Course notes for PMATH 810

Christa Hawthorne

Lectures by Kenneth R. Davidson

Contents

1	Banach algebras	1
2	Riesz functional calculus	12
3	Commutative Banach algebras 3.1 The non-unital case $3.1.1$ $L^1(G)$	19 24 26
4	Banach *-algebras	32
5	Non-commutative Banach algebras and their representation theory 5.1 Automatic continuity	34 41
6	C*-algebras 6.1 Operators on a Hilbert space 6.2 Positive elements 6.3 Ideals and quotients	43 46 47 51
7	Concrete C*-algebras7.1Review of weak and strong operator topologies7.2Projections in von Neumann algebras	55 55 61
8	Representations of C*-algebras 8.1 GNS construction 8.2 Representations and ideals	62 63 69
9	Spectral theory for normal operators 9.1 Spectral measures 9.2 Multiplicity	71 76 77

My thanks to Dan Ursu for the use of his notes when I was absent.

1 Banach algebras

Definition 1.1. A *Banach algebra* is an associative algebra \mathfrak{A} over \mathbb{C} (or \mathbb{R} , but not for us) which has a norm that makes $(\mathfrak{A}, \|\cdot\|)$ a Banach space and satisfies

 $\|xy\| \le \|x\|\|y\|$

and if \mathfrak{A} has a unit (which we will denote e or 1) then ||e|| = 1.

Remark 1.2. The above implies that multiplication is jointly continuous. Indeed, we have

$$x_1y_1 - x_2y_2 = x_1y_1 - x_2y_1 + x_2y_1 - x_2y_2 = (x_1 - x_2)y_1 + x_2(y_1 - y_2)$$

 \mathbf{SO}

$$||x_1y_1 - x_2y_2|| \le ||x_1 - x_2|| ||y_1|| + ||x_2|| ||y_1 - y_2||$$

Hence if $x_n \to x$ and $y_n \to y$ then $x_n y_n \to x_1 y_1$. Example 1.3.

- 1. If \mathfrak{X} is a Banach space then $\mathcal{B}(\mathfrak{X})$ is a Banach algebra (with $||T|| = \sup\{||Tx|| : ||x|| \le 1\}$).
- 2. If X is a compact Hausdorff space then C(X) is a Banach space where $||f||_{\infty} = \sup\{|f(x)| : x \in X\}$. If X is locally compact and Hausdorff then we define $C_0(X)$ to consist of the continuous functions f on X such that for all $\varepsilon > 0$ the set $\{x \in X : |f(x)| \ge \varepsilon\}$ is compact; we define $C_b(X)$ to consist of the bounded continuous functions. For both $C_0(X)$ and $C_b(X)$ the norm $||f||_{\infty} = \sup\{|f(x)| : x \in X\}$ confers a Banach algebra structure.
- 3. Consider the set $C^{(n)}[a,b]$ of functions on [a,b] with n continuous derivatives. Our product rule is

$$(fg)^{(k)} = \sum \binom{k}{j} f^{(j)} g^{(k-j)}$$

The norm

$$\|f\|_{C^n} = \sum_{k=0}^n \frac{\|f^{(k)}\|_{\infty}}{k!}$$

makes $C^{(n)}[a, b]$ into a Banach algebra.

Exercise 1.4. Check that $||fg||_{C^n} \leq ||f||_{C^n} ||g||_{C^n}$.

4. Suppose G is a locally compact abelian grape (e.g. $\mathbb{R}^n, \mathbb{T}^k, \mathbb{T}^k \times \mathbb{R}^n, \ldots$). We get a Haar measure m on G: a regular Borel measure that is translation-invariant (i.e. m(A + s) = m(A) for Borel $A \subseteq G$ and $s \in G$). We define $L^1(G)$ to be the set of measurable f on G such that

$$\|f\|_1 = \int |f| \mathrm{d}m < \infty$$

The product on $L^1(G)$ is given by convolution:

$$(f * g)(t) = \int_G f(s)g(t - s)\mathrm{d}m(s)$$

One can check that

- g * f = f * g
- (f * g) * h = f * (g * h) (this follows form Fubini).

For the norm bound, note that

$$\begin{split} \|f * g\|_1 &= \int_G |(f * g)(t)| \mathrm{d}m(t) \\ &= \int_G \left| \int_G f(s)g(t-s)\mathrm{d}m(s) \right| \mathrm{d}m(t) \\ &\leq \int_G \int_G |f(s)||g(\underbrace{t-s}_u)| \mathrm{d}m(s)\mathrm{d}m(t) \\ &= \int_G \int_G |f(s)||g(u)|\mathrm{d}m(s)\mathrm{d}m(u) \\ &= \|f\|_1 \|g\|_1 \end{split}$$

(since the Jacobian of $(s, t) \mapsto (s, u)$ is

$$\begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$$

).

5. Consider $A(\mathbb{D})$ the disk algebra consisting of f(z) continuous on $\overline{\mathbb{D}}$ and analytic on $\mathbb{D} = \{ z \in \mathbb{Z} : |z| < 1 \}$. Together with the norm

$$||f|| = \sup_{|z| \le 1} |f(z)| = \sup_{|z|=1} |f(z)|$$

(where the second equality is by the maximum modulus principle) forms a Banach algebra. Then $A(\mathbb{D}) \subseteq C(\mathbb{D})$; in fact $A(\mathbb{D}) \subseteq C(\mathbb{T})$ where $\mathbb{T} = \{z : |z| = 1\} = \partial \overline{\mathbb{D}}$. Indeed the map $f \mapsto f \upharpoonright \mathbb{T}$ is isometric.

- 6. For $T \in \mathcal{B}(\mathfrak{X})$ where \mathfrak{X} is a Banach space, we define $\mathcal{A}(T) = \overline{\{p(T) : p \in \mathbb{C}[z]\}}^{\|\cdot\|} \subseteq \mathcal{B}(\mathfrak{X})$. If $T \in \mathcal{B}(\mathcal{H})$ for \mathcal{H} a Hilbert space we define $C^*(T) = \overline{\operatorname{alg}\{I, T, T^*\}}^{\|\cdot\|}$. (Here alg is "the algebra generated by".)
- 7. If (X, μ) is a measure space we define $L^{\infty}(\mu)$ to be the set of measurable f such that f is essentially bounded (i.e. there is t such that $\mu(\{x : |f(x)| > t\}) = 0$) modulo $f \sim g$ if f g = 0 almost everywhere. The norm is given by

$$||f||_{\infty} = \inf\{t : \mu(\{x : |f(x)| > t\}) = 0\} = \text{ess. sup}|f|$$

We have an embedding $L^{\infty}(\mu) \hookrightarrow \mathcal{B}(L^2(\mu))$ given by $f \mapsto M_f$ where $M_f(h) = fh$.

Remark 1.5. If \mathfrak{A} is a Banach algebra without unit we define $\mathfrak{A}^+ = \{(a, \lambda) : a \in \mathfrak{A}, \lambda \in \mathbb{C}\}$; we write $(a, \lambda) = a + \lambda e$. We define

$$(a + \lambda e)(b + \mu e) = (ab + \lambda b + \mu a) + \lambda \mu e$$
$$\|a + \lambda e\| = \|a\| + |\lambda|$$

 \mathbf{so}

$$||(a + \lambda e)(b + \mu e)|| \le ||a|| ||b|| + |\lambda| ||b|| + |\mu| ||a|| + |\lambda\mu| = (||a|| + |\lambda|)(||b|| + |\mu|)$$

In fact \mathfrak{A} is a (closed) maximal ideal in \mathfrak{A}^+ .

Proposition 1.6. Every Banach algebra \mathfrak{A} is isometrically isomorphic to a subalgebra of $\mathcal{B}(\mathfrak{X})$ for some Banach space \mathfrak{X} .

Proof. We map \mathfrak{A} into $\mathcal{B}(\mathfrak{A}^+)$ by $a \mapsto L_a$ where $L_a x = ax$. Then

$$|a|| = ||ae|| \le ||L_a|| = \sup\{ ||ax|| : x \in \mathfrak{A}^+, ||x|| \le 1 \} \le \sup\{ ||a|| ||x|| : x \in \mathfrak{A}^+, ||x|| \le 1 \} = ||a||$$

so this is indeed an isometry.

Definition 1.7. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$.

- The spectrum of a is $\sigma_{\mathfrak{A}}(a) = \{ \lambda \in \mathbb{C} : \lambda 1 a \text{ is not invertible} \}$. (If the \mathfrak{A} is clear from context we will sometimes omit it and write $\sigma(a)$.)
- The resolvent of a is $\rho(a) = \mathbb{C} \setminus \sigma(a)$.
- The resolvent function $R(a, \lambda) = (\lambda a)^{-1}$ is defined on $\rho(a)$.

Definition 1.8. Suppose $T \in \mathcal{B}(\mathfrak{X})$ for some Banach space \mathfrak{X} .

• We define the *point spectrum* $\sigma_p(T)$ to be the set of eigenvalues of T: those λ for which there is $x \neq 0$ such that $Tx = \lambda x$.

 \Box Proposition 1.6

- We define the approximate point spectrum $\sigma_{\pi}(T)$ to be the set of $\lambda \in \mathbb{C}$ such that $\lambda I T$ is not bounded below. (An operator T is bounded below if there is $\varepsilon > 0$ such that $||Tx|| \ge \varepsilon ||x||$ for all $x \in \mathfrak{X}$.)
- We define the compression spectrum $\gamma(T)$ to be $\{\lambda : (\lambda I T)\mathfrak{X} \neq \mathfrak{X}\}$; i.e. the λ for which $\lambda I T$ does not have dense range.

Theorem 1.9. For $T \in \mathcal{B}(\mathfrak{X})$ with \mathfrak{X} a Banach space, the following are equivalent:

- 1. T is invertible.
- 2. T maps \mathfrak{X} bijectively to itself.
- 3. T is bounded below and has dense range.
- 4. T and T^* are bounded below $(T^* \in \mathcal{B}(\mathfrak{X}^*))$.
- 5. T^* is invertible in $\mathcal{B}(\mathfrak{X}^*)$.

Proof.

- $(1) \Longrightarrow (2)$ Immediate.
- $(2) \Longrightarrow (1)$ Banach isomorphism theorem.
- $\underbrace{(1) \Longrightarrow (3)}_{\text{below.}} \text{ Note that } x = T^{-1}(Tx); \text{ so } \|x\| \le \|T^{-1}\| \|Tx\|, \text{ and } \|Tx\| \ge (\|T^{-1}\|)^{-1} \|x\|, \text{ and } T \text{ is bounded}$
- (3) \Longrightarrow (2) If $x \neq 0$ then $||Tx|| \geq \varepsilon ||x|| > 0$; hence $Tx \neq 0$, and T is injective. For surjectivity, suppose $y \in \mathfrak{X}$; then since T has dense range there are x_n such that $y_n = Tx_n \to y$. Then in particular the y_n are Cauchy; since

$$||y_n - y_m|| = ||T(x_n - x_m)|| \ge \varepsilon ||x_n - x_m||$$

we get that the x_n are also Cauchy, and thus have a limit $x \in \mathfrak{X}$. Then

$$Tx = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} y_n = y$$

and T is surjective.

(1) \Longrightarrow (5) By hypothesis we have $I_{\mathfrak{X}} = T^{-1}T = TT^{-1}$; so

$$I_{\mathfrak{X}^*} = I_{\mathfrak{X}}^* = T^* (T^{-1})^* = (T^{-1})^* T^*$$

so T^* is invertible in $\mathcal{B}(X^*)$.

 $(5) \Longrightarrow (4)$ If T^* is invertible then T^* is bounded below (by $1 \Longrightarrow 3$); also $(1 \Longrightarrow 5)$ implies that T^{**} is invertible and thus bounded below. But $T = T^{**} \upharpoonright \mathfrak{X}$; so T is bounded below.

 $(4) \Longrightarrow (3)$ T is bounded below by hypothesis. Note that

$$(\operatorname{Ran} T)^{\perp} = \{ f \in \mathfrak{X}^* : \underbrace{f(Tx)}_{(T^*f)(x)} = 0 \text{ for all } x \in \mathfrak{X} \} = \{ f : T^*f = 0 \} = \ker(T^*) = \{ 0 \}$$

(since T^* is bounded below). By the Hahn-Banach theorem if $\overline{\operatorname{Ran} T}$ were a proper subspace then there would be $0 \neq f \in \mathfrak{X}^*$ such that $f \upharpoonright \overline{\operatorname{Ran} T} = 0$, a contradiction. So $\overline{\operatorname{Ran} T} = \mathfrak{X}$, and T has dense range. \Box Theorem 1.9

Corollary 1.10. If $T \in \mathcal{B}(\mathfrak{X})$ then $\sigma(T) = \sigma_{\pi}(T) \cup \gamma(T)$.

Proposition 1.11. Suppose \mathfrak{A} is a unital Banach algebra. If ||a|| < 1 then 1 - a is invertible.

Proof. If $x \in \mathbb{C}$ and |x| < 1 then

$$\frac{1}{1-x} = \sum_{n=1}^{\infty} x^n$$

If ||a|| < 1, define

$$b = \sum_{n=0}^{\infty} a^n$$

(where $a^0 = 1$). To see that this is well-defined, note that

$$\sum_{n=0}^{\infty} \|a^n\| \le \sum_{n=0}^{\infty} \|a\|^n < \infty$$

So the sequence

$$b_k = \sum_{n=0}^k a^n$$

is a convergent sequence, and b is well-defined in \mathfrak{A} as the limit of the b_k . Since multiplication is continuous we get that

$$(1-a)b = \lim_{k \to \infty} (1-a)b_k = \lim_{k \to \infty} (1-a)\sum_{n=0}^k a^n = \lim_{k \to \infty} (1-a^{k+1}) = 1$$

(since $||a^{k+1}|| \leq ||a||^{k+1} \to 0$). Also $(1-a)b_k = b_k(1-a)$, so b(1-a) = (1-a)b = 1, as desired. \square Proposition 1.11

Corollary 1.12. \mathfrak{A}^{-1} is open and $a \mapsto a^{-1}$ is a continuous antihomomorphism $\mathfrak{A}^{-1} \to \mathfrak{A}^{-1}$. (Note that \mathfrak{A}^{-1}) is a grape under multiplication and $(ab)^{-1} = b^{-1}a^{-1}$.)

Proof. The previous proposition says that $b_1(1) = \{a : ||1 - a|| < 1\} \subseteq \mathfrak{A}^{-1}$. Suppose $a \in \mathfrak{A}^{-1}$ and $b \in \mathfrak{A}$ with $||b|| < \frac{1}{||a^{-1}||}$. Then $a - b = a(1 - a^{-1}b)$ and $||a^{-1}b|| \le ||a^{-1}|| ||b|| < 1$. So $1 - a^{-1}b$ is invertible (in fact the inverse is

$$\sum_{n=0}^{\infty} (a^{-1}b)^n$$

). So a - b is invertible with

$$(a-b)^{-1} = (1-a^{-1}b)^{-1}a^{-1} = \sum_{n=0}^{\infty} (a^{-1}b)^n a^{-1}$$

So $b_{\|a^{-1}\|^{-1}}(a) \subseteq \mathfrak{A}^{-1}$, and \mathfrak{A}^{-1} is open. $(ab)^{-1} = b^{-1}a^{-1}$ shows that $a \mapsto a^{-1}$ is an antihomomorphism; bijectivity follows from $a = (a^{-1})^{-1}$. It remains to check continuity. If ||a|| < 1 then

$$\|(1-a)^{-1} - 1\| = \left\|\sum_{n=0}^{\infty} a^n - 1\right\| = \left\|\sum_{n=1}^{\infty} a^n\right\| \le \sum_{n=1}^{\infty} \|a\|^n = \frac{\|a\|}{1 - \|a\|}$$

As $a \to 0$ we have

$$\frac{\|a\|}{1-\|a\|} \to 0$$

(uniform estimate). Thus if $b_n \to 1$ then $a_n = 1 - b_n \to 0$, and $b_n^{-1} = (1 - a_n)^{-1} \to 1$. So inversion is continuous at 1. So if $a \in \mathfrak{A}^{-1}$ and $a_n \in \mathfrak{A}^{-1}$ converge to a, eventually $||a - a_n|| < \frac{1}{||a^{-1}||}$. Then write $a_n = a - b_n = a(1 - a^{-1}b_n)$ so $a^{-1}b_n \to 0$. Then $a_n^{-1} = (1 - a^{-1}b_n)^{-1}a^{-1} \to a^{-1}$, and inversion is indeed continuous. \Box Corollary 1.12

Proposition 1.13. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$. Then $\rho(a)$ is open and $\sigma(a)$ is a compact subset of $\{\lambda \in \mathbb{C} : |\lambda| \leq ||a|| \}$.

Proof. Note that

$$\rho(a) = \{ \lambda : \lambda 1 - a \text{ is invertible} \} = \varphi^{-1}(\underbrace{\mathfrak{A}^{-1}}_{\text{open}})$$

where $\varphi \colon \lambda \mapsto \lambda 1 - a$. Alternatively, if $\lambda_0 - a$ is invertible then

$$b_{\|(\lambda_0-a)^{-1}\|^{-1}}(\lambda_0-a)$$

is contained in \mathfrak{A}^{-1} and $\{\lambda : |\lambda - \lambda_0| < \|(\lambda_0 - a)^{-1}\|^{-1}\}$. So $\sigma(a) = \mathbb{C} \setminus \rho(a)$ is closed. If $|\lambda| > \|a\|$ then

$$\lambda - a = \lambda (1 - \frac{a}{\lambda})$$

But $\|\frac{a}{\lambda}\| = \frac{\|a\|}{|\lambda|} < 1$, so $1 - \frac{a}{\lambda}$ is invertible. So $\lambda - a$ is invertible; so $\sigma(a) \subseteq \{\lambda : |\lambda| \le \|a\|\}$; so it is closed and bounded, and thus compact.

TODO 1. Connectives?

 \Box Proposition 1.13

Example 1.14.

1. Let $\mathcal{H} = L^2(0,1), f \in \mathcal{H}$, and $M_f h = fh$ for $h \in L^2(0,1)$. *Claim* 1.15. $||M_f|| = ||f||_{\infty} = \mathrm{ess.\,sup}|f|.$

Proof. Note that

$$\begin{split} \|M_f\|^2 &= \sup\{\|fh\|_2^2 : \|h\|_2 \le 1\} \\ &= \sup\left\{\int |fh|^2 : \|h\|_2 \le 1\right\} \\ &\le \sup\left\{\int \|f\|_{\infty}^2 |h|^2 : \|h\|_2 \le 1\right\} \\ &= \|f\|_{\infty}^2 \sup\{\|h\|_2^2 : \|h\|_2 \le 1\} \\ &= \|f\|_{\infty}^2 \end{split}$$

So $||M_f|| \le ||f||_{\infty}$.

For $\varepsilon > 0$, let $A_{\varepsilon} = \{ x : |f(x)| > ||f||_{\infty} - \varepsilon \}$; then $m(A_{\varepsilon}) > 0$. Let $h_{\varepsilon} = \frac{\chi_{A_{\varepsilon}}}{m(A_{\varepsilon})^{\frac{1}{2}}}$. Then

$$\|h_{\varepsilon}\|_{2}^{2} = \int \frac{\chi_{A_{\varepsilon}}}{m(A_{\varepsilon})} = 1$$
$$|fh_{\varepsilon}| \ge (\|f\|_{\infty} - \varepsilon) \frac{\chi_{\varepsilon}}{m(A_{\varepsilon})^{\frac{1}{2}}}$$

 So

$$||fh_{\varepsilon}|| \ge (||f||_{\infty} - \varepsilon)||h_{\varepsilon}|| = ||f||_{\infty} - \varepsilon$$

and

$$||Mf|| \ge \sup_{\varepsilon > 0} ||f||_{\infty} - \varepsilon = ||f||_{\infty}$$

 \Box Claim 1.15

Note that $f \mapsto M_f$ is an algebra homomorphism of $L^{\infty}(0,1)$ into $B(L^2(0,1))$ which is isometric. What is M_f^* ? Well, for $h, k \in L^2(0,1)$ we have

$$\begin{split} M_f^*h,k\rangle &= \langle h,M_fk\rangle \\ &= \langle h,fk\rangle \\ &= \int h\overline{fk} \\ &= \int (\overline{f}h)\overline{k} \\ &= \langle \overline{f}h,k\rangle \\ &= \langle M_{\overline{f}}h,k\rangle \end{split}$$

So $M_f^* = M_{\overline{f}}$.

 $Claim \ 1.16. \ \sigma(M_f) = \sigma_{L^{\infty}}(f) = \mathrm{ess.\,ran}(f) = \{ \lambda : m(f^{-1}(b_{\varepsilon}(\lambda))) > 0 \ for \ all \ \varepsilon > 0 \}.$

<

Proof. Note that

$$\mathbb{C} \setminus \text{ess. ran}(f) = \{ \lambda : \exists \varepsilon > 0 \text{ such that } m(f^{-1}(b_{\varepsilon}(\lambda))) = 0 \}$$

If $\lambda \notin \text{ess. ran}(f)$ then there is ε such that $|f(x) - \lambda| > \varepsilon$ almost everywhere; so $\frac{1}{f-\lambda} \in L^{\infty}$ (since $\left|\frac{1}{f-\lambda}\right| \leq \frac{1}{\varepsilon}$ almost everywhere). So $f - \lambda$ is invertible in L^{∞} . Note that $I = M_1$ and $\lambda I - M_f = M_{\lambda-f}$. So

$$M_{\lambda-f}M_{\frac{1}{\lambda-f}} = M_{\frac{1}{\lambda-f}}M_{\lambda-f} = M_1 = I$$

So if $\lambda \notin \operatorname{ess.ran}(f)$ then $\lambda - f$ is invertible in L^{∞} and $M_{\lambda-f}$ is invertible in $\mathcal{B}(L^2(0,1))$. If $\lambda \in \operatorname{ess.ran}(f)$ then $\frac{1}{\lambda-f}$ is not essentially bounded and may take value $+\infty$ somewhere; so $\lambda - f$ is not invertible in L^{∞} .

For $\varepsilon > 0$ let $A_{\varepsilon} = \{x : |f(x) - \lambda| < \varepsilon\}$; then $m(A_{\varepsilon}) > 0$. Let $h_{\varepsilon} = \frac{\chi_{A_{\varepsilon}}}{m(A_{\varepsilon})^{\frac{1}{2}}}$. Then $|M_{\lambda-f}h_{\varepsilon}| = |(\lambda - f)h_{\varepsilon}| < \varepsilon|h_{\varepsilon}|$; so $||M_{\lambda-f}h_{\varepsilon}|| < \varepsilon$. So $M_{\lambda-f}$ is not bounded below, and $M_{\lambda-f}$ is not invertible. \Box Claim 1.16

Example 1.17. Consider M_x . We have $\overline{\text{Ran}(x)} = \text{ess. ran}(x) = [0, 1]$ and $\sigma_p(M_x) = \emptyset$. If $M_x h = xh = \lambda h$ then $(x - \lambda)h = 0$ almost everywhere; since $x - \lambda \neq 0$ almost everywhere, we get that h = 0 almost everywhere.

If $\lambda \in [0, 1]$, then $M_{\lambda - x}$ is not bounded below.

We have

$$\overline{\operatorname{Ran} M_{\lambda-x}} \supseteq \bigcup M_{\lambda-x} L^2([0,\lambda-\varepsilon] \cup [\lambda+\varepsilon,1])$$

Since $|\lambda - x| \ge \varepsilon$ on $B_{\varepsilon} = [0, \lambda - \varepsilon] \cup [\lambda + \varepsilon, 1]$ and $M_{\lambda - f} \colon L^2(B_{\varepsilon}) \to L^2(B_{\varepsilon})$, we get that $M_{\lambda - x}$ is invertible on $L^2(B_{\varepsilon})$ and $M_{\lambda - x}L^2(B_{\varepsilon}) = L^2(B_{\varepsilon})$. So

$$\overline{\operatorname{Ran} M_{\lambda-x}} \supseteq \bigcup_{\varepsilon > 0} L^2(B_{\varepsilon}) = L^2(0,1)$$

2. Let $\mathcal{H} = \ell_2$ with orthonormal basis $\{e_n : n \ge 0\}$. If $(d_n : n \in \mathbb{N})$ is bounded we let $D = \text{diag}((d_n : n \in \mathbb{N}))$ so

$$D\left(\sum a_n e_n\right) = \sum d_n a_n e_n$$

So $||D|| = \sup |d_n|$, and $\sigma(D) = \overline{\{d_n\}}$.

3. Let S be the unilateral shift on ℓ_2 so

$$S\sum_{n\geq 0}a_ne_n=\sum_{n\geq 0}a_ne_{n+1}$$

The adjoint has

$$\left\langle S^* \sum a_n e_n, \sum b_n e_n \right\rangle = \left\langle \sum a_n e_n, S \sum b_n e_n \right\rangle$$
$$= \left\langle \sum a_n e_n, \sum b_n e_{n+1} \right\rangle$$
$$= \sum_{n=0}^{\infty} a_{n+1} \overline{b_n}$$
$$= \left\langle \sum_{n=0}^{\infty} a_{n+1} e_n, \sum b_n e_n \right\rangle$$

 So

$$S^* e_n = \begin{cases} e_{n-1} & \text{if } n \ge 1\\ 0 & \text{if } n = 0 \end{cases}$$

is the backwards shift.

Proposition 1.18. If \mathcal{H} is a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$ then $\sigma(T^*) = \sigma(T)^*$ (where the latter is pointwise complex conjugation).

Proof. If $\lambda \notin \sigma(T)$ then $(\lambda I - T)(\lambda I - T)^{-1} = I = (\lambda I - T)^{-1}(\lambda I - T)$. Taking adjoints we find that $((\lambda I - T)^{-1})^*(\overline{\lambda}I - T^*) = I^* = I = (\overline{\lambda}I - T^*)((\lambda I - T)^{-1})^*$

so $(\overline{\lambda}I - T^*)^{-1} = ((\lambda I - T)^{-1})^*$. Since $T = T^{**}$ this is reversible. So $\rho(T^*) = \rho(T)^*$. \Box Proposition 1.18

Note that $S^*S = I$ but $SS^* = I - P_{\mathbb{C}e_0}$ where $P_{\mathbb{C}e_0} = e_0e_0^*$.

Notation 1.19. If $x, y \in \mathcal{H}$ then $xy^* \in \mathcal{B}(\mathcal{H})$ of rank 1 is given by $(xy^*)(z) = x(y^*z) = \langle z, y \rangle x$.

So S, S^* are not invertible. We have that S is injective but not surjective, with $\operatorname{Ran}(S) = (\mathbb{C}e_0)^{\perp}$; also S^* is surjective but not injective with $S^*e_0 = 0$, and $\ker(S^*) = \mathbb{C}e_0$. So $0 \in \sigma(S)$. We have $||S|| = ||S^*|| = 1$ and S is an isometry (||Sx|| = ||x|| for all x). So $\sigma(S) \subseteq \overline{\mathbb{D}} = \{\lambda : |\lambda| \leq 1\}$. If $S^*x = \lambda x$ where $x = (x_0, x_1, \ldots)$ then $x_{n+1} = \lambda x_n$ for all n; so $x = x_0(1, \lambda, \lambda^2, \ldots)$. Then

$$||x||_{2}^{2} = |x_{0}|^{2} \sum_{n=0}^{\infty} |\lambda|^{2n} = \begin{cases} \frac{|x_{0}|^{2}}{1-|\lambda|^{2}} < \infty & \text{if } |\lambda| < 1\\ 0 & \text{if } x_{0} = 0\\ \infty & \text{else} \end{cases}$$

So if $x_{\lambda} = (1, \lambda, \lambda^2, ...)$ for $|\lambda| < 1$ then $S^* x_{\lambda} = \lambda x_{\lambda}$. So $\sigma_p(S^*) = \mathbb{D}$. So $\sigma(S^*) = \overline{\mathbb{D}}$ and $\sigma(S) = \overline{\mathbb{D}}$. If $Sx = \lambda x$ for $\lambda \neq 0$ then $x_0 = 0 = x_1 = x_2 = \cdots$; so $\lambda \notin \sigma_p(S)$. Also $0 \notin \sigma_p(S)$ because S is isometric. So $\sigma_p(S) = \emptyset$.

Suppose $|\lambda| = 1$; let $x_n = \frac{1}{\sqrt{n}}(1, \lambda, \lambda^2, \dots, \lambda^{n-1}, 0, 0, 0 \dots)$. Then

$$S^*x_n = \frac{1}{\sqrt{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, 0, 0, \dots)$$

 \mathbf{SO}

$$S^*x_n - \lambda x_n = \frac{1}{\sqrt{n}}(0, \dots, 0, -\lambda^n, 0, 0, \dots)$$

and $||(S^* - \lambda)x_n|| = \frac{1}{\sqrt{n}} \to 0$, so $S^* - \lambda$ isn't bounded below. Also

$$Sx_n = \frac{1}{\sqrt{n}}(0, 1, \lambda, \lambda^2, \dots, \lambda^{n-2}, \lambda^{n-1}, 0, \dots)$$

and

$$\overline{\lambda}x_n \frac{1}{\sqrt{n}}(\overline{\lambda}, 1, \lambda, \dots, \lambda^{n-2}, 0, 0, \dots)$$

 \mathbf{so}

$$\left\| (S - \overline{\lambda}I)x_n \right\| = \left\| \frac{1}{\sqrt{n}} (-\overline{\lambda}, 0, \dots, 0, \lambda^{n-1}, 0, \dots) \right\| = \sqrt{\frac{2}{n}} \to 0$$

and $S - \overline{\lambda}$ is not bounded below.

Definition 1.20. Suppose $\Omega \subseteq \mathbb{C}$ is open and \mathfrak{X} is a Banach space. We say $f: \Omega \to \mathfrak{X}$ is *strongly analytic* on Ω if for all $z_0 \in \Omega$ there is r > 0 and $(x_n : n \ge 0)$ in \mathfrak{X} such that

$$f(z) = \sum_{n=0}^{\infty} x_n (z - z_0)^n$$

converges absolutely and uniformly on $\{z : |z - z_0| \le r\}$. We say f is *weakly analytic* if for all $\varphi \in \mathfrak{X}'$ we have that $\varphi \circ f : \Omega \to \mathbb{C}$ is analytic.

Exercise 1.21 (Homework). Weakly analytic implies strongly analytic. (I think he said something about Banach-Steinhaus?)

Theorem 1.22. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$.

1. For $\lambda, \mu \in \rho(a)$ we have

$$\frac{R(a,\lambda) - R(a,\mu)}{\lambda - \mu} = -R(a,\lambda)R(a,\mu)$$

- 2. $R(a, \lambda)$ is a strongly analytic function on $\rho(a)$.
- 3. $R'(a,\lambda) = -R(a,\lambda)^2$.
- 4. $||R(a,\lambda)|| \to 0 \text{ as } |\lambda| \to \infty.$

Proof.

1. We have $(R(a, \lambda) - R(a, \mu)(\lambda - a)(\mu - a)) = (\mu - a) - (\lambda - a) = \mu - \lambda$; multiply by $\frac{R(a, \lambda) - R(a, \mu)}{\lambda - \mu}$ to get the desired result.

2. If
$$\lambda_0 \in \rho(a)$$
 and $|\lambda - \lambda_0| < \frac{1}{\|(\lambda_0 - a)^{-1}\|}$.

$$\lambda - a = (\lambda_0 - a) - (\lambda_0 - \lambda)$$

= $(\lambda_0 - a)(1 - (\lambda_0 - \lambda)(\lambda_0 - a)^{-1})$
 $\|(\lambda_0 - \lambda)(\lambda_0 - a)^{-1}\| = |\lambda_0 - \lambda| \|(\lambda_0 - a)^{-1}\| < 1$

 So

$$(\lambda - a)^{-1} = \sum_{n=0}^{\infty} ((\lambda_0 - \lambda)(\lambda_0 - a)^{-1})^n (\lambda_0 - a)^{-1} = \sum_{n=0}^{\infty} (-1)^n (\lambda_0 - a)^{-n-1} (\lambda - \lambda_0)^n$$

If $0 < R < \frac{1}{\|(\lambda_0 - a)^{-1}\|}$ then if $|\lambda - \lambda_0| \le R$ then $\|(\lambda - \lambda_0)(\lambda_0 - a)^{-1}\| \le \frac{R}{\|(\lambda_0 - a)^{-1}\|} = r < 1$. So

$$\sum \| ((\lambda_1 - \lambda)(\lambda_0 - a)^{-1}) \| \| (\lambda_0 - a)^{-1} \| \le \sum r^n \| (\lambda_0 - a)^{-1} \| = \frac{\| (\lambda_0 - a)^{-1} \|}{1 - r} < \infty$$

So convergence is absolute and uniform (by M-test) on $\{\lambda : |\lambda - \lambda_0| \leq R\}$. So $R(a, \lambda)$ is strongly analytic.

3. We note that

$$R'(a,\mu) = \lim_{\lambda \to \mu} \frac{R(a,\lambda) - R(a,\mu)}{\lambda - \mu} = -R(a,\mu)^2$$

4. If $|\lambda| = 2||a||$ then $(\lambda - a)^{-1} = \lambda^{-1}(1 - \lambda^{-1}a)^{-1} = \lambda^{-1}\sum (\lambda^{-1}a)^n$. So

$$\|(\lambda - a)^{-1}\| \le \frac{1}{|\lambda|} \sum_{n=0}^{\infty} \|(\lambda^{-1}a)^n\| \le \frac{1}{|\lambda|} \sum \frac{1}{2^n} = \frac{2}{|\lambda|}$$

So $||R(a,\lambda)|| \leq \frac{2}{|\lambda|} \to 0$ as $|\lambda| \to \infty$.

 \Box Theorem 1.22

Theorem 1.23 (Liouville). If $f: \mathbb{C} \to \mathfrak{X}$ is a weakly analytic entire function which is bounded then it is constant.

Proof. For all $\varphi \in \mathfrak{X}'$ we have $\varphi \circ f : \mathbb{C} \to \mathbb{C}$ is entire and bounded. So $\varphi \circ f$ is constant by Liouville's theorem. By Hahn-Banach we have that f is constant: if $f(z_1) \neq f(z_2)$ then there would be φ such that $\varphi(f(z_1) - f(z_2)) \neq 0$. \Box Theorem 1.23

Theorem 1.24. Suppose \mathfrak{A} is a unital Banach algebra. Then $\sigma(a)$ is not empty.

Proof. If $\sigma(a) = \emptyset$ then $R(a, \lambda)$ is entire, strongly analytic, and has $||R(a, \lambda)|| \to 0$ as $|\lambda| \to \infty$, and is thus bounded. So by Liouville's theorem it is constant, a contradiction since $R(a, 0) = -a^{-1} \neq (1-a)^{-1} = R(a, 1)$.

If $K \subseteq \mathbb{C}$ is compact we let $\operatorname{Rat}(K)$ consist of rational functions $\frac{p(x)}{q(x)}$ with $p, q \in \mathbb{C}[x]$ such that the poles (zeroes of q) lie in $\mathbb{C} \setminus K$. If $\sigma(a) = K$ and $\frac{p}{q} \in \operatorname{Rat}(K)$ then we may write $q(x) = (x - \alpha_1) \cdots (x - \alpha_m)$ with each $\alpha_i \notin K$; then $q(a) = (a - \alpha_1 1) \cdots (a - \alpha_m 1)$, and $q(a)^{-1} = (a - \alpha_1 1)^{-1} \cdots (a - \alpha_m 1)^{-1}$ is well-defined because $\alpha_i \notin K = \sigma(a)$. We can then define $\frac{p}{q}(a) = p(a)q(a^{-1})$. This is a well-defined algebra homomorphism of $\operatorname{Rat}(\sigma(a))$ into \mathfrak{A} .

Theorem 1.25 (Spectral mapping theorem for rational functions). If $a \in \mathfrak{A}$ and $f = \frac{p}{q} \in \operatorname{Rat}(\sigma(a))$ then $\sigma(f(a)) = f(\sigma(a))$.

Proof. Write $f = \frac{p}{q}$ with

$$q(x) = \prod_{i=1}^{m} (x - \alpha_i)$$

If $\lambda \in \mathbb{C}$ then we may write $f(x) - \lambda 1 = \frac{p_1(x)}{q(x)}$ with

$$p_1(x) = \prod_{j=1}^n (x - \beta_j)$$

Then

$$f(a) - \lambda 1 = p_1(a)q(a)^{-1} = \prod_{j=1}^n (a - \beta_j 1)q(a)^{-1}$$

 So

 $\lambda \in \sigma(f(a)) \iff f(a) - \lambda 1 \text{ is not invertible}$ $\iff \exists j \text{ such that } a - \beta_j 1 \text{ is not invertible}$ $\iff \exists j \text{ such that } \beta_j \in \sigma(a)$

and

$$\lambda \in f(\sigma(a)) \iff \exists \beta \in \sigma(a) \text{ such that } f(\beta) - \lambda = 0$$
$$\iff \exists x \in \sigma(a) \text{ such that } \prod_{j=1}^{n} (x - \beta_j)q(x) = 0$$
$$\iff \exists j \text{ such that } x = \beta_j$$

TODO 2. Typo here?

But the last equivalences are the same.

Definition 1.26. The spectral radius of a is $spr(a) = sup\{ |\lambda| : \lambda \in \sigma(a) \}.$

Theorem 1.27. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$. Then

$$\operatorname{spr}(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}$$

Proof. By the spectral mapping theorem we have $\sigma(a^n) = \sigma(a)^n$. Since $\operatorname{spr}(a) \leq ||a||$ we have

$$spr(a) = spr(a^{n})^{\frac{1}{n}} \le ||a^{n}||^{\frac{1}{n}}$$

thus

$$\operatorname{spr}(a) \le \inf_{n \ge 1} \|a^n\|^{\frac{1}{n}}$$

Recall that $R(a, \lambda) = (\lambda - a)^{-1}$ is analytic on $\mathbb{C} \setminus \sigma(a)$. Hence for $|\lambda| > ||a||$ we have

$$R(a,\lambda) = \sum_{n=0}^{\infty} a^n \lambda^{-n-1}$$

TODO 3. why? Something about a power series around ∞ ?

If $\varphi \in \mathfrak{A}'$ then

$$\varphi(R(a,\lambda)) = \sum_{n=0}^{\infty} \varphi(a^n) \lambda^{-n-1}$$

is scalar-valued and analytic on $\rho(a) \supseteq \mathbb{C} \setminus \{\lambda : |\lambda| \leq \operatorname{spr}(a)\}$; note that this last set is the biggest disk around \mathbb{C} on which R is defined. In particular, convergence is absolute and uniform over $|\lambda| \geq r + \varepsilon$ (with $r = \operatorname{spr}(a)$). So

$$\sup_{n\geq 0} |\varphi(a^n)| (r+\varepsilon)^{-n-1} < \infty$$

(as the terms in the series approach 0). So

$$\sup_{n\geq 0} \left| \varphi \left(\left(\frac{a}{r+\varepsilon} \right)^n \right) \right| \le \frac{C(\varphi)}{r+\varepsilon}$$

for some constant $C(\varphi)$ (depending on φ). Hence by the uniform boundedness principle we have

$$\sup_{n\geq 0} \left\| \left(\frac{a}{r+\varepsilon} \right)^n \right\| = C' < \infty$$

Thus $||a^n|| \leq C'(r+\varepsilon)^n$, and hence $||a^n||^{\frac{1}{n}} \leq (C')^{\frac{1}{n}}(r+\varepsilon) \to r+\varepsilon$. So

$$\limsup_{n \to \infty} \|a^n\|^{\frac{1}{n}} \le r \le \inf \|a^n\|^{\frac{1}{n}}$$

TODO 4. port limsup typesetting to essential range?

So $r = \lim_{n \to \infty} ||a^n||^{\frac{1}{n}} = \inf ||a^n||^{\frac{1}{n}}$. \Box Theorem 1.27

Remark 1.28. $R(a, \lambda) = \sum_{n=0}^{\infty} a^n \lambda^{-n-1}$ converges absolutely and uniformly on $\{\lambda : |\lambda| \ge r + \varepsilon\}$. *Exercise* 1.29. Check the details of this.

Proposition 1.30 (Mazur). If \mathfrak{A} is a Banach field then $\mathfrak{A} = \mathbb{C}1$.

Proof. If $a \in \mathfrak{A}$ then $\sigma(a) \neq 0$. Pick $\lambda \in \sigma(a)$; then $a - \lambda 1$ is not invertible, so since \mathfrak{A} is a field we get that $a - \lambda 1 = 0$ and $a = \lambda 1$. \Box Proposition 1.30

 \Box Theorem 1.25

2 Riesz functional calculus

Suppose U is open and contains $\sigma(a)$. Suppose f is a holomorphic function on U and $\lambda \in \sigma(a)$. Cauchy's theorem tells us that to evaluate $f(\lambda)$ we can draw a rectifiable curve

TODO 5. rectifiable?

 \mathcal{C} such that $\mathcal{C} \subseteq U \setminus \sigma(a)$ and the winding number

$$\operatorname{ind}_{\mathcal{C}}(z) = \begin{cases} 0 & \text{if } z \in \mathbb{C} \setminus U \\ 1 & \text{if } z \in K \end{cases}$$

TODO 6. *K*?

Then by Cauchy's theorem we have

$$f(\lambda) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{z - \lambda} dz$$

for $z \in \sigma(a)$.

We can try to define f(a) by

$$f(a) = \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(z1-a)^{-1} dz$$

Note that $(z1-a)^{-1}$ is defined on $\mathbb{C} \setminus \sigma(a)$, and thus on \mathcal{C} ; also f(z) is defined and analytic on $U \supseteq \mathcal{C}$. So $f(z)(z-a)^{-1}$ is defined on $U \setminus \sigma(a)$; it is analytic, and thus continuous.

Theorem 2.1. Suppose \mathfrak{X} is a Banach space; suppose \mathcal{C} is a rectifiable curve in \mathbb{C} and $f: \mathcal{C} \to \mathfrak{X}$ is continuous. Then

$$\int_{\mathcal{C}} f(z) \mathrm{d}z$$

makes sense as a Riemann integral.

