢

One does the rest oneself.

Corollary 4.13.

etc.

We easily obtain the dimensions of all classical matriz grapes.

dim(GL(n,R)) = n?
dim(SL(n,R)) = n? — 1
dim(O(n,R)) = dizm(SO(n,R))
2
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5 Connectedness

Theorem 5.1. Suppose G is a Lie grape; let H be the connected component containing e. Then H is a Lie
subgrape of G and the Lie algebra b of H is equal to the Lie algebra g of G. Also the connected components
of G are the cosets of H (all of which are diffeomorphic to H).

Proof. Tt suffices to show that H is a subgrape. Let m: G X G — G be m(a,b) = ab and v: G — G be
v(a) = a=1; so m,v are smooth. Since v is a diffeomorphism (equal to its own inverse) we get that v(H)
is a connected component containing e; so v(H) = H. So H is closed under inversion. Also if a € H
the map ¢,: G — G given by {,(z) = ax is a diffeomorphism (with inverse ¢,-1); so ¢,(H) = aH is a
connected component containing e (since we showed above that a=! € H). So aH = H; so H is closed under
multiplication (for all b € H we have ab € H). O Theorem 5.1

We recall Frobenius’ theorem. Consider a simple PDE

ou
% - F(l’,y,u)
ou
Fy - G(‘T7y=u)

One might try to solve this by separately solving each; this doesn’t always work.

More generally, suppose M is a smooth manifold with dim(M) = m. Suppose Xi,...,X,, are smooth
vector fields on M. Let V), = span{ X1(p), ..., X,,(p) }. Suppose that dim(V,) = n for all p. Then in order to
have an n-dimensional manifold N C M with T,N =V, at all p € N we must have [X, X/], € T,N =V,
for all k,£ and all p. (By the theorem that f.[X,Y], = [U,V]s).)

TODO 9. ref

(We can turn the previous problem into an instance of this by defining X = (1,0, F(x,y,u)) and
Y =(0,1,G(z,y,u)).)

Theorem 5.2 (Frobenius’ theorem). Suppose M is a smooth manifold and X1, ..., X, are smooth vector
fields on M. For p € M we let V,, = span{ X1(p), ..., Xn(p) }. Suppose for p € M we have dim(V,) =n and
[ Xk, Xo]p €V, for all k, 0. Then for each g € M there is a unique mazimal connected smooth submanifold
N C M with g € M such that T,N =V, for allp € N.

Such V), are called distributions, such X, are called involutive, and if such N exists it is the integral
submanifold of the distribution.

Theorem 5.3. Suppose G is a Lie subgrape of GL(n,F) for F € {R,C}. Then there is a bijective correspon-
dence between connected (real) Lie subgrapes H of G and (real) Lie subalgebras b of g.

Proof. When H is a subgrape of G we have h C g C M, (F). (Indeed, we have h = {a/(0) € M, (F) |
a: (—e,e) > HCGC M, (F)})

Suppose we are given a (real) Lie subalgebra h C g C M, (F). Pick a basis { A1,..., A} for h over R. Let
X1,..., Xy be the left-invariant vector fields on GL(n,F) with X (P) = PA. (These restrict to left-invariant
vector fields on G.) Then since [4;, A;] = A;A; — A;A; € h for all 4, j. So [X,;, X;]p = P[A;, A;] € Ph and
[X:, X,;lp € span{ PA,,...,PA; } = span{ X;(P),..., X;(P) }. So by Frobenius’ theorem there is a unique
maximal smooth submanifold of G with I € H and

TpH = span{ X1 (P),..., X¢(P)} = P}

forall P € H.

To show that H is a Lie subgrape, it suffices to show that H is closed under multiplication and inversion.
This is the same as the proof of Theorem 5.1. Indeed, let v: GL(n,F) — GL(n,F) be A — A~!. Note that v
is a diffeomorphism, and note that for each vector field X we have DLp X} = X, for all P € GL(n,F). So
DLp-1Xj = X}, for all P € GL(n,F). It follows that v(H) is also a maximal connected integral submanifold
of G containing I, and hence H = v(H) by uniqueness. A similar argument shows that H is closed under
multiplication. 0 Theorem 5.3
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Ezxample 5.4.
e GL(n,R) is not connected because it is the disjoint union of the two open subsets
GLi(n,R)={Aec M,(R):det(4) >0}
GL_(n,R)={A e M,(R):det(4) <0}
Note that GL (n,R) is a Lie subgrape of GL(n,R) of index 2, and its non-identity coset is GL_(n,R).
e Similarly O(n,R) is the disjoint union of

O4+(n,R)={A€0O(n,R):det(4) =1}
O_(n,R)={A€0(n,R):det(A)=-1}

(Note O4(n,R) = SO(n,R) is a Lie subgrape of O(n,R).)

Theorem 5.5. The matriz grapes
GL4(n,R),SL(n,R),SO(n,R), GL(n,C), SL(n,C),U(n,C), SU(n,C), GL(n, H), Sp(n, H)
are all connected.

Proof. Note that GLy (n,R) = SL(n,R) x R* (as Lie grapes) with an isomorphism ¢: SL(n,R) x RT —
GL, (n,R) given by (A, t) — tA; hence the former is connected if and only if the latter is. Given A € GL (n,R)
with det(A) = a we can define a path a: [0,1] = GL(n,R) given by a(t) = (1+ (b —1)t)A is a path from A
to B = bA where b = “%/E Given A € SL(n,R) we can perform the Gram-Schmidt procedure setting

V1 = U1
_ Uz - U1
BT e

ug - f]
U’f_uk_z 02 Yj
J

In particular, when expressing these operations as matrices, we get that B = (I + U)A where U = U(A) is
strictly upper triangular. A path from A to B in SL(n,R) is given by «(t) = (I +tU)A, where B € SL(n,R)
has determinant 1 and orthogonal columns; equivalently BT B = diag(d, . ..,d,) with dj, > 0 for all k and
[1d; = 1. (Note that the set A of such matrices is not a grape.) Given A € A we can scale the lengths of the
columns: for A = (vq,...,vy,) if we let by, = In|jvg||, we can define a: [0, 1] — SL(n,R) by

exp(—tby)
at) = . A
exp(—tby,)

(Note that > br =0, so Y —tby, =0.) So « is a path from A € A to B € SO(n,R) (the columns of B are a
positively oriented orthonormal basis for R™). Finally, it remains to show that given A € SO(n,R) we can
find a path from A to I in SO(n,R). We can do this using n rotations Ry,...,R,. Say A = (u1,...,un),
and let the e; be the standard basis vectors. If u; = ey, let Ry = I; else let Ry = R;(6) be the rotation in the
plane spanned by w; and e; by the angle 6 between u; and eq; then aq(t) = Ry(t0)A is a path from A to
B = (v1,...,v0,, where vy = Ry (8)ug (so v1 =eq).

If vg = eq, let Ry = I; else let Ry = Ro(f2) be the rotation in the plane spanned by ve and ey by the
angle 02 between vo and ey. Note that Ro(62) fixes eq since ey is perpendicular to both es and ve. Repeat
the procedure.
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Note that
GL4 (n,R) 2 SL(n,R) x R*
SL(n,R) 2 Ax U

A =S0(n,R) x D(n,R)

where U is the set of strictly upper triangular matrices and

D(n,R) = {diag(dl,...7dn):di >0,[di = 1}

(The map ¢: A x U — SL(n,R) is given by ¢(A,U) = (I +U)A.) O Theorem 5.5

6 Fundamental grape, simple connectedness, covering spaces

Definition 6.1. Suppose M is a smooth manifold and a,b € M. A path from a to b is a continuous map
a: [0,1] = M with a = a(0) and b = «(1). A loop at a is a path from a to a. Given paths «, 8 from a to b in
M, a homotopy from « to § in M is a continuous map F': [0,1] x [0,1] — M such that for all s and ¢ we have

£(0,1)
F(1,t) = B(t)
F(s,0)

(

s,1) =
When such F exists we say a and 8 are homotopic in M, and write o ~ 3 in M.
FEzercise 6.2. Check that ~ is an equivalence relation.

Definition 6.3. For a € M let k = K, be the constant loop x,(t) = a for all t. For a path « from a to b
define a~! be the corresponding path from b to a, given by t — (1 —t). Given a path « from a to b and a
path 8 from b to ¢ we let a * 8 be the path from a to ¢ given by

2t if
t»—>{a( ) o
2

Ezxercise 6.4. Check that
o If a; ~ g then a7t ~ aj .
o If ay ~ ap and [y ~ B then aq * 81 ~ asg * Ba.
e kK~
e Kk~

e axal~alxan~k

o (axfB)xy~ax(Bx7).

Definition 6.5. Suppose M is a (topological) manifold and a € M. The fundamental grape of M (or first
homotopy grape) of M at a, denoted 71 (M, a), is the set of loops at a in M modulo homotopy equivalence.

Theorem 6.6 (Properties of the fundamental grape).
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1. If M is a convex set in R™ and a € M then m(M,a) = {k} = 0.
If N and M are path-connected then m (N x M, (a,b)) = m1(N,a) x w1 (M,b).
If f+ N — M isa homeomorphism with f(a) =b then w1 (N, a) = m (M, b).

If v is a path in M from a to b then ~y induces an isomorphism p: m(M,a) — 71 (M,b) given by
pla) =7 xaxy.

5. m(S1) = m(C*1) = {a, : n € N} 2 Z where o, (t) = exp(2mint).

These are easy to prove except for the fifth; covering spaces may be the easiest way to see that. The
Seifert-van Kampen theorem is another way to see it.

Definition 6.7. A topological manifold M is called simply connected when M is path connected (which is
equivalent to connected for manifolds) and for some (hence for any) a € M we have w1 (M, a) = 0.

Definition 6.8. Suppose M, N are smooth manifolds. A map ¢: N — M is called a (smooth) covering map
when for every p € M there is an open neighbourhood U C M of p such that ¢=1(U) is a disjoint union

e ' (U) = Va

acA

where each V,, is open in N and the restricted map ¢ [ V,, is a diffeomorphism V,, — U. A (smooth) covering
manifold of M is a manifold N together with a smooth covering map ¢: N — M.

Definition 6.9. Suppose ¢: N — M and ¢: L — M are (smooth) covering maps, a homomorphism of
covering spaces from N to L is a smooth map f: N — L such that the following diagram commutes:

N— T

\ /
P
M
It’s an i80m01 phzsm When ? iS a diﬂeom()rphism.

Theorem 6.10. Every connected smooth manifold M has a simply connected smooth covering manifold M,
which is unique up to covering space isomorphism. This M is called the universal cover of M.

Theorem 6.11. Suppose M is a smooth manifold and let M be the smooth universal cover with smooth
covering map ¢: M — M. Suppose N is a simply connected manifold N and f: N — M is a smooth map;
suppose a € N and c € p~1(f(a)). Then there is a unique smooth map f: N — M such that po f = f and

fla) =c.

Ezample 6.12. 1. The map ¢: S' — S! given by p(2) = 2™ (i.e. exp(if) — exp(inf)) is an n-to-1 covering
map. The universal cover of S is R with the covering map ¢: R — S! given by ¢(6) = exp(if) (or
exp(i270) if you prefer).

2. The map ¢: C* — C* given by p(z) = 2" is a covering map. Note that C* & RT x S! (with an
isomorphism f: RT x St — C* given by f(r,exp(if))) = r exp(if)). The universal cover of C* is R x R
with covering map ¢: RT x R — C* given by ¢(r,6) = rexp(if) (or r exp(27if)).

Fact 6.13. Homotopic loops are lifted to paths with the same endpoint, and any homotopy of said loops lifts
to a homotopy of the lifted paths.

TODO 10. Is there some uniqueness I missed in the definition of the grape operation in the following?

