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1 Introduction

Lectures by Stephen New, office MC 5419, office hours 2:30-3:20 MWF (also after about 5:30 MWF if you
tell him ahead of time).

Course outline found on his website.
Collaboration encouraged but acknowledge help (aside from him and books). (Write your own assignment

though.) Assignments will be challenging, exam easier. (Foreknowledge of topics will be given for the exam.)
Warm thanks to Andrej Vukovic for the notes for the lecture I missed.
A somewhat vague introduction (formality later):

Definition 1.1. A Lie grape is both a C∞ manifold and a grape G with smooth grape operations. (i.e.
multiplication m : G×G→ G and inversion v : G→ G are smooth).

Example 1.2.

• Rn under +
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• Tn = S1 × · · · × S1 under component-wise multiplication

• Mn(R) under +

• GLn(R) under matrix multiplication

Definition 1.3. A Lie algebra is a vector space g with an operation [·, ·] : g× g → g which is alternating,
bilinear, and satisfies the Jacobi identity. i.e. for X,Y, Z ∈ g we have

• [X,Y ] = −[Y,X] (or equivalently, in the presence of bilinearity, [X,X] = 0).

• [X,Y + Z] = [X,Y ] + [X,Z] and [X, cY ] = c[X,Y ], etc.

• [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0.

Example 1.4.

• Mn(R) with [X,Y ] = XY − Y X.

• The set of smooth vector fields on a manifold M with [X,Y ] = XY − Y X as differential operators.

• When G is a Lie grape the set of left-invariant vector fields on G is a Lie algebra, which we identify
with g = TeG; we call this the Lie algebra of G.

There is a map called the exponential map from g = TeG to G given (roughly) by taking a tangent vector
X ∈ TeG, using it to induce a left-invariant vector field X on all of G, finding the integral curve α of X with
α(0) = e and α′(t) = X(α(t)), and setting exp(X) = α(1).

One can show that exp: g → G is a local diffeomorphism. For the classical matrix Lie grapes

GL(n,R) = {A ∈Mn(R) : det(A) ̸= 0 }
SL(n,R) = {A ∈ GLn(R) : det(A) = 1 }
O(n,R) = {A ∈ GLn(R) : ATA = I }

SO(n,R) = {A ∈ O(n,R) : det(A) = 1 }
U(n) = {A ∈ GL(n,C) : A∗A = I }

etc. we can identify the Lie algebra g with a matrix algebra

gl(n,R) =Mn(R)
sl(n,R) = {A ∈Mn(R) : tr(A) = 0 }

etc., and then exp: g → G is given by

exp(A) = eA =

∞∑
n=0

1

n!
An

Definition 1.5. A representation of a grape is a grape homomorphism ρ : G→ Perm(X) for some set X, or
ρ : G→ GL(n,R) or ρ : G→ GL(V ) for some vector space V .

This gives an action of G on X or Rn or V : for a ∈ G and x ∈ X or Rn or V we write a · x = ρ(a)(x);
this gives a G-module structure on V .

Given a representation ρ : G→ GL(V ) we get ρ = dρ : TeG→ TeGL(V ); i.e. ρ : g → gl(V ).
A representation ρ : G→ GL(V ) induces a character χ : G→ R given by χ(a) = tr(ρ(a)); one can show

that for a Lie grape a representation is determined by its character. In the finite-dimensional case, one can
always decompose a representation into irreducible subrepresentations.
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1.1 Stuff we probably won’t get to

A compact Lie grape G has a maximal torus T (i.e. a torus subgrape of maximal dimension) that is unique
up to conjugation; its dimension is called the rank of the grape.

Example 1.6. SU(3) has maximal torus T = {diag(exp(i2πt1), exp(i2πt2), exp(i2πt3)) :
∑
ti = 0 }, which has

Lie algebra
t = { diag(t1, t2, t3) : ti ∈ R }

with exp(t1, t2, t3) = (exp(i2πt1), exp(i2πt2), exp(i2πt3)). A given representation ρ : G→ GL(n,R) reduces

TODO 1. Is this R or C?

to give ρ : T → GL(n,C). The irreducible representations of T are known, and are all 1-dimensional. The
irreducible representations are classified by weights in t. The set of weights Ω ⊆ t is an integral lattice in t
related to the kernel of the exponential map. For SU(3) we have Ω = ker(exp) = {diag(k1, k2, k3) : each ki ∈
Z,
∑
ki = 0 }.

For u1 = diag(1,−1, 0) and u2 = diag(0, 1,−1) the “angle” is given by

Θ(u1, u2) = cos−1 u1 · u2
|u1||u2|

=
2π

3

The integral span of these (ignoring the diag) gives a lattice of equilateral triangles. The weights of the
adjoint representation are called roots: for a ∈ G we define ca : G→ G by ca(x) = axa−1; the gives a map
dca : g → g, which gives the adjoint representation Ad: G→ GL(g) (with Ad(a) = dca).

In SU(3) the weights of Ad are ±u1,±u2,±(u1 + u2).

2 Manifolds

Definition 2.1. Suppose M is a topological space.

• We say M is second-countable if there is a countable basis for the topology on M .

• We say M is Hausdorff if for all p, q ∈M there are disjoint open sets U, V ⊆M with p ∈ U and q ∈ V .

• We say M is locally homeomorphic to Rn if for all p ∈M there is an open U ⊆M containing p, open
V ⊆ Rn, and a homeomorphism φ : U → V .

Such φ are called (local coordinate) charts on M at p. A set of charts whose domains cover M is called
an atlas on M .

Remark 2.2. Note that when φ : U ⊆ M → φ(U) ⊆ Rn and ψ : V ⊆ M → ψ(V ) ⊆ Rn are charts at p (so
p ∈ U ∩ V ) then ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is a homeomorphism between two open sets in Rn; such a
map ψ ◦ φ−1 is called a change in coordinates map or a transition map.

Definition 2.3. An n-dimensional topological manifold is a topological space M that is separable, Hausdorff,
and locally homeomorphic to Rn.

Definition 2.4. An n-dimensional smooth (or C∞) manifold is an n-dimensional topological manifold which
has an atlas whose transition maps are C∞.

Example 2.5. Some C∞ manifolds:

• Rn (with one chart, the identity map)

• Sn = {x ∈ Rn+1 : |x| = 1 } (using, for example, the 2n+ 2 charts

φk : { (x1, . . . , xn+1) ∈ Sn : xk > 0 } → B = { y ∈ Rn : |y| < 1 }

given by φk(x1, . . . , xn+1) = (x1, . . . , xk−1, xk+1, . . . , xn+1) and

ψk : { (x1, . . . , xn+1) ∈ Sn+1 : xk < 0 } → B

given by the same formula).
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• Pn = (Rn+1 \ { 0 })/(R \ { 0 }) = { [x] : x ∈ Rn+1 \ { 0 } } where [x] = { tx : 0 ̸= t ∈ R } using the n+ 1
charts φk : Uk → Rn where Uk = { [x1, . . . , xn+1] : xk ̸= 0 } and

φ([x1, . . . , xn+1]) =

(
x1
xk
, . . . ,

xk−1

xk
,
xk+1

xk
, . . . ,

xn+1

xk

)
• Every open subset of a manifold is also a manifold (of the same dimension). If N,M are manifolds
then so is N ×M . In particular, we get

Tn = S1 × · · · × S1

Remark 2.6. If M is both an n-dimensional and an m-dimensional manifold then m = n. (One can see this
by looking at the Jacobians of the transition maps.) If M is n-dimensional we write dim(M) = n.

Definition 2.7. Suppose N and M are C∞ manifolds with dim(N) = n and dim(M) = m. Suppose
f : N → M . We say that f is smooth or C∞ at p ∈ M when there is some (and hence for all) charts
φ : U ⊆ N → φ(N) ⊆ Rn and ψ : V ⊆ M → ψ(V ) ⊆ Rm with p ∈ U and f(p) ∈ V such that ψ ◦ f ◦ φ−1 is
smooth (C∞) at φ(p).

In this case we define the rank of f at p to be equal to the rank of D(ψfφ−1)(φ(p)). We sometimes
denote the matrix D(ψfφ−1)(φ(p)) by Df(p).

There are a few different sensible notions of submanifold.

Definition 2.8. Let M be a smooth manifold. A regular submanifold of M is a subset N ⊆ M which is
a manifold such that for all p ∈ N there are charts φ : U ⊆ N → φ(U) ⊆ Rn at p on N and ψ : V ⊆ M →
ψ(V ) ⊆ Rm at p on M such that

• U = V ∩N

• φ(p) = 0 and ψ(p) = 0 (if you want)

• For x = (x1, . . . , xn) ∈ φ(U) ⊆ Rn we have ψφ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Definition 2.9. Suppose N and M are C∞-manifolds with dim(N) = n, dim(M) = m, and n ≤ m. A
function f : N → M is called an immersion when f is smooth and has maximal rank everywhere (i.e.
rankDf(p) = n for all p ∈ N). An immersed submanifold of M is the image f(N) of some injective
immersion; we use the topology and charts induced by the map f (so that f : N → f(N) is a diffeomorphism).

Note that immersions need not be injective. Note also that the topology on an immersed submanifold
N ⊆M need not be the subspace topology inherited from M .

Definition 2.10. Suppose N and M are C∞ manifolds with dim(N) = n and dim(M) = m; suppose
f : N →M . We say that f is an embedding (or a regular immersion) when f is an injective immersion and
the topology on f(N) induced by the map f agrees with the subspace topology on f(N). The image f(N) of
such an embedding f : N →M is called an embedded submanifold of M .

Example 2.11. Consider the map f : (−π, π) → R2 given by f(t) = (sin(t), sin(2t)) (image looks like an
infinity sign). The image is an immersed submanifold but not an embedded submanifold because of the
behaviour around the origin.

Example 2.12. Consider f : R → T2 = S1 × S1 given by f(t) = (exp(iat), exp(ibt)) with a, b ∈ R. If a ̸= 0 and
b
a /∈ Q then the image of f is dense in T2; this is an immersed manifold but not an embedded manifold.

Theorem 2.13. Suppose f : N → M is an injective immersion of smooth manifolds; suppose that N is
compact. Then f is an embedding.
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Proof. Consider f(N) with the subspace topology. Suppose K ⊆ N is closed (and hence compact, since
N is compact). Since K is compact and f : N → f(N) ⊆ M is continuous, we get that f(K) is compact.
Since f(K) is compact and M is Hausdorff, we get that f(K) is closed. So f sends closed sets to closed
sets; so, since f : N → f(N) is bijective, we get that f is open, and thus a homeomorphism N → f(N).

Theorem 2.13

Theorem 2.14 (Rank theorem). Suppose N,M are C∞ manifolds with dim(N) = n and dim(M) = m.
Suppose f : N → M is a smooth map of constant rank r around p (i.e. rank(Df(p)) = r for all x in
some neighbourhood of p). Then there exist a chart φ : U ⊆ N → φ(U) ⊆ Rn at p on N and a chart
ψ : V ⊆ M → ψ(V ) ⊆ Rm at f(p) on M such that φ(p) = 0 and ψ(p) = 0 (if you want) and for all
x = (x1, . . . , xn) ∈ φ(U) we have ψφ−1(x1, . . . , xn) = (x1, . . . , xr, 0, . . . , 0). (In particular, if the rank is
globally constant, then for all q ∈ f(N) we have K = f−1(q) = {x ∈ N : f(x) = q } is a closed regular
embedded submanifold of M .)

Corollary 2.15. Every injective immersion f : N →M of smooth manifolds is locally an embedding.

Corollary 2.16. If f : N →M is an embedding of smooth manifolds then f(N) is a regular submanifold.

Remark 2.17. One can define variations on the definition of a manifold. For example, an n-dimensional
complex or C-manifold is a 2n-dimensional topological manifold with charts such that the transition maps
are all holomorphic. One could also define Ck or analytic manifolds.

TODO 2. Section?

3 Lie grapes and Lie algebras

Definition 3.1. A Lie grape is a set G which is both a C∞ manifold and a grape such that the grape
operations multiplication m : G→ G and inversion v : G→ G are smooth.

Example 3.2.

• Rn under addition

• Mn(R) under addition

• R∗ or C∗ or S1 under multiplication

• Tn under (component-wise) multiplication

• GL(n,R) = {A ∈ Mn(R) : A is invertible } is a Lie grape under multiplication. Indeed, Mn(R) is

diffeomorphic to (and can be identified with) Rn2

using the map F : Mn(R) → Rn2

given by

F (u1, . . . , un) =

u1...
un


where each uk ∈ Rn. The determinant map φ : Mn(R) → R given by φ(X) = det(X) is a polynomial in
the entries of X (and so is C∞). So GL(n,R) = φ−1(R \ { 0 }) is open in Mn(R), and is thus endowed
with a smooth structure.

Note as well that the map m(X,Y ) = XY is polynomial in the entries of X and Y , and is thus smooth;
also

v(x) =
1

det(X)
Adj(X)

is a quotient of a polynomial by a non-zero polynomial in the entries of X, and is thus smooth.

Definition 3.3. Suppose H and G are Lie grapes. A map f : H → G is called a Lie grape homomorphism
when f is a smooth grape homomorphism. (Isomorphisms and isomorphic are defined accordingly.)
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Example 3.4.

• The map F : Mn(R) → Rn2

above given by

F (u1, . . . , un) =

u1...
un


is an isomorphism of Lie grapes.

• The determinant map φ : GL(n,R) → R2 is a Lie grape homomorphism.

• For a ∈ Rn we can define φ : R → Tn given by φ(t) = (exp(ia1t), . . . , exp(iant)) and ψ : R → Tn given
by ψ(t1, . . . , tn) = (exp(ia1t1), . . . , exp(iantn)) are Lie grape homomorphisms.

Definition 3.5. Suppose G is a Lie grape. An (immersed) Lie subgrape of G is the image φ(H) of a Lie
grape homomorphism φ : H → G which is an immersion. An embedded (or regular immersed) Lie subgrape
of G is the image φ(H) of some Lie grape homomorphism φ : H → G which is an embedding.

Theorem 3.6. Suppose H and G are Lie grapes; suppose φ : H → G is a homomorphism of Lie grapes.
Then φ has constant rank.

Proof. For a ∈ H we let ℓa : H → H be left-multiplication by a (so ℓa(x) = ax for x ∈ H). For all a, x ∈ H
we have φ(ax) = φ(a)φ(x); i.e. φ(ℓa(x)) = ℓφ(a)(φ(x)). So, implicitly fixing charts, we apply chain rule to
the above to get that

Dφ(ax) ·Dℓa(x) = Dℓφ(a)(φ(x)) ·Dφ(x)

Since ℓa and ℓφ(a) are diffeomorphisms (with inverses ℓa−1 and ℓ(φ(a))−1 , respectively), the matrices Dℓa(x)
and Dℓφ(a)(φ(x)) are invertible. So

rank(Dφ(ax)) = rank(Dφ(x))

for all a, x ∈ H. In particular, taking a = x−1 gives rank(Dφ(x)) = rank(Dφ(e)) for all x ∈ H.
Theorem 3.6

Example 3.7. Show that the grapes

SL(n,R) = {A ∈ GL(n,R) : det(A) = 1 } (special linear grape)

O(n,R) = {A ∈ GL(n,R) : ATA = I } (orthogonal grape)

SO(n,R) = {A ∈ O(n,R) : det(A) = 1 } (special orthogonal grape)

GL(n,C) = {A ∈Mn(C) : A is invertible } (general linear grape over C)
U(n) = {A ∈ GL(n,C) : A∗A = I } (unitary grape)

SU(n) = {A ∈ U(N) : det(A) = 1 } (special unitary grape)

GL(n,H) = {A ∈Mn(H) : A is invertible } (general linear grape over the quaternions)

Sp(n) = {A ∈ GL(n,H) : A∗A = I } (symplectic grape)

are regular Lie subgrapes of GL(m,R) for some m. (Here A∗ = (A)T and H = { a+bi+cj+dk : a, b, c, d ∈ R }
with i2 = j2 = k2 = −1 with i2 = j2 = k2 = ijk = −1 and ij = k, jk = i, ki = jk.)

We do some sample computations:

(SL(n,R)) The determinant map φ : GL(n,R) → R∗ is a Lie grape homomorphism and SL(n,R) = ker(φ).
So SL(n,R) is a closed, regular Lie subgrape.

Exercise 3.8 (Possibly worthwhile). Compute the Jacobian of φ and show directly that the rank is 1.

(O(n,R)) Consider the map φ : GL(n,R) given by φ(X) = XTX.
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Claim 3.9. φ has constant rank.

Proof. For A ∈ GL(n,R) we let LA, RA : GL(n,R) → GL(n,R) be left- and right-multiplication by A,
respectively. Then for A,X ∈ GL(n,R) we have

φ(RA(x)) = φ(XA) = ATXTXA = LAT (RA(φ(x)))

So by the chain rule (again implicitly fixing charts) we have

Dφ(XA) ·DRA(X) = DLAT (XTXA) ·DRA(φ(X)) ·Dφ(X)

Then since RA and LAT are diffeomorphisms we get that rank(Dφ(XA)) = rank(Dφ(X)) for all X. In
particular for A = X−1 we get rank(Dφ(X)) = rank(Dφ(I)). Claim 3.9

Hence O(n,R) is a closed regular Lie subgrape of GL(n,R) because O(n,R) = φ−1(I).

(SO(n,R)) It’s the kernel of the determinant map.

Exercise 3.10. Check the rest.

Remark 3.11. We can also define complex Lie grapes. Some examples include GL(n,C),SL(n,C),O(n,C),SO(n,C) =
{A ∈Mn(C) : ATA = I, det(A) = 1 },Sp(2n,C).

Fact 3.12. The only connected compact complex Lie grapes are complex tori.

Exercise 3.13. Which of the real Lie grapes exhibited above are compact?

Definition 3.14. Suppose M is a C∞ manifold of dimension n and p ∈M . A tangent vector on M at p is a
set of ordered pairs (φ, u) with one pair for each chart φ at p and each u ∈ Rn obtained from the following
procedure: pick a smooth curve α : (−ε, ε) →M with α(0) = p, and define α′(0) to be the set of pairs (φ, u)
where given a chart φ at p we let u = β′(0) where β(t) = φ(α(t)). The space of tangent vectors on M at p is
denoted by TpM .

Remark 3.15. When ψ is another chart and (ψ, v) is another pair induced by α, we have v = γ′(0) where

γ(t) = ψ(α(t)) = ψ(φ−1(β(t))) = (ψφ−1)(β(t))

so γ′(t) = D(ψφ−1)(β(t)) · β′(t), and v = γ′(0) = D(ψφ−1)(φ(p))u. Thus u and v are related by

v = D(ψφ−1)(φ(p)) · u

vk =

n∑
i=1

∂(ψφ−1)k
∂xi

ui

Definition 3.16. Suppose M is a C∞ manifold and p ∈ M . A derivation on M at p is a linear map
D : C∞

p (M,R) → R such that D(fg) = D(f) · g + f ·D(g) for f, g ∈ C∞
p (M,R) where C∞

p (M,R) is the space
of locally smooth functions on M at p; i.e. smooth functions g : U ⊆ M → R where U is open in M with
p ∈ U , and two such functions g : U ⊆ M → R and h : V ⊆ M → R are considered equivalent when they
agree in some open W ⊆ U ∩ V with p ∈W .

Remark 3.17. A tangent vector X ∈ TpM acts as a derivation on M at p as follows: choose a locally smooth
curve α : (−ε, ε) →M with α(0) = p and α′(0) = X. Then we define X(g) = h′(0) where h(t) = g(α(t)).

Note that if X is given locally in the chart φ at p by u ∈ Rn then u = β′(0) where β(t) = φ(α(t)); so
h(t) = g(α(t)) = (gφ−1)(β(t)), and h′(t) = D(gφ−1)(β(t)) · β′(t). So X(g) = h′(0) = D(gφ−1)(φ(p)) · u.

If we write gφ−1 simply as g and x = φ(p) then

X(g) = D(gφ−1)(φ(p)) · u =

n∑
i=1

∂(gφ−1)

∂xi
(x)ui
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i.e.

X(g) =

n∑
i=1

ui
∂g

∂xi

Because of this formula, it is customary to write the standard basis vectors in Rn (with u ∈ Rn) as ∂
∂x1

, . . . , ∂
∂xn

;
so

u =

n∑
i=1

ui
∂

∂xi

Definition 3.18. Suppose f : N →M is a smooth map of smooth manifolds. Then f induces a linear map
f∗ : TpN → Tf(p)M for each p ∈ N . (The map f∗ is also denoted df or Df .) Indeed, given X ∈ TpN we
choose α : (−ε, ε) → N with α(0) = p and α′(0) = X, and then define f∗X = β′(0) where β(t) = f(α(t)).

TODO 3. Roman d?