Proof. Parametrize C by arc length s for $0 \le s \le L$. Take partitions Δ consisting of $0 = s_0 < s_1 < \cdots < s_n = L$ and Ξ consisting of $\xi_i \in \varphi([s_{i-1}, \ldots, s_i])$ for $1 \le i \le n$. If $\varphi: [0, L] \to C$ is our parametrization then our Riemann sum is

$$J(\Delta, \Xi) = \sum_{i=1}^{n} f(\xi_i)(\varphi(s_i) - \varphi(s_{i-1}))$$

We define

$$\operatorname{mesh}(\Delta) = \max_{1 \le i \le n} (s_i - s_{i-1})$$

Claim 2.2. $\lim_{\text{mesh}(\Delta)\to 0} J(\Delta, \Xi)$ converges; we call this limit $\int_{\mathcal{C}} f(z) dz$.

TODO 7. I believe this is a limit of nets?

Proof. Suppose $\varepsilon > 0$. By continuity of f there is $\delta > 0$ such that $|s - t| < \delta$ implies $||f(\varphi(s)) - f(\varphi(t))|| < \varepsilon$. Suppose (Δ_1, Ξ_1) and (Δ_2, Ξ_2) both have mesh $< \delta$. Let $\Delta = \Delta_1 \cup \Delta_2 = \{0 = s_0 < s_1 \cdots < s_n = L\}$, and for $p \in \{1, 2\}$ write $\Delta_p = \{s_i : i \in J_p\}$ with $\{0, n\} \subseteq J_p \subseteq \{0, \ldots, n\}$. Let $\Xi = \{\varphi(s_i) : 1 \le i \le n\}$. We compare $J(\Delta_p, \Xi_p \text{ to } J(\Delta, \Xi)$.

$$J(\Delta,\Xi) - J(\Delta_p,\Xi_p) = \sum_{i=1}^n f(\varphi(s_i))(\varphi(s_i) - \varphi(s_{i-1})) - \sum f(\xi_j)(\varphi(s_i) - \varphi(s_{i-1}))$$

where $j \in J_p$ satisfies $[s_{i-1}, s_i] \subseteq [s_j, s_{j'}]$ with $[s_j, s_{j'}]$ an interval in Δ_p . Hence

$$\begin{aligned} \|J(\Delta,\Xi) - J(\Delta_p,\Xi_p)\| &= \left\| \sum_{i=1}^n f(\varphi(s_i))(\varphi(s_i) - \varphi(s_{i-1})) - \sum f(\xi_j)(\varphi(s_i) - \varphi(s_{i-1})) \right\| \\ &\leq \sum_{i=1}^n \|f(\varphi(s_i)) - f(\xi_j)\| |\varphi(s_i) - \varphi(s_{i-1})| \text{ (note } \varphi(s_i) \text{ and } \xi_j \text{ are within } \delta \text{ of each other}) \\ &< \sum_{i=1}^n \varepsilon(s_i - s_{i-1}) \\ &= \varepsilon L \end{aligned}$$

So $||J(\Delta_1, \Xi_1) - J(\Delta_2, \Xi_2)|| < (2L)\varepsilon$. So the Riemann sums are Cauchy, and thus converge. \Box TODO 7 \Box Theorem 2.1

Theorem 2.3 (Riesz functional calculus). Suppose \mathfrak{A} a unital Banach algebra and $a \in \mathfrak{A}$. If $f \in Hol(U)$ with $U \subseteq \mathbb{C}$ an open set containing $\sigma(a)$, we define

$$f(a) = \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(z-a)^{-1} \mathrm{d}z$$

where C is a curve in $U \setminus \sigma(a)$ such that

$$\operatorname{ind}_{\mathcal{C}}(z) = \begin{cases} 1 & \text{if } z \in \sigma(a) \\ 0 & \text{if } z \notin U \end{cases}$$

Then

- 1. This definition is independent of the choice of C; hence f(a) is well-defined.
- 2. (f+g)(a) = f(a) + g(a) and $(\lambda f)(a) = \lambda \cdot f(a)$.
- 3. (fg)(a) = f(a)g(a). (Hence, combining all the above, we get that f → f(a) is a homomorphism.)
 4. If

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

is analytic in a disk $D_R(z_0) \supseteq \sigma(a)$ then

$$f(a) = \sum_{n=0}^{\infty} a_n (a - z_0 1)^n$$

Proof.

1. Suppose C_1, C_2 are permissable curves. Then $C = C_1 - C_2$ (i.e. union of C_1 and C_2 with the orientation of C_2 reversed) is a curve such that

$$\operatorname{ind}_{\mathcal{C}}(z) = \begin{cases} 0 & \text{if } z \in \mathbb{C} \setminus U \\ 0 & \text{if } z \in \sigma(a) \end{cases}$$

So $f(z)(z-a)^{-1}$ is analytic on $U \setminus \sigma(a)$, and $\mathcal{C} \subseteq U \setminus \sigma(a)$; so \mathcal{C} is homologous to zero in $U \setminus \sigma(a)$. Taking $\varphi \in \mathfrak{A}'$ we have

$$\varphi\left(\frac{1}{2\pi i}\int_{\mathcal{C}}f(z)(z-a)^{-1}\mathrm{d}x\right) = \frac{1}{2\pi i}\int_{\mathcal{C}}\underbrace{f(z)\varphi((z-a)^{-1})}_{\text{scalar-valued and analytic in }U\setminus\sigma(a)}\mathrm{d}z$$
$$= 0$$

by Cauchy's theorem. But this holds for all $\varphi \in \mathfrak{A}'$. So by the Hahn-Banach theorem we get

$$0 = \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(z-a)^{-1} dz = \frac{1}{2\pi i} \int_{\mathcal{C}_1} f(z)(z-a)^{-1} dz - \frac{1}{2\pi i} \int_{\mathcal{C}_2} f(z)(z-a)^{-1} dz$$

- 2. If $f \in Hol(U)$ and $g \in Hol(V)$ with $U, V \supseteq \sigma(a)$ then $f, g \in Hol(U \cap V)$; so one can choose \mathcal{C} to work for both f and g. The claim then follows from linearity of the integral.
- 3. Suppose $f, g \in \text{Hol}(U)$. Choose a curve \mathcal{C} as required. Let $V = \{\lambda : \text{ind}_{\mathcal{C}}(\lambda) = 1\} \supseteq \sigma(a)$; so V is open. Choose \mathcal{C}_2 in $V \setminus \sigma(a)$ satisfying the requirements. In particular if $\lambda \in \mathcal{C}_2$ then $\text{ind}_{\mathcal{C}_1}(\lambda) = 1$ (since $\mathcal{C}_2 \subseteq V$) and if $\lambda \in \mathcal{C}_1$ then $\text{ind}_{\mathcal{C}_2}(\lambda) = 0$ (since $\mathcal{C}_1 \subseteq \mathbb{C} \setminus V$). Then

$$\begin{split} f(a)g(a) &= \frac{1}{2\pi i} \int_{\mathcal{C}_1} f(z)(z-a)^{-1} dz \frac{1}{2\pi i} \int_{\mathcal{C}_2} g(w)(w-a)^{-1} dw \\ &= \frac{1}{(2\pi i)^2} \int_{\mathcal{C}_1} \int_{\mathcal{C}_2} f(z)g(w)R(a,z)R(a,w) dz dw \\ &= \frac{1}{(2\pi i)^2} \int_{\mathcal{C}_1} \int_{\mathcal{C}_2} f(z)g(w)\frac{R(a,z)-R(a,w)}{w-z} dz dw \text{ (by Theorem 1.22)} \\ &= \frac{1}{(2\pi i)^2} \int_{\mathcal{C}_1} \int_{\mathcal{C}_2} f(z)g(w)\frac{R(a,z)}{w-z} dz dw - \frac{1}{(2\pi i)^2} \int_{\mathcal{C}_1} \int_{\mathcal{C}_2} f(z)g(w)\frac{R(a,w)}{w-z} dz dw \\ &= \frac{1}{2\pi i} \int_{\mathcal{C}_1} f(z)R(a,z) \left(\underbrace{\frac{1}{2\pi i} \int_{\mathcal{C}_2} \frac{g(w)}{w-z} dw}_{=0 \text{ since ind}_{\mathcal{C}_2}(\frac{z}{z})=0}\right) dz + \frac{1}{2\pi i} \int_{\mathcal{C}_2} g(w)R(a,w) \left(\underbrace{\frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(z)}{z-w} dz}_{=f(w) \text{ since ind}_{\mathcal{C}_1}(\frac{z}{w})=1}\right) dw \\ &= \frac{1}{2\pi i} \int_{\mathcal{C}_2} g(w)f(w)(w-a)^{-1} dw \\ &= (fg)(a) \end{split}$$

TODO 8. Typeset above better

4. Let $C = z_0 + r \exp(i\theta)$ for $0 \le \theta \le 2\pi$ and r < R be sufficiently large to enclose $\sigma(a)$. Then the Taylor expansion

$$f(z) = \sum_{n \ge 0} a_n (z - z_0)^n$$

converges absolutely and uniformly on

TODO 9. *in?*

Then

$$f(a) = \frac{1}{2\pi i} \int_{\mathcal{C}} \sum_{n=0}^{\infty} a_n (z - z_0)^n (z - a)^{-1} dz$$
$$= \sum_{n=0}^{\infty} a_n \frac{1}{2\pi i} \int_{\mathcal{C}} (z - z_0)^n (z - a)^{-1} dz$$
$$= \sum_{n=0}^{\infty} a_n (a - z_0)^n$$

as desired.

 \Box Theorem 2.3

Corollary 2.4 (Spectral mapping theorem for analytic functions). If $f \in Hol(U)$ with $U \supseteq \sigma(a)$ then $\sigma(f(a)) = f(\sigma(a))$.

Proof.

(\subseteq) If $\lambda \notin f(\sigma(a))$ then $f(z) - \lambda \neq 0$ on $\sigma(a)$. Let $V = \{z \in U : f(z) \neq \lambda\}$; so V is an open set containing $\sigma(a)$, and

$$g(z) = \frac{1}{\lambda - f(z)}$$

is analytic on V. But then $g(z)(\lambda - f(z)) = 1$, so $g(a)(\lambda - f(a)) = 1 = (\lambda - f(a))g(a)$; so $\lambda \notin \sigma(f(a))$.

 $(\supseteq) \text{ If } \lambda \in f(\sigma(a)) \text{ then there is } w \in \sigma(a) \text{ such that } f(w) = \lambda. \text{ So } \lambda - f(z) = (z - w)g(z) \text{ for some } g \in \text{Hol}(U);$ so $\lambda - f(a) = \underbrace{(a - w)}_{\text{not invertible}} g(a), \text{ and } \lambda - f(a) \text{ is not invertible. So } \lambda \in \sigma(f(a)). \square \text{ Corollary 2.4}$

Example 2.5.

1. Let $\mathcal{H} = \ell_2$ with orthonormal basis $\{e_n\}_{n \ge 0}$. Let $D \in \mathcal{B}(\ell_2)$ be diag (d_0, d_1, \ldots) ; i.e. $De_n = d_n e_n$. Then $\sigma(D) = \overline{\{d_n : n \in \mathbb{N}\}}$. Suppose $f \in \operatorname{Hol}(U)$ with $U \supseteq \sigma(D)$. Find \mathcal{C} . Note that if $z \notin \sigma(D)$ then $zI - D = k \operatorname{diag}\left(\frac{1}{z - d_n} : n \in \mathbb{N}\right)$. Then

$$f(D)e_n = \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(zI - D)^{-1} e_n dz$$
$$= \frac{1}{2\pi i} \int_{\mathcal{C}} f(z) \frac{1}{z - d_n} e_n dz$$
$$= \frac{1}{2\pi i} \left(\int_{\mathcal{C}} f(z) \frac{1}{z - d_n} dz \right) e_n$$
$$= f(d_n)e_n$$

So $f(D) = \operatorname{diag}(f(d_n) : n \in \mathbb{N}).$

2. Suppose $A \in \mathcal{M}_n$. By Jordan form theorem A is similar to a direct sum of Jordan blocks

 $A \sim J_1 \oplus \dots \oplus J_p$

with

$$J_{i} = \begin{pmatrix} \lambda_{i} & 1 & 0 & \cdots & 0\\ 0 & \lambda_{i} & 1 & & 0\\ \vdots & & \ddots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_{i} & 1\\ 0 & 0 & \cdots & 0 & \lambda_{i} \end{pmatrix}_{k_{i} \times k_{i}}$$

with $\sum_{i=1}^{p} k_i = n$.

Suppose $f \in Hol(U)$ with $U \supseteq \sigma(A) = \{\lambda_1, \ldots, \lambda_p\}$. Note also that $\sigma(J_i) = \{\lambda_i\}$. Since f is analytic near λ_i we get

$$f(z) = \sum_{m=0}^{\infty} a_m (z - \lambda_i)^m$$

on a neighborhood of λ_i . By last item of previous theorem we have

 So

$$f(A) = f(S(\sum^{\oplus} J_i)S^{-1}) = Sf(\sum^{\oplus} J_i)S^{-1} = S(\sum^{\oplus} f(J_i)S^{-1})$$

If $\sigma(A) = \{\lambda_1, \ldots, \lambda_p\}$ with

 $K_i = \max\{k : A \text{ has a Jordan block of size } k \text{ with eigenvalue } \lambda_i\}$

then dim $(\ker(A - \lambda_i I)^s)$ stops increasing at K_i . Write

$$f(z) = \underbrace{p(z)}_{\text{degree} < n} + \underbrace{\left(\prod_{i=1}^{p} (z - \lambda_i)^{K_i}\right)}_{\text{minimal polynomial of } A} g(z)$$

Then f(A) = p(A).

Theorem 2.6. Suppose $T \in \mathcal{B}(\mathfrak{X})$. Suppose $\sigma(T) = \sigma_1 \sqcup \sigma_2$ where the σ_i are disjoint compact sets. Then there are idempotents $E_1, E_2 \in \mathcal{B}(\mathfrak{X})$ such that $E_1 + E_2 = I$ and $E_iT = TE_i$. We may also demand that the $\mathcal{M}_i = \operatorname{Ran}(E_i)$ are complementary subspace (i.e. $\mathcal{M}_1 \cap \mathcal{M}_2 = \{0\}$ and $\mathcal{M}_1 + \mathcal{M}_2 = \mathfrak{X}$), $T\mathcal{M}_i \subseteq \mathcal{M}_i$ (the \mathcal{M}_i are invariant subspaces for T), and if $T_i = T \upharpoonright \mathcal{M}_i \in \mathcal{B}(\mathcal{M}_i)$ then $\sigma(T_i) = \sigma_i$.

Proof. Find open $U = U_1 \sqcup U_2$ with $U_i \supseteq \sigma_i$ and $U_1 \cap U_2 = \emptyset$. Let $f \in Hol(U)$ be given by

$$z \mapsto \begin{cases} 1 & \text{if } z \in U_1 \\ 0 & \text{if } z \in U_2 \end{cases}$$

Let $E_1 = f(T)$ and $E_2 = I - E_1 = g(T)$ where g = 1 - f. Then $f = f^2$ and $g = g^2$, so $E_1 = E_1^2$ and $E_2 = E_2^2$; also $E_1 + E_2 = I$. Then since f(T)T = Tf(T) we get $E_1T = TE_1$. Let $\mathcal{M}_i = \text{Ran}(E_i) = \text{ker}(E_{1-i})$. Then

$$E_1 E_2 = (fg)(T) = 0(T) = 0$$

Also $\operatorname{Ran}(E_1) \subseteq \operatorname{ker}(E_2)$ and $\operatorname{Ran}(E_2) \subseteq \operatorname{ker}(E_1)$; furthermore if $x \in \operatorname{ker}(E_2)$ then $x = Ix = (E_1 + E_2)x = E_1x$, so $\operatorname{ker}(E_2) \subseteq \operatorname{Ran}(E_1)$.

Thus the \mathcal{M}_i are closed because ker (E_i) are closed. If $x \in \mathcal{M}_1 \cap \mathcal{M}_2$ then $x = E_1 x = E_1(E_2 x) = 0$. If $x \in \mathfrak{X}$ then $x = E_1 x + E_2 x \in \mathcal{M}_1 + \mathcal{M}_2$; so $\mathcal{M}_1 + \mathcal{M}_2 = \mathfrak{X}$. Also $T(E_1 \mathfrak{X}) = E_1 T \mathfrak{X} \subseteq E_1 \mathfrak{X}$, so it's invariant.

Claim 2.7. $\sigma(T_1) = \sigma_1$.

Proof. If $\lambda \in \rho(T)$ then $I = (\lambda I - T)^{-1}(\lambda I - T)$. So

$$I_{\mathcal{M}_1} = I \upharpoonright \mathcal{M}_1 = (\lambda I - T)^{-1} (\lambda I - T) \upharpoonright \mathcal{M}_1 = \underbrace{((\lambda I - T)^{-1} \upharpoonright \mathcal{M}_1)}_{\text{maps } \mathcal{M}_1 \text{ into } \mathcal{M}_1} \underbrace{(\lambda I_{\mathcal{M}_1} - T_1)}_{\text{range} \subseteq \mathcal{M}_1}$$

and likewise with right-multiplication. So $\lambda \in \rho(T_i)$.

If $\lambda \notin \sigma_1$ then $\frac{1}{\lambda-z}$ is analytic on a neighbourhood U_1 of σ_1 (and we may assume $\overline{U_1} \cap \sigma_2 = \emptyset$). Let

$$g(z) = \begin{cases} \frac{1}{\lambda - z} & \text{if } z \in U_1\\ 0 & \text{if } z \in U_2 \end{cases}$$

Then $g(T)(\lambda I - T) = f(T)$ where

$$f(z) = \begin{cases} 1 & \text{if } z \in U_1 \\ 0 & \text{if } z \in U_2 \end{cases}$$

So $I_{\mathcal{M}_1} = g(T)(\lambda I - T) \upharpoonright \mathcal{M}_1 = (\lambda I - T)g(T) \upharpoonright \mathcal{M}_1$. So $\lambda \in \rho(T_1)$, and $\sigma(T_1) \subseteq \sigma_1$; similarly we get $\sigma(T_2) \subseteq \sigma_2$.

Subclaim 2.8. $\sigma(T_1 \oplus T_2) = \sigma(T_1) \cup \sigma(T_2).$

Proof. Indeed, we have

$$\lambda I - (T_1 \oplus T_2) = (\lambda I_{\mathcal{M}_1} - T_1) \oplus (\lambda I_{\mathcal{M}_2} - T_2)$$

If $\lambda \in \rho(T_1) \cap \rho(T_2)$ then

$$(\lambda - T)^{-1} = (\lambda - T_1)^{-1} \oplus (\lambda - T_2)^{-1}$$

If $\lambda \in \sigma(T_1)$ then $\lambda I_{\mathcal{M}_1} - T_1$ either is not bounded below, in which case $\lambda - T$ is not bounded below, or has range not dense in \mathcal{M}_1 , in which case $\overline{\operatorname{Ran}(T)} \subseteq \overline{\mathcal{M}_2 + \operatorname{Ran}(\lambda - T_1)}$ is proper. So $\sigma(T_1) \subseteq \sigma(T)$. \Box Subclaim 2.8

 \Box Claim 2.7

 \Box Theorem 2.6

Suppose \mathcal{H} is a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$. Suppose $U \supseteq \sigma(a)$ is open and $f \in \operatorname{Hol}(U)$. What is $f(T)^*$? Well $\sigma(T^*) = \sigma(T)^*$ (complex conjugate) so $U^* \supseteq \sigma(T^*)$. Let $f^*(z) = \overline{f(z)}$ for $z \in U^*$; so $f^* \in \operatorname{Hol}(U^*)$.

TODO 10. I think $f^*(z)$ should be $\overline{f(\overline{z})}$.

So $\sigma(T_1) = \sigma_1$ and $\sigma(T_2) = \sigma_2$.

Claim 2.9. $f(T)^* = f^*(T^*)$.

Proof. For $x, y \in \mathcal{H}$ we have

$$\begin{split} \langle f(T)^*x, y \rangle &= \langle x, f(T)y \rangle \\ &= \left\langle x, \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(z-T)^{-1} \mathrm{d} z \cdot y \right\rangle \\ &= \overline{\left\langle \frac{1}{2\pi i} \int_{\mathcal{C}} f(z)(z-T)^{-1}y \mathrm{d} z, x \right\rangle} \\ &= \overline{\frac{1}{2\pi i} \int_{\mathcal{C}} f(z) \langle (z-T)^{-1}y, x \rangle \mathrm{d} z} \\ &= \frac{-1}{2\pi i} \int_{\mathcal{C}^*} f^*(w) \overline{\langle (\overline{w} - T)^{-1}y, x \rangle} \mathrm{d} w \\ &= \frac{1}{2\pi i} \int_{\mathcal{C}^*} f^*(w) \langle x, (\overline{w} - T)^{-1}y \rangle \mathrm{d} w \\ &= \frac{1}{2\pi i} \int_{\mathcal{C}^*} f^*(w) \langle (w - T^*)^{-1}x, y \rangle \mathrm{d} w \\ &= \langle f^*(T^*)x, y \rangle \end{split}$$

Indeed, in general we have

$$\overline{\int_{\mathcal{C}} g(z) dz} = \lim \overline{\sum g(\xi_i)(z_i - z_{i-1})}$$

$$= \lim \sum \overline{g(\xi_i)}(\overline{z_i} - \overline{z_{i-1}})$$

$$= \lim \sum g^*(\overline{\xi_i})(\overline{z_i} - \overline{z_{i-1}}) \text{ (where } g^*(z) = \overline{g(\overline{z})})$$

$$= \int_{\overline{\mathcal{C}}} g^*(w) dw$$

$$= -\int_{\mathcal{C}^*} g^*(w) dw$$

where $C^* = -\overline{C}$ (necessary since \overline{C} has winding number -1 around $\sigma(T^*)$.)

\Box Claim 2.9

Proposition 2.10 (Relative spectra). Suppose $1 \in \mathfrak{A} \subseteq \mathfrak{B}$ are two Banach algebras with the same unit. Then if $a \in \mathfrak{A}$ then $\sigma_{\mathfrak{A}}(a) \supseteq \sigma_{\mathfrak{B}}(a)$ and $\partial \sigma_{\mathfrak{A}}(a) \subseteq \partial \sigma_{\mathfrak{B}}(a)$. (Here ∂ denotes the boundary.)

Example 2.11. Consider $A(\mathbb{D})$ with $X \subseteq \overline{\mathbb{D}}$ compact with $\mathbb{T} \subseteq X$; then we get an embedding $A(\mathbb{D}) \stackrel{\alpha_x}{\longrightarrow} C(X)$ given by $f \mapsto f \upharpoonright X$. Since $\mathbb{T} \subseteq X$ we have

$$\|\alpha_X(f)\| = \sup_{x \in X} |f(x)| = \|f\|_{A(\mathbb{D})}$$

We can thus consider $A(\mathbb{D}) \subseteq C(X)$. Consider $z \in A(\mathbb{D})$; we have $\sigma_{A(\mathbb{D})}(z) = \operatorname{Ran}(z) = \overline{\mathbb{D}}$, and $\sigma_{C(X)}(z) = \operatorname{Ran}(\alpha_X(z)) = X$.

We will need a definition before proving Proposition 2.10.

Definition 2.12. We say $a \in \mathfrak{A}$ is a right (left, two-sided) topological divisor of zero if there are $x_n \in \mathfrak{A}$ with $||x_n|| = 1$ and $||x_na|| \to 0$.

Claim 2.13. If $\lambda - a$ is a right or left topological divisor of zero then it isn't invertible (so $\lambda \in \sigma(a)$).

Proof. If $(\lambda - a)^{-1}$ exists then $x(\lambda - a)(\lambda - a)^{-1} = x$; so $||x|| \le ||x(\lambda - a)|| ||(\lambda - a)^{-1}||$, and

$$\frac{\|x\|}{\|(\lambda - a)^{-1}\|} \le \|x(\lambda - a)\|$$

So $\lambda - a$ is not a right topological zero divisor. The case of left topological zero divisors is similar. \Box Claim 2.13 **Claim 2.14.** If $\lambda \in \partial \sigma_{\mathfrak{A}}(a)$ then $\lambda - a$ is a two-sided topological divisor of zero.

Proof. Since $\lambda \in \partial \sigma_{\mathfrak{A}}(a)$ there are $\lambda_n \in \rho_{\mathfrak{A}}(a)$ such that $\lambda_n \to \lambda$. Then

$$(\lambda_n - a)^{-1}(\lambda - a) = (\lambda_n - a)^{-1}(\lambda_n - a + \lambda - \lambda_n) = 1 + (\lambda_n - a)^{-1}(\lambda - \lambda_n)$$

is not invertible. So by Proposition 1.11 we get that

$$\|(\lambda - \lambda_n)(\lambda_n - a)^{-1}\| \ge 1$$

and

$$\|(\lambda_n - a)^{-1}\| \ge \frac{1}{|\lambda - \lambda_n|}$$

Aside 2.15. This shows that

$$\|\mu - a)^{-1}\| \ge \frac{1}{\operatorname{dist}(\mu, \sigma(a))}$$

which is occasionally useful to know.

Let

$$x_n = \frac{(\lambda_n - a)^{-1}}{\|(\lambda_n - a)^{-1}\|}$$

Then

$$\|x_n(\lambda - a)\| = \left\|\frac{1 + (\lambda_n - a)^{-1}(\lambda - \lambda_n)}{\|(\lambda_n - a)^{-1}\|}\right\| \le \frac{1}{\|(\lambda_n - a)^{-1}\|} + |\lambda - \lambda_n| \le 2|\lambda - \lambda_n| \to 0$$

and $\lambda - a$ is a right topological divisor of zero. Since $(\lambda - a)x_n = x_n(\lambda - a)$ it is also a left topological divisor of zero.

We are now ready to prove Proposition 2.10.

Proof. If $\lambda \in \rho_{\mathfrak{A}}(a)$ then we have some $(\lambda - a)^{-1} \in \mathfrak{A} \subseteq \mathfrak{B}$; so $\lambda \in \rho_{\mathfrak{B}}(a)$. So $\sigma_{\mathfrak{B}}(a) \subseteq \sigma_{\mathfrak{A}}(a)$.

If $\lambda \in \partial \sigma_{\mathfrak{A}}(a)$ then $\lambda - a$ is a right topological divisor of zero by the claim. So it is a right topological divisor of zero in \mathfrak{B} as well (using the same x_n). So $\lambda \in \sigma_{\mathfrak{B}}(a)$. But there are $\lambda_n \in \rho_{\mathfrak{A}}(a) \subseteq \rho_{\mathfrak{B}}(a)$ with $\lambda_n \to \lambda$. So $\lambda \in \partial \sigma_{\mathfrak{B}}(a)$. \Box Proposition 2.10

3 Commutative Banach algebras

Let \mathfrak{A} be a commutative Banach algebra with unity.

Definition 3.1. A linear functional $\varphi \colon \mathfrak{A} \to \mathbb{C}$ is *multiplicative* if $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in \mathfrak{A}$ and $\varphi(1) = 1$.

Proposition 3.2. If φ is a multiplicative linear functional on \mathfrak{A} then $\|\varphi\| = 1$ (and so φ is continuous).

Proof. Since $\varphi(1) = 1$ we have $\|\varphi\| \ge \frac{|1|}{\|1\|} = 1$. Suppose we had $\|\varphi\| > 1$. Then there is $x \in \mathfrak{A}$ with $\|x\| \le 1$ and $|\varphi(x)| > 1$. Let $a = \frac{x}{\varphi(x)}$. So $\varphi(a) = 1$ and $\|a\| \le \frac{1}{|\varphi(x)|} < 1$. Let

$$b = \sum_{n=1}^{\infty} a^n \in \mathfrak{A}$$

Note that v = a + ab; so $\varphi(b) = \varphi(a) + \varphi(a)\varphi(b) = 1 + \varphi(b)$, and 0 = 1, a contradiction. So $\|\varphi\| = 1$. \Box Proposition 3.2 If φ is a multiplicative linear functional then ker (φ) is a closed ideal of codimension 1; so ker (φ) is a maximal ideal. Conversely, suppose M is a maximal ideal; so $1 \notin M$ and $\mathfrak{A}^{-1} \cap M = \emptyset$. So $b_1(1) \cap M = \emptyset$.

The closure of an ideal is a (proper) ideal; in particular \overline{M} is also an ideal. Indeed, if $m \in \overline{M}$ then there are $m_n \in M$ with $m_n \to m$; so if $a \in \mathfrak{A}$ then

$$am = \lim_{n \to M} \underbrace{am_n}_{\in M} \in \overline{M}$$

and M is a subspace, so \overline{M} is a subspace. It is proper since $\overline{M} \cap b_1(1) = M \cap b_1(1) = \emptyset$.

But $M \subseteq \overline{M}$ and M is maximal; so $M = \overline{M}$ and M is closed. So \mathfrak{A}/M is a field.

Aside 3.3. If \mathfrak{A} is a Banach algebra and J is a closed two-sided ideal then \mathfrak{A}/J is an algebra and a Banach space. Also if $a, b \in \mathfrak{A}$ and we let $\dot{a} = a + J$ and $\dot{b} = b + J$ then

$$\|\dot{a}\dot{b}\| = \|(a+J)(b+J)\| \le \|(a+\underbrace{j}_{\in J})(b+\underbrace{k}_{\in J})\| \le \inf_{j,k\in J} \|a+j\| \|b+k\| = \|\dot{a}\| \|\dot{b}\|$$

TODO 11. Another inf somewhere?

So \mathfrak{A}/J is a Banach algebra.

So \mathfrak{A}/M is a Banach field; so by Proposition 1.30 we get an isomorphism $\psi \colon \mathfrak{A}/M \cong \mathbb{C}$. So M has codimension 1. Since ψ is an isomorphism we have $\psi(1) = 1$. Define $\varphi_M \colon \mathfrak{A} \to \mathbb{C}$ by

Then φ is multiplicative.

We have thus shown most of the following:

Theorem 3.4. There is a bijective correspondence between multiplicative linear functionals on \mathfrak{A} and maximal ideals. Moreover, this set is non-empty.

Proof. We have seen that the map $\varphi \mapsto \ker(\varphi)$ maps multiplicative linear functionals to maximal ideals; we have seen that this has inverse taking M to the above composition φ_M .

Claim 3.5.

TODO 12. *unlhd? lhd? trianglelefteq?*

If $I \triangleleft \mathfrak{A}$ is a proper ideal then there is a maximal ideal $M \supseteq I$.

Proof. We use Zorn's lemma. Consider the set \mathcal{J} of proper ideals $J \triangleleft \mathfrak{A}$ such that $J \supseteq I$. If \mathcal{C} is some totally ordered (by \subseteq) subset of \mathcal{J} then

$$J' = \bigcup_{J \in \mathcal{C}} J$$

is an ideal. It is proper since $1 \notin J$ for all $J \in \mathcal{C}$, so $1 \notin J'$. So J' is an upper bound for \mathcal{C} in \mathcal{J} . So by Zorn's lemma \mathcal{J} contains a maximal element M, which is a maximal ideal. \Box Claim 3.5

But $\{0\}$ is a proper ideal. So there is a maximal ideal.

Definition 3.6. The collection $\mathcal{M}_{\mathfrak{A}}$ of all multiplicative linear functionals on \mathfrak{A} is considered as a subset of \mathfrak{A}' endowed with the weak* topology; we call this the *maximal ideal subspace* of \mathfrak{A} .

Definition 3.7. The *Gelfand transform* is the homomorphism $\Gamma: \mathfrak{A} \to C(\mathcal{M}_{\mathfrak{A}})$ given by $\Gamma(a) = \hat{a}$ where $\hat{a}(\varphi) = \varphi(a)$.

Theorem 3.8 (Gelfand). $\mathcal{M}_{\mathfrak{A}}$ is a compact Hausdorff space, and Γ is a contractive homomorphism into $C(\mathcal{M}_{\mathfrak{A}})$ and $\Gamma(\mathfrak{A})$ separates points in $\mathcal{M}_{\mathfrak{A}}$.

 \Box Theorem 3.4

Proof. If $a, b \in \mathfrak{A}$ then $\widehat{ab}(\varphi) = \varphi(ab) = \varphi(a)\varphi(b) = \widehat{a}(\varphi)\widehat{b}(\varphi)$. So $\Gamma(ab) = \Gamma(a)\Gamma(b)$. Clearly Γ is linear. If $\varphi_{\alpha} \in \mathcal{M}_{\mathfrak{A}}$ with $\varphi_{\alpha} \xrightarrow{w^*} \varphi$ then

$$\varphi(ab) = \lim_{\alpha} \varphi_{\alpha}(ab) = \lim_{\alpha} \varphi_{\alpha}(a)\varphi_{\alpha}(b) = \varphi(a)\varphi(b)$$

So $\mathcal{M}_{\mathfrak{A}}$ is a weak*-closed subset of $\overline{b_1(\mathfrak{A}')}$; by Banach-Alaoglu theorem, we have that $\overline{b_1(\mathfrak{A}')}$ is weak*-compact; so $\mathcal{M}_{\mathfrak{A}}$ is weak*-compact. Also note that

$$\widehat{a}(\varphi) = \varphi(a) = \lim \varphi_{\alpha}(a) = \lim \widehat{a}(\varphi_a)$$

so \hat{a} is continuous. To see that Γ is contractive, note that

$$\|\widehat{a}\| = \sup_{\varphi \in \mathcal{M}_{\mathfrak{A}}} |\widehat{a}(\varphi)| = \sup_{\varphi \in \mathcal{M}_{\mathfrak{A}}} |\varphi(a)| \le \|a\|$$

To see that $\Gamma(\mathfrak{A} \text{ separates points in } \mathcal{M}_{\mathfrak{A}}, \text{ we note that if } \varphi, \psi \in \mathcal{M}_{\mathfrak{A}} \text{ have } \varphi \neq \psi \text{ then } \exists a \in \mathfrak{A} \text{ such that } \widehat{a}(\varphi) = \varphi(a) \neq \psi(a) = \widehat{a}(\psi).$

Theorem 3.9. Suppose \mathfrak{A} is a commutative unital Banach algebra. Then

- 1. a is invertible in \mathfrak{A} if and only if \hat{a} is invertible in $C(\mathcal{M}_{\mathfrak{A}})$.
- 2. $\sigma(a) = \sigma_{C(\mathcal{M}_{\mathfrak{A}})}(\widehat{a}) = \operatorname{Ran}(\widehat{a}).$
- 3. $\|\widehat{a}\| = \operatorname{spr}(a)$.

Proof.

- 1. If a is invertible in \mathfrak{A} then $aa^{-1} = 1$. So $\Gamma(a)\Gamma(a^{-1}) = \Gamma(1) = 1$, and $\Gamma(a)$ is invertible. If a is not invertible then $J = a\mathfrak{A}$ is proper since $1 \notin J$ (this uses commutativity of \mathfrak{A}). So J is contained in some maximal ideal, which corresponds to some $\varphi \in \mathcal{M}_{\mathfrak{A}}$ with $0 = \varphi(a) = \hat{a}(\varphi)$; so \hat{a} is not invertible.
- 2. Follows directly from previous item.
- 3. We have

$$\|\widehat{a}\| = \sup |\widehat{a}(\varphi)| = \sup \{ |\lambda| : \lambda \in \sigma(a) = \operatorname{Ran}(\widehat{a}) \} = \operatorname{spr}(a)$$

 \Box Theorem 3.9

as desired.

Definition 3.10. Suppose \mathfrak{A} is a commutative Banach algebra with unity. The *radical* of \mathfrak{A} is $rad(\mathfrak{A}) = ker(\Gamma) = \{a : \widehat{a} = 0\}$. We say \mathfrak{A} is *semisimple* if $rad(\mathfrak{A}) = \{0\}$; i.e. Γ is injective.

Proposition 3.11. rad $(\mathfrak{A}) = \{a \in \mathfrak{A} : \operatorname{spr}(a) = 0\} = \{a : \lim \|a^n\|^{\frac{1}{n}} = 0\}$ is the set of quasi-nilpotent elements of \mathfrak{A} .

Example 3.12.

1. Consider $\mathfrak{A} = C(X)$ with X compact and Hausdorff. Then for $x \in X$ we have $\varepsilon_x(f) = f(x)$ is multiplicative; so $\ker(\varepsilon_x) = \{f : f(x) = 0\}$ is a maximal ideal. Suppose M is a maximal ideal; we can define $\ker(M) = \{x \in X : f(x) = 0 \text{ for all } f \in M\}$. If $x \in \ker(M)$ then $M \subseteq \ker(\varepsilon_x)$, and hence by maximality we have $M = \ker(\varepsilon_x)$.

What if ker $(M) = \emptyset$? Then for all $x \in X$ there is $f_x \in M$ such that $f_x(x) \neq 0$. Let $U_x = \{y \in X : f_x(y) \neq 0\}$; these form an open cover of X, so by compactness there is a finite subcover $X \subseteq U_{x_1} \cup \cdots \cup U_{x_n}$. Let

$$g = \sum_{i=1}^{n} f_{x_i} \overline{f_{x_i}} = \sum_{i=1}^{n} |f_{x_i}|^2 > 0$$

so $g \in M$. But then g is invertible; so $M = \mathfrak{A}$ is not proper.

Hence $\mathcal{M}_{C(X)} = X$ as a set. The topology on $\mathcal{M}_{C(X)}$ is the weak* topology induced by (\mathfrak{A}', w^*) . The sub-basic open sets in $\mathcal{M}_{C(X)}$ are $\{\varphi \in \mathcal{M}_{C(X)} : |\varphi(a) - \lambda| < r\}$; this corresponds via the above to $\{x \in X : |a(x) - \lambda| < r\}$, which are open in X because a is continuous. Hence the map $\gamma : X \to \mathcal{M}_{\mathfrak{A}}$ we (implicitly) defined above is continuous, injective, and surjective; since both X and $\mathcal{M}_{\mathfrak{A}}$ are compact and Hausdorff, we get that γ is a homeomorphism. So $\mathcal{M}_{C(X)} \approx X$.

2. Consider $\ell^1(\mathbb{Z})$ with

TODO 13. This is a Banach algebra under convolution I guess?

$$\delta_n(k) = \begin{cases} 1 & \text{if } k = n \\ 0 & \text{else} \end{cases}$$

Note that $\delta_n * \delta_m = \delta_{n+m}$. If $\varphi \in \mathcal{M}_{\ell^1(\mathbb{Z})}$ with $\varphi(\delta_1) = \alpha$ then $\varphi(\delta_n) = \varphi(\delta_1^n) = \varphi(\delta_1)^n = \alpha^n$. TODO 14. connective

 $|\alpha^n| \leq ||\delta_n||_1 = 1$ for all n; also $|\alpha| \leq 1$ and $|\alpha^{-1}| \leq 1$ implies $|\alpha| = 1$. We have thus determined a function $\mathcal{M}_{\ell^1(\mathbb{Z})} \to \mathbb{T}$.

Conversely if $|\alpha| = 1$ define

$$\varphi_{\alpha}(f) = \sum_{n \in \mathbb{Z}} a_n \alpha^n$$

where

$$f = \sum_{n \in \mathbb{Z}} a_n \delta_n$$

(so $||f||_1 = \sum |a_n| < \infty$). Then $||\varphi_{\alpha}|| = ||(\alpha^n)_{n \in \mathbb{Z}}||_{\infty} = 1$ (using the fact that $\ell_1(\mathbb{Z})' = \ell_{\infty}(\mathbb{Z})$). If

$$g = \sum_{n \in \mathbb{Z}} b_n \delta_n$$

then

$$(f * g)(n) = \sum_{k \in \mathbb{Z}} a_k b_{n-k}$$

This lies in $\ell^1(\mathbb{Z})$; indeed

$$\sum_{k} \underbrace{\sum_{n} |a_k b_{n-k}|}_{\text{absolutely convergent}} = \sum_{k} |a_k| \sum_{n} |b_{n-k}| = ||f||_1 ||g||_1$$

Also

$$\begin{split} \varphi_{\alpha}(f * g) &= \sum_{n \in \mathbb{Z}} \alpha^{n} (f * g)(n) \\ &= \sum_{n \in \mathbb{Z}} \alpha^{n} \sum_{k \in \mathbb{Z}} a_{k} b_{n-k} \\ &= \sum_{k \in \mathbb{Z}} a_{k} \alpha^{k} \sum_{n \in \mathbb{Z}} \alpha^{n-k} b_{n-k} \text{ (since absolute convergence lets us rearrange the sum)} \\ &= \sum_{k \in \mathbb{Z}} a_{k} \alpha^{k} \sum_{\ell \in \mathbb{Z}} \alpha^{\ell} b_{\ell} \\ &= \varphi_{\alpha}(g) \varphi_{\alpha}(f) \end{split}$$

So φ_{α} is multiplicative. Also φ is determined by $\varphi(\delta_1) = \alpha$. So this is a bijection $\mathcal{M}_{\ell^1(\mathbb{Z})} \to \mathbb{T}$. Also $\varphi \mapsto \varphi(\delta_1)$ is continuous by definition of the weak* topology. Thus this is a homeomorphism.

What of the Gelfand transform? Well $\Gamma: \ell^1(\mathbb{Z}) \to C(\mathbb{T})$ by $\Gamma(f) = \widehat{f}$ where $\widehat{f}(\alpha) = \varphi_{\alpha}(f)$. Write $\alpha = \exp(i\theta)$ with $0 \le \theta < 2\pi$; then

$$\widehat{f}(\exp(i\theta)) = \sum_{n=-\infty}^{\infty} a_n \exp(in\theta)$$

TODO 15. Here $f(n) = a_n$?

The range of Γ is the algebra $A(\mathbb{T})$ of all continuous functions on \mathbb{T} whose Fourier series is absolutely convergent.

Theorem 3.13 (Wiener). If $f \in A(\mathbb{T})$ and $\widehat{f}(\exp(i\theta)) \neq 0$ for all θ then $\frac{1}{\widehat{f}} \in A(\mathbb{T})$.

Proof. We have

$$\sigma_{A(\mathbb{T})}(\widehat{f}) = \sigma_{\ell^1(\mathbb{Z})}(f) = \sigma_{C(\mathbb{T})}(\widehat{f}) = \operatorname{Ran} \widehat{f}$$

where the first equality is because the algebras are isomorphic, and the second is Gelfand's theorem. But $0 \notin \operatorname{Ran} \widehat{f}$, so $0 \notin \sigma_{A(\mathbb{T})}(\widehat{f})$, and \widehat{f} is invertible in $A(\mathbb{T})$. \Box Theorem 3.13

3. Consider $A(\mathbb{D})$ and $\ell^1(\mathbb{Z}^+)$ with $\mathbb{Z}^+ = \mathbb{N}_0$. Note that $A(\mathbb{D})$ is the closure of the polynomials in $C(\overline{\mathbb{D}})$. If $f \in A(\mathbb{D})$ then $f_r(z) = f(rz)$ for $0 \le r < 1$ has Fourier series

$$f \sim \sum_{n \ge 0} a_n \exp(in\theta)$$
$$f_r \sim \sum_{n \ge 0} a_n r^n \exp(in\theta)$$

So

$$f_r(z) = \sum_{n \ge 0} a_n r^n z^r$$

converges absolutely and uniformly, and lies in the $C(\overline{\mathbb{D}})$ -norm-closure of $\mathbb{C}[z]$. Also f is continuous on $\overline{\mathbb{D}}$, and hence uniformly continuous. So $f_r \to f$ uniformly. Thus f is also a limit of polynomials.