Theorem 6.14. Suppose G is a connected Lie grape and G its universal cover. We can define operations on
G making it into a Lie grape such that the covering map ¢: G — G is a Lie grape homomorphism. Given
such grape operations we have that ker(p) is a discrete subgrape of Z(G) with m1(G) = 71 (G, e) = ker(yp).
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Proof. In order for ¢: G — G to be a grape homomorphism, we require that ¢(e) = e where ¢ = ez and

e = eg; we also require that for 'd,g € G if we choose paths a, B in G from € to the points a and b and we let
a=poaand 8 = ¢ o 8 then we need

So if we let v = av- B (so v(t) = a(t) - B(t) for all t) and if we let 5 = & - 3 then we need p(F(t)) = ~(t) for all
t; i.e. we need that 7 is the (unique) lift of v at e.

So we define multlphcatlon on G as follows: choose ¢ € ¢ 1(e), and then given a, b€ G we choose a path
afrometoamGandapathﬁfrometoblnG We then let @ = poa and 3 = <p06, we then let v =« - 8
and 7 be the unique lift of y at € in G and then define @ - b = (1 )inG.

One checks that @ - b does not depend on the choice of a and b’. One also checks that this makes G into
a grape and that ¢ is a grape homomorphism (and hence by smoothness ¢ is a morphism of Lie grapes).
Finally one checks that this multiplication is smooth.

Claim 6.15. K = ker(p) is a discrete subgrape of Z(G).

Proof. From the definition of a covering, it is clear that the kernel is discrete. Also K is a normal subgrape
as the kernel of a grape homomorphism. So for all a € G and k € K we have aka™! € K. Fix k € K; define
g: G — K by g(a) = aka™!. Since g is continuous and G is connected the image g(G) is connected in K.
But K is disrete; so g(G) is a singleton. But g(€) = k; so g(G) = {k}. So aka™* = k for all a € G, and
ke Z(G). So K C Z(@). O Claim 6.15

It remains to check that m1(G) =2 K = ker(p). Define A: m1(G): K by A(a) = &(1) where a is the unique
lift of & at € in G. One checks that this is an isomorphism of grapes. O Theorem 6.14

Missing stuff.

continued. Recall that given E,E € G we choose paths a, 5 in G from € to @ and b and then we let o = poa
and
something something

Claim 6.16. The lifting map A: m1(G) = K = ker(yp) given by AM«) = a(l) is a grape isomorphism.

Proof. X is well-defined since if o an df are loops at e in G with a ~ 8 in G then a homotopy F' from
a to B lifts to a homotopy F from @ to ﬂ in G, so a ~ ﬁ in G. So we have a(l) = B(1) in G and also
p(a(l)) = a(l) = e; hence A(a) = a(l) € ker(yp).

A is surjective because G is path-connected. (So given & € K = ker(p) = ¢~(e) we can choose a path &
from € to @ in G and then for o = ¢ 0 & we have that « is a loop at e and )\( )y=a(l) =a.)

A is injective because G is simply connected. (So if AMa) =a(l) = B(1) = A(B) then & ~ 3 in G and a
homomotopy F from & to B gives a homotopy F = po F from ato Bin G;s0 a~ B, and a = B in m1(G).)

Finally, note that X is a grape homomorphism because given loops «, 3 at e in G we have o - 3 ~
(a*x k) (k*xB)=axpf; hence A(ax*x ) = Aa) - ANB) =a(l)-B(1). O Claim 6.16

O

Theorem 6.17. Suppose G is connected. Suppose ¢: H — G is a Lie grape homomorphism. Then ¢ is a
covering map if and only if p. = dy is invertible (say at e € H).

Proof.
(=) If ¢ is a covering map then ¢ is a local diffeomorphism; so ¢, is invertible.

(<=) Suppose ¢, is invertible (at e); so ¢ is a local diffeomorphism (by the inverse function theorem).
Suppose Uy C G is open with eg € Up; then we can pick open Vj C H with eg € Vj such that the
restriction : Vy — Upy is a diffeomorphism. Choose U C Uy contianing eq such that U is connected
and open with U - U™t = {ab ' : a,b € U} C Uy and let V = o1 (U) N Vy (so V is connected and
open and VV~1 C ;).
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Claim 6.18. ¢~ 1(U) is the disjoint union

el U)= || kv

keK

where K = ker(¢) = ¢~ !(eq).

Proof.

(C) Suppose a € ¢ 1(U) so u = ¢(a) € U; so there is (unique) v € V such that ¢(v) = u. Then
olav™!) = p(a)p(v)t =uut =eg; so k = av™! € K = ker(yp), and hence a = kv € kV.

(D) If b= kv for some k € K and v € V then ¢(b) = p(kv) = ¢(k)p(v) = eqp(v) = p(v) € U.

(Disjoint) If kv = fw for k,£ € K and v,w € V then p(v) = p(kv) = p(fw) = p(w), and v = w;
hence kv = fv and k = v. O Claim 6.18

Claim 6.19. ¢ is surjective.

Proof. Let L = (UNU™!) be the subgrape of G generated by U N U~!; that is

[ee]
UNU) ={uuy-up :n€Z*, eachup e UNU '} = [ JWOUNU)"

n=1

Note that (U N U~1) is open in G, and the cosets a(U N U~ are also open in G, and G is the disjoint
union of the cosets. But G is connected; so there is only one coset. Thus (U NU~!) = G. Given b € G
we can choose uy, ..., u, € UNU! so that b = uy - - - u,; for each k choose vy, € V with ¢(vi,) = up € U.
So p(v1vg - vy) = @(v1) -+ - @(vn) = u1 -+ up, =b. So p is surjective as claimed. 0 Claim 6.19

Finally one checks that given b € G if we choose a € H so that p(a) = b then p=1(b- U) is the disjoint
union
e 1 (bU) = |_| k-aV
keK
The result follows. O Theorem 6.17

TODO 11. Add the following to an earlier theorem?

Theorem 6.20 (Another property of the exponential map). Suppose H,G are matriz Lie grapes; suppose
w: H— G is a homomorphism of Lie grapes. Then the following diagram commutes:

h —

J{exp exp
%2}

H ——

©

Q

i.e. expop, = poexp as maps h — G.

Proof. We need to show that ¢(exp(A4)) = exp(Dy - A) for A € . We shall show that

p(exp(tA)) = exp(t- Dy - A)

for A € hand t € R. (Here Dy = dp but we’re working with matrices so it’s capital.) We shall do this
by showing that v(t) = @(exp(tA)) is the integral curve of the left-invariant vector field X on G with
X; =Dy(I)- A. By a previous theorem

TODO 12. ref
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this integral curve is exp(t - d® - A), so this will suffice.
We need to show that v'(t) = X4y = v(t)Dp(I) - A. For all 5,t we have

pexp((s +1)A)) = p(exp(sA) exp(tA) = p(exp(sA))p(exp(tA))
So for fixed s we have
Dyp(exp((s +t)A))exp((s +1)A) - A = p(exp(sA))Dyp(exp(tA)) - exp(tA) - A

for all ¢. In particular putting in ¢t = 0 gives Dp(exp(sA) - exp(sA)A = p(exp(sA)Dy(I)A; that is 7/(s) =
v(s)Dp(I)A as required. O Theorem 6.20

Theorem 6.21. Suppose H and G are matrix Lie grapes. Suppose H is simply connected. Then there is
a bijective correspondence between Lie grape homomorphisms ¢: H — G and Lie algebra homomorphisms
¥: b — g such that when ¢ and ¥ correspond we have ¥ = ¢, = dp = Dep.

Proof. Suppose ¢: H — G is a homomorphism of Lie grapes. Suppose A4, B € §. Let X, Y be the left-invariant
vector fields on H with X; = A and Y; = B. Let U,V be the left-invariant vector fields on G with Uy = ¢, A
and Vi = p.B. (More precisely Ur = ¢, 1(A) = Dp(I)A, but we’ll omit the I unless we need it.) We show
that . Xy = Dp X, = Uypy-
We have Dy - X, = Dy -PA=Dyp-DLpA = D(poLp)A. But
P(Lp(Q)) = ¢(PQ) = ¢(P)p(Q) = Lyp)(#(Q)) = (Lyp) 0 9)(Q)

So
DQO . Xp = D(Lw(p) o QD)A = (DL(P(p) ] DQD)A = DLLp(p)U] = U¢(p)

Since Dy - Xp = Uy,py and Dy - Yp = V,(p) for all P € H we have
Dol X,Y]p = [U,V],(p)
TODO 13. ref
So in particular Dp[X,Y]|; = [U,V];. Thus ¢, = Dy is a Lie algebra homomorphism.
Claim 6.22. Given two Lie grape homomorphisms 1, 2: H — G if Dp1(I) = Dpao(I) then o1 = pa.
Proof. We use the fact that the following diagram commutes:

D1,Dp2
R

b
lexp exp
H

P1,$2

©

Q

Suppose Dy = Do (at I € H). Then we have
p1(exp(A)) = exp(Dy1 - A = exp(Dys - A = @a(exp(A)

for all h € h. If we had exp: h — H surjective then we would be done; alas, this is not necessarily the case.

When exp: h — H is not surjective, the image exp(h) still generates H. Indeed, since exp: h — H is a
local diffeomorphism if we choose open U C h and V C H with 0 € U and I € V such that exp: U — V is a
diffeomorphism then (as seen previously) the grape (V NV 1) is an open subgrape of H with all cosets open,
and hence is equal to H since H is connected.
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It follows that when Dy; = Dgs. Indeed, if P € H we can choose Aj,...,A, € b such that P =
exp(Ay) - - -exp(Ay); then

p1(P) = ¢ (H exp(Ak)>
k
~ Lo (exn(an)
k
= [[exp(Der - 4p)
k

= [T exp(De2 - Ar)
k

= [ w2(exp(Ax)
k

=2 (H eXP(Ak)>
k

as desired. O Claim 6.22

Finally, we check that our correspondence is surjective. Suppose 1: h — g is a Lie algebra homomorphism.
Say H C GL(n,F) and G C GL(m,F) where F € {R,C}. Then

Hsz{(jg g):PEH,QeG}gGL(n+m,F)

has Lie algebra
h@g%{(é g) :Aeh,Beg} € Mpsm(F)

‘»’—{(é wOA):AeH}Qh@Q

Note that ¢ is a Lie subalgebra because
A 0 B 0 _ ([A, B] 0
0 9vA)’\0 yB/)| 0 [ A, B]

- (MbB] ot B])

Let K be the unique connected Lie subgrape of H x G with Lie algebra ¢. Let py: K — H and pg: K - G

be the projection maps; i.e.
P 0

P 0
Since ¢y and @¢ are linear, they are equal to their derivatives (as linear maps). So
A 0

Dec () =04

Let

Note that Dpp is invertible, and thus
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v K — H is a covering map. Since 71 (H) = 0 we get ker(vpy) = 71 (H) = 0.

Editor’s note 6.23. 1 don’t think this follows formally from Theorem 6.14, since we don’t yet know that ¢
is universal. However I think one can check directly that being a covering space of a simply connected space
(like H) implies simple connectedness.

So pg: K — H is an isomorphism of Lie grapes.
We define p: H — G to be p¢g o <pI_{1. Then Dy = Dpg o Dgpl_{l; ie.
1 A 0
Dp(A) = Doa(Deyy (4) = Dea | (4 ) = ¥4

So Dy = 1. 0 Theorem 6.21

6.1 Fundamental grapes of classical matrix grapes

We know that GL (n,R) retracts SL(n,R) and that SL(n,R) retracts (using Gram-Schmidt) SO(n). Indeed
we have diffeomorphisms

GL4(n,R) = SL(n,R) x RT
(n,R) & SO(n) x R 7" +(=1)

~

It follows that
m1(GL(n,R)) 2 m (GLy(n,R)) 2 7 (SL(n,R)) = 71 (0(n)) = m1(SO(n))
So we compute the fundamental grapes of SO(n).