Remark 3.19. If X is given locally in φ by u ∈ Rn then u = γ′(0) where γ(t) = φ(α(t)). Then β(t) =
f(α(t)) = (fφ−1)(γ(t)), and β′(t) = D(fφ−1)(γ(t)) · γ′(t); so

f∗X = β′(0) = D(fφ−1)(φ(p)) · u

Theorem 3.20.

1. Suppose f : M → N and g : N → L are smooth maps of smooth manifolds. Then (g ◦ f)∗ = g∗ ◦
f∗ : TpM → Tg(f(p))L.

2. Suppose f : N → M is smooth; suppose g : U ⊆ M → R where U ⊆ M is open with f(p) ∈ U . (Or
suppose g : M → R is smooth.) Then for X ∈ TpN we have (f∗X)(g) = X(g ◦ f).

Definition 3.21. Suppose M is a smooth manifold. A vector field on M is a map X : M →
⋃
p∈M TpM

such that X(p) ∈ TpM for all p ∈ M . We sometimes write Xp to denote X(p). A vector field X on M is
given locally (in a chart φ : U ⊆M → φ(U) ⊆ Rn) by a vector u = u(x) ∈ Rn at each point x ∈ φ(U). We
say that X is continuous (or smooth, or Ck)) when for some (hence for every) chart φ the resulting function
u(x) is continuous (or smooth, or Ck). The space of all smooth vector fields on M is denoted Γ(M,TM).

Remark 3.22. When f : N → M is a smooth map of smooth manifolds and X ∈ Γ(N,TN), we don’t
necessarily have a well-defined vector field on M : if f is not injective we might have p ̸= q in N wth
f(p) = f(q) but f∗Xp ̸= f∗Xq in Tf(p)M = Tf(q)M . If f is surjective then f∗X is well-defined as a vector field
on f(N) ⊆M . If f : N →M is a diffeomorphism then f∗ gives a well-defined map Γ(N,TN) → Γ(M,TM).
If f : N →M is an injective immersion then f is a smooth diffeomorphism as a map f : N → f(N) (where
the latter is endowed with the topology and smooth structure induced from N via f).

Theorem 3.23. Suppose M is a smooth manifold; suppose X,Y ∈ Γ(M,TM). Then there exists a (unique)
smooth vector field Z on M such that Z(g) = X(Y (g))− Y (X(g)) for all smooth maps g : M → R.

Proof. Suppose X,Y are given locally in a chart φ : U → φ(U) by vectors u, v ∈ Rn. Write x = φ(p) and
gφ−1 as g. Then

X(Y (g))− Y (X(g)) =

n∑
i=1

ui
∂

∂xi

 n∑
j=1

vj
∂g

∂xj

−
n∑
i=1

vi
∂

∂xi

 n∑
j=1

uj
∂g

∂xj


=
∑
i,j

ui

(
∂vj
∂xi

∂g

∂xj
+ vj

∂2g

∂xi∂xj

)
−
∑
i,j

vi

(
∂uj
∂xi

∂g

∂xj
+ uj

∂2g

∂xi∂xj

)

=

n∑
i=1

n∑
j=1

(
∂vj
∂xi

ui −
∂uj
∂xi

vi

)
∂g

∂xj

8



Thus X(Y (g))− Y (X(g)) = Z(g) where Z is the smooth vector field given locally in the chart φ by

w =

n∑
j=1

n∑
i=1

(
∂vj
∂xi

ui −
∂uj
∂xi

vi

)
∂

∂xj

(where again ∂
∂xj

is the jth standard basis vector). i.e.

w = Dv · u−Du · v

Theorem 3.23

Exercise 3.24. Check that if you change coordinates that w satisfies the rule.

Fact 3.25. A tangent vector is determined by its action as a derivation. Hence a smooth vector field is
determined by its action on locally smooth functions. Using smooth bump functions this shows that a smooth
vector field is determined by its action on global smooth functions.

Definition 3.26. The vector field Z in the above theorem is called the Lie bracket of X and Y and is
denoted [X,Y ].

Theorem 3.27. Suppose f : N → M is a smooth map of smooth manifolds. Suppose X,Y ∈ Γ(N,TN);
suppose U, V ∈ Γ(M,TM) satisfy

f∗Xp = Uf(p)

f∗Yp = Vf(p)

for all p ∈ N . Then (f∗[X,Y ])p = ([U, V ])p for all p ∈ N .

Exercise 3.28. Prove this. Hint: if f, g : R → R and h = g ◦ f then h′ = (g′ ◦ f) · f ′.

Proof. For any smooth map g : M → R and for all p ∈ N we have

U(g)(f(p)) = Uf(p)(g) = (f∗Xp)(g) = Xp(g ◦ f) = X(g ◦ f)(p)

(The third equality was an exercise.)

TODO 4. ref?

Hence for all smooth g : M → R we have X(g ◦ f) = U(g) ◦ f . Thus for all smooth g : M → R and all
p ∈ N we have

f∗[X,Y ]p(g) = [X,Y ]p(g ◦ f)
= Xp(Y (g ◦ f))− Yp(X(g ◦ f))
= Xp(V (g) ◦ f)− Yp(U(g) ◦ f)
= Uf(p)(V (g))− Vf(p)(U(g)) (by our earlier equalities, with g replaced by V (g) and U(g))

= [U, V ]f(p)(g)

So f∗[X,Y ]p(g) = [U, V ]f(p)(g) for all smooth g : M → R. So f∗[X,Y ]p = [U, V ]f(p). Theorem 3.27

Definition 3.29. A Lie algebra is a vector space V over a field F equipped with a binary operation [·, ·]
called the Lie bracket satisfying:

(Skew-symmetry) [a, b] = −[b, a] for all a, b ∈ V

(Bilinearity) [ta, b] = t[a, b] and [a+ b, c] = [a, c] + [b, c] for all a, b, c ∈ V and all t ∈ F

(Jacobian identity) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for all a, b, c ∈ V .

We define a Lie algebra homomorphism and a Lie algebra isomorphism in the expected way.
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Remark 3.30. Bilinearity of the Lie bracket in the second parameter follows from bilinearity of the first and
skew-symmetry.

Example 3.31.

• Mn(F ) is a Lie algebra under [A,B] = AB −BA. Indeed,

[[A,B], C] = [A,B]C − C[A,B]

= (AB −BA)C − C(AB −BA)

= ABC −BAC − CAB + CBA

[[B,C], A] = BCA− CBA−ABC +ACB

[[C,A], B] = CAB −ACB −BCA+BAC

• When M is a smooth manifold, the space of smooth vector fields Γ(M,TM) is a Lie algebra with Lie
bracket given by [X,Y ](g) = X(Y (g))− Y (X(g)) for smooth g : M → R.

Definition 3.32. Suppose G is a Lie grape. For a ∈ G let ℓa : G→ G denote left multiplication: ℓa(x) = a ·x.

Note that ℓa : G → G is a diffeomorphism (with inverse ℓa−1) and so dℓa = (ℓa)∗ defines a linear map
from Γ(G,TG) → Γ(G,TG).

Definition 3.33. For a smooth vector field X on G, we say X is left-invariant when dℓaX = X for all
a ∈ G; i.e. dℓaXb = Xab for all a, b ∈ G.

Remark 3.34. If X is a left-invariant vector field on G with X(e) = Xe = A ∈ TeG then we must have
X(p) = Xp = dℓpA for all p ∈ G. On the other hand, given A ∈ TeG, if we define X(p) = Xp = dℓpA for
p ∈ G then X is a left-invariant vector field; indeed

TODO 5. smoothness?

dℓaXb = dℓa(dℓbA) = (dℓa ◦ dℓb)A =︸︷︷︸
(∗)

d(ℓa ◦ ℓb)A = dℓabA = Xab

where (*) was an exercise.

TODO 6. ref?

Note also that whenX and Y are left-invariant vector fields on G the Lie bracket [X,Y ] is also left-invariant.
Indeed

dℓa[X,Y ] = [dℓaX,dℓaY ] = [X,Y ]

by the previous theorem.

Definition 3.35. For a Lie grape G we define the Lie algebra of G to be the vector space g = TeG with Lie
bracket defined by [A,B] = [X,Y ]e where X and Y are the (unique) left-invariant vecor fields on G with
Xe = A and Ye = B.

Remark 3.36. Using standard identifications from differential geometry, when G is a (real) Lie subgrape of
GL(n,F) where F ∈ {R,C,H }, then for any p ∈ G we can identify TpG with the set of α′(0) ∈Mn(F ) where
α is a locally smooth map α : (−ε, ε) → G with α(0) = p.

We briefly describe the identifications. When U is an open set in Rn we get that U is a smooth manifold
with atlas consisting of one chart φ where φ : U → U is the identity map. So a vector X = α′(0) ∈ TpU is
given by the one vector u = β′(0) ∈ Rn where β(t) = φ(α(t)) = α(t); so u = α′(0) ∈ Rn. So we identify
TpU = Rn.

Also when M is an (immersed) submanifold of Rm and f : M → Rn is the inclusion given by f(p) = p, we
identify TpM = f∗(TpM) ⊆ Rm. Indeed, for X = α′(0) where α : (−ε, ε) →M we have f∗X = β′(0) where
β(t) = f(α(t)) = α(t). So f∗X = α′(0) ∈ Rm.

Finally we identify Mn(R) with Rn2

(and Mn(C) with R2n2

and Mn(H) with R4n2

).
So if α(t) = (Aij(t))ij then α

′(t) = (A′
ij(t))ij .
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Theorem 3.37. Suppose G is a Lie subgrape of GL(n,F) for F ∈ {R,C,H } so that

g = TIG = {α′(0) ∈Mn(F) : α is a locally smooth map (−ε, ε) → G,α(0) = I } ⊆Mn(F)

Then

1. For A ∈ g = TIG the (unique) left-invariant vector field U on G with U(I) = A is given by U(P ) =
UP = PA (matrix multiplication).

2. For A,B ∈ g = TIG ⊆Mn(F) the Lie bracket of A and B is given by the commutator [A,B] = AB−BA
(matrix multiplication).

Proof.

Case 1. Suppose G = GL(n,R) ⊆Mn(R), so g = gl(n,R) =Mn(R).

1. Suppose A ∈ g = Mn(R); let U be the left-invariant vector field on G = GL(n,R) with UI = A.
Then for all P ∈ G we have U(P ) = UP = DLPA where LP is left-multiplication by P and
DLP = dLP = (LP )∗. (Note that DLP when written as a matrix is n2 × n2.)

We have for X ∈Mn(R) that LPX = PX; so

(LP )k,ℓ(x) = (LPX)k,ℓ = (PX)k,ℓ =
∑
m

Pk,mXm,ℓ

So

(DLP )kℓ,ij(x) =
∂(LP )kℓ
∂Xij

(x) = δj,ℓPk,i

So
(UP )k,ℓ = (DLPA)k,ℓ =

∑
i,j

(DLP )kℓ,ijAij =
∑
i,j

δj,ℓPkiAij =
∑
i

PkiAiℓ = (PA)kℓ

Thus U(P ) = UP = PA.

2. Next, given A,B ∈ g = TIG we must calculate [A,B] = [U, V ]I where U(x) = UX = XA and
V (X) = VX = XB.

We have [U, V ] = DV · U −DU · V . So

[U, V ]kℓ = (DV · U −DU · V )kℓ

= (DV · U)kℓ − (DU · V )kℓ

=
∑
ij

(DV )kℓ,ijUij − (DU)kℓ,ijVij

We have U(X) = XA; so

Ukℓ(X) =
∑
m

XkmAmℓ

and
∂Uk,ℓ
∂Xi,j

(x) = δikAjℓ

So

[U, V ]kℓ =
∑
ij

δikBjℓUij −
∑
ij

δikAjℓVij =
∑
j

(BjℓUkj −AjℓVkj) = (U(x)B − V (x)A)kℓ

Thus
[U, V ](x) = U(x) ·B − V (x) ·A

for all x. Hence [A,B] = [U, V ]I = U(I) ·B − V (I) ·A = AB −BA.

11



Case 2. Suppose G is a Lie subgrape of GL(n,R). We identify g = TIG with F∗TIG ⊆ GL(n,R) =
Mn(R) where F : G → GL(n,R) is the inclusion map F (P ) = P . For P ∈ G let LP : G → G and
MP : GL(n,R) → GL(n,R) be the left-multiplication maps; so the following diagram commutes:

G G

GL(n,R) GL(n,R)

Lp

F F

Mp

Let X and Y be the left-invariant vector fields on G with XI = A and YI = B (or, more precisely, with
F∗XI = A and F∗YI = B). Let U and V be the left-invariant vector fields on GL(n,R) ⊆Mn(R) with
UI = A and VI = B (we now suppress the identification).

1. Need to show that XP = PA (or more precisely that F∗XP = PA). Indeed, we have

F∗XP = DFxP = DFDLPXI = D(F◦LP )XI = D(MP ◦F )XI = DMPDFXI = DMPA = UP = PA

2. Need to show that [A,B] = AB − BA; more precisely, that F∗[X,Y ]I = AB − BA. Since
F∗XP = PA = UP = UF (P ) and F∗YP = PB = VP = VF (P ), Theorem 3.27 shows that indeed

F∗[X,Y ]I = [U, V ]I = AB −BA

Case 3. Suppose G is a Lie subgrape of GL(n,C) or GL(n,H). Consider GL(n,C) as a Lie subgrape of
GL(2n,R) using the injective homomorphism F : GL(n,C) → GL(2n,R) given by

A+ iB 7→
(
A −B
B A

)
Likewise we consider GL(n,H) as a Lie subgrape of GL(2n,C) using the map F : GL(n,H) → GL(2n,C)
given by

A+ Cj 7→
(
A −C
C A

)
for A,B ∈Mn(R); i.e.

A+Bi+ (C +Di)j 7→
(
A+Bi −C +Di
C +Di A−Bi

)
Theorem 3.37

Aside 3.38. det

(
A −B
B A

)
= det

C
(A+ iB).

Alternative proof of Case 1.

1. Suppose G = GL(n,R); suppose A ∈ g = Mn(R). Let U be the left-invariant vector field on G with
UI = A; that is UP = DLPA (where LP : G → G is X 7→ PX). Since LP is linear we get that
DLP (X) = LP as a linear map. So UPa = DLPA = LPA = PA.

2. Now suppose A,B ∈ g =Mn(R) and let U and V be the corresponding left-invariant vector fields with
UI = A and VI = B. Recall that [U, V ](X) = DV (X)U(X)−DU(X)V (X). We have V (X) = VX = XB.
So V = RB which is linear, and DV (X) = RB as a linear map. Similarly DU(X) = RA. So we have

[U, V ](X) = DV (X)U(X)−DU(X)V (X) = RB(XA)−RA(XB) = XAB −XBA = X(AB −BA)

Thus the Lie bracket of A and B in g is

[A,B] = [U, V ](I) = I(AB −BA) = AB −BA
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4 Exponential map

Theorem 4.1 (Existence and uniqueness of solutions to ODEs). Suppose U ⊆ Rn be open with p ∈ U ;
suppose I ⊆ R is open with s ∈ I. Suppose F : U × I → Rn is smooth.

1. Suppose J ⊆ I and K ⊆ I are intervals with s ∈ J ∩K; suppose α : J → U is smooth with α(s) = p
and α′(t) = F (α(t), t) for all t ∈ J and β : K → U is smooth with β(s) = p and β′(t) = F (β(t), t) for
all t ∈ K. Then α(t) = β(t) for all t ∈ J ∩K.

2. There is a unique maximal open interval J ⊆ I with s ∈ J and a (unique) smooth curve α : J → U with
α(s) = p and α′(t) = F (α(t), t) for all t ∈ J .

If we rule out time-variance of the vector field and relativize to a smooth manifold, we get:

Corollary 4.2. Suppose X is a smooth vector field on a smooth manifold M .

1. Suppose p ∈ M and I, J ⊆ R are two intervals with 0 ∈ I ∩ J . Suppose α : I → M is smooth with
α(0) = p and α′(t) = Xα(t) for all t ∈ I and β : J →M is smooth with β(0) = p and β′(t) = Xα(t) for
all t ∈ J . Then α(t) = β(t) for all t ∈ I ∩ J .

2. For all p ∈M there is a unique maximal parameter interval I ⊆ R with 0 ∈ I and a (unique) smooth
curve α : I →M such that α(0) = p and α′(t) = Xα(t) for all t ∈ I. We call this α the integral curve
for X on M at p.

Example 4.3.

1. Find the integral curve for u(x, y) = (1, y) on (−1, 1)× (0, 2) at p = (0, 1).

We need α(t) = (x(t), y(t)) such that α′(t) = u(α(t)); i.e.

(x′(t), y′(t)) = u(x(t), y(t)) = (1, y(t))

so x′(t) = 1 and y′(t) = y(t). We also want α(0) = p = (0, 1); i.e. x(0) = 0 and y(0) = 1.

To get x′(t) = 1 and x(0) = 0 we need x(t) = t+ c and 0 = 0 + c; hence x(t) = t. To get y′(t) = y and
y(0) = 1, we write dy

dt = y, rearrange and integrate to get∫
1

y
dy =

∫
dt

and hence ln(y) = t+ c, so y = exp(t+ c). To get y(0) = 1 we get y(t) = exp(t). Thus the integral
curve is α(t) = (x(t), y(t)) = (t, exp(t)) with maximal parameter interval I = (−1, ln(2)).

2. Find the integral curve for v(x, y) = (1, y2) on R2 at p = (0, 1).

We need x′(t) = 1 with x(0) = 0 and y′(t) = (y(t))2 with y(0) = 1. To get x′(t) = 1 and x(0) = 0 we
again get x(t) = t. To get y′(t) = (y(t))2 we need dy

dt = (y(t))2 hence∫
−y−2dy =

∫
−dt

and (y(t))−1 = c− t. To get y(0) = 1 we need c = 1; hence y(t) = 1
1−t . Thus the integral curve is

α(t) = (x(t), y(t)) =

(
t,

1

1− t

)
which in particular has an asymptote at x = 1; so the maximal parameter interval is I = (−∞, 1).

Theorem 4.4. Suppose G is a Lie grape and let g = TeG. Suppose A ∈ g, and let X be the left-invariant
vector field on G with Xe = A. Let α : I → G be the maximal integral curve for X on G at e. Then
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1. The maximal parameter interval is I = R.

2. The map α : R → G is a Lie grape homomorphism (with α′(0) = Xα(0) = Xe = A).

3. If φ : R → G is a Lie grape homomorphism with φ′(0) = A ∈ g then φ(t) = α(t) for all t ∈ R.

Proof. Fix s ∈ I; then for t ∈ I such that s+ t ∈ I if we let β(t) = α(s+ t) and γ(t) = α(s)α(t) = ℓα(s)(α(t)),
then β(0) = α(s) and γ(0) = α(s)α(0) = α(s)e = α(s); furthermore we have

β′(t) = α′(s+ t)

= Xα(s+t)

= Xβ(t)

γ′(t) = dℓα(s)(α(t))α
′(t)

= dℓα(s)(α(t))Xα(t)

= Xα(s)α(t)

= Xγ(t)

So by uniqueness of integral curves we have β(t) = γ(t) for all t; i.e. α(s+ t) = α(s) · α(t).

1. If the maximal interval were I = (−a, b) ⫋ R, then we could extend the parameter interval to
J = (−2a, 2b) by defining α(s+ t) = α(s)α(t) for any s, t ∈ I.

2. Since the formula α(s+ t) = α(s)α(t) holds for all s, t ∈ R we get that α is a grape homomorphism.

3. Suppose φ : R → G is a Lie grape homomorphism with φ′(0) = A. Then for fixed s we have
φ(s+ t) = φ(s)φ(t) = ℓφ(s)φ(t). So

φ′(s+ t) =
d

dt
φ(s+ t) = dℓφ(s)(φ(t)) · φ′(t)

and at t = 0 we have
φ′(s) = dℓφ(s)(0)(A) = Xφ(s)

Since φ(0) = e and φ′(s) = Xφ(s) for all s we get φ = α by uniqueness of integral curves. Theorem 4.4

Aside 4.5. The 2-sphere cannot be a Lie grape; the hairy ball theorem says that there is no nowhere vanishing
vector field on S2, whereas a left-invariant vector field generated from a non-zero tangent vector at e is
nowhere vanishing.

Also the tangent bundle to a Lie grape is trivial (i.e. is isomorphic to G× Rn), and that of the sphere is
not.

Definition 4.6. Suppose G is a Lie grape, A ∈ g, and X is the left-invariant vector field on G with Xe = A.
The flow of X on G is the map F : G× R → G given by F (p, t) = αp(t), where αp : R → G is the (unique)
integral curve for X on G at p.

Definition 4.7. Suppose G is a Lie grape with Lie algebra g. We define the exponential map exp: g → G as
follows: given A ∈ g = TeG we define exp(A) = φ(1) where φ : R → G is the unique Lie grape homomorphism
with φ′(0) = A. (i.e. φ is the integral curve at e of the left-invariant vector field generated by A.)

