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1 Banach algebras

Definition 1.1. A Banach algebra is an associative algebra 2l over C (or R, but not for us) which has a
norm that makes (2, ||-||) a Banach space and satisfies

eyl < ll2[lllyll

and if 2 has a unit (which we will denote e or 1) then |e] = 1.



Remark 1.2. The above implies that multiplication is jointly continuous. Indeed, we have

T1Y1 — TayY2 = T1Y1 — Tay1 + Toyr — Toy2 = (T1 — T2)y1 + T2(y1 — ¥2)
SO
2191 — zayell < flzn — z2lllyall + |22/ lyr — w2l
Hence if z,, - « and y,, — y then x,y, — x1y1.

Example 1.3.
1. If X is a Banach space then B(X) is a Banach algebra (with ||T'|| = sup{ |7z : ||z]| < 1}).

2. If X is a compact Hausdorff space then C(X) is a Banach space where || f||oo = sup{|f(z)|:x € X }.
If X is locally compact and Hausdorff then we define Cy(X) to consist of the continuous functions f
on X such that for all € > 0 the set {x € X : |f(x)| > ¢} is compact; we define Cy,(X) to consist of
the bounded continuous functions. For both Cy(X) and C,(X) the norm ||f|lcc = sup{|f(z)]:z € X }
confers a Banach algebra structure.

3. Consider the set C™)[a, b] of functions on [a, b] with n continuous derivatives. Our product rule is

k . .
(fg)®) = Z (j)f(y)g(k 7)
The norm w
1Mo
£l = 3 Lo
k=0

makes C(™)[a, b] into a Banach algebra.
Ezercise 1.4. Check that ||fg|lcn < ||f]

4. Suppose G is a locally compact abelian grape (e.g. R, T* T* x R",...). We get a Haar measure m on
G: a regular Borel measure that is translation-invariant (i.e. m(A4 + s) = m(A) for Borel A C G and
s € G). We define L' (G) to be the set of measurable f on G such that

cn g‘ cn.

191 = [ 1fidm < o0
The product on L(G) is given by convolution:
(F+9)0) = [ £s)alt = 5)dm(s)
G

One can check that

e gxf=1Ffxg
o (fxg)xh= fx(gxh) (this follows form Fubini).

For the norm bound, note that
I +all = [ 1(£*9)(Oldm(e
= [ 1(s)ate = sjams) amo
<[ 0ol lam(s)am(y

- / / £ ()] () [dm(s)dm(u)
GJG
— 1 liglh




(since the Jacobian of (s,t) — (s,u) is

).

5. Consider A(D) the disk algebra consisting of f(z) continuous on D and analyticon D = {z € Z: |2| < 1}.
Together with the norm
[f1l = sup [f(2)] = sup|f(z)]
l2|<1

|z|=1

(where the second equality is by the maximum modulus principlelforms a Banach algebra. Then
A(D) C C(D); in fact A(D) C C(T) where T = {2z : |2| = 1} = 9D. Indeed the map f — f [ T is
isometric.

6. For T € B(X) where X is a Banach space, we define A(T) = {p(T) : p € Clz] }H'”

for H a Hilbert space we define C*(T') = alg{ I, T, T* }H'H

CB(X). T e B(H)
. (Here alg is “the algebra generated by”.)

7. If (X, ) is a measure space we define L () to be the set of measurable f such that f is essentially
bounded (i.e. there is ¢ such that p({« : |f(z)| > t}) = 0) modulo f ~ g if f —g = 0 almost everywhere.
The norm is given by

1flloo =inf{t: p({x:|f(x)| >t}) =0} = ess.sup|f|
We have an embedding L>(u) < B(L?(u)) given by f + My where M¢(h) = fh.

Remark 1.5. If 2 is a Banach algebra without unit we define A" = {(a,\) : a € A, X\ € C}; we write
(a, A) = a + \e. We define

(a+ Xe)(b+ pe) = (ab+ Ab + pa) + Aue
lla+ el = [laf| + |A|

SO
(@ + Ae)(b+ pe)l| < llaf[l[oll + [ANDI + |ellall + Aul = (lall + DI+ [x])

In fact 2 is a (closed) maximal ideal in 2.

Proposition 1.6. FEvery Banach algebra 2 is isometrically isomorphic to a subalgebra of B(X) for some
Banach space X.