So $\{z\}$ generates $A(\mathbb{D})$ as a unital Banach algebra. So any $\varphi \in \mathcal{M}_{A(\mathbb{D})}$ is determined by $\varphi(z) = \lambda$; note that $|\lambda| \leq ||z|| = 1$. Conversely if $\lambda \in \overline{\mathbb{D}}$ we let $\varphi_{\lambda}(f) = f(\lambda)$, which is clearly multiplicative. We get $\mathcal{M}_{A(\mathbb{D})} = \overline{\mathbb{D}}$.

The case $\ell^1(\mathbb{Z}_+)$ is similar, using $\varphi(\delta_1) = \lambda$; note here that $|\lambda| \leq ||\delta_1||_1 = 1$. We get $\ell^1(\mathbb{Z}) \to C(\overline{\mathbb{D}})$ given by mapping $f = (a_n)_{n \geq 0}$ to

$$\widehat{f}(z) = \sum_{n=0}^{\infty} a_n z^n$$

for $z \in \overline{\mathbb{D}}$; this is a contractive hoommorphism. If $\lambda \in \overline{\mathbb{D}}$ then $\varphi_{\lambda}(f) = \widehat{f}(\lambda)$ is multiplicative.

Theorem 3.14. Suppose $\mathfrak{A}, \mathfrak{B}$ are Banach algebras; suppose \mathfrak{B} is commutative and semisimple. Then every algebra homomorphism $\theta: \mathfrak{A} \to \mathfrak{B}$ is (automatically) continuous.

Proof. We are given the Gelfand map $\Gamma: \mathfrak{B} \to C(\mathcal{M}_{\mathfrak{B}})$ is injective. Suppose $\varphi \in \mathcal{M}_{\mathfrak{B}}$. Then $\varphi \circ \theta: \mathfrak{A} \to \mathbb{C}$ is multiplicative; hence $\|\varphi \circ \theta\| \leq 1$.

If \mathfrak{A} is not commutative then $C = \overline{\langle ab - ba \rangle}$ is the commutator ideal, and is in the kernel of θ . We get a diagram

$$\begin{array}{ccc} \mathfrak{A}/C & \xrightarrow{\widetilde{\theta}} & \mathfrak{B} \\ & & & & \\ q \uparrow & & & & \downarrow \varphi \\ \mathfrak{A} & & & \mathbb{C} \end{array}$$

with $\varphi \circ \tilde{\theta}$ continuous (has norm ≤ 1) and $||q|| \leq 1$. So $||\theta \varphi|| \leq 1$.

We apply the closed graph theorem. If $a_n \in \mathfrak{A}$ with $a_n \to 0$ and $\theta(a_n) \to b$, we must show that b = 0. If $\varphi \in \mathcal{M}_{\mathfrak{B}}$ then

$$(\varphi \circ \theta)(\underbrace{a_n}_{\to 0}) \to 0$$

But also $\varphi(\theta(a_n)) \to \varphi(b)$; so $\varphi(b) = 0$. This holds for all φ ; so $\Gamma(b) = 0$. But Γ is injective; so b = 0. So by the closed graph theorem we get that θ is continuous. \Box Theorem 3.14

Corollary 3.15. If \mathfrak{A} is a commutative semisimple Banach algebra then

- 1. A has a unique Banach algebra norm up to equivalence of norms.
- 2. Every automorphism of \mathfrak{A} is continuous.

Proof.

1. Let $\|\cdot\|$ be the norm on \mathfrak{A} . Suppose that $\|\cdot\|\|$ is a norm on \mathfrak{A} which makes \mathfrak{A} into a Banach algebra $(\mathfrak{A}, \|\cdot\|)$ is complete and $\|ab\|\| \leq \|a\|\|\|b\|$. Define $j: (\mathfrak{A}, \|\cdot\|) \to (\mathfrak{A}, \|\cdot\|)$ by j(a) = a. Then j is an algebra homomorphism, and is thus continuous by the theorem. So j is continuous, injective, and surjective, and is htus invertible. Thus $c\|a\| \leq \|a\| \leq C\|a\|$ for some $0 < c \leq C$.

2. Easy.

 \Box Corollary 3.15

 \Box Claim 3.17

Corollary 3.16. $C^{\infty}[0,1]$ has no norm that makes it a Banach algebra.

Proof. Suppose $\|\cdot\|$ is a Banach algebra norm on $C^{\infty}[0,1]$. Let $j: C^{\infty}[0,1] \to C[0,1]$ be j(f) = f; note that C[0,1] is commutative and semisimple. So j is continuous by theorem. Thus

$$||f||_{\infty} = \sup_{0 \le x \le 1} |f(x)| \le C ||f||$$

Claim 3.17. The map $D: C^{\infty}[0,1] \to C^{\infty}[0,1]$ given by Df = f' is continuous.

Proof. D is everywhere defined, so we can use the closed graph theorem. Suppose $f_n \in C^{\infty}[0,1]$ has $||f_n|| \to 0$ and $Df_n = f'_n \to g \in C^{\infty}[0,1]$; i.e. $||f'_n - g|| \to 0$. Suppose $f_n \in C^{\infty}[0,1]$ has $||f_n|| \to 0$ and $Df_n = f'_n \to g \in C^{\infty}[0,1]$; i.e. $||f'_n - g|| \to 0$. Then $||f_n||_{\infty} \to 0$, so $||f'_n - g||_{\infty} \to 0$. If $0 \le x < y \le 1$ then

$$\int_{x}^{y} g(t) dt = \int_{x}^{y} f'_{n}(t) dt + \int_{x}^{y} (g - f'_{n})(t) dt = (f_{n}(y) - f_{n}(x)) + \int_{x}^{y} (g - f'_{n})(t) dt$$

Thus

$$\left| \int_{x}^{y} g(t) \mathrm{d}t \right| \le |f_{n}(y)| + |f_{n}(x)| + \int_{x}^{y} ||g - f_{n}'||_{\infty} \mathrm{d}t \le 2||f_{n}||_{\infty} + ||g - f_{n}'||_{\infty} \cdot 1 \to 0$$

Thus

$$\int_{x}^{y} g(t) \mathrm{d}t = 0$$

for all x, y; thus q = 0. Thus D is continuous by the closed graph theorem.

So there is c_2 such that $||f'|| \le c_2 ||f||$. Let $f(t) = \exp(2c_2 t)$, so $f' = 2c_2 f$. Then $2c_2 ||f|| = ||f'|| \le c_2 ||f||$; so ||f|| = 0 and f = 0, a contradiction.

3.1 The non-unital case

In this section, \mathfrak{A} is non-unital.

TODO 16. Are we still commutative?

Definition 3.18. An ideal $I \triangleleft \mathfrak{A}$ is *modular* if \mathfrak{A}/I is unital; i.e. there is $u \in \mathfrak{A}$ such that $a - au, a - ua \in I$ for all $a \in \mathfrak{A}$. An ideal is *maximal modular* if it is maximal among modular ideals.

Remark 3.19.

- 1. If \mathfrak{A} is unital, then every proper ideal is modular.
- 2. If I is modular with unit u modulo I, then if $I \subseteq J \triangleleft \mathfrak{A}$ with $u \notin J$, then J is modular with unit u modulo J.

Theorem 3.20. Every modular ideal is contained in a maximal modular ideal, and maximal modular ideals are closed.

Proof. Suppose I is a modular ideal with unit u modulo I. Suppose J is a proper ideal containing I; then u is also a unit modulo J, and thus since J is proper we have $u \notin J$.

We now use Zorn's lemma. Suppose $C = \{J_{\alpha}\}$ is a chain of modular ideals containing I. Then $J = \bigcup C$ is an ideal; since $u \notin J_{\alpha}$ for all α we get $u \notin J$, so J is modular by previous remark. So by Zorn's lemma we get a maximal modular ideal containing I.

Claim 3.21. If M is modular with unit u modulo M, then $b_1(u) \cap M = \emptyset$.

Proof. Suppose $x \in M$ with ||x - u|| < 1. Work in $\mathfrak{A}_+ = \mathfrak{A} \oplus \mathbb{C}e$, a unital Banach algebra containing \mathfrak{A} . Then e + (x - u) is invertible in \mathfrak{A}_+ , with inverse $\lambda e + y$ for some $y \in \mathfrak{A}$. Then

$$e = (e + x - u)(\lambda e + y) = \lambda e + y + \lambda x + xy - \lambda u - uy$$

Thus

$$(1-\lambda)e = \underbrace{(y-uy)}_{\in M} + \underbrace{(\lambda x + xy)}_{\in M} - \lambda u \in \mathfrak{A}$$

So $\lambda = 1$; so $u \notin M$, a contradiction.

In particular, we get $u \notin \overline{M}$, so \overline{M} is also a modular ideal; hence if M is maximal then $M = \overline{M}$ is closed. \Box Theorem 3.20

Proposition 3.22. Suppose \mathfrak{A} is a non-unital commutative Banach algebra. If φ is a multiplicative linear functional then $\|\varphi\| \leq 1$.

Proof. Same as in the unital case for bounded above.

Remark 3.23. In the unital case we required $\varphi(1) = 1$ for φ to be a multiplicative linear functional; this no longer makes sense (since we're non-unital), so we instead require $\varphi \neq 0$.

Theorem 3.24. There is a natural bijection $\varphi \mapsto \ker(\varphi)$ between $\mathcal{M}_{\mathfrak{A}}$ and maximal modular ideals of \mathfrak{A} .

Proof. If φ is multiplicative and non-zero then $\varphi \colon \mathfrak{A} \to \mathbb{C}$ is surjective, so $\mathbb{C} \cong \mathfrak{A}/\ker(\varphi)$ is unital; so $M = \ker(\varphi)$ is modular and has codimension 1, and is thus maximal.

Conversely, suppose M is a maximal modular ideal. So M is closed; so \mathfrak{A}/M is a (unital, by modularity) Banach algebra. We show that \mathfrak{A}/M is a field, and is thus \mathbb{C} by Mazur.

Suppose otherwise. Let $\varphi \colon \mathfrak{A} \to \mathfrak{A}/M$ be the quotient map; so there is $a \in \mathfrak{A} \setminus M$ such that $\varphi(a) \neq 0$ is not invertible. Then $J = \langle \varphi(a) \rangle = \varphi(a)\mathfrak{A}/M$ is a proper ideal; so $\varphi^{-1}(J) \leq \mathfrak{A}$ with $M \subsetneq \varphi^{-1}(J)$. But $\mathfrak{A}/\varphi^{-1}(J) = (\mathfrak{A}/M)/J$ is unital; so $\varphi^{-1}(J)$ is modular, contradicting maximality of M.

So \mathfrak{A}/M is a Banach field, and is thus \mathbb{C} . So $\mathfrak{A}/M \cong \mathbb{C}$, and φ defines a multiplicative linear functional. \Box Theorem 3.24

Theorem 3.25. Suppose \mathfrak{A} is a non-unital commutative Banach algebra; let $\mathfrak{A}_+ = \mathfrak{A} \oplus \mathbb{C}e$ be the unitization. Then $\mathcal{M}_{\mathfrak{A}} = \mathcal{M}_{\mathfrak{A}_+} \setminus \{\varphi_{\infty}\}$ where $\varphi_{\infty}(a + \lambda e) = \lambda$ is the multiplicative linear functional on \mathfrak{A}_+ with kernel \mathfrak{A} . Moreover, $\mathcal{M}_{\mathfrak{A}}$ is the locally compact Hausdorff space with topology induced as a subset of $\mathcal{M}_{\mathfrak{A}_+}$ and $\mathcal{M}_{\mathfrak{A}_+}$ is the 1-point compactification of $\mathcal{M}_{\mathfrak{A}}$.

Definition 3.26. If X is Hausdorff and locally compact (i.e. every point $x \in X$ has a neighbourhood U such that \overline{U} is compact) then the *1-point compactification* of X is the space $X_+ = X \cup \{p\}$ where $U \subseteq X$ open is open in X_+ and neighbourhoods of p have the form $\{p\} \cup (X \setminus K)$ where $K \subseteq X$ is compact.

Remark 3.27. X_+ is compact because if $\{U_\alpha\}$ is an open cover, then there is α_0 with $p \in U_{\alpha_0}$; so $K = X_+ \setminus U_{\alpha_0}$ is compact in X, and the U_α cover K. So there is a finite subcover $K \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$; then $X \subseteq U_{\alpha_0} \cup \cdots \cup U_{\alpha_n}$.

 X_+ is Hausdorff because if $x \in X$ then there is open $U \subseteq X$ such that $K = \overline{U}$ is compact. Then $x \in U$ and $p \in X \setminus K$ are separated by disjoint opens. (That $x, y \in X$ are separated by opens is just that X is Hausdorff.)

 \Box Proposition 3.22

 \Box Claim 3.21

Proof of Theorem 3.25. If $\varphi \in \mathcal{M}_{\mathfrak{A}_+}$ then $\varphi \upharpoonright \mathfrak{A}$ is a multiplicative lienar functional. But $\varphi_{\infty} \upharpoonright \mathfrak{A} = 0$, and otherwise $\varphi \upharpoonright \mathfrak{A} \neq 0$ (since $\mathfrak{A} \subseteq \ker(\varphi)$ implies $\varphi = \varphi_{\infty}$). So $\mathcal{M}_{\mathfrak{A}_+} \setminus \{\varphi_{\infty}\}$ restricts to elements of $\mathcal{M}_{\mathfrak{A}}$. If $\varphi_1 \upharpoonright \mathfrak{A} = \varphi_2 \upharpoonright \mathfrak{A}$ then for $a + \lambda e \in \mathfrak{A}_+$ we have

$$\varphi_1(a + \lambda e) = \varphi_1(a) + \lambda = \varphi_2(a) + \lambda = \varphi_2(a + \lambda e)$$

So $\varphi_1 = \varphi_2$.

Conversely, if $\varphi \in \mathcal{M}_{\mathfrak{A}}$ we define $\widetilde{\varphi}(a + \lambda e) = \varphi(a) + \lambda$; one can check that $\varphi \mapsto \widetilde{\varphi}$ is a homomorphism. We now verify the statement about the topology. In $\mathcal{M}_{\mathfrak{A}}$, the basic open sets have form

$$U(F,\varphi_0) = \{ \varphi \in \mathcal{M}_{\mathfrak{A}} : |\varphi(a_i) - \varphi_0(a_i)| < 1, 1 \le i \le n \}$$

where $\varphi_0 \in \mathcal{M}_{\mathfrak{A}}$ and $F = \{a_1, \ldots, a_n\} \subseteq \mathfrak{A}$ is finite. In $\mathcal{M}_{\mathfrak{A}_+}$ the basic open neighbourhoods are of the form

$$V(G,\varphi_0) = \{ \varphi \in \mathcal{M}_{\mathfrak{A}_+} : |\varphi(b_i) - \varphi_0(b_i)| < 1, 1 \le i \le n \}$$

for $\varphi_0 \in \mathcal{M}_{\mathfrak{A}}$

TODO 17. \mathfrak{A}_+ ?

and $G = \{b_1, \ldots, b_n\} \subseteq \mathcal{M}_{\mathfrak{A}_+}$ is finite. Write $b_i = a_i + \lambda_i e$, where $a_i \in \mathfrak{A}$ and $\lambda_i \in \mathbb{C}$. Then

$$|\varphi(b_i) - \varphi_0(b_i)| = |\varphi(a_i) + \lambda_i - \varphi_0(a_i) - \lambda_i|$$

So if $F = \{a_1, \ldots, a_n\}$ then

$$V(G,\varphi_0) = V(F,\varphi_0) = \begin{cases} U(F,\varphi_0) & \text{if } \exists i_0 \text{ such that } |\varphi_0(a_{i_0})| \ge 1\\ U(F,\varphi_0) \cup \{\varphi_\infty\} & \text{else} \end{cases}$$

Thus the open sets of $\mathcal{M}_{\mathfrak{A}}$ have form $V \setminus \{\varphi_{\infty}\}$ for V open in $\mathcal{M}_{\mathfrak{A}_+}$. Thus the topology on $\mathcal{M}_{\mathfrak{A}}$ is induced from $\mathcal{M}_{\mathfrak{A}_+}$. Since $\mathcal{M}_{\mathfrak{A}_+}$ is compact and Hausdorff, we get that $\mathcal{M}_{\mathfrak{A}}$ is locally compact and Hausdorff.

If $x \in \mathcal{M}_{\mathfrak{A}}$ then by Hausdorfness there is $U \ni x$ and $V \ni p$ open such that $U \cap V = \emptyset$. So $\overline{U} \subseteq \mathcal{M}_{\mathfrak{A}_+} \setminus V$ is compact; so $\mathcal{M}_{\mathfrak{A}}$ is locally compact and Hausdorff. Neighbourhoods of φ_{∞} have the form $\{\varphi_{\infty}\} \cup (\mathcal{M}_{\mathfrak{A}} \setminus K)$ where $K \subseteq \mathcal{M}_{\mathfrak{A}}$ is compact. So $\mathcal{M}_{\mathfrak{A}_+}$ is the one-point compactification of $\mathcal{M}_{\mathfrak{A}}$. \Box Theorem 3.25

3.1.1 $L^1(G)$

Suppose G is a locally compact abelian grape; i.e.

- G is an abelian grape
- G has a locally compact topology
- $(x, y) \mapsto xy$ is continuous $G \times G \to G$
- $x \mapsto x^{-1}$ is continuous $G \to G$.

Then $L^1(G)$ is a commutative Banach algebra under convolution. It is unital if and only if G is discrete, in which case δ_e is the unit. (Examples to keep in mind are $G = \mathbb{T}$ and $G = \mathbb{R}$.)

Such grapes have a *Haar measure*: a translation-invariant σ -finite Borel measure such that $\sigma(K) < \infty$ if K is compact. We usually normalize so that if G is compact then m(G) = 1 and if G is discrete then m(e) = 1. When integrating with respect to m we will sometimes just write dx. (So on \mathbb{T} we have $dx = \frac{d\theta}{2\pi}$.)

Definition 3.28. A character of a locally compact abelian grape G is a continuous homomorphism $\gamma: G \to \mathbb{T}$.

If γ, δ are characters then $(\gamma \delta)(x) = \gamma(x)\delta(x)$ is also a character; also $(\gamma^{-1})(x) = (\gamma(x))^{-1} = \overline{\gamma(x)}$ is also a character. So the set \widehat{G} of all characters on G is a grape; we call this the *dual grape* of G.

Theorem 3.29. Suppose G is a locally compact abelian grape. Then $\gamma \in \widehat{G}$ determines

$$\varphi_{\delta}(f) = \int_{G} f(x) \overline{\gamma(x)} \mathrm{d}x$$

Then φ_{δ} is a multiplicative linear functional in $L^{1}(G)$, and every multiplicative linear functional arises in this way.

Proof. $\gamma(x)$ is continuous and $|\gamma(x)| = 1$; so $\gamma \in L^{\infty}(G)$. So φ_{γ} is a continuous linear functional on $L^{1}(G)$. Suppose $f, g \in L^{1}(G)$. Then

$$\begin{split} \varphi_{\gamma}(f*g) &= \int_{G} \overline{\gamma(x)}(f*g)(x) \mathrm{d}x \\ &= \int_{G} \overline{\gamma(x)} \int_{G} f(y)g(y^{-1}x) \mathrm{d}y \mathrm{d}x \\ &= \int_{G} \overline{\gamma(y)}f(y) \int_{G} \overline{\gamma(y^{-1}x)}g(y^{-1}x) \mathrm{d}x \mathrm{d}y \text{ (using Fubini and } \gamma(x) = \gamma(y)\gamma(y^{-1}x)) \\ &= \int_{G} \overline{\gamma(y)}f(y) \int_{G} \overline{\gamma(t)}g(t) \mathrm{d}t \mathrm{d}y \text{ (by translation invariance)} \\ &= \varphi_{\gamma}(f)\gamma(g) \end{split}$$

(Note that $\overline{\gamma(x)}f(x)g(y^{-1}x) \in L^1(G \times G)$, so Fubini's theorem holds.) So $\varphi_{\gamma} \in \mathcal{M}_{L^1(G)}$. Conversely let $\varphi \in \mathcal{M}_{L^1(G)}$. Since $L^1(G)' = L^{\infty}(G)$ there is $\chi \in L^{\infty}(G)$ such that

$$\varphi(f) = \int_G f(x)\chi(x)\mathrm{d}x$$

with $\|\chi\|_{\infty} = \|\varphi\| \le 1$. Also $\varphi \ne 0$ so there is $g \in L^1(G)$ such that $\varphi(g) = 1$. For $f \in L^1(G)$ we have

$$\begin{aligned} \varphi(f) &= \varphi(f)\varphi(g) \\ &= \varphi(f*g) \\ &= \int_{G} \chi(x) \underbrace{\int_{G} f(y)g(y^{-1}x) \ y}_{(f*g)(x)} \, \mathrm{d}x \\ &= \int_{G} f(y) \int_{G} g(y^{-1}x)\chi(x) \mathrm{d}x \mathrm{d}y \text{ (Fubini)} \end{aligned}$$

Let $L_yg)(x) = g(y^{-1}x)$ be the (left) translation of g. A basic measure theory fact is that $y \mapsto L_yg$ is contained in L^1 . (e.g. for $f \in L^1(\mathbb{R})$ if we define $f_y(x) = f(x-y)$ then $||f - f_y|| \to 0$ as $y \to 0$.) Hence, continuing the above equations, we find

$$\varphi(f) = \int_G f(y)\varphi(L_yg)\mathrm{d}y$$

Since $y \mapsto L_y g$ is continuous, we get that φ is continuous. Define $\gamma(y) = \overline{\varphi(L_y g)}$ is a continuous map $G \to \mathbb{C}$. A computation:

$$(g * L_{xy}g)(t) = \int g(s)(L_{xy}g)(s^{-1}t)ds$$

= $\int g(s)g(y^{-1}x^{-1}s^{-1}t)ds$
= $\int g(x^{-1}s)g(y^{-1}x^{-1}(x^{-1}s)^{-1}t)ds$
= $\int g(x^{-1}s)g(s^{-1}y^{-1}t)ds$
= $\int (L_xg)(s)(L_yg)(s^{-1}t)ds$
= $((L_xg) * (L_yg))(t)$

 So

$$\begin{split} \gamma(xy) &= \overline{\varphi(L_{xy}g)} \\ &= \overline{\varphi(g)\varphi(L_{xy}g)} \\ &= \overline{\varphi(g*L_{xy}g)} \\ &= \overline{\varphi(L_xg*L_yg)} \\ &= \overline{\varphi(L_xg)\varphi(L_yg)} \\ &= \gamma(x)\gamma(y) \end{split}$$

So γ is multiplicative. So

$$|\gamma(x)| = |\overline{\varphi(L_xg)}| \le \|\varphi\|\|L_xg\|_1 \le 1 \cdot \|g\|$$

So $|\gamma(x^n)| = |\gamma(x)^n| \le ||g||_1$ for all $n \in \mathbb{Z}$. So taking $n \ge 0$ we find $|\gamma(x)| \le 1$, and taking $n \le 0$ we find $|\gamma(x)| \ge 1$. So $\gamma(x) \in \mathbb{T}$, and γ is a character.

Corollary 3.30. \widehat{G} has a locally compact Hausdorff topology induced by this bijection with $\mathcal{M}_{L^1(G)}$, with $\gamma_{\alpha} \to \gamma$ if and only of $\varphi_{\gamma_{\alpha}} \xrightarrow{w^*} \varphi_{\gamma}$ in $L^1(G)' = L^{\infty}$, which occurs if and only if $\gamma_{\alpha} \xrightarrow{w^*} \gamma$ in L^{∞} .

Definition 3.31. For $f \in L^1(G)$ we define

$$\widehat{f}(\gamma) = \Gamma f(\gamma) = \int f(x) \overline{\gamma(x)} dx \in C_0(\widehat{G})$$

the Fourier transform of f.

Example 3.32.

1. In $\ell_1(\mathbb{Z})$ we have $\widehat{\mathbb{Z}} = \mathbb{T}$, done earlier.

TODO 18. ref

2. Consider $L^1(\mathbb{T})$. We claim $\widehat{\mathbb{T}} = \mathbb{Z}$. Indeed, for all $n \in \mathbb{Z}$ we have $\gamma_n(t) = t^n$ a multiplicative map $\mathbb{T} \to \mathbb{T}$. Then $L^1(\mathbb{T}) \supseteq C(\mathbb{T}) \supseteq \{ f_k(t) = t^k : k \in \mathbb{Z} \}$, with $L^1(\mathbb{T}) = \overline{\operatorname{span}\{ f_k : k \in \mathbb{Z} \}}^{\|\cdot\|_1}$. Then

$$\varphi_{\gamma_n}(f_k) = \int t^k \bar{t}^n dt = \frac{1}{2\pi} \int_0^{2\pi} \exp(i\theta(k-n)) d\theta = \begin{cases} 0 & \text{if } k \neq n \\ 1 & \text{if } k = n \end{cases}$$

and

$$(f_k * f_\ell)(t) = \int s^k (s^{-1}t)^\ell \mathrm{d}s = t^\ell \int s^{k-\ell} \mathrm{d}s = \begin{cases} f_k & \text{if } k = \ell \\ 0 & \text{if } k \neq \ell \end{cases}$$

So $f_k * f_k = f_k$ is an idempotent, and $f_k * f_\ell = 0$ with $k \neq \ell$. If $\varphi \in \mathcal{M}_{L^1(\mathbb{T})}$ then

$$\varphi(f_k)^2 = \varphi(f_k * f_k) = \varphi(f_k) \in \{0, 1\}$$

and

$$\varphi(f_k)\varphi(f_\ell) = \varphi(f_k * f_\ell) = 0$$

if $k \neq \ell$. Then $\varphi(f_k)$ is not zero for all k implies $\varphi = 0$. So there is a unique n such that $\varphi(f_n) = 1$; so $\varphi = \varphi_n$. So $\widehat{\mathbb{T}} = \mathbb{Z}$.

3. Consider $L^1(\mathbb{R})$. We claim $\widehat{\mathbb{R}} = \mathbb{R}$. If $s \in \mathbb{R}$ we have $\varphi_s(x) = \exp(isx) \in \widehat{\mathbb{R}}$. Suppose φ is a character on $L^1(\mathbb{R})$; so φ is a continuous, multiplicative map $\mathbb{R} \to \mathbb{T}$. So $\varphi(0) = 1$, and $\operatorname{Re}(\varphi(x)) > \frac{1}{2}$ on some $[-\delta, \delta]$. So

$$c_{\delta} = \int_0^{\delta} \varphi(x) \mathrm{d}x \neq 0$$

 So

$$\varphi(t)c_{\delta} = \varphi(t) \int_{0}^{\delta} \varphi(x) \mathrm{d}x = \int_{0}^{\delta} \varphi(t+x) \mathrm{d}x = \int_{t}^{t+\delta} \varphi(x) \mathrm{d}x$$

 φ is continuous, so RHS is differentiable. So

$$\varphi'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_t^{t+\delta} \varphi(x) \mathrm{d}x \right)$$
$$= \varphi(t+\delta) - \varphi(t)$$
$$= \varphi(t)(\varphi(\delta) - 1)$$

Let

$$s = \frac{\varphi(\delta) - 1}{ic_{\delta}}$$

Then $\varphi'(t) = (is)\varphi(t)$. So $\varphi(t) = c \exp(ist)$ and $1 = \varphi(0) = c$ and $1 = |\varphi(t)| = |\exp(ist)|$ for all t; so $s \in \mathbb{R}$. So $\varphi = \varphi_s$.

So as a set we have $\widehat{\mathbb{R}} = \mathbb{R}$. The topology on $\widehat{\mathbb{R}}$ is induced by $(L^{\infty}(\mathbb{R}), w^*)$. If $s_{\alpha} \to s$ in \mathbb{R} then $\exp(is_{\alpha}t) \to \exp(ist)$ uniformly on [-n, n] for all $n \in \mathbb{N}$. So $\exp(is_{\alpha}t) \xrightarrow{w^*} \exp(ist)$ in L^{∞} . If $g \in C_{00}(\mathbb{R})$ (i.e. has compact support) then $g(t) \exp(-is_{\alpha}t) \to g(t) \exp(ist)$ uniformly. Thus

$$\varphi_{s_{\alpha}}(g) = \int g(t) \exp(-is_{\alpha}t) dt \to \int g(t) \exp(-ist) dt = \varphi_s(g)$$

But we can approximate $f \in L^1$ by $g \in C_{00}(\mathbb{R})$. So $\mathbb{R} \to \widehat{\mathbb{R}}$ is continuous.

Lemma 3.33. If $f \in L^1(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$ is uniformly continuous and $\lim_{|x|\to\infty} (f * g)(x) = 0$. TODO 19. Defer until later?

Lemma 3.34 (Riemann-Lebesgue). If $f \in L^1(\mathbb{R})$ then

$$\lim_{|x| \to \infty} \widehat{f}(x) = 0$$

Proof. Suffices to prove this for $g \in C_{00}(\mathbb{R})$; so g is uniformly continuous with $\operatorname{supp}(K) \subseteq [-n, n]$ TODO 20. I assume $K = \operatorname{supp}(g)$ instead?

and if $\varepsilon > 0$ there is $\delta > 0$ such that whenever $|x - y| < \delta$ we have $|g(x) - g(y)| < \varepsilon$. If |x| is big then

$$\widehat{g}(x) = \int g(t) \exp(-ixt) dt$$

$$= -\int g(t) \exp\left(-ix\left(t + \frac{\pi}{x}\right)\right) dt$$

$$= -\int g\left(t - \frac{\pi}{x}\right) \exp(-ixt) dt$$

$$= \frac{1}{2} \int \left(g(t) - g\left(t - \frac{\pi}{x}\right)\right) \exp(-ixt) dt$$

If $\left|\frac{\pi}{x}\right| < \delta$ (so $|x| > \frac{\pi}{\delta}$)) then

$$|\widehat{g}(x)| \leq \frac{1}{2} \int_{n-\delta}^{n} \varepsilon |\exp(-ixt| \mathrm{d}t \leq \frac{2n+\delta}{2} \varepsilon \to 0$$

 \Box Lemma 3.34

In particular if $\varphi_{s_{\alpha}} \xrightarrow{w^*} \varphi_s$ in L^{∞} then either there is a cofinal subset s_{β} such that $s_{\beta} \to \infty$, which by Riemann-Lebesgue implies $\varphi_{s_{\beta}} \xrightarrow{w^*} 0$, a contradiction, or it is eventually bounded. Look at the cluster points in \mathbb{R} . If $s_{\beta} \to t$ and $s_{\beta'} \to s$ with $s \neq t$ then $\varphi_{s_{\beta}} \xrightarrow{w^*} \varphi_t$ and $\varphi_{s_{\beta'}} \xrightarrow{w^*} \varphi_s$, so $\varphi_{s_{\alpha}} \xrightarrow{\psi^*} \varphi_s$; all this implies the topology on $\widehat{\mathbb{R}}$ is homeomorphic to \mathbb{R} .

TODO 21. Connectives.

Theorem 3.35. Suppose G is a locally compact abelian grape; let \widehat{G} be the dual grape with the w^* topology. Then

- 1. $(x, \gamma) \mapsto \gamma(x)$ is continuous on $G \times \widehat{G}$.
- 2. If $K \subseteq G$ is compact and $C \subseteq \widehat{G}$ is compact then

$$N(K,r) = \{ \gamma \in \widehat{G} : |\gamma(x) - 1| < r \text{ for all } x \in K \}$$

$$N(C,r) = \{ x \in G : |\gamma(x) - 1| < r \text{ for all } \gamma \in C \}$$

are open in \widehat{G} and G, respectively.

- 3. $\{N(K,r)\gamma_0: K \subseteq G \text{ compact}, r > 0, \gamma_0 \in \widehat{G}\}$ is a base for the topology of \widehat{G} .
- 4. \widehat{G} is a locally compact grape (i.e. $(\gamma_1, \gamma_2) \mapsto \gamma_1 \gamma_2^{-1}$ is continuous.)

Proof.

1. Write $f_x(y) = f(x^{-1}y)$. Then

$$\begin{split} \widehat{f}_{x}(\gamma) &= \int_{G} f_{x}(t) \overline{\gamma(t)} \mathrm{d}t \\ &= \int_{G} f(\underbrace{x^{-1}t}_{s}) \overline{\gamma(\underbrace{t}_{xs})} \mathrm{d}t \\ &= \int f(s) \overline{\gamma(xs)} \mathrm{d}t \text{ (translation-invariance)} \\ &= \overline{\gamma(x)} \int_{G} f(s) \overline{\gamma(s)} \mathrm{d}t \\ &= \overline{\gamma(x)} \widehat{f}(\gamma) \end{split}$$

Claim 3.36. $(x, \gamma) \mapsto \widehat{f}_x(\gamma)$ is continuous on $G \times \widehat{G}$.

Proof. Fix (x_0, γ_0) . Translation is continuous in $L^1(G)$, so there is open $V \ni x_0$ such that $||f_x - f_{x_0}||_1 < \varepsilon$ for all $x \in V$. Since γ_0 is weak*-continuous there is open $W \ni \gamma_0$ such that $|\widehat{f_{x_0}}(\gamma) - \widehat{f_{x_0}}(\gamma_0)| < \varepsilon$ for all $\gamma \in W$. Then if $x \in V$ and $\gamma \in W$ we have

$$\begin{aligned} |\widehat{f}_x(\gamma) - \widehat{f}_{x_0}(\gamma_0)| &\leq |\widehat{f}_x(\gamma) - \widehat{f}_{x_0}(\gamma)| + |\widehat{f}_{x_0}(\gamma) - f_{x_0}(\gamma_0)| \\ &< \left| \int_G (f_k(t) - f_{x_0}(t)) \overline{\gamma(t)} dt \right| + \varepsilon \\ &< \|f_x - f_{x_0}\|_1 + \varepsilon \\ &< 2\varepsilon \end{aligned}$$

as desired.

Now

$$\gamma(x) = \overline{\left(\frac{\widehat{f}_x(\gamma)}{\widehat{f}(\gamma)}\right)}$$

Pick f so that $\hat{f}(\gamma_0) \neq 0$. So $\hat{f}(\gamma) \neq 0$ on some neighbourhood $W \ni \gamma_0$. So $\gamma(x)$ is the quotient of continuous functions with non-zero denominator near γ_0 , and is thus continuous at (x_0, γ_0) .

 \Box Claim 3.36

2. Suppose $K \subseteq G$ is open and r > 0. Then

$$N(K, r) = \{ \gamma : |\gamma(x) - 1| < r, x \in K \}$$

Suppose $\gamma_0 \in N(K, r)$; so $|\gamma_0(x) - 1| < r$ for $x \in K$. But for each $x \in K$, continuity of $(x, \gamma) \mapsto \gamma(x)$ means there is are neighbourhoods $V_x \ni x$ and $W_x \ni \gamma_0$ such that for all $y \in V_x$ and $\gamma \in W_x$ we have $|\gamma(y) - 1| < r$. The V_x form an open cover of K; so there is a finite subcover $K \subseteq V_{x_1} \cup \cdots \cup V_{x_n}$. Let

$$W = \bigcap_{i=1}^{n} W_{x_i}$$

which is open in \widehat{G} and contains γ_0 . So if $\gamma \in W$ then $|\gamma(x) - 1| < r$ (since $x \in V_{x_i}$ for some *i* and $W \subseteq W_{x_i}$). So $W \subseteq N(K, r)$.

The second part is quite similar.

3. Without loss of generality we may assume $\gamma_0 = e$. Suppose W is open in \widehat{G} with $0 \in W$. So there are $f_1, \ldots, f_n \in L^1(G)$ such that

$$0 \in \{\gamma : |\widehat{f}_i(\gamma) - \widehat{f}_i(e)| < 1, 1 \le i \le n\} \subseteq W$$

We use the fact that $C_{00}(G)$ is dense in $L^1(G)$; we replace f_i by continuous, compactly supported function. Let K be compact and contain

$$\bigcup_{i=1}^{n} \operatorname{supp}(f_i)$$

Let

$$r = \frac{1}{\max_i \|f_i\|_1}$$

If $\gamma \in N(K, r)$ then for $1 \leq i \leq n$ we have

$$\begin{aligned} |\widehat{f}_i(\gamma) - \widehat{f}_i(e)| &= \left| \int_G f_i(t)(\overline{\gamma(t)} - 1) dt \right| \\ &\leq \int_K |f_i(t)| |\gamma(t) - 1| dt \\ &< r \|f_i\|_1 \\ &< 1 \end{aligned}$$

So $e \in N(K,r) \subseteq \{\gamma : |\widehat{f}_i(\gamma) - \widehat{f}_i(e)| < 1, 1 \le i \le n\} \subseteq W$. So the N(K,r) form a base for the topology.

4. Suppose $\gamma_1, \gamma_2 \in \widehat{G}$. Suppose $\gamma_1 \gamma_2^{-1} \in N(K, r) \gamma_1 \gamma_2^{-1}$. If $\gamma'_1 \in N(K, \frac{r}{2}) \gamma_1$ and $\gamma'_2 \in N(K, \frac{r}{2}) \gamma_2$ then $\gamma_1 \gamma_2^{-1} \subseteq N(K, \frac{r}{2}) N(K, \frac{r}{2})^{-1} \gamma_1 \gamma_2^{-1}$. But

$$\begin{split} N(K, \frac{r}{2}) &= \{ \, \gamma : |\gamma(t) - 1| < \frac{r}{2}, t \in K \, \} \\ N(K, \frac{r}{2}) &= \{ \, \gamma : |\overline{\gamma(t)} - 1| < \frac{r}{2}, t \in K \, \} \\ N(K, \frac{r}{2}) &= \{ \, \gamma : |\gamma^{-1}(t) - 1| < \frac{r}{2}, t \in K \, \} \end{split}$$

So for $\gamma'_1 \in N(K, \frac{r}{2}), \gamma'_2 \in N(K, \frac{r}{2})^{-1}$ we have

$$|\gamma_1\gamma_2^{-1}(t) - 1| = |\gamma_1(t) - \gamma_2(t)| \le |\gamma_1(t) - 1| + |1 - \gamma_2(t)| < \frac{r}{2} + \frac{r}{2} = r$$

So

$$\gamma_1 \gamma_2^{-1} \subseteq N(K, \frac{r}{2}) N(K, \frac{r}{2})^{-1} \gamma_1 \gamma_2^{-1} \subseteq N(K, r) \gamma_1 \gamma_2^{-1}$$

and continuity follows.

 \Box Theorem 3.35

4 Banach *-algebras

Definition 4.1. A Banach *-algebra is a Banach algebra \mathfrak{A} with a continuous involution $a \mapsto a^*$ such that

- 1. $(a^*)^* = a$.
- 2. $(\lambda a)^* = \overline{\lambda} a^*$ and $(a+b)^* = a^* + b^*$.
- 3. $(ab)^* = b^*a^*$.

Example 4.2.

- 1. C(X) and $C_0(X)$ with $f^*(x) = \overline{f(x)}$.
- 2. $\mathcal{B}(\mathcal{H})$ where \mathcal{H} is a Hilbert space, and the involution is the Hilbert space adjoint.
- 3. Consider $L^1(\mathbb{R})$.

Proposition 4.3. $L^1(\mathbb{R})$ is a Banach *-algebra with involution $f^*(x) = \overline{f(-x)}$. Moreover the Gelfand/Fourier transformation is a *-homomorphism.

Proof. Easy to check the *-algebra properties. Also

$$\widehat{f^*}(s) = \int_{\mathbb{R}} f^*(x) \exp(-isx) dx$$
$$= \int_{\mathbb{R}} \overline{f(-x)} \exp(-isx) dx$$
$$= \frac{\int_{\mathbb{R}} \overline{f(-x)} \exp(-isx) dx}{\int f(-x) \exp(isx) dx}$$
$$= \frac{\int f(y) \exp(-isy) dy}{\int \overline{f(y)} \exp(-isy) dy}$$
$$= \frac{\widehat{f(s)}}{\widehat{f(s)}}$$

as desired.

 \Box Proposition 4.3

Definition 4.4. If \mathfrak{A} is a (non-unital) Banach algebra, a *bounded (norm 1) approximate identity* is a net $\{e_{\alpha}\}$ such that $\sup \|e_{\alpha}\| < \infty \ (\leq 1)$ such that $ae_{\alpha} \to a$ and $e_{\alpha}a \to a$ for all $a \in \mathfrak{A}$.

Proposition 4.5. $e_n = \frac{n}{2}\chi_{[-n^{-1},n^{-1}]}$ form a norm 1 approximate identity for $L^1(\mathbb{R})$.

Proof. Indeed, if $f \in L^1(\mathbb{R})$, then since translation is continuous then for any $\varepsilon > 0$ there is $\delta > 0$ such that $||f_x - f||_1 < \varepsilon$ if $|x| < \delta$. The if $\frac{1}{n} < \delta$ we have

$$(e_n * f - f)(t) = \int_{\mathbb{R}} f(t - x)e_n(x)dx - f(t)$$

= $\frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(t - x)dx - \frac{2}{n} \int_{\frac{1}{n}}^{n} f(t)dx$
= $\frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}} (f_x(t) - f(t))dx$

Thus

$$\begin{aligned} \|e_n * f - f\|_1 &\leq \int_{\mathbb{R}} \frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}} |f_x(t) - f(t)| \mathrm{d}x \mathrm{d}t \\ &= \frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}} \underbrace{\int_{-\frac{1}{n}} |f_x(t) - f(t)| \mathrm{d}t}_{\|f_x - f\|_1 < \varepsilon} \mathrm{d}x \\ &\leq \varepsilon \end{aligned}$$

as desired.

 \Box Proposition 4.5

Most of these facts hold for arbitrary locally compact grapes, but we hope to save ourselves some technicalities by working just with \mathbb{R} .

Lemma 4.6. If $f \in L^1(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$ then $f * g \in C_0(\mathbb{R})$ and is uniformly continuous.