Remark 4.8. We could have made all the above definitions and theorems using right multiplication and
right-invariant vector fields. So the Lie grape homomorphism φ : R → G with φ′(0) = A (in part (3) of
Theorem 4.4) is also equal to the integral curve for the unique right-invariant vector field Y on G with Ye = A
(i.e. Yp = drpA, where rp : G→ G is x 7→ x · p). The vector fields X and Y may be different, but they have
the same integral curve through e; this integral curve coincides with the Lie grape homomorphism with
φ′(0) = A.

Aside 4.9. The simplest Lie grapes besides Rn to picture are the torus or the cylinder.
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Recall that for A ∈Mn(F) with F ∈ R,C, we define

exp(A) = eA =

∞∑
k=0

1

k!
Ak = I +A+

1

2!
A2 + · · ·

Note that this series converges absolutely inMn(F) and uniformly in any compact set; indeed, ifm = maxij |Aij |
an dmℓ = maxij |(Aℓ)ij | then since Aℓ+1 = Aℓ ·A we must have mℓ+1 ≤ n ·mℓ ·m. So by induction we get

mℓ ≤ nℓ−1mℓ ≤ (nm)ℓ

hence if

Sℓ =

ℓ∑
k=0

1

k!
Ak

we have

max|Sℓ|ij ≤
ℓ∑

k=0

1

k!
(nm)k = exp(nm)

Also when A,B ∈Mn(C) commute we have exp(A+B) = exp(A) exp(B) because

exp(A+B) =

∞∑
m=0

1

m!
(A+B)m =

∑
m,k

1

m!

(
m

k

)
AkBm−k =

∑
m,k

1

k!ℓ!
AkBm−k

and

exp(A) exp(B) =

(∑
k

1

k!
Ak

)(∑
ℓ

1

ℓ!
Bℓ

)
=
∑
k,ℓ

1

k!ℓ!
AkBℓ =

∑
k,m

1

k!ℓ!
AkBm−k

where we substitute m − k = ℓ. It follows that for all A ∈ Mn(F) we have exp(A) is invertible (with
(exp(A))−1 = exp(−A)); we also get that for s, t ∈ R we have exp((s + t)A) = exp(sA) exp(tA). Also for
P ∈ GL(n,F) and A ∈Mn(F) we have

exp(PAP−1) =

∞∑
k=0

1

k!
(PAP−1)k =

∞∑
k=0

1

k!
PAkP−1 = P

( ∞∑
k=0

1

k!
Ak

)
P−1 = P exp(A)P−1

We also have d
dt exp(At) = A exp(At) = exp(At)A.

Our final observation:

Proposition 4.10. For A ∈Mn(F) we have

det(exp(A)) = exp(tr(A))

Proof. Choose P ∈ GL(n,C) so PAP−1 = J ∈Mn(C) is in Jordan form. So J is upper triangular and the
diagonal entries are the eigenvalues λ1, . . . , λn ∈ C of A. Then

exp(PAP−1) = exp(J) =

1
k!∑
k=0

Jk

is upper triangular with diagonal entries exp(λ1), . . . , exp(λn); so

det(exp(A)) = det(P exp(A)P−1) = det(exp(PAP−1)) = det(exp(J)) =

n∏
i=1

exp(λi) = exp

(∑
i

λi

)
= exp(tr(A))

as desired. Proposition 4.10
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Alternate proof. Let φ : Mn(F) be φ(X) = det(X). Then for ℓ ∈ { 1, . . . , n } we have

φ(X) = det(X) =

n∑
i=1

(−1)i+ℓXi,ℓ det(X
(i,ℓ)) =

n∑
i=1

Xiℓ(AdjX)ℓ,i

where X(i,ℓ) is the matrix obtained from X by removing the ith row and ℓth column, and Adj(X) is the
adjugate matrix. (Recall that X ·Adj(X) = Adj(X) ·X = det(X) · I.)

Then since Adj(X)ℓi = (−1)i+ℓ det(X(i,ℓ)) does not depend on Xiℓ we get that

∂φ

∂Xk,ℓ
(X) = (Adj(X))ℓ,k

Thus if we define g(t) = det(exp(At)) then

g′(t) = Dφ(exp(At)) · d

dt
(exp(At))

=
∑
k,ℓ

(Adj(exp(At)))ℓ,k(exp(At) ·A)k,ℓ

=
∑
k,ℓ,i

(Adj(exp(At)))ℓ,k(exp(At))k,iAiℓ

=
∑
ℓ,i

(det(exp(At)) · I)ℓiAiℓ

=
∑
ℓ,i

det(exp(At)) · δℓ,iAiℓ

=
∑
ℓ

det(exp(At))Aℓ,ℓ

= det(exp(At)) tr(A)

= tr(A) det(exp(At))

Thus g(t) is the unique solution to the differential equation g(t) = tr(A) · g(t) with g(0) = det(exp(0)) =
det(I) = 1. So

g(t) = exp(t · tr(A))

In particular when t = 1 we get det(exp(A)) = exp(tr(A)). Proposition 4.10

Corollary 4.11. Suppose G is a Lie subgrape of GL(n,F) where F ∈ {R,C }. Then

1. For A ∈ g ⊆ Mn(F) the unique grape homomorphism φ : R → G with φ′(0) = A is given by φ(t) =
exp(At).

2. The Lie algebra g ⊆Mn(F) is given by

g = {A ∈Mn(F) : exp(At) ∈ G for all t ∈ R }

3. The exponential map exp: g → G is a local diffeomorphism (from an open set U ⊆ g with 0 ∈ U to an
open set V ⊆ G with I ∈ V ).

Proof.

1. For G = GL(n,G) and if φ : R → G is given by φ(t) = exp(At), we have that exp(At) is invertible, so
φ indeed has codomain G. Also φ(s+ t) = exp((s+ t)A) = exp(sA) exp(tA) = φ(s)φ(t); so φ is a Lie
grape homomorphism and φ′(t) = exp(At) ·A, and in particular φ′(0) = A.

When G ⊆ GL(n,R) with A ∈ g ⊆ Mn(R), we let X and U be the left-invariant vector fields on G
and GL(n,F) with XI = UI = A. Then for P ∈ G we have XP = PA = UP and if φ : R → G and
ψ : R → GL(n,R) are the two unique grape homomorphisms with φ′(0) = A and ψ′(0) = A, then
φ′(t) = Xφ(t) = Uφ(t); thus since ψ

′(t) = Uψ(t) the uniqueness theorem for differential equations
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we have φ(t) = ψ(t) for all t. But we know from the previous paragraph that ψ(t) = exp(At); the result
follows.

2. If A ∈ g then φ : R → G given by φ(t) = exp(At) is the Lie grape homomorphism with φ′(0) = A (which
is equal to the integral curve for the left-invariant vector field X with XI = A ∈ g); so exp(At) ∈ G for
all t.

Conversely if exp(At) ∈ G for all t then α(t) = exp(At) is a smooth curve in G with α(0) = I. So
A = α′(0) ∈ TIG = g.

3. Check that local inverse of exp: g → G is log : V ⊆ G→ g given by

log(I +A) =
∑
k=1

(−1)k+1

k
Ak

Alternatively, if we suppose that exp: g → G is smooth (which isn’t particularly easy to prove) then
to show that exp is a local diffeomorphism by the inverse function theorem it suffices to show that
D exp = exp∗ is invertible at 0 ∈ g. (Here we do this for abstract Lie grapes, so exp may not have a nice
concrete form.) We have that exp: g → G, so exp∗ : T0g → TIG; under standard identifications we may
write exp∗ : g → g. The map exp: g → G is defined as follows: given A ∈ g we define exp(A) = φ(1)
where φ : R → G is the unique Lie grape homomorphism with φ′(0) = A. For A ∈ g we defined exp∗(A)
as follows: choose a smooth curve α : (−ε, ε) → g with α(0) = 0 and α′(0) = A, and set exp∗(A) = β′(0)
where β(t) = exp(α(t)). We choose α(t) = At; so α(0) = 0 and α′(0) = A. Then exp∗(A) = β′(0)
where β(s) = exp(As) for each s ∈ R. By part (1) the unique ψs : R → G with ψ′

s(0) = As is given by
s 7→ exp(As).

Note that if φs : R → G is given by φs(t) = φ(st) then φs is a Lie grape homomorphism, and
φ′
s(t) = φ′(st) · s; so φ′

s(0) = φ′(0) · s = As. So by uniqueness we get ψs(t) = φs(t) = φ(st). Thus

β(s) = ψs(1) = φ(s · 1) = φ(s)

so β′(s) = φ′(s) for all s. So exp∗(A) = β′(0) = φ′(0) = A. Since exp∗(A) = A for all A we get that
exp∗ : g → g is the identity map. Corollary 4.11

Theorem 4.12. The Lie algebras of the classical matrix grapes are as follows:

gl(n,R) =Mn(R)
sl(n,R) = {A ∈Mn(R) : tr(A) = 0 }
o(n,R) = {A ∈Mn(R) : At +A = 0 }
so(n,R) = {A ∈Mn(R) : At +A = 0, tr(A) = 0 }

= {A ∈Mn(R) : At +A = 0 }
= o(n,R)

gl(n,C) =Mn(C)
sl(n,C) = {A ∈Mn(C) : tr(A) = 0 }
u(n,C) = {A ∈Mn(C) : A∗ +A = 0 }
su(n,C) = {A ∈Mn(C) : A∗ +A = 0, tr(A) = 0 }
gl(n,H) =Mn(H)

sp(n,H) = {A ∈Mn(H) : A∗A = I }

Proof.

17



TODO 8. Description? Transpose case?
For sl(n,R) we have

sl(n,R) = {A ∈Mn(R) : exp(At) ∈ SL(n,R) for all t }

But

exp(At) ∈ SL(n,R) for all t
=⇒ det(exp(At) = 1 for all t

=⇒ exp(tr(A)t = 1 for all t

=⇒ tr(A) exp(tr(A)t) = 0 for all t

(taking derivatives). So tr(A) = 0 (taking t = 0). Conversely

tr(A) = 0

=⇒ tr(A)t = 0 for all t

=⇒ exp(tr(A)t) = 1 for all t

=⇒ det(exp(At)) = 1 for all t

=⇒ exp(At) ∈ SL(n,R) for all t

FOr o(n,R) we have

o(n,R) = {A ∈Mn(R) : exp(At) ∈ O(n,R) for all t }

Now

exp(At) ∈ O(n,R) for all t
⇐⇒ (exp(At))T (exp(At)) = I for all t

⇐⇒ (exp(AT t)) exp(At) = I for all t

=⇒ exp(AT t)AT exp(At) + exp(AT t) exp(At)A = 0 for all t

=⇒ AT +A = 0

Conversely

AT +A = 0

=⇒ AT t = −At for all t
=⇒ exp(AT t) = exp(−At) = (exp(At))−1 for all t

=⇒ (exp(At))T (exp(At)) = I for all t

=⇒ exp(At) ∈ O(n,R) for all t

One does the rest oneself. Theorem 4.12

Corollary 4.13. We easily obtain the dimensions of all classical matrix grapes.

dim(GL(n,R)) = n2

dim(SL(n,R)) = n2 − 1

dim(O(n,R)) = dim(SO(n,R))

=
n2 − n

2

etc.
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5 Connectedness

Theorem 5.1. Suppose G is a Lie grape; let H be the connected component containing e. Then H is a Lie
subgrape of G and the Lie algebra h of H is equal to the Lie algebra g of G. Also the connected components
of G are the cosets of H (all of which are diffeomorphic to H).

Proof. It suffices to show that H is a subgrape. Let m : G × G → G be m(a, b) = ab and v : G → G be
v(a) = a−1; so m, v are smooth. Since v is a diffeomorphism (equal to its own inverse) we get that v(H)
is a connected component containing e; so v(H) = H. So H is closed under inversion. Also if a ∈ H
the map ℓa : G → G given by ℓa(x) = ax is a diffeomorphism (with inverse ℓa−1); so ℓa(H) = aH is a
connected component containing e (since we showed above that a−1 ∈ H). So aH = H; so H is closed under
multiplication (for all b ∈ H we have ab ∈ H). Theorem 5.1

We recall Frobenius’ theorem. Consider a simple PDE

∂u

∂x
= F (x, y, u)

∂u

∂y
= G(x, y, u)

One might try to solve this by separately solving each; this doesn’t always work.
More generally, suppose M is a smooth manifold with dim(M) = m. Suppose X1, . . . , Xn are smooth

vector fields on M . Let Vp = span{X1(p), . . . , Xn(p) }. Suppose that dim(Vp) = n for all p. Then in order to
have an n-dimensional manifold N ⊆ M with TpN = Vp at all p ∈ N we must have [Xk, Xℓ]p ∈ TpN = Vp
for all k, ℓ and all p. (By the theorem that f∗[X,Y ]p = [U, V ]f(p).)

TODO 9. ref

(We can turn the previous problem into an instance of this by defining X = (1, 0, F (x, y, u)) and
Y = (0, 1, G(x, y, u)).)

Theorem 5.2 (Frobenius’ theorem). Suppose M is a smooth manifold and X1, . . . , Xn are smooth vector
fields on M . For p ∈M we let Vp = span{X1(p), . . . , Xn(p) }. Suppose for p ∈M we have dim(Vp) = n and
[Xk, Xℓ]p ∈ Vp for all k, ℓ. Then for each q ∈M there is a unique maximal connected smooth submanifold
N ⊆M with q ∈M such that TpN = Vp for all p ∈ N .

Such Vp are called distributions, such Xi are called involutive, and if such N exists it is the integral
submanifold of the distribution.

Theorem 5.3. Suppose G is a Lie subgrape of GL(n,F) for F ∈ {R,C }. Then there is a bijective correspon-
dence between connected (real) Lie subgrapes H of G and (real) Lie subalgebras h of g.

Proof. When H is a subgrape of G we have h ⊆ g ⊆ Mn(F). (Indeed, we have h = {α′(0) ∈ Mn(F) |
α : (−ε, ε) → H ⊆ G ⊆Mn(F) }.)

Suppose we are given a (real) Lie subalgebra h ⊆ g ⊆Mn(F). Pick a basis {A1, . . . , Aℓ } for h over R. Let
X1, . . . , Xℓ be the left-invariant vector fields on GL(n,F) with Xk(P ) = PAk. (These restrict to left-invariant
vector fields on G.) Then since [Ai, Aj ] = AiAj −AjAi ∈ h for all i, j. So [Xi, Xj ]P = P [Ai, Aj ] ∈ Ph and
[Xi, Xj ]P ∈ span{PA1, . . . , PAℓ } = span{X1(P ), . . . , Xℓ(P ) }. So by Frobenius’ theorem there is a unique
maximal smooth submanifold of G with I ∈ H and

TPH = span{X1(P ), . . . , Xℓ(P ) } = Ph

for all P ∈ H.
To show that H is a Lie subgrape, it suffices to show that H is closed under multiplication and inversion.

This is the same as the proof of Theorem 5.1. Indeed, let v : GL(n,F) → GL(n,F) be A 7→ A−1. Note that v
is a diffeomorphism, and note that for each vector field Xk we have DLPXk = Xk for all P ∈ GL(n,F). So
DLP−1Xk = Xk for all P ∈ GL(n,F). It follows that v(H) is also a maximal connected integral submanifold
of G containing I, and hence H = v(H) by uniqueness. A similar argument shows that H is closed under
multiplication. Theorem 5.3
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Example 5.4.

• GL(n,R) is not connected because it is the disjoint union of the two open subsets

GL+(n,R) = {A ∈Mn(R) : det(A) > 0 }
GL−(n,R) = {A ∈Mn(R) : det(A) < 0 }

Note that GL+(n,R) is a Lie subgrape of GL(n,R) of index 2, and its non-identity coset is GL−(n,R).

• Similarly O(n,R) is the disjoint union of

O+(n,R) = {A ∈ O(n,R) : det(A) = 1 }
O−(n,R) = {A ∈ O(n,R) : det(A) = −1 }

(Note O+(n,R) = SO(n,R) is a Lie subgrape of O(n,R).)

Theorem 5.5. The matrix grapes

GL+(n,R),SL(n,R),SO(n,R),GL(n,C),SL(n,C),U(n,C),SU(n,C),GL(n,H),Sp(n,H)

are all connected.

Proof. Note that GL+(n,R) ∼= SL(n,R) × R+ (as Lie grapes) with an isomorphism φ : SL(n,R) × R+ →
GL+(n,R) given by (A, t) 7→ tA; hence the former is connected if and only if the latter is. Given A ∈ GL+(n,R)
with det(A) = a we can define a path α : [0, 1] → GL+(n,R) given by α(t) = (1 + (b− 1)t)A is a path from A
to B = bA where b = 1

n
√
a
. Given A ∈ SL(n,R) we can perform the Gram-Schmidt procedure setting

v1 = u1

v2 = u2 −
u2 · v1
|v1|2

v1

vk = uk −
k−1∑
j=1

uk · fj
|vj |2

vj

In particular, when expressing these operations as matrices, we get that B = (I + U)A where U = U(A) is
strictly upper triangular. A path from A to B in SL(n,R) is given by α(t) = (I + tU)A, where B ∈ SL(n,R)
has determinant 1 and orthogonal columns; equivalently BTB = diag(d1, . . . , dn) with dk > 0 for all k and∏
di = 1. (Note that the set A of such matrices is not a grape.) Given A ∈ A we can scale the lengths of the

columns: for A = (v1, . . . , vn) if we let bk = ln∥vk∥, we can define α : [0, 1] → SL(n,R) by

α(t) =

exp(−tb1)
. . .

exp(−tbn)

A

(Note that
∑
bk = 0, so

∑
−tbk = 0.) So α is a path from A ∈ A to B ∈ SO(n,R) (the columns of B are a

positively oriented orthonormal basis for Rr). Finally, it remains to show that given A ∈ SO(n,R) we can
find a path from A to I in SO(n,R). We can do this using n rotations R1, . . . , Rn. Say A = (u1, . . . , un),
and let the ei be the standard basis vectors. If u1 = e1, let R1 = I; else let R1 = R1(θ) be the rotation in the
plane spanned by u1 and e1 by the angle θ between u1 and e1; then α1(t) = R1(tθ)A is a path from A to
B = (v1, . . . , vn, where vk = R1(θ)uk (so v1 = e1).

If v2 = e2, let R2 = I; else let R2 = R2(θ2) be the rotation in the plane spanned by v2 and e2 by the
angle θ2 between v2 and e2. Note that R2(θ2) fixes e1 since e1 is perpendicular to both e2 and v2. Repeat
the procedure.
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Note that

GL+(n,R) ∼= SL(n,R)× R+

SL(n,R) ∼= A× U
A ∼= SO(n,R)×D(n,R)

where U is the set of strictly upper triangular matrices and

D(n,R) =
{
diag(d1, . . . , dn) : di > 0,

∏
di = 1

}
(The map φ : A× U → SL(n,R) is given by φ(A,U) = (I + U)A.) Theorem 5.5

6 Fundamental grape, simple connectedness, covering spaces

Definition 6.1. Suppose M is a smooth manifold and a, b ∈ M . A path from a to b is a continuous map
α : [0, 1] →M with a = α(0) and b = α(1). A loop at a is a path from a to a. Given paths α, β from a to b in
M , a homotopy from α to β in M is a continuous map F : [0, 1]× [0, 1] →M such that for all s and t we have

• F (0, t) = α(t)

• F (1, t) = β(t)

• F (s, 0) = a

• F (s, 1) = b

When such F exists we say α and β are homotopic in M , and write α ∼ β in M .

Exercise 6.2. Check that ∼ is an equivalence relation.

Definition 6.3. For a ∈ M let κ = κa be the constant loop κa(t) = a for all t. For a path α from a to b
define α−1 be the corresponding path from b to a, given by t 7→ α(1− t). Given a path α from a to b and a
path β from b to c we let α ∗ β be the path from a to c given by

t 7→

{
α(2t) if 0 ≤ t ≤ 1

2

β(2t− 1) if 1
2 ≤ t ≤ 1

Exercise 6.4. Check that

• If α1 ∼ α2 then α−1
1 ∼ α−1

2 .

• If α1 ∼ α2 and β1 ∼ β2 then α1 ∗ β1 ∼ α2 ∗ β2.

• α ∗ κ ∼ α

• κ ∗ α ∼ α

• α ∗ α−1 ∼ α−1 ∗ α ∼ κ

• (α ∗ β) ∗ γ ∼ α ∗ (β ∗ γ).

Definition 6.5. Suppose M is a (topological) manifold and a ∈M . The fundamental grape of M (or first
homotopy grape) of M at a, denoted π1(M,a), is the set of loops at a in M modulo homotopy equivalence.

Theorem 6.6 (Properties of the fundamental grape).
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1. If M is a convex set in Rn and a ∈M then π1(M,a) = {κ } ∼= 0.