SO(1) = {1}
m(SO(1)) =0

S0(2) = {Rg <C°SH _SM) 0 e R/zﬂz}

sinf  cosf

>~ R/27Z
~ gl

(S0(2)) = m (S")
> 7

SOB)={Rupe:|ul=1,0€[0,7n],Ry0=1and R, =R_, r forall u}

=~ B(0,7)/ ~ where when |u| = 7 we have u ~ —u
=~ P3(R)

m1(S0(3)) = m (P*(R))
~7/27

The last fact is hard to see without some more algebraic topology. The Seifert-van Kampen theorem helps.

Alternatively, the 3-sphere is apparently a 2-to-1 covering space for P3(R), which we can find some clever way
to endow with a Lie grape structure.

Aside 6.24. Note that the map exp: s0(3) — SO(3) sends

0 a b
—a 0 c| = Rgp
b —c O
where
—c
u=1| b
—a
and u = % and 6 = |u|
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If n > 3 then SO(n + 1) acts on R*™! and if A = (uy,...,ups1) € SO(n + 1) then Ae, 1 = Uy € S™.
Then

orb(eny1) =S

stab(en11) ={ A= (u1,...,Uns1) €SO+ 1) : upy1 = €nt1 }

{6 nesow)

By the orbit stabilizer theorem we have SO(n + 1)/ SO(n) = S™. This gives a fibre bundle

SO(n) —— SO(n+1)
STL
From the fibre bundle we obtain a long exact sequence of homotopy grapes
<o = m2(SO(n)) = m2(SO(n+ 1)) = m(S™) = m1(SO(n)) — m (SO(n+ 1)) = m1(S™) = m(SO(n)) — - - -
=0 =0

The Hurewicz isomorphism gives m,(S") = 0 for 1 < ¢ < n and 7, (S") = Z. For n > 3 we use the above
sequence to see that m1(SO(n)) = 71 (SO(n + 1)); hence w1 (SO(n)) = Z/2Z for n > 3.

Similarly we have diffeomorphisms GL(n, C) 2 SL(n, C) x C* and U(n) = SU(n) xS! and by Gram-Schmidt
we have SL(n,C) = SU(n) x R™.

TODO 15. what?

So we have 11 (GL(n,C)) = 71 (U(n)) = m(SU(n)) x Z and 1 (SL(n,C)) = 71 (SU(n)). So we solve for
m1(SU(n)).
(n=1) SU(1)={1}.
(n =2) We have

SU(2) = { (Z 2) ca,b,c,d € C,lal®* + b = |¢|* + |d|* = 1,ad — b= l,ac—i—bd:O}

For <(bl 2) € SU(2) we have

(& 5)()=0)
(6= 906)-)

SU(2) = { (Z ‘ab> la]? + p]> =1 } ~ g3
We have 71 (SU(2)) = m1(S?) = 0.

(Larger n) We have SU(n + 1) acts on C"*! =2 R?"+2_ For A = (uy,...,up+1) we have Ae,i1 = Upy1 €
S?ntlsand Ae, 1 = enyq if and only if u, 1 = e,01. So

stab(en ) = { <lg (1’) . B e SU(n) }

Hence SU(n + 1)/ SU(n) = §?"*+1 and from the fibre bundle we obtain the long exact sequence. For

n > 1 we have
0 = m(S*" ) = 11(SU(n)) — m (SU(n + 1)) = m (S*" ) =0

so that w1 (SU(n + 1)) = 71 (SU(n)). So 71 (SU(n)) =0 for n > 1.
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What of Sp(n)?
(n=1) Sp(1)={ueH :|u=1}=S8?%som(Sp(1)) =0.
(n >2) We have a fibre bundle Sp(n) <+ Sp(n + 1) — S**3| whence we obtain an exact sequence

oo = mp(S*T3) — 1 (Sp(n)) — T (Sp(n + 1) — mp (S F3) — ...
=0 =0

Hence 71 (Sp(n)) = 0 for all n > 1.

So SU(n) and Sp(n) are simply connected, and hence are equal to their own universal covers. But for n > 3
we have m1(SO(n)) = Z/2Z. So SO(n) has a two-to-one universal covering space, which we call the spin
grape, denoted Spin(n). When n = 3 we have SO(3) = P3 and P3 has universal covering space S®. We also
have diffeomorphisms SU(2) 2 Sp(1) = S3.

Ezercise 6.25. Find the covering map ¢: SU(2) — SO(3) (or Sp(1) — SO(3)).

7 Abelian Lie grapes and abelian Lie algebras

Definition 7.1. A Lie grape G is abelian when ab = ba for all a,b € G. A Lie algebra g is abelian when
[A,B] =0 for all A,B € g.

Theorem 7.2. Suppose G is a connected matrix Lie grape with Lie algebra g. Then G is abelian if and only
if g is abelian.

Proof.

(=) Suppose G is abelian; suppose A, B € g. Then exp(sA)exp(tB) = exp(tB) exp(sA). Differentiate
with respect to s to get exp(sA) - Aexp(tB) = exp(tB) exp(sA)A; putting in s = 0 we get Aexp(tB) =
exp(tB)A. Differentiate this with respect to ¢t to get Aexp(tB)B = exp(tB)BA; putting in ¢t = 0 we
get AB— BA=0,so [A,B]=0.

(<= Suppose g is abelian. Note that for A, B € g since AB — BA = [A, B] = 0 we have exp(A) exp(B) =
exp(A + B) = exp(B + A) = exp(B) exp(A). But we saw in the proof of Claim 6.22 that a connected
Lie grape is generated by exponentials; so G is generated by exp(g). Then given P,Q € G we can
choose Ay,..., A, B1,..., B, € g so that

P =[] exp(Ax)
k

Q =[] exp(Be)
14

and then
PQ = [[exp(4x) [ [ exp(B)
k ¢
= exp <Z A + Z Bg)
k ¢
= exp (Z B, + Z Ak>
¢ k
= H exp(By) H exp(Ayg)
[ k
as desired. [0 Theorem 7.2
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Definition 7.3. An (integral) lattice in a finite dimensional vector space V over R is a set (a free abelian
grape) of the form A = spany{us,...,us} for some linearly independent (over R) vectors uy, ..., ug.

Note that every lattice in V' is discrete. Indeed, the point

L
a = E kluz
i=1

with k; € Z can be separated from the other points in A using the open set

U={Ztiui:|ti—k;i|<1fora111§i§£}

i=1
where we extend {uq,...,up} to a basis {uy,...,u, } for V.
Theorem 7.4. Every discrete subgrape of a finite dimensional real vector space is a lattice.

Proof. Suppose V be a finite dimensional vector space over R and I' a discrete subgrape of V.

Claim 7.5. T' is closed.

Proof. Suppose not; choose x € I' \ I'. Choose an open neighbourhood U of 0 which contains no other
points in I'. Choose an open Uy C U such that 0 € Uy and a —b € U for all a,b € Uy. Choose distinct
yz€(x+Ug)NT;sayy=cz+aand z=2+b. Theny—a=z—b,andy—z=a—-beUNT={0}, a
contradiction. O Claim 7.5

Let W = spang(T") C V; pick a basis { w1, ..., wp } for W with each wy, € . Let A = spang{ wy,...,ws } C
T". Note that W is the disjoint union of the sets a + P where a € A and

£
P:{Ztiwizogti<1}

i=1
Claim 7.6. T'/A is finite.

Proof. Let K = T'/A; for each k € K choose a representative r, € I' (so I'/A = {ry, + A: k € K}). For
k € K write r, = ap + pr where a € A and p,. € P. Since pp = r —ap € I’ and I' is closed and discrete,
and since p, € P and P is compact, it follows that there are only finitely many py. Also for k, ¢ € T'/A if we
had px = pe then we would get r, —ap, =r¢ —ag, 80T — 19 =ar —ag € A;sory €rg+ A, and k = ¢ (since
the ry contain exactly one representative of each coset). So I'/A is finite. O Claim 7.6

Let m = |T'/A| = [I': A]. For all @ € T we have m(a+ A) =0+ A; so ma € A for all a € T, and mI" C A.

Then I' C iA = spang{ m~tuy,...,m tu, }. Since I is a subgrape of the free abelian grape A, we get that
T is also a free abelian grape. So T' is of the form I' = spany{ v1,...,v; } for some linearly independent
v1,...,v, € =A. (In fact k= £.) So I is a lattice. O Theorem 7.4

Definition 7.7. A torus is a Lie grape of the form T = (S')" for some n > 1.
Theorem 7.8. Suppose G is a matriz Lie grape.
1. If G is connected, compact, and abelian, then G = T™ where n = dim(QG).

2. If G is compact and abelian then G = T" x K where n = dim(G) and K is some finite abelian grape.

Proof. Suppose G is compact and abelian; let H be the connected component of G containing I (so H is
both open and closed).
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1. We show that H = T™.

Since H is abelian we get that exp: h — H is a Lie grape homomorphism. Since exp, = I is invertible,
we get that exp: h — H is a covering map; indeed, since 71(h) = 0 (as b is a vector space) we get that
b is the universal cover. In particular, exp: h — H is surjective,

TODO 16. ref

and ker(exp) is a discrete subgrape of Z(h) = h. By the previous theorem we have that ker(y) is a
lattice; say ker(p) = spang{uy,...,us}. We can extend {wuy,...,us} to a basis {uy,...,u, } for h.
Since exp: spang{ui,...,u, } — H is surjective we get

H = spang{ uy,...,u, }/spang{u,. .., u, } = (R/Z)" x R¥ 2= (S')* x R*
where K+ =mn
TODO 17. check

Since H is compact we get £ =n and k = 0. So H = (SH)" = T".

2. Note that G/H is finite since the cosets are all open and closed in G and G is compact. Say
G/H = (Z/mZ) x --- x (Z/neZ). Let P, € G correspond (under the above isomorphism) to e, =
(0,...,0,1,0,...,0) with 1 in the k'™ position. Then P;*H = (P H)™ = 0; so P;'* € H. Since
exp: h — H is surjective we can choose By € h so that exp(By) = P;*. Let Ay = n%ch € b so
exp(nipAy) = P'*; then let Q = P exp(—Ag). So Qy is in the same coset as P, and Q;* = I. One
checks that the map H x (Z/niZ) x --- x (Z/nZ) — G given by (P, ky,... k) = PQ¥ -..Qb is a
Lie grape isomorphism. [0 Theorem 7.8

We interrupt this broadcast to bring you a special report:

Theorem 7.9 (Closed subgrape theorem). Euvery closed subgrape of a matriz Lie grape is a regular Lie
subgrape.

Proof. Suppose G is a matrix Lie subgrape of GL(n,F) with F € { R, C }; suppose H C G is a closed subgrape
of G. Let h ={AecgC M,(F):exp(At) € H for allt e R}.

Claim 7.10. b is a subspace of g.

Proof. Closure under scalar multiplication is obvious; we check closure under addition. Suppose A, B € b;
so exp(tA),exp(tB) € H for all t € R. Then exp(LA),exp(LB) € H for all t € F and n € Z*; hence

exp(LA)exp(LB) € H for all t,n. From A2 we have

esp(t(a+ 3) = tim (exp( ) exp(15) )

for all t € F, which must lie in H since H is closed. Thus A+ B € b, and b is a subspace of g. O Claim 7.10

We will show that there is a (local) regular chart around I; i.e. some p: U C G — o(U) =V Cg. In
particular our ¢ will be the logarithm. Then we have p(UNH) =V Nh.

TODO 18. wording?

Suppose there is no such regular chart. We know that F = exp: g — G is a local diffeomorphism. Choose
a subspace £ C g such that g = h @ ¢ (and then FE is given by E(A+ B) = exp(A+ B) for A € h,B € ¢).
Also the map F: g=h @t — G given by F(A+ B) = exp(A) exp(B) is a local diffeomorphism with F, = I:
indeed, using series expansions we have exp(A)exp(B)=(I+ A+ - ) I+ B+---)=I+(A+B)+---.

Choose 0 € Uy C g and I € Vy C G such that F': Uy — Vj is a diffeomorphism. Suppose for contradiction
that there exist points in H arbitrarily close to I not in F(H NUp). Then there are points A+ Be hdt=g
arbitrarily close to 0 but not in h (so B # 0) with exp(A4) exp(B) € H. Note that since exp(A) € H we have
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exp(B) € H. So we can choose a sequence B; € ¢ with B;j # 0 and (B ) — 0 such that exp(B;) € H for all j.