Proof. Note that

$$|(f * g)(x) - (f * g)(y)| \leq \int |(f(x - t) - f(y - t))g(t)|dt$$

$$\leq ||g||_{\infty} \int |f(t - x) - f(t - y)|dt$$

$$= ||g||_{\infty} ||f_x - f_y||_1$$

$$= ||g||_{\infty} ||f - f_{y-x}||_1$$

$$\to 0 \text{ as } x - y \to 0$$

So f * g is uniformly continuous; it remains to show that $f \in C_0(\mathbb{R})$. Suppose for contradiction that there were $\varepsilon > 0$ and $|x_n| \to \infty$ such that $|f * g(x_n)| \ge \varepsilon$. By uniform continuity there is $\delta > 0$ such that $|x - y| < \delta$ implies $|f * g(x) - f * g(y)| < \frac{\varepsilon}{2}$. Without loss of generality assume $|x_n - x_m| \ge 2\delta$ for all $n \ne m$. Then the $(x_n - \delta, x_n + \delta)$ are disjoint, and

$$\int_{x_n-\delta}^{x_n+\delta} |f*g(t)| \mathrm{d}t \ge \int_{x_n-\delta}^{x_n+\delta} \frac{\varepsilon}{2} \mathrm{d}t = \varepsilon \delta$$

 \mathbf{So}

$$\infty > \|f * g\|_1 \ge \sum_{n \ge 1} \int_{x_n - \delta}^{x_n + \delta} |f * g| \ge \sum_{n = 1}^{\infty} \varepsilon \delta = \infty$$

a contradiction. So $f * g \in C_0(\mathbb{R})$.

Theorem 4.7. $L^1(\mathbb{R})$ is semisimple.

Proof. Suppose $0 \neq f \in \operatorname{rad}(L^1(\mathbb{R}))$; i.e. $\operatorname{spr}(f) \neq 0$ (by Theorem 3.9). Let

$$u_n = \frac{n}{2}\chi_{\left[-\frac{1}{n},\frac{1}{n}\right]} \in L^{\infty}$$

be a norm 1 approximate identity for $L^1(\mathbb{R})$; so $f * u_n \to f$, so there is n_0 such that $f * u_{n_0} \neq 0$ and $f * u_{n_0} \in \operatorname{rad}(L^1(\mathbb{R}))$. Replace f with $f * u_n$, so without loss of generality we have $f \in C_0(\mathbb{R}) \cap L^1(\mathbb{R})$ and $\operatorname{spr}(f) = 0$. Define $f^* \in L^1(\mathbb{R})$ by $f^*(t) = \overline{f(-t)}$. So $f^* f^* \in \operatorname{rad}(L^1(\mathbb{R}) \cap C_0(\mathbb{R}))$; so

$$f * f^*(0) = \int f(t) f^*(-t) dt$$
$$= \int f(t) \overline{f(t)} dt$$
$$= \|f\|_2^2$$
$$> 0$$

Note that

$$||f||_{2}^{2} = \int |f(t)||f(t)| dt \le ||f||_{\infty} ||f||_{1}$$

is finite, since $f \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Define $F: L^1 \to \mathbb{C}$ by $F(g) = f * f^* * g(0)$. Then

$$|F(g)| = \left| \int f * f^*(t)g(-t) dt \right| \le \|f * f^*\|_{\infty} \|g\|_1$$

so F is continuous. Define a sesquilinear form on $L^1(\mathbb{R})$ by $\psi(g,h) = F(g * h^*)$, which is then continuous by the above. Then

$$\psi(g,g) = f * f^* * g * g^*(0) = (f * g) * (f * g)^*(0) = ||f * g||_2^2 \ge 0$$

 \Box Lemma 4.6

Then

$$\begin{split} \psi(h,g) &= f * f^* * h * g^*(0) \\ &= \int \int (f * f^*)(t)h(s)g^*(-s-t)\mathrm{d}s\mathrm{d}t \\ &= \int \int (f * f^*)(t)h(s)\overline{g(s+t)}\mathrm{d}s\mathrm{d}t \\ \overline{\psi(h,g)} &= \int \int \overline{(f * f^*(t))h(s)}g(s+t)\mathrm{d}s\mathrm{d}t \\ &= \int \int \underbrace{(f * f^*)^*}_{f*f^*}(-t)h^*(-s)g(s+t)\mathrm{d}s\mathrm{d}t \\ &= \psi(g,h) \end{split}$$

So ψ is conjugate linear. Then by Cauchy-Schwarz we get $|\psi(g,h)| \leq \psi(g,g)^{\frac{1}{2}} \psi(h,h)^{\frac{1}{2}}$. Then

$$\psi(u_n, u_n) = (f * u_n) * (f * u_n)^*(0)$$

= $||f * u_n||_2^2$
 $\leq \frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}} ||f_s||_2^2$
= $||f||_2^2$

TODO 22. f_s ? f_5 ?

Let $K = ||f||_2^2$. Then

$$\begin{split} |F(g)| &= \lim_{n \to \infty} |\underbrace{F(g * u_n)}_{\psi(g, u_n)}| \\ &\leq \lim_{n \to \infty} |F(g * g^*)|^{\frac{1}{2}} |\psi(u_n, u_n)|^{\frac{1}{2}} \\ &= K^{\frac{1}{2}} F(g * g^*)^{\frac{1}{2}} \\ &\leq K^{\frac{1}{2}} (K^{\frac{1}{2}} F(g * g^* * g * g^*)^{\frac{1}{2}})^{\frac{1}{2}} \\ &= K^{\frac{1}{2}} K^{\frac{1}{4}} F^{\frac{1}{4}} ((g * g^*)^2)^{\frac{1}{4}} \\ &\leq K^{\frac{1}{2}} K^{\frac{1}{4}} K^{\frac{1}{8}} \cdots K^{\frac{1}{2^n}} F((g * g^*)^{2^{n-1}})^{\frac{1}{2^n}} \\ &\leq K^{1-\frac{1}{2^n}} \|f * f^*\|_{\infty} \|(g * g^*)^{2^{n-1}}\|^{\frac{1}{2^n}} \\ &\to K \|f * f^*\|_{\infty} \operatorname{spr}(g * g^*)^{\frac{1}{2}} \end{split}$$

Take $g = f * f^*$. Then

$$F(f * f^*) = f * f^* * f * f^*(0) = ||f * f^*||_2^2 > 0$$

a contradiction. So $\operatorname{rad}(L^1(\mathbb{R})) = 0$.

 $\hfill\square$ Theorem 4.7

5 Non-commutative Banach algebras and their representation theory

Definition 5.1. A left ideal J of a (Banach) algebra \mathfrak{A} is *modular* if there is $e \in \mathfrak{A} \setminus J$ such that $\mathfrak{A}(1-e) \subseteq J$.

Remark 5.2.

1. If ${\mathfrak A}$ is unital then every proper left ideal is modular.

2. If J is a 2-sided ideal which is left and right modular then the same e works for both. Indeed, given $e_1, e_2 \in \mathfrak{A} \setminus J$ such that $\mathfrak{A}(1-e_1) \subseteq J$ and $(1-e_2)\mathfrak{A} \subseteq J$, we have $e_2 - e_2e_1 \in J$ and $e_1 - e_2e_1 \in J$; so $e_1 - e_2 \in J$. Then

$$(1-e_1)\mathfrak{A} = (1-e_2)\mathfrak{A} + (e_2-e_1)\mathfrak{A} \subseteq J + J = J$$

as desired.

Proposition 5.3. Suppose \mathfrak{A} is a non-unital Banach algebra; let $\mathfrak{A}_+ = \mathfrak{A} + \mathbb{C}1$ be the unitization. If I is a proper ideal of \mathfrak{A}_+ with $I \not\subseteq \mathfrak{A}$ then $I_0 = I \cap \mathfrak{A}$ is a modular left ideal of \mathfrak{A} . Conversely if I_0 is a modular left ideal of \mathfrak{A} with right modular unit e then $I = I_0 + \mathbb{C}(1-e)$ is a proper left ideal of \mathfrak{A}_+ .

Proof.

- (\implies) Since $I_0 \subsetneq I$ and \mathfrak{A} has codimension 1 in \mathfrak{A}_+ , we get that I_0 has codimension 1 in I. Pick $a + \lambda 1 \in I \setminus I_0$; note that $\lambda \neq 0$. So $1 + \lambda^{-1}a \in I$. Let $e = -\lambda^{-1}a$. So $\mathfrak{A}(1-e) = \mathfrak{A}(1 + \lambda^{-1}a) \subseteq I \cap \mathfrak{A} = I_0$; so I_0 is modular.
- (\Leftarrow) I_0 is proper, so I is proper (by a dimension argument). Then $\mathfrak{A}_+I = \mathfrak{A}I_0 + \mathfrak{A}(1-e) + (\mathbb{C}1)I \subseteq I_0 + I + I = I$. So I is a left ideal. \Box Proposition 5.3

Corollary 5.4. If I is a left modular ideal of \mathfrak{A} with right modular unit e then $b_1(e) \cap I = \emptyset$.

Proof. Suppose $a \in I$ has ||a - e|| < 1. Then $(1 - e) + a \in I + \mathbb{C}(1 - e)$ is contained in a proper left ideal of \mathfrak{A}_+ ; but (1 - e) + a = 1 + a - e is invertible in \mathfrak{A}_+ by Proposition 1.11, a contradiction. (Proper ideals don't contain invertibles.)

Proposition 5.5. If I is a left modular ideal with right modular unit e and $I \subseteq J$ with J a proper left ideal then J is modular with the same unit e. Hence I is contained in a maximal modular left ideal, and such ideals are closed.

Proof. Note that $J \cap b_1(e) = \emptyset$. Indeed, otherwise by proof of the previous corollary we would have $J + \mathbb{C}(1-e) = \mathfrak{A}_+$ which is impossible since J is proper; so $J + \mathbb{C}(1-e)$ has codimension ≥ 1 . Then $\mathfrak{A}(1-e) \subseteq I \subseteq J$. Maximality is by Zorn's lemma, and we note that \overline{J} is still proper since it is disjoint from $b_1(e)$, so maximal implies closed. \Box Proposition 5.5

Definition 5.6. If X is a vector space and $\mathcal{L}(X)$ the space of linear maps from $X \to X$, a representation of \mathfrak{A} is a homomorphism $\pi: \mathfrak{A} \to \mathcal{L}(X)$. This makes X into a left \mathfrak{A} -module by $a \cdot x = \pi(a)x$. We say (X, π) is a trivial module if $X = \mathbb{C}$ and $\pi = 0$. We say X is irreducible if 0 and X are the only submodules and X is not trivial.

Proposition 5.7. Suppose X is an irreducible left \mathfrak{A} -module.

- 1. If $0 \neq x_0 \in X$ then $\mathfrak{A}x_0 = X$.
- 2. $I_{x_0} = \{a : a \cdot x_0 = 0\} = \ker_{\pi}(x_0)$ is a maximal modular left ideal with right modular unit e for any e satisfying $e \cdot x_0 = x_0$.
- 3. $\ker(\pi) = \bigcap_x \ker_\pi(x)$ is the intersection of maximal modular ideals (and is thus closed). Also $\ker(\pi) = I_{x_0} : \mathfrak{A} = \{a : a \mathfrak{A} \subseteq I_{x_0}\}$ for any $x_0 \neq 0$.

Proof.

- 1. $\mathfrak{A}x_0$ is a submodule of X, so by irreducibility either $\mathfrak{A}x_0 = X$ or $\mathfrak{A}x_0 = \{0\}$. Suppose the latter; then $\mathbb{C}x_0$ is a non-zero submodule and is thus X, so X is trivial, a contradiction.
- 2. Pick e such that $ex_0 = x_0$ by (1). Then for $a \in \mathfrak{A}$ we have

$$a(1-e)x_0 = ax_0 - a(ex_0) = ax_0 - ax_0 = 0$$

So $\mathfrak{A}(1-e) \subseteq I_{x_0}$, and I_{x_0} is modular. Suppose $J \supseteq I$ is a left ideal; then $Jx_0 \neq 0$ is a submodule, so $Jx_0 = X$. So there is $f \in J$ such that $fx_0 = x_0$. So $\mathfrak{A} - \mathfrak{A}f = \mathfrak{A}(1-f) \subseteq I_{x_0} \subseteq J$; so $\mathfrak{A} \subseteq \mathfrak{A}f + J \subseteq J$, and $J = \mathfrak{A}$. So I_{x_0} is maximal.

3. First part is evident. If $a\mathfrak{A} \subseteq I_{x_0}$ and $x \in X$, we can pick $b \in \mathfrak{A}$ such that $bx_0 = x$. Then $ax = abx_0 \subseteq (a\mathfrak{A})x_0 = \{0\}$; so $a \in \ker(\pi)$. Conversely if $a \in \ker(\pi)$ then for all $b \in \mathfrak{A}$ we have $0 = a(bx_0) = (ab)x_0$, so $ab \in I_{x_0}$. So $\ker(\pi) = I_{x_0} : \mathfrak{A}$. \Box Proposition 5.7

Proposition 5.8. If I is a maximal modular left ideal in \mathfrak{A} then there is a continuous representation π on a Banach space X with a vector $0 \neq x_0 \in X$ such that $I = I_{x_0}$ and $\ker(\pi) = I : \mathfrak{A}$.

Proof. Let $X = \mathfrak{A}/I$ as a Banach space. Define $\pi(a)(b+I) = ab+I$. (Check that this is well-defined.) Then

$$\|\pi(a)\| = \sup_{\|\dot{b}\| < 1} \|\dot{a}b\|$$

=
$$\sup_{\|b\| < 1} \inf_{i \in I} \|ab + i\|$$

$$\leq \sup_{\|b\| < 1} \inf_{i \in I} \|ab + ai\|$$

$$\leq \sup_{\|b\| < 1} \inf_{i \in I} \|a\| \|b + i\|$$

$$\leq \|a\|$$

So it is continuous. Let e be a right modular unit for I; let $x_0 = \dot{e}$. Then

$$I_{x_0} = \{ a : a\dot{e} = 0 \} = \{ a : ae \in I \} = I$$

So $\ker(\pi) = I_{x_0} : \mathfrak{A} = I : \mathfrak{A}.$

Definition 5.9 (Talked to Ken after the fact). Suppose \mathfrak{A} is a Banach algebra. A *Banach module* is an \mathfrak{A} -module \mathfrak{X} that is also a Banach space such that for any $a \in \mathfrak{A}$ the map $\ell_a \colon X \to X$ given by $x \mapsto ax$ is a bounded linear operator on X and furthermore the map $\mathfrak{A} \mapsto \mathcal{C}(X)$ given by $a \mapsto \ell_a$ is continuous. A *continuous representation* is a continuous algebra homomorphism $\pi \colon \mathfrak{A} \to \mathcal{C}(\mathfrak{X})$ for some Banach space \mathfrak{X} ; i.e. a representation such that each $\pi(a)$ lies in $C(\mathfrak{X})$ (rather than just $\mathcal{L}(\mathfrak{X})$) and $\pi \colon \mathfrak{A} \to \mathcal{C}(\mathfrak{X})$ is continuous.

Theorem 5.10. Suppose X is an irreducible \mathfrak{A} -module and $x_0 \neq 0$; so by the above $I_{x_0} = \{a : a \cdot x_0 = 0\}$ is a maximal ideal. Then $\theta : \mathfrak{A}/I_{x_0} \to X$ defined by $\theta(a + I) = a \cdot x_0$ is a well-defined module isomorphism and the norm $||ax_0|| = ||a + I||$ makes X into a Banach space. Moreover if X is already a Banach module then θ is a Banach space isomorphism.

Proof. Since $I_{x_0} \cdot x_0 = 0$, we get that θ is well-defined. If $x \in X$ then there is b such that $x = bx_0$. So

$$\theta(a\underbrace{\dot{b}}_{\in\mathfrak{A}/I}) = \theta(a\dot{b}) = abx_0 = a(bx_0 = a\theta(\dot{b}))$$

So θ is a morphism of modules; it is bijective since

$$\theta(\dot{a}) = \theta(b) \iff ax_0 = bx_0$$
$$\iff (a - b)x_0 = 0$$
$$\iff a - b \in I_{x_0}$$
$$\iff a = b$$

The proposed norm is just the norm on \mathfrak{A}/I and \mathfrak{A}/I is a Banach \mathfrak{A} -module.

If X already has a norm $\|\cdot\|_X$ and the action is continuous then $\|\pi\| < \infty$. Thena

$$\|\theta(\dot{a})\|_{X} = \|a \cdot x_{0}\|_{X} = \|(a+i)x_{0}\|_{X}$$

for all $i \in I_{x_0}$. So

$$\|\theta(\dot{a})\| \le \inf_{i \in I} \|\pi\| \|a + i\| \|x_0\|_X = (\|\pi\| \|x_0\|) \|\dot{a}\|$$

So θ is continuous and bijective, and is thus invertible by the Banach isomorphism theorem. *Exercise* 5.11. Check that θ^{-1} is also a morphism of bimodules.

 \Box Proposition 5.8
So θ is an isomorphism of Banach modules.

 \Box Theorem 5.10

TODO 23. I think $I = I_{x_0}$ throughout.

Definition 5.12. A 2-sided ideal $J \leq \mathfrak{A}$ is *primitive* if it is the kernel of an irreducible representation.

Corollary 5.13. The primitive ideals of \mathfrak{A} have form $I : \mathfrak{A} = \{a : a\mathfrak{A} \subseteq I\}$ for I a maximal modular left ideal.

Definition 5.14. The radical $rad(\mathfrak{A})$ is

$$\bigcap_{\text{r irreducible}} \ker(\pi)$$

We say \mathfrak{A} is *semisimple* if $rad(\mathfrak{A}) = \{0\}$. We say \mathfrak{A} is *radical* if \mathfrak{A} has no irreducible representations.

Example 5.15.

1. Consider $\mathfrak{A} = \mathfrak{T}_n \subseteq M_n(\mathbb{C}) = \mathcal{B}(\mathbb{C}^n)$ consisting of the upper triangular $n \times n$ matrices; we use the norm

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\|$$

What are the left ideals of \mathfrak{T}_n ? Suppose we have such I, and $A \in I$. Suppose $a_{i_0,j_0} \neq 0$. Recall the matrix units $E_{ij} = e_i e_j^*$, so $E_{ij} x = \langle x, e_j \rangle e_i$; note $E_{ij} \in \mathfrak{T}_n$ if $i \leq j$. Then

$$E_{ii_0}Ae_{j_0} = a_{i_0j_0}e_i$$

But

$$Ae_{i_0} = \sum_j a_{i_0,j} e_j$$

So

TODO 24. Some conclusion about upward closed sets of indices within a column.

For $i \leq j \leq n$ we have $J_i = \{T \in \mathfrak{T}_n : t_{jj} = 0\}$ is a maximal 2-sided ideal of codimension 1, and is thus maximal as a left ideal. Then we have $\pi : \mathfrak{T}_n/J_j \to \mathbb{C}$ given by $T \mapsto t_{jj}$; then π_j is irreducible and $\ker(\pi_j) = J_j$. Suppose I is a left ideal but $I \not\subseteq J_j$ for all j. Then there is $A_j \in I$ such that $a_{jj} \neq 0$; so $E_{jj}A_j \in I$. But $\operatorname{Ran}(E_{jj}A_j) = \mathbb{C}e_j\frac{1}{a_{jj}}E_{jj}A_j$ is the set of matrices with 0 outside the j^{th} column and 1 in the (j, j)-entry (and upper triangular).

\int_{0}^{0}	•••				
		1	x	x	
					0

 So

$$I \ni A = \sum \frac{1}{a_j j} E_{jj} A_j$$

and A is upper triangular with 1's on the diagonal. So A is invertible, and $I = \mathfrak{T}_n$. So the J_j are the maximal left ideals. So

$$\operatorname{rad}(\mathfrak{T}_n) = \bigcap_{j=1}^n \ker(\pi_j) = \mathfrak{T}_n^0$$

the strictly upper triangular matrices.

2. Consider $\mathfrak{A} = M_n$; the only ideals are $\{0\}$ and M_n .

Claim 5.16. The maximal left ideals have form $I_x = \{A \in M_n : Ax = 0\}$ for $x \neq 0$.

Proof. Clearly id: $M_n \hookrightarrow \mathcal{B}(\mathbb{C}^n)$ is irreducible. So the I_x are maximal modular left ideals. Conversely suppose I is a left ideal but for all $x \neq 0$ there is $A_x \in I$ such that $A_x x \neq 0$. Let e_1, \ldots, e_n be the standard basis; let $A_{e_1}e_1 = u \neq 0$. Let $B = ||u||^{-2}e_1u^*$; so $BA_{e_1}e_1 = e_1$. Then B, and hence $C_1 = BA_{e_1}$, have rank 1; so $C_1 = e_1v_1^*$ for some v_1 with $\langle v_1, e_1 \rangle \neq 0$.

Take $x \perp v_1$; then $A_x x \neq 0$; find rank-1 B_2 (again can take $||x||^{-2} e_2 x^*$)

TODO 25. Really?

and let $C_2 = B_2 A_x$; so $C_2 = e_2 v_2^*$ for some v_2 with $\langle v_2, x \rangle \neq 0$. So $\{v_1, v_2\}$ is linearly independent. Now take $x \perp \{v_1, v_2\}$, etc. We build $e_j v_j^* \in I$ such that $\{v_1, \ldots, v_n\}$ are linearly independent and

$$\sum e_i v_j^*$$

is invertible. So $I = M_n$.

The representation on M_n/I_x is just the identity representation because id: $M_n \to \mathcal{B}(\mathbb{C}^n)$. Fix $x \neq 0$, and get $I_x = \{A : Ax = 0\}$ maximal modular. So id is isomorphic to a representation on M_n/I_x . So id is the unique (up to equivalence) irreducible representation of M_n .

Theorem 5.17. Suppose \mathfrak{A} is a Banach algebra, and consider $1 \in \mathfrak{A}_+$ if \mathfrak{A} is not unital. Then the following are equivalent:

(1) $a \in rad(\mathfrak{A})$.

(21) a is in the intersection of all maximal modular left ideals of \mathfrak{A} .

(2r) a is in the intersection of all maximal modular right ideals of \mathfrak{A} .

(3) $\sigma(ab) = \{0\}$ for all $b \in \mathfrak{A}$.

(3') $\sigma(ba) = \{0\}$ for all $b \in \mathfrak{A}$.

(41) $ab - \lambda$ is left-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.

(41') $ba - \lambda$ is left-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.

(41) $ab - \lambda$ is right-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.

(41') $ba - \lambda$ is right-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.

TODO 26. Mathmode for description labels?

Lemma 5.18. If $\lambda \neq 0$ and $ab - \lambda$ is left (right) invertible then so is $ba - \lambda$.

Proof. Let $u \in \mathfrak{A}_+$ satisfy $u(ab - \lambda) = 1$. Then $bua(ba - \lambda) = bu(ab - \lambda)a = ba$. Then

$$\left(\frac{bua-1}{\lambda}\right)(ba-\lambda) = \frac{ba-(ba-\lambda)}{\lambda} = 1$$

as desired.

Hence

- 4l is equivalent to 4l'.
- 4r is equivalent to 4r'.
- 3 is equivalent to 3'.

Proof of Theorem 5.17.

 \Box Lemma 5.18

 \Box Claim 5.16

 $(1) \iff (2l)$ Done. Indeed we have

$$\operatorname{rad}(\mathfrak{A}) = \bigcap_{\pi \text{ irreducible}} \ker(\pi) = \bigcap \{ \ker(\pi_I) : I \text{ maximal left modular} \}$$

 $(3) \Longrightarrow (4l,4r)$ Immediate.

 $(1) \Longrightarrow (4l)$ Suppose there is $\lambda \neq 0$ and b such that $ab - \lambda$ is not left invertible. Then $J = \mathfrak{A}(1 - \lambda^{-1}ab) = \mathfrak{A}(ab - \lambda)$ is a proper ideal and has $\lambda^{-1}ab$ as a right modular unit; so J is left modular, and is contained in some I maximal left modular. Then we have $\pi : \mathfrak{A} \to \mathcal{L}(\mathfrak{A}/I)$ with

$$\pi(a)b = ab = \lambda \dot{1} \neq 0$$

so $a \notin \ker \pi$, and $a \notin \operatorname{rad}(\mathfrak{A})$.

- $(4l') \Longrightarrow (2l)$ Suppose there is a maximal modular left ideal I with $a \notin I$. So $\dot{a} \neq 0$ in \mathfrak{A}/I , which is an irreducible module. So there is $b \in \mathfrak{A}$ such that $b\dot{a} = \dot{1}$. So $ba 1 \in I$ is contained in a proper left ideal; so ba 1 is not left invertible.
- (1) \implies (3) Suppose $a \in \operatorname{rad}(\mathfrak{A})$, $b \in \mathfrak{A}$, and $\lambda \neq 0$. Since 1 implies 4l we get that $ab \lambda$ has left inverse u; so $1 = u(ab - \lambda) = uab - \lambda u$, and $uab \in \operatorname{rad}(\mathfrak{A})$ (since $a \in \operatorname{rad}(\mathfrak{A})$). So $\lambda u = uab - 1$ is left-invertible again since 1 implies 4l. So there is v such that $v(\lambda u) = 1$; so u is left- and right-invertible, and is thus invertible. So $ab - \lambda = u^{-1}$ is invertible.

 $(2l) \iff (2r)$ Use the fact that 3 is left-right blind.

 \Box Theorem 5.17

Definition 5.19. If X is a non-trivial Banach \mathfrak{A} -module we say X is topologically irreducible if the only closed submodules are $\{0\}$ and X.

Example 5.20. There are topologically irreducible Banach modules that aren't algebraically irreducible. (i.e. what we called irreducible before.) Consider \mathbb{F}_2^+ the free monoid on $\{x, y\}$; this is the set of words $i_1 \cdots i_k$ with $k \ge 0$ and each $i_j \in \{x, y\}$. We define $v \cdot w$ to be their concatenation: if $v = i_1 \cdots i_k$ and $w = j_1 \cdots j_\ell$ then $v \cdot w = i_1 \cdots i_k j_1 \cdots j_\ell$. Let $\mathfrak{A} = \ell_1(\mathbb{F}_2^+)$ be the set of

$$\sum_{v \in \mathbb{F}_2^+} \lambda_v v$$

subject to

$$\left\|\sum \lambda_v v\right\| = \sum |\lambda_v| < \infty$$

We define $v \cdot w = vw$, so $(\lambda v)(\mu w) = (\lambda \mu)vw$. Define $\pi \colon \ell_1(\mathbb{F}_2^+) \to \mathcal{B}(\ell_2)$ by $\pi(x) = S$ the unilateral shift and $\pi(y) = S^*$. So

$$\tau(x^{k_1}y^{\ell_1}\cdots x^{k_m}y^{\ell_m} = S^{k_1}(S^*)^{\ell_1}\cdots S^{k_m}(S^*)^{\ell_m}$$

If ε is the empty word

$$\pi(\varepsilon) = I$$

= $\pi(yx)$
= S^*S
 $\pi(xy) = SS^*$
 $\pi(\varepsilon - xy) = I - SS^*$
= $e_0 e_0^*$

 So

$$\pi(x^n(\varepsilon - xy)y^j) = S^i e_0 e_0^* (S^*)^j = (S^i e_0)(S^j e_0^*) = e_i e_j^*$$

So $\operatorname{Ran} \ell_1(\mathbb{F}_2^+) \supseteq \operatorname{span} \{ E_{ij} \} = \mathcal{K}$ is the space of compact operators, which acts transitively. So it's topologically irreducible. But $X = \ell_1(\mathbb{F}_2^+)e_0 \subseteq \ell_1 \subsetneq \ell_2$; so it's not algebraically irreducible.

Theorem 5.21 (Schur's lemma). Suppose \mathfrak{A} is a Banach algebra and X an irreducible \mathfrak{A} -module. Let $\mathcal{D} = \{T \in \mathcal{L}(X) : Ta = aT \text{ for all } a \in \mathfrak{A}\}$. Then $\mathcal{D} = \mathbb{C}I$.

Proof. Note that \mathcal{D} is an algebra (it's a subspace, and closed under multiplication). We claim that $\mathcal{D} \subseteq \mathbb{C}I$.

Suppose $T \in \mathcal{D} \setminus \{0\}$; so $TX \neq \{0\}$ is a submodule and $a(Tx) = T(ax) \in TX$. So TX = X; so $\ker(T) \neq X$ is a submodule. If $x \in \ker(T)$ then T(ax) = a(Tx) = 0; so $\ker(T) = \{0\}$, and T is invertible. But now

$$aT^{-1} = T^{-1}(Ta)T^{-1} = T^{-1}ATT^{-1} = T^{-1}a$$

so $T^{-1} \in \mathcal{D}$, and \mathcal{D} is a division algebra.

Now, X is irreducible, so without loss of generality we take $X = \mathfrak{A}/I_{x_0}$ for any $0 \neq x_0 \in X$.

TODO 27. ref

(Recall $I_{x_0} = \{ a \in \mathfrak{A} : ax_0 = 0 \}$.) In particular the \mathfrak{A} -action is continuous on X. So if $T \in \mathcal{D}$ then

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\| = \sup_{\|a+I_{x_0}\| \le 1} \|T(a+\underbrace{i}_{\in I_{x_0}})x_0\| \le \sup_{\|a+I_{x_0}\| \le 1} \|(x+i)Tx_0\| \le \sup_{\|a+I_{x_0}\| \le 1} \inf_{i \in I_{x_0}} \|a\| \|Tx_0\| = \|Tx_0\| < \infty$$

So $\mathcal{D} \subseteq \mathcal{B}(X)$. Also \mathcal{D} is closed: if $T_n \in \mathcal{D}$ and $(T_n)_n \to T$ then

$$aT = \lim_{n \to \infty} aT_n = \lim_{n \to \infty} T_n a = Ta$$

So \mathcal{D} is a Banach division ring containing $\mathbb{C}I$; so $\mathcal{D} = \mathbb{C}I$ by Mazur's theorem.

 \Box Theorem 5.21

Definition 5.22. Suppose \mathfrak{A} is a Banach algebra and X a \mathfrak{A} -module. We say \mathfrak{A} is

- transitive if $\mathfrak{A}x_0 = X$ for all $x_0 \neq 0$
- k-transitive if whenever x_1, \ldots, x_k linearly independent in X and $y_1, \ldots, y_k \in X$ there is $a \in \mathfrak{A}$ such that $ax_i = y_i$ for $1 \le i \le k$
- strictly transitive if it is k-transitive for all $k \ge 1$.

Theorem 5.23 (Jacobson density theorem). If X is an irreducible \mathfrak{A} -module then \mathfrak{A} is strictly transitive in \mathfrak{A} .

Standing assumption: X is an irreducible \mathfrak{A} -module.

Lemma 5.24. Suppose $x_1, x_2 \in X$ are linearly independent. Then there is $a \in \mathfrak{A}$ such that $ax_1 = 0$ and $ax_2 \neq 0$.

Proof. Suppose not; suppose $ax_1 = 0$ implies $ax_2 = 0$. Define $T: X \to X$ linear by $T(ax_1) = ax_2$ for all $a \in \mathfrak{A}$; this is defined on $X = \mathfrak{A}x_1$ and if $ax_1 = bx_1$ then $(a - b)x_1 = 0$ implies $(a - b)x_2 = 0$ and $ax_2 = bx_2$. So T is well-defined and linear. If $b \in \mathfrak{A}$ and $x = ax_1$ then

$$T(bx) = T(bax_1) = b(ax_2) = bT(ax_1) = bTx$$

So Tb = bT and $T \in \mathcal{D} = \mathbb{C}I$. So $x_2 \in \mathbb{C}x_1$, a contradiction.

Lemma 5.25. Suppose $n \ge 3$ and x_1, \ldots, x_n are linearly independent in X. Then there is $a \in \mathfrak{A}$ such that $ax_1 = ax_2 = \cdots = ax_{n-1} = 0 \neq ax_n$.

Proof. Proceed by induction on n. Our induction hypothesis: if \mathfrak{B} is any Banach algebra and Y an irreducible \mathfrak{B} -module and $y_1, \ldots, y_{n-1} \in Y$ linearly independent then there is $b \in \mathfrak{B}$ such that $by_1 = \cdots = by_{n-2} 0 \neq by_{n-1}$.

Lemma 5.24 gives the base case n = 2.

For the induction step, let $M = \text{span}\{x_1, \ldots, x_{n-2}\}$. Let

$$\mathfrak{B} = \bigcap_{i=1}^{n-2} \underbrace{I_{x_i}}_{\text{closed left ideal}} = \{ a : aM = 0 \}$$

Let Y = X/M. Then if $b \in \mathfrak{B}$ we have $b(x+M) = bx \in bx + M$; so Y is a \mathfrak{B} -module with $b(\dot{x}) = \dot{bx}$.

 \Box Lemma 5.24

41

Claim 5.26. Y is an irreducible \mathfrak{B} -module.

Proof. Suppose $0 \neq y_1 \in Y$ and $y_2 \in Y$; say $y_1 = x + M$ and $y_2 = x' + M$. Then $x \notin M$ and x_1, \ldots, x_{n-2} are linearly independent and span M; so x_1, \ldots, x_{n-2}, x is linearly independent. So by induction hypothesis (for \mathfrak{A} acting on X) there is $a \in \mathfrak{A}$ such that $ax_1 = \cdots = ax_{n-2} = 0 \neq ax$. Then $a \in \mathfrak{B}$ and $ax \neq 0$, so there is $c \in \mathfrak{A}$ such that cax = x'. Then $ca \in \mathfrak{B}$ and

$$(ca)y_1(ca)\dot{x} = c\dot{a}x = x' = y_2$$

TODO 28. Dot cax

So \mathfrak{B} is transitive in Y. So Y is irreducible.

Now x_1, \ldots, x_n are linearly independent and $\dot{x_{n-1}}, \dot{x_n}$ are linearly independent in Y = X/M. Since Y is an irreducible \mathfrak{B} Lemma 5.24 yields that there is $b \in \mathfrak{B}$ such that $bx_{n-1} = 0$ and $bx_n \neq 0$. So $bx_1 = bx_2 = \cdots = bx_{n-2} = 0$ and $bx_{n-1} \in M$ but $bx_n \notin M$. So either $bx_{n-1} = 0$ or $\{bx_{n-1}, bx_n\}$ is linearly independent. By Lemma 5.24 there is $c \in \mathfrak{A}$ such that $cbx_{n-1} = 0$ and $cbx_n \neq 0$. So if a = cb then $ax_1 = \cdots = ax_{n-1} = 0 \neq ax_n$, as desired. \Box Lemma 5.25

Proof of Theorem 5.23. Suppose x_1, \ldots, x_n are linearly independent in X and $y_1, \ldots, y_n \in X$. Then by Lemma 5.25 there is $a_j \in \mathfrak{A}$ such that

$$a_j x_i = \begin{cases} 0 \text{if } i \neq j \\ z_j \neq 0 & \text{if } i = j \end{cases}$$

By transitivity there is $b_j \in \mathfrak{A}$ such that $b_j z_j = y_j$. Let

Then
$$ax_j = y_j$$
 for $1 \le j \le n$. So \mathfrak{A} is *n*-transitive for $n \ge 1$.

Automatic continuity 5.1

Theorem 5.27 (B. Johnson). If X is a Banach space and $\pi: \mathfrak{A} \to \mathcal{B}(X)$ makes X an irreducible \mathfrak{A} module then π is continuous.

 $a = \sum_{j=1}^{n} b_j a_j \in \mathfrak{A}$

Proof. First note that ker(π) is primitive, and is thus closed. We have the following commuting diagram:

Then X is also an irreducible $\mathfrak{A}/\ker(\pi)$ -module. If $\dot{\pi}$ is continuous then $\pi = \dot{\pi} \circ q$ is continuous. So without loss of generality we may assume π is injective.

If $\dim(X) < \infty$ then $\dim(\mathcal{B}(X)) = (\dim(X))^2 < \infty$; since π is injective we get $\dim(\mathfrak{A}) < \infty$, and linearity of π implies continuity.

Suppose then that $\dim(X) = \infty$. For $x \in X$ define a linear map $T_x \colon \mathfrak{A} \to X$ by $T_x a = ax$. Let $Y = \{ x \in X : T_x \text{ continuous } \}; \text{ so } Y \subseteq X \text{ is a subspace. Also if } b \in \mathfrak{A} \text{ then}$

$$||T_{bx}a|| = ||abx|| = ||T_x(ab)|| \le ||T_x|| ||ab|| \le (||T_x|| ||b||) ||a||$$

So $x \in Y$ implies $bx \in Y$, and Y is an \mathfrak{A} -submodule of X. So Y is $\{0\}$ or X.

 \Box Claim 5.26

 \Box Theorem 5.23

Case 1. Suppose Y = X and $x \in X$. Then

$$\sup_{\|a\| \le 1} \|\pi(a)x\| = \sup_{\|a\| \le 1} \|ax\| = \|Tx\| < \infty$$

Hence by the uniform boundedness principle we have

$$\|\pi\| = \sup_{\|a\| \le 1} \|\pi(a)\| < \infty$$

and π is continuous.

Case 2. Suppose $Y = \{0\}$. Since dim $(X) = \infty$ there are linearly independent unit vectors x_1, x_2, x_3, \ldots By the Jacobson density theorem there is $a_n \in \mathfrak{A}$ such that $a_n x_i = 0$ for $1 \le i < n$ and $a_n x_n \ne 0$. Let

$$L_n = \bigcap_{i=1}^{n-1} I_{x_i}$$

so $a_n \in L_n$ and $a_n \notin L_{n+1}$. Then $a_n x_n \neq 0$ so $T_{a_n x_n}$ is unbounded. Pick $b_n \in \mathfrak{A}$ with $||b_n|| < \frac{2^{-n}}{||a_n||}$ such that

$$||b_n a_n x_n|| = ||T_{a_n x_n} b_n|| > n + \left|\left|\left(\sum_{i=1}^{n-1} b_i a_i\right) x_n\right|\right|$$

Let

$$b = \sum_{i=1}^{\infty} b_i a_i$$

This converges since $||b_n a_n|| < 2^{-n}$. Then

$$b = \sum_{i=1}^{n} b_i a_i + \sum_{i>n} b_i a_i$$

But for i > n we have $a_i \in L_n$ and then L_n are closed left ideals; so $b_i a_i \in L_n$ for i > n, and

$$\sum_{i=n+1}^{\infty} b_i a_i \in L_r$$

and hence

$$\left(\sum_{i=n+1}^{\infty} b_i a_i\right) x_n = 0$$

But now

$$\|\pi(b)\| \ge \|bx_n\| = \left\|\sum_{i=1}^{n-1} b_i a_i x_n + b_n a_n x_n + \underbrace{\left(\sum_{i=n+1}^{\infty} b_i a_i\right) x_n}_{=0}\right\| \ge \|b_n a_n x_n\| - \left\|\left(\sum_{i=1}^{n-1} b_i a_i\right) x_n\right\| > n$$

a contradiction. So this case cannot hold, and we land in the first case. \Box The

Definition 5.28. Suppose X, Y are Banach spaces and $T: X \to Y$ is linear. The *separating space* is $\mathfrak{S}(T) = \{ y \in Y : \text{ there are } x_n \in X \text{ such that } x_n \to 0, Tx_n \to y \}$

Remark 5.29. By the closed graph theorem T is continuous if and only if $\mathfrak{S}(T) = \{0\}$.

 \Box Theorem 5.27

Theorem 5.30 (Johnson). Suppose $\mathfrak{A}k, \mathfrak{B}$ are Banach algebras and $\theta \colon \mathfrak{A} \to \mathfrak{B}$ is a surjective homomorphism. Then $\mathfrak{S}(\theta) \subseteq \operatorname{rad}(\mathfrak{B})$.

Proof. Suppose (X, π) is an irreducible Banach module for \mathfrak{B} . Then $\pi \circ \theta$ is an irreducible representation, making X an irreducible \mathfrak{A} -module. (Indeed, if $x_1 \neq 0$ in X and $x_2 \in X$ then there is $b \in \mathfrak{B}$ such that $bx_1 = x_2$; but there is $a \in \mathfrak{A}$ such that $\theta(a) = b$, and hence $(\pi \circ \theta)(a)x_1 = x_2$.) So $\pi \circ \theta \colon \mathfrak{A} \to \mathcal{B}(X)$ is an irreducible representation; so by Johnson's theorem we have $\pi \circ \theta$ is continuous.

If $b \in \mathfrak{S}(\theta)$ then

$$\pi(b) = \lim_{n \to \infty} \pi(\theta(a_n)) = \lim_{n \to \infty} \underbrace{(\pi \circ \theta)}_{\text{continuous}} \underbrace{(a_n)}_{\to 0} = 0$$

 So

$$b \in \bigcap_{\pi \text{ irreducible}} \ker(\pi) = \operatorname{rad}(\mathfrak{B})$$

as desired.

Corollary 5.31 (Johnson). Every surjective homomorphism from a Banach algebra \mathfrak{A} to a semisimple Banach algebra \mathfrak{B} is continuous.

Proof. Given such $\theta: \mathfrak{A} \twoheadrightarrow \mathfrak{B}$ we have $\mathfrak{S}(\theta) \subseteq \operatorname{rad}(\mathfrak{B}) = \{0\}$. So by the closed graph theorem θ is continuous. \Box Corollary 5.31

Corollary 5.32. Every automorphism of a semisimple Banach algebra is continuous.

Corollary 5.33 (Uniqueness of norm). If \mathfrak{B} is a semisimple Banach algebra then all Banach algebra norms are equivalent. i.e. if $\|\cdot\|$ and $\|\cdot\|$ are two Banach algebra norms and $\|\cdot\|$ makes \mathfrak{B} semisimple then there is $0 < c_1 \le c_2 < \infty$ such that $c_1 \|b\| \le \|b\| \le c_2 \|b\|$ for all $b \in \mathfrak{B}$.

Proof. id: $(\mathfrak{B}, \|\cdot\|) \to (\mathfrak{B}, \|\cdot\|)$ is a homomorphism and is thus continuous and bijective; so θ is invertible. \Box Corollary 5.33

Fact 5.34. Even in the commutative case, this last corollary fails if we drop the assumption of semisimplicity.

6 C*-algebras

Definition 6.1. A C*-algebra is a Banach *-algebra \mathfrak{A} such that $||a^*a|| = ||a||^2$ for all $a \in \mathfrak{A}$.