2. If N and M are path-connected then π1(N ×M, (a, b)) ∼= π1(N, a)× π1(M, b).

3. If f : N →M isa homeomorphism with f(a) = b then π1(N, a) ∼= π1(M, b).

4. If γ is a path in M from a to b then γ induces an isomorphism φ : π1(M,a) → π1(M, b) given by
φ(α) = γ−1 ∗ α ∗ γ.

5. π1(S1, 1) = π1(C∗, 1) = {αn : n ∈ N } ∼= Z where αn(t) = exp(2πint).

These are easy to prove except for the fifth; covering spaces may be the easiest way to see that. The
Seifert-van Kampen theorem is another way to see it.

Definition 6.7. A topological manifold M is called simply connected when M is path connected (which is
equivalent to connected for manifolds) and for some (hence for any) a ∈M we have π1(M,a) ∼= 0.

Definition 6.8. Suppose M,N are smooth manifolds. A map φ : N →M is called a (smooth) covering map
when for every p ∈M there is an open neighbourhood U ⊆M of p such that φ−1(U) is a disjoint union

φ−1(U) =
⋃
a∈A

Vα

where each Vα is open in N and the restricted map φ ↾ Vα is a diffeomorphism Vα → U . A (smooth) covering
manifold of M is a manifold N together with a smooth covering map φ : N →M .

Definition 6.9. Suppose φ : N → M and ψ : L → M are (smooth) covering maps, a homomorphism of
covering spaces from N to L is a smooth map f : N → L such that the following diagram commutes:

N L

M

f

φ

ψ

It’s an isomorphism when f is a diffeomorphism.

Theorem 6.10. Every connected smooth manifold M has a simply connected smooth covering manifold M̃ ,
which is unique up to covering space isomorphism. This M̃ is called the universal cover of M .

Theorem 6.11. Suppose M is a smooth manifold and let M̃ be the smooth universal cover with smooth
covering map φ : M̃ →M . Suppose N is a simply connected manifold N and f : N →M is a smooth map;
suppose a ∈ N and c ∈ φ−1(f(a)). Then there is a unique smooth map f̃ : N → M̃ such that φ ◦ f̃ = f and

f̃(a) = c.

Example 6.12. 1. The map φ : S1 → S1 given by φ(z) = zn (i.e. exp(iθ) 7→ exp(inθ)) is an n-to-1 covering
map. The universal cover of S1 is R with the covering map φ : R → S1 given by φ(θ) = exp(iθ) (or
exp(i2πθ) if you prefer).

2. The map φ : C∗ → C∗ given by φ(z) = zn is a covering map. Note that C∗ ∼= R+ × S1 (with an
isomorphism f : R+ × S1 → C∗ given by f(r, exp(iθ)) = r exp(iθ)). The universal cover of C∗ is R+ ×R
with covering map φ : R+ × R → C∗ given by φ(r, θ) = r exp(iθ) (or r exp(2πiθ)).

Fact 6.13. Homotopic loops are lifted to paths with the same endpoint, and any homotopy of said loops lifts
to a homotopy of the lifted paths.

TODO 10. Is there some uniqueness I missed in the definition of the grape operation in the following?

Theorem 6.14. Suppose G is a connected Lie grape and G̃ its universal cover. We can define operations on
G̃ making it into a Lie grape such that the covering map φ : G̃→ G is a Lie grape homomorphism. Given
such grape operations we have that ker(φ) is a discrete subgrape of Z(G̃) with π1(G) = π1(G, e) ∼= ker(φ).
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Proof. In order for φ : G̃ → G to be a grape homomorphism, we require that φ(ẽ) = e where ẽ = eG̃ and

e = eG; we also require that for ã, b̃ ∈ G̃ if we choose paths α̃, β̃ in G̃ from ẽ to the points ã and b̃ and we let
α = φ ◦ α̃ and β = φ ◦ β̃ then we need

φ(α̃(t) · β̃(t)) = φ(α̃(t)) · φ(β̃(t)) = α(t) · β(t)

So if we let γ = α · β (so γ(t) = α(t) · β(t) for all t) and if we let γ̃ = α̃ · β̃ then we need φ(γ̃(t)) = γ(t) for all
t; i.e. we need that γ̃ is the (unique) lift of γ at ẽ.

So we define multiplication on G̃ as follows: choose ẽ ∈ φ−1(e), and then given ã, b̃ ∈ G̃ we choose a path

α̃ from e to a in G̃ and a path β̃ from e to b in G̃. We then let α = φ ◦ α̃ and β = φ ◦ β̃; we then let γ = α · β
and γ̃ be the unique lift of γ at ẽ in G̃ and then define ã · b̃ = γ̃(1) in G̃.

One checks that ã · b̃ does not depend on the choice of α̃ and β̃. One also checks that this makes G̃ into
a grape and that φ is a grape homomorphism (and hence by smoothness φ is a morphism of Lie grapes).
Finally one checks that this multiplication is smooth.

Claim 6.15. K = ker(φ) is a discrete subgrape of Z(G̃).

Proof. From the definition of a covering, it is clear that the kernel is discrete. Also K is a normal subgrape
as the kernel of a grape homomorphism. So for all a ∈ G̃ and k ∈ K we have aka−1 ∈ K. Fix k ∈ K; define
g : G̃ → K by g(a) = aka−1. Since g is continuous and G̃ is connected the image g(G̃) is connected in K.

But K is disrete; so g(G̃) is a singleton. But g(ẽ) = k; so g(G̃) = { k }. So aka−1 = k for all a ∈ G̃, and

k ∈ Z(G̃). So K ⊆ Z(G̃). Claim 6.15

It remains to check that π1(G) ∼= K = ker(φ). Define λ : π1(G) : K by λ(α) = α̃(1) where α̃ is the unique

lift of α at ẽ in G̃. One checks that this is an isomorphism of grapes. Theorem 6.14

Missing stuff.

continued. Recall that given ã, b̃ ∈ G̃ we choose paths α̃, β̃ in G̃ from ẽ to ã and b̃ and then we let α = φ ◦ α̃
and

something something

Claim 6.16. The lifting map λ : π1(G) → K = ker(φ) given by λ(α) = α̃(1) is a grape isomorphism.

Proof. λ is well-defined since if α an dβ are loops at e in G with α ∼ β in G then a homotopy F from
α to β lifts to a homotopy F̃ from α̃ to β̃ in G̃, so α̃ ∼ β̃ in G̃. So we have α̃(1) = β̃(1) in G̃ and also
φ(α̃(1)) = α(1) = e; hence λ(α) = α̃(1) ∈ ker(φ).

λ is surjective because G̃ is path-connected. (So given α̃ ∈ K = ker(φ) = φ−1(e) we can choose a path α̃

from ẽ to ã in G̃ and then for α = φ ◦ α̃ we have that α is a loop at e and λ(α) = α̃(1) = ã.)

λ is injective because G̃ is simply connected. (So if λ(α) = α̃(1) = β̃(1) = λ(β) then α̃ ∼ β̃ in G̃ and a

homomotopy F̃ from α̃ to β̃ gives a homotopy F = φ ◦ F̃ from α to β in G; so α ∼ β, and α = β in π1(G).)
Finally, note that λ is a grape homomorphism because given loops α, β at e in G we have α · β ∼

(α ∗ κ) · (κ ∗ β) = α ∗ β; hence λ(α ∗ β) = λ(α) · λ(β) = α̃(1) · β̃(1). Claim 6.16

Theorem 6.17. Suppose G is connected. Suppose φ : H → G is a Lie grape homomorphism. Then φ is a
covering map if and only if φ∗ = dφ is invertible (say at e ∈ H).

Proof.

( =⇒ ) If φ is a covering map then φ is a local diffeomorphism; so φ∗ is invertible.

( ⇐= ) Suppose φ∗ is invertible (at e); so φ is a local diffeomorphism (by the inverse function theorem).
Suppose U0 ⊆ G is open with eG ∈ U0; then we can pick open V0 ⊆ H with eH ∈ V0 such that the
restriction φ : V0 → U0 is a diffeomorphism. Choose U ⊆ U0 contianing eG such that U is connected
and open with U · U−1 = { ab−1 : a, b ∈ U } ⊆ U0 and let V = φ−1(U) ∩ V0 (so V is connected and
open and V V −1 ⊆ V0).
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Claim 6.18. φ−1(U) is the disjoint union

φ−1(U) =
⊔
k∈K

k · V

where K = ker(φ) = φ−1(eG).

Proof.

(⊆) Suppose a ∈ φ−1(U) so u = φ(a) ∈ U ; so there is (unique) v ∈ V such that φ(v) = u. Then
φ(av−1) = φ(a)φ(v)−1 = uu−1 = eG; so k = av−1 ∈ K = ker(φ), and hence a = kv ∈ kV .

(⊇) If b = kv for some k ∈ K and v ∈ V then φ(b) = φ(kv) = φ(k)φ(v) = eGφ(v) = φ(v) ∈ U .

(Disjoint) If kv = ℓw for k, ℓ ∈ K and v, w ∈ V then φ(v) = φ(kv) = φ(ℓw) = φ(w), and v = w;
hence kv = ℓv and k = v. Claim 6.18

Claim 6.19. φ is surjective.

Proof. Let L = ⟨U ∩ U−1⟩ be the subgrape of G generated by U ∩ U−1; that is

⟨U ∩ U−1⟩ = {u1u2 · · ·un : n ∈ Z+, each uk ∈ U ∩ U−1 } =

∞⋃
n=1

(U ∩ U−1)n

Note that ⟨U ∩ U−1⟩ is open in G, and the cosets a⟨U ∩ U−1⟩ are also open in G, and G is the disjoint
union of the cosets. But G is connected; so there is only one coset. Thus ⟨U ∩ U−1⟩ = G. Given b ∈ G
we can choose u1, . . . , un ∈ U ∩U−1 so that b = u1 · · ·un; for each k choose vk ∈ V with φ(vk) = uk ∈ U .
So φ(v1v2 · · · vn) = φ(v1) · · ·φ(vn) = u1 · · ·un = b. So φ is surjective as claimed. Claim 6.19

Finally one checks that given b ∈ G if we choose a ∈ H so that φ(a) = b then φ−1(b · U) is the disjoint
union

φ−1(bU) =
⊔
k∈K

k · aV

The result follows. Theorem 6.17

TODO 11. Add the following to an earlier theorem?

Theorem 6.20 (Another property of the exponential map). Suppose H,G are matrix Lie grapes; suppose
φ : H → G is a homomorphism of Lie grapes. Then the following diagram commutes:

h g

H G

φ∗

exp exp

φ

i.e. exp ◦φ∗ = φ ◦ exp as maps h → G.

Proof. We need to show that φ(exp(A)) = exp(Dφ ·A) for A ∈ h. We shall show that

φ(exp(tA)) = exp(t ·Dφ ·A)

for A ∈ h and t ∈ R. (Here Dφ = dφ but we’re working with matrices so it’s capital.) We shall do this
by showing that γ(t) = φ(exp(tA)) is the integral curve of the left-invariant vector field X on G with
XI = Dφ(I) ·A. By a previous theorem

TODO 12. ref
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this integral curve is exp(t · dΦ ·A), so this will suffice.
We need to show that γ′(t) = Xγ(t) = γ(t)Dφ(I) ·A. For all s, t we have

φ(exp((s+ t)A)) = φ(exp(sA) exp(tA) = φ(exp(sA))φ(exp(tA))

So for fixed s we have

Dφ(exp((s+ t)A)) exp((s+ t)A) ·A = φ(exp(sA))Dφ(exp(tA)) · exp(tA) ·A

for all t. In particular putting in t = 0 gives Dφ(exp(sA) · exp(sA)A = φ(exp(sA)Dφ(I)A; that is γ′(s) =
γ(s)Dφ(I)A as required. Theorem 6.20

Theorem 6.21. Suppose H and G are matrix Lie grapes. Suppose H is simply connected. Then there is
a bijective correspondence between Lie grape homomorphisms φ : H → G and Lie algebra homomorphisms
ψ : h → g such that when φ and ψ correspond we have ψ = φ∗ = dφ = Dφ.

Proof. Suppose φ : H → G is a homomorphism of Lie grapes. Suppose A,B ∈ h. Let X,Y be the left-invariant
vector fields on H with XI = A and YI = B. Let U, V be the left-invariant vector fields on G with UI = φ∗A
and VI = φ∗B. (More precisely UI = φ∗,I(A) = Dφ(I)A, but we’ll omit the I unless we need it.) We show
that φ∗Xp = DφXp = Uφ(p).

We have Dφ ·Xp = Dφ · PA = Dφ ·DLPA = D(φ ◦ LP )A. But

φ(LP (Q)) = φ(PQ) = φ(P )φ(Q) = Lφ(P )(φ(Q)) = (Lφ(P ) ◦ φ)(Q)

So
Dφ ·Xp = D(Lφ(P ) ◦ φ)A = (DLφ(P ) ◦Dφ)A = DLφ(P )UI = Uφ(P )

Since Dφ ·XP = Uφ(P ) and Dφ · YP = Vφ(P ) for all P ∈ H we have

Dφ[X,Y ]P = [U, V ]φ(P )

TODO 13. ref

So in particular Dφ[X,Y ]I = [U, V ]I . Thus φ∗ = Dφ is a Lie algebra homomorphism.

Claim 6.22. Given two Lie grape homomorphisms φ1, φ2 : H → G if Dφ1(I) = Dφ2(I) then φ1 = φ2.

Proof. We use the fact that the following diagram commutes:

h g

H G

Dφ1,Dφ2

exp exp

φ1,φ2

Suppose Dφ1 = Dφ2 (at I ∈ H). Then we have

φ1(exp(A)) = exp(Dφ1 ·A = exp(Dφ2 ·A = φ2(exp(A)

for all h ∈ h. If we had exp: h → H surjective then we would be done; alas, this is not necessarily the case.
When exp: h → H is not surjective, the image exp(h) still generates H. Indeed, since exp: h → H is a

local diffeomorphism if we choose open U ⊆ h and V ⊆ H with 0 ∈ U and I ∈ V such that exp: U → V is a
diffeomorphism then (as seen previously) the grape ⟨V ∩ V −1⟩ is an open subgrape of H with all cosets open,
and hence is equal to H since H is connected.
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It follows that when Dφ1 = Dφ2. Indeed, if P ∈ H we can choose A1, . . . , An ∈ h such that P =
exp(A1) · · · exp(An); then

φ1(P ) = φ1

(∏
k

exp(Ak)

)
=
∏
k

φ1(exp(Ak)

=
∏
k

exp(Dφ1 ·Ak)

=
∏
k

exp(Dφ2 ·Ak)

=
∏
k

φ2(exp(Ak)

= φ2

(∏
k

exp(Ak)

)

as desired. Claim 6.22

Finally, we check that our correspondence is surjective. Suppose ψ : h → g is a Lie algebra homomorphism.
Say H ⊆ GL(n,F) and G ⊆ GL(m,F) where F ∈ {R,C }. Then

H ×G ≈
{(

P 0
0 Q

)
: P ∈ H,Q ∈ G

}
⊆ GL(n+m,F)

has Lie algebra

h⊕ g ≈
{(

A 0
0 B

)
: A ∈ h, B ∈ g

}
⊆Mn+m(F)

Let

k =

{(
A 0
0 ψA

)
: A ∈ H

}
⊆ h⊕ g

Note that k is a Lie subalgebra because[(
A 0
0 ψA

)
,

(
B 0
0 ψB

)]
=

(
[A,B] 0

0 [ψA,ψB]

)
=

(
[A,B] 0

0 ψ[A,B]

)
Let K be the unique connected Lie subgrape of H ×G with Lie algebra k. Let φH : K → H and φG : K → G
be the projection maps; i.e.

φH

(
P 0
0 Q

)
= P

φG

(
P 0
0 Q

)
= Q

Since φH and φG are linear, they are equal to their derivatives (as linear maps). So

DφH

(
A 0
0 ψA

)
= A

DφG

(
A 0
0 ψA

)
= ψA

Note that DφH is invertible, and thus
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φH : K → H is a covering map. Since π1(H) = 0 we get ker(φH) = π1(H) = 0.

Editor’s note 6.23. I don’t think this follows formally from Theorem 6.14, since we don’t yet know that φH
is universal. However I think one can check directly that being a covering space of a simply connected space
(like H) implies simple connectedness.

So φH : K → H is an isomorphism of Lie grapes.
We define φ : H → G to be φG ◦ φ−1

H . Then Dφ = DφG ◦Dφ−1
H ; i.e.

Dφ(A) = DφG(Dφ
−1
H (A)) = DφG

(
A 0
0 ψA

)
= ψA

So Dφ = ψ. Theorem 6.21

6.1 Fundamental grapes of classical matrix grapes

We know that GL+(n,R) retracts SL(n,R) and that SL(n,R) retracts (using Gram-Schmidt) SO(n). Indeed
we have diffeomorphisms

GL+(n,R) ∼= SL(n,R)× R+

(n,R) ∼= SO(n)× R
n2−n

2 +(n−1)

It follows that

π1(GL(n,R)) ∼= π1(GL+(n,R)) ∼= π1(SL(n,R)) ∼= π1(O(n)) = π1(SO(n))

So we compute the fundamental grapes of SO(n).

SO(1) = { 1 }
π1(SO(1)) = 0

SO(2) =

{
Rθ

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R/2πZ

}
∼= R/2πZ
∼=S1

π1(SO(2)) ∼= π1(S1)
∼= Z

SO(3) = {Ru,θ : |u| = 1, θ ∈ [0, π], Ru,0 = I and Ru,π = R−u,π for all u }
∼= B(0, π)/ ∼ where when |u| = π we have u ∼ −u
∼= P3(R)

π1(SO(3)) ∼= π1(P3(R))
∼= Z/2Z

The last fact is hard to see without some more algebraic topology. The Seifert-van Kampen theorem helps.
Alternatively, the 3-sphere is apparently a 2-to-1 covering space for P3(R), which we can find some clever way
to endow with a Lie grape structure.

Aside 6.24. Note that the map exp: so(3) → SO(3) sends 0 a b
−a 0 c
−b −c 0

 7→ Rû,θ

where

u =

−c
b
−a


and û = u

∥u∥ and θ = |u|.
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If n ≥ 3 then SO(n+ 1) acts on Rn+1 and if A = (u1, . . . , un+1) ∈ SO(n+ 1) then Aen+1 = un+1 ∈ Sn.
Then

orb(en+1) = Sn

stab(en+1) = {A = (u1, . . . , un+1) ∈ SO(n+ 1) : un+1 = en+1 }

=

{(
B 0
0 1

)
: B ∈ SO(n)

}
By the orbit stabilizer theorem we have SO(n+ 1)/SO(n) ∼= Sn. This gives a fibre bundle

SO(n) SO(n+ 1)

Sn

From the fibre bundle we obtain a long exact sequence of homotopy grapes

· · · → π2(SO(n)) → π2(SO(n+ 1)) → π2(Sn)︸ ︷︷ ︸
=0

→ π1(SO(n)) → π1(SO(n+ 1)) → π1(Sn)︸ ︷︷ ︸
=0

→ π0(SO(n)) → · · ·

The Hurewicz isomorphism gives πq(Sn) = 0 for 1 ≤ q < n and πn(Sn) = Z. For n ≥ 3 we use the above
sequence to see that π1(SO(n)) ∼= π1(SO(n+ 1)); hence π1(SO(n)) ∼= Z/2Z for n ≥ 3.

Similarly we have diffeomorphisms GL(n,C) ∼= SL(n,C)×C∗ and U(n) ∼= SU(n)×S1 and by Gram-Schmidt
we have SL(n,C) ∼= SU(n)× Rm.

TODO 15. what?

So we have π1(GL(n,C)) = π1(U(n)) = π1(SU(n))× Z and π1(SL(n,C)) = π1(SU(n)). So we solve for
π1(SU(n)).

(n = 1) SU(1) = { 1 }.

(n = 2) We have

SU(2) =

{(
a c
b d

)
: a, b, c, d ∈ C, |a|2 + |b|2 = |c|2 + |d|2 = 1, ad− b = 1, ac+ bd = 0

}
For

(
a c
b d

)
∈ SU(2) we have (

−b a

a b

)(
c
d

)
=

(
1
0

)
So (

c
d

)
=

(
−b a
a b

)(
1
0

)
=

(
−b
a

)
So

SU(2) =

{(
a −b
b a

)
|a|2 + |b|2 = 1

}
∼= S3

We have π1(SU(2)) = π1(S3) = 0.

(Larger n) We have SU(n+ 1) acts on Cn+1 ∼= R2n+2. For A = (u1, . . . , un+1) we have Aen+1 = un+1 ∈
S2n+1; and Aen+1 = en+1 if and only if un+1 = en+1. So

stab(en+1) =

{(
B 0
0 1

)
: B ∈ SU(n)

}
Hence SU(n+ 1)/ SU(n) ∼= S2n+1 and from the fibre bundle we obtain the long exact sequence. For
n ≥ 1 we have

0 = π2(S2n+1) → π1(SU(n)) → π1(SU(n+ 1)) → π1(S2n+1) = 0

so that π1(SU(n+ 1)) = π1(SU(n)). So π1(SU(n)) = 0 for n ≥ 1.
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What of Sp(n)?