By extracting a subsequence if necessary, we may suppose that BT B T C for some C € ¢ with ||C| = 1.

Let ¢ € R be arbitrary, and note that HB H
exp(n;B;) = exp(B;)™ € H, and n;B; — tC in ¢ since

—tC int Letn; = {WJ Then since exp(B;) € H we have

[n;B; —tC| < ||n; B; — nj —

| Bl + + H tCH
| B; I‘ 1Bl

N———— 0 S —
<1 —0

lizi-l-

Hence exp(n;B;) — exp(tC). Since exp(n;B; € H and H is closed, it follows that exp(tC) € H. Since
exp(tC) € H for all t € R, we have C' € h. But C € £ with ||C|| =1 and hNn¢ = {0}, a contradiction.

So we have a regular chart at I € H. Given p € H there is a regular chart at p obtained using
left-multiplication by p. [0 Theorem 7.9

We now return to your regularly scheduled programming.

Definition 7.11. For a compact matrix Lie grape G, a mazimal torus in G (or a Cartan subgrape) is a
maximal compact connected abelian Lie subgrape. For a matrix Lie algebra g a Cartan subalgebra of g is a
maximal abelian Lie subalgebra of g.

Remark 7.12. Hopefully we will later prove that in a compact
TODO 19. connected?

matrix Lie grape

1. The maximal tori in G are conjugate to each other.

2. (G is the union of the maximal tori.

Corollary 7.13. When G is a compact
TODO 20. connected?
matriz Lie grape we have exp: g — G is surjective.
Corollary 7.14. The maximal tori of G have the same dimension, which we call the rank of G.

FEzercise 7.15. Verify that the classical compact matrix grapes have the following maximal tori and Cartan
subalgebras:

e In SO(2n) we have the maximal torus

T = 0L eR
0 Ry

n

o= () )

where

and Cartan subalgebra

t= 10 eR

where



e In SO(2n + 1) we have

Ry,
T = 10, eR
Ry,
1
Se,
t= 0 €R
So,,
0
e In U(n) we have
exp(if;)
T = 0L eR
exp(ify,)
i6q
t= (0 eR
ity
e In SU(n) we have
exp(i61)
T = :HkER,HeXp(in)zl
exp(i6,)
61
t= :erR,ZGk:O
ian

e In Sp(n) if we identify

M, (H) = { (B f) . A, B € M,(C) } C My, (C)

then we have

exp(ify,) .
exp(—if;) HOr €R

exp(—iby,)
i0;

10,

—iby 0L eR

—i0),
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It follows that
rank(SO(2n)) = rank(SO(2n + 1))

rank(U(n)) =n
rank(SU(n)) =n—1
rank(Sp(n)) =n

Fact 7.16. When G is a compact Lie grape and : GG is its universal cover and T' is a maximal torus in
G, we have T = o~ X(T) is a mazimal torus in G with o: T — T a covering map.

8 Representations

Definition 8.1. A Lie grape action of a Lie grape G on a smooth manifold M is a smooth map F': GxM — M,
usually written F(a,z) = a - = ax, satisfying

1. ex =z for all z € M (where e € G is the identity), and
2. a(bx) = (ab)x for all a,b € G and x € M.
A Lie grape action of G on a vector space V (over R or C, usually C) is called linear if
l.a(z+y)=ar+ayforalla € Gand z+y €V, and
2. a(tx) =t(az) for alla € G, z € M, and t € C.

A representation of a Lie grape G in GL(V'), where V' is a vector space (over C), is a Lie grape homomorphism
p: G — GL(V). A linear G-module on a Lie grape G is a vector space V (over C) with a G-action.

Ezercise 8.2. Verify that the above three concepts are equivalent.

8.1 An informal review of integration on manifolds

Integrals that you see in various parts of mathematics/physics:

/abf(@dx_/Ide
//Rf(x,y)d:vdy://RfdA
///Bf($7y72)d$dydz:///3fdv

Or if C' is a curve given by a: R — R™ then

Lﬂu:[fm@mumw

If o is a function out of a rectangle in R?, say o(s,t) = [ y(s,t) |. Then the surface integral is

/ fdAa :/ flo(s,t)]|os(s,t) x o¢(s,t)|ds t
s R

In R? if a(t) = (2(t),y(t)) and T = % and F = (P, Q) is some vector field we define

[ Frae= [ (Plae).Qa®)) - 0.5/ 0
C

I
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so dL = |2/(t)|dt. We also let N = %, and then

| PNz = [ (Pla®). Q) (- ). )
C

I

In R? we can define

/CF-TdL:/(P(a(t)),Q(a(t)),R(a(t)))-o/(t)dt:/IP(a(t))-x'(t)+-~-:/angc—i-Qdy—i—Rdz

I

We also set

[ [ Fwaa= [ [ (Plo(s).QUs.0). Rio(s.0) - (0s(s.1) x o1 s
:/Pw(s,t» % gj 1Q--

://de/\dz+de/\dx+Rdz/\dy

We can also relate the integral on a boundary to the integral of some kind of derivative:

//S(VXF)-NdA: C:aMa
///B(V~F)dV:/SzaBF'NdA

In general, using differential geometry:
/ da = / «a
M oM

We can “define” a k-form on R™ to be an expression of the form
a= Z A;(z)dxy

where T = (i1,142,...1;) with 1 <iy < -+ < i < n. We write dey = da;, A--- Ada,,. We then set

dxyy
ok
o= ar(o(t)) dtq -+ - dity
[-xf.
Oty
For
o= Zaj(x)dxj
I
we define
0
da = ZZ aldxj ANdxr
I j= 1

using dz; A dz; = —dz; Adz;.
We still have to give a formal definition of a k-form.

Definition 8.3. For a vector space V we define T*V to be the set of k-linear maps L: (V*)¥ — R. This is
span{ u;, ® --- ®u;, : 1 <i; <n}, where {ug,...,u, } is a basis for V and

(uiy @ -+ @ui ) (fr,- -5 ) = faluiy) - fi(uiy,)
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We then set A¥V to be the set of alternating k-linear maps L: (V*)¥ — R; this is then span{ u;, A---u;, :
1<4 <+ <ix <n} where

fi(uiy)
(uil /\"'/\uik)(fla"'7fk) =
fk(ulk)

(and uj A w; = —u; Auy).
Definition 8.4. On R", a k-form is a smooth map a: R™ — A¥(R™)*. For a smooth manifold M and a

point p € M we let
9 9
Ox1’ " Ozn

be the standard basis for T}, M identified using a chart to R®. We then let dz1,...,dz, be the dual basis for
Ty M. (So dxy, (%) = 0p¢.) Then A’“T;M is the set of alternating k-linear maps «: (T, M)* — R, which is

the span of dz; where I = (i1,...,4x) for 1 < iy < --- < i =n. A (smooth differential) k-form on M is a
map
ar M — | ATy M
p

with a(p) € AkTp*M for all p € M such that for each coordinate chart ¢ when we write « locally as

alz) = Z ar(z)dzy
T

we have that each function ay is smooth as a map p(U) C R™ — R. So a k-form « on M is a smooth section
of the vector bundle
ko _ kpx
AFT*M = | | APy M
pEM

Note that when M is n-dimensional we have
A"TyM = span{dz; Adxg A--- Adx, }
so dim(A"T; M) = 1. An n-form is given locally by a(x)dzy A--- A dzy,.

Definition 8.5. We say M is orientable when M can be given charts such that for every transition map
=1 we have det(D(vp~1)(z)) > 0 for all z € dom(p) N dom(z).

Fact 8.6. If M is n-dimensional then M is orientable if and only if M has a nowhere zero n-form.

The proof uses partitions of unity to construct a nowhere-zero top form.
When M is oriented and w is an n-form we can define | o w; the integral is given locally in a chart ¢
where

w = Za;(x)dxl A ANdxy,
by

/ w:Z/ ar(z)dzy ---dzy,
scUCM T JRCp(U)CR

For a smooth map f: N — M with f(p) = ¢ we define the pullback f*: A’“T;M — A"”‘T;N by f*(a)(X1...,Xk) =
a(fe(X1),..., f+(Xy)) where o € A*T* M and each X; € T,N.

Theorem 8.7.

1. For N L M % L we have (go f)* = f*og*.
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2. For N4 M % R and for a k-form a on M we have f*(g-a)=(go f)- f*a.

3. For N L5 M we have frod=do f*; that is f*(da) = d(f*«) when « is a k-form on M.

Remark 8.8. Suppose N is oriented and k-dimensional and M is n-dimensional; suppose f: N — M is an
immersion and « is a k-form on M. We can define

Joe e

This is the integral that agrees with the examples we saw at the beginning of the section.
Definition 8.9. A wvolume form on an n-dimensional manifold is a nowhere-zero differential n-form.

Given a volume form on M we obtain an orientation on M, and can then define the integral of a continuous
function f: M — R with compact support.

TODO 21. ¢

Definition 8.10. Suppose G is a Lie grape. A differential form w on G is called
o left-invariant when (fw = w for all a € G,
o right-invariant when 7w for all a € G, and

e invariant under inverseion when v*w = w (where v: G — G is the inversion map v(z) = x71).

Theorem 8.11. Suppose G is a Lie grape.
1. There exists a left-invariant volume form w on G, and it is unique up to multiplication by c € R\ {0}.

2. If G is compact we can also require that wa = 1; then w is unique up to multiplication by £1 (where
we use the form to determine the orientation).

3. When G is compact and connected, the left-invariant form w (or —w) with wa =1 is also right-invariant
(so riw =w for all a), and v*'w = tw.
Proof.

1. Given 0 # w. € A"Te*G, in order to get (;w = w for all @ € G we must have w, = £*_,w, (since
ly-1(a) = e, 50 £Z_,: A"T;G — A"T;G). On the other hand, if we define w by w(a) = w, = £_ we
then w is left-invariant: if a,b € G then

(&’;w)b = EZ(wab) = f;(ﬁb—la—lwe) = (ﬁb—la—l o Ea)*we = 6271((41@) = Wp
Uniqueness up to non-zero multiplication is because AT} G is one-dimensional.

2. Follows from the above, (since negating the form that determines the orientation and integrating it
with respect to the new orientation doesn’t change the integral).

3. For a,b € G we have
C(rpw) = (rpoly) w= (lyorp)*'w=r(liw) =rjw

So rjw is left-invariant for every b € G. Hence from uniqueness of w up to scalar multiplication we get
that 7} (w) = ¢(b)w for some smooth map c: G — R\ {0}. Also note that

cla)e(b)w = ri(c(b)w) = ri(riw) = (rp o 1re) w = riyw = c(ab)w
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So ¢(ab) = ¢(a)e(b). So the map ¢: G — R\ {0} is a homomorphism of Lie grapes. Since G is compact,
we get that ¢(G) is compact; so c¢(a) = £1 for all @ € G. Since G is connected either ¢(a) = 1 for all
a € Gorcla)=—1forall a € G. Since r. = id we have rfw =w; so c(a) =1 for alla € G. So riw =w
for all @ € G. Also for all a € G we have

G(v'w) = (voly)'w=(re-100)w=0"(r_1w) =v'w

Thus v*w is left-invariant; so v*w = cw for some ¢ € R\ {0}. We must have ¢ = %1 since v ov = id, so

w=(vov)'w=10v"{w) =v(w) = cv*(w) = w

as desired. O Theorem 8.11

Definition 8.12. Suppose G is a compact Lie grape and +w is the left-invariant volume-form; suppose
f: G — R is a continuous (or integrable) function f: G — R. We write

L= [ taag@)= [ e
Corollary 8.13. Suppose G is compact and a € G. Then

/faardg /fwadg /f “ldg(x) /f )dg(z

Remark 8.14. The corresponding measure on G given by

n(A) = / xadg(z)
G
is called the Haar measure on G.