Remark 6.2. $||a||^2 = ||a^*a|| \le ||a^*|| ||a||$, so $||a|| \le ||a^*|| \le ||a^{**}|| = ||a||$; so $||a^*|| = ||a||$. Example 6.3.

(1) Consider $\mathcal{B}(\mathcal{H})$ for \mathcal{H} a Hilbert space. If $T \in \mathcal{B}(\mathcal{H})$ then

$$T\|^{2} = \|T^{*}\|\|T\|$$

$$\geq \|T^{*}T\|$$

$$= \sup\{|\langle T^{*}Tx, y\rangle| : x, y \in \mathcal{H}, |x| = |y| = 1\}$$

$$\geq \sup_{\|x\|=1} |\langle T^{*}Tx, x\rangle|$$

$$= \sup_{\|x\|=1} |\langle Tx, Tx\rangle|$$

$$= \sup_{\|x\|=1} \|Tx\|^{2}$$

$$= \|T\|^{2}$$

So $||T^*T|| = ||T^2||$.

(1') If \mathfrak{A} is a closed self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ (i.e. if $A \in \mathfrak{A}$ then $A^* \in \mathfrak{A}$) then \mathfrak{A} is a concrete C^* -algebra.

 \Box Theorem 5.30

(1") If T ∈ B(H) we define C*(T) = alg{I,T,T*}^{||·||}. (Here alg means "the algebra generated by".)
(2) If X is locally compact and Hausdorff then C₀(X) is a C*-algebra with f* = f for f ∈ C₀(X). Then

$$\|\overline{f}f\| = \sup_{x \in X} |\overline{f(x)}f(x)| = \sup |f(x)|^2 = \|f\|^2$$

Definition 6.4. We say $a \in \mathfrak{A}$ is

- self-adjoint if $a = a^*$
- normal if $aa^* = a^*a$
- unitary if $a^*a = aa^* = 1$
- positive if $a = a^*$ and $\sigma(a) \subseteq [0, \infty)$.

Proposition 6.5. If \mathfrak{A} is a C^{*}-algebra without unit then $\mathfrak{A}^+ = \mathfrak{A} + \mathbb{C}1$ has a C^{*}-algebra norm.

Proof. Setting $(a + \lambda 1)^* = a^* + \overline{\lambda 1}$ makes \mathfrak{A}^+ a Banach *-algebra. Let \mathfrak{A}^+ act on \mathfrak{A} by left multiplication: $a + \lambda \mapsto L_a + \lambda I \in \mathcal{B}(\mathfrak{A})$. This yields a Banach *-algebra norm

$$|||a + \lambda||| = ||L_a + \lambda I||_{\mathcal{B}(\mathfrak{A})}$$

Then

$$|||a||| = \sup_{\substack{\|b\| \le 1\\b \in \mathfrak{A}}} ||ab|| \le \sup_{\|b\| \le 1} ||a|| ||b|| = ||a||$$

and

$$|||a||| \ge \left\| a \frac{a^*}{||a^*||} \right\| = \frac{||aa^*||}{||a^*||} = \frac{||a^*||^2}{||a^*||} = ||a||$$

So |||a||| = ||a||. But

$$\begin{split} \||a + \lambda|||^2 &= \sup_{\|b\| \le 1} \|ab + \lambda b\|^2 \\ &= \sup_{\|b\| \le 1} \|(b^*a^* + \overline{\lambda}b^*)(ab + \lambda b)\| \\ &= \sup_{\|b\| \le 1} \|b^*(a^*a + \lambda a^* + \overline{\lambda}a + |\lambda|^2)b\| \\ &\le \sup_{\|b\| \le 1} \|(a^*a + \lambda a^* + \overline{\lambda}a + |\lambda|^2)b\| \\ &= \||a^*a + \lambda a^* + \overline{\lambda}a + |\lambda|^2\| \\ &= \||(a + \lambda)^*(a + \lambda)\| \\ &\le \||(a + \lambda)^*\|\|\|a + \lambda\| \\ &\le \||(a + \lambda)^*\|\|\|a + \lambda\| \\ &= \||a + \lambda\|^2 \end{split}$$

So $|||(a + \lambda)^*(a + \lambda)||| = |||a + \lambda|||^2$.

 \Box Proposition 6.5

Theorem 6.6. If \mathfrak{A} is an abelian C*-algebra then the Gelfand transform $\Gamma: \mathfrak{A} \to C_0(\mathcal{M}_{\mathfrak{A}})$ is an isometric *-isomorphism.

TODO 29. extra word? onto? continuous?

Proof. First suppose \mathfrak{A} is unital. Then $\mathcal{M}_{\mathfrak{A}}$ is compact and $\Gamma: \mathfrak{A} \to \mathcal{C}(\mathcal{M}_{\mathfrak{A}})$ is a (unital) homomorphism with $\operatorname{Ran}(\Gamma)$ separates points. Let $a = a^* \in \mathfrak{A}$ and let $u_t = \exp(ita)$ for $t \in \mathbb{R}$. Then

$$u_t^* = \left(\sum_{n \ge 0} \frac{(ita)^n}{n!}\right)^* = \sum_{n \ge 0} \frac{(-ita)^n}{n!} = u_{-t}$$

Then $u_t^* u_t = \exp(-ita) \exp(ita) = \exp(0) = 1$, and similarly $u_t u_t^* = 1$. If $\varphi \in \mathcal{M}_{\mathfrak{A}}$ then $\varphi(u_t) = \varphi(\exp(ita)) = \exp(it\varphi(a))$; so $|\exp(it\varphi(a))| \leq ||u_t|| = 1$ for all $t \in \mathbb{R}$. So $\varphi(a) \in \mathbb{R}$; i.e. $\Gamma(a)$ is real-valued and thus selfadjoint. If $a \in \mathfrak{A}$ is arbitrary we let $x = \frac{a+a^*}{2}$ be the "real part" of a and $y = \frac{a-a^*}{2i}$ the "imaginary part". Then $x = x^*$ and $y = y^*$ and a = x + iy. Then

$$\Gamma(a^*) = \Gamma((x+iy)^*) = \Gamma(x-iy) = \underbrace{\Gamma(x)}_{\in\mathbb{R}} - i\underbrace{\Gamma(y)}_{\in\mathbb{R}} = \overline{\Gamma(x) + i\Gamma(y)} = \overline{\Gamma(x+iy)} = \Gamma(a)^*$$

So Γ preserves *.

Suppose $a = a^*$. Then $||a^2|| = ||a^*a|| = ||a||^2$. Since a^* is self-adjoint we have $||a^4|| = ||(a^2)^2|| = ||a^2||^2 = ||a||^4$; continuing thus we get $||a^{2^n}|| = ||a||^{2^n}$. So

$$||a|| = \lim_{n} ||a^{2^{n}}||^{2^{-n}} = \operatorname{spr}(a) = ||\Gamma(a)|| = \sup_{\varphi \in \mathcal{M}_{\mathfrak{A}}} |\varphi(a)|$$

Note that $\varphi(a)$ runs over $\sigma(a)$ since $\operatorname{Ran}(\Gamma(a)) = \sigma(a)$.

If $a \in \mathfrak{A}$ is arbitrary then $||a||^2 = ||a^*a|| = ||\Gamma(a^*a)|| = ||\Gamma(a)||^2$; so Γ is isometric.

So $\Gamma(\mathfrak{A})$ is a norm-closed, self-adjoint subalgebra of $\mathcal{C}(\mathcal{M}_{\mathfrak{A}})$ which separates points. By Stone-Weierstrass theorem we get $\Gamma(\mathfrak{A}) = \mathcal{C}(\mathcal{M}_{\mathfrak{A}})$.

Suppose now that \mathfrak{A} not unital.

TODO 30. caselist

Then \mathfrak{A} lies in the unitization \mathfrak{A}^+ and $\mathcal{M}_{\mathfrak{A}^+} = \mathcal{M}_{\mathfrak{A}} \cup \{\varphi_{\infty}\}$ is the one-point compactification of the locally compact space $\mathcal{M}_{\mathfrak{A}}$ (where $\varphi_{\infty}(a + \lambda) = \lambda$). Then by above we have $\Gamma : \mathfrak{A}^+ \to \mathcal{C}(\mathcal{M}_{\mathfrak{A}^+})$ is an isometric *-isomorphism. But $\Gamma(\mathfrak{A}) = \{f : f(\varphi_{\infty}) = 0\}$ has codimension 1. Since \mathfrak{A} has codimension 1 in \mathfrak{A}^+ we have $\Gamma(\mathfrak{A})$ has codimension 1 in $\Gamma(\mathfrak{A}) = \mathcal{C}(\mathcal{M}_{\mathfrak{A}})$.

TODO 31. pluses?

So
$$\Gamma$$
 maps \mathfrak{A} onto $\mathcal{C}_0(\mathcal{M}_{\mathfrak{A}}) = \{ f \in \mathcal{C}(\mathcal{M}_{\mathfrak{A}^+}) : f(\varphi_{\infty}) = 0 \}.$ \Box Theorem 6.6

Corollary 6.7. Suppose \mathfrak{A} is a unital C*-algebra (not necessarily abelian) and $n \in \mathfrak{A}$ is normal. Then if $C^*(n) = \overline{\operatorname{alg}\{1, n, n^*\}}^{\|\cdot\|}$ then there is a homeomorphism $\sigma(n)$ to $\mathcal{M}_{C^*(n)}$ that sends $\lambda \in \sigma(n)$ to φ_{λ} where $\varphi_{\lambda}(n) = \lambda$. Thus $C^*(n)$ is *-isomorphic to $\mathcal{C}(\sigma(n))$.

Proof. $C^*(n)$ is a unital abelian C*-algebra. Let $X = \mathcal{M}_{C^*(n)}$. If $\varphi \in X$ then $\varphi(n) = \lambda \in \sigma(n)$. But then $\varphi(n^*) = \overline{\lambda}$ so $\varphi(p(n, n^*)) = p(\lambda, \overline{\lambda})$ where $p \in \mathbb{C}[x, y]$. But such $p(n, n^*)$ are dense in $C^*(n)$; so since φ is continuous we have that φ is determined by λ . So the map $X \to \sigma(n)$ given by $\varphi \mapsto \varphi(n)$ is bijective and continuous and is thus a homeomorphism. So

$$C^*(n) \cong \mathcal{C}(X) \cong \mathcal{C}(\sigma(n))$$
$$n \mapsto \widehat{n} \mapsto \widetilde{n}$$

where $\widetilde{n}(\lambda) = \lambda$ (so $\widetilde{n} = \mathrm{id}_{\sigma(n)}$).

Corollary 6.8. The C*-algebra $C^*(n, n^*)$ is isomorphic to $C_0(\sigma(n) \setminus \{0\})$.

Corollary 6.9 (Continuous functional calculus for normal elements). Suppose \mathfrak{A} is a unital C*-algebra and $n \in \mathfrak{A}$ is normal. Then there is a *-isomorphism $\Gamma^{-1}: \mathcal{C}(\sigma(n)) \to C^*(n)$. So for $f \in \mathcal{C}(\sigma(n))$ we define $f(n) = \Gamma^{-1}(f)$.

 \Box Corollary 6.7

Note that $\Gamma^{-1}(\mathrm{id}_{\sigma(n)}) = n$ and $\Gamma^{-1}(\overline{z}) = n^*$. Also $\Gamma^{-1}(p(z,\overline{z})) = p(n,n^*)$. This extends to all continuous functions.

Corollary 6.10. If n is normal and $f \in C(\sigma(n))$ then $\sigma(f(n)) = f(\sigma(n))$

Corollary 6.11.

- 1. If n is normal then $||n|| = \operatorname{spr}(n)$.
- 2. If $a = a^*$ then $\sigma(a) \subseteq \mathbb{R}$.
- 3. If u is unitary then $\sigma(u) \subseteq \mathbb{T}$.

Proof.

- 1. $||n|| = ||\Gamma(n)|| = \operatorname{spr}(n)$.
- 2. If $a = a^*$ then $\Gamma(a)$ is real-valued, so $\sigma(a) = \operatorname{Ran}(\Gamma(a)) \subseteq \mathbb{R}$.
- 3. If $uu^* = u^*u = 1$ then $|\Gamma(u)|^2 = 1$ so $\varphi(u) \in \mathbb{T}$ for all φ , and thus $\sigma(u) \subseteq \mathbb{T}$. \Box Corollary 6.11

6.1 Operators on a Hilbert space

If $T \in \mathcal{B}(\mathcal{H})$ and $x, y \in \mathcal{H}$ then

$$\begin{split} \langle Tx, y \rangle &= \frac{1}{4} (\langle Tx + y, x + y \rangle + i \langle T(x + iy), x + iy \rangle - \langle T(x - y), x - y \rangle - i \langle T(x - iy), x - iy \rangle) \\ &= \frac{1}{4} \sum_{k=0}^{3} i^k \langle T(x + i^k y), x + i^k y \rangle \end{split}$$

This is the *polarization identity*.

TODO 32. missing parens on Tx + y?

Proposition 6.12. If $U \in \mathcal{B}(\mathcal{H})$ then the following are equivalent:

- 1. U is unitary.
- 2. $\langle Ux, Uy \rangle = \langle x, y \rangle$ for all $x, y \in \mathcal{H}$ and $U\mathcal{H} = \mathcal{H}$.
- 3. U is isometric (i.e. ||Ux|| = ||x|| for all x) and surjective.

Proof.

(1)
$$\Longrightarrow$$
 (2) $\langle Ux, Uy \rangle = \langle U^*Ux, y \rangle = \langle x, y \rangle$. Since U is invertible we get that U is surjective.

(2)
$$\implies$$
 (3) Take $x = y$.

 $\begin{array}{l} (\textbf{3}) \Longrightarrow (\textbf{1}) & \|x\|^2 = \langle Ux, Ux \rangle = \langle U^*Ux, x \rangle \text{ for all } x. \text{ The polar identity yields } \langle Ix, y \rangle = \langle U^*Ux, y \rangle = \\ \hline & \langle Ux, Uy \rangle \text{ for all } x, y. \text{ So } I = U^*U. \text{ So } U \text{ is bijective and thus invertible; so } U^* = U^{-1} \text{ and } U \text{ is unitary.} \\ \hline & \Box \text{ Proposition } 6.12 \end{array}$

Proposition 6.13. If $N \in \mathcal{B}(\mathcal{H})$ is normal then $||N^*x|| = ||Nx||$ for all $x \in \mathcal{H}$. Hence ker $(N^*) = ker(N)$.

Proof. We have

$$\|N^*x\|^2 = \langle N^*x, N^*x \rangle = \langle NN^*x, x \rangle = \langle N^*Nx, x \rangle = \langle Nx, Nx \rangle = \|Nx\|^2$$

as desired.

 \Box Proposition 6.13

Corollary 6.14. If N is normal and Fredholm then ind(N) = 0.

Proof. T is Fredholm if $\operatorname{Ran}(T)$ is closed, $\operatorname{nul}(T) = \dim(\ker(T)) < \infty$, and $\operatorname{nul}(T^*) = \dim(\mathcal{H}/T\mathcal{H}) < \infty$. Then $\operatorname{ind}(T) = \operatorname{nul}(T) - \operatorname{nul}(T^*)$.

Proposition 6.15. Suppose $A \in \mathcal{B}(\mathcal{H})$. Then $A = A^*$ if and only if $\langle Ax, x \rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$.

Proof.

(\implies) We have

$$\overline{\langle Ax, x \rangle} = \langle x, Ax \rangle = \langle A^*x, x \rangle = \langle Ax, x \rangle$$

So $\langle Ax, x \rangle \in \mathbb{R}$.

 (\Leftarrow) We have

$$\begin{split} \langle A^*y, x \rangle &= \langle y, Ax \rangle \\ &= \overline{\langle Ax, y \rangle} \\ &= \overline{\frac{1}{4} \sum_{k=0}^3 i^k} \underbrace{\langle A(x+i^ky), x+i^ky \rangle}_{\in \mathbb{R}} \\ &= \frac{1}{4} \sum_{k=0}^3 (-i)^k \langle A(x+i^ky), x+i^ky \rangle \\ &= \frac{1}{4} \sum_{k=0}^3 (-i)^k \langle i^k A(y+(-i)^kx), i^k(y+(-i)^kx) \rangle \\ &= \frac{1}{4} \sum_{k=0}^3 (-i)^k \langle A(y+(-i)^kx), (y+(-i)^kx) \rangle \\ &= \langle Ay, x \rangle \end{split}$$

as desired.

 \Box Proposition 6.15

Corollary 6.16. If $A \in \mathcal{B}(\mathcal{H})$ then $\sigma(A^*A) \subseteq [0, \infty)$. So A^*A is positive.

Proof. Note $(A^*A)^* = A^*A$ is self-adjoint. If r > 0 then

$$\langle (A^*A + rI)x, x \rangle = \langle A^*Ax, x \rangle + \langle rx, x \rangle$$

= $||Ax||^2 + r||x||^2$
 $\geq r||x||^2$

So $A^*A + rI$ is bounded below, and thus has closed range and thus is surjective and is thus invertible. So $-r \notin \sigma(A^*A) \subseteq \mathbb{R}$. Also ker $(A^*A + rI) = \{0\}$ so $A^*A + rI$ has dense range, and thus $\operatorname{Ran}(A^*A + rI)^{\perp} = \operatorname{ker}((A^*A + rI)^*) = \{0\}$. So $\sigma(A^*A) \subseteq [0, \infty)$

TODO 33. Tidy

 \Box Corollary 6.16

6.2 Positive elements

Proposition 6.17. If $a \in \mathfrak{A}$ and $a \geq 0$ then there is a unique $b \in \mathfrak{A}$ with $b \geq 0$ such that $b^2 = a$.

Proof. Let $f(x) = x^{\frac{1}{2}}$, which is continuous on $\sigma(a) \subseteq [0, ||a||]$. Let b = f(a). Note that $f(x) = \lim p_n(x)$ with $p_n \in \mathbb{C}[x]$ and $p_n(0) = 0$. So $p_n(a) \in \mathfrak{A}$ even if \mathfrak{A} is not unital. So $f(a) \in \mathfrak{A}$. Then $b^2 = f^2(a) = \mathrm{id}(a) = a$.

TODO 34. I guess we're implicitly using the fact that $(f \circ g)(a) = f(g(a))$.

For uniqueness, suppose $c \ge 0$ with $c^2 = a$. Then $x = id(x) = f(x^2)$. In $C^*(c)$ we have

$$c = id(c) = f(x^2(c)) = f(c^2) = f(a) = b$$

as desired.

Proposition 6.18. If $a = a^*$ then there is $a_+, a_- \in \mathfrak{A}$ such that $a_+ \ge 0, a_- \ge 0, a_+a_- = 0$, and $a = a_+ - a_-$.

Proof. Let $f \in \mathcal{C}(\sigma(a))$ be

$$x \mapsto \begin{cases} x & \text{if } x \ge 0\\ 0 & \text{if } x \le 0 \end{cases}$$

Let $a_+ = f(a)$ and $a_- = a_+ - a = g(a)$ where

$$g(x) = \begin{cases} 0 & \text{if } x \ge 0\\ -x & \text{else} \end{cases}$$

so f - g = id. Then $f \ge 0$ so $a_+ \ge 0$; likewise $g \ge 0$ so $a_- \ge 0$. Also $a_+ - a_- = (f - g)(a) = a$ and $a_+a_- = (fg)(a) = 0$ since (fg)(x) = 0.

Lemma 6.19. If $a = a^* \in \mathfrak{A}$ then the following are equivalent:

- $1. \ a \geq 0.$
- 2. $a = b^2$ for some $b \ge 0$.
- 3. For all $c \ge ||a||$ we have $||c1 a|| \le c$. (Work in \mathfrak{A}_+ if \mathfrak{A} is not unital.)
- 4. There exists $c \ge ||a||$ such that $||c1 a|| \le c$.

Proof.

 $(1) \Longrightarrow (2)$ Done.

(2) \Longrightarrow (3) If $f(x) = c - x^2$ we have

$$||c1 - a|| = ||f(b)|| = \sup_{\lambda \in \sigma(b)} |f(\lambda)| \le \sup_{\lambda \in [0, ||a||^{\frac{1}{2}}]} |c - x^2| = c$$

since $\sigma(b) \subseteq [0, \|b\|]$ and $\|b\|^2 = \|b^2\| = \|a\|$.

 $(3) \Longrightarrow (4)$ Clear.

(4)
$$\Longrightarrow$$
 (1) We have $\sigma(a) \subseteq \mathbb{R} \cap \overline{b_c(c)} = [0, 2c] \subseteq \mathbb{R}^+$ (since $||c - a|| \le c$). So $a \ge 0$. \Box Lemma 6.19

Corollary 6.20. If $a, b \in \mathfrak{A}$ with $a \ge 0$ and $b \ge 0$ then $a + b \ge 0$.

Proof. There is $r \ge ||a||$ such that $r1 - a \le r$, and there is $s \ge ||b||$ such that $||s1 - b|| \le s$. But then

$$|(r+s)1 - (a+b)|| \le ||r1 - a|| + ||s1 - b|| \le r+s$$

So $a + b \ge 0$.

Theorem 6.21. If $a \in \mathfrak{A}$ then $a^*a \ge 0$.

 \Box Corollary 6.20

 \Box Proposition 6.17

Proof. Write $a^*a = b_+ - b_-$ where $b_+ \ge 0$, $b_- \ge 0$, and $b_+b_- = 0$. Pick $c \ge 0$ such that $c^2 = b_-$; let t = ac. Then $c = f(b_-)$ where $f(x) = \sqrt{x} = \lim p_n(x)$ where $p_n \in \mathbb{C}[x]$ and $p_n(0) = 0$. Then

$$cb_{+} = \lim p_{n}(b_{-})b_{+} = \lim \left(\frac{p_{n}}{x}\right)(b_{-})b_{-}b_{+} = 0$$

Now

$$t^*t = c(a^*a)c = c(b_+ - b_-)c = -cb_-c = -c^4 = -b_-^2 \le 0$$

So $\sigma(t^*t) \subseteq (-\infty, 0]$. Write t = x + iy with $x = \operatorname{Re}(t)$ and $y = \operatorname{Im}(t)$ self-adjoint. Then

$$t^{*}t = (x - iy)(x + iy) = x^{2} + y^{2} + i(xy - yx)$$
$$tt^{*} = (x + iy)(x - iy) = x^{2} + y^{2} - i(xy - yx)$$

So $t^*t + tt^* = 2x^2 + 2y^2 \ge 0$ by corollary.

TODO 35. ref

So $tt^* = (t^*t + tt^*) - t^*t = 2x^2 + 2y^2 + b_-^2 \ge 0$. So $\sigma(tt^*) \subseteq [0, \infty)$. But $\sigma(t^*t) \cup \{0\} = \sigma(tt^*) \cup \{0\}$

TODO 36. ref

So $\sigma(t^*t) = \{0\}$. Then $||t||^2 = ||t^*t|| = \operatorname{spr}(t^*t) = 0$, and t = 0. So $b_-^2 = 0$, and $b_- = 0$. Thus $a^*a = b_+ \ge 0$.

Definition 6.22. If $a = a^*$ and $b = b^*$ we say $a \le b$ if $b - a \ge 0$.

Corollary 6.23. If $a \leq b$ in \mathfrak{A} and $x \in \mathfrak{A}$ then $x^*ax \leq x^*bx$.

Proof. Since $0 \le b-a$ there is $c \ge 0$ with $c^2 = b-a$; then $x^*bx - x^*ax = x^*(b-a)x = x^*ccx = (cx)^*(cx) \ge 0$. \Box Corollary 6.23

Corollary 6.24. If $0 \le a \le b$ and a, b invertible then $b^{-1} \le a^{-1}$.

Proof. Since $b \ge 0$ we get from spectral mapping theorem that $b^{-1} \ge 0$, and hence $b^{-\frac{1}{2}} = \sqrt{b^{-1}}$ is well-defined. **TODO 37.** ref?

Then previous corollary gives

$$0 \le b^{-\frac{1}{2}}(b-a)b^{-\frac{1}{2}} = 1 - (b^{-\frac{1}{2}}a^{\frac{1}{2}})(a^{\frac{1}{2}}b^{-\frac{1}{2}})$$

So $(b^{-\frac{1}{2}}a^{\frac{1}{2}})(a^{\frac{1}{2}}b^{-\frac{1}{2}}) \leq 1$. So $||a^{\frac{1}{2}}b^{-\frac{1}{2}}||^2 = ||(b^{-\frac{1}{2}}a^{\frac{1}{2}})(a^{\frac{1}{2}}b^{-\frac{1}{2}})|| \leq 1$. Aside 6.25. If $||x|| \leq 1$ then $0 \leq x^*x \leq 1$. Since $x^*x \geq 0$ and $||x^*x|| = ||x||^2 \leq 1$ then $\sigma(x^*x) \subseteq [0,1]$; so $x^*x \leq 1$. (Indeed, $1 - x^*x = g(x^*x)$ where g(t) = 1 - t for $t \in [0,1]$; so $g \geq 0$.)

TODO 38. Better environment

Thus
$$a^{\frac{1}{2}}b^{-1}a^{\frac{1}{2}} = (a^{\frac{1}{2}}b^{-\frac{1}{2}})(b^{-\frac{1}{2}}a^{\frac{1}{2}}) \le 1$$
. Thus $b^{-1} = a^{-\frac{1}{2}}(a^{\frac{1}{2}}ba^{\frac{1}{2}})a^{-\frac{1}{2}} \le a^{-\frac{1}{2}}1a^{-\frac{1}{2}} = a^{-1}$. \Box Corollary 6.24

Definition 6.26. An approximate identity for a C*-algebra \mathfrak{A} is a net e_{λ} where $0 \leq e_{\lambda} \leq 1$ and

$$\lim_{\lambda} \|a - ae_{\lambda}\| = 0 = \lim_{\lambda} \|a - e_{\lambda}a\|$$

for all $a \in \mathfrak{A}$.

Theorem 6.27. Suppose \mathfrak{A} is a C*-algebra. Then there is a bounded approximate identity for \mathfrak{A} .

Proof. Let $\Lambda = \{ e \in \mathfrak{A} : e \geq 0, ||e|| < 1 \}.$

Claim 6.28. Λ is directed by \leq .

Proof. Suppose $a, b \in \Lambda$. We want to find $c \in A$ such that $a \leq c$ and $b \leq c$. Let $f: [0,1) \to \mathbb{R}^+$ be $f(t) = \frac{t}{1-t}$; let $g: \mathbb{R}^+ \to [0,1)$ be $g(t) = \frac{t}{1+t} = 1 - \frac{1}{1+t}$. Then

$$g(f(t)) = 1 - \frac{1}{1 + f(t)} = 1 - \frac{1}{1 + \frac{t}{1 - t}} = 1 - \frac{1 - t}{1 - t + t} = t$$

Let $y = f(a) + f(b) \ge 0$; let $c = g(y) \ge 0$. Then $\sigma(c) = g(\sigma(y)) \subseteq [0,1)$; so ||c|| < 1, and $c \in \Lambda$. Since $y \ge f(a)$ we get $1 + y \ge 1 + f(a)$. Also note that if $x \ge 0$ then $1 + x \ge 0$, and $\sigma(1 + x) \subseteq [1, \infty)$; so 1 + x is invertible. Applying this to y and f(a) we get $(1 + y)^{-1} \le (a + f(a))^{-1}$. Then

$$c = g(y) = 1 - (1+y)^{-1} \ge 1 - (1+f(a))^{-1} = g(f(a)) = a$$

Similarly we get $c \geq b$. So Λ is directed.

 \Box Claim 6.28

If $0 \leq a \leq b \in \Lambda$ and $x \in \mathfrak{A}$ then

$$||x - bx||^2 = ||(x^* - x^*b)(x - bx)|| = ||x^*(1 - b)^2x|$$

Aside 6.29. $0 \le a \le b$ does not imply that $a^2 \le b^2$. Indeed, if

$$a = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
$$b = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

then $a \leq b$ but

$$b^{2} - a^{2} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} - \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$$

has determinant -1.

Now, $0 \le 1 - b \le 1$ so since $x^2 \le x$ on [0, 1] we have $(1 - b)^2 \le 1 - b$; so $x^*(1 - b)^2 x \le x^*(1 - b)x$. Thus

$$||x - bx||^{2} = ||x^{*}(1 - b)^{2}x||$$

$$\leq ||x^{*}(1 - b)x||$$

$$\leq ||x^{*}(1 - a)x|| \text{ (since } 1 - a \ge 1 - b)$$

$$\leq ||x||^{*}||x - ax||$$

Now suppose that $x \ge 0$. Let $a_n = g(nx) = \frac{nx}{1+nx}$; let

$$h(t) = t\left(1 - \frac{nt}{1 + nt}\right)t = \frac{t^2}{1 + nt} \le \frac{t}{n}$$

Then

$$||x(1-a_n)x|| = ||h(x)|| \le \sup_{t \in [0,||x||]} |h(t)| \le \frac{||x||}{n}$$

If $\varepsilon > 0$ choose n such that $\frac{\|x\|}{n} < \varepsilon^2$. Then for all $b \in \Lambda$ with $b \ge a_n$ we have

$$||x - bx||^2 \le ||x(1 - a_n)x|| \le \frac{||x||}{n} < \varepsilon^2$$

so $||x - bx|| < \varepsilon$. So

$$\lim_{b \in \Lambda} bx = x$$

Also

$$\lim_{b \in \Lambda} xb = \left(\lim_{b \in \Lambda} bx\right)^* = x^* = x$$

For general $x \in A$ we have

$$||x - xb||^{2} = ||x(1 - b)||^{2} = ||(1 - b)x^{*}x(1 - b)|| \le \underbrace{||1 - b||}_{<1} ||(x^{*}x) - (x^{*}x)b|| \to 0$$

as desired.

Corollary 6.30. If \mathfrak{A} is a separable C*-algebra then \mathfrak{A} has an approximate identity $\{e_n : n \geq 1\}$ with $0 \leq e_n \leq e_{n+1} < 1$.

Proof. Exercise.

6.3 Ideals and quotients

Definition 6.31. An *ideal* of a C*-algebra is a closed two-sided ideal.

Lemma 6.32. Suppose $\mathfrak{J} \triangleleft \mathfrak{A}$ is an ideal of \mathfrak{A} . Then \mathfrak{J} is self-adjoint.

Proof. Let $\mathfrak{B} = \mathfrak{J} \cap \mathfrak{J}^*$; so \mathfrak{B} is a C*-algebra. (Indeed, it is closed and self-adjoint, and if $a, b \in \mathfrak{B}$ then $ab \in \mathfrak{J}$ and $ab \in \mathfrak{J}^*$ since $\mathfrak{J}, \mathfrak{J}^*$ are ideals.) Let $\{e_{\lambda}\}$ be an approximate identity for \mathfrak{B} . Then $\mathfrak{B} \supseteq \mathfrak{J}\mathfrak{J}^*$ since $\mathfrak{J}\mathfrak{J}^* \subseteq \mathfrak{J}\mathfrak{A} \subseteq \mathfrak{J}$ and $\mathfrak{J}\mathfrak{J}^* \subseteq \mathfrak{A}\mathfrak{J}^* = (\mathfrak{J}\mathfrak{A})^* = \mathfrak{J}^*$.

Suppose $a \in \mathfrak{J}$ and e_{λ} is in our approximate identity. Then

$$\begin{aligned} \|a^* - a^* e_{\lambda}\|^2 &= \|(a - e_{\lambda}a)(a^* - a^* e_{\lambda})\| \\ &= \|(aa^* - aa^* e_{\lambda}) - e_{\lambda}(aa^* - aa^* e_{\lambda})\| \\ &= \|(1 - e_{\lambda})(aa^* - aa^* e_{\lambda})\| \\ &\leq \|aa^* - \underbrace{aa^*}_{\in \mathfrak{B}} e_{\lambda}\| \\ &\to 0 \end{aligned}$$

So $a^*e_{\lambda} \to a^*$, and $a^*e_{\lambda} \in \mathfrak{J}$ since $e_{\lambda} \in \mathfrak{B} \subseteq \mathfrak{J}$. So since \mathfrak{J} is closed we get $a^* \in \mathfrak{J}$. So $\mathfrak{J} = \mathfrak{J}^*$. \Box Lemma 6.32

Aside 6.33. If $0 \le a \le b$ then $||a|| \le ||b||$. Indeed, we have $\sigma(b) \subseteq [0, ||b||]$ so $b \le ||b||1$ and $a \le ||b||1$. So if r > ||b|| then $r - a \ge (r - ||b||)1$. So $\sigma(r - a) \subseteq [r - ||b||, \infty)$, and $\sigma(a) \subseteq (-\infty, ||b||) \cap \mathbb{R}^+ = [0, ||b||]$. So $||a|| = \operatorname{spr}(a) \le ||b||$.

There's probably an easier proof of the above; he came up with this on the spot when asked.

Lemma 6.34. Suppose \mathfrak{A} is a C*-algebra; suppose $x, a \in \mathfrak{A}$ with $x^*x \leq a$. Then there is $b \in \mathfrak{A}$ such that $x = ba^{\frac{1}{4}}$ and $\|b\| \leq \|a\|^{\frac{1}{4}}$.

Proof. Let $b_n = x\left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{1}{4}}$. (Note that $a \ge 0$ so $a + \frac{1}{n} \ge \frac{1}{n}$ is invertible in \mathfrak{A}_+ . Then

$$\left(a + \frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{4}} = f(a)$$

where

$$f(x) = \frac{x^{\frac{1}{4}}}{\sqrt{x + \frac{1}{n}}} \in \mathcal{C}_0[0, ||a||]$$

So $f(a) \in \mathfrak{A}$ even whe \mathfrak{A} is not unital.) Let

$$d_{nm} = \left(a + \frac{1}{n}\right)^{-\frac{1}{2}} - \left(a + \frac{1}{m}\right)^{-\frac{1}{2}}$$

 \Box Corollary 6.30

 \Box Theorem 6.27

for $n, m \ge 1$. Then

$$\begin{split} \|b_n - b_m\|^2 &= \|xd_{nm}a^{\frac{1}{4}}\|^2 \\ &= \|a^{\frac{1}{4}}d_{nm}x^*xd_{nm}a^{\frac{1}{4}}\| \\ &\leq \|a^{\frac{1}{4}}d_{nm}ad_{nm}a^{\frac{1}{4}}\| \\ &= \|d_{nm}a^{\frac{3}{4}}\|^2 \\ &= \left\| \left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{3}{4}} - \left(a + \frac{1}{m}\right)^{-\frac{1}{2}}a^{\frac{3}{4}} \right\|^2 \\ &= \|f_n(a) - f_m(a)\|^2 \\ &\to 0 \end{split}$$

as $n, m \to \infty$, where

||x||

$$f_n(x) = \frac{x^{\frac{3}{4}}}{\sqrt{x + \frac{1}{n}}} \in \mathcal{C}_0[0, ||a||]$$

So $0 \leq f_n \leq f_{n+1} \leq x^{\frac{1}{4}}$, and $f_n \to x^{\frac{1}{4}}$ uniformly on [0, ||a||]. Thus $f_n(a) \to a^{\frac{1}{4}}$ in \mathfrak{A} , and $(f_n(a))_n$ is a Cauchy sequence. So $(b_n)_n$ is Cauchy, and there is a limit

$$b = \lim_{n \to \infty} b_n \in \mathfrak{A}$$

Then

$$\begin{aligned} -ba^{\frac{1}{4}} \|^{2} &= \lim_{n \to \infty} \|x - b_{n}a^{\frac{1}{4}}\|^{2} \\ &= \lim_{n \to \infty} \left\| x - x\left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{1}{2}} \right\|^{2} \\ &= \lim_{n \to \infty} \left\| x\left(1 - \left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{1}{2}}\right)^{2} \right\| \\ &= \lim_{n \to \infty} \left\| \left(1 - \left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{1}{2}}\right)x^{*}x\left(1 - \left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{1}{2}}\right) \right\| \\ &\leq \lim_{n \to \infty} \left\| \left(1 - \left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{1}{2}}\right)a\left(1 - \left(a + \frac{1}{n}\right)^{-\frac{1}{2}}a^{\frac{1}{2}}\right) \right\| \\ &= \lim_{n \to \infty} h_{n}(a) \\ &= 0 \end{aligned}$$

where

$$h_n(x) = x \left(1 - \sqrt{\frac{x}{x + \frac{1}{n}}} \right)^2 \to 0$$

uniformly on [0, ||a||]. So $x = ba^{\frac{1}{4}}$. Also

$$\begin{split} \|b_n\|^2 &= \|b_n^* b_n\| \\ &= \left\| a^{\frac{1}{4}} \left(a + \frac{1}{n} \right)^{-\frac{1}{2}} x^* x \left(a + \frac{1}{n} \right)^{-\frac{1}{2}} a^{\frac{1}{4}} \right\| \\ &\leq \left\| a^{\frac{1}{4}} \left(a + \frac{1}{n} \right)^{-\frac{1}{2}} a \left(a + \frac{1}{n} \right)^{-\frac{1}{2}} a^{\frac{1}{4}} \right\| \\ &= g_n(a) \\ &\leq \|g_n\|_{[0,\|a\|]} \\ &\leq \|g_n\|_{[0,\|a\|]} \\ &\leq \|a^{\frac{1}{2}}\| \\ &= \|a\|^{\frac{1}{2}} \end{split}$$

where

$$g_n(x) = \frac{x^{\frac{3}{2}}}{x + \frac{1}{n}} \stackrel{\leq}{\to} \sqrt{x}$$

uniformly on [0, ||a||].

 \Box Lemma 6.34

Definition 6.35. A C*-subalgebra $\mathfrak{B} \subseteq \mathfrak{A}$ is *hereditary* if whenever $b \in \mathfrak{B}$ with $b \ge 0$ and $a \in \mathfrak{A}$ with $0 \le a \le b$ we must have $a \in \mathfrak{B}$.

Corollary 6.36. Ideals are hereditary subalgebras of \mathfrak{A} . Indeed, if $\mathfrak{J} \triangleleft \mathfrak{A}$ and $x^*x \leq a \in \mathfrak{J}$ then $x \in \mathfrak{J}$.

Proof. Write $x = ba^{\frac{1}{4}}$ with $a \in \mathfrak{J}$; so $a^{\frac{1}{4}} \in \mathfrak{J}$ and $x \in \mathfrak{J}$. Then $0 \le b \le a$ implies $b^{\frac{1}{2}} \in \mathfrak{J}$, and thus $b \in \mathfrak{J}$. So \mathfrak{J} is hereditary. \Box Corollary 6.36

Theorem 6.37. If \mathfrak{A} is a C*-algebra and $\mathfrak{J} \leq \mathfrak{A}$ then $\mathfrak{A}/\mathfrak{J}$ is a C*-algebra.

Proof. $\mathfrak{J} = \mathfrak{J}^*$, so $\mathfrak{A}/\mathfrak{J}$ is a *-algebra: if $\dot{a} = a + \mathfrak{J}$ then $(\dot{a})^* = \dot{a^*} = a^* + \mathfrak{J}$. This is a Banach algebra with the quotient norm. Let $\{e_{\lambda}\}$ be an approximate identity for \mathfrak{J} .

Claim 6.38. $\|\dot{a}\| = \lim_{\lambda} \|a - ae_{\lambda}\|.$

Proof. $ae_{\lambda} \in \mathfrak{J}$, so $\|\dot{a}\| \leq \|a - ae_{\lambda}\|$. For all $\varepsilon > 0$ there is $b \in \mathfrak{J}$ such that $\|a - b\| < \|\dot{a}\| + \varepsilon$. Then since $0 \leq e_{\lambda} \leq 1$ we have

$$\begin{split} \lim_{\lambda} \|a - ae_{\lambda}\| &\leq \lim_{\lambda} \|(a - b)(1 - e_{\lambda})\| + \|b - be_{\lambda}\| \\ &\leq \lim_{\lambda} (\|\dot{a}\| + \varepsilon)(1) + \underbrace{\lim_{\lambda} \|b - be_{\lambda}\|}_{=0} \\ &= \|\dot{a}\| + \varepsilon \end{split}$$

But $\varepsilon > 0$ was arbitrary. So

$$\lim_{\lambda} \|a - ae_{\lambda}\| = \|\dot{a}\|$$

 \Box Claim 6.38

as claimed.

Then

$$\begin{aligned} \|\dot{a^*}\dot{a}\| &= \|(\dot{a^*}a)\| \\ &= \lim_{\lambda} \|\underbrace{a^*a - a^*ae_{\lambda}}_{a^*a(1-e_{\lambda})}\| \\ &\geq \lim_{\lambda} \|(1-e_{\lambda})a^*a(1-e_{\lambda})\| \\ &= \lim_{\lambda} \|a(1-e_{\lambda})\|^2 \\ &= \|\dot{a}\|^2 \end{aligned}$$

Then

$$\|\dot{a}\|^2 \le \|(\dot{a})^*\dot{a}\| \le \|(\dot{a})^*\|\|\dot{a}\| = \|\dot{a}\|^2$$

where for the last equality note that \mathfrak{J} is self-adjoint, so $\operatorname{dist}(a^*,\mathfrak{J}) = \operatorname{dist}(a,\mathfrak{J})$. Thus $\|(\dot{a})^*\dot{a}\| = \|\dot{a}\|^2$, and the C*-identity holds. So $\mathfrak{A}/\mathfrak{J}$ is a C*-algebra. \Box Theorem 6.37

Theorem 6.39. Suppose $\pi: \mathfrak{A} \to \mathfrak{B}$ is a non-zero *-homomorphism between C*-algebras. Then $\|\pi\| = 1$. So $\mathfrak{J} = \ker(\pi)$ is a closed two-sided ideal. Let $\tilde{\pi}$ be the induced map on the quotient; so the following diagram commutes:

Then $\tilde{\pi}$ is an isometric *-monomorphism (i.e. injective *-homomorphism), and $\pi(\mathfrak{A})$ is a C*-subalgebra of \mathfrak{B} .

Proof. If $a = a^*$ then $\sigma_{\mathfrak{B}}(\pi(a)) \subseteq \sigma_{\mathfrak{A}}(a)$: indeed, if $\lambda \notin \sigma(a)$ then $(a - \lambda)^{-1} \in \mathfrak{A}$, and $\pi((a - \lambda)^{-1}) = (\pi(a) - \lambda)^{-1}$. (If \mathfrak{A} is not unital, define $\pi_+ : \mathfrak{A}_+ \to \mathfrak{B}_+$ by $\pi_+(1) = 1$; now we can sensibly talk about spectra.) Then

$$\|\pi(a)\| = \operatorname{spr}(\pi(a)) \le \operatorname{spr}(a) = \|a\|$$

For general a we have

$$\|\pi(a)\|^2 = \|\pi(a^*a)\| \le \|a^*a\| = \|a\|^2$$

So $||\pi|| \leq 1$ and π is continuous. So \mathfrak{J} is closed, and $\mathfrak{A}/\mathfrak{J}$ is a C*-algebra; so $\tilde{\pi}(\dot{a}) = \pi(a)$ is well-defined and injective.