(n = 1) Sp(1) = {u ∈ H1 : |u| = 1 } = S3; so π1(Sp(1)) = 0.

(n ≥ 2) We have a fibre bundle Sp(n) ↪→ Sp(n+ 1) → S4n+3, whence we obtain an exact sequence

· · · → π2(S4n+3)︸ ︷︷ ︸
=0

→ π1(Sp(n)) → π1(Sp(n+ 1) → π1(S4n+3)︸ ︷︷ ︸
=0

→ · · ·

Hence π1(Sp(n)) = 0 for all n ≥ 1.

So SU(n) and Sp(n) are simply connected, and hence are equal to their own universal covers. But for n ≥ 3
we have π1(SO(n)) ∼= Z/2Z. So SO(n) has a two-to-one universal covering space, which we call the spin
grape, denoted Spin(n). When n = 3 we have SO(3) ∼= P3 and P3 has universal covering space S3. We also
have diffeomorphisms SU(2) ∼= Sp(1) ∼= S3.
Exercise 6.25. Find the covering map φ : SU(2) → SO(3) (or Sp(1) → SO(3)).

7 Abelian Lie grapes and abelian Lie algebras

Definition 7.1. A Lie grape G is abelian when ab = ba for all a, b ∈ G. A Lie algebra g is abelian when
[A,B] = 0 for all A,B ∈ g.

Theorem 7.2. Suppose G is a connected matrix Lie grape with Lie algebra g. Then G is abelian if and only
if g is abelian.

Proof.

( =⇒ ) Suppose G is abelian; suppose A,B ∈ g. Then exp(sA) exp(tB) = exp(tB) exp(sA). Differentiate
with respect to s to get exp(sA) ·A exp(tB) = exp(tB) exp(sA)A; putting in s = 0 we get A exp(tB) =
exp(tB)A. Differentiate this with respect to t to get A exp(tB)B = exp(tB)BA; putting in t = 0 we
get AB −BA = 0, so [A,B] = 0.

( ⇐= ) Suppose g is abelian. Note that for A,B ∈ g since AB −BA = [A,B] = 0 we have exp(A) exp(B) =
exp(A+B) = exp(B +A) = exp(B) exp(A). But we saw in the proof of Claim 6.22 that a connected
Lie grape is generated by exponentials; so G is generated by exp(g). Then given P,Q ∈ G we can
choose A1, . . . , An, B1, . . . , Bm ∈ g so that

P =
∏
k

exp(Ak)

Q =
∏
ℓ

exp(Bℓ)

and then

PQ =
∏
k

exp(Ak)
∏
ℓ

exp(Bℓ)

= exp

(∑
k

Ak +
∑
ℓ

Bℓ

)

= exp

(∑
ℓ

Bℓ +
∑
k

Ak

)
=
∏
ℓ

exp(Bℓ)
∏
k

exp(Ak)

= QP

as desired. Theorem 7.2
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Definition 7.3. An (integral) lattice in a finite dimensional vector space V over R is a set (a free abelian
grape) of the form Λ = spanZ{u1, . . . , uℓ } for some linearly independent (over R) vectors u1, . . . , uℓ.

Note that every lattice in V is discrete. Indeed, the point

a =

ℓ∑
i=1

kiui

with ki ∈ Z can be separated from the other points in Λ using the open set

U =

{
n∑
i=1

tiui : |ti − ki| < 1 for all 1 ≤ i ≤ ℓ

}

where we extend {u1, . . . , uℓ } to a basis {u1, . . . , un } for V .

Theorem 7.4. Every discrete subgrape of a finite dimensional real vector space is a lattice.

Proof. Suppose V be a finite dimensional vector space over R and Γ a discrete subgrape of V .

Claim 7.5. Γ is closed.

Proof. Suppose not; choose x ∈ Γ \ Γ. Choose an open neighbourhood U of 0 which contains no other
points in Γ. Choose an open U0 ⊆ U such that 0 ∈ U0 and a − b ∈ U for all a, b ∈ U0. Choose distinct
y, z ∈ (x+ U0) ∩ Γ; say y = x+ a and z = x+ b. Then y − a = z − b, and y − z = a− b ∈ U ∩ Γ = { 0 }, a
contradiction. Claim 7.5

LetW = spanR(Γ) ⊆ V ; pick a basis {w1, . . . , wℓ } forW with each wk ∈ Γ. Let Λ = spanZ{w1, . . . , wℓ } ⊆
Γ. Note that W is the disjoint union of the sets a+ P where a ∈ Λ and

P =

{
ℓ∑
i=1

tiwi : 0 ≤ ti < 1

}

Claim 7.6. Γ/Λ is finite.

Proof. Let K = Γ/Λ; for each k ∈ K choose a representative rk ∈ Γ (so Γ/Λ = { rk + Λ : k ∈ K }). For
k ∈ K write rk = ak + pk where ak ∈ Λ and pk ∈ P . Since pk = rk − ak ∈ Γ and Γ is closed and discrete,
and since pk ∈ P and P is compact, it follows that there are only finitely many pk. Also for k, ℓ ∈ Γ/Λ if we
had pk = pℓ then we would get rk − ak = rℓ − aℓ, so rk − rℓ = ak − aℓ ∈ Λ; so rk ∈ rℓ +A, and k = ℓ (since
the rk contain exactly one representative of each coset). So Γ/Λ is finite. Claim 7.6

Let m = |Γ/Λ| = [Γ : Λ]. For all a ∈ Γ we have m(a+ Λ) = 0 + Λ; so ma ∈ Λ for all a ∈ Γ, and mΓ ⊆ Λ.
Then Γ ⊆ 1

mΛ = spanZ{m−1u1, . . . ,m
−1uℓ }. Since Γ is a subgrape of the free abelian grape Λ, we get that

Γ is also a free abelian grape. So Γ is of the form Γ = spanZ{ v1, . . . , vk } for some linearly independent
v1, . . . , vk ∈ 1

mΛ. (In fact k = ℓ.) So Γ is a lattice. Theorem 7.4

Definition 7.7. A torus is a Lie grape of the form Tn = (S1)n for some n ≥ 1.

Theorem 7.8. Suppose G is a matrix Lie grape.

1. If G is connected, compact, and abelian, then G ∼= Tn where n = dim(G).

2. If G is compact and abelian then G ∼= Tn ×K where n = dim(G) and K is some finite abelian grape.

Proof. Suppose G is compact and abelian; let H be the connected component of G containing I (so H is
both open and closed).
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1. We show that H ∼= Tn.
Since H is abelian we get that exp: h → H is a Lie grape homomorphism. Since exp∗ = I is invertible,
we get that exp: h → H is a covering map; indeed, since π1(h) = 0 (as h is a vector space) we get that
h is the universal cover. In particular, exp: h → H is surjective,

TODO 16. ref

and ker(exp) is a discrete subgrape of Z(h) = h. By the previous theorem we have that ker(φ) is a
lattice; say ker(φ) = spanZ{u1, . . . , uℓ }. We can extend {u1, . . . , uℓ } to a basis {u1, . . . , un } for h.
Since exp: spanR{u1, . . . , un } → H is surjective we get

H ∼= spanR{u1, . . . , un }/ spanZ{u1, . . . , un } ∼= (R/Z)ℓ × Rk ∼= (S1)ℓ × Rk

where k + ℓ = n

TODO 17. check

Since H is compact we get ℓ = n and k = 0. So H ∼= (S1)n = Tn.

2. Note that G/H is finite since the cosets are all open and closed in G and G is compact. Say
G/H ∼= (Z/n1Z) × · · · × (Z/nℓZ). Let Pk ∈ G correspond (under the above isomorphism) to ek =
(0, . . . , 0, 1, 0, . . . , 0) with 1 in the kth position. Then Pnk

k H = (PkH)nk = 0; so Pnk

k ∈ H. Since
exp: h → H is surjective we can choose Bk ∈ h so that exp(Bk) = Pnk

k . Let Ak = 1
nk
Bk ∈ h so

exp(nkAk) = Pnk

k ; then let Qk = Pk exp(−Ak). So Qk is in the same coset as Pk and Qnk

k = I. One

checks that the map H × (Z/n1Z) × · · · × (Z/nℓZ) → G given by (P, k1, . . . , kℓ) 7→ PQk11 · · ·Qkℓℓ is a
Lie grape isomorphism. Theorem 7.8

We interrupt this broadcast to bring you a special report:

Theorem 7.9 (Closed subgrape theorem). Every closed subgrape of a matrix Lie grape is a regular Lie
subgrape.

Proof. Suppose G is a matrix Lie subgrape of GL(n,F) with F ∈ {R,C }; suppose H ⊆ G is a closed subgrape
of G. Let h = {A ∈ g ⊆Mn(F) : exp(At) ∈ H for all t ∈ R }.

Claim 7.10. h is a subspace of g.

Proof. Closure under scalar multiplication is obvious; we check closure under addition. Suppose A,B ∈ h;
so exp(tA), exp(tB) ∈ H for all t ∈ R. Then exp

(
t
nA
)
, exp

(
t
nB
)
∈ H for all t ∈ F and n ∈ Z+; hence

exp
(
t
nA
)
exp
(
t
nB
)
∈ H for all t, n. From A2 we have

exp(t(A+B)) = lim
n→∞

(
exp

(
t

n
A

)
exp

(
t

n
B

))n
for all t ∈ F, which must lie in H since H is closed. Thus A+B ∈ h, and h is a subspace of g. Claim 7.10

We will show that there is a (local) regular chart around I; i.e. some φ : U ⊆ G → φ(U) = V ⊆ g. In
particular our φ will be the logarithm. Then we have φ(U ∩H) = V ∩ h.

TODO 18. wording?

Suppose there is no such regular chart. We know that E = exp: g → G is a local diffeomorphism. Choose
a subspace k ⊆ g such that g = h ⊕ k (and then E is given by E(A + B) = exp(A + B) for A ∈ h, B ∈ k).
Also the map F : g = h⊕ k → G given by F (A+B) = exp(A) exp(B) is a local diffeomorphism with F∗ = I:
indeed, using series expansions we have exp(A) exp(B) = (I +A+ · · · )(I +B + · · · ) = I + (A+B) + · · ·.

Choose 0 ∈ U0 ⊆ g and I ∈ V0 ⊆ G such that F : U0 → V0 is a diffeomorphism. Suppose for contradiction
that there exist points in H arbitrarily close to I not in F (H ∩U0). Then there are points A+B ∈ h⊕ k = g
arbitrarily close to 0 but not in h (so B ̸= 0) with exp(A) exp(B) ∈ H. Note that since exp(A) ∈ H we have
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exp(B) ∈ H. So we can choose a sequence Bj ∈ k with Bj ̸= 0 and (Bj) → 0 such that exp(Bj) ∈ H for all j.

By extracting a subsequence if necessary, we may suppose that
Bj

∥Bj∥ → C for some C ∈ k with ∥C∥ = 1.

Let t ∈ R be arbitrary, and note that
tBj

∥Bj∥ → tC in k. Let nj =
⌊

t
∥Bj∥

⌋
. Then since exp(Bj) ∈ H we have

exp(njBj) = exp(Bj)
nj ∈ H, and njBj → tC in k since

∥njBj − tC∥ ≤
∥∥∥∥njBj − tBj

∥Bj∥

∥∥∥∥+ ∥∥∥∥ tBj∥Bj∥
− tC

∥∥∥∥ =

∣∣∣∣nj − t

∥Bj∥

∣∣∣∣︸ ︷︷ ︸
≤1

∥Bj∥︸ ︷︷ ︸
→0

++

∥∥∥∥ tBj∥Bj∥
− tC

∥∥∥∥︸ ︷︷ ︸
→0

Hence exp(njBj) → exp(tC). Since exp(njBj ∈ H and H is closed, it follows that exp(tC) ∈ H. Since
exp(tC) ∈ H for all t ∈ R, we have C ∈ h. But C ∈ k with ∥C∥ = 1 and h ∩ k = { 0 }, a contradiction.

So we have a regular chart at I ∈ H. Given p ∈ H there is a regular chart at p obtained using
left-multiplication by p. Theorem 7.9

We now return to your regularly scheduled programming.

Definition 7.11. For a compact matrix Lie grape G, a maximal torus in G (or a Cartan subgrape) is a
maximal compact connected abelian Lie subgrape. For a matrix Lie algebra g a Cartan subalgebra of g is a
maximal abelian Lie subalgebra of g.

Remark 7.12. Hopefully we will later prove that in a compact

TODO 19. connected?

matrix Lie grape

1. The maximal tori in G are conjugate to each other.

2. G is the union of the maximal tori.

Corollary 7.13. When G is a compact

TODO 20. connected?

matrix Lie grape we have exp: g → G is surjective.

Corollary 7.14. The maximal tori of G have the same dimension, which we call the rank of G.

Exercise 7.15. Verify that the classical compact matrix grapes have the following maximal tori and Cartan
subalgebras:

• In SO(2n) we have the maximal torus

T =


Rθ1 0

. . .

0 Rθn

 : θk ∈ R


where

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and Cartan subalgebra

t =


Sθ1 . . .

Sθn

 : θk ∈ R


where

Sθ =

(
0 −θ
θ 0

)
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• In SO(2n+ 1) we have

T =



Rθ1

. . .

Rθn
1

 : θk ∈ R


t =



Sθ1

. . .

Sθn
0

 : θk ∈ R


• In U(n) we have

T =


exp(iθ1)

. . .

exp(iθn)

 : θk ∈ R


t =


iθ1 . . .

iθn

 : θk ∈ R


• In SU(n) we have

T =


exp(iθ1)

. . .

exp(iθn)

 : θk ∈ R,
∏

exp(iθk) = 1


t =


iθ1 . . .

iθn

 : θk ∈ R,
∑

θk = 0


• In Sp(n) if we identify

Mn(H) =

{(
A −B
B A

)
: A,B ∈Mn(C)

}
⊆M2n(C)

then we have

T =





exp(iθ1)
. . .

exp(iθn)
exp(−iθ1)

. . .

exp(−iθn)


: θk ∈ R



t =





iθ1
. . .

iθn
−iθ1

. . .

−iθn


: θk ∈ R
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It follows that

rank(SO(2n)) = rank(SO(2n+ 1))

= n

rank(U(n)) = n

rank(SU(n)) = n− 1

rank(Sp(n)) = n

Fact 7.16. When G is a compact Lie grape and φ : G̃→ G is its universal cover and T is a maximal torus in
G, we have T̃ = φ−1(T ) is a maximal torus in G̃ with φ̃ : T̃ → T a covering map.

8 Representations

Definition 8.1. A Lie grape action of a Lie grapeG on a smooth manifoldM is a smooth map F : G×M →M ,
usually written F (a, x) = a · x = ax, satisfying

1. ex = x for all x ∈M (where e ∈ G is the identity), and

2. a(bx) = (ab)x for all a, b ∈ G and x ∈M .

A Lie grape action of G on a vector space V (over R or C, usually C) is called linear if

1. a(x+ y) = ax+ ay for all a ∈ G and x+ y ∈ V , and

2. a(tx) = t(ax) for all a ∈ G, x ∈M , and t ∈ C.

A representation of a Lie grape G in GL(V ), where V is a vector space (over C), is a Lie grape homomorphism
ρ : G→ GL(V ). A linear G-module on a Lie grape G is a vector space V (over C) with a G-action.

Exercise 8.2. Verify that the above three concepts are equivalent.

8.1 An informal review of integration on manifolds

Integrals that you see in various parts of mathematics/physics:∫ b

a

f(x)dx =

∫
I

fdL∫ ∫
R

f(x, y)dxdy =

∫ ∫
R

fdA∫ ∫ ∫
B

f(x, y, z)dxdydz =

∫ ∫ ∫
B

fdV

Or if C is a curve given by α : R → Rn then∫
C

fdL =

∫
I

f(α(t))|α′(t)|dt

If σ is a function out of a rectangle in R2, say σ(s, t) =

x(s, t)y(s, t)
z(s, t)

. Then the surface integral is

∫
S

fdA =

∫
R

f(σ(s, t))|σs(s, t)× σt(s, t)|ds t

In R2 if α(t) = (x(t), y(t)) and T = α′(t)
∥α′(t)∥ and F = (P,Q) is some vector field we define∫

C

F · TdL =

∫
I

(P (α(t)), Q(α(t))) · (x′(t), y′(t))dt
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so dL = |x′(t)|dt. We also let N = (−y′(t),x′(t))
|α′(t)| , and then∫

C

F ·NdL =

∫
I

(P (α(t)), Q(α(t))) · (−y′(t), x′(t))dt

In R3 we can define∫
C

F · TdL =

∫
I

(P (α(t)), Q(α(t)), R(α(t))) · α′(t)dt =

∫
I

P (α(t)) · x′(t) + · · · =
∫
α

Pdx+Qdy +Rdz

We also set ∫ ∫
S

F ·NdA =

∫ ∫
R

(P (σ(s, t)), Q(σ(s, t)), R(σ(s, t))) · (σs(s, t)× σt(s, t))dsdt

=

∫
P (σ(s, t))

∣∣∣∣∂y∂s ∂y
∂t

∂z
∂s

∂z
∂t

∣∣∣∣+Q · · ·

=

∫ ∫
σ

Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

We can also relate the integral on a boundary to the integral of some kind of derivative:∫ ∫
S

(∇× F ) ·NdA =

∫
C=∂M

α∫ ∫ ∫
B

(∇ · F )dV =

∫
S=∂B

F ·NdA

In general, using differential geometry: ∫
M

dα =

∫
∂M

α

We can “define” a k-form on Rn to be an expression of the form

α =
∑
I

Ai(x)dxI

where I = (i1, i2, . . . ik) with 1 ≤ i1 < · · · < ik ≤ n. We write dxI = dxi1 ∧ · · · ∧ dxik . We then set

∫
σ

α =
∑
I

∫
R⊆Rk

aI(σ(t))

∣∣∣∣∣∣∣∣
∂xi1

∂t1
· · ·
. . .

∂xik

∂tk

∣∣∣∣∣∣∣∣ dt1 · · · dtk
For

α =
∑
I

aI(x)dxI

we define

dα =
∑
I

n∑
j=1

∂aI
∂xj

dxj ∧ dxI

using dxj ∧ dxi = −dxi ∧ dxj .
We still have to give a formal definition of a k-form.

Definition 8.3. For a vector space V we define T kV to be the set of k-linear maps L : (V ∗)k → R. This is
span{ui1 ⊗ · · · ⊗ uik : 1 ≤ ij ≤ n }, where {u1, . . . , un } is a basis for V and

(ui1 ⊗ · · · ⊗ uik)(f1, . . . , fk) = f1(ui1) · · · · · fk(uik)
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We then set ΛkV to be the set of alternating k-linear maps L : (V ∗)k → R; this is then span{ui1 ∧ · · ·uik :
1 ≤ i1 < · · · < ik ≤ n } where

(ui1 ∧ · · · ∧ uik)(f1, . . . , fk) =

∣∣∣∣∣∣∣
f1(ui1) · · ·

. . .

fk(uik)

∣∣∣∣∣∣∣
(and uj ∧ ui = −ui ∧ uj).

Definition 8.4. On Rn, a k-form is a smooth map α : Rn → Λk(Rn)∗. For a smooth manifold M and a
point p ∈M we let {

∂

∂x1
, . . . ,

∂

∂xn

}
be the standard basis for TpM identified using a chart to Rn. We then let dx1, . . . , dxn be the dual basis for

T ∗
pM . (So dxk

(
∂
∂xℓ

)
= δkℓ.) Then ΛkT ∗

pM is the set of alternating k-linear maps α : (TpM)k → R, which is

the span of dxI where I = (i1, . . . , ik) for 1 ≤ i1 < · · · < ik = n. A (smooth differential) k-form on M is a
map

α : M →
⋃
p

ΛkT ∗
pM

with α(p) ∈ ΛkT ∗
pM for all p ∈M such that for each coordinate chart φ when we write α locally as

α(x) =
∑
I

aI(x)dxI

we have that each function aI is smooth as a map φ(U) ⊆ Rn → R. So a k-form α on M is a smooth section
of the vector bundle

ΛkT ∗M =
⊔
p∈M

ΛkT ∗
pM

Note that when M is n-dimensional we have

ΛnT ∗
pM = span{ dx1 ∧ dx2 ∧ · · · ∧ dxn }

so dim(ΛnT ∗
pM) = 1. An n-form is given locally by a(x)dx1 ∧ · · · ∧ dxn.

Definition 8.5. We say M is orientable when M can be given charts such that for every transition map
ψφ−1 we have det(D(ψφ−1)(x)) > 0 for all x ∈ dom(φ) ∩ dom(ψ).