8.2 Back to representations

Definition 8.15. A representation of a Lie algebra g is a Lie algebra homomorphism ¢: g — End(V).

We define g-actions and g-modules analogously.

Remark 8.16. When G is a Lie grape with Lie algebra g we have that every Lie grape representation
p: G — GL(V) induces a Lie algebra representation ¢ = p,: g — End(V). When G is connected we saw
(Claim 6.22) that for two representations p, ¢: G — GL(V) if p, = @, then p = ¢. We also saw (Theorem 6.21)
that if G is simply connected then every Lie algebra representation ¢: g — End(V) is of the form 3 = p, for
some Lie grape representation p.

Definition 8.17. When a Lie grape representation p: G — GL(V) is injective, we say that it is faithful.

Ezample 8.18. When G is a matrix Lie grape G C GL(n,C) we have the standard representation p: G —
GL(C"™) the inclusion map. When G is any Lie grape we have the adjoint representation defined as follows:
for a € G let C,: G — G be the conjguation map = — axa~'. Since C, is a diffecomorphism we have that
dC, = (Cy)«: g — g is invertible. The map Ad: G — GL(g) given by Ad(a) = dC, is called the adjoint
representation of G. The induced representation ad = Ad,: g — End(g) is called the adjoint representation
of g).

Ezample 8.19. Let V,, = spancg(z™, x
Then SU(2) acts on V,, by

=Ly .. xy™ L y™) be the set of homogeneous polynomials of degree n.

A G) =)
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Ezample 8.20. When V, W are G-modules (or equivalently when p and ¢ are representations) we can define
modules (or representations) V., V* VoW,V @ W, L(V,W), TV, A*V (or p, p*, p® ¢, p® ¢, etc.) as follows:

e V is equal to V as an abelian grape, but scalar multiplication on V is given by

cC-rL=2°C-Z
~~ =~
inV inV

and the action of G on V is the same as the action of G on V:

forae G,z eV.
e V* is the set of linear maps f: V — C, and the action of G on V* is given by (a- f)(z) = f(a™! - 2).
e The action of G on V & W is given by a(z,y) = (ax, ay).

e Consider V®@W, which we view as the set of bilinear maps L: V* x W* — C, or equivalently spans{ v; ®
wj : 1,7 } where the v; are a basis for V, the w; are a basis for W, and (v; ® w;)(f,9) = f(vi)g(w;).
The action of G on V ® W is given by a - (v ® w)(f, g) = f(av)g(aw) (or a- (v ® w) = (av) @ (aw)).

e The action of G on L(V,W) is given by (aL)(z) =a-L(a™!-z)fora € G, L: V — W, ,and x € V. (i.e.
if p: G = GL(V) and ¢: G — GL(W) are the constituent representations then we get a representation
¥: G — GL(L(V,W)) given by (¥(a)(L))(z) = p(a)(L(p(a)~'x)).)

TODO 22. Are we calling this End(V, W) ?¢

Definition 8.21. Suppose G is a Lie grape; suppose V and W are G-modules. A G-module homomorphism
from V to W is a linear map L: V — W which is G-invariant (or G-intertwining): namely a- L(z) = L(a - ),
or writing the representation explicitly ¢(a)(L(z)) = L(p(a)(z)). The set of such G-module homomorphisms
is denoted homg(V,W). A G-module isomorphism from V to W is a bijective G-module homomorphism
L:V — W. If such an isomorphism exists we say that V' and W are isomorphic (as G-modules) and we write
V=W. When V =2 W as G-modules we say the associated representations (or G-actions) are equivalent.

Ezample 8.22. Given a representation p: G — GL(V) with V finite-dimensional we can choose a basis
U={uy,...,u,} for V; this gives a vector space isomorphism ®: V — C" (given by ®(uy) = ej). We then
define a representation ¢: G — GL(C") = GL(n, C) that is equivalent to p by ¢(a)(ex) = @~ L(p(n)(uy)).
Example 8.23. Show that the standard representation o of SU(2) is equivalent to the represnetation p of
SU(2) on Vi =spanc{z,y } C C[z,y] given by

For _
A—(Z _ab>€SU(2)
we have _
1 _f(a b\ _ .
(T Yo
SO

and for p(z,y) =u-x +v -y we have

P((A1 (§>)T> = u(@z + by) + v(—bz + ay) = (au — bv)z + (bu + av)y
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Thus when o(a) = A € M3(C) and p(a) = B € M3(C) (with respect to {e1,ez } for o and {z,y } for p) and
when ~
a —b
=0 %)

B <‘; _b> A= (AT

a

we have

(So we have p =& = 0*.) To show that p = o we need to find a bijective linear map L: C?> — V; (or — C?)

such that L+ A = B - L whenever A = o(a) and B = p(a) for a € SU(2); i.e.
a —b a —b
1 )=G )
We take
0 1
w=(500)
since

(5o G 7)== 5)

a —b 0 1
b a -1 0
(We have shown that 7 = o* 2 0.)

Example 8.24. Let V be a finite-dimensional G-module. Let & = {u1,...,u, } be a basis for V' and let
F ={/f1,---, fn} be the dual basis for V*. Determine how the matrix of p*(a) is related to the matrix of
p(a) (with respect to these bases).

Let
A= p(@)u = ([pla) - wilu - [p(a)unlu)
and let
B=[p"(a)lr = ([p(@)filr - [p*(a)falF)
for a € G. Then Ay, is the k™ entry of
fi(auy)
[p(a)uy = [a - uely = :
fn(aue)

which is just f(aue). (Note that fu(> ciu;) = . ¢idpi = c.) Also By is the k' entry of

(07 (@) el = (57 (@) o) (k) = fulpla)Vur) = (A1)
Thus B = (A~1H)T.
Ezercise 8.25. Find the relationship between the matrix of (p ® ¢)(a) and those of p(a) and p(a), etc.

Exercise 8.26. Determine how g acts on V,V* V@& W,V @ W, L(V,W), etc. (in terms of the actions of g on
V and W).

Answers:

e g acts on V using the same action as on V.

e gactson V* by (A f)(z) = f(—Ax).

e g acts on L(V,W) by (AL(z) = AL(z) — L(Ax).
Definition 8.27. Suppose G is a Lie grape and W a G-module. A submodule of W is a G-invariant subspace
U C W where we say U C W is G-invariant when a-u € U for all a € G and u € U (so that p: G — GL(W)
determines a representation p: G — GL(U)). We say that W is reducible when there is a non-trivial proper

submodule 0 # U ; W otherwise we say that W is irreducible. We say that W is completely reducible when
it is a direct sum of irreducible submodules.
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Ezample 8.28. When L: V — W is a G-module homomorphism, verify that ker(L) and Ran(L) are G-invariant
(and are thus submodules of V' and W).

Theorem 8.29 (Schur’s lemma). Suppose G is a Lie grape and V,W are finite-dimensional irreducible
G-modules. Then
1 fvVveEw
dim(homg(V, W) = Zf
0 f VW
In particular, Endg(V) = homg(V,V) ={cl:ce C}.

Proof. Suppose 0 # L € homg(V,W). Since L # 0 we have ker(L) # V; so since V is irreducible we get
ker(L) = 0. Since L # 0 we get Ran(L) # 0; so since W is irreducible we get Ran(L) = W). So L is an
isomorphism.

Suppose now that L,M:V — W are isomorphisms. Then M~'o L: V — V is an isomorphism.
Note that M~'L has an eigenvalue) # X\ € C, and the eigenspace E) = ker(M 'L — \I) C V is G-
invariant; since V is irreducible and Ey # 0, we get that Ex = V. So M~ 'L = M, and L = AM. Thus
homg(V,W) = { \M : XA € C} is one-dimensional. O Theorem 8.29

Theorem 8.30. Suppose G is a compact Lie grape. Then

1. Every G-module V' has a G-invariant inner product (-,-); i.e. (ax,ay) = (x,y) for all a € G and
z,yeV.

2. Every n-dimensional representation on G is equivalent to a unitary representation; i.e. some p: G —
Un).

3. Bvery finite-dimensional representation of G is completely reducible.

Proof.
1. Suppose V is a G-module. Let (-,-) be any inner product on V; then define a new inner product (-, -) by

(u,v) :/G<mu,mv>dg(m)

for all u,v € V. Note that this is G invariant because if we let f(z) = (zu, zv) then

(au, av) = /G<xau zav)dg(z / f(za)dg(x / f(x)dg(z) = (u,v)

since integration is right-invariant.

2. We choose an orthonormal basis U = {uq, ..., u,} for V (with respect to a G-invariant Hermitian inner
product on V). Let S := {ey, ..., e, } be the standard basis for C*. Let L : V' — C™ be the inner product
space isomorphism with L(ug) := eg. Let ¢ : G — GL(n, C) be given by

p(a)u = L(p(a)(L™(u)))
and note that L is a G-invariant isomorphism. (Indeed, omitting p from our notation, we can write
a-u=Lla L7 Y(u)), so a-L(u) = L(a-u).)
We have
[p(a)ls = (pla)er, ..., p(a)en)
M, (C)

and we have
(L(p(a)ur), L(p(a)ur))cr = (pla)ur, pla)ue)y = (ug, ue) = Oy
since L preserves the inner product and the inner product is G-invariant.

So we do have [¢(a)]s € U(n).
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TODO 23. Something along the lines of: suppose that V is not irreducible (since we’d be done if it
were). Then V contains a non-trivial proper G-submodule, say U. Then you need an argument for
irreducibility of U and U+. You can do this by induction on the dimension of U.

And we note that U+ is also a G-submodule of V because for all uw € U and v € UL and a € G we have

(a-v,u) = (a-v,a-a"t-u)

1u)

= (v,a”
=0
since v € U+ and a tu € U. [J Theorem 8.30

Corollary 8.31. Suppose G is a compact Lie grape; suppose V is a finite-dimensional G-module with
associated representation p: G — GL(V). Let (-,-) be a G-invariant inner product on V. Then

1.V is irreducible if and only if Endg(V) = {cl : c€ C}.
2. V.2 V*. (HereV is the complex conjugate of V, not the conjugate transpose, and V* is the dual of V.)
3. The G-invariant inner product on V' is unique up to multiplication by a positive real number.
4. If Uy, Us are G-submodules of V
TODO 24. irreducible?

with U1 % U2 then Ul L UQ.

Proof.

1. If V is irreducible then Endg(V) = { ¢l : ¢ € C} by Schur’s lemma. If V' is reducible, say 0 £ U C V
is a G-submodule, then V = U @ U+, so dim(Endg(V)) > 2 (since Endg (V) contains eIy @ dIy; . for
¢, d € C).

2. Let U be an orthonormal basis for V. For a € G we let A := [p(a)]ys € U(n). Then we have [p(a)]y = A,
and if J is the dual basis for V* then [p*(a)]7 = (A~!)T = A (by definition of the dual representation,
and since A*A =1).

3. The inner product (-, -) gives a linear isomorphism L: V — V* given by L(u)(v) = (v,u) forue V=V
and v € V. Another inner product (-,-) gives another isomorphism M: V — V* given by M (u)(v) =
(v,u). By a similar argument to the proof of Schur’s lemma we get that L and M differ by a constant
c € C; by positive definiteness, we get ¢ € Ry.