Proof. We map 2l into B(A1) by a — L, where L,z = ax. Then

lall = llae]l < || Lall = sup{ [laz|| : = € AT, [lz]| <1} < sup{ [lalll|z[| : x € AT, [J2]| <1} = |laf
so this is indeed an isometry. [0 Proposition 1.6
Definition 1.7. Suppose 2 is a unital Banach algebra and a € 2.

e The spectrum of a is oy (a) = { A € C: A1 — a is not invertible }. (If the 2 is clear from context we will
sometimes omit it and write o(a).)

e The resolvent of a is p(a) = C\ o(a).

e The resolvent function R(a,\) = (XA —a)~! is defined on p(a).

Definition 1.8. Suppose T' € B(X) for some Banach space X.

e We define the point spectrum o,(T) to be the set of eigenvalues of T": those A for which there is z # 0
such that Tz = Ax.



e We define the approzimate point spectrum o,(T') to be the set of A € C such that AI —T is not bounded
below. (An operator T is bounded below if there is € > 0 such that [|[Tz| > e||z| for all z € X.)

e We define the compression spectrum ~v(T) to be { X : (\[ — T)X # X }; i.e. the X for which AT — T does
not have dense range.
Theorem 1.9. For T € B(X) with X a Banach space, the following are equivalent:
1. T 1is invertible.
T maps X bijectively to itself.
T s bounded below and has dense range.

T and T* are bounded below (T* € B(X*)).

AR NI S

T* is invertible in B(X*).

Proof.
(1) = (2) Immediate.
(2) = (1) Banach isomorphism theorem.

(1) = (3) Note that x = T~Y(Tx); so ||lz|| < |T7|||T=||, and || Tz| > (|T~||) (=], and T is bounded
below. (Surjectivity implies dense range.)

(3) = (2) If = # 0 then ||Tz| > ¢|z|| > 0; hence Tz # 0, and T is injective. For surjectivity, suppose
y € X; then since T has dense range there are x,, such that y,, = Tz, — y. Then in particular the y,
are Cauchy; since

1y = Ymll = T (20 — zm)|| = €llTn — T

we get that the z,, are also Cauchy, and thus have a limit € X. Then

Tr = lim Tz, = lim y, =y
n— oo n— o0

and T is surjective.
(1) = (5) By hypothesis we have Iy =TT =TT~} so
Iy- = =TT V) = (TY)*T*
so T* is invertible in B(X™).

(56) = (4) If T* is invertible then T* is bounded below (by 1 = 3); also (1 = 5) implies that T** is
invertible and thus bounded below. But T'=T"* | X; so T is bounded below.

(4) = (3) T is bounded below by hypothesis. Note that
(RanT)* = {feXx*: f(Tz) =0forallz c X} ={f:T*f =0} =ker(T*)={0}
(T~ (=)

(since T* is bounded below). By the Hahn-Banach theorem if RanT were a proper subspace then
there would be 0 # f € X* such that f | RanT = 0, a contradiction. So RanT = X, and T has dense
range. 0 Theorem 1.9

Corollary 1.10. If T € B(X) then o(T) = o,(T) U~(T).

Proposition 1.11. Suppose 2 is a unital Banach algebra. If ||a|| < 1 then 1 — a is invertible.



Proof. If x € C and |z| < 1 then

If ||a]| < 1, define
= Zan
n=0

(where a® = 1). To see that this is well-defined, note that

o0 [e ]
D olla™l < llaf < o0
n=0 n=0
So the sequence
k
=y
n=0

is a convergent sequence, and b is well-defined in 2 as the limit of the by. Since multiplication is continuous

we get that
k
(I -a)b= lim (1 —a)by = lim (1 —a) Za" = lim (1 -d*) =1

k—o0 k—o0 k—o0
n=0

(since |la**l| < |lal**t — 0). Also (1 — a)br = br(1 —a), so b(l —a) = (1 —a)b = 1, as desired.
[J Proposition 1.11

Corollary 1.12. A~ is open and a — a™! is a continuous antihomomorphism A~1 — A=, (Note that A1

is a grape under multiplication and (ab)~' =b~ta"!.)