Fact 8.6. If M is n-dimensional then M is orientable if and only if M has a nowhere zero n-form.

The proof uses partitions of unity to construct a nowhere-zero top form.
When M is oriented and ω is an n-form we can define

∫
M
ω; the integral is given locally in a chart φ

where
ω =

∑
aI(x)dx1 ∧ · · · ∧ dxn

by ∫
S⊆U⊆M

ω =
∑
I

∫
R⊆φ(U)⊆Rn

aI(x)dx1 · · · dxn

For a smooth map f : N →M with f(p) = q we define the pullback f∗ : ΛkT ∗
qM → ΛkT ∗

pN by f∗(α)(X1 . . . , Xk) =

α(f∗(X1), . . . , f∗(Xk)) where α ∈ ΛkT ∗
qM and each Xi ∈ TpN .

Theorem 8.7.

1. For N
f−→M

g−→ L we have (g ◦ f)∗ = f∗ ◦ g∗.
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2. For N
f−→M

g−→ R and for a k-form α on M we have f∗(g · α) = (g ◦ f) · f∗α.

3. For N
f−→M we have f∗ ◦ d = d ◦ f∗; that is f∗(dα) = d(f∗α) when α is a k-form on M .

Remark 8.8. Suppose N is oriented and k-dimensional and M is n-dimensional; suppose f : N →M is an
immersion and α is a k-form on M . We can define∫

f(N)

α =

∫
N

f∗α

This is the integral that agrees with the examples we saw at the beginning of the section.

Definition 8.9. A volume form on an n-dimensional manifold is a nowhere-zero differential n-form.

Given a volume form onM we obtain an orientation onM , and can then define the integral of a continuous
function f : M → R with compact support.

TODO 21. ?

Definition 8.10. Suppose G is a Lie grape. A differential form ω on G is called

• left-invariant when ℓ∗aω = ω for all a ∈ G,

• right-invariant when r∗aω for all a ∈ G, and

• invariant under inverseion when v∗ω = ω (where v : G→ G is the inversion map v(x) = x−1).

Theorem 8.11. Suppose G is a Lie grape.

1. There exists a left-invariant volume form ω on G, and it is unique up to multiplication by c ∈ R \ { 0 }.

2. If G is compact we can also require that
∫
G
ω = 1; then ω is unique up to multiplication by ±1 (where

we use the form to determine the orientation).

3. When G is compact and connected, the left-invariant form ω (or −ω) with
∫
G
ω = 1 is also right-invariant

(so r∗aω = ω for all a), and v∗ω = ±ω.

Proof.

1. Given 0 ̸= ωe ∈ ΛnTe∗G, in order to get ℓ∗aω = ω for all a ∈ G we must have ωq = ℓ∗a−1ωe (since
ℓa−1(a) = e, so ℓ∗a−1 : ΛnT ∗

eG → ΛnT ∗
nG). On the other hand, if we define ω by ω(a) = ωa = ℓ∗a−1ωe

then ω is left-invariant: if a, b ∈ G then

(ℓ∗aω)b = ℓ∗a(ωab) = ℓ∗a(ℓb−1a−1ωe) = (ℓb−1a−1 ◦ ℓa)∗ωe = ℓ∗b−1(ωe) = ωb

Uniqueness up to non-zero multiplication is because ΛnT ∗
eG is one-dimensional.

2. Follows from the above, (since negating the form that determines the orientation and integrating it
with respect to the new orientation doesn’t change the integral).

3. For a, b ∈ G we have

ℓ∗a(r
∗
bω) = (rb ◦ ℓa)∗ω = (ℓa ◦ rb)∗ω = r∗b (ℓ

∗
aω) = r∗bω

So r∗bω is left-invariant for every b ∈ G. Hence from uniqueness of ω up to scalar multiplication we get
that r∗b (ω) = c(b)ω for some smooth map c : G→ R \ { 0 }. Also note that

c(a)c(b)ω = r∗a(c(b)ω) = r∗a(r
∗
bω) = (rb ◦ ra)∗ω = r∗abω = c(ab)ω
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So c(ab) = c(a)c(b). So the map c : G→ R \ { 0 } is a homomorphism of Lie grapes. Since G is compact,
we get that c(G) is compact; so c(a) = ±1 for all a ∈ G. Since G is connected either c(a) = 1 for all
a ∈ G or c(a) = −1 for all a ∈ G. Since re = id we have r∗eω = ω; so c(a) = 1 for all a ∈ G. So r∗aω = ω
for all a ∈ G. Also for all a ∈ G we have

ℓ∗a(v
∗ω) = (v ◦ ℓa)∗ω = (ra−1 ◦ v)∗ω = v∗(r∗a−1ω) = v∗ω

Thus v∗ω is left-invariant; so v∗ω = cω for some c ∈ R \ { 0 }. We must have c = ±1 since v ◦ v = id, so

ω = (v ◦ v)∗ω = v∗(v∗ω) = v∗(cω) = cv∗(ω) = c2ω

as desired. Theorem 8.11

Definition 8.12. Suppose G is a compact Lie grape and ±ω is the left-invariant volume-form; suppose
f : G→ R is a continuous (or integrable) function f : G→ R. We write∫

G

f =

∫
G

f(x)dg(x) =

∫
G

f · ω

Corollary 8.13. Suppose G is compact and a ∈ G. Then∫
G

f(ax)dg(x) =

∫
G

f(xa)dg(x) =

∫
G

f(x−1dg(x) =

∫
G

f(x)dg(x)

Remark 8.14. The corresponding measure on G given by

µ(A) =

∫
G

χAdg(x)

is called the Haar measure on G.

8.2 Back to representations

Definition 8.15. A representation of a Lie algebra g is a Lie algebra homomorphism ψ : g → End(V ).

We define g-actions and g-modules analogously.

Remark 8.16. When G is a Lie grape with Lie algebra g we have that every Lie grape representation
ρ : G → GL(V ) induces a Lie algebra representation ψ = ρ∗ : g → End(V ). When G is connected we saw
(Claim 6.22) that for two representations ρ, φ : G→ GL(V ) if ρ∗ = φ∗ then ρ = φ. We also saw (Theorem 6.21)
that if G is simply connected then every Lie algebra representation ψ : g → End(V ) is of the form ψ = ρ∗ for
some Lie grape representation ρ.

Definition 8.17. When a Lie grape representation ρ : G→ GL(V ) is injective, we say that it is faithful.

Example 8.18. When G is a matrix Lie grape G ⊆ GL(n,C) we have the standard representation ρ : G →
GL(Cn) the inclusion map. When G is any Lie grape we have the adjoint representation defined as follows:
for a ∈ G let Ca : G → G be the conjguation map x 7→ axa−1. Since Ca is a diffeomorphism we have that
dCa = (Ca)∗ : g → g is invertible. The map Ad: G → GL(g) given by Ad(a) = dCa is called the adjoint
representation of G. The induced representation ad = Ad∗ : g → End(g) is called the adjoint representation
of g).

Example 8.19. Let Vn = spanC(x
n, xn−1y, . . . , xyn−1, yn) be the set of homogeneous polynomials of degree n.

Then SU(2) acts on Vn by

A

(
p

(
x
y

))
= p

(
A−1

(
x
y

))
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Example 8.20. When V,W are G-modules (or equivalently when ρ and φ are representations) we can define
modules (or representations) V , V ∗, V ⊕W,V ⊗W,L(V,W ), T kV,ΛkV (or ρ, ρ∗, ρ⊕φ, ρ⊗φ, etc.) as follows:

• V is equal to V as an abelian grape, but scalar multiplication on V is given by

c · x︸︷︷︸
in V

= c · x︸︷︷︸
in V

and the action of G on V is the same as the action of G on V :

a · x︸︷︷︸
in V

= a · x︸︷︷︸
in V

for a ∈ G, x ∈ V .

• V ∗ is the set of linear maps f : V → C, and the action of G on V ∗ is given by (a · f)(x) = f(a−1 · x).

• The action of G on V ⊕W is given by a(x, y) = (ax, ay).

• Consider V ⊗W , which we view as the set of bilinear maps L : V ∗×W ∗ → C, or equivalently spanC{ vi⊗
wj : i, j } where the vi are a basis for V , the wj are a basis for W , and (vi ⊗ wj)(f, g) = f(vi)g(wj).
The action of G on V ⊗W is given by a · (v ⊗ w)(f, g) = f(av)g(aw) (or a · (v ⊗ w) = (av)⊗ (aw)).

• The action of G on L(V,W ) is given by (aL)(x) = a ·L(a−1 · x) for a ∈ G, L : V →W , and x ∈ V . (i.e.
if ρ : G→ GL(V ) and φ : G→ GL(W ) are the constituent representations then we get a representation
ψ : G→ GL(L(V,W )) given by (ψ(a)(L))(x) = φ(a)(L(ρ(a)−1x)).)

TODO 22. Are we calling this End(V,W )?

Definition 8.21. Suppose G is a Lie grape; suppose V and W are G-modules. A G-module homomorphism
from V to W is a linear map L : V →W which is G-invariant (or G-intertwining): namely a ·L(x) = L(a ·x),
or writing the representation explicitly φ(a)(L(x)) = L(ρ(a)(x)). The set of such G-module homomorphisms
is denoted homG(V,W ). A G-module isomorphism from V to W is a bijective G-module homomorphism
L : V →W . If such an isomorphism exists we say that V and W are isomorphic (as G-modules) and we write
V ∼=W . When V ∼=W as G-modules we say the associated representations (or G-actions) are equivalent.

Example 8.22. Given a representation ρ : G → GL(V ) with V finite-dimensional we can choose a basis
U = {u1, . . . , un } for V ; this gives a vector space isomorphism Φ: V → Cn (given by Φ(uk) = ek). We then
define a representation φ : G→ GL(Cn) = GL(n,C) that is equivalent to ρ by φ(a)(ek) = Φ−1(ρ(n)(uk)).

Example 8.23. Show that the standard representation σ of SU(2) is equivalent to the represnetation ρ of
SU(2) on V1 = spanC{x, y } ⊆ C[x, y] given by

(ρ(A) · p)(x, y) = p

((
ρ(A)−1

(
x
y

))T)
For

A =

(
a −b
b a

)
∈ SU(2)

we have

A−1 =

(
a b
−b a

)
= A∗

so

A−1

(
x
y

)
=

(
ax+ by
−bx+ ay

)
and for p(x, y) = u · x+ v · y we have

P

((
A−1

(
x
y

))T)
= u(ax+ by) + v(−bx+ ay) = (au− bv)x+ (bu+ av)y
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Thus when σ(a) = A ∈M2(C) and ρ(a) = B ∈M2(C) (with respect to { e1, e2 } for σ and {x, y } for ρ) and
when

A =

(
a −b
b a

)
we have

B =

(
a −b
b a

)
= A = (A−1)T

(So we have ρ = σ = σ∗.) To show that ρ ∼= σ we need to find a bijective linear map L : C2 → V1 (or → C2)
such that L ·A = B · L whenever A = σ(a) and B = ρ(a) for a ∈ SU(2); i.e.

L

(
a −b
b a

)
=

(
a −b
b a

)
We take

L =

(
0 1
−1 0

)
since (

0 1
−1 0

)(
a −b
b a

)
=

(
b a

−a b

)
=

(
a −b
b a

)(
0 1
−1 0

)
(We have shown that σ = σ∗ ∼= σ.)

Example 8.24. Let V be a finite-dimensional G-module. Let U = {u1, . . . , un } be a basis for V and let
F = { f1, . . . , fn } be the dual basis for V ∗. Determine how the matrix of ρ∗(a) is related to the matrix of
ρ(a) (with respect to these bases).

Let
A = [ρ(a)]U =

(
[ρ(a) · u1]U · · · [ρ(a)un]U

)
and let

B = [ρ∗(a)]F =
(
[ρ∗(a)f1]F · · · [ρ∗(a)fn]F

)
for a ∈ G. Then Akℓ is the k

th entry of

[ρ(a)uℓ]U = [a · uℓ]U =

f1(auℓ)...
fn(auℓ)


which is just fk(auℓ). (Note that fk(

∑
ciui) =

∑
ciδki = ck.) Also Bkℓ is the k

th entry of

[ρ∗(a)fℓ]F = (ρ∗(a)fℓ)(uk) = fℓ(ρ(a)
−1uk) = (A−1)ℓk

Thus B = (A−1)T .

Exercise 8.25. Find the relationship between the matrix of (ρ⊗ φ)(a) and those of ρ(a) and φ(a), etc.

Exercise 8.26. Determine how g acts on V , V ∗, V ⊕W,V ⊗W,L(V,W ), etc. (in terms of the actions of g on
V and W ).

Answers:

• g acts on V using the same action as on V .

• g acts on V ∗ by (A · f)(x) = f(−Ax).

• g acts on L(V,W ) by (AL(x) = AL(x)− L(Ax).

Definition 8.27. Suppose G is a Lie grape and W a G-module. A submodule of W is a G-invariant subspace
U ⊆W where we say U ⊆W is G-invariant when a · u ∈ U for all a ∈ G and u ∈ U (so that ρ : G→ GL(W )
determines a representation ρ : G→ GL(U)). We say that W is reducible when there is a non-trivial proper
submodule 0 ̸= U ⫋W ; otherwise we say that W is irreducible. We say that W is completely reducible when
it is a direct sum of irreducible submodules.
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Example 8.28. When L : V →W is a G-module homomorphism, verify that ker(L) and Ran(L) are G-invariant
(and are thus submodules of V and W ).

Theorem 8.29 (Schur’s lemma). Suppose G is a Lie grape and V,W are finite-dimensional irreducible
G-modules. Then

dim(homG(V,W ) =

{
1 if V ∼=W

0 if V ̸∼=W

In particular, EndG(V ) = homG(V, V ) = { cI : c ∈ C }.

Proof. Suppose 0 ̸= L ∈ homG(V,W ). Since L ̸= 0 we have ker(L) ̸= V ; so since V is irreducible we get
ker(L) = 0. Since L ̸= 0 we get Ran(L) ̸= 0; so since W is irreducible we get Ran(L) = W ). So L is an
isomorphism.

Suppose now that L,M : V → W are isomorphisms. Then M−1 ◦ L : V → V is an isomorphism.
Note that M−1L has an eigenvalue0 ̸= λ ∈ C, and the eigenspace Eλ = ker(M−1L − λI) ⊆ V is G-
invariant; since V is irreducible and Eλ ̸= 0, we get that Eλ = V . So M−1L = λI, and L = λM . Thus
homG(V,W ) = {λM : λ ∈ C } is one-dimensional. Theorem 8.29

Theorem 8.30. Suppose G is a compact Lie grape. Then

1. Every G-module V has a G-invariant inner product (·, ·); i.e. (ax, ay) = (x, y) for all a ∈ G and
x, y ∈ V .

2. Every n-dimensional representation on G is equivalent to a unitary representation; i.e. some ρ : G→
U(n).

3. Every finite-dimensional representation of G is completely reducible.

Proof.

1. Suppose V is a G-module. Let ⟨·, ·⟩ be any inner product on V ; then define a new inner product (·, ·) by

(u, v) =

∫
G

⟨xu, xv⟩dg(x)

for all u, v ∈ V . Note that this is G invariant because if we let f(x) = ⟨xu, xv⟩ then

(au, av) =

∫
G

⟨xau, xav⟩dg(x) =
∫
G

f(xa)dg(x) =

∫
G

f(x)dg(x) = (u, v)

since integration is right-invariant.

2. We choose an orthonormal basis U = {u1, ..., un} for V (with respect to a G-invariant Hermitian inner
product on V ). Let S := {e1, ..., en} be the standard basis for Cn. Let L : V → Cn be the inner product
space isomorphism with L(uk) := ek. Let φ : G→ GL(n,C) be given by

φ(a)u := L(ρ(a)(L−1(u)))

and note that L is a G-invariant isomorphism. (Indeed, omitting ρ from our notation, we can write
a · u = L(a · L−1(u)), so a · L(u) = L(a · u).)
We have

[φ(a)]S = (φ(a)e1, ..., φ(a)en)︸ ︷︷ ︸
∈Mn(C)

= (L(ρ(a)(L−1(e1))), ..., L(ρ(a)(L
−1(en))))

= (L(ρ(a)u1), ..., L(ρ(a)un))

and we have
⟨L(ρ(a)uk), L(ρ(a)uℓ)⟩Cn = (ρ(a)uk, ρ(a)uℓ)V = (uk, uℓ) = δkℓ

since L preserves the inner product and the inner product is G-invariant.

So we do have [φ(a)]S ∈ U(n).
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3.

TODO 23. Something along the lines of: suppose that V is not irreducible (since we’d be done if it
were). Then V contains a non-trivial proper G-submodule, say U . Then you need an argument for
irreducibility of U and U⊥. You can do this by induction on the dimension of U .

And we note that U⊥ is also a G-submodule of V because for all u ∈ U and v ∈ U⊥ and a ∈ G we have

(a · v, u) = (a · v, a · a−1 · u)
= (v, a−1u)

= 0

since v ∈ U⊥ and a−1u ∈ U . Theorem 8.30

Corollary 8.31. Suppose G is a compact Lie grape; suppose V is a finite-dimensional G-module with
associated representation ρ : G→ GL(V ). Let (·, ·) be a G-invariant inner product on V . Then

1. V is irreducible if and only if EndG(V ) = { cI : c ∈ C }.

2. V ∼= V ∗. (Here V is the complex conjugate of V , not the conjugate transpose, and V ∗ is the dual of V .)

3. The G-invariant inner product on V is unique up to multiplication by a positive real number.

4. If U1, U2 are G-submodules of V

TODO 24. irreducible?

with U1 ̸∼= U2 then U1 ⊥ U2.

Proof.

1. If V is irreducible then EndG(V ) = { cI : c ∈ C } by Schur’s lemma. If V is reducible, say 0 ̸= U ⊆ V
is a G-submodule, then V ∼= U ⊕ U⊥, so dim(EndG(V )) ≥ 2 (since EndG(V ) contains cIU ⊕ dIU⊥ for
c, d ∈ C).

2. Let U be an orthonormal basis for V . For a ∈ G we let A := [ρ(a)]U ∈ U(n). Then we have [ρ(a)]U = A,
and if J is the dual basis for V ∗ then [ρ∗(a)]J = (A−1)T = A (by definition of the dual representation,
and since A∗A = I).

3. The inner product (·, ·) gives a linear isomorphism L : V → V ∗ given by L(u)(v) = (v, u) for u ∈ V = V
and v ∈ V . Another inner product ⟨·, ·⟩ gives another isomorphism M : V → V ∗ given by M(u)(v) =
⟨v, u⟩. By a similar argument to the proof of Schur’s lemma we get that L and M differ by a constant
c ∈ C; by positive definiteness, we get c ∈ R>0.

4. Suppose U1, U2 are irreducible submodules of V . Suppose that U1 is not orthogonal to U2; so there is
u1 ∈ U1 and u2 ∈ U2 such that (u1, u2) ̸= 0. Define L : U1 → U∗

2 by L(u1)(u2) = (u2, u1). Then

ker(L) = {u1 ∈ U1 = U1 : u1 ∈ U⊥
2 } = U1 ∩ U⊥

2

Since U1 is irreducible, we get that ker(L) is either 0 or U2. But by assumption there is u1 ∈ U1 and
u2 ∈ U2 such that (u1, u2) ̸= 0; so ker(L) = 0, and L is injective. Also L must be surjective since
L(U1) ⊆ U∗

2 and U∗
2 is irreducible (since U∗

2
∼= U2 and U2 is irreducible). Thus U1

∼= U∗
2
∼= U2; so

U1
∼= U2. Corollary 8.31

Let G be a compact Lie grape, and let W be a finite-dimensional G-module. By the above theorem and
its corollaries, W decomposes as a direct sum of irreducible submodules, and if we group together isomorphic
irreducible submodules, we have

W =

ℓ⊕
k=1

Wk
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with Wk
∼= V ⊕mk

k where the Vk are irreducible G-modules, and when k ̸= ℓ, Vk ̸∼= Vℓ and Wk ⊥ Wℓ. Note
that the submodules Wk are canonical (i.e., they are determined up to isomorphism by W ). Indeed, Wk is
equal to the sum of all submodules of W which are isomorphic to Vk because if U and V are submodules of W
with U = U1 ⊕ ...⊕Uℓ with each Ui ∼= Vk and also V ∼= Vk, then we have U ∩ V ⊆ V , which is irreducible, so
either U ∩V = V , in which case U +V = U , or U ∩V = 0, in which case U +V = U ⊕V = U1 ⊕ ...⊕Uℓ⊕V .

We use the following notation. Let Ĝ be (a set of representatives for) the set of all isomorphism classes of
irreducible finite-dimensional (unitary) representations of G. For any finite-dimensional G-module W and

any σ ∈ Ĝ, we write Eσ for the G-module associated to σ (so σ : G→ GL(Eσ)). Then, our the above work,
we can write a decomposition

W =
⊕
σ∈Ĝ

Wσ

where each Wσ is a G-submodule of W for which there exists an integer mσ(W ) such that Wσ
∼= E

mσ(W )
σ .