Claim 6.40. $\tilde{\pi}$ is isometric.

Proof. If not, then there is $\dot{a} \in \mathfrak{A}/\mathfrak{J}$ such that

$$r = \|\widetilde{\pi}(\dot{a})\|^2 = \|\widetilde{\pi}((\dot{a})^*\dot{a})\| < s = \|\dot{a}\|^2 = \|(\dot{a})^*\dot{a}\|$$

so $s \in \sigma((\dot{a})^*\dot{a})$.

TODO 39. How'd this happen?

Let

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x \le r \\ \frac{x-r}{s-r} & \text{if } r \le x \le s \end{cases}$$

Then

$$||f((\dot{a})^*\dot{a})|| = \sup_{x \in \sigma((\dot{a})^*\dot{a})} |f(x)| = 1$$

 \mathbf{SO}

$$\|\widetilde{\pi}(f((\dot{a})^*a))\| = \|f(\pi((\dot{a})^*\dot{a}))\| = \|0\| = 0$$

as $\sigma((\dot{a})^*\dot{a}) \subseteq [0,1].$

TODO 40. ?

So $\tilde{\pi}$ is not injective, a contradiction. So $\tilde{\pi}$ is isometric. \Box Claim 6.40

So in particular $\pi(\mathfrak{A}) = \widetilde{\pi}(\mathfrak{A}/\mathfrak{J})$ is closed, and is thus a C*-subalgebra of \mathfrak{B} . **Corollary 6.41.** If $\mathfrak{J} \triangleleft \mathfrak{A}$ and \mathfrak{B} a C*-subalgebra of \mathfrak{A} then $\mathfrak{B} + \mathfrak{J}$ is a C*-subalgebra, and $\mathfrak{B}/\mathfrak{B} \cap \mathfrak{J} \cong \mathfrak{B} + \mathfrak{J}/\mathfrak{J}$. *Proof.* Let $q: \mathfrak{A} \to \mathfrak{A}/\mathfrak{J}$ be the quotient mapping; so q is a *-homomorphism. So $q \upharpoonright \mathfrak{B}: \mathfrak{B} \to \mathfrak{A}/\mathfrak{J}$ is a *-homomorphism. Then using the above theorem there is an isometric *-homomorphism such that the following diagram commutes:

So $q(B) = \mathfrak{B} + \mathfrak{J}/\mathfrak{J}$ is closed; so $\mathfrak{B} + \mathfrak{J} = q^{-1}(q(\mathfrak{B}))$ is a closed self-adjoint subalgebra, and is thus a C*-algebra. \Box Corollary 6.41

Corollary 6.42. If $a \in \mathfrak{A} \subseteq \mathfrak{B}$ with $\mathfrak{A}, \mathfrak{B}$ unital C*-algebras then $\sigma_{\mathfrak{A}}(a) = \sigma_{\mathfrak{B}}(a)$. *i.e.* C*-algebras are inverse-closed: if $a \in \mathfrak{A}$ and $a^{-1} \in \mathfrak{B}$ then $a^{-1} \in \mathfrak{A}$.

Proof. We know $\sigma_{\mathfrak{B}}(a) \subseteq \sigma_{\mathfrak{A}}(a)$; it remains to show that if there is $b \in \mathfrak{B}$ such that ab = ba = 1 then $b \in \mathfrak{A}$.

Case 1. Suppose $a = a^*$. Then $\mathfrak{C} = C^*(a, a^{-1})$ is abelian and contained in \mathfrak{B} . Then $0 \notin \sigma_{\mathcal{C}}(a)$; so there is $f \in \mathfrak{C}([-\|a\|, \|a\|])$ such that

$$f(x) = \begin{cases} x^{-1} & \text{if } x \in \sigma_{\mathfrak{C}}(a) \\ 0 & \text{if } x = 0 \end{cases}$$

Then $a^{-1} = f(a)$ in \mathfrak{C} . This also makes sense in $C^*(a)$ since f is a limit of polynomials p_n with $p_n(0) = 0$. So $f(a) \in C^*(a)$; so a is invertible in $C^*(a) \subseteq \mathfrak{A}$.

Case 2. For the general case, suppose $a \in \mathfrak{A}$ and $a^{-1} \in \mathfrak{B}$. Then $(a^*a)^{-1} = a^{-1}(a^{-1})^*$ is invertible in \mathfrak{B} . But $a^*a \ge 0$ so by the previous case we have $(a^*a)^{-1} \in \mathfrak{A}$. Then $a^{-1} = (a^*a)^{-1}a^* \in \mathfrak{A}$. \Box Corollary 6.42

7 Concrete C*-algebras

TODO 41. Section title?

7.1 Review of weak and strong operator topologies

Suppose \mathcal{H} is a Hilbert space. We can endow $\mathcal{B}(\mathcal{H})$ with the *weak operator topology* by declaring $T_{\alpha} \xrightarrow{\text{WOT}} T$ if $\langle T_{\alpha}x, y \rangle \to \langle Tx, y \rangle$ for all $x, y \in \mathcal{H}$; this is the weakest topology such that $T \mapsto \langle Tx, y \rangle$ is continuous for all $x, y \in \mathcal{H}$. The basic open neighbourhoods around 0 are given by

$$\mathcal{O}(0, x_1, \dots, x_n, y_1, \dots, y_n) = \{ T \in \mathcal{B}(\mathcal{H}) : |\langle Tx_i, y_i \rangle| < 1 \text{ for } 1 \le i \le n \}$$

We can also endow $\mathcal{B}(\mathcal{H})$ with the strong operator topology by declaring $T_{\alpha} \xrightarrow{\text{SOT}}$ if $T_{\alpha}x \to Tx$ for all $x \in \mathcal{H}$; this is the weakest topology such that $T \mapsto Tx$ is continuous for all $x \in \mathcal{H}$. It is determined by seminorms $p_x(T) = ||Tx||$; or

$$p(T) = \left(\sum_{i=1}^{n} ||Tx_i||^2\right)^{\frac{1}{2}}$$

for $x_1, \ldots, x_n \in \mathcal{H}$. The basic open neighbourhoods aroud 0 are given by

$$\mathcal{O}(x_1, \dots, x_n) = \left\{ T : \sum_{i=1}^n ||Tx_i||^2 < 1 \right\}$$

We also have the strong* topology SOT* given by $T_{\alpha} \xrightarrow{\text{SOT}^*} T$ if and only if $T_{\alpha} \xrightarrow{\text{SOT}} T$ and $T_{\alpha}^* \xrightarrow{\text{SOT}} T^*$. The basic open neighbourhoods around 0 are

$$\mathcal{O}(x_1, \dots, x_n) = \left\{ T \sum_{i=1}^n \|Tx_i\|^2 < 1, \sum_{i=1}^n \|T^*x_i\| = 1 \right\}$$

TODO 42. I think the second sum should be norms squared? Also in the next proof

Example 7.1. If S is the unilateral shift then $S^n \xrightarrow{\text{WOT}} 0$ and $(S^*)^n \xrightarrow{\text{SOT}} 0$ but $S^n \xrightarrow{\text{SOT}} 0$ since the S^n are isometries, so $||S^nx|| = 1 \neq 0$.

Lemma 7.2. Suppose $\varphi \colon \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ is linear. Then the following are equivalent:

1. There exist $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathcal{H}$ such that

$$\varphi(T) = \sum_{i=1}^{n} \langle Tx_i, y_i \rangle$$

- 2. φ is WOT-continuous.
- 3. φ is SOT-continuous.
- 4. φ is SOT*-continuous.

Proof.

- $(1) \Longrightarrow (2)$ Easy.
- $(2) \Longrightarrow (3)$ Easy.
- $(3) \Longrightarrow (4)$ Easy.
- (4) \Longrightarrow (1) We have $\varphi^{-1}(\mathbb{D})$ is a SOT*-open neighbourhood of 0. So there is $x_1, \ldots, x_n \in \mathcal{H}$ such that

$$\varphi^{-1}(\mathbb{D}) \supseteq \left\{ T : \sum \|Tx_i\|^2 < 1, \sum \|T^*x_i\| < 1 \right\} \supseteq \left\{ T : Tx_i = 0, T^*x_i = 0 \right\} \subseteq \ker(\varphi)$$

Then the following diagram commutes:

$$\mathcal{B}(\mathcal{H}) \xrightarrow{\varphi} \mathbb{C}$$

$$\overset{\varphi}{\longrightarrow} \mathbb{C}$$

$$\mathcal{H}^{(n)} \oplus (\mathcal{H}^*)^{(n)}$$

where $T \mapsto (Tx_1, \ldots, Tx_n, T^*x_1, \ldots, T^*x_n) \mapsto \varphi(T)$ and the latter map is continuous. We extend the map $\rho(\mathcal{B}(\mathcal{H})) \to \mathbb{C}$ to ψ on $\mathcal{H}^{(2n)}$ by Hahn-Bnach. Then there are $w_i \in \mathcal{H}^*, z_i \in \mathcal{H}$ such that

$$\psi(u_1,\ldots,u_n,v_1,\ldots,v_n) = \sum \langle u_i,w_i \rangle + \sum \langle v_i,z_i \rangle$$

Then

$$\varphi(T) = \sum_{i=1}^{n} \langle Tx_i, w_i \rangle + \sum_{i=1}^{n} \langle z_i, T^*x_i \rangle = \sum_{i=1}^{n} \langle Tz_i, x_i \rangle$$

as desired.

Improved version:

TODO 43. Delete the first version?

Note that $\varphi^{-1}(\mathbb{D})$ is a basic SOT*-open neighbourhood of 0 and

$$\varphi^{-1}(\mathbb{D}) \supseteq \left\{ T : \sum_{i=1}^{n} \|Tx_i\|^2 < 1 \text{ and } \sum_{j=1}^{m} \|T^*y_j\|^2 < 1 \right\} \supseteq \left\{ T : Tx_i = 0 = T^*y_j, 1 \le i \le n, 1 \le j \le m \right\}$$

and this last is a closed subspace. Then we want $\psi \colon \mathcal{H}^{(n)} \oplus (\mathcal{H}^*)^{(m)} \to \mathbb{C}$ such that the following diagram commutes:

where $\rho(T) = (Tx_1, \ldots, Tx_n, T^*y_1, \ldots, T^*y_m)$. Then T^*y_j represents the linear functional in \mathcal{H} given by $x \mapsto \langle x, T^*y_j \rangle = \langle Tx, y_j \rangle$; the map $T \mapsto T^*y_j \in \mathcal{H}^*$ is *linear*.

Define $\psi((Tx_1,\ldots,Tx_n,T^*y_1,\ldots,T^*y_m)) = \varphi(T)$. Then $\ker(\rho) \subseteq \ker(\varphi)$, so ψ is well-defined. If

$$\sum \|Tx_i\|^2 < 1$$
$$\sum \|T^*y_j\|^2 < 1$$

then $\psi((Tx_1, \ldots, Tx_n, T^*y_1, \ldots, T^*y_m)) \in \mathbb{D}$, so $|\psi((Tx_1, \ldots, Tx_n, T^*y_1, \ldots, T^*y_m))| < 1$. So $||\psi|| \le 1$. We can thus by Hahn-Banach extend to a linear functional on $\mathcal{H}^{(n)} \oplus (\mathcal{H}^*)^{(m)}$ of norm ≤ 1 . But $(\mathcal{H}^{(n)} \oplus (\mathcal{H}^*)^{(m)})^* = (\mathcal{H}^*)^{(n)} \oplus \mathcal{H}^{(m)}$; so there are $u_1, \ldots, u_n \in \mathcal{H}^*$ and $v_1, \ldots, v_m \in \mathcal{H}$ such that

$$\psi((x_1,\ldots,x_n,y_1,\ldots,y_m)) = \sum_{i=1}^n \langle x_i,u_i \rangle + \sum_{j=1}^m \langle v_j,y_j \rangle$$

Then

$$\varphi(T) = \psi((Tx_1, \dots, Tx_n, T^*y_1, \dots, T^*y_m)) = \sum \langle Tx_i, u_i \rangle + \sum \langle v_j, T^*y_j \rangle = \sum \langle Tx_i, u_i \rangle + \sum \langle Tv_j, y_j \rangle$$
as desired.

as desired.

Corollary 7.3. $\mathcal{B}(\mathcal{H})$ with topologies WOT, SOT, and SOT^{*} have the same closed convex sets.

Proof. They have the same continuous functionals, and thus the same closed half spaces $H = \{T : \operatorname{Re}(\varphi(T)) \leq 0\}$ r }. By the geometric Hahn-Banach theorem, every closed convex set in a locally convex topological vector space is the intersection of the closed half spaces containing it. \Box Corollary 7.3

Definition 7.4. A von Neumann algebra is a unital C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ which is WOT-closed.

Definition 7.5. If $S \subset \mathcal{B}(\mathcal{H})$, we define the *commutant* fo S to be $S' = \{T \in \mathcal{B}(\mathcal{H}) : ST = TS \text{ for all } S \in S\}$.

Remark 7.6. S' is always a WOT-closed unital algebra. Indeed, S is clearly a subspace. It is closed under multiplication, as if $T_1, T_2 \in \mathcal{S}'$ then $T_1T_2S = T_1ST_2 = ST_1T_2$. If $T_\alpha \in \mathcal{S}'$ with $T_\alpha \xrightarrow{\text{WOT}} T$ then

$$ST = \lim_{\alpha} ST_{\alpha} = \lim_{\alpha} T_{\alpha}S = TS$$

and so \mathcal{S}' is WOT-closed. If $\mathcal{S} = \mathcal{S}^*$ then \mathcal{S}' is self-adjoint, and is thus a von Neumann algebra.

Theorem 7.7 (Double commutant theorem). If $\mathfrak{A} \subseteq \mathcal{B}(\mathcal{H})$ is a C*-algebra which is non-degenerate (i.e. $\overline{\mathfrak{AH}} = \mathcal{H}$) then $\overline{\mathfrak{A}}^{SOT} = \overline{\mathfrak{A}}^{WOT} = \mathfrak{A}''$ (where $\mathfrak{A}'' = (\mathfrak{A}')'$).

Proof. We know $\overline{\mathfrak{A}}^{SOT} = \overline{\mathfrak{A}}^{WOT}$ by previous corollary. We know $\overline{\mathfrak{A}}^{SOT} \subseteq \mathfrak{A}''$ since $\mathfrak{A} \subseteq \mathfrak{A}''$ and \mathfrak{A}'' is WOT-closed.

Suppose $T \in \mathfrak{A}''$ and $x_1, \ldots, x_n \in \mathcal{H}$; we wish to find $A \in \mathfrak{A}$ such that

$$A \in \left\{ B \in \mathcal{B}(\mathcal{H}) : \sum_{i=1}^{n} ||(T-B)x_i||^2 < 1 \right\}$$

where this last is a SOT neighbourhood of T.

Case 1. Suppose n = 1. Then $M = \overline{\mathfrak{A}x_1}$ is a closed subspace of \mathcal{H} , and $\mathfrak{A}M = \overline{\mathfrak{A}\overline{\mathfrak{A}x_1}} = \overline{\mathfrak{A}^2x_1} \subseteq M$. Let P be the orthogonal projection onto M. Then if $A \in \mathfrak{A}$ we have AP = PAP; so for $A \in \mathfrak{A}$ we have $PA^* = PA^*P$; so PA = PAP = AP for all $A \in \mathfrak{A}$, and $P \in \mathfrak{A}'$. So TP = PT and $Tx_1 = TPx_1 = PTx_1 \in M$. So there is $A \in \mathfrak{A}$ such that $||Tx_1 - Ax_1|| < 1$ (or $< \varepsilon$ for any $\varepsilon > 0$). Aside 7.8. Why is $x_1 \in M$? Let $(e_{\lambda})_{\lambda}$ be an approximate identity for \mathfrak{A} . Since $\overline{\mathfrak{A}\mathcal{H}} = \mathcal{H}$ there is $x \in \mathcal{H}$

and $A \in \mathfrak{A}$ such that $Ax \approx x_1$; then $\underbrace{e_{\lambda}x_1}_{\in \mathfrak{A}x_1} \approx e_{\lambda}Ax \to Ax$

Case 2. Suppose n > 1. Let $\mathcal{H}^{(n)} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_n$. Let

$$\mathfrak{A}^{(n)} = \left\{ \begin{array}{cc} A & & 0 \\ & \ddots & \\ 0 & & A \end{array} \right\} \in \mathcal{M}_n(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^{(n)}) \right\}$$

Suppose $T \in \mathcal{B}(\mathcal{H}^{(n)})$ and let P_j be the orthogonal projection onto $\mathcal{H}_j = 0 \oplus \cdots \oplus \mathcal{H} \oplus 0 \oplus \cdots \oplus 0$ with \mathcal{H} in the j^{th} spot. We let $T_{ij} = P_i T P_j \upharpoonright H_j \in \mathcal{B}(\mathcal{H})$; then

$$T = \left(\sum P_i\right) T\left(\sum P_j\right) = \sum_{i,j} T_{ij}$$

Claim 7.9. $(\mathfrak{A}^{(n)})' = \mathcal{M}_n(\mathfrak{A}').$

Proof. Suppose $T \in \mathcal{B}(\mathcal{H}^{(n)})$ commutes with $\mathfrak{A}^{(n)}$. Then if $T = (T_{ij})_{ij}$ and

$$A^{(n)} = \begin{pmatrix} A & & 0 \\ & \ddots & \\ 0 & & A \end{pmatrix}$$

we have $TA^{(n)} = (T_{ij}A)_{ij} = (AT_{ij})_{ij} = A^{(n)}T$. So $T \in (\mathfrak{A}^{(n)})'$ if and only if $T_{ij} \in \mathfrak{A}'$ for all i, j, which occurs if and only if $T \in \mathcal{M}_n(\mathfrak{A}')$.

Claim 7.10. $\mathcal{M}_n(\mathfrak{A}')' = (\mathfrak{A}'')^{(n)}$.

Proof. Suppose $A = (A_{ij})_{ij} \in \mathcal{M}_n(\mathfrak{A}')'$. Let $E_{ij} \in \mathcal{M}_n(\mathfrak{A}')$ have an I in the (i, j) position and a zero elsewhere. Then

$$E_{ii}A = \begin{pmatrix} 0 & & \\ A_{i1} & A_{i2} & \cdots & A_{in} \\ & 0 & & \end{pmatrix} = AE_{ii} = \begin{pmatrix} A_{i1} & & \\ A_{i2} & & \\ 0 & \vdots & 0 \\ & A_{in} \end{pmatrix}$$

So $A_{ij} = 0$ if $i \neq j$. Doing a similar trick with E_{ij} we conclude that $A_{ii} = A_{jj}$ if $i \neq j$. So $A = A^{(n)}$ for some $A \in \mathcal{B}(\mathcal{H})$.

Note

$$\begin{pmatrix} T & 0 \\ 0 & 0 \\ & \ddots \end{pmatrix} \in \mathcal{M}_n(\mathfrak{A}')$$

if $T \in \mathfrak{A}'$. Then $A^{(n)}T = TA^{(n)}$, so examining top-left entries we get AT = TA. \Box Claim 7.10

Suppose $T \in \mathfrak{A}''$ and $x_1, \ldots, x_n \in \mathcal{H}$. We have a SOT neighbourhood of T given by

$$\left\{ B \in \mathcal{B}(\mathcal{H}) : \sum \| (T - B) x_i \|^2 < 1 \right\}$$

Let

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{H}^{(n)}$$

Let $M = \overline{\mathfrak{A}^{(n)}x}$ and P be the orthogonal projection to M. Then $PA^{(n)} = A^{(n)}P$ for all $A \in \mathfrak{A}$; so $P \in (\mathfrak{A}^{(n)})' = \mathcal{M}_n(\mathfrak{A}')$. But $T^{(n)} \in (\mathfrak{A}'')^{(n)} = \mathcal{M}(\mathfrak{A}')'$; so $T^{(n)}P = PT^{(n)}$. So

$$T^{(n)}x = \begin{pmatrix} Tx_1 \\ \vdots \\ Tx_n \end{pmatrix} = T^{(n)}Px = PT^{(n)}x \in M = \overline{\mathfrak{A}^{(n)}x}$$

So there is $A \in \mathfrak{A}$ such that

$$1 > \|T^{(n)}x - A^{(n)}x\|^{2} = \left\| \begin{pmatrix} Tx_{1} - Ax_{1} \\ \vdots \\ Tx_{n} - Ax_{n} \end{pmatrix} \right\|^{2} = \sum_{i=1}^{n} \|(T - A)x_{i}\|^{2}$$

as desired.

Lemma 7.11. Let $f(x) = \frac{2t}{1+t^2}$. If $A_{\alpha} = A_{\alpha}^*$ and $A_{\alpha} \xrightarrow{\text{SOT}} S$ then $f(A_{\alpha}) \xrightarrow{\text{SOT}} f(S)$.

Proof. Note f maps [-1, 1] injectively onto itself, and $f(\mathbb{R}) \subseteq [-1, 1]$.

Suppose $x \in \mathcal{H}$. Then

$$f(A_{\alpha})x - f(S)x = (2(I + A_{\alpha}^{2})^{-1}A_{\alpha} - 2S(1 + S^{2})^{-1})x$$

= 2(1 + A_{\alpha}^{2})^{-1}(A_{\alpha} - S)(\underbrace{(I + S^{2})^{-1}x}_{u}) + \underbrace{2(1 + A_{\alpha}^{2})^{-1}A_{\alpha}}_{f(A_{\alpha})}(S - A_{\alpha})\underbrace{S(I + S^{2})^{-1}x}_{v}
= 2(1 + A_{\alpha}^{2})^{-1}(A_{\alpha} - S)u + f(A_{\alpha})(S - A_{\alpha})v

Now, $A_{\alpha} - S u \to 0$, and since

$$||2(1+A_{\alpha}^{2})^{-1}|| \le \left\|\frac{2}{1+x^{2}}\right\|_{\mathbb{R}} = 2$$

we get $2(1 + A_{\alpha}^2)^{-1}(A_{\alpha} - S)u \to 0$, and hence $(S - A_{\alpha})v \to 0$. Then since $||f(A_{\alpha})|| \le ||f||_{\infty} = 1$ we have $f(A_{\alpha})(S - A_{\alpha})v \to 0$. \Box Lemma 7.11

Theorem 7.12 (Kaplansky's density theorem). Suppose \mathfrak{A} is a non-degenerate C*-subalgebra of $\mathcal{B}(\mathcal{H})$. Then $\overline{b_1(\mathfrak{A}'_{\mathrm{sa}})}^{\mathrm{SOT}} = \overline{b_1(\mathfrak{A}''_{\mathrm{sa}})}^{\mathbb{H} \setminus \mathbb{H}}$ and $\overline{b_1(\mathfrak{A})}^{\mathrm{SOT}} = \overline{b_1(\mathfrak{A}'')}^{\mathbb{H} \setminus \mathbb{H}}$.

Proof. Suppose $S \in \overline{b_1(\mathfrak{A}_{sa}'')}$. Let T = g(S) (where g is the inverse function of $f \upharpoonright [-1,1] : [-1,1] \to [-1,1]$). Then $T = T^* \in \overline{b_1(\mathfrak{A}_{sa}'')}$. By the double commutant theorem there are $A_\alpha \in \mathfrak{A}$ such that $A_\alpha \xrightarrow{\text{WOT}} T$, and thus $A_\alpha^* \xrightarrow{\text{WOT}} T^* = T$. So $\frac{A_\alpha + A_\alpha^*}{2} \xrightarrow{\text{WOT}} T$. So $T \in \overline{\mathfrak{A}_{sa}}^{\text{WOT}} = \overline{\mathfrak{A}_{sa}}^{\text{SOT}}$. So there is $A_\alpha = A_\alpha^* \in \mathfrak{A}_{sa}$ such that $A_\alpha \xrightarrow{\text{SOT}} T$. Thus by lemma we have $f(A_\alpha) \xrightarrow{\text{SOT}} f(T) = f(g(S)) = S$; also $||f(A_\alpha)|| \le ||f||_{\mathbb{R}} = 1$. If $T \in \overline{b_1(\mathfrak{A}'')}$ then

$$\begin{pmatrix} 0 & T \\ T^* & 0 \end{pmatrix} \in \overline{b_1(\mathcal{M}_2(\mathfrak{A}''))} = \mathcal{M}_2(\mathfrak{A})''$$

So there is

$$A_{\alpha} = \begin{pmatrix} A_{\alpha,11} & A_{\alpha,12} \\ A_{\alpha,21} & A_{\alpha,22} \end{pmatrix} \in b_1(\mathcal{M}_2(\mathfrak{A}))_{sa}$$

 \Box Theorem 7.7

Thus

$$A_{\alpha} \xrightarrow{\text{SOT}} \begin{pmatrix} 0 & T \\ T^* & 0 \end{pmatrix}$$

So $||A_{\alpha,12}|| \le ||A_{\alpha}|| \le 1$, and $A_{\alpha,12} \xrightarrow{\text{SOT}} T$.

 \Box Theorem 7.12

Definition 7.13. We say $U \in \mathcal{B}(\mathcal{H})$ is a *partial isometry* if $U \upharpoonright (\ker(U))^{\perp}$ is isometric.

Proposition 7.14. Suppose $U \in \mathcal{B}(\mathcal{H})$. Then the following are equivalent:

- 1. U is a partial isometry.
- 2. U^*U and UU^* are projections.

TODO 44. or?

3. $U = UU^*U$.

Proof.

(1) \Longrightarrow (2) Suppose U is a partial isometry. Then $\mathcal{H} = (\ker(U)) \oplus (\ker(U))^{\perp}$. Then $U \upharpoonright (\ker(U))^{\perp}$ is an isometry onto $\operatorname{Ran}(U)$ (closed $U\mathcal{H} = U(\ker(U))^{\perp}$).

TODO 45. words

But $\ker(U^*) = (\operatorname{Ran}(U))^{\perp}$, and $U^* \upharpoonright \operatorname{Ran}(U)$ is an isometry onto $(\ker(U))^{\perp}$ such that $U^*U = P_{\ker(U)}^{\perp}$. Likewise UU^* is the projection onto $P_{\ker(U^*)}^{\perp} = P_{\operatorname{Ran}(U)}$ (since U^* is also a partial isometry).

(2) \Longrightarrow (1) U^*U a projection means that $U \upharpoonright (\ker(U))^{\perp} = S \in \mathcal{B}((\ker(U))^{\perp}, \mathcal{H})$ and $S^*S = I_{(\ker(U))^{\perp}}$. So S is an isometry. So $U \upharpoonright (\ker(U))^{\perp}$ is an isometry; so U is a partial isomorphism.

(2)
$$\Longrightarrow$$
 (3) $U = UP_{\ker(U)}^{\perp} = UU^*U.$

(3) \Longrightarrow (2) $U^*U = U^*(UU^*U) = (U^*U)^2$ so U^*U is a projection. Similarly UU^* is a projection.

 \Box Proposition 7.14

Theorem 7.15 (Polar decomposition). Suppose $T \in \mathcal{B}(\mathcal{H})$. Then $|T| = (T^*T)^{\frac{1}{2}} \in C^*(T)$ and there is a partial isometry $U \in W^*(T)$ (the von Neumann algebra generated by T, which is $C^*(T)''$) such that T = U|T|.

Proof. We have $T^*T \in C^*(T)$ and $T^*T \ge 0$, so if $f(x) = x^{\frac{1}{2}} \in \mathcal{C}[0, ||T||^2]$ then $|T| = f(T^*T) \in C^*(T)$. If $x \in \mathcal{H}$ then

$$|||T|x||^{2} = \langle |T|x, |T|x\rangle = \langle |T|^{2}x, x\rangle = \langle T^{*}Tx, x\rangle = \langle Tx, Tx\rangle = ||Tx||^{2}$$

so ||T|x|| = ||Tx|| for all $x \in \mathcal{H}$. Define $U \in \mathcal{B}(\mathcal{H})$ as follows. If $x \in \ker(T) = \ker(|T|)$ we set Ux = 0. If $x \in \operatorname{Ran}(|T|)$, say x = |T|y define Ux = Ty; so ||Ux|| = ||Ty|| = ||T|| = ||x||. So U is isometric on $\operatorname{Ran}(|T|)$. By continuity, we extend U to an isometry on $\operatorname{Ran}(|T|)$; but $\operatorname{Ran}(|T|) = (\ker(|T|))^{\perp}$. So U is a partial isometry and $U\operatorname{Ran}(T) = \operatorname{Ran}(T)$.

If $x \in \ker(T)$ then U|T|x = 0 = Tx. If $x = |T|y \in \operatorname{Ran}(|T|)$ then U|T|y = Ty (by definition); this extends by continuity to $\operatorname{Ran}(|T|)^{\perp}$

TODO 46. $\overline{\operatorname{Ran}(|T|)}$? $\operatorname{ker}(|T|)^{\perp}$?

To show that $U \in W^*(T) = C^*(T)''$ it suffices to show that UX = XU for $X \in C^*(T)'$. So Suppose $X \in C^*(T)'$.

Note that $X \ker(T) \subseteq \ker(T)$; indeed, if Tx = 0 then T(Xx) = X(Tx) = 0. So Ux = 0, so XUx = 0 and U(Xx) = 0. So XU = UX on $\ker(U) = \ker(T)$. Suppose $x = |T|y \in \operatorname{Ran}(|T|)$. Then

$$UXx = UX|T|y = U|T|Xy = TXy = XTy = XU|T|y = XUx$$

So UX - XU = 0 in $\ker(U) \oplus (\ker(U))^{\perp} = \mathcal{H}$. So UX = XU. So $U \in C^*(T)'' = W^*(T)$.

Remark 7.16.

- 1. If T is invertible then $U = T|T|^{-1} \in C^*(T)$.
- 2. If $f \in C_0((0, ||T||])$ then $Uf(|T|) \in C^*(T)$. (See assignment 3.)

7.2 Projections in von Neumann algebras

Lemma 7.17. Suppose $(A_{\lambda})_{\lambda \in \Lambda}$ is an increasing net of self-adjoint operators in $\mathcal{B}(\mathcal{H})$ bounded above by M. Then in SOT we have a limit $A = \lim_{\lambda} A_{\lambda}$ and A is the least upper bound of the A_{λ} .

Proof. For $x \in \mathcal{H}$ we have $\langle A_{\lambda}x, x \rangle \leq M \|x\|^2$; so $\langle A_{\lambda}x, x \rangle$ is an increasing net of real numbers that is bounded above. So

$$\Omega(x) = \lim_{\lambda} \langle A_{\lambda} x, x \rangle$$

exists. Define

$$\begin{split} \langle Ax, y \rangle &= \frac{1}{4} (\Omega(x+y) - \Omega(x-y) + i\Omega(x+iy) - i\Omega(x+iy)) \\ &= \lim_{\lambda} \frac{1}{4} (\langle A_{\lambda}(x+y), x+y \rangle - \langle A_{\lambda}(x-y), x-y \rangle + i \langle A_{\lambda}(x+iy), x+iy \rangle - i \langle A_{\lambda}(x-iy), x-iy \rangle) \\ &= \lim_{\lambda} \langle A_{\lambda}x, y \rangle \end{split}$$

So if A is the WOT limit of the A_{λ} then $A \in \mathcal{B}(\mathcal{H})$.

If $B \geq A_{\lambda}$ for all λ then

$$\langle Bx, x \rangle \ge \sup \langle A_{\lambda}x, x \rangle = \lim \langle A_{\lambda}x, x \rangle = \langle Ax, x \rangle$$

So $\langle (B-A)x, x \rangle \geq 0$ for all x; so $B \geq A$. Thus A is the least upper bound of the A_{λ} .

If $B \ge 0$ then $[x, y] = \langle Bx, y \rangle$ is a sesquilinear form, and thus satisfies the Cauchy-Schwarz inequality; i.e. $[x, y] \le [x, x]^{\frac{1}{2}} [y, y]^{\frac{1}{2}}$. So

$$||Bx||^{2} = \langle Bx, Bx \rangle = [x, Bx] \le [x, x]^{\frac{1}{2}} [Bx, Bx]^{\frac{1}{2}} = \langle Bx, x \rangle^{\frac{1}{2}} \langle B^{3}x, x \rangle^{\frac{1}{2}}$$

Since $A - A_{\lambda} \ge 0$ we have $\langle (A - A_{\lambda})x, x \rangle \to 0$. Fix λ_0 . For $\lambda \ge \lambda_0$ we have $A - A_{\lambda} \le A - A_{\lambda_0}$; so $||A - A_{\lambda}|| \le ||A - A_{\lambda_0}||$. Thus

$$\begin{split} \|(A - A_{\lambda})x\|^{2} &\leq \langle (A - A_{\lambda})x, x \rangle^{\frac{1}{2}} \langle (A - A_{\lambda})^{3}x, x \rangle^{\frac{1}{2}} \\ &\leq \langle (A - A_{\lambda})x, x \rangle^{\frac{1}{2}} \|A - A_{\lambda}\|^{\frac{3}{2}} \|x\| \\ &\leq \langle (\underbrace{A - A_{\lambda}}_{\to 0})x, x \rangle^{\frac{1}{2}} \underbrace{\|A - A_{\lambda_{0}}\|^{\frac{3}{2}} \|x\|}_{\text{constant}} \end{split}$$

so $A_{\lambda}x \to Ax$ for all x. So $A_{\lambda} \xrightarrow{\text{SOT}} A$.

Corollary 7.18. If $(P_{\lambda})_{\lambda}$ is an increasing net of projections then the SOT-limit P of P_{λ} is the projection onto

$$\bigcup_{\lambda \in \Lambda} \operatorname{Ran}(P_{\lambda})$$

Proof. $P_{\lambda} \leq I$, so we have a bounded, increasing net. So the SOT-limit P of P_{λ} exists. Let $M_{\lambda} = \operatorname{Ran}(P_{\lambda})$ and

$$M = \overline{\bigcup_{\lambda \in \Lambda} M_{\lambda}}$$

If $x \perp M$ then $P_{\lambda}x = 0$ for all λ ; so Px = 0. If $x \in M_{\lambda_0}$ then $x = P_{\lambda}x$ for all $\lambda \geq \lambda_0$; so Px = x. Thus Px = x for all

$$x \in \bigcup_{\lambda \in \Lambda} M_{\lambda}$$

so by continuity of P we get Px = x for all $x \in M$. So $P = P_M$.

□ Lemma 7.17

Suppose $A = A^* \in \mathcal{B}(\mathcal{H})$; translate and scale A so that $\sigma(A) \subseteq [0,1]$. We want projections in $W^*(A)$. Suppose $\mathcal{O} \subseteq [0,1]$ is open; consider $\{f(A) : f \in \mathcal{C}[0,1], 0 \le f \le \chi_{\mathcal{O}}\} \subseteq C^*(A)$. This is a directed set, since if $f,g \leq \chi_{\mathcal{O}}$ in $\mathcal{C}[0,1]$ then $f \lor g \in \mathcal{C}[0,1]$ with $f,g \leq f \lor g \leq \chi_{\mathcal{O}}$. So $f(A),g(A) \leq (f \lor g)(A) \in C^*(A) \cong \mathcal{C}(\sigma(A))$. By lemma (since all are bounded by I) we get

$$P_{\mathcal{O}} = \sup\{f(A) : f \in \mathcal{C}[0,1], 0 \le f \le \chi_{\mathcal{O}}\}$$

exists as a SOT-limit, and is thus in $W^*(A)$.

Claim 7.19. $P_{\mathcal{O}} = P_{\mathcal{O}}^2$.

Proof. Note $P_{\mathcal{O}} \leq I$. If $f \in \mathcal{C}[0,1]$ with $0 \leq f \leq \chi_{\mathcal{O}}$ then $0 \leq f^{\frac{1}{2}} \leq \chi_{\mathcal{O}}$. Note by the double commutant theorem that since $P_{\mathcal{O}} \in W^*(A)$ we get $P_{\mathcal{O}}$ commutes with $C^*(A)$ (since $C^*(A)$ is abelian). But $P_{\mathcal{O}} \geq f^{\frac{1}{2}}(A)$; so since they commute we have $P_{\mathcal{O}}^2 \geq f(A)$,

TODO 47. ?

so $P_{\mathcal{O}}^2 \geq P_{\mathcal{O}}$. But $0 \leq P_{\mathcal{O}} \leq I$; so $P_{\mathcal{O}}^2 \leq P_{\mathcal{O}} \leq P_{\mathcal{O}}^2$. So $P_{\mathcal{O}} = P_{\mathcal{O}}^2$ is a projection. □ Claim 7.19

Suppose $n \ge 1$; divide [0, 1] into 2^n equal segments. Let $P_{j,n} = P_{(j2^{-n}, 2)}$; let

$$A_n = 2^{-n} \sum_{j=1}^{2^n} P_{j,n} \in W^*(A) = \sup\left\{ f(A) : f \in \mathcal{C}[0,1], f \le 2^{-n} \sum_{j=1}^{2^n} \chi_{(j2^{-n},2)} \right\} \le A$$

Then $A_n \ge A - 2^{-n}I$, so $A = \lim_n A_n$ in norm.

Corollary 7.20. $A \in \overline{\operatorname{Conv}(\operatorname{Proj}(W^*(A)))}^{\|\cdot\|}$. Thus if \mathfrak{A} is a von Neumann algebra then $\overline{\operatorname{Conv}(\operatorname{Proj}(\mathfrak{A}))}^{\|\cdot\|} =$ $b_1(\mathfrak{A}_{>0}).$

Proof. We showed the first part above. For the second, note that if $A \in \mathfrak{A}$ with $0 \leq A \leq I$ then $A \in \mathcal{A}$ $\overline{\operatorname{Conv}(\operatorname{Proj}(W^*(A)))}^{\|\cdot\|} \subset \overline{\operatorname{Conv}(\operatorname{Proj}(\mathfrak{A}))}^{\|\cdot\|}.$ \Box Corollary 7.20

Note that the projections are the extreme points of $b_1(\mathfrak{A}_+)$, and the symmetries are the extreme points of $b_1(\mathfrak{A}_{\mathrm{sa}}).$

Corollary 7.21. $\operatorname{Conv}(\operatorname{Sym}(\mathfrak{A})) = b_1(\mathfrak{A}_{\operatorname{sa}}).$

(The symmetries are self-adjoint unitaries, and we have for $P-P^{\perp}=2P-I$, P projections that $A \mapsto 2A-I$ maps $b_1(\mathfrak{A}_+)$ bijectively to $b_1(\mathfrak{A}_{sa})$.)

Representations of C*-algebras 8

Definition 8.1. A representation π of a C*-algebra \mathfrak{A} is a *-homomorphism to $\mathcal{B}(\mathcal{H})$. It is non-degenerate if $\overline{\mathfrak{AH}} = \mathcal{H}$. We say π is topologically irreducible if $\pi(\mathfrak{A})$ has no closed invariant subspaces; we say π is algebraically irreducible if $\pi(\mathfrak{A})$ has no proper submodules (i.e. if $x \neq 0$ then $\pi(\mathfrak{A})x = \mathcal{H}$)).

Lemma 8.2. π is topologically irreducible if and only if $\pi(\mathfrak{A})' = \mathbb{C}I$.

Proof.

(\Leftarrow) Suppose M is a closed subspace with $\pi(\mathfrak{A})M = M$; so $\mathcal{H} = M \oplus M^{\perp}$ with

$$\pi(\mathfrak{A}) \subseteq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

But $\pi(\mathfrak{A}) = \pi(\mathfrak{A})^*$; so

$$\pi(\mathfrak{A}) \subseteq \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} = \left\{ \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \right\}' = \{ P_M \}'$$

So $P_M \in \pi(\mathfrak{A})'$.

 (\Longrightarrow) Suppose $\pi(\mathfrak{A})' \neq \mathbb{C}I$; then there is a projection $P = P^2$ with $P \notin \{0, I\}$ and $P \in \pi(\mathfrak{A})'$. Then $M = \operatorname{Ran}(P)$ is invariant, and π is not topologically irreducible. \Box Lemma 8.2

Lemma 8.3. Suppose π is a topologically irreducible representation of \mathfrak{A} . Suppose M is a subspace with $\dim(M) < \infty$. Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there is $a \in \mathfrak{A}$ with $\|a\| \leq \|T\|$ such that $\|(T - \pi(a)) \upharpoonright M\| < \varepsilon$.

Proof. Let dim(M) = n and $\{e_1, \ldots, e_n\}$ an orthonormal basis for M; without loss of generality assume $\frac{\|T\| = 1}{b_1(\mathcal{B}(\mathcal{H}))} = \overline{b_1(\pi(\mathfrak{A}))}^{\text{SOT}}$. Pick $a \in \mathfrak{A}$ such that $\|\pi(a)\| < 1$ and $\|Te_i - \pi(a)e_i\| < \frac{\varepsilon}{n}$ for $1 \le i \le n$. Then

$$\|(T - \pi(a)) \upharpoonright M\| \le \|(T - \pi(a))P_M\| \le \sum_{i=1}^n \|(T - \pi(a))P_{\mathbb{C}e_i}\| < n \cdot \frac{\varepsilon}{n} = \varepsilon$$

Then we have

$$\begin{aligned} \mathfrak{A} &\xrightarrow{q} \mathfrak{A}/\ker(\pi) \xrightarrow{\tilde{\pi}} \mathcal{B}(\mathcal{H}) \\ a &\mapsto \|\dot{a}\| < 1 \quad \mapsto \|\pi(a)\| < 1 \end{aligned}$$

Choose $a_1 \in a + \ker(\pi)$ such that $||a_1|| < ||\dot{a}|| + \delta < 1$. We then use a_1 .