Proof. The previous proposition says that b1(1) = {a: ||l —al]| <1} C2A~L. Suppose a € A~! and b € A
with ||b]] < ﬁ Then a — b = a(l —a~'b) and [|a='b|| < [la™!||][b]| < 1. So 1 —a~'b is invertible (in fact
the inverse is

>_(a70)"
n=0
). So a — b is invertible with
(a—b)_l ( —1b) 1 —1 Z(a—lb)na—l
n=0

50 bjjg—1-1(a) S A1 and A~ is open.
(ab)_l = b~'a~! shows that a — a~! is an antihomomorphism; bijectivity follows from a = (a—l)—l. Tt
remains to check continuity. If ||a|| < 1 then

H(]- — a)_l - 1” = Z a” — Z a” Z | ||n = |a||||a|
n=0 = n=1

As a — 0 we have
lall

1= ]

—0

(uniform estimate). Thus if b, — 1 then a,, = 1 — b, — 0, and b,;! = (1 — a,)~! — 1. So inversion is
continuous at 1. So if @ € A=t and a,, € A~! converge to a, eventually |la — an|| < ﬁ Then write
an =a—b, =a(l —a"'b,) so a"tb, — 0. Then a,' = (1 —a~'b,) ta™! — a1, and inversion is indeed
continuous. O Corollary 1.12



Proposition 1.13. Suppose 2 is a unital Banach algebra and a € A. Then p(a) is open and o(a) is a

compact subset of { A € C: |\ < |laf }.

Proof. Note that

pla) = {: A1 —a is invertible } = 90_1(&[_./1)

open

where ¢: A — A1 — a. Alternatively, if A\g — a is invertible then

bjj(ro—a)-1)-1 (Ao — a)

is contained in A~ and { A : A — Xo| < [[(Ao — @) |71 }. So o(a) = C\ p(a) is closed.

If |A] > |ja]| then

A—a=\1- %)
But [|$]| = % < 1,s01— % is invertible. So X\ — a is invertible; so o(a) C { A : |A] < [|a]| }; so it is closed

and bounded, and thus compact.

TODO 1. Connectives?

Ezxample 1.14.
1. Let H = L?(0,1), f € H, and Myh = fh for h € L*(0,1).
Claim 1.15. || My|| = || f]lco = ess.sup|f].
Proof. Note that

1M ]1* = sup{ || fR]13 < 2]l <1}

_ sup{ 10 <1 < 1}
< sup{ sl < 1}

= [Ifll5 sup{ 1213 : ]l <1}
= If1%

S0 M| < |-
For e >0, let A, = {2 : |f(2)| > | flloc — & }: then m(A.) > 0. Let h = e

"4A5)2
2 _ XA:
el = [ 2 =

£l 2 (Il =€) —22

So
[fhell > (I flloo = ERell = I flloo — €

and
M £l > sup|| flloc — € = [|fllo
e>0

OO0 Proposition 1.13

O Claim 1.15



Note that f + M} is an algebra homomorphism of L>(0,1) into B(L?(0, 1)) which is isometric. What
is M7? Well, for h,k € L?(0,1) we have
(Mfh, k) = (h, Myk)
= (h, fk)

So My = M.

Claim 1.16. o(Mys) = op=(f) =ess.tan(f) = { X : m(f~1(b()))) > 0 for alle > 0}.
Proof. Note that
C\ ess.ran(f) = { X : 3¢ > 0 such that m(f ' (b-(1))) =0}

If X ¢ ess.ran(f) then there is € such that |f(xz) — A| > € almost everywhere; so ﬁ € L (since
’ﬁ’ < % almost everywhere). So f — A is invertible in L®°.

Note that I = My and A\I — My = My_¢. So
MA,fMﬁzM%fMA,f:Mlzl

So if A ¢ ess.ran(f) then X\ — f is invertible in L> and My_y is invertible in B(L?(0,1)).
If A € ess.ran(f) then %—f is not essentially bounded and may take value +oco somewhere; so A — f is

not invertible in L°°.
For e > 0let A. = {z : |f(x) — A\| < e}; then m(A.) > 0. Let he = —X2=—. Then |M,_sh| =

m(Ag)2
(A = f)he| < elhel; so ||Ma—she|| < e. So Mx_; is not bounded below, and M,_ is not invertible.
O Claim 1.16

Ezample 1.17. Consider M,. We have Ran(z) = ess.ran(x) = [0,1] and 0,,(M,) = 0. If Myh = xh = Ah
then (z — A\)h = 0 almost everywhere; since x — A # 0 almost everywhere, we get that h = 0 almost
everywhere.

If A € [0,1], then My_, is not bounded below.