Definition 8.32. The integermσ(W ) is called themultiplicity of σ inW . Note thatmσ(W ) = dim(Wσ)/ dim(Eσ).
The decomposition

W =
⊕
σ∈Ĝ

Wσ

with Wσ
∼= E

mσ(W )
σ is called the canonical decomposition of the G-module W , and Wσ is called the isotypical

component for σ.

Theorem 8.33. Let G be a compact Lie grape. Let W be a finite-dimensional G-module of G. Let σ ∈ Ĝ.
The map F : homG(Eσ,W )⊗ Eσ →Wσ given by F (L, u) := L(u) is a G-module isomorphism; so

Wσ
∼= homG(Eσ,W )⊗ Eσ

and
mσ(W ) = dim(homG(Eσ,W ))

Proof. Note that G acts on homG(Eσ,W ) by (aL)(u) = aL(a−1u), and when L ∈ homG(Eσ,W ), we have
L(au) = aL(u). Thus

(aL)(u) = aL(a−1u) = aa−1L(u) = L(u)

so aL = L when L ∈ homG(Eσ,W ) (so G acts trivially on homG(Eσ,W )).
We claim that F is well-defined (i.e., F does take values in Wσ, not just W ). For L ∈ homG(Eσ,W ), we

have ker(L) ⊆ Eσ, which is irreducible, so either ker(L) = 0 or ker(L) = Eσ. When ker(L) = 0, we have
L(Eσ) ∼= Eσ, hence L(Eσ) ⊆Wσ, since W is equal to a sum of Wσ’s which are isomorphic to powers Eσ. We
claim that F is G-invariant (also called G-equivariant or G-intertwining). For L ∈ homG(Eσ,W ) and u ∈ Eσ
and a ∈ G, we have

F (a(L⊗ u)) = F (aL⊗ au) = F (L⊗ au) = L(au) = aL(u) = F (l ⊗ u)

since aL = L and since L is G-invariant. Thus F is G-invariant.
We also claim that F is surjective. We can use the same argument we used to show that F is well-defined.

Let v ∈ Wσ. Since Wσ is isomorphic to a power of Eσ, we can choose a submodule V ⊆ Wσ with v ∈ V
and V ∼= Eσ (as a G-module). Let L : Eσ → V be a G-module isomorphism, and let u = L−1(v). Then
F (L⊗ u) = L(u) = v. This proves F is surjective.

We also claim that F is injective. We do this by counting dimensions. We have

F : homG(Eσ,W )⊗ Eσ →Wσ
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where Wσ
∼= E

⊕mσ(W )
σ . So dim(Wσ) = mσ dim(Eσ). Also,

homG(Eσ,W ) = homG

Eσ,Wσ ⊕
⊕
τ ̸=σ

Wτ


∼= homG

Eσ, Emσ
σ ⊕

⊕
τ ̸=σ

Emτ
τ


∼= homG(Eσ, Eσ)

⊕mσ ⊕
⊕
τ ̸=σ

homG(Eσ, Eτ )
⊕mτ

Then we take dimensions. The leftmost hom in the last line has dimension 1 by Schur’s lemma, and the other
hom’s in the last line have have dimension 0. Therefore,

dim(homG(Eσ,W )) = dim

homG(Eσ, Eσ)
⊕mσ ⊕

⊕
τ ̸=σ

homG(Eσ, Eτ )
⊕mτ

 = mσ,

which implies that
dim(homG(Eσ,W )⊗ Eσ) = mσ dim(Eσ) = dim(Wσ)

So F is injective. Theorem 8.33

9 More on maximal tori

Recall that for any Lie grape G and any representation ρ : G → GL(V ) induces a representation ρ∗ : g →
End(V ). Also for any Lie grape G we have the adjoint representation Ad: G→ GL(g) given by Ad(a) = dca;
when G is a matrix Lie grape and P ∈ G,X ∈ g we have Ad(P )(X) = PX−1P . The adjoint representation
on G induces the adjoint representation ad = Ad∗ : g → End(g); when G is a matrix Lie grape and A,X ∈ g
we have ad(A)(X) = [A,X].

Note that g is a real vector space, so Ad and ad are real representations; so Schur’s lemma does not hold
in a simple form for real representations. But we can still construct an Ad-invariant (real) inner product:
choose any inner product on g, and then define

(u, v) =

∫
G

⟨xu, xv⟩dg(x)

Example 9.1. Suppose G is a connected matrix Lie grape; show that ker(Ad) = Z(G).
Note ker(Ad) = {P ∈ G : Ad(P ) = I : g → g }. If P ∈ Z(G) then CP = I : G → G; so Ad(P ) = dCP =

I : g → g; so P ∈ ker(Ad).
Suppose P ∈ ker(Ad); then Ad(P ) = I : g → g; so (Ad(P ))(A) = A for all A ∈ g, and PAP−1 = A for all

A ∈ g. Hence for Q ∈ G, if we can choose A ∈ g such that Q = exp(A) then

PQP−1 = P exp(A)P−1 = exp(PAP−1) = exp(A) = Q

But G is connected; so we can choose A1, . . . , Aℓ such that Q = exp(A1) · · · exp(Aℓ). Then

PQP−1 = P exp(A1)P
−1P exp(A2)P

−1 · · ·P exp(Aℓ)P
−1 = exp(A1) · · · exp(Aℓ) = Q

so P ∈ Z(G).

Theorem 9.2. Suppose G is a matrix Lie grape with Lie algebra g; suppose V is a finite-dimensional
G-module and U ⊆ V is a subspace. If U is G-invariant (i.e. P · u = ρ(P )(u) ∈ U for all P ∈ G and u ∈ U)
then U is g-invariant (i.e. Au = (ρ∗A)(u) ∈ U for all A ∈ g and u ∈ U). If U is g-invariant and G is
connected then U is G-invariant.
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Proof. Suppose U is G-invariant; suppose A ∈ g and u ∈ U . Then tA ∈ g for all t ∈ R, so exp(tA) ∈ G and
hence ρ(exp(tA))u ∈ U for all t ∈ R. Thus

(ρ∗A)(u) =
d

dt
(ρ(exp(tA))(u))|t=0 ∈ U

(since if u(t) ∈ U for all t then u′(t) ∈ U).
Suppose that U is g-invariant and G is connected. Suppose P ∈ G and u ∈ U . If P = exp(A) for some

A ∈ g then

ρ(P )(u) = ρ(exp(A))(u) = exp(ρ∗A)u =

∞∑
n=0

1

n!
(ρ∗A)

nu ∈ U

since (ρ∗A)
n(u) ∈ U for all n (one checks this last by induction). In general, since G is connected,

we can choose A1, . . . , Aℓ such that P = exp(A1) · · · exp(Aℓ); it follows by induction on ℓ that ρ(P ) =
ρ(exp(A1)) · · · ρ(exp(Aℓ)) ∈ U . Theorem 9.2

Aside 9.3 (Remarks on A3). Change 4(c) to “determine whether”. 5(c) can be computationally intensive.

Theorem 9.4. Suppose G is a matrix Lie grape with Lie algebra g; suppose V and W are finite-dimensional
G-modules with associated representations ρ and φ. Suppose L ∈ hom(V,W ).

TODO 25. I assume this is L(V,W )?

Then if L is G-invariant (meaning L(ρ(P )(v)) = φ(P )(L(v)) for all P ∈ G and v ∈ V ) then L is g-
invariant (meaning that L(ρ∗(A)(v)) = φ∗(A)(L(v)) for all A ∈ g and v ∈ V ). Conversely if L is g-invariant
and G is connected then L is G-invariant.

Proof. Assignment 3. Theorem 9.4

Theorem 9.5. Suppose G is a compact matrix Lie grape with Lie algebra g; suppose V is a finite-dimensional
G-module with associated representation ρ. Suppose (·, ·) is a (Hermitian or real)

TODO 26. ?

inner product on V . Then if (·, ·) is G-invariant (meaning that (ρ(P )(u), ρ(P )(v)) = (u, v) for all P ∈ G
and u, v ∈ V ) then (·, ·) is g-invariant (meaning (ρ∗(A)(u), v) + (u, ρ∗(A)(v)) = 0 for all A ∈ g and u, v ∈ V ).

Proof. Suppose (·, ·) is G-invariant. Suppose A ∈ g and u, v ∈ g.

TODO 27. ∈ V ?

Then
(u, v) = (ρ(exp(tA))(u), ρ(exp(tA))(v)) = (exp(tρ∗A)u, exp(tρ∗A)v)

for all t ∈ R. Note that if we choose any basis for V so that u(t) and v(t) become vectors

TODO 28. ?

and the inner product is given by a matrix, then

d

dt
(u(t), v(t)) =

d

dt
v(t)∗B · u(t) = (v′(t))∗Bu(t) + (v(t))∗Bu′(t) = (u(t), v′(t)) + (u′(t), v(t))

Thus
(exp(tρ∗A) · ρ∗A · u, exp(tρ∗A)v) + (exp(tρ∗A)u, exp(tρ∗A) · ρ∗A · v) = 0

so at t = 0 we get (ρ∗A · u, v) + (u, ρ∗A · v) = 0. Theorem 9.5

Theorem 9.6. Suppose G is a compact matrix Lie grape with Lie algebra g. Suppose t is a Cartan subalgebra
of g. Then there is A ∈ t such that t = zg(A) = {X ∈ g : [A,X] = 0 }.

An element A ∈ g such that z(A) is a Cartan subalgebra is called regular.
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Proof. Choose an Ad-invariant inner product (·, ·) on g. Let {A1, . . . , Aℓ } be a basis for t. Note that since t
is abelian, we have [Ak, Aℓ] = 0 for all k, ℓ (i.e. Aℓ ∈ ker(ad(Ak))). Also if Y ∈ g but Y /∈ t then [Ak, Y ] ̸= 0
for some k since t is maximal; thus

t =

ℓ⋂
k=1

ker(ad(Ak))

Claim 9.7. For all A,B ∈ t we can find r ∈ R so that ker(ad(A+ rB)) = ker(ad(A)) ∩ ker(ad(B)).

Proof. Suppose A,B ∈ t. Note that since [A,B] = 0 it follows that ad(A) commutes with ad(B); indeed

ad(A)(ad(B)(X)) = [A, [B,X]] = [A,BX]− [A,XB] = ABX −BXA−AXB +XBA

and likewise
ad(B)(ad(A)(X)) = BAX −AXB −BXA+XAB = ad(A)(ad(B)(X))

since AB = BA. Let

h = ker(ad(A)) = {X : [A,X] = 0 }
l = ker(ad(B)) = {X : [B,X] = 0 }

Since ad(A) and ad(B) commute, it follows that h (and hence also h⊥) are invariant under ad(B); indeed, for
X ∈ h = ker(ad(A)) we have

ad(A)(ad(B)(X)) = ad(B)(ad(A)(X)) = ad(B)(0) = 0

and for Y ∈ h⊥ and X ∈ h we have

((ad(B)(Y ), X) = −(Y, ad(B)(X)︸ ︷︷ ︸
∈h

)

since (·, ·) is g-invariant. It follows that h = (h ∩ l)⊕ (h ∩ l⊥), and thus

g = (h ∩ l)⊕ (h ∩ l⊥)⊕ (h⊥ ∩ l)⊕ (h⊥ ∩ l⊥)

Case 1. Suppose h⊥ ∩ l⊥ = 0.

Subclaim 9.8. ker(ad(A+B)) = ker(ad(A)) ∩ ker(ad(B)).

Proof. If X ∈ ker(ad(A)) ∩ ker(ad(B)) then [A,X] = [B,X] = 0, so [A + B,X] = 0 and X ∈
ker(ad(A + B). Conversely if X ∈ ker(ad(A + B)) then [A + B,X] = 0, so [A,X] = −[B,X]; but
[A,X] ∈ h⊥ since for Y ∈ h we have

([A,X], Y ) = ((ad(A))(X), Y ) = −(X, (ad(A))(Y )) = −(X, 0) = 0

Similarly we get [B,X] ∈ l⊥. So [A,X] = −[B,X] ∈ h⊥ ∩ l⊥ = 0; so [A,X] = [B,X] = 0, and hence
X ∈ ker(ad(A)) ∩ ker(ad(B)). Subclaim 9.8

So r = 1 works.

Case 2. Suppose h⊥ ∩ l⊥ ̸= 0.

Exercise 9.9. Finish this. Let L(r) : h⊥ ∩ l⊥ → h⊥ ∩ l⊥ be L(r) = ad(A + rB) for r ∈ R. Consider
f(r) = det(L(r)). Find r ̸= 0 such that f(r) ̸= 0, and show that r works.

TODO 29. Delete the above? The following seems to subsume it.
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Use bases for each of the four space (h ∩ l), etc. to make a basis for g. With respect to this basis ad(A) and
ad(B) have matrices of the form

[ad(A)] =


0

0
C

D



[ad(B)] =


0

E
0

F


and for r ∈ R we have

[ad(A+ rB)] =


0

rE
C

D + rF


Case 1. Suppose h⊥ ∩ l⊥ = { 0 }. Then

[ad(A+ rB)] =

0
rE

C


so for all r ̸= 0 we have ker(ad(A+ rB)) = h ∩ l = ker(ad(A)) ∩ ker(ad(B)), as desired.

Case 2. Suppose h⊥ ∩ l⊥ ≠ 0. Then the map L(r) : = ad(A + rB) : h⊥ ∩ l⊥ → h⊥ ∩ l⊥ has matrix
[L(r)] = D + rF .

When r = 0 we have [L(0)] = D is invertible. So if f(r) = det(L(r)), then f is a polynomial in r and
f(0) ̸= 0; so f(r) ̸= 0 for all but finitely many values of r. We can choose r ∈ R \ { 0 } such that
f(r) ̸= 0; then L(r) is invertible, so D + rE is invertible. So

ker(ad(A+ rB) = h ∩ l = ker(ad(A)) ∩ ker(ad(B))

as desired. Claim 9.7

We then replace A1 by A′
1 = A1 + rA2 so that ker(ad(A′

1)) = ker(ad(A1)) ∩ ker(ad(A2)); then replace A′
1

by A′′
1 = A′

1 + r′A3, and so on. Theorem 9.6

Theorem 9.10 (Cartan subalgebras). Suppose G is a compact matrix Lie grape with Lie algebra g. Then

1. If t is a Cartan subalgebra of g and if A ∈ g then there is P ∈ G such that PAP−1 ∈ t (equivalently,
there is P ∈ G such that A ∈ P tP−1). Equivalently

g =
⋃
P∈G

P tP−1

2. If s, t are two Cartan subalgebras, then there is P ∈ G such that t = P sP−1. i.e. G acts transitively on
the set of Cartan subalgebras by conjugation.

Proof.

1. Choose an Ad-invariant inner product (·, ·) on g.

Suppose t is a Cartan subalgebra of g; suppose A ∈ g. By previous theorem there is B ∈ t such that
t = zg(B) = {X ∈ g : [B,X] = 0 }.
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For P ∈ G we have

PAP−1 ∈ t ⇐⇒ PAP−1 ∈ z(B)

⇐⇒ [PAP−1, B] = 0

⇐⇒ ([PAP−1, B], X) = 0 for all X ∈ g

⇐⇒ (ad(PAP−1)(B), X) = 0 for all X ∈ g

⇐⇒ (B, ad(PAP−1)(X)) = 0 for all X ∈ g

⇐⇒ (B, [PAP−1, X]) = 0 for all X ∈ g

Let f : G→ R be P 7→ (B,PAP−1). By compactness of G there is P ∈ G maximizing f(P ). Suppose
now that X ∈ g. Let g : R → R be g(t) = (B, exp(tX)PAP−1 exp(−tX)); then by choice of P we have
that g(t) has a local maximum at t = 0. But

g′(t) = (B, exp(tX)XPAP−1 exp(−tX)− exp(tX)PAP−1 exp(−tX)X

So
0 = g′(0) = (B,XPAP−1 − PAP−1X) = (B, [X,PAP−1])

Thus for all X we have (B, [PAP−1, X]) = 0; so PAP−1 ∈ t.

2. Suppose s and t are Cartan subalgebras. Choose A ∈ s such that s = zg(A) = {X ∈ g : [A,X] = 0 }.
Choose P ∈ G such that PAP−1 ∈ t. We will show that P sP−1 = t.

For X ∈ g we have

X ∈ P sP−1 ⇐⇒ P−1XP ∈ s = zg(A)

⇐⇒ [P−1XP,A] = 0

⇐⇒ [X,PAP−1] = 0

⇐⇒ X ∈ zg(PAP
−1)

So P sP−1 = zg(PAP
−1). So since PAP−1 ∈ t and t is abelian we have t ⊆ zg(PAP

−1) =
P sP−1. So since t and P sP−1 are maximal abelian subalgebras of g with t ⊆ P sP−1, they are
equal. Theorem 9.10

Theorem 9.11. Suppose G is a connected compact matrix Lie grape with Lie algebra g. Then

1. If S and T are maximal tori in G then there exists P ∈ G such that PSP−1 = T . Equivalently, G acts
transitively on the set of maximal tori by conjugation.

2. exp(g) = G.

3. If T is a maximal torus in G and Q ∈ G then there exists P ∈ G such that PQP−1 ∈ T ; equivalently,
if T is a maximal torus in G then

G =
⋃
P∈G

PTP−1

Proof.

1. Suppose S and T are maximal tori. Let s and t be their Lie algebras, which are Cartan subalgebras.

TODO 30. ?

Choose P ∈ G such that P sP−1 = t. Then for Q ∈ S since exp(s) = S we can choose B ∈ s such that
Q = exp(B). Then

PQP−1 = P exp(B)P−1 = exp(PBP−1︸ ︷︷ ︸
∈t

) ∈ T

Thus PSP−1 ⊆ T ; so since T and PSP−1 are maximal tori, we get PSP−1 = T .
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2. We shall show that exp(g) is open and closed in G, and hence exp(g) = G since G is connected. If we
fix a maximal torus T and let t be its Lie algebra, then

g =
⋃
P∈G

P tP−1

So
exp(g) =

⋃
P∈G

PTP−1

(since exp is surjective on tori). So if F : G× T → G is (P,X) 7→ PXP−1 then exp(g) = F (G× T ) is
closed, since G× T is compact.

It remains to show that exp(g) is open. Suppose Q ∈ exp(g), say Q = exp(B) for B ∈ g. Let
h = zg(Q) = {X ∈ g : QXQ−1 = X }; let H be the connected component of ZG(Q) containing I. One
checks that H is a closed Lie subgrape of G with Lie algebra h. Note that Q = exp(B) ∈ exp(h) ⊆ H.

TODO 31. We changed from zg(B) and ZG(B) to zg(Q) and ZG(Q); make sure this doesn’t change
anything in case 1 below.

Case 1. Suppose h = g; so zg(B) = g. Then Q ∈ Z(G) since for P ∈ G we have PQP−1 =
P exp(B)P−1 = exp(PBP−1) = exp(B) = Q.

TODO 32. ?

Choose a Cartan subalgebra t of g so that B ∈ t ⊆ z(B). For X ∈ g choose P ∈ G so that
P−1XP ∈ t; say P−1XP = Y ∈ t so X = PY P−1. Then

Q exp(X) = Q exp(PY P−1) = QP exp(Y )P−1

= PQ exp(Y )P−1

= P exp(B) exp(Y )P−1

= exp(P (B + Y )P−1) ∈ exp(g)

Hence Q exp(g) ⊆ exp(g). But exp(g) contains an open neighbourhood of I; so Q exp(g) contains
an open neighbourhood of Q. So exp(g) contains an open neighbourhood of Q, as required.