4. Suppose Uy, Uz are irreducible submodules of V. Suppose that Uy is not orthogonal to Uz; so there is
uy € Uy and ug € Us such that (uy,ug) # 0. Define L: Uy — Uy by L(ui)(uz) = (u2,u1). Then

ker(L) ={uy €U, =Uy :u; €Uy } =U; NU5

Since Uj is irreducible, we get that ker(L) is either 0 or Us. But by assumption there is u; € U; and
ug € Uy such that (uy,u2) # 0; so ker(L) = 0, and L is injective. Also L must be surjective since
L(Uy) C U and Uy is irreducible (since Ui = U, and Uy is irreducible). Thus U; = U = Us; so
Ui =2 Us. 0 Corollary 8.31

Let G be a compact Lie grape, and let W be a finite-dimensional G-module. By the above theorem and
its corollaries, W decomposes as a direct sum of irreducible submodules, and if we group together isomorphic
irreducible submodules, we have

W = Wy,

b
Il ~
—_
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with W, = Vk@m’“ where the Vj, are irreducible G-modules, and when k # ¢, V, 22 V, and W), L. W,. Note
that the submodules W}, are canonical (i.e., they are determined up to isomorphism by W). Indeed, Wy is
equal to the sum of all submodules of W which are isomorphic to V}, because if U and V' are submodules of W
with U = Uy @ ... ® Uy with each U; =2V}, and also V = Vj, then we have U NV C V, which is irreducible, so
either UNV =V, in which case U+ V =U,or UNV =0, in whichcase U+V =UaV =U1 & ..aUsaV.

We use the following notation. Let G be (a set of representatives for) the set of all isomorphism classes of
irreducible finite-dimensional (unitary) representations of G. For any finite-dimensional G-module W and
any o € G, we write E, for the G-module associated to o (so o: G — GL(E,)). Then, our the above work,
we can write a decomposition

W= w,

06@
where each W, is a G-submodule of W for which there exists an integer m, (W) such that W, = E;’L"(W).
Definition 8.32. The integer m, (W) is called the multiplicity of o in W. Note that m, (W) = dim(W,,)/ dim(E, ).
The decomposition
w=Ew,

UE@

with W, = EJ W) 45 called the canonical decomposition of the G-module W, and W, is called the isotypical
component for o.

Theorem 8.33. Let G be a compact Lie grape. Let W be a finite-dimensional G-module of G. Let o € G.
The map F: homg(E,, W) ® E, = W, given by F(L,u) := L(u) is a G-module isomorphism; so

W, = homg(Ey, W) ® E,

and
me (W) = dim(homg(E,, W))

Proof. Note that G acts on homg(E,, W) by (aL)(u) = aL(a™'u), and when L € homg(E,, W), we have
L(au) = aL(u). Thus
(aL)(u) = aL(a'u) = aa ' L(u) = L(u)

so aL = L when L € homg(E,, W) (so G acts trivially on homg(E,, W)).

We claim that F' is well-defined (i.e., F' does take values in W, not just W). For L € homg(E,, W), we
have ker(L) C E,, which is irreducible, so either ker(L) = 0 or ker(L) = E,. When ker(L) = 0, we have
L(E,) & E,, hence L(E,) C W,, since W is equal to a sum of W,’s which are isomorphic to powers E,. We
claim that F is G-invariant (also called G-equivariant or G-intertwining). For L € homg(E,, W) and u € E,
and a € G, we have

F(a(L®u)) = F(aL ® au) = F(L ® au) = L(au) = aL(u) = Fl ® u)

since aL = L and since L is G-invariant. Thus F' is G-invariant.

We also claim that F' is surjective. We can use the same argument we used to show that F' is well-defined.
Let v € W,. Since W, is isomorphic to a power of E,, we can choose a submodule V C W, with v € V
and V = E, (as a G-module). Let L: E, — V be a G-module isomorphism, and let u = L~ (v). Then
F(L ®u) = L(u) = v. This proves F is surjective.

We also claim that F' is injective. We do this by counting dimensions. We have

F :homg(E,,W)® E; - W,
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where W, = ES™ W) 3o dim(W,) = m, dim(E,). Also,

homg (E,, W) = homg | Eq, W, & @ W,
T#O0

>~ homg | E,, E™ & EB Emr
T#0
= homg (E,, E,)®™ & @D home (E,, E,)®™
T#O

Then we take dimensions. The leftmost hom in the last line has dimension 1 by Schur’s lemma, and the other
hom’s in the last line have have dimension 0. Therefore,

dim(homg(E,, W)) = dim | homg(E,, E,)®™ @ @ homg(E,, E;)®" | = my,,
TH#O0

which implies that
dim(homg(E,, W) ® E,) = m, dim(E,) = dim(W,)

So F' is injective. [0 Theorem 8.33

9 More on maximal tori

Recall that for any Lie grape G and any representation p: G — GL(V) induces a representation p,: g —
End(V). Also for any Lie grape G we have the adjoint representation Ad: G — GL(g) given by Ad(a) = deg;
when G is a matrix Lie grape and P € G, X € g we have Ad(P)(X) = PX ' P. The adjoint representation
on G induces the adjoint representation ad = Ad,: g — End(g); when G is a matrix Lie grape and A, X € g
we have ad(A)(X) = [4, X].

Note that g is a real vector space, so Ad and ad are real representations; so Schur’s lemma does not hold
in a simple form for real representations. But we can still construct an Ad-invariant (real) inner product:
choose any inner product on g, and then define

(u,v) :/G<zu, xv)dg(zx)

Ezample 9.1. Suppose G is a connected matrix Lie grape; show that ker(Ad) = Z(G).

Note ker(Ad) ={P e G:Ad(P)=1:9—g}. If Pe Z(G) then Cp =I: G — G; s0 Ad(P) =dCp =
I:g—g;s0 P € ker(Ad).

Suppose P € ker(Ad); then Ad(P) =I: g — g; so (Ad(P))(A) = A for all A € g, and PAP~! = A for all
A € g. Hence for QQ € G, if we can choose A € g such that Q = exp(A) then

PQP ' = Pexp(A)P™! = exp(PAP™!) = exp(A4) = Q
But G is connected; so we can choose Ay, ..., Ay such that @ = exp(A;) - --exp(A¢). Then
PQP™ ' = Pexp(A;)P ' Pexp(Ay) P71 -  Pexp(Ay) P~ = exp(Ay) ---exp(As) = Q
so P € Z(G).

Theorem 9.2. Suppose G is a matrix Lie grape with Lie algebra g; suppose V is a finite-dimensional
G-module and U C 'V is a subspace. If U is G-invariant (i.e. P-u = p(P)(u) € U for all P € G and u € U)
then U is g-invariant (i.e. Au = (p.A)(u) € U for all A € g andw € U). If U is g-invariant and G is
connected then U is G-invariant.
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Proof. Suppose U is G-invariant; suppose A € g and u € U. Then tA € g for all t € R, so exp(t4) € G and
hence p(exp(tA))u € U for all t € R. Thus

(0 A)(u) = S (p(exp(t4)) () e=o € U

(since if u(t) € U for all ¢ then u/(t) € U).
Suppose that U is g-invariant and G is connected. Suppose P € G and u € U. If P = exp(A) for some
A € g then

p(P)(1) = plexp(A))(u) = exp(p A)u = 3 ~(p, A)"u € U

~

since (p.A)"(u) € U for all n (one checks this last by induction). In general, since G is connected,
we can choose Aqp,..., Ay such that P = exp(A;)---exp(Ay); it follows by induction on ¢ that p(P) =
plexp(Ay)) - - plexp(Ag)) € U. O Theorem 9.2

Aside 9.3 (Remarks on A3). Change 4(c) to “determine whether”. 5(c) can be computationally intensive.

Theorem 9.4. Suppose G is a matriz Lie grape with Lie algebra g; suppose V' and W are finite-dimensional
G-modules with associated representations p and . Suppose L € hom(V, W).

TODO 25. I assume this is L(V,W)?

Then if L is G-invariant (meaning L(p(P)(v)) = ¢(P)(L(v)) for all P € G and v € V') then L is g-
invariant (meaning that L(p.(A)(v)) = @ (A)(L(v)) for all A € g and v € V). Conversely if L is g-invariant
and G is connected then L is G-invamant

Proof. Assignment 3. 0 Theorem 9.4

Theorem 9.5. Suppose G is a compact matrixz Lie grape with Lie algebra g; suppose V is a finite-dimensional
G-module with associated representation p. Suppose (-,-) is a (Hermitian or real)

TODO 26. ¢

inner product on V.. Then if (-,-) is G-invariant (meaning that (p(P)(u), p(P)(v)) = (u,v) for all P € G
and u,v € V) then (-,-) is g-invariant (meaning (p«(A)(u),v) + (u, p(A)(v)) =0 for all A€ g and u,v € V).

Proof. Suppose (-, -) is G-invariant. Suppose A € g and u,v € g.
TODO 27. e V?

Then
(u,v) = (p(exp(tA))(u), p(exp(tA))(v)) = (exp(tp.A)u,exp(tp. A)v)
for all ¢t € R. Note that if we choose any basis for V' so that u(t) and v(t) become vectors
TODO 28. ?

and the inner product is given by a matrix, then

%(u(t),v(t)) = OB ut) = (V'(1))"Bu(t) + (v(8))" Bu'(t) = (u(t),v'(1) + (u' (1), v(?))
Thus
(exp(tpA) - peA - u,exp(tps A)v) + (exp(tp.A)u, exp(tp.A) - puA-v) =0
so at t =0 we get (p«A - u,v) + (u, pA-v) =0. O Theorem 9.5

Theorem 9.6. Suppose G is a compact matriz Lie grape with Lie algebra g. Suppose t is a Cartan subalgebra
of g. Then there is A € t such that t = 34(A) ={X €g:[A,X]=0}.

An element A € g such that 3(A) is a Cartan subalgebra is called regular.
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Proof. Choose an Ad-invariant inner product (-,-) on g. Let { Ay,..., As } be a basis for t. Note that since t
is abelian, we have [Ag, A¢] = 0 for all k, ¢ (i.e. Ay € ker(ad(Ay))). Alsoif Y € gbut YV ¢ t then [A;, Y] #0

for some k since t is maximal; thus
¢

t= () ker(ad(A4y))

k=1
Claim 9.7. For all A, B € t we can find r € R so that ker(ad(A + rB)) = ker(ad(A4)) Nker(ad(B)).

Proof. Suppose A, B € t. Note that since [A4, B] = 0 it follows that ad(A) commutes with ad(B); indeed
ad(4)(ad(B)(X)) =[A,[B,X]] =[A,BX] - [A,XB] = ABX — BXA—- AXB+ XBA

and likewise
ad(B)(ad(4)(X)) = BAX — AXB—- BXA+ XAB = ad(A)(ad(B)(X))

since AB = BA. Let

h= ker(ad(4)) ={X :[A,X]=0}
[= ker(ad(B)) ={X :[B,X] =0}

Since ad(A) and ad(B) commute, it follows that b (and hence also h) are invariant under ad(B); indeed, for
X € h =ker(ad(A)) we have

ad(4)(ad(B)(X)) = ad(B)(ad(4)(X)) = ad(B)(0) = 0
and for Y € b+ and X € h we have

((ad(B)(Y), X) = —(Y,ad(B)(X))
€h

since (-, -) is g-invariant. It follows that h = (h N [) @ (h N [+), and thus
g=0OnyebhnH)ebhnhebH:ne)
Case 1. Suppose h- N+ = 0.

Subclaim 9.8. ker(ad(A + B)) = ker(ad(4)) Nker(ad(B)).

Proof. If X € ker(ad(A)) Nker(ad(B)) then [4,X] = [B,X] =0, s0 [A+ B,X] = 0 and X €
ker(ad(A + B). Conversely if X € ker(ad(A + B)) then [A + B, X]| = 0, so [A, X] = —[B, X]; but
[A, X] € bt since for Y € h we have

([4, X],Y) = ((ad(4))(X),Y) = =(X, (ad(A))(Y)) = —(X,0) = 0

Similarly we get [B, X] € I*. So [A,X] = —[B, X] € b= NI+ =0; so [A4, X] = [B, X] = 0, and hence
X € ker(ad(A)) Nker(ad(B)). O Subclaim 9.8

So r = 1 works.

Case 2. Suppose h= N[+ £ 0.

Exercise 9.9. Finish this. Let L(r): pt NIt — - NI+ be L(r) = ad(A + rB) for r € R. Consider
f(r) = det(L(r)). Find r # 0 such that f(r) # 0, and show that r works.