‘We have
Ran M, 2 | JMa—oL*([0,A — ] U [A+¢,1])

Since |A —z| > e on B. = [0,A —e] U[A+¢,1] and My_¢: L*(B.) — L?*(B:), we get that M,_, is
invertible on L?(B.) and My_,L?*(B.) = L*(B.). So

Ran My 2 | J L*(B:) = L*(0,1)

e>0

. Let H = {5 with orthonormal basis {e, : n > 0}. If (d,, : n € N) is bounded we let D = diag((d,, : n €

N)) so
D(Z anen) = Z dpanen,

So | D|| = sup|dy|, and o(D) = {dy, }.




3. Let S be the unilateral shift on ¢ so

SE Anen = E An€nil

n>0 n>0

The adjoint has

<S* Zanen, anen> = <Z Gn€n, Sanen>
= <Z An€n, anen+1>

0o
Z an+1bn
n=0
oo
Z Up41€n, Z bnen
n=0

So

S*en _ €n—1 lf n>1
0 ifn=0

is the backwards shift.

Proposition 1.18. If H is a Hilbert space and T € B(H) then o(T*) = o(T)* (where the latter is
pointwise complex conjugation).

Proof. If X ¢ o(T) then (\[ — T)(M\ —T)~' =1 = (M —T)~Y (M — T). Taking adjoints we find that
(M=T)" YN -T)=I"=T=\-T*)((\ -T)"")*
so M —T*)7t = ((M —T)~h*. Since T = T** this is reversible. So p(T*) = p(T)*.
0 Proposition 1.18
Note that S*S = I but SS* = I — Pg., where Pg., = epej.
Notation 1.19. If z,y € H then xy* € B(H) of rank 1 is given by (zy*)(2) = z(y*2) = (2, y)x.

So S, S* are not invertible. We have that S is injective but not surjective, with Ran(S) = (Ceg)=; also
S* is surjective but not injective with S*eg = 0, and ker(S*) = Ceg. So 0 € o(S).
We have ||S|| = ||S*|| = 1 and S is an isometry (|| Sz| = ||z|| for all ). So o(S) CD = {A: |\ <1}.

If S*r = Az where x = (zg, 21, ...) then 2,41 = Az, for all n; so = x¢(1,\,\?,...). Then

EN

[e's) 1— >\|2 < 0 lf ‘)\| < 1
2]|3 = lzo* > AP =40 if 2 = 0
n=0 00 else

Soif zx = (1,A,A%,...) for |A| <1 then S*z) = Azy. So 0,(S*) =D. So ¢(5*) =D and o(S) = D.
IfSx=MXrfor \#0thenzg=0=xz1 =22 ="---;50 A ¢ 0,(5). Also 0 ¢ 0,,(S) because S is isometric.
So 0,(S) = 0.
Suppose |A| = 1; let x,, = ﬁ(l,)\,)\z, ..., A"710,0,0...). Then
S* 1, = L(A,)?,...,)\"—1,0,0,...)
vn
S0

S*x, — A\x, = (0,...,0,—A",0,0,...)

1
vn

oo



and [[(S* — N)z,| = ﬁ — 0, so S* — X isn’t bounded below. Also

1
n — = 1 2... n—2 \n-1
Saj \/5(07 7A7>\7 7>\ 7A 707 )
and

_ 1 —
Mep—(N, 1A, ..., A"72,0,0,...
x\/ﬁ( )

- 1 — 2
—X)z,|| = || —=(=X,0,...,0,A" "1 0,... \f
165 = M)l = | = (R0,000 70,0, = /2 0

and S — )\ is not bounded below.

SO

Definition 1.20. Suppose 2 C C is open and X is a Banach space. We say f: Q — X is strongly analytic on
QO if for all zg € 2 there is r > 0 and (z,, : » > 0) in X such that

F(2) = wnlz—20)"
n=0
converges absolutely and uniformly on {z : |z — 29| < r}. We say f is weakly analytic if for all p € X’ we

have that ¢ o f: Q — C is analytic.

Exercise 1.21 (Homework). Weakly analytic implies strongly analytic. (I think he said something about
Banach-Steinhaus?)

Theorem 1.22. Suppose U is a unital Banach algebra and a € 2.

1. For A\, u € p(a) we have
R(a7 >‘) — R((l, /u‘)
A—p

= —R(a, \)R(a, p)

2. R(a, ) is a strongly analytic function on p(a).
3. R'(a,\) = —R(a, \)?.
4. |R(a,N)|| = 0 as |A| = oo.

Proof.