Case 2. Suppose h ⫋ g. We can suppose, inductively on dim(g), that exp(h) = H (since H is connected
and compact). Consider F : g = h⊕ h⊥ → G

TODO 33. I think we said we’re using an Ad-invariant inner product? It was something-invariant.

given by F (X,Y ) = Q−1 exp(Y )Q exp(X) exp(−Y ) for X ∈ h and Y ∈ h⊥. Note that

F (X,Y ) = Q−1(I + Y +
1

2
Y 2 + · · · )Q(I +X +

1

2
X2 + · · · )(I − Y +

1

2
Y 2 − · · · )

= I + (Q−1Y Q+X − Y ) + higher− orderterms

So at 0 = (0, 0) ∈ g we have DF(0,0)(X,Y ) = X,Q−1Y Q− Y ); i.e. DF = Ih ⊕ (Ad(Q−1)− I)h⊥ .
Note that

h = zg(Q) = {X ∈ g : QXQ−1 = X } = {X ∈ g : X = Q−1XQ } = ker(Ad(Q−1)− I)

So Ad(Q−1) − I : h⊥ → h⊥ is invertible; so at 0 ∈ g we have that DF is invertible. So F : g =
h⊕ h⊥ → G is a local diffeomorphism. So

{Q−1 exp(Y )Q exp(X) exp(−Y ) : X ∈ h, Y ∈ h⊥ }

contains an open neighbourhood of I in G. Hence, multiplying on the left by Q, we get that

{ exp(Y )Q exp(X) exp(−Y ) : X ∈ h, Y ∈ h⊥ }
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contains an open neighbourhood of Q. But exp(X) ∈ H, and Q exp(X) ∈ H; so

{ exp(Y )Q exp(X) exp(−Y ) : X ∈ hY ∈ h⊥ } ⊆
⋃

Y ∈h⊥

exp(Y )H exp(−Y ) ⊆
⋃
P∈G

PHP−1

For R ∈ H we can write R = exp(X) for some X ∈ h (since by induction hypothesis we get that
H = exp(h)); then PRP−1 = P exp(X)P−1 = exp(PXP−1 ∈ exp(g). Thus

{ exp(Y )Q exp(X) exp(−Y ) : X ∈ h, Y ∈ h⊥ } ⊆
⋃
P∈G

PHP−1 ⊆ exp(g)

Thus exp(g) contains an open neighbourhood of Q in G, as required.

3. Suppose T is a maximal torus in G; suppose Q ∈ G. By above we get exp(g) = G, so we can pick B ∈ g
such that exp(B) = Q. Let t be the Lie algebra of T . Choose P ∈ G such that PBP−1 ∈ t. Then
PQP−1 = P exp(B)P−1 = exp(PBP−1) ∈ T . Theorem 9.11

Corollary 9.12. Suppose G is a connected and compact matrix Lie grape; suppose T is a maximal torus in
G. Then

1. ZG(T ) = T .

2. Z(G) =
⋂
P∈G

PTP−1.

Proof.

1. Since T is abelian we get T ⊆ ZG(T ). Conversely, suppose Q ∈ ZG(T ). Since exp(g) = G we can write
Q = exp(B) for some B ∈ g. Let H be the connected component of ZG(Q) containing I. Note that
Q ∈ H since Q ∈ ZG(Q) and α(t) = exp(tB) is a path in ZG(Q) from I to Q. (Note exp(tB) ∈ ZG(Q)
since exp(tB) commutes with Q = exp(B).) Also T ⊆ H since Q ⊆ ZG(T ) so T ⊆ ZG(Q), and T is
connected and contains I. Thus T is a maximal torus in H; so by theorem there is P ∈ H such that
PQP−1 ∈ T . But P ∈ H ⊆ ZG(Q); so Q = PQP−1 ∈ T .

2. Follows from previous item and theorem. Corollary 9.12

10 Weights and roots

A representation ρ : G→ GL(V ) induces ρ∗ : g → End(V ), which we can extend (by C-linearity) to ρ∗ : gC →
End(V ).

Aside 10.1. Given a real vector space U we obtain a complex vector space UC = U ⊗R C the set of bilinear
maps L : U∗ × C∗ → R; so UC = span{u⊗ c : u ∈ U, c ∈ C } = span{u1 ⊗ 1, . . . , un ⊗ 1, u1 ⊗ i, . . . , un ⊗ i }
where U = {u1, . . . , un } is a basis for U over R (and using the fact that { 1, i } is a basis for C over R). The
scalar multiplication in UC is given by a · (u⊗ b) = u⊗ (ab) where a, b ∈ C and u ∈ U . For u ∈ U we write
u = u⊗ 1 and iu = u⊗ i; so

UC = spanR{u1, . . . , un, iu1, . . . , iun } = spanC{u1, . . . , un } = spanC{ iu1, . . . , iun }

We often write UC = U ⊕ iU (where U is identified with {u⊗ 1 : u ∈ U }).
When G ⊆ U(n) we have g ⊆ u(n) = {A ∈Mn(C) : A∗ +A = 0 }. We can then identify u(n)C = u(n)⊕

i u(n) with GL(n,C) as follows: given A,B ∈ u(n) (so A∗ = −A and B∗ = −B) we have (iB)∗ = −iB∗ = iB
and A+ iB ∈Mn(C). On the other hand given C ∈Mn(C) we can write C = A+ iB with

A =
C − C∗

2

B =
C + C∗

2i
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Exercise 10.2. Verify that su(n)C = su(n) ⊕ i su(n) can be identified with sl(n,C) = {A ∈ Mn(C) : A ∈
Mn(C) : tr(A) = 0 } and that so(n)C = so(n)⊕ i so(n) can be identified with so(n,C) = {A ∈Mn(C) : AT =
−A }.
Example 10.3. Consider the action of SU(2) on the space Vn ⊆ C[x, y] of homogeneous polynomials of degree
n. The action is given by

(P · f)(x, y) = f

((
P−1

(
x
y

))T)
When

P =

(
a −b
b a

)
we have

P−1 =

(
a b
−b a

)
so

P−1

(
x
y

)
=

(
ax+ by
−bx+ ay

)
So

P · (xkyℓ) = (ax+ by)k(−bx+ ay)ℓ

This induces an action ρ∗ : su(2) → End(Vn); this action is given by (A · f)(x, y) = d
dt (exp(tA · f)(x, y))|t=0.

For

A =

(
ir −u+ iv

u+ iv −ir

)
=

(
ir −w
w −ir

)
∈ su(2)

we have det(A− xI) = (x2 + r2) + |w|2 = x2 + θ2 where θ =
√
r2 + u2 + v2; so A2 = −θ2I.

Thus

exp(tA) = I + tA+
1

2!
t2A2 +

1

3!
t3A3 + · · ·

= I + tA− 1

2!
t2θ2I − 1

3!
t3θ2A+

1

4!
t4θ4I +

1

5!
t4θ4A− · · ·

= (1− 1

2!
t2θ2 +

1

4!
t4θ4 − · · · )I + (t− 1

3!
t3θ2 +

1

5!
t5θ4 − · · · )A

= cos(tθ)I + θ−1 sin(tθ)A

=

(
a −b
b a

)
where

a = cos(tθ) + irθ−1 sin(tθ)

b = wθ−1 sin(tθ)

= (u+ iv)θ−1 sin(tθ)

Thus A · (xkyℓ) = d
dt (ax+ by)k(−bx+ ay)ℓ|t=0. So we compute

d

dt
(ax+ by)k(−bx+ ay)ℓ = k(ax+ by)k−1(a′x+ b

′
y)(−bx+ ay)ℓ + ℓ(ax+ by)k(−bx+ ay)ℓ−1(−b′x+ a′y)ℓ

Going back to our formulas for a and b we find

a′ = −θ sin(tθ) + ir cos(tθ)

b′ = w cos(tθ)

a(0) = 1

b(0) = 0

a′(0) = ir

b′(0) = w
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So, putting these together, we find that

A(xkyℓ) = kxk−1(−irx+ wy)yℓ + ℓxkyℓ−1(−wx+ iry)

= −kirxkyℓ + kwxk−1yℓ+1 − ℓwxk+1yℓ−1 + ℓirxkyℓ

= (ℓ− k)irxkyℓ + kwxk−1yℓ+1 − ℓwxk+1yℓ−1

We can extend the action ρ∗ : su(2) → End(Vn) to ρ∗ : suC(2) = sl(2,C) → End(Vn). We have

su(2) = spanR

{(
i 0
0 −i

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)}
and

su(2)C = sl(2,C) = spanC

{(
i 0
0 −i

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)}
= spanC{H,E, F }

where

H =

(
1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
We have

H =

(
1 0
0 −1

)
= −i

(
1 0
0 −i

)
so

H · (xkyℓ) = (ℓ− k)xkyℓ = (n− 2k)xkyn−k

Also

E =

(
0 1
0 0

)
=

(
0 1

2
1
2 0

)
+

(
0 1

2
− 1

2 0

)
So when we decompose E we get v = − 1

2 i and u = − 1
2 ; so

E · (xkyℓ) = −kxk−1yℓ+1

Finally we have

F =

(
0 0
1 0

)
=

(
0 1

2
1
2 0

)
+

(
0 − 1

2
1
2 0

)
so v = − 1

2 i and u = 1
2 . So

F · (xkyℓ) = −ℓxk+1yℓ−1

52



With respect to the basis {xn, xn−1y, . . . , yn } for Vn we have

H = ρ∗(H)

= [ρ∗H)]U

= diag(−n,−n+ 2, . . . , n− 2, n)

E = ρ∗(E)

= [ρ∗E]U

=


0
−n 0

−n+ 1 0
. . .

−1 0



F =


0 −1

0 −2
. . .

0 −n
0


By Schur’s lemma we have ρ (or Vn) is irreducible when EndG(Vn) = { cI : c ∈ C } and for L ∈ End(Vn)
we have L is G-invariant if and only if L is g-invariant if and only if L is gC-invariant; meaning that
L · ρ∗(A) = ρ∗(A) · L for all A ∈ g (or all A ∈ gC). Using the basis for Vn to identify L ∈ End(Vn) with its
matrix, we have

LH = HL ⇐⇒ (LH)kℓ = (HL)kℓ for all k, ℓ

⇐⇒ (n− 2ℓ)Lkℓ = (n− 2k)Lkℓ for all k, ℓ

⇐⇒ Lkℓ = 0 for all k ̸= ℓ

⇐⇒ L is diagonal

Also for L = diag(c0, c1, . . . , cn) we have

LE = EL ⇐⇒


0

−nc1 0
(−n+ 2)c2 0

. . .

−cn 0

 =


0

−nc0 0
(−n+ 2)c1 0

. . .

−cn−1 0


⇐⇒ c0 = c1 = · · · = cn

So L ∈ End(Vn) is G-invariant if and only if L = cI for some c ∈ C; so by Schur’s lemma ρ is irreducible.

Aside 10.4 (Hint for 5c on the assignment). The domain of the chart is an open dense subset; hence to
integrate on the entire manifold it suffices to integrate on one chart. Also if P = P (θ, φ, ψ) = A(θ)B(φ)A(ψ),
it’s useful to compute

P−1 ∂P

∂θ
, P−1 ∂P

∂φ
, P−1 ∂P

∂ψ

10.1 Weights

Suppose G is a compact matrix Lie grape and ρ : G → GL(V ) is a finite-dimensional represnetation of
G. This gives ρ∗ : g → End(V ) which extends to ρ∗ : gC → End(V ). Fix a G-invariant inner product (·, ·)
on V ; fix a maximal torus T ⊆ G and let t be its Lie algebra. We restrict ρ∗ to ρ∗ : tC → End(V ). For
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A,B ∈ t (so A+ iB ∈ tC) we have that ρ∗(A+ iB) is a normal operator. Using an orthonormal basis we have
(ρ∗(A)u, v) = −(u, ρ∗(A)v); so A = ρ∗(A) is skew-Hermitian, and A∗ = −A. Likewise we get B∗ = −B; so

(A+ iB)∗(A+ iB) = (A∗ − iB∗)(A+ iB)

= A∗A+ iA∗B − iB∗A+B∗B

= −A2 − iAB + iBA−B2

= −A2 −B2

since AB = BA. Also

(A+ iB)(A+ iB)∗ = (A+ iB)(A∗ − iB∗)

= AA∗ − iAB∗ + iBA∗ +BB∗

= −A2 + iAB − iBA−B2

= −A2 −B2

So A + iB is normal, and thus unitarily diagonalizable. Also for A,B ∈ tC since [A,B] = 0 we have
ρ∗A · ρ∗B − ρ∗Bρ∗A = ρ∗[A,B] = ρ∗0 = 0; so ρ∗(A) and ρ∗(B) commute.

TODO 34. Weren’t we using this to show normality?

Thus S = { ρ∗(A) : A ∈ tC } is a set of commuting normal (hence diagonalizable) operators on V .

Proposition 10.5. If S is a set of commuting normal operators V → V then the elements of S can be
simultaneously diagonalized.

Proof. Note that if L,M : V → V commute and λ is an eigenvalue of L then M preserves the eigenspace
Eλ = ker(L− λI): indeed, if v ∈ Eλ then LMv =MLv =Mλv = λMv, so Mv ∈ Eλ. If we extend Eλ to a
basis for V then M has the form (

A 0
0 B

)
with A,B normal.

We now show that S is simultaneously diagonalizable using induction on dim(V ). When dim(V ) = 1 this
is immediate.

If every L ∈ S is a constant multiple of I then they are already diagonalized, and we’re done; so assume
we have L ∈ S that is not a constant multiple of I. Pick an eigenvalue λ for L; then 0 ̸= Eλ ⫋ V . So by
induction hypothesis there is a non-trivial subspace 0 ̸= U ⊆ Eλ such that all the operators restricted to U
act as constant multiples of the identity. Proposition 10.5

Thus our S = { ρ∗(A) : A ∈ tC } is simultaneously diagonalizable (using an orthonormal basis). So

V =
⊕
α∈W

Vα

where W =W (ρ) =W (V ) is a finite set of functions α : tC → C where

Vα = { v ∈ V : ρ∗(B)(v) = α(B) · v for all B ∈ tC }

Note that these α : tC → C are linear (so α ∈ t∗C); indeed, if v ∈ Vα, c ∈ C, and A,B ∈ tC we have

α(A+ cB)(v) = ρ∗(A+ cB)(v) = ρ∗(A)(v) + cρ∗(B)(v) = α(A)v + cα(B)v = (α(A) + cα(B))v

Definition 10.6. The elements α ∈ W ⊆ t∗C are called the weights of ρ; the space Vα is called the weight
space of α.

(So α ∈ t∗C is a weight of ρ if and only if Vα ̸= 0.)
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Example 10.7. Consider the action of SU(2) on Vn. Recall that ρ∗ : su(2)C = End(Vn) is given by

ρ∗(H) · xkyn−k = (n− 2k)xkyn−k

ρ∗(E) · xkyℓ = −kxk−1yℓ+1

ρ∗(F ) · xkyℓ = −ℓxk+1yℓ−1

We wish to restrict ρ∗ to tC; we choose T = { diag(exp(iθ), exp(−iθ)) : θ ∈ R }, so t = { diag(iθ,−iθ) : θ ∈
R } = spanR{ diag(i,−i) } and tC = spanC{ diag(1,−1) } = spanC{H }. So the restriction ρ∗ : tC → End(Vn)
is determined by ρ∗(H) given by ρ∗(H) · xkyℓ = (ℓ− k)xkyℓ (or by H = ρ∗(H) = diag(−n,−n+ 2, . . . , n)).
The weights are W = {α−n, α−n+2, . . . , αn } where α−n+2k : tC → C is given by α−n+2k(H) = −n+ 2k and
the weight spaces are Vαn−2k

= spanC{xkyn−k }.
Remark 10.8. Since for A ∈ t (so iA ∈ it) we have that ρ∗(A) is skew-Hermitian, so its eigenvalues are purely
imaginary; also ρ∗(iA) is Hermitian, so its eigenvalues are real. So for all of the weights α ∈W =W (p) we
have α(A) ∈ iR and α(iA) ∈ R (i.e. α(t) ⊆ iR and α(it) ⊆ R).
Remark 10.9. When P ∈ T ⊆ G and P = exp(B) with B ∈ t, and when v ∈ Vα where α ∈W , we have

ρ(P )(v) = ρ(exp(B))(v) = exp(ρ∗(B))(v) =

∞∑
n=0

1

n!
(ρ∗(B))n(v) =

∞∑
n=0

1

n!
α(B)n · v = exp(α(B)) · v

Thus the weight spaces Vα are also common eigenspaces for all the operators ρ(P ) where P ∈ T .

Definition 10.10. The roots of G (or the roots of g or gC) are the non-zero weights of the adjoint
representation Ad: G→ GL(g) ⊆ GL(gC) (where we extend L : g → g to L : gC → gC by complex linearity);
so ad: g → End(g) ⊆ End(gC), which we extend to ad: gC → End(gC) and then restrict to ad: tC → End(gC).
So

gC =
⊕

α∈R∪{ 0 }

gα

where

gα = {A ∈ gC : ad(B)(A) = α(B) ·A for all B ∈ tC } = {A ∈ gC : [B,A] = α(B) ·A for all B ∈ tC }

Remark 10.11. Note that

g0 = {A ∈ gC : [B,A] = 0 for all B ∈ tC } = z(tC) = tC

So
gC = tC ⊕

⊕
α∈R

gα

So the roots of G are the α ∈ R =W (ad) \ { 0 }; the root spaces are the weight spaces gα.

Remark 10.12. Suppose ρ : G → GL(V ) is a representation. If α ∈ R, β ∈ W , v ∈ Vβ , and A ∈ gα, then
ρ∗(A)(v). Indeed, given B ∈ tC we have

ρ∗(B)ρ∗(A)(v) = ρ∗(B)ρ∗(A)(v)− ρ∗(A)ρ∗(B)(v) + ρ∗(A)ρ∗(B)(v)

= ρ∗([B,A])(v) + ρ∗(A)ρ∗(B)(v)

= ρ∗(α(B) ·A)(v) + ρ∗(A)(β(B) · v)
= α(B) · ρ∗(A)(v) + β(B)ρ∗(A)(v)

= (α+ β)(B) · (ρ∗(A)(v))

In particular, taking ρ = Ad, if we let α, β ∈ R and A ∈ gα, B ∈ gβ , then [A,B] ∈ gα+β .
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Example 10.13. Find the roots and root spaces of U(n).
Let T = {diag(exp(iθ1), . . . , exp(iθn)) : θk ∈ R }; so t = { diag(iθ1, . . . , iθn) : θk ∈ R } and tC =

{ diag(c1, . . . , cn) : ck ∈ C }. Let Ekℓ ∈Mn(C) be the matrix with a 1 in posiiton (k, ℓ) and 0 elsewhere; let
Ek = Ek,k. So tC = span{E1, . . . , En }. Let ε1, . . . , εn be the dual basis for t∗C (so εk(Eℓ) = δk,ℓ). Note that
u(n)C = u(n) ⊕ i u(n) = gl(n,C) = Mn(C). Let 0 ̸= A ∈ gl(n,C) be a common eigenvector for the maps
ad(B) for B ∈ tC. So

ad(B)(A) = α(B) ·A for all B ∈ tC

=⇒ BA−AB = α(B) ·A for all B ∈ tC

=⇒ (BA−AB)kℓ = α(B)Akℓ for all B, k, ℓ

=⇒ (bk − bℓ)Akℓ = α(B)Akℓ for allk, ℓ, B = diag(b1, . . . , bn)

Since A ̸= 0 we can choose k, ℓ so that Ak,ℓ ̸= 0. So we must have α(B) = bk − bℓ for all B = diag(b1, . . . , bn).
Thus we must have α = εk−εℓ. When α = εk−εℓ we also need (bi−bj)Aij = (bk−bℓ)Aij for all (i, j) ̸= (k, ℓ)
and all B = diag(b1, . . . , bn). For any (i, j) ̸= (k, ℓ) we can choose B so that bi − bj ̸= bk − bℓ; so we must
have Aij = 0 for all (i, j) ̸= (k, ℓ). Thus when α = εk − εℓ we have gα = spanC{Ekℓ }. So the set of roots is
R = { εk − εℓ : k ̸= ℓ }.
Example 10.14. For SU(3) with respect to the basis { ε1, ε2, ε3 } for t∗C we have

R =

±

 1
−1
0

 ,±

 1
0
−1

 ,±

 0
1
−1


Note that

cos(θ((1,−1, 0), (0, 1,−1))) =
(1,−1, 0) · (0, 1,−1)

∥(1,−1, 0)∥∥0, 1,−1∥
=

−1

2

Since the roots live in a two-dimensional space, we can draw them on the plane; by the above they end up in
a hexagon.

Example 10.15. For SU(4) we have

R =

±


1
−1
0
0

 ,±


1
0
−1
0

 ,±


1
0
0
−1

 ,±


0
1
−1
0

 ,±


0
1
0
−1

 ,±


0
0
1
−1




So spanR(R) = {x ∈ R4 : x1 + x2 + x3 + x4 = 0 }. We can use (1,−1, 0, 0), (0, 0, 1,−1), (1, 1,−1,−1) as a
basis and draw this in R3; you get the vertices of a polyhedron that you get by “cutting off the corners” of a
cube.

11 Stuff we didn’t get to

Characters

For a finite-dimensional representation ρ : G→ GL(V ) the character of ρ is the map χρ = χV : G→ C given
by P 7→ tr(ρ(P )). If V,W are irreducible, then∫

G

χV χW (x)dg(x) =

{
1 if V ∼=W

0 else

In general ∫
G

χV (x)χW (x)dg(x) = dimhomG(V,W )
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Killing form

For A,B ∈ gC we define
B(A,B) = tr(ad(A) ◦ ad(B))

On tC we obtain a Hermitian form (A + iB,C + iD) = B(A + iB,C − iD). One can use this to obtain
symmetry properties of the roots.

u(n) has the same roots as su(n).
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