TODO 29. Delete the above? The following seems to subsume it.
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Use bases for each of the four space (h N 1), etc. to make a basis for g. With respect to this basis ad(A4) and
ad(B) have matrices of the form

0
aa) =] °
D
0
masy=|
F
and for r € R we have
0
ad(A+rB)=| "
D+rF
Case 1. Suppose h- NI+ ={0}. Then
0
[ad(A+rB)] = rE

C

so for all r # 0 we have ker(ad(A +rB)) = h NIl =ker(ad(A)) Nker(ad(B)), as desired.

Case 2. Suppose h* NI+ # 0. Then the map L(r): = ad(A + rB): bt NI+ — ht N[+ has matrix
[L(r)] =D +rF.

When r = 0 we have [L(0)] = D is invertible. So if f(r) = det(L(r)), then f is a polynomial in r and
£(0) # 0; so f(r) # 0 for all but finitely many values of r. We can choose r € R\ {0} such that
f(r) # 0; then L(r) is invertible, so D + rF is invertible. So

ker(ad(A +rB) = h NI =ker(ad(A)) Nker(ad(B))
as desired. O Claim 9.7

We then replace Ay by A} = A; 4+ rAs so that ker(ad(A})) = ker(ad(A;)) Nker(ad(Asz)); then replace A
by A = A} 4+ r' A3, and so on. O Theorem 9.6

Theorem 9.10 (Cartan subalgebras). Suppose G is a compact matriz Lie grape with Lie algebra g. Then

1. If t is a Cartan subalgebra of g and if A € g then there is P € G such that PAP™! € t (equivalently,
there is P € G such that A € PtP~1). Equivalently

g=J ptr!
PeG

2. If s,t are two Cartan subalgebras, then there is P € G such that t = PsP~'. i.e. G acts transitively on
the set of Cartan subalgebras by conjugation.

Proof.

1. Choose an Ad-invariant inner product (-,-) on g.

Suppose t is a Cartan subalgebra of g; suppose A € g. By previous theorem there is B € t such that
t=34B)={X€g:[B,X]=0}.
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For P € G we have

PAP ' et < PAP ' €3(B)

< [PAP™1,B] =0
< ([PAP™',B],X)=0forall X € g
< (ad(PAP™Y)(B),X)=0forall X c g
<= (B,ad(PAP™')(X))=0forall X €g
(

< (B,[PAP™',X])=0forall X € g

Let f: G — R be P+ (B, PAP~1). By compactness of G there is P € G maximizing f(P). Suppose
now that X € g. Let g: R — R be g(t) = (B, exp(tX)PAP~!exp(—tX)); then by choice of P we have
that ¢(t) has a local maximum at ¢ = 0. But

g (t) = (B,exp(tX) X PAP ' exp(—tX) — exp(tX)PAP ' exp(—tX)X

So
0=g'(0) = (B,XPAP™! - PAP™'X) = (B,[X, PAP™Y))

Thus for all X we have (B, [PAP~!, X]) = 0; so PAP™! € t.

2. Suppose s and t are Cartan subalgebras. Choose A € s such that s = 34(A) ={X €g:[4,X]=0}.
Choose P € G such that PAP~! € t. We will show that PsP~1 = t.
For X € g we have

X € PsP™! < P 'XPes=;4(4)
< [P"'XP,A =0
— [X,PAP7 =0
< X €;4(PAP™Y)
So PsP~' = ;,(PAP™'). So since PAP~! € t and t is abelian we have t C 3,(PAP™!) =

PsP~1. So since t and PsP~! are maximal abelian subalgebras of g with t C PsP~!, they are
equal. [0 Theorem 9.10

Theorem 9.11. Suppose G is a connected compact matriz Lie grape with Lie algebra g. Then

1. If S and T are mazimal tori in G then there exists P € G such that PSP~' = T. Equivalently, G acts
transitively on the set of maximal tori by conjugation.

2. exp(g) = G.

3. If T is a mazimal torus in G and Q € G then there exists P € G such that PQP~! € T; equivalently,
if T is a mazimal torus in G then

G= U PPt
PeG

Proof.

1. Suppose S and T are maximal tori. Let s and t be their Lie algebras, which are Cartan subalgebras.

TODO 30. ¢

Choose P € G such that PsP~! = t. Then for Q € S since exp(s) = S we can choose B € s such that
Q@ = exp(B). Then
-1 _ -1 _ -1
PQP™" = Pexp(B)P™" = exp(PBij )eT

Thus PSP~! C T} so since T and PSP~! are maximal tori, we get PSP~! =T.
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2. We shall show that exp(g) is open and closed in G, and hence exp(g) = G since G is connected. If we
fix a maximal torus T and let t be its Lie algebra, then

g=J PPt
pPeG

So

exp(g) = |J PTP!
PeG

(since exp is surjective on tori). So if F: G x T — G is (P, X) + PXP~! then exp(g) = F(G x T) is
closed, since G x T is compact.

It remains to show that exp(g) is open. Suppose @ € exp(g), say Q = exp(B) for B € g. Let
h=34(Q)={X €g:QXQ "= X}; let H be the connected component of Z;(Q) containing I. One
checks that H is a closed Lie subgrape of G with Lie algebra h. Note that Q = exp(B) € exp(h) C H.

TODO 31. We changed from 34(B) and Zg(B) to 34(Q) and Zg(Q); make sure this doesn’t change
anything in case 1 below.

Case 1. Suppose h = g; so 34(B) = g. Then Q € Z(G) since for P € G we have PQP™! =
Pexp(B)P~! = exp(PBP™!) = exp(B) = Q.
TODO 32. ?

Choose a Cartan subalgebra t of g so that B € t C 3(B). For X € g choose P € G so that
P lXPectsay P'XP=Y ctso X = PYP™!. Then

Qexp(X) = Qexp(PYP™ 1) = QPexp(Y)P*
= PQexp(Y)P!
= Pexp(B)exp(Y)P ™!
=exp(P(B+Y)P™!) € exp(g)

Hence Q exp(g) C exp(g). But exp(g) contains an open neighbourhood of I; so @ exp(g) contains
an open neighbourhood of Q. So exp(g) contains an open neighbourhood of @, as required.

Case 2. Suppose h & g. We can suppose, inductively on dim(g), that exp(h) = H (since H is connected
and compact). Consider F': g=h @ h+ = G

TODO 33. I think we said we’re using an Ad-invariant inner product? It was something-invariant.

given by F(X,Y) = Q texp(Y)Qexp(X)exp(—Y) for X € h and Y € h*. Note that

1 1 1
FXY)=Q ' I+Y + Y+ )QU+ X + 5 X7 ) (I =Y 4 oY =)
=T+ (Q7'YQ + X —Y) + higher — orderterms

So at 0 = (0,0) € g we have DF((0)(X,Y) =X, Q7 'YQ —Y); i.e. DF = Iy ® (Ad(Q ") — I ).
Note that

h=3(Q)={X€g:QXQ '=X}={Xe€g: X=Q 'XQ} =ker(Ad(Q™") - 1)

So Ad(Q~1) — I: b+ — b is invertible; so at 0 € g we have that DF is invertible. So F: g =
h@® bt — G is a local diffeomorphism. So

{Q 'exp(Y)Qexp(X)exp(-Y): X € h,Y €h* }
contains an open neighbourhood of I in G. Hence, multiplying on the left by @, we get that

{exp(Y)Qexp(X)exp(=Y): X €, Y epht}
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contains an open neighbourhood of Q. But exp(X) € H, and Qexp(X) € H; so

{exp(Y)Qexp(X)exp(=Y): X e hY e ht} C U exp(Y)H exp(=Y) C U PHpP!
Yept PeG

For R € H we can write R = exp(X) for some X € § (since by induction hypothesis we get that
H = exp(h)); then PRP™! = Pexp(X)P~! = exp(PXP~! € exp(g). Thus

{exp(Y)Qexp(X)exp(=Y): X €bh, Y eht} C U PHP™' C exp(g)
PeG

Thus exp(g) contains an open neighbourhood of @ in G, as required.

3. Suppose T is a maximal torus in G; suppose @ € G. By above we get exp(g) = G, so we can pick B € g
such that exp(B) = Q. Let t be the Lie algebra of 7. Choose P € G such that PBP~! € t. Then
PQP~! = Pexp(B)P~! = exp(PBP~ %) eT. O Theorem 9.11

Corollary 9.12. Suppose G is a connected and compact matrix Lie grape; suppose T is a mazimal torus in
G. Then

1. Zg(T)=T.

2. Z(G)= (| PTP™".
PeG

Proof.

1. Since T is abelian we get T' C Zg(T'). Conversely, suppose @ € Za(T'). Since exp(g) = G we can write
Q@ = exp(B) for some B € g. Let H be the connected component of Z(Q) containing I. Note that
Q € H since Q € Zg(Q) and a(t) = exp(tB) is a path in Zg(Q) from I to Q. (Note exp(tB) € Z¢(Q)
since exp(tB) commutes with @ = exp(B).) Also T' C H since Q C Zg(T) so T C Zg(Q), and T is
connected and contains I. Thus T is a maximal torus in H; so by theorem there is P € H such that
PQP'eT.But Pc HC Zg(Q); 50 Q= PQP 1 cT.

2. Follows from previous item and theorem. O Corollary 9.12

10 Weights and roots

A representation p: G — GL(V) induces p,: g — End(V'), which we can extend (by C-linearity) to p.: gc —
End(V).

Aside 10.1. Given a real vector space U we obtain a complex vector space Uc = U ®g C the set of bilinear
maps L: U* X C* - R; so Ugc =span{u®c:u e UceC}l=span{u; ® 1,...,u, @ L,u1 ®1i,...,u, @i}
where U = {uy,...,u, } is a basis for U over R (and using the fact that {1,7} is a basis for C over R). The
scalar multiplication in Ug is given by a - (u ® b) = u ® (ab) where a,b € C and v € U. For u € U we write
u=u®1and iu =u® i; SO

Uc = spang{ u1, ..., Up, iUy, ..., iu, } =spanc{uy,...,u, } =spanc{iug,...,iu, }

We often write Ug = U @ iU (where U is identified with {u® 1:uw e U }).

When G C U(n) we have g Cu(n) ={A € M,(C): A*+ A=0}. We can then identify u(n)c = u(n) ®
iu(n) with GL(n,C) as follows: given A, B € u(n) (so A* = —A and B* = —B) we have (iB)* = —iB* =iB
and A +iB € M,(C). On the other hand given C € M,,(C) we can write C = A + iB with

c-cC*
A= 2
B:C+,O
21
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Ezercise 10.2. Verify that su(n)c = su(n) @ isu(n) can be identified with sl(n,C) = {A € M,(C): A €
M, (C) : tr(A) = 0} and that so(n)c = so(n) @ iso(n) can be identified with so(n,C) = { A € M, (C) : AT =
—A}.