Theorem 8.4 (Kadison's transitivity theorem). Suppose $\pi: \mathfrak{A} \to \mathcal{B}(\mathcal{H})$ is topologically irreducible and $\dim(M) < \infty$; suppose $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. Then there is $a \in \mathfrak{A}$ with $\|a\| < \|T\| + \varepsilon$ such that $\pi(a) \upharpoonright M = T \upharpoonright M.$

Proof. Use the lemma to find $a_0 \in \mathfrak{A}$ with $||a_0|| \leq ||T||$ such that $||(T - \pi(a))| \upharpoonright M|| < \frac{\varepsilon}{4}$, and let $T_1 = (T - \pi(a))P_M$. Find $a_1 \in \mathfrak{A}$ with $||a_1|| \leq ||T_1|| < \frac{\varepsilon}{4}$ such that $||(T_1 - \pi(a_1))| \upharpoonright M|| < \frac{\varepsilon}{8}$; then let $T_2 = C_1 = C_2$. $T - \pi(a_0) - \pi(a_1)$. Recursively find $a_n \in \mathfrak{A}$ such that $||a_n|| < \frac{\varepsilon}{2^{n+1}}$ such that

$$||T - \pi(a_0 + a_1 + \dots + a_n)|| < \frac{\varepsilon}{2^{n+2}}$$

Let $a = \sum_{n>0} a_n$; so

$$||a|| \le ||a_0|| + \sum \frac{\varepsilon}{2^{n+1}} < ||T|| + \frac{\varepsilon}{2} + \varepsilon^2$$

and

$$(T - \pi(a)) \upharpoonright M = \lim_{n} \left(T - \pi\left(\sum_{i=0}^{n} a_i\right) \right) \upharpoonright M = 0$$

as desired.

Corollary 8.5. If π is topologically irreducible then π is algebraically irreducible.

Proof. Suppose $x, y \in \mathcal{H}$ with $x \neq 0$. Let $T = y \frac{x^*}{\|x\|^2}$, so Tx = y. Then there is a such that $\pi(a)x = y$; so the action is transitive. \Box Corollary 8.5

8.1 **GNS** construction

This is Gelfand-Naimark-Segal.

Definition 8.6. A linear functional f on a C*-algebra \mathfrak{A} is called *positive* if $a \ge 0$ implies $f(a) \ge 0$. A positive linear functional of norm 1 is called a *state*.

Example 8.7. If $\pi: \mathfrak{A} \to \mathcal{B}(\mathcal{H})$ is a non-degenerate representation and $x \in \mathcal{H}$ with ||x|| = 1 then f(a) = $\langle \pi(a)x, x \rangle$ is a state.

Proof. If $a \ge 0$ then $\pi(a) \ge 0$, so $\langle \pi(a)x, x \rangle \ge 0$. Also $\|f\| \le \|\pi\| \|x\|^2 = 1$. If $1 \in \mathfrak{A}$ then $f(1) = \langle \pi(1)x, x \rangle = 0$. $\langle Ix,x\rangle = 1$; so ||f|| = 1. If \mathfrak{A} is not unital, we will see that if $(e_{\lambda})_{\lambda}$ is an approximate identity then $\pi(e_{\lambda}) \xrightarrow{\text{SOT}} I$; so $||f|| \ge \sup |f(e_{\lambda})| = 1$.

 \Box Lemma 8.3

\Box Theorem 8.4

Remark 8.8. If f is a positive linear functional then $[a, b] = f(b^*a)$ (for $a, b \in \mathfrak{A}$) is a sesquilinear form on \mathfrak{A} ; it is linear in a and conjugate-linear in b, and $[a, a] = f(a^*a) \ge 0$. So Cauchy-Schwarz inequality holds, and

$$|f(b^*a)| = |[a,b]| \le [a,a]^{\frac{1}{2}}[b,b]^{\frac{1}{2}} = f(a^*a)^{\frac{1}{2}}f(b^*b)^{\frac{1}{2}}$$

Lemma 8.9. Suppose f is a positive linear functional on \mathfrak{A} . If $1 \in \mathfrak{A}$ then ||f|| = f(1). If $(e_{\lambda})_{\lambda}$ is an approximate identity then $||f|| = \sup f(e_{\lambda}) < \infty$. In particular, positive linear functionals are continuous.

Proof.

Case 1. Suppose \mathfrak{A} is unital. If $0 \le a \le 1$ then $0 \le f(a) \le f(1)$. If $a \in \mathfrak{A}$ with $||a|| \le 1$ then $0 \le a^*a \le 1$, so $f(a^*a) \le f(1)$. Then

$$|f(a)| = |f(1^*a)| \le f(a^*a)^{\frac{1}{2}} f(1^*1)^{\frac{1}{2}} \le f(1)$$

So $||f|| \le f(1) \le ||f||$.

Case 2. Suppose \mathfrak{A} is non-unital.

Claim 8.10. $f \upharpoonright \mathfrak{A}_{\geq 0}$ is continuous.

Proof. If not there are $a_n \ge 0$ with $||a_n|| < 2^{-n}$ and $f(a_n) > 1$; then

$$a = \sum_{n \ge 1} a_n \in \mathfrak{A}_{\ge 0}$$

and

$$f(a) \ge f\left(\sum_{n=1}^{N} a_n\right) = \sum_{n=1}^{N} f(a_n) > N$$

 \Box Claim 8.10

a contradiction.

Aside 8.11. In this section we may use \mathfrak{A}_+ to mean $\mathfrak{A}_{\geq 0}$.

So f is continuous, and there is c such that $f(a) \leq C ||a||$ for all $a \geq 0$. Now if $a \in \mathfrak{A}$ then

$$a = \operatorname{Re}(a) + i \operatorname{Im}(a) = b_{+} - b_{-} + i(c_{+} - c_{-})$$

with

$$||b_{\pm}|| \le ||\operatorname{Re}(a)|| \le ||a||$$

 $||c_{\pm}|| \le ||\operatorname{Im}(a)|| \le ||a||$

Then

$$|f(a)| \le f(b_{+}) + f(b_{-}) + f(c_{+}) + f(c_{-}) \le 4C ||a||$$

Thus $M = \sup_{\lambda} f(e_{\lambda}) < \infty$ and $M = \lim_{\lambda} f(e_{\lambda})$ since the e_{λ} is an increasing net. Note also that $0 \le e_{\lambda} \le 1$, so $0 \le e_{\lambda}^2 \le e_{\lambda}$, and $f(e_{\lambda}^2) \le f(e_{\lambda}) \le M$.

Now, by continuity we have

$$\begin{split} |f(a)|^2 &= \lim_{\lambda} |f(e_{\lambda}a)|^2 \\ &\leq \lim_{\lambda} |f(a^*a)| |f(e_{\lambda}^2)| \text{ (Cauchy-Schwarz)} \\ &\leq \lim_{\lambda} ||f|| ||a||^2 M \\ &= ||f|| ||a||^2 M \end{split}$$

 So

$$||f||^{2} = \sup_{||a|| \le 1} |f(a)|^{2} \le \sup ||f|| \cdot 1 \cdot M = ||f|| \cdot M$$

So $||f|| \le M = \sup_{\lambda} f(e_{\lambda}) \le ||f||.$

 \Box Lemma 8.9

Theorem 8.12 (GNS). Suppose f is a state on a C^* -algebra \mathfrak{A} . Then there is a representation $\pi_f \colon \mathfrak{A} \to \mathcal{B}(\mathcal{H}_f)$ and a unit vector $\xi_f \in \mathcal{H}_f$ such that

- 1. $f(a) = \langle \pi(a)\xi_f, \xi_f \rangle$
- 2. ξ_f is a cyclic vector; i.e. $\overline{\pi(\mathfrak{A})\xi_f} = \mathcal{H}_f$.

Proof. Let $N = \{a \in \mathfrak{A} : f(a^*a) = 0\}$. If $a \in N$ and $b \in \mathfrak{A}$ then by Cauchy-Schwarz we have

$$|[a,b]| = |f(b^*a)| \le f(a^*a)^{\frac{1}{2}} f(b^*b)^{\frac{1}{2}} = 0$$

So $N = \{a : [a, b] = 0 \text{ for all } b \in \mathfrak{A}\}$; so N is a subspace. If $a \in N$ and $b \in \mathfrak{A}$ then

$$f((ba)^*(ba)) = f(a^*b^*ba) \le ||b||^2 f(a^*a) = 0$$

so N is a left ideal. Since f is continuous, we get that N is closed. So \mathfrak{A}/N is a Banach space, with elements $\dot{a} = a + N$. We define an inner product by $\langle \dot{a}, \dot{b} \rangle = f(b^*a) = [a, b]$. Given representatives a, a + n and b, b + m with $n, m \in N$ we have

$$f((b+m)^*(a+n)) = f(b^*a + m^*a + b^*n + m^*n)$$

Since $b^*n, m^*n \in N$ we have $f(b^*n + m^*n) = 0$. Since $f \ge 0$ if a = x + iy (so $a^* = x - iy$) then

$$f(a) = \underbrace{f(x)}_{\in \mathbb{R}} + i \underbrace{f(y)}_{\in \mathbb{R}}$$

and $f(a^*) = f(x) - if(y) = \overline{f(a)}$. So $f(m^*a) = \overline{f(a^*m)} = 0$ since $m \in N$ implies $a^*m \in N$. Thus $f(b+m)^*(a+n) = f(b^*a)$.

So $\langle \dot{a}, \dot{b} \rangle$ is well-defined. Also if $0 = \langle \dot{a}, \dot{a} \rangle = f(a^*a)$ then $a \in N$ and $\dot{a} = \dot{0}$; so this is a positive definite inner product. We have an inner product norm $||\dot{a}||_2 = \langle \dot{a}, \dot{a} \rangle^{\frac{1}{2}}$. The completion of $(\mathfrak{A}/N, ||\cdot||_2)$ is a Hilbert space. Define $\pi_0: \mathfrak{A} \to \mathcal{L}(\mathfrak{A}/N)$ by $\pi_0(a)\dot{b} = (ab)$. Then $ab = a(b+N) = ab + aN \subseteq ab + N$, so this is independent of the choice of b. Also π_0 is a homomorphism of algebras; furthermore

$$\begin{aligned} \langle \pi_0(a^*)b,\dot{c}\rangle &= \langle (a^*b),\dot{c}\rangle \\ &= f(c^*a^*b) \\ &= f((ac)^*b) \\ &= \langle \dot{b},(\dot{a}c)\rangle \\ &= \langle \dot{b},\pi_0(a)\dot{c}\rangle \\ &= \langle \pi_0(a)^*\dot{b},\dot{c}\rangle \end{aligned}$$

So $\pi_0(a^*) = \pi_0(a)^*$, and π_0 is a *-homomorphism. Also

$$\begin{aligned} \|\pi_0(a)\| &= \sup_{\|\dot{b}\| \le 1} \|\pi_0(a)\dot{b}\| \\ &= \sup_{f(b^*b) \le 1} f((ab)^*ab)^{\frac{1}{2}} \\ &= \sup_{f(b^*b) \le 1} f(b^*a^*ab)^{\frac{1}{2}} \\ &\le \sup_{f(b^*b) \le 1} (\|a\|^2 f(b^*b))^{\frac{1}{2}} \\ &= \|a\| \end{aligned}$$

so $\|\pi_0\| \leq 1$ and π_0 is continuous. We can extend π_0 to a continuous linear operator $\pi_f(a)$ in $\mathcal{B}(\mathcal{H}_f)$; then $\pi_f: \mathfrak{A} \to \mathcal{B}(\mathcal{H}_f)$ is a *-representation on \mathcal{H}_f .

Case 1. Suppose $1 \in \mathfrak{A}$; we then let $\xi_f = \dot{1}$. Then $\|\xi_f\|^2 = f(1^*1) = f(1) = \|f\| = 1$. Then

$$\langle \pi(a)\xi_f,\xi_f\rangle = \langle \pi(a)1,1\rangle = f(1^*a1) = f(a)$$

Also $\pi(\mathfrak{A})\dot{1} = \{\dot{a} : a \in \mathfrak{A}\} = \mathcal{H}_f$; so ξ_f is cyclic.

Case 2. Suppose \mathfrak{A} is not unital; let $(e_{\lambda})_{\lambda}$ be an approximate identity.

Claim 8.13. $(\dot{e_{\lambda}})_{\lambda}$ is Cauchy.

Proof. Note that $1 = ||f|| = \lim_{\lambda} f(e_{\lambda})$. If $\varepsilon > 0$ and

$$f(e_{\lambda}) > 1 - \varepsilon$$

$$f(e_{\mu}) > 1 - \varepsilon$$

then there is ν with $e_{\nu} \ge e_{\lambda}$ and $e_{\nu} \ge e_{\mu}$, and so $f(e_{\nu}) \ge f(e_{\lambda}) > 1 - \varepsilon$. So $||e_{\nu}e_{\lambda} - e_{\lambda}|| < \varepsilon$ and $||e_{\nu}e_{\mu} - e_{\mu}|| < \varepsilon$. Then

$$\|\dot{e_{\nu}} - \dot{e_{\mu}}\|^2 = f((e_{\nu} - e_{\mu})^2) = f(e_{\nu}^2 + e_{\mu}^2 - e_{\nu}e_{\mu} - e_{\mu}e_{\nu})$$

 But

$$|f(e_{\nu}e_{\mu})| = |f(e_{\mu}) + f(e_{\nu}e_{\mu} - e_{\mu})| \ge 1 - \varepsilon - ||e_{\nu}e_{\mu} - e_{\mu}|| > 1 - 2\varepsilon$$

and also $|f(e_{\mu}e_{\nu})| = |f(e_{\nu}e_{\mu})| > 1 - 2\varepsilon$. Thus

$$|\dot{e_{\nu}} - \dot{e_{\mu}}||^2 \le f(e_{\nu}^2) + f(e_{\mu})^2 - 2(1 - 2\varepsilon) \le 2 - 2 + 4\varepsilon = 4\varepsilon$$

TODO 48. something about this being because e_{ν}, e_{μ} being norm 1 and positive?

so $\|\dot{e_{\nu}} - \dot{e_{\mu}}\| \leq 2\sqrt{\varepsilon}$. Then

$$\|\dot{e_{\mu}}-\dot{e_{\lambda}}\|\leq \|\dot{e_{\mu}}-\dot{e_{\nu}}\|+\|\dot{e_{\nu}}-\dot{e_{\lambda}}\|<2\sqrt{\varepsilon}+2\sqrt{\varepsilon}=4\sqrt{\varepsilon}$$

and $(e_{\lambda})_{\lambda}$ is Cauchy.

Let $\xi_f = \lim_{\lambda} \dot{e_{\lambda}}$. Then

$$\langle \pi(a)\xi_f,\xi_f\rangle = \lim_{\lambda} \langle \pi(a)\dot{e_{\lambda}},\dot{e_{\lambda}}\rangle = \lim_{\lambda} f(e_{\lambda}ae_{\lambda}) = f(a)$$

and

$$\|\dot{a} - \pi(a)\xi_f\|^2 = \lim_{\lambda} \|\dot{a} - \pi(a)\dot{e_\lambda}\|^2$$
$$= \lim_{\lambda} \|\dot{a} - (a\dot{e_\lambda})\|^2$$
$$= 0$$

TODO 49. something about how the penultimate is equal to $\|\dot{a} - (e_{\lambda}\dot{a})\|$ and in turn to $\|\dot{a} - \pi(e_{\lambda})\dot{a}\|$?

Thus
$$\pi(e_{\lambda})\dot{a} \to \dot{a}$$
; so $\pi(e_{\lambda}) \xrightarrow{\text{SOT}} I$. So $\overline{\pi(\mathfrak{A})\xi_f} = \overline{\mathfrak{A}/N} = \mathcal{H}_f$ is then cyclic. Also
 $1 = \lim_{\lambda} f(e_{\lambda}) = \lim_{\lambda} \langle \pi(e_{\lambda})\xi_f, \xi_f \rangle = \langle \xi_f, \xi_f \rangle$

 \Box Theorem 8.12

Corollary 8.14. If \mathfrak{A} is not unital and f is a state then f extends uniquely to a state on \mathfrak{A}^+ by setting f(1) = 1.

Proof. Suppose g is a Hahn-Banach extension of f to \mathfrak{A}^+ ; so $||g|| = 1 \ge |g(1)|$. Let $g(1) = \alpha$. Then $1 = \lim_{\lambda} f(e_{\lambda})$ and $0 \le e_{\lambda} \le 1$, so $-1 \le 1 - 2e_{\lambda} \le 1$, and

$$1 \ge |g(1 - 2e_{\lambda})| = |\alpha - 2f(e_{\lambda})| \to |\alpha - 2|$$

Then since $|\alpha| \leq 1$ and $|\alpha - 2| \leq 1$ we get $\alpha \in \overline{\mathbb{D}} \cap (2 + \overline{\mathbb{D}}) = \{1\}$. So g(1) = 1, and g is unique. Also

$$g(\alpha + \lambda 1) = \langle (\pi(a) + \lambda I)\xi_f, \xi_f \rangle = \widetilde{\pi}(a + \lambda 1)$$

where $\widetilde{\pi} : \mathfrak{A}^+ \to \mathcal{B}(\mathcal{H}_f)$ is $\widetilde{\pi}(a) = \pi(a)$ and $\widetilde{\pi}(1) = I$; so $\widetilde{\pi}$ is *-linear, and $g \ge 0$. \Box Corollary 8.14

 \Box Claim 8.13

Lemma 8.15. Suppose f is a linear functional on \mathfrak{A} .

1. If $1 \in \mathfrak{A}$ and f(1) = 1 = ||f||, then f is a state.

2. If $(e_{\lambda})_{\lambda}$ is an approximate identity and $1 = ||f|| = \lim_{\lambda} f(e_{\lambda})$ then f is a state.

Proof.

1. If $a = a^*$ write f(a) = x + iy for $x, y \in \mathbb{R}$. Then

$$|f(a+it1)|^2 = |(x+iy)+it|^2 = x^2 + (y+t)^2 \le ||a+it1||^2$$

But a+it1 is normal and $\sigma(a+it1) = \sigma(a)+it \subseteq [-\|a\|, \|a\|]+it$. So $\|a+it\| = \operatorname{spr}(a+it) = \sqrt{\|a\|^2 + t^2}$. Thus

$$||a||^2 + t^2 \ge x^2 + (y+t)^2 = x^2 + y^2 + 2yt + t^2$$

So $x^2 + y^2 + 2yt \le ||a||^2$ for all $t \in \mathbb{R}$. So y = 0, and $f(a) \in \mathbb{R}$. If $a = a^*$ with $0 \le a \le 1$ then $-1 \le 2a - 1 \le 1$. So $-1 \le 2f(a) - 1 \le 1$ since ||f|| = 1 and $f(a) \in \mathbb{R}$. Thus $0 \le f(a) \le 1$. So $f \ge 0$, and f is a state.

2. Extend f by Hahn-Banach to a norm 1 functional on \mathfrak{A}^+ . Then $\lim_{\lambda} f(e_{\lambda}) = 1$, so by the same proof as the previous corollary we get g(1) = 1. So by the unital case we get that g is a state. So f is a state. \Box Lemma 8.15

Definition 8.16. The state space of \mathfrak{A} is $S(\mathfrak{A}) = \{ f \in A^* : f \ge 0, ||f|| = 1 \}$; the quasi-state space of \mathfrak{A} is $Q(\mathfrak{A}) = \{ f \in \mathfrak{A}^* : f \ge 0, ||f|| \le 1 \}$.

Remark 8.17. If \mathfrak{A} is unital then $S(\mathfrak{A})$ is weak*-compact: indeed,

$$S(\mathfrak{A}) = \{ f \in \mathfrak{A}^* : 1 = f(1) = ||f|| \} = \underbrace{\overline{b_1(\mathfrak{A}^*)}}_{\text{weak*-compact}} \cap \underbrace{\{ f \in \mathfrak{A}^* : f(1) = 1 \}}_{\text{weak*-closed}}$$

If \mathfrak{A} is not unital then generally $S(\mathfrak{A})$ is not weak*-compact. But $Q(\mathfrak{A})$ is always weak*-compact: indeed,

$$Q(\mathfrak{A}) = \overline{b_1(\mathfrak{A}^*)} \cap \bigcap_{a \ge 0} \underbrace{\{f \in \mathfrak{A}^* : f(a) \ge 0\}}_{weak*-closed}$$

Example 8.18. Consider $\mathfrak{A} = \mathcal{C}_0((0,1])^* = \mathcal{M}((0,1])$, the space of complex regular Borel measures; then $S(\mathfrak{A})$ is the space of probability measures. Let $\mu_n = n \cdot (m \upharpoonright (0, n^{-1}])$ (where *m* is the Lebesgue measure); then $\mu_n \xrightarrow{w^*} 0$ (i.e. δ_0). So $S(\mathfrak{A})$ isn't weak*-closed.

Definition 8.19. A state f is pure if $g \in \mathfrak{A}^*$ and $0 \leq g \leq f$ implies there is $t \in [0, 1]$ with g = tf.

Proposition 8.20. $f \in S(\mathfrak{A})$ is pure if and only if it is extreme.

Aside 8.21. $C = \{g \in \mathfrak{A}^* : g \ge 0\}$ is a weak*-closed cone. The pure states lie on extreme rays. If $1 \in \mathfrak{A}$ then

$$S(\mathfrak{A}) = C \cap \{ g \in \mathfrak{A}^* : g(1) = 1 \} = C \cap \{ g \in \mathfrak{A}^* : ||g|| = 1 \}$$

Proof of Proposition 8.20.

 (\implies) Suppose f is not extreme; say $f = \frac{1}{2}(g+h)$ for $g,h \in S(\mathfrak{A})$ and $g,h \neq f$. Then $0 \leq \frac{1}{2}g \leq f$ but $g \neq tf$ for $t \in [0,1]$; so f is not pure.

(\Leftarrow) Suppose f is not pure; then there is g with $0 \le g \le f$ with $g \notin \mathbb{R}_+ f$. Let $h = f - g \ge 0$. Then

$$f = \|g\|(\|g\|^{-1}g) + \|h\|(\|h\|^{-1}h)$$

with $||g||^{-1}g$, $||h||^{-1}h \in S(\mathfrak{A})$; furthermore if $(e_{\lambda})_{\lambda}$ is an approximate identity then

$$||g|| + ||h|| = \lim_{\lambda} g(e_{\lambda}) + h(e_{\lambda}) = \lim_{\lambda} f(e_{\lambda}) = 1$$

So f is not extreme.

 \Box Proposition 8.20

Lemma 8.22. $\operatorname{ext}(Q(\mathfrak{A})) = \{ 0 \} \cup \operatorname{ext}(S(\mathfrak{A})).$ So $\overline{\operatorname{Conv}(\operatorname{ext}(S(\mathfrak{A})))}^{w^*} \supseteq S(\mathfrak{A}).$

Proof. If $f \in Q(\mathfrak{A})$ with 0 < ||f|| < 1 then it is clear that f is not an extreme point. Clearly $0 \in \text{ext}(Q(\mathfrak{A}))$, and by a triangle inequality argument we get that $\text{ext}(S(\mathfrak{A})) \subseteq \text{ext}(Q(A))$. So $\text{ext}(Q(\mathfrak{A})) = \{0\} \cup \text{ext}(S(\mathfrak{A}))$.

By Krein-Milman we have $\overline{\operatorname{Conv}(\{0\} \cup \operatorname{ext}(S(\mathfrak{A})))}^{w^*} = Q(\mathfrak{A}) \supseteq S(\mathfrak{A})$. So if $f \in S(\mathfrak{A})$ there is $(f_{\lambda})_{\lambda}$ in $\operatorname{Conv}(\{0\} \cup \operatorname{ext}(S(\mathfrak{A})))$ such that $f_{\lambda} \xrightarrow{w^*} f$. Write $f_{\lambda} = (1 - t_{\lambda}) \cdot 0 + t_{\lambda}g_{\lambda}$ with $g \in \operatorname{Conv}(\operatorname{ext}(S(\mathfrak{A}))) \subseteq S(\mathfrak{A})$ and $0 \leq t_{\lambda} \leq 1$; then $||f_{\lambda}|| = t_{\lambda}$. But $\{f \in Q(\mathfrak{A}) : ||f|| \leq r\}$ is weak*-compact; so $\lim_{\lambda} t_{\lambda} = 1$, and $g_{\lambda} \xrightarrow{w^*} f$. So $f \in \operatorname{Conv}(\operatorname{ext}(S(\mathfrak{A})))$.

Lemma 8.23. If f is a state with GNS representation $\langle \pi_f, \xi_f, \mathcal{H}_f \rangle$ then $\{g : 0 \leq g \leq f\} \leftrightarrow \{H \in \pi_f(\mathfrak{A})' : 0 \leq H \leq I\}$ with $g(a) = \langle \pi_f(a)\xi_f | H\xi_f \rangle \leftrightarrow H$

Proof. If $H \in \pi_f(\mathfrak{A})'$ with $0 \leq H \leq I$ then

$$g(a) = \langle \pi_f(a)\xi_f | H\xi_f \rangle = \langle H^{\frac{1}{2}}\pi_f(a)\xi_f | H^{\frac{1}{2}}\xi_f \rangle = \langle \pi_f(a)H^{\frac{1}{2}}\xi_f | H^{\frac{1}{2}}\xi_f \rangle$$

so $g \ge 0$. Then

$$(f-g)(a) = \langle \pi_f(a)\xi_f | (I-H)\xi_f \rangle = \dots = \langle \pi_f(a)(I-H)^{\frac{1}{2}}\xi_f | (I-H)^{\frac{1}{2}}\xi_f \rangle \ge 0$$

for $a \ge 0$. So $0 \le f \le g$.

Conversely if $0 \le g \le f$ we define a sesquilinear form on \mathfrak{A}/N (where $N = \{a \in \mathfrak{A} : f(a^*a) = 0\}$) by $[\dot{a}|\dot{b}]_g = g(b^*a)$. This is positive as $g \ge 0$, and well defined as if $a \in N$ then $0 \le g(a^*a) \le f(a^*a) = 0$ and the same proof from before applies. Also $[\dot{a}|\dot{a}]_g = g(a^*a) \le f(a^*a) = ||\dot{a}||_{\mathcal{H}_f}^2$, so our form is of norm ≤ 1 . Thus there is $H \in \mathcal{B}(\mathcal{H})$ such that $[\dot{a}|\dot{b}] = \langle H\dot{a}\rangle\dot{b}_{\mathcal{H}_f}$; since our form is positive and norm ≤ 1 , we get $H \ge 0$ and $||H|| \le 1$. So $0 \le H \le I$. Now for $a \in \mathfrak{A}$ we have

$$\langle (H\pi(a) - \pi(a)H)\dot{c}|b\rangle = \langle H\pi(a)\dot{c}|b\rangle - \langle H\dot{c}|\pi(a^*)b\rangle = g(b^*\pi(a)c) - g(b^*\pi(a)c) = 0$$

So $H \in \pi(\mathfrak{A})'$.

Theorem 8.24. If $f \in S(\mathfrak{A})$ then π_f is irreducible if and only if f is pure.

Proof. Note that

$$\pi_f \text{ irreducible } \iff \pi_f(\mathfrak{A})' = \mathbb{C}I$$
$$\iff \{g: 0 \le g \le f\} = \{tf: 0 \le t \le 1\}$$
$$\iff f \text{ is pure}$$

as desired.

Lemma 8.25. If $a = a^* \in \mathfrak{A}$ then there is a pure state f such that |f(a)| = ||a||.

Proof. Since $a = a^*$ we get $C_0^*(a) \cong \mathcal{C}_0(\sigma(a) \setminus \{0\})$. **TODO 50.** $C^*(a)$? $\hfill\square$ Theorem 8.24

 \Box Lemma 8.23

The "evaluation at $\lambda = ||a||$ or $\lambda = -||a||$ " functional is a state on $C_0^*(a)$ that norms a; i.e. $f_0 \in S(C_0^*(a))$ and $f_0(a) = \pm ||a||$. By Hahn-Banahch this extends to $f \in \mathfrak{A}^*$ of norm 1. If $(e_\lambda)_\lambda$ is an approximate identity for $C_0^*(a)k$ then $f_0(e_\lambda) \to 1$; so $f(e_\lambda) \to 1$, and f is a state. If $(d_\mu)_\mu$ is an approximate identity for \mathfrak{A} then for all r < 1 there is λ such that $f(e_\lambda) > r$; so there is $d_\mu > e_\lambda$ such that $f(d_\mu) > r$.

for all r < 1 there is λ such that $f(e_{\lambda}) > r$; so there is $d_{\mu} > e_{\lambda}$ such that $f(d_{\mu}) > r$. Let $\mathcal{F} = \{ f \in S(\mathfrak{A}) : f(a) = ||a|| \}$ or $\mathcal{F} = \{ f \in S(\mathfrak{A}) : f(a) = -||a|| \}$. Then \mathcal{F} is non-empty, weak*-closed, and convex.

Claim 8.26. \mathcal{F} is a face of Q(A).

Proof. Suppose $f \in \mathcal{F}$ with $f = \frac{1}{2}(g+h)$ for $g, h \in Q(\mathfrak{A})$. Then

$$\pm a = f(a) = \frac{g(a) + h(a)}{2} \le \frac{\|a\| + \|a\|}{2}$$

TODO 51. Last inequality may need slight modification

So $g(a) = h(a) = \pm ||a||$; thus $g, h \in \mathcal{F}$.

 \Box Claim 8.26

By Krein-Milman we get that \mathcal{F} has an extreme point f_0 . But a face of a face is a face; so $f_0 \in \text{ext}(Q(\mathfrak{A}))$ and $f_0 \neq 0$. So $f_0 \in \text{ext}(S(\mathfrak{A}))$.

Theorem 8.27 (GNS). If \mathfrak{A} is a C*-algebra then

$$\pi = \bigoplus_{f \ pure} \pi_f$$

is a faithful *-representation. If \mathfrak{A} is separable then a countable collection of pure states is sufficient.

Proof. By lemma if $a = a^*$ there is a pure state f with |f(a)| = ||a||. $(f(a) = \langle \pi_f(a)\xi_f|\xi_f\rangle$.) So $||\pi_f(a)|| = ||a||$, and $||\pi(a)|| = ||a||$.

For a arbitrary we have

$$\|\pi(a)\|^{2} = \|\pi(a^{*}a)\| = \|a^{*}a\| = \|a\|^{2}$$

so π is isometric.

If \mathfrak{A} is separable choose $\{a_n : n \in \mathbb{N}\}$ dense in $b_1(\mathfrak{A}_{sa})$. For each a_n choose f_n pure such that $||\pi_f(a_n)|| = ||a_n||$. Let

$$\sigma = \bigoplus_n \pi_{f_n}$$

Then $\|\sigma(a_n)\| = \|a_n\|$ for all n, so $\|\sigma(a)\| = \|a\|$ for all $a = a^*$ with $\|a\| \le 1$. So σ is isometric. \Box Theorem 8.27

Corollary 8.28. C*-algebras are semisimple.

Proof. We have

$$\operatorname{rad}(\mathfrak{A}) = \bigcap_{\pi \text{ irreducible}} \ker(\pi) \subseteq \bigcap_{f \text{ pure}} \ker(\pi_f) = \{0\}$$

 \Box Corollary 8.28

as desired.

8.2 Representations and ideals

Proposition 8.29. Suppose \mathfrak{A} is a C*-algebra and $J \triangleleft$ is an ideal. If π is a non-degenerate *-representation of J on \mathcal{H} then there is a unique $\tilde{\pi} = \operatorname{ind}(\pi) \colon \mathfrak{A} \to \mathcal{B}(\mathcal{H})$ such that $\tilde{\pi} \models \pi$. Moreover if π is irreducible then so is $\tilde{\pi}$.

Proof. We have $\mathcal{H} = \overline{\pi(J)\mathcal{H}}$. Define $\tilde{\pi}(a)\pi(j)x = \pi(aj)x$. (This is forced, and thus unique.) Is this welldefined? Suppose $\pi(j_1)x_1 = \pi(j_2)x_2$. Let $(e_\lambda)_\lambda$ be an approximate identity for J; we need to show that $\pi(aj_1)x_1 = \pi(aj_2)x_2$ for all $a \in \mathfrak{A}$. But

$$\pi(aj_1)x_1 = \lim_{\lambda} \pi(ae_{\lambda}j_1)x_1 = \lim_{\lambda} \pi(ae_{\lambda})\pi(j_1)x_1 = \lim_{\lambda} \pi(ae_{\lambda})\pi(j_2)x_2 = \lim_{\lambda} \pi(ae_{\lambda}j_2)x_2 = \pi(aj_2)x_2$$

Also $\tilde{\pi}$ is linear and multiplicative. Also

$$\langle \tilde{\pi}(a^*)\pi(j_1x_1)|\pi(j_2x_2) \rangle = \langle \pi(j_2^*)\pi(a^*j_1)x_1|x_2 \rangle = \langle \pi(j_2^*a^*j_1)x_1|x_2 \rangle = \langle \pi(j_2^*a^*)\pi(j_1)x_1|x_2 \rangle = \langle \pi(j_1)x_1|\pi(aj_2)x_2 \rangle = \langle \pi(j_1)x_1|\tilde{\pi}(a)\pi(j_2)x_2 \rangle = \langle \tilde{\pi}(a)^*\pi(j_1)x_1|\pi(j_2)x_2 \rangle$$

(on a dense subset at least). Finally, we have

$$\begin{aligned} \|\widetilde{\pi}(a)\| &= \sup_{\|\pi(j)x\| \le 1} \|\pi(aj)x\| \\ &= \sup_{\lambda} \sup_{\lambda} \|\pi(ae_{\lambda}j)x\| \\ &= \sup_{\lambda} \sup_{\lambda} \|\pi(ae_{\lambda})\pi(j)x\| \\ &\leq \sup_{\lambda} \sup_{\lambda} \|ae_{\lambda}\| 1 \\ &\leq \|a\| \end{aligned}$$

so $\tilde{\pi}(a)$ is bounded. So $\tilde{\pi}$ is bounded as well, and extends to a *-representation on all of \mathcal{H} . \Box Proposition 8.29

Proposition 8.30. Suppose $\pi: \mathfrak{A} \to \mathcal{B}(\mathcal{H})$ is a *-representation and $J \triangleleft \mathfrak{A}$. Let $M = \overline{\pi(J)\mathcal{H}}$. Then M is a subrepresentation, so $\pi \cong \pi_1 \oplus \pi_2$ for $\pi_1: \mathfrak{A} \to \mathcal{B}(M)$ and $\pi_2: \mathfrak{A} \to \mathcal{B}(M^{\perp})$. Then $\pi_1 = \operatorname{ind}(\pi \upharpoonright J)$ and $\pi_2 \upharpoonright J = 0$ (so π_2 factors through \mathfrak{A}/J).

Proof. It is clear that M is invariant, hence reducing by taking adjoints we can write $\pi = \pi_1 \oplus \pi_2$. Then $\pi_1 \upharpoonright J : J \to \mathcal{B}(M)$ is non-degenerate; so $\pi_1 = \operatorname{ind}(\pi_1 \upharpoonright J)$ by lemma. Also $\pi(J) \upharpoonright M^{\perp} = 0$, so $\ker(\pi_2) \supseteq J$; thus π_2 factors through \mathfrak{A}/J . \Box Proposition 8.30

Example 8.31. Let $\mathfrak{A} = \mathcal{B}(\mathcal{H})$ for \mathcal{H} separable. Let $\mathcal{K} = \mathcal{K}(\mathcal{H})$; this is the only proper ideal of \mathfrak{A} .

Indeed, if $\mathcal{J} \triangleleft \mathcal{B}(\mathcal{H})$ with $0 \neq J \in \mathcal{J}$ then there is x, y such that $Jx = y \neq 0$; then given u, v there are rank one R, S such that R(u) = x and S(y) = v. Then SJR is rank one and sends $u \mapsto v$, and SJR lies in \mathcal{J} ; so $\mathcal{K} \subseteq \mathcal{J}$. If $J \in \mathcal{J} \setminus \mathcal{K}$ then $T = J^*J \in \mathcal{J}$ is not compact; without loss of generality assume $\sigma(T) \subseteq [0, 1]$. If $K = K^* \geq 0$ compact, then $\sigma(K) = \{0, \lambda 1, \lambda_2, ...\}$ with the $\lambda_n \to 0$; the eigenspaces $E_K(\lambda_n)$ are finite dimensional. Conversely if there is $\lambda \in \sigma(T)$ with dim $(E - \{\lambda\}) = \infty$ (= P an infinite rank projection, $C^*(T) \subseteq \mathcal{J}$) then there is an isometry S such that $S\mathcal{H} = P\mathcal{H}$, and $X \in \mathcal{B}(\mathcal{H})$ such that $SXS^* = P(SXS^*)P \in \mathcal{J}$. So $X = S^*(SXS^*)S \in \mathcal{J}$. Then $\sigma(T) \cap [r, 1]$ is uncountable. There is a projection

$$P = \sup_{0 \le f \le \chi_{[r,1]}} f(T) \in W^*(T)$$

with $PT \ge rP$ of infinite rank. So there is $Y \in \mathcal{B}(\mathcal{H})$ with YT = P, etc.

Assume $\pi: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ and $\pi_1 = \operatorname{ind}(\pi \upharpoonright K)$ and $\pi_2: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})/\mathcal{K} \to \mathcal{B}(\mathcal{K}_2)$. Then $\mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K}_1)$, with $\mathcal{K}_1 = \overline{\pi(\mathcal{K})\mathcal{K}}$. \mathcal{K} has only 1 irreducible representation up to unitary equivalence, namely id. Then

$$\pi = \mathrm{id}(\alpha) \oplus \pi_2$$

where the former is weak*-continuous and the latter is not.

9 Spectral theory for normal operators

Recall that if N is normal (i.e. $N^*N = NN^*$) then $C^*(N) \cong \mathcal{C}(\sigma(N))$ is abelian. More generally if the N_{α} are commuting normal operators, then by Fuglede's theorem $C^*(\{N_{\alpha}\}_{\alpha})$ is abelian, so is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X; if it is separable, then X is compact and metrizable.

Example 9.1. If μ is a Borel probability measure on X, there is a *-representation $\pi_{\mu} : \mathcal{C}(X) \to \mathcal{B}(L^{2}(\mu))$ given by $\pi_{\mu}(f)h = fh$. Then

$$\langle \pi_{\mu}(\overline{f})h,k\rangle = \langle \overline{f}h,k\rangle = \int (\overline{f}h)\overline{k}\mathrm{d}\mu = \int h(\overline{fk})\mathrm{d}\mu = \langle h,fk\rangle = \langle h,\pi_{\mu}(f)k\rangle = \langle \pi_{\mu}(f)^*h,k\rangle$$

So $\pi_{\mu}(\overline{f}) = \pi_{\mu}(f)^*$, and π_{μ} is a *-homomorphism. Also

$$\|\pi_{\mu}(f)\| = \underbrace{\operatorname{ess.\,sup}|f(x)|}_{\text{w.r.t. }\mu} \le \|f\|_{\infty}$$

and 1 is a cyclic vector: $\overline{\pi_{\mu}(\mathcal{C}(X))1} = \overline{\mathcal{C}(X)}^{L^{2}(\mu)} = L^{2}(\mu).$

Theorem 9.2. Suppose $\pi: \mathcal{C}(X) \to \mathcal{B}(\mathcal{H})$ is a representation with cyclic vector x with ||x|| = 1. Then there is a regular Borel probability measure μ on X such that π is unitarily equivalent to π_{μ} (i.e. there is unitary $U: L^2(\mu) \to \mathcal{H}$ such that $\pi(f) = U\pi_{\mu}(f)U^*$).

Proof. Define a state in $\mathcal{C}(X)$ by $\varphi(f) = \langle \pi(f)x, x \rangle$. (It is positive and linear, and $\|\varphi\| = \varphi(1) = \|x\|^2 = 1$.) By Riesz representation theorem there is a positive regular Borel measure μ on X such that $\varphi(f) = \int f d\mu$. Then $\|\mu\| = \int 1 d\mu = \varphi(1) = 1$; so μ is a probability measure.

Define $U: \mathcal{C}(X) \to \mathcal{H}$ by $Uf = \pi(f)x$. Then

$$||Uf||^{2} = \langle \pi(f)x, \pi(f)x \rangle = \langle \pi(|f|^{2})x, x \rangle = \varphi(|f|^{2}) = \int |f|^{2} \mathrm{d}\mu = ||f||^{2}_{L^{2}(\mu)}$$

Since $\mathcal{C}(X)$ is dense in $L^2(\mu)$ and U is isometric on $(\mathcal{C}(X), \|\cdot\|_{L^2(\mu)})$ we get that U extends by continuity to $U: L^2(\mu) \to \mathcal{H}$ which is isometric. But $\operatorname{Ran}(U)$ is closed, and thus contains $\overline{\pi(\mathcal{C}(X))x} = \mathcal{H}$; so U is unitary.

If $f, g \in \mathcal{C}(X)$ then

$$U\pi_{\mu}(f)g = Ufg = \rho(fg)x = \rho(f)\rho(g)x = \rho(f)Ug$$

TODO 52. ρ ? Mean π ?

This holds for $g \in \mathcal{C}(X)$, and $\mathcal{C}(X)$ is dense in $L^2(\mu)$; so by continuity we get $U\pi_{\mu}(f) = \rho(f)U$, and so $\rho(f) = U\pi_{\mu}(f)U^*$.

Lemma 9.3. Suppose \mathfrak{A} is a C*-algebra and $\pi: \mathfrak{A} \to \mathcal{B}(\mathcal{H})$ a non-degenerate *-representation. Then there is a decomposition $\mathcal{H} = \bigoplus_{\alpha} H_{\alpha}$ where each \mathcal{H}_{α} is a reducing subspace for $\pi(\mathfrak{A} \text{ and } \pi(\mathfrak{A}) \upharpoonright \mathcal{H}_{\alpha}$ has a cyclic vector x_{α} .

TODO 53. Reducing subspace?

Proof. If $0 \neq x$ then $\mathcal{H}_x = \overline{\pi(\mathfrak{A})x} = \overline{\pi(\mathfrak{A})''x}$

TODO 54. Single '? Double?

is a reducing subspace, and contains Ix = x. If $0 \neq y \perp \mathcal{H}_x$ then $\mathcal{H}_y \perp \mathcal{H}_x$: indeed, if $a, b \in \mathfrak{A}$ then $\langle \pi(a)y, \pi(b)x \rangle = \langle y, \pi(a^*b)x \rangle = 0$.

So by Zorn's lemma there is a maximal collection of vectors $\{x_{\alpha}\}_{\alpha}$ in \mathcal{H} such that $\mathcal{H}_{x_{\alpha}} \perp \mathcal{H}_{x_{\beta}}$ for all $\alpha \neq \beta$. Let $M = (\sum \mathcal{H}_{\alpha})^{\perp}$. Suppose M were not $\{0\}$; then there is $0 \neq y \in M$, so that $y \perp \mathcal{H}_{x_{\alpha}}$ for all α . So $\mathcal{H}_{y} \perp \mathcal{H}_{x_{\alpha}}$ for all α ; so $\mathcal{H}_{y} \subseteq M$. So $\{x_{\alpha}\}_{\alpha} \cup \{y\}$ is a larger family, contradicting maximality. So M = 0, and $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{x_{\alpha}}$. **Theorem 9.4** (Spectral theorem v1). If N is a normal operator on a separable Hilbert space then N is unitarily equivalent to a multiplication operator.