1. We have(R(a, A) — R(a, p)(A —a)(pp —a) = (¢ — a) — (A — a) = p — A; multiply by %ﬁi(a’“) to get
the desired result.

2. If Ay € p(a) and |A — Xg| < m

/\—a:()\o—a)—(/\o—)\)
=(Ao—a)(l1—(Ao—AN(Xo—a) )

1(ho =)Ao —a)~H | = Ao = Alll(Ao —a) [ < 1

So
A=a)' = (Mo=No—a) )" No—a) =D (=1)"(Ao—a) " "(A=Ag)"
n=0 n=0
IfO<R< m then if |A — \g| < R then ||[(A — Xo)(Ao —a) 71| < To—at =7 <1. 5o

SOy = D00 — @)~ o — )7 < o ) = 1A= o o

So convergence is absolute and uniform (by M-test) on { A : |A — Ag| < R}. So R(a, ) is strongly
analytic.



3. We note that

R

/ :1
R(a, p) gim. -
1

4. If |A] = 2||a|| then (A —a)~t = A71(1 - A‘la)_l =A"13 (A ta)™ So

n=0

So [|R(a, N)|| < |27‘ — 0 as |A| = oo. O Theorem 1.22

Theorem 1.23 (Liouville). If f: C — X is a weakly analytic entire function which is bounded then it is
constant.

Proof. For all ¢ € X' we have po f: C — C is entire and bounded. So ¢ o f is constant by Liouville’s
theorem. By Hahn-Banach we have that f is constant: if f(z1) # f(z2) then there would be ¢ such that
o(f(z1) — f(z2)) #0. O Theorem 1.23

Theorem 1.24. Suppose 2 is a unital Banach algebra. Then o(a) is not empty.

Proof. If o(a) = () then R(a, ) is entire, strongly analytic, and has ||R(a, A)|| = 0 as |A\| = oo, and is thus
bounded. So by Liouville’s theorem it is constant, a contradiction since R(a,0) = —a™! # (1—a)~! = R(a, 1).
0 Theorem 1.24

If K C C is compact we let Rat(K) consist of rational functions % with p, ¢ € C[z] such that the poles
(zeroes of ¢) liein C\ K. If o(a) = K and % € Rat(K) then we may write ¢(x) = (r — a1) - -+ (£ — @) with
each a; ¢ K; then q(a) = (a — 1) - (a — ap1), and g(a) "t = (a — 1)t -+ (a — 1) 71 is well-defined
because a; ¢ K = o(a). We can then define £(a) = p(a)g(a™!). This is a well-defined algebra homomorphism
of Rat(c(a)) into 2.

Theorem 1.25 (Spectral mapping theorem for rational functions). Ifa € A and f = % € Rat(o(a)) then
o(f(a)) = f(o(a)).
Proof. Write f = g with

g(z) = [J(x — )
i=1

If A € C then we may write f(z) — A1 = 22 with

q(z)
T) = H(w )

Then .
fla) = Al =pi(a = [I(@=81)q
j=1
So
A€ o(f(a)) < f(a)— Al is not invertible

<= 3Jj such that a — ;1 is not invertible

<= 3j such that 5; € g(a)
and

A€ f(o(a)) < 3B € o(a) such that f(B) —A=0
<= Jx € o(a) such that H(z —Bj)g(x) =0

j=1
<= dJj such that z = 3,

10



TODO 2. Typo here?
But the last equivalences are the same. [0 Theorem 1.25
Definition 1.26. The spectral radius of a is spr(a) = sup{|\| : A € o(a) }.

Theorem 1.27. Suppose U is a unital Banach algebra and a € A. Then

. 1
spr(a) = lim [la"

Proof. By the spectral mapping theorem we have o(a™) = o(a)™. Since spr(a) < ||a|| we have
spr(a) = spr(a”) < [la”]|»
thus )
spr(a) < inf " |

Recall that R(a,\) = (A —a)~! is analytic on C\ o(a). Hence for |A| > |a|| we have

R(a,\) = Z a" A"t
n=0

TODO 3. why? Something about a power series around oo ?
If ¢ € A" then

o0

p(R(a,N) =) plam)r"!