Ezample 10.3. Consider the action of SU(2) on the space V;, C C[z,y] of homogeneous polynomials of degree

n. The action is given by
T
(P f)(w,y) = f((Pl (”y‘")) )

When _
a —b
P= (b a )
we have B
1 _ (@ b
(5 0)
SO B
p1 (%) _ ax + by
y) \—br+ay
So

P (a*y") = (@ + by)*(—ba + ay)*
This induces an action p,: su(2) — End(V;,); this action is given by (A - f)(z,y) = %(exp(tA - (@, 9))|t=o0-

For
_ ir —u+w\ _ fir —w
4= <u+iv —ir ) o (w —ir) € su(2)
we have det(A — x1) = (22 +72?) + |w|? = 22 + 6? where 0 = V/r2 + u2 + v2; so A2 = —6?].
Thus

1 1
exp(tA) =T +tA+ it2A2 + §t3A3 + -

_ L o2po L 392 L a4 Loapa
—I—I—tA—EtHI—itHA+at91+at9A—
1

_ 122 144 132
= (1= 074 0" — )+ (8= 707 + o

= cos(th)I + 6~ sin(t0) A

- )

59t — .. A

where
a = cos(t0) + irf = sin(0)
b = wh~ ! sin(t6)
= (u+iv)0 ! sin(t0)
Thus A - (z*y*) = & (az + by)*(—bx + ay)*|i=o. So we compute

d _ , _ _
a(ax + by)* (=bx + ay)’ = k(az + by) @'z + b/y)(—bm + ay) + (az 4 by)* (—bx + ay) " (—=bx + d'y)"

Going back to our formulas for a and b we find
a’ = —0sin(th) + ir cos(t6)
b = wcos(th)

a(0) =1
b(0) =0
a’'(0) = ir
b(0) =w
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So, putting these together, we find that

APyt = ka7 (—ire + wy)yt + 2Py (—wa + iry)
= —kirz®yt + kwztly T — fwaF Ty 4 lirakyf
= (0 — k)ira®y® + kwa* 1y — fwah 1yt

We can extend the action p,: su(2) — End(V;,) to p.: suc(2) = sl(2,C) — End(V,,). We have

su(2) = SPanR{ ((Z) _0,> ' <(1) _01> ’ ((Z) 6) }

and
i 0 0 —1 0 1
su(2)c =sl(2,C) = bpan(c{ (0 —i) , (1 0 ) , (z O) } =spanc{ H,E,F}
where
1 0
= )
0 1
=0 o)
0 0
r-(1 )
We have
1 0 (1 0
i=(8)-=G %)
SO
H - (%% = (¢ — k)abyt = (n — 2k)zky"F
Also L )
_ (0 1\ _ (0 3 0 3
=0 0)=( 8+ (Y 4)
So when we decompose F we get v = —%i and u = —%; SO

Finally we have

sov:—%iandu:%. So
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With respect to the basis { 2", 2" 1y, ..., y" } for V,, we have

H = p.(H)
= [pH)Ju
= diag(—n,—n+2,...,n—2,n)
E = p.(E)
= [p+Elu
0
—n 0
_ -n+1 0
-1 0
0 —1
0 -2
F =
0 —n
0

By Schur’s lemma we have p (or V,,) is irreducible when Endg(V;,) = {c¢I : ¢ € C} and for L € End(V},)
we have L is G-invariant if and only if L is g-invariant if and only if L is gc-invariant; meaning that
L-p.(A)=p.(A)-Lforall Aecg (orall A€ gc). Using the basis for V,, to identify L € End(V,,) with its
matrix, we have

LH=HL <= (LH)g = (HL)g for all k¢
<= (n—20)Lye = (n — 2k) Ly, for all k, ¢
< Ly =0forall k#/
<= L is diagonal

Also for L = diag(co, 1, - - ., ¢n) we have
0 0
—ncy 0 —ncy 0
LE = EL, «— (—1’L+2)CQ 0 _ (—n+2)01 0
—Cn 0 —Cn—1 0
= cp=c1 = =cy

So L € End(V,,) is G-invariant if and only if L = ¢I for some ¢ € C; so by Schur’s lemma p is irreducible.

Aside 10.4 (Hint for 5¢ on the assignment). The domain of the chart is an open dense subset; hence to
integrate on the entire manifold it suffices to integrate on one chart. Also if P = P(6, ¢, %) = A(0)B(¢)A(Y),

it’s useful to compute

oP oP oP
pl_— pl_— p1l_
a0 Oy o

10.1 Weights

Suppose G is a compact matrix Lie grape and p: G — GL(V) is a finite-dimensional represnetation of
G. This gives p,: g — End(V) which extends to p.: gc — End(V). Fix a G-invariant inner product (-, -)
on V; fix a maximal torus ' C G and let t be its Lie algebra. We restrict p. to p.: t¢ — End(V). For
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A,B €t (so A+iB € t¢) we have that p.(A+iB) is a normal operator. Using an orthonormal basis we have
(ps(A)u,v) = —(u, p«(A)v); so A = p,(A) is skew-Hermitian, and A* = —A. Likewise we get B* = —B; so

(A+iB)*(A+iB) = (A" —iB*)(A+1iB)
=A*A+iA*B —-iB*A+ B*B
=—-A%? - j{AB+iBA— B?
_ —A2 _ 32

since AB = BA. Also

(A+iB)(A+iB)* = (A+iB)(A" —iB")
= AA* —1AB* +iBA* - BB*
=A%+ iAB —iBA— B?
— 7A2 o B2

So A + iB is normal, and thus unitarily diagonalizable. Also for A, B € t¢ since [A, B] = 0 we have
psA - pB — pBp. A = p.[A, B] = p.0 = 0; so pi(A) and p.(B) commute.

TODO 34. Weren't we using this to show normality?
Thus S = { p.(A4) : A € tc } is a set of commuting normal (hence diagonalizable) operators on V.

Proposition 10.5. If S is a set of commuting normal operators V. — V then the elements of S can be
simultaneously diagonalized.

Proof. Note that if L, M: V — V commute and A is an eigenvalue of L then M preserves the eigenspace
Ey =ker(L — AI): indeed, if v € Ey then LMv = MLv = MM = AMv, so Mv € Ey. If we extend E) to a

basis for V then M has the form
A 0
0 B
with A, B normal.

We now show that S is simultaneously diagonalizable using induction on dim(V). When dim(V') = 1 this
is immediate.

If every L € S is a constant multiple of I then they are already diagonalized, and we’re done; so assume
we have L € S that is not a constant multiple of I. Pick an eigenvalue A for L; then 0 # E) g V. So by
induction hypothesis there is a non-trivial subspace 0 # U C E) such that all the operators restricted to U
act as constant multiples of the identity. [0 Proposition 10.5

Thus our S = { p.(A) : A € t¢ } is simultaneously diagonalizable (using an orthonormal basis). So

V= .

aceW

where W = W(p) = W(V) is a finite set of functions a: t¢ — C where
Va={veV:p(B)(v)=a(B)-viorall Betc}
Note that these a: t¢ — C are linear (so a € t§.); indeed, if v € V,,, ¢ € C, and A, B € t¢ we have
a(A+cB)(v) = pu(A+ cB)(v) = pe(A)(v) + cp«(B)(v) = a(A)v + ca(B)v = (a(A) + ca(B))v

Definition 10.6. The elements oo € W C (. are called the weights of p; the space V,, is called the weight
space of a.

(So a € ¢ is a weight of p if and only if V,, # 0.)
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Ezample 10.7. Consider the action of SU(2) on V,,. Recall that p.: su(2)c = End(V,,) is given by

pe(H) - a"y" " = (n — 2k)a*y" "

pe(B) - ayt = —ka 1y

pu(F) - ahyt = —txF Tyt
We wish to restrict p. to t¢; we choose T' = { diag(exp(if), exp(—if)) : 0 € R}, so t = { diag(if, —if) : 6 €
R } = spang{ diag(i, —i) } and t¢ = spanc{ diag(1,—1) } = spanc{ H }. So the restriction p,: t¢ — End(V},)
is determined by p.(H) given by p.(H) - ¥y’ = (¢ — k)z*y* (or by H = p.(H) = diag(—n, —n +2,...,n)).
The weights are W = { a_p, ®_pni2,...,Qn } where a_pyor: t¢ — C is given by a_p12x(H) = —n + 2k and
the weight spaces are V,,, ,, = spanc{az*y"*}.

Remark 10.8. Since for A € t (so iA € it) we have that p,.(A) is skew-Hermitian, so its eigenvalues are purely
imaginary; also p«(iA) is Hermitian, so its eigenvalues are real. So for all of the weights o € W = W (p) we
have a(A) € iR and a(iA) € R (i.e. a(t) C iR and a(it) C R).

Remark 10.9. When P € T C G and P = exp(B) with B € t, and when v € V,, where a € W, we have

p(P)(0) = plexp(B))(v) = exp(p. (B))(1) = 3 (0. (B)" (1) = 3 - a(B)" -v = expla(B)) -
n=0

Thus the weight spaces V,, are also common eigenspaces for all the operators p(P) where P € T.

Definition 10.10. The roots of G (or the roots of g or gc) are the non-zero weights of the adjoint
representation Ad: G — GL(g) C GL(gc) (where we extend L: g — g to L: gc — gc by complex linearity);
so ad: g — End(g) C End(gc), which we extend to ad: gc — End(gc) and then restrict to ad: t¢ — End(gc).

So
gc = @ Ja

acRU{0}

where

go={Acgc:ad(B)(A)=a(B)-Aforall Betc}={Acgc:[B,A|=«a(B)-Aforall Betc}

Remark 10.11. Note that
go={Acgc:[B,Al=0forall Betc}=;(tc) =tc
So
gc=tc® @ o

a€ER

So the roots of G are the « € R = W(ad) \ {0 }; the root spaces are the weight spaces g.

Remark 10.12. Suppose p: G — GL(V) is a representation. If « € R, 8 € W, v € V3, and A € g4, then
p«(A)(v). Indeed, given B € t¢ we have

In particular, taking p = Ad, if we let o, 8 € R and A € go, B € gg, then [A, B] € go+5.
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Ezample 10.13. Find the roots and root spaces of U(n).

Let T = {diag(exp(ibh),...,exp(iby)) : O € R}; so t = {diag(iby,...,i0,) : 0 € R} and t¢ =
{diag(c1,...,¢n) : cx € C}. Let Erp € M, (C) be the matrix with a 1 in posiiton (k,¢) and 0 elsewhere; let
Ey = Egy. Sotc =span{ E1,...,E, }. Let €1,...,¢, be the dual basis for t§ (so ex(E;) = dx¢). Note that
u(n)c = u(n) @iu(n) = gl(n,C) = M,(C). Let 0 # A € gl(n,C) be a common eigenvector for the maps
ad(B) for B € t¢. So

ad(B)(A) = a(B) - A for all B € t¢
= BA— AB =«(B)- A for all B € t¢
= (BA — AB)j¢ = a(B) Ay for all B, k, ¢

= (bg — bp)Are = (B) Ay for allk, ¢, B = diag(by,...,b,)

B

Since A # 0 we can choose k, ¢ so that Ay, # 0. So we must have a(B) = by, — b, for all B = diag(b1,...,by,).
Thus we must have o = e, —e,. When a = ¢, — ¢, we also need (b; —b;)A;; = (by —be)A;j for all (¢, 7) # (k, L)
and all B = diag(bi,...,b,). For any (4, j) # (k,£) we can choose B so that b; — b; # by — b; so we must
have A;; = 0 for all (i,j) # (k,¢). Thus when a = ¢, — £, we have g, = spanc{ Ey }. So the set of roots is

RZ{Ek—E(:]{#f}.
Example 10.14. For SU(3) with respect to the basis {e1,e2, 3 } for {f we have

Note that
(15 _170) ) (0’ 17 _1) _ -1

11, =1, 0)[[]0, 1, =1[] — 2
Since the roots live in a two-dimensional space, we can draw them on the plane; by the above they end up in

a hexagon.
Ezample 10.15. For SU(4) we have

cos(A((1,-1,0),(0,1,-1))) =

1 1 1 0 0 0
-1 0 0 1 1 0
R=3=| o=l 512 o L2l 5102 o 2]
0 0 ~1 0 ~1 -1

So spang(R) = {x € R* : oy + 29 + 23 + 24 = 0}. We can use (1,-1,0,0),(0,0,1,-1),(1,1,-1,—-1) as a
basis and draw this in R3; you get the vertices of a polyhedron that you get by “cutting off the corners” of a
cube.

11 Stuff we didn’t get to

Characters

For a finite-dimensional representation p: G — GL(V') the character of p is the map x, = xv: G — C given
by P — tr(p(P)). If V,W are irreducible, then

/ v xw@)dg(z) =
G

0 else

{1 VW

In general
/ xv (x)xw (z)dg(z) = dim homg (V, W)
G
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Killing form

For A, B € gc we define
B(A, B) = tr(ad(A) o ad(B))

On t¢ we obtain a Hermitian form (A +i¢B,C +iD) = B(A+ iB,C —iD). One can use this to obtain
symmetry properties of the roots.
u(n) has the same roots as su(n).
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