Proof. $C^*(N) \cong \mathcal{C}(X)$ (in fact $X = \sigma(N)$) via $f \in \mathcal{C}(X) \mapsto f(N)$ by the continuous functional calculus; this is a *-representation. By lemma we get

$$\mathcal{H} = \bigoplus_{1 \le i < \alpha} \mathcal{H}_i$$

(where $\alpha \in \mathbb{N} \cup \{\omega\}$) such that $\pi_i(f) = f(N) \upharpoonright \mathcal{H}_i$ is a cyclic representation. Then there are probability measures μ_i on $\sigma(N)$ such that $\pi_i(f) \cong M_f^{\mu_i}$ on $L^2(\mu_i)$. In particular $\pi(\mathrm{id}) = N$. So $N \cong \bigoplus_i \pi_i(\mathrm{id}) \cong \bigoplus M_z^{\mu_i}$ on $\bigoplus_i L^2(\mu_i)$.

Let $Y = \sigma(N) \times \mathbb{N}$. Suppose $\mu \in M(Y)$ with $\mu \upharpoonright \sigma(N) \times \{i\} = 2^{-i}\mu_i$; then μ is a probability measure. Then

$$L^{2}(\mu) = \bigoplus L^{2}(\sigma(N) \times \{i\}, \mu) = \bigoplus L^{2}(2^{-i}\mu_{i} \cong \bigoplus L^{2}(\mu_{i})$$

Let h(x,i) = x; then $M_h \cong \bigoplus M_{id}^{2^{-i}\mu_i} \cong \bigoplus M_{id}^{\mu_i} \cong N$. (If $U_i \colon L^2(\mu_i) \to L^2(2^{-i}\mu_i)$ is $U_i h = 2^{\frac{i}{2}}h$ then

$$||U_ih||_2^2 = \int 2^i |h|^2 d(2^{-i}\mu_i) = ||h||_{L^2(\mu)}$$

and $U_i M_f h = U_i f h = 2^{\frac{i}{2}} f h = M_f 2^{\frac{i}{2}} h = M_f U_i h.$

Example 9.5. Suppose N is normal and compact. Then $\sigma(N)$ is finite or an infinite sequence converging to $0 \in \sigma(N)$. If N is cyclic then $N \cong M_z$ on $L^2(\sigma(N)) = \ell^2(\sigma(N))$. If $\mu \in M(\sigma(N))$ then since $\sigma(N)$ is countable we can write

$$\mu = \sum \varepsilon_i \delta_{\lambda_i}$$

where λ_i range over $\sigma(N)$. So

$$N \cong \bigoplus \lambda_i$$

acting on $L^2(\mu) \cong \ell^2$. So N is diagonalizable. In general if N is a direct sum of diagonalis it is diagonalizable. If $\sigma(N) = \{\lambda_n : n \ge 1\} \cup \{0\}$ then there are $d_n = \dim(\ker(N - \lambda_n I)) < \infty$ so that

$$N \cong \operatorname{diag}(\underbrace{\lambda_1, \lambda_1, \dots, \lambda_1}_{d_1}, \underbrace{\lambda_2, \lambda_2, \dots, \lambda_2}_{d_2}, \dots$$

Definition 9.6. If \mathfrak{A} is a C*-subalgebra of $\mathcal{B}(\mathcal{H})$, we say $x \in \mathcal{H}$ is a separating vector if whenever $A \in \mathfrak{A}$ has Ax = 0 then A = 0.

Remark 9.7. If x is a cyclic vector for \mathfrak{A} then it is a separating vector for \mathfrak{A}' .

Proof. Suppose $B \in \mathfrak{A}'$ and Bx = 0. Then for all $A \in \mathfrak{A}$ we have B(Ax) = A(Bx) = 0. So $B \upharpoonright \underbrace{\mathfrak{A}x}_{=\mathcal{H}} = 0$, and thus B = 0.

Definition 9.8. We say $\pi: \mathfrak{A} \to \mathcal{B}(\mathcal{H})$ is *multiplicity-free* if $\pi(\mathfrak{A})'$ is abelian.

The idea is that if $\pi \cong \pi_0 \oplus \rho \oplus \rho$ then it has multiplicity; then the operators

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & a_{11}I & a_{12}I \\ 0 & a_{21}I & a_{22}I \end{pmatrix}$$

lie in $\pi(\mathfrak{A})'$.

Definition 9.9. A masa (maximal abelian self-adjoint subalgebra) is an abelian C*-subalgebra of $\mathcal{B}(\mathcal{H})$ not contained in any larger abelian C*-algebra.

 \Box Theorem 9.4
Remark 9.10. If \mathfrak{A} is a masa then $\mathfrak{A} \subseteq \mathfrak{A}'$ and $\mathfrak{A} \subseteq \mathfrak{A}'' = \overline{\mathfrak{A}}^{WOT}$, and $\overline{\mathfrak{A}}^{WOT}$ is still abelian. So \mathfrak{A} is WOT-closed (and thus a von Neumann algebra).

If $\mathfrak{A}'' \subsetneq \mathfrak{A}'$, pick $B \in \mathfrak{A}' \setminus \mathfrak{A}''$; then B commutes with \mathfrak{A}'' , so $C^*(B, \mathfrak{A}'')$ is abelian. So $C * (B, \mathfrak{A}'')''$ is abelian, and contains \mathfrak{A}'' , a contradiction. So $\mathfrak{A}' = \mathfrak{A}'' = \mathfrak{A}$.

Lemma 9.11. Suppose \mathfrak{A} is an abelian subalgebra of $\mathcal{B}(\mathcal{H})$ and \mathcal{H} is separable. Then \mathfrak{A}' has a cyclic vector, so \mathfrak{A}'' has a separating vector.

Proof. Decompose $\mathcal{H} = \bigoplus \mathcal{H}_i$ where $\mathfrak{A}' \upharpoonright \mathcal{H}_i$ has a cyclic vector x_i . Let $x = \sum_{i=1}^{\infty} 2^{-i} x_i$. Then \mathcal{H}_i reduces \mathfrak{A}' , so $P_{\mathcal{H}_i} \in \mathfrak{A}''$. But $\mathfrak{A}'' = \overline{\mathfrak{A}}^{WOT} \subseteq \mathfrak{A}'$ (where this last is because \mathfrak{A} is abelian). So $P_{\mathcal{H}_i} \in \mathfrak{A}'$.

Then x is cyclic. Indeed, $x_i = \overline{2^i} P_{\mathcal{H}_i} x \in \mathfrak{A}'$, so $\mathcal{H}_i = \overline{\mathfrak{A}' x_i} \subseteq \overline{\mathfrak{A}' x}$; so $\mathcal{H} = \overline{\mathfrak{A}' x}$. Thus x is separating for \mathfrak{A}'' .

Theorem 9.12. Suppose $\rho: \mathcal{C}(X) \to \mathcal{B}(\mathcal{H})$ is a *-representation where \mathcal{H} is separable. Then the following are equivalent:

- 1. $\rho(\mathcal{C}(X))$ has a cyclic vector.
- 2. ρ is multiplicity free.
- 3. $\rho(\mathcal{C}(X))''$ is a masa.
- 4. $\rho(\mathcal{C}(X))''$ is unitarily equivalent to $L^{\infty}(\mu)$ acting on $L^{2}(\mu)$ by multiplication for some probability measure μ on X.

Proof.

 $\underbrace{(1) \Longrightarrow (2 \text{ and } 4)}_{\mu \text{ on } X \text{ such that } \rho \cong \pi_{\mu}. \text{ Suppose } T \in \pi_{\mu}(\mathcal{C}(X))'; \text{ let } h = T1 \in L^{2}(\mu). \text{ For } g \in \mathcal{C}(X) \text{ we have } Tg = TM_{g}1 = M_{g}T1 = gh. \text{ So } \|gh\|_{2} = \|Tg\|_{2} \leq \|T\|\|g\|_{2}. \text{ Then } \|h\|_{L^{2}(\mu)} \leq \|T\|; \text{ indeed, otherwise there is } r \geq \|T\| \text{ such that } A = \{x : |h(x)| \geq r\} \text{ has } \mu(A) > 0. \text{ But } \mathcal{C}(X) \text{ is dense in } L^{2}(\mu); \text{ so there is } g_{n} \in \mathcal{C}(X) \text{ such that } \|g_{n}\|_{2} \leq \sqrt{\mu(A)} \text{ and } g_{n} \to \chi_{A} \text{ in } L^{2}(\mu). \text{ So } \|T\|\|\chi_{A}\| < r\|\chi_{A}\| < \|\chi_{A}h\| = \lim\|g_{n}h\| \leq \|T\| \sup\|g_{n}\|_{2} = \|T\|\|\chi_{A}\|, \text{ a contradiction. So by continuity } T = M_{h} \text{ and } h \in L^{\infty}(\mu). \text{ So } \mathfrak{A}' = \{M_{h} : h \in L^{\infty}(\mu)\} \supseteq \mathfrak{A}, \text{ and we have shown } (2).$

But also $\mathfrak{A}'' = \overline{\mathfrak{A}}^{WOT} \subseteq \mathfrak{A}'$, and \mathfrak{A}' is abelian, so $\mathfrak{A}' \subseteq \mathfrak{A}''$. Thus $\mathfrak{A}'' = \mathfrak{A}' = \{ M_h : h \in L^{\infty}(\mu) \}$, and we have shown (4).

- (2) \Longrightarrow (3) \mathfrak{A}' abelian, so the same argument shows that $\mathfrak{A}' = \mathfrak{A}''$; so \mathfrak{A}'' is a masa.
- (4) \Longrightarrow (1) 1 is a cyclic vector for $\pi_{\mu}(\mathcal{C}(X))$.
- $(3) \Longrightarrow (1) \rho(\mathcal{C}(X)) \text{ is abelian, so lemma says } \rho(\mathcal{C}(X))' = \mathfrak{A}' \text{ has a cyclic vector. But } \mathfrak{A}'' = \mathfrak{A}'; \text{ so } \mathfrak{A}'' \text{ has a cyclic vector } x. \text{ Then}$

$$\overline{\rho(\mathcal{C}(X))x} = \overline{\rho(\mathcal{C}(X))}^{\text{WOT}}x = \overline{\mathfrak{A}''x} = \mathcal{H}$$

so x is a cyclic vector for $\rho(\mathcal{C}(X))$.

Lemma 9.13. We have $L^{\infty}(\mu)$ acting on $L^{2}(\mu)$ by multiplication (where μ is a regular Borel probability measure). The weak* topology on $L^{\infty}(\mu) = L^{1}(\mu)^{*}$ coincides with the WOT and the ultraweak topology on $\mathcal{M}(L^{\infty}(\mu)) = \{M_{h} : h \in L^{\infty}(\mu)\}.$

Proof. All these topologies are the weakest topologies making certain linear functionals continuous. The weak* topology on $L^{\infty}(\mu)$ corresponds to the maps

$$h \mapsto \int h f \mathrm{d}\mu$$

for $f \in L^1(\mu)$; the WOT on $\mathcal{M}(L^{\infty}(\mu))$ corresponds to the maps

$$h \mapsto \langle M_h x, y \rangle$$

for $x, y \in \mathcal{H}$;

 \Box Theorem 9.12

TODO 55. $L^2(\mu)$?

the ultraweak topology on $\mathcal{M}(L^{\infty}(\mu))$ corresponds to the maps

$$h \mapsto \sum_{i} \langle M_h x_i, y_i \rangle$$

where

$$\sum_{i} \|x_i\| \|y_i\| < \infty$$

If $f \in L^1(\mu)$ and $x = |f|^{\frac{1}{2}} \operatorname{sgn}(f), y = |f|^{\frac{1}{2}} \in L^2(\mu)$ then

$$\langle M_h x, y \rangle = \int h x \overline{y} d\mu = \int h f d\mu$$

So WOT-continuous implies ultraweak continuous.

Consider

$$h \mapsto \langle M_h x, y \rangle = \int h x \overline{y} \mathrm{d}\mu$$

Consider $f = x\overline{y} \in L^1(\mu)$. Then $\|x\overline{y}\|_1 \leq \|x\|_2 \|y\|_2$. Consider the ultraweak continuous functional

$$h \mapsto \sum_{i=1}^{\infty} \langle M_h x_i, y_i \rangle = \sum_{i=1}^{\infty} \int h f_i d\mu = \int h \sum_i f_i d\mu$$

where $f_i = x_i \overline{y_i}$, so $||f_i||_1 \le ||x_i||_2 ||y_i||_2$ and $\sum_i f_i \in L^1$.

TODO 56. some words

\Box Lemma 9.13

Lemma 9.14. Suppose μ, ν are regular Borel probability measures on X a compact metric space. Then there is a *-isomorphism $\sigma: L^{\infty}(\mu) \to L^{\infty}(\nu)$ such that $\sigma \upharpoonright C(X)$ is the "identity" if and only if μ and ν are mutually absolutely continuous. Moreover the *-isomorphism is weak*-continuous.

Proof.

(\Leftarrow) By the Radon-Nikodym theorem $\nu = k\mu$ for some $k \in L^1$ (with k > 0 almost everywhere. So define $U: L^2(\mu) \to L^2(\nu)$ by $Uf = k^{-\frac{1}{2}}f$. Then

$$||Uf||_{L^{2}(\nu)}^{2} = \int |k^{-\frac{1}{2}}f|^{2} \mathrm{d}\nu = \int k^{-1}|f|^{2}k\mathrm{d}\mu = ||f||_{L^{2}(\mu)}^{2}$$

So U is isometric and surjective. If $h, f \in L^{\infty}(\mu) = L^{\infty}(\nu)$ then

 $UM_{h}^{\mu}f = Uhf = k^{-\frac{1}{2}}hf = M_{h}^{\nu}(k^{-\frac{1}{2}}f) = M_{h}^{\nu}Uf$

So $M_h^{\nu} = U M_h^{\mu} U^*$. This is a *-isomorphism between $L^{\infty}(\mu)$ and $L^{\infty}(\nu)$ which is WOT-continuous, and thus weak*-continuous.

 (\Longrightarrow) Suppose $\sigma: L^{\infty}(\mu) \to L^{\infty}(\nu)$ is a *-isomorphism such that if $f \in \mathcal{C}(X)$ then $\sigma(f) = f$. We view σ as a map $\mathcal{M}(L^{\infty}(\mu)) \to \mathcal{M}(L^{\infty}(\nu))$.

Claim 9.15. σ is normal: if $(f_{\alpha})_{\alpha}$ is a bounded increasing net in $L^{\infty}(\mu)$ with $\sup_{\alpha} f_{\alpha} = f \in L^{\infty}$ then $\sigma(f) = \sup_{\alpha} \sigma(f_{\alpha})$.

Proof. Note that $f \ge 0$ implies $\sigma(f) \ge 0$ because it is a *-homomorphism. So $(\sigma(f_{\alpha}))_{\alpha}$ is an increasing net, and is bounded. Let $g = \sup_{\alpha} \sigma(f_{\alpha})$; let $h = \sigma^{-1}(g)$. We know that

$$\sigma(f_{\alpha}) \le g = \sup_{\alpha} \sigma(f_{\alpha}) \le \sigma(f)$$

where the last inequality is because $f \ge f_{\alpha}$ implies $\sigma(f) \ge \sigma(f_{\alpha})$. So $f_{\alpha} \le h \le f$. So $f = \sup_{\alpha} f_{\alpha} \le h \le f$, and h = f. So $g = \sigma(f) = \sup_{\alpha} \sigma(f_{\alpha})$. \Box Claim 9.15

Suppose $\mathcal{O} \subseteq X$ is open. For $n \ge 1$ let

$$f_n(x) = \begin{cases} 1 & \text{if } x \in \mathcal{O} \text{ and } \operatorname{dist}(x\mathcal{O}^c) \ge \frac{1}{n} \\ n \operatorname{dist}(x, \mathcal{O}^c) \text{if } \operatorname{dist}(x, \mathcal{O}^c) \le \frac{1}{n} \end{cases}$$

Then $f_n \leq f_{n+1}$ with $\sup_n f_n = \chi_{\mathcal{O}}$. So

$$\sigma(\chi_{\mathcal{O}}) = \sup \sigma(f_n) = \sup f_n = \chi_{\mathcal{O}}$$

Now let $\Sigma = \{ E \subseteq X : E \text{ measurable}, \sigma(\chi_E) = \chi_E \}.$

Claim 9.16. Σ is a σ -algebra.

Proof. For closure under complements, we have

$$\sigma(\chi_{E^c}) = \sigma(1 - \chi_E) = 1 - \chi_E = \chi_{E^c}$$

for $E, F \in \Sigma$. For closure under intersection, we have

$$\sigma(\chi_{E\cap F}) = \sigma(\chi_E\chi_F) = \sigma(\chi_E)\sigma(\chi_F) = \chi_E\chi_F = \chi_{E\cap F}$$

for $E, F \in \Sigma$. If $(E_i : i \geq 1)$ are pairwise disjoint and

$$E = \bigcup_{i \in \mathbb{N}} E_i$$

then

$$\sigma(\chi_E) = \sigma(\sup_{n \ge 1} \chi_{E_1} \cup \dots \cup \chi_{E_n}) = \sup_{n \ge 1} \sigma(\chi_{E_1 \cup \dots \cup E_n}) = \sup_{n \ge 1} \sigma(\chi_{E_1} + \dots + \chi_{E_n}) = \sup_{n \ge 1} \chi_{E_1 \cup \dots \cup E_n} = \chi_E$$

So Σ is a $\sigma\text{-algebra}.$

But Σ contains all open sets and all sets of measure 0 (since $\sigma(0) = 0$). So Σ is all measurable sets. So σ is the *identity* on all simple functions, which are norm-dense. So σ is the "identity". \Box Lemma 9.14

Theorem 9.17. Suppose $\sigma : \mathcal{C}(X) \to \mathcal{B}(\mathcal{H})$ is a non-degenerate representation with \mathcal{H} separable. Let $\mathcal{M} = \sigma(\mathcal{C}(X))''$. Then there is a regular Borel probability measure μ on X such that $L^{\infty}(\mu) \cong \mathcal{M}$ via a *-isomorphism $\tilde{\sigma}$ which extends σ and is a weak*-WOT homeomorphism.

Proof. \mathcal{M} is an abelian von Neumann algebra; so since \mathcal{M}' has a cyclic vector we get that \mathcal{M} has a separating vector x. Let $\mathcal{K} = \overline{\mathcal{M}x}$. The restriction map $\rho \colon \mathcal{M} \to \mathcal{B}(\mathcal{K})$ (with $\rho(T) = T \upharpoonright \mathcal{K}$) is a WOT-continuous *-isomorphism. Since x is a separating vector we get that ρ is injective, and thus isometric.

Claim 9.18. $\rho(\mathcal{M})$ is WOT-closed.

Proof. Suppose $A \in b_1(\overline{\rho(\mathcal{M})}^{WOT})$. Then by Kaplansky's density theorem there are $A_\alpha = \rho(T_\alpha)$ such that $T_\alpha \in \mathcal{M}$ with $||T_\alpha|| \leq 1$ and $\rho(T_\alpha) \xrightarrow{WOT} A$. Drop to a subnet so $T_{\alpha_\beta} \xrightarrow{WOT} T$ (possibly since $(b_1(\mathcal{B}(\mathcal{H}), WOT))$ is compact by Banach-Alaoglu). Then ρ is WOT-WOT-continuous; so $\rho(T) = A \in \rho(\mathcal{M})$. \Box Claim 9.18

 $\rho(\mathcal{M})$ has x as a cyclic vector; so there is μ_1 a regular probability measure such that $\rho(\mathcal{M}) \cong L^{\infty}(\mu_1)$ acting on $L^2(\mu_1)$. Then $\sigma' \colon \mathcal{M} \to \mathcal{M} \upharpoonright \mathcal{K}^{\perp}$ can be written as a direct sum of cyclic representations. So

$$\mathcal{H} \cong \mathcal{K} \oplus \bigoplus_{n \ge 2} \mathcal{K}_n$$

such that each $\mathcal{M} \upharpoonright \mathcal{K}_n$ is cyclic. So there are probability measures μ_n such that $\mathcal{M} \upharpoonright \mathcal{K} \cong L^{\infty}(\mu_n)$ on $L^2(\mu_n)$. Let

$$\mu = \sum_{n \ge 1} 2^{-n} \mu_n$$

□ Claim 9.16

Then $\sigma: \mathcal{C}(X) \to \mathcal{B}(\bigoplus_n \mathcal{K}_n)$ by $\sigma(f) = \bigoplus_n \sigma_n \mapsto \bigoplus M_f^{\mu_n}$. So $\sigma_n(f) = M_f^{\mu_n}$ for all $f \in L^{\infty}(\mu_n)$. We get a map $\tilde{\sigma}: L^{\infty}(\mu) \xrightarrow{*\text{-isomorphism}} \mathcal{B}(\mathcal{H})$ given by

$$\widetilde{\sigma}(f) = \bigoplus_{n \geq 1} M_f^{\mu_r}$$

Thus $\mu_n \ll \mu_1$. So $\mu \cong \mu_1$.

TODO 57. Following claim somewhere above?

Claim 9.19. $\mu_n << \mu_1$.

Proof. Otherwise there is E measurable such that $\mu_n(E) > 0$ but $\mu(E) = 0$. Then $\chi_E \neq 0$ in $\mathcal{M} \upharpoonright \mathcal{K}_n$; so $\chi_E \in L^{\infty}(\mu)$ with $\tilde{\sigma}(\chi_E) \neq 0$ since $\sigma_n(\chi_E) \neq 0$ But σ_1 is injective, so $\sigma_1(\chi_E) \neq 0$, a contradiction. \Box Claim 9.19

So $\mathcal{M} = \widetilde{\sigma}(L^{\infty}(\mu)) \cong L^{\infty}(\mu)$ (which is also isomorphic to $L^{\infty}(\mu_1)$). \Box Theorem 9.17

Theorem 9.20 (L^{∞} functional calculus). Suppose N is a normal operator on a separable Hilbert space. Then there is a Borel probability measure μ on $\sigma(N)$ such that the continuous functional calculus $\sigma : C(\sigma(N)) \to \mathcal{B}(\mathcal{H})$ extends to a weak*-WOT continuous *-homomorphism $\tilde{\sigma} : L^{\infty}(\mu) \to \mathcal{B}(\mathcal{H})$. (One thinks of this as mapping $f \mapsto M_{h}$.)

Proof. $\sigma(\mathcal{C}(\sigma(N)))'' = \mathcal{M} \cong L^{\infty}(\mu)$ for some probability measure μ on $\sigma(N)$, and the map $\tilde{\sigma} \colon L^{\infty}(\mu) \to \mathcal{M}$ extends σ and is weak*-WOT-continuous. \Box Theorem 9.20

9.1 Spectral measures

Suppose N is normal on a separable Hilbert space \mathcal{H} . Then $\tilde{\sigma} \colon L^{\infty}(\mu) \xrightarrow{*\text{-isomorphism}} \{N\}''$. Let Σ be the set of measurable subsets of $\sigma(N)$ (or \mathbb{C}); let $E_N \colon \Sigma \to \mathcal{B}(\mathcal{H})$ be $E_N(A) = \chi_A(N) = \tilde{\sigma}(\chi_A)$. This is a projection valued measure.

(Countable additivity) Suppose the A_i are pairwise disjoint and measurable. Then

$$\widetilde{\sigma}(\chi_{\bigcup A_i}) = \widetilde{\sigma}(\sup \chi_{A_1 \cup \dots \cup A_n}) = \sup \widetilde{\sigma}(\chi_{A_1 \cup \dots \cup A_n}) = \sup \sum \widetilde{\sigma}(\chi_{A_i}) = \sum \widetilde{\sigma}(\chi_{A_i})$$

 So

$$E_N\left(\bigsqcup_i A_i\right) = \operatorname{SOT}\sum_{i=1}^{\infty} E_N(A_i)$$

If $f = \sum a_i \chi_{E_i}$ with the E_i pairwise disjoint then

$$\int f \mathrm{d}E_N := \sum a_i E_N(E_i) = \widetilde{\sigma}(f)$$

extend to $f \in L^{\infty}$ by

$$\int f \mathrm{d}E_N := \widetilde{\sigma}(f)$$

Lemma 9.21. If \mathcal{M} is an abelian von Neumann algebra on a separable \mathcal{H} then there is $A = A^* \in \mathcal{M}$ such that $\mathcal{M} = C^*(A)''$.

Proof. $\mathcal{M} \cong L^{\infty}(\mu)$. Find a collection $\{E_n\}_{n\geq 1}$ of orthogonal projections in \mathcal{M} such that $\mathcal{M} = \overline{\operatorname{span}\{E_n\}}^{WOT}$. Pull out (countably many) atoms. Technical part: take $\{\mathcal{O}_n\}$ open that determine the topology of X, and make sure that we can approxiate $\chi_{\mathcal{O}_n}$.

Let

$$A = \sum_{n=1}^{\infty} 3^{-n} \chi_{E_n}$$

Then

$$\frac{1}{3}\chi_{E_1} \le A \le \frac{1}{2}$$

Then

$$A\chi_{E_1}^c = \sum_{n=2}^{\infty} 3^{-n} \chi_{E_n \cap E_1^c} \le \frac{1}{6} \chi_{E_1^c}$$

 So

$$A = \underbrace{A\chi_{E_1}}_{\geq \frac{1}{3}\chi_{E_1}} + \underbrace{A\chi_{E_1^c}}_{\leq \frac{1}{6}\chi_{E_1^c}}$$

But

$$\sigma(A\chi_{E_1} \upharpoonright E_1\mathcal{H}) \subseteq \left\lfloor \frac{1}{3}, \frac{1}{2} \right\rfloor$$
$$\sigma(A\chi_{E_1^c} \upharpoonright E_1^c\mathcal{H}) \subseteq \left[0, \frac{1}{6}\right]$$

So if we let

$$f(x) = \begin{cases} 1 & \text{if } x \in \left[\frac{1}{3}, \frac{1}{2}\right] \\ 0 & \text{if } x \in \left[0, \frac{1}{6}\right] \end{cases}$$

then $f \in \mathcal{C}(\sigma(A))$, and

$$f(A) = f(A\chi_{E_1} \oplus A\chi_{E_1^c}) = \widetilde{\sigma}(\chi_{E_1}) \oplus 0 = E_1$$

Thus $E_1 \in \sigma^*(A)$. So

$$3\left(A - \frac{1}{3}E_1\right) = \sum_{n=2}^{\infty} 3^{1-n} \chi_{E_n}$$

etc. $E_n \in C^*(A)$ for $n \ge 1$. So

$$C^*(A) = C^*(E_n)$$

and

$$C^*(A)'' = C^*(E_n)'' = \mathcal{M}$$

 $\Box\,$ Lemma 9.21

Corollary 9.22. \mathcal{M} an abelian von Neumann algebra in a separable hilbert space \mathcal{H} there is probability measure μ on [0,1] such that $\mathcal{M} \cong L^{\infty}(\mu)$.

Proof. $\mathcal{M} = C^*(A)'' \cong L^{\infty}(\mu)$ with μ a probability measure on $\sigma(A) \subseteq \mathbb{R}$. \Box Corollary 9.22

9.2 Multiplicity

For us ${\mathcal H}$ is separable.

Definition 9.23. We say a representation π has multiplicity n for $1 \le n \le \aleph_0$ if $\pi \cong \underbrace{\sigma \oplus \cdots \oplus \sigma}_{n} = \sigma^{(n)}$ where σ is multiplicity-free (i.e. $\sigma(\mathfrak{A})'$ is abelian).

Recall that if $\mathfrak{A} = \mathcal{C}(X)$ then σ is multiplicity free if and only if $\sigma \cong \sigma_{\mu}$ on $L^{2}(\mu)$ by multiplication; so $\sigma(\mathcal{C}(X))' = \sigma(\mathcal{C}(X))'' \cong L^{\infty}(\mu)$ acting on $L^{2}(\mu)$.

Theorem 9.24. If $\sigma \cong \sigma_{\mu}$ is a multiplicity-free representation of $\mathcal{C}(X)$ and $\pi = \sigma^{(n)}$, then $\pi(\mathcal{C}(X))' \cong M_n(L^{\infty}(\mu))$. Hence the multiplicity of π is well-defined.

Proof. We have $\pi \cong \sigma_{\mu}^{(n)}$ acting on $L^2(\mu)^{(n)} = \underbrace{L^2(\mu) \oplus \cdots \oplus L^2(\mu)}_n$ via $\pi(h) = \operatorname{diag}(M_h, M_h, \dots, M_h)$. If

 $A \in \pi(\mathcal{C}(X))'$, we write A as an $n \times n$ matrix $A = [A_{ij}]_{ij}$ with respect to this decomposition. Then

$$0 = \pi(h)A - A\pi(h) = [M_h A_{ij} - A_{ij}M_h]_{ij}$$

if and only if each $A_{ij} \in \sigma_{\mu}(\mathcal{C}(X))' = L^{\infty}(\mu)$. So $\pi(\mathcal{C}(X))' = M_n(L^{\infty}(\mu))$.

What if $n = \aleph_0$? Then A has a matrix $[A_{ij}]_{i,j\geq 1}$. Then the same argument shows $A_{ij} \in L^{\infty}(\mu)$ and

$$\pi(\mathcal{C}(X))' = \{ B = [M_{h_{ij}}]_{ij} : h_{ij} \in L^{\infty}(\mu), ||A|| < \infty \} = \mathcal{B}(\mathcal{H})\overline{\otimes}L^{\infty}(\mu)$$

where we take the WOT-closure of the tensor product.

Suppose π also has multiplicity m < n; so $\pi \cong \sigma_{\nu}^{(m)}$. Then

$$M_n(L^{\infty}(\mu)) \cong \pi(\mathcal{C}(X))' \cong M_m(L^{\infty}(\nu))$$

Suppose φ is a multiplicative linear functional on $L^{\infty}(\nu)$; it induces a map $\varphi^{(m)}: M_m(L^{\infty}(\nu)) \to M_m$ given by $\varphi^{(m)}([M_{h_{ij}}]_{ij}) = [\varphi(h_{ij})]_{ij}$. Then $\varphi^{(m)}$ is a homomorphism: it is linear and multiplicative. Indeed, we have

$$[M_{h_{ij}}][M_{g_{ij}}] = [M_{\sum_{k=1}^{m} h_{ij}g_{kj}}]$$

and

$$\varphi^{(m)}([M_{h_{ij}}])\varphi^{(m)}([M_{g_{ij}}]) = [\varphi(h_{ij})][\varphi(g_{ij})] = \left[\sum \varphi(h_{ik})\varphi(g_{kj})\right] = \left[\varphi\left(\sum h_{ij}g_{kj}\right)\right] = \varphi^{(m)}([M_{h_{ij}}][M_{g_{ij}}])$$

So we get unital *-homomorphisms

$$M_n(\mathbb{C}1 \hookrightarrow M_n(L^{\infty}(\mu)) \cong M_m(L^{\infty}(\nu)) \xrightarrow[\text{surjective}]{\varphi^{(m)}} M_m(\mathbb{C})$$

So we get a unital *-homomorphism $M_n \to M_m$ with m < n. If $n < \infty$ then M_n is simple; so $n^2 = \dim(M_n) \le \dim(M_m) = m^2$, a contradiction. If $n = \aleph_0$ then $M_{\aleph_0} = \mathcal{B}(\mathcal{H})$ only has one proper ideal: the compact operators \mathcal{K} . Also $\dim(\mathcal{B}(\mathcal{H})) = \dim(\mathcal{B}(\mathcal{H})/\mathcal{K}) = 2^{\aleph_0}$. So there are no finite dimensional quotients, a contradiction. So multiplicity is well-defined. \Box Theorem 9.24

Definition 9.25. Suppose $\pi: \mathcal{C}(X) \to \mathcal{B}(\mathcal{H})$ where \mathcal{H} is separable. A projection $P \in \pi(\mathcal{C}(X))''$ has multiplicity n if $\pi(\mathcal{C}(X)) \upharpoonright PH$ has multiplicity n.

Proposition 9.26. There is a largest projection P_n of multiplicity n.

Proof. Let $(P_{\alpha})_{\alpha}$ be the collection of all multiplicity n projections in $\pi(\mathcal{C}(X))'' \cong L^{\infty}(\mu)$. So there are measurable sets A_{α} such that $P_{\alpha} \cong M_{\chi_{A_{\alpha}}}$. Let t be the supremum over all finite subsets of $\mu(A_{\alpha_1} \cup \cdots \cup A_{\alpha_m})$. Choose $F_i = A_{\alpha_{i,1}} \cup \cdots \cup A_{\alpha_{i,m}}$ such that $\mu(F_i) \to t$. Let $F = \bigcup_{i=1}^{\infty} F_i$. Then

$$t = \sup \mu(F_i) \le \mu(F) = \lim_{m \to \infty} \mu(F_1 \cup \dots \cup F_m) \le t$$

So $\mu(F) = t$.

Claim 9.27. $\mu(A_{\alpha} \setminus F) = 0$ for all α .

Proof. Say $\mu(A_{\alpha} \setminus F) = \delta > 0$. Pick i_0 such that $\mu(F_{i_0}) > t - \frac{\delta}{2}$. Then

$$t \ge \mu(F_{i_0} \cup A_\alpha) \ge \mu(F_{i_0}) + \mu(A_\alpha \setminus F) > t - \frac{\delta}{2} + \delta > t$$

a contradiction.

 \Box Claim 9.27

So there is a countable set $(P_i)_i$ of multiplicity n such that

$$\bigvee_{i \ge 1} P_i = M_{\chi_F} = \bigvee P_\alpha$$

Let $Q_1 = P_1$ and

$$Q_{n+1} = P_{n+1} \left(\bigvee_{i=1}^{n} P_i\right)^{\perp}$$

Then $Q_i Q_j = 0$ if $i \neq j$ and

$$\sum_{i=1}^{n} Q_i = \bigvee_{i=1}^{n} P_i$$

 So

$$Q = \sum_{i=1}^{\infty} Q_i = \bigvee_{i \ge 1} P_i = \bigvee P_{\alpha}$$

and $Q_i \cong M_{\chi_{B_i}}$ with the B_i pairwise disjoint, measurable. Each P_i has multiplicity n and $Q_i \leq P_i$, so each Q_i has multiplicity n. Then

$$P_i \mathcal{C}(X)' \cong M_n(L^{\infty}(A_i))$$
$$Q_i \mathcal{C}(X)' \cong M_n(L^{\infty}(B_i))$$

with each $B_i \subseteq A_i$. Then since the Q_i are pairwise orthogonal we get

$$Q\pi(\mathcal{C}(X)') = \sum Q_i \pi(\mathcal{C}(X))' \cong \sum M_n(L^{\infty}(B_i)) \cong M_n\left(L^{\infty}\left(\bigcup B_i\right)\right) = M_n(L^{\infty}(F))$$

So Q has multiplicity n and is the biggest.

Lemma 9.28. If $\pi: \mathcal{C}(X) \to \mathcal{B}(\mathcal{H})$ with \mathcal{H} separable then there is $0 \neq P$ a projection in $\pi(\mathcal{C}(X))''$ of uniform multiplicity. (i.e. P has a multiplicity.)

Proof. $\pi(\mathcal{C}(X))''$ is an abelian von Neumann algebra; so there is a separating vector x_1 ; let $M_1 = \overline{\pi(\mathcal{C}(X))x_1}$. Then M_1 is reducing so $\pi(\mathcal{C}(X))'' \upharpoonright M_1$ is maximal abelian, isomorphic to $L^{\infty}(\mu_1)$; call $\mu_1 = \mu$. Then $\pi(\mathcal{C}(X))'' \upharpoonright M_1^{\perp}$ is an abelian von Neumann algebra, so there is a separating vector x_2 ; let $M_2 = \overline{\pi(\mathcal{C}(X))x_2}$. Then M_2 is reducing so $\pi(\mathcal{C}(X))'' \upharpoonright M_2$ is maximal abelian, isomorphic to $L^{\infty}(\mu_2)$ with $\mu_2 \ll \mu_1 = \mu$. Recursively find separating x_{n+1} of $\pi(\mathcal{C}(X))'' \upharpoonright (M_1 + \dots + M_n)^{\perp}$ and let $M_{n+1} = \overline{\pi(\mathcal{C}(X))}$; then $\pi(\mathcal{C}(X))'' \upharpoonright M_{n+1} \cong L^{\infty}(\mu_{n+1})$ with $\mu_{n+1} \ll \mu_n$.

There is A_n measurable such that $\mu_n \approx \mu \upharpoonright A_n$; then $X = A_1 \supseteq A_2 \supseteq \cdots$. Suppose there is a smallest n+1 such that $\mu_{n+1} \not\approx \mu_{n+1}$. Then $\mu \approx \mu_1 \approx \cdots \approx \mu_n \not\cong \mu_{n+1}$. Then A_1, \ldots, A_n have full measure but $\mu(A_{n+1}) < 1$. Let $P \in \pi(\mathcal{C}(X))'' \cong L^{\infty}(\mu)$ correspond to $\chi_{A_{n+1}^c} \in L^{\infty}(\mu)$. Let $B = A_{n+1}^c$. Then $P \upharpoonright M_i \cong M_{\chi_B}$ for $1 \leq i \leq n$ and $P \upharpoonright M_i = 0$ if $i \geq n+1$. So

$$P \cong M_{\chi_B}^{(n)} \oplus 0$$

Also $P((\sum M_i)^{\perp}) = 0$. Then

$$P\pi(\mathcal{C}(X))'' \cong P\left(\left(\bigoplus_{i\geq 1} \pi(\mathcal{C}(X))'' \upharpoonright M_i\right) \oplus \left(\pi(\mathcal{C}(X))'' \upharpoonright (\sum M_i)^{\perp}\right)\right)$$

Then

$$P \upharpoonright \left(\sum_{i=1}^{n} M_i\right)^{\perp} = 0$$

since x_{n+1} is separating; but $M_{\chi_B} \upharpoonright M_{n+1} = 0$, so $M_{\chi_B} \upharpoonright \left(\sum_{i=1}^n M_i\right)^{\perp} = 0$.

 \Box Proposition 9.26

$$P_{\pi(\mathcal{C}(X))''} = \underbrace{\bigoplus_{i=1}^{n} L^{\infty}(B) \upharpoonright PM_{i} \oplus 0}_{\text{multiplicity } n}$$

So P has multiplicity n. This is fine if $n < \infty$; suppose then that $n = \aleph_0$. Then $\mu_n \approx \mu$ for all $n \ge 1$ and $\{x_n : n \ge 1\}$ are separating vectors for $\pi(\mathcal{C}(X))'' \cong L^{\infty}(\mu)$. By Zorn's lemma we can extend this to a maximal family of separating vectors $\{y_j\}$ such that $N_j = \pi(\mathcal{C}(X))y_j$ are pairwise orthogonal. Then $\pi(\mathcal{C}(X)) \upharpoonright N_j \cong L^{\infty}(\mu)$ a masa on J_j . Let $R = (\sum N_J)^{\perp}$; we know $\pi(\mathcal{C}(X))'' \upharpoonright R$ does not have a separating vector for $L^{\infty}(\mu)$. So $\pi(\mathcal{C}(X))'' \upharpoonright R \cong L^{\infty}(\nu)$ with $\nu \ll \mu$ but $\nu \not\approx \mu$. So $\nu \approx \chi_D \mu$ with $\mu(D) < 1$. Let $P \in \pi(\mathcal{C}(X))''$ correspond to $\chi_{D^c} \in L^{\infty}(\mu)$; so $P \upharpoonright R = 0$. Thus $P\mathcal{H} = \bigoplus PN_j$ and $\pi(\mathcal{C}(X))'' \upharpoonright PN_j \cong L^{\infty}(D^c)$; so P has multiplicity \aleph_0 . \Box Lemma 9.28

Theorem 9.29. Suppose $\pi: \mathcal{C}(X) \to \mathcal{B}(\mathcal{H})$ with \mathcal{H} separable. Then there are pairwise orthogonal projections P_n with $1 \leq n \leq \aleph_0$ the maximal projections of multiplicity n. The SOT sum

$$\sum_{n=1}^{\infty} P_n + P_{\aleph_0} = I$$

So $\pi \cong \bigoplus_{n=1}^{\infty} \sigma_{\mu_n}^{(n)} \oplus \sigma_{\mu_{\aleph_0}}^{(\aleph_0)}$ with $\mu_n \perp \mu_m$ if $n \neq m$ and

$$\mu = \sum \mu_n + \mu_{\aleph_0}$$

Proof. By lemma there is a largest projection P_n of multiplicity n. Then $\pi(\mathcal{C}(X)) \upharpoonright P_n \mathcal{H} \cong \sigma_{\mu_n}^{(n)}(\mathcal{C}(X))$. Then $P_n P_m = 0$ if $n \neq m$ because on the intersection we have two multiplicities, a contradiction. If the SOT sum

$$\sum_{n=1}^{\infty} P_n + P_{\aleph_0} = Q < I$$

then look at $\pi(\mathcal{C}(X)) \upharpoonright Q^{\perp} \mathcal{H}$. By last lemma we get $Q^{\perp} \ge P$ and P has multiplicity n; but this contradicts maximality of P_n . So Q = I.

Theorem 9.30 (Weyl-von Neumann-Berg). Suppose N is a normal operator on separable \mathcal{H} and $\varepsilon > 0$. Then there is an orthonormal basis $\{e_n\}$ and a diagonal operator $D = \text{diag}(d_1, d_2, \ldots)$ with respect to $\{e_n\}$ such that K = N - D is compact and $||N - D|| < \varepsilon$; so N = D + K is the sum of a diagonal and a small compact.

Suppose A and B are approximately unitarily equivalent (a.u.e.). If there is a sequence of unitary U_n such that $B = \lim_{n \to \infty} U_n^* A U_n$ in norm then $A \sim_{a.u.e.} B$ if and only if $\overline{\mathcal{U}(A)} = \overline{\mathcal{U}(B)}$ (where $\mathcal{U}(A) = \{U^*AU : U \text{ unitary}\}$). In this case for all $\varepsilon > 0$ there is U such that $B - U^*AU$ is compact and has norm $< \varepsilon$.

Done in Ken's book, same chapter as normal operators. See also Voiculescu's theorem for a noncommutative version.