n=0
is scalar-valued and analytic on p(a) 2 C\ { X : |A| < spr(a) }; note that this last set is the biggest disk
around C on which R is defined. In particular, convergence is absolute and uniform over |A| > r + ¢ (with

r = spr(a)). So

suplg(a”)|(r +)7" 7

S(ESYEET

for some constant C(p) (depending on ¢). Hence by the uniform boundedness principle we have

n
a
su
b <T+€>

n>0

< o0

(as the terms in the series approach 0). So

sup
n>0

=C' <0

Thus [|a"|| < C’'(r + €)™, and hence ||a”||= < (C")=(r+&) = r+¢. So

» < r < inflja”||*

lim sup||a”
n—oo

TODO 4. port limsup typesetting to essential range?
Sor= limn%OOHa"H% = inf||a”H%. 0 Theorem 1.27
Remark 1.28. R(a,\) = oo a"A~""! converges absolutely and uniformly on { X : |\ >r+¢}.
Exercise 1.29. Check the details of this.
Proposition 1.30 (Mazur). If 2 is a Banach field then 24 = C1.

Proof. If a € 2 then o(a) # 0. Pick A € o(a); then a — Al is not invertible, so since 2 is a field we get that
a—Al=0and a=Al. O Proposition 1.30

11



2 Riesz functional calculus

Suppose U is open and contains o(a). Suppose f is a holomorphic function on U and A € o(a). Cauchy’s
theorem tells us that to evaluate f(\) we can draw a rectifiable curve

TODO 5. rectifiable?

C such that C C U \ o(a) and the winding number

, 0 ifzeC\U
inde() = {1 if 2 € K\

TODO 6. K?

Then by Cauchy’s theorem we have

0 =5 | IE 4,

for z € o(a).
We can try to define f(a) by

flo) = 3= [ F@E1 -0

Note that (21 —a)~?! is defined on C \ o(a), and thus on C; also f(z) is defined and analytic on U 2 C. So
f(2)(z — a)~t is defined on U \ o(a); it is analytic, and thus continuous.

Theorem 2.1. Suppose X is a Banach space; suppose C is a rectifiable curve in C and f: C — X is continuous.

Then
/ f(z)dz
c

Proof. Parametrize C by arc length s for 0 < s < L. Take partitions A consisting of 0 = sp < 51 < -+ <
$n = L and = consisting of & € p([si-1,...,si]) for 1 <i <n. If ¢: [0, L] — C is our parametrization then
our Riemann sum is

makes sense as a Riemann integral.

n

T(A,2) = &) (e(si) — @lsio1))

i=1

We define

mesh(A) = max ($i — S8i—1)

Claim 2.2. lim  J(A,E) converges; we call this limit / f(z)dz.
mesh(A)—0 C

TODO 7. I believe this is a limit of nets?

Proof. Suppose € > 0. By continuity of f there is § > 0 such that |s —t| < ¢ implies || f(p(s)) — f(p@))]] <e.
Suppose (A1,Z;) and (Ag,Z3) both have mesh < §. Let A=A UA; ={0=s9<s1---<s, =L}, and
forpe {1,2} write Ay ={s;:i€ J,} with {0,n} CJ, C{0,....,n}. Let E={p(s;): 1 <i<n} We
compare J(Ap, Z, to J(A, =).

n

J(AE) = J(Ap, Ep) = Y fle(s))(wlsi) = o(si=1) = Y f(&)(e(s:) = @lsi-1))

=1

12



where j € J), satisfies [s;_1,s;] C [s;, sj] with [s;, s;] an interval in A,. Hence

> Fe( e(sic1)) = > F(&)(p(si) — <si1)>H

=1

I7(A,E) = J(Ap, Ep)ll =

I1f(o(si)) = F(ENNe(si) — @(si—1)| (note ¢(s;) and §; are within ¢ of each other)

6(81‘ — Si—l)

A\ IN
LMD

So ||J(A1,Z21) — J(Ag,Zs)|| < (2L)e. So the Riemann sums are Cauchy, and thus converge. O TODO 7
0 Theorem 2.1

Theorem 2.3 (Riesz functional calculus). Suppose 2 a unital Banach algebra and o € A. If f € Hol(U)
with U C C an open set containing o(a), we define

fla) = 5 /C o)z — a)~tdz

where C is a curve in U \ o(a) such that

SR

Then
1. This definition is independent of the choice of C; hence f(a) is well-defined.
2. (f +g)(a) = f(a) + gla) and (A\f)(a) = A- f(a).
3. (fg)(a) = f(a)g(a). (Hence, combining all the above, we get that f — f(a) is a homomorphism.)
4. 1f

oo
= Z an(z — 20)"
n=0

is analytic in a disk Dp(z0) 2 o(a) then
a) = Z an(a—ze1)"
n=0

Proof.

1. Suppose C;,Cy are permissable curves. Then C = C; — Cy (i.e. union of C; and Co with the orientation
of Cs reversed) is a curve such that

inde(z) = 0 ifzeC\U
70 if z € o(a)

So f(2)(z —a)~! is analytic on U \ o(a), and C C U \ o(a); so C is homologous to zero in U \ o(a).
Taking ¢ € A’ we have

o(5m [1OG-00) = [ fp-a)

scalar-valued and analytic in U\o(a)

=0

13



by Cauchy’s theorem. But this holds for all ¢ € 2. So by the Hahn-Banach theorem we get

2m/f (2 - a) 1dz—% e >dz—% RCICEURE

2. If f € Hol(U) and g € Hol(V) with U,V 2 o(a) then f,g € Hol(U NV); so one can choose C to work
for both f and g. The claim then follows from linearity of the integral.

3. Suppose f, g € Hol(U). Choose a curve C as required. Let V = { A :ind¢(A) =1} D o(a); so V is open.
Choose Cz in V' \ o(a) satisfying the requirements. In particular if A € Cy then inde¢, (A) = 1 (since
Co C V) and if A € C; then inde,(A) =0 (since C; € C\ V). Then

fla)g(a) = % . f(2)(z— a)_ldz%/c g(w)(w — a)'dw
= (Z;Z)Z/C . f(z)g(w)R(a, z)R(a, w)dzdw
R R(a,
- (2;’)2 /01 ., f(z)g(w) (a,zzu — Z(a w)dzdw (by Theorem 1.22)
_ 1 R(a, Z) 1 R(a7 w)
= e [ @D g L [ g0 e
! L [ g(w) 1 L)
=5mi )., f(z2)R(a, 2) 5 /02 jdw dz + 5 /02 g(w)R(a,w) 371 e, mdz dw
=0 since indc, (\?)=0 =f(w) since indcl(\qé/]_/)zl
— 57 [, s} -0
(f9)(a)

TODO 8. Typeset above better

4. Let C = zp + rexp(if) for 0 < 0 < 27 and r < R be sufficiently large to enclose o(a). Then the Taylor

expansion
= Z an(z — 20)"
n>0
converges absolutely and uniformly on
TODO 9. in?
Then
1 oo
fla) = %/Cz_%< — 2)"(z —a) " 'dz
= i an% /(z — 20)"(z — a) " 'dz
n=0 ¢
= Z an(a — 2zp)"
n=0
as desired. 0 Theorem 2.3

Corollary 2.4 (Spectral mapping theorem for analytic functions). If f € Hol(U) with U 2 o(a) then
o(f(a)) = f(o(a)).

14



Proof.

(C) It A ¢ f(o(a)) then f(2) —A#0ono(a). Let V={z€U: f(z) # A }; so V is an open set containing

o(a), and
1

9(z) = W
is analytic on V. But then g(z)(A — f(2)) =1, so g(a)(A — f(a)) =1 = (A — f(a))g(a); so A & a(f(a)).

(D) If A € f(o(a)) then there is w € o(a) such that f(w) = A. So A— f(z) = (z —w)g(z) for some g € Hol(U);
soA—f(a) = (a—w) g(a), and X\ — f(a) is not invertible. So A € o(f(a)). O Corollary 2.4
——

not invertible

Ezample 2.5.

1. Let H = {3 with orthonormal basis {e, }n,>0. Let D € B(¢2) be diag(do,d1,...); i.e. De, = dpey,.
Then o(D) = {d,, : n € N}. Suppose f € Hol(U) with U D o(D). Find C. Note that if z ¢ o(D) then
2 —D = kdiag(ﬁ in € N). Then

f(D)e, 2m/f )(zI — D) te,dz

1 1
B 2m f(z) d end2
~ omi (/ 1z dz) “n
= f(dn

So f(D) = diag(f(dy) : n € N).

2. Suppose A € M,,. By Jordan form theorem A is similar to a direct sum of Jordan blocks

A 1@ 8 J,

with
YR 0 0
0o XN 1 0
Ji = .
0 O Ao 1

Suppose f € Hol(U) with U 2 0(A4) = {A\1,..., A, }. Note also that o(J;) = { A; }. Since f is analytic
near \; we get

15



on a neighborhood of A;. By last item of previous theorem we have

FU) = am(Ji = NI)™

m=0
0 1 n
=2 an
n=0 01
0
0 1

Il
S
3

—

ap ayp - Qg1

ai
agp

(kj—1)

fa) ff() - ﬁ

\&E
—
S

S
© D @ D
FA) = FSQ_ TS = SFQ_ IS~ =S f()s™!
Ifo(A) ={A1,...,Ap } with
K; = max{ k : A has a Jordan block of size k with eigenvalue \; }

then dim(ker(A — A\;I)® stops increasing at K;. Write

z) = z - z—\)K z
f(2) de]g?\r(ee%nﬂL (}:[1( Ai) ) 9(z)

minimal polynomial of A

Then f(A) =p(A).

Theorem 2.6. Suppose T € B(X). Suppose o(T) = o1 U oo where the o; are disjoint compact sets. Then
there are idempotents Eq, Eo € B(X) such that E1 + Ey = I and E;T = TE;. We may also demand that the
M,; = Ran(E;) are complementary subspace (i.e. My N My ={0} and M1+ My =X%), TM; C M, (the

M, are invariant subspaces for T'), and if T; =T | M; € B(M;) then o(T;) = o;.

Proof. Find open U = Uy U Us with U; 2 0; and Uy NUs = 0. Let f € Hol(U) be given by

1 ifzeU;
Z
0 ifze U,

16



Let By = f(T) and By = [ — Ey = g(T) where g = 1 — f. Then f = f? and g = ¢, so By = E? and E; = E3;
also Ey + E5 = 1. Then since f(T)T =T f(T) we get ExT = TE;. Let M; = Ran(E;) = ker(E;_;). Then
E\Ey = (fg)(T) =0(T) =0

Also Ran(E4) C ker(Fs) and Ran(E2) C ker(E7); furthermore if € ker(E2) then z = Iz = (E1+Eq)x = Fyx,
so ker(Ez) C Ran(Ey).

Thus the M; are closed because ker(FE;) are closed. If © € M; N My then = Eyox = Eq(Eqx) =0. If
z € X then x = Fr1z + Esx € My + Ma; so My + My =X. Also T(E1X) = E1TX C E1X, so it’s invariant.

Claim 2.7. O'(Tl) =01-
Proof. If X € p(T) then I = (A —T)~Y(\I —T). So
Iy =1 I My=O\ —T) "M —T) | My = (M —T)"* | My) (Mat, — Th)

maps M into M rangeC. M

and likewise with right-multiplication. So A € p(T3). o
If A ¢ oy then L g analytic on a neighbourhood U; of o1 (and we may assume Uy Nos = ). Let

A—z
L ifze Uy
g(z) =427 .
0 if z € Uy

Then g(T)(AI —T) = f(T) where

1 ifzeU;
f(z)_{o if 2 € U,

So Ip, = g(T)MN —=T) | My = (M =T)g(T) | Mi. So A € p(T1), and o(T1) C oy; similarly we get
U(TQ) - ag9.
Subclaim 2.8. O'(Tl D T2) = O'(Tl) U O'(TQ).
Proof. Indeed, we have
M-—(T1oT)=MNMym, —Th) @& (M, — To)
If A € p(T1) N p(T3) then
A=-T)'=A-T)"e\A-Tp)"

If A € o(Th) then A xq, — Ty either is not bounded below, in which case A — T is not bounded below,
or has range not dense in My, in which case Ran(T") C Mz + Ran(A — T1) is proper. So o(T1) C o(T).
O Subclaim 2.8

So o(T1) = o1 and o(T3) = 03. O Claim 2.7
O Theorem 2.6

Suppose H is a Hilbert space and T' € B(H). Suppose U 2 o(a) is open and f € Hol(U). What is f(T)*?
Well o(T*) = o(T)* (complex conjugate) so U* D o(T*). Let f*(z) = f(z) for z € U*; so f* € Hol(U").

TODO 10. I think f*(z) should be f(Z).
Claim 2.9. f(T)* = f*(T%).
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Proof. For x,y € ‘H we have

S FICICRERTNE
™ Jc

- — [ @@=y d
T JC*

= o [ S @ - T) e

C*

= o [ T ey

T o

= (1(T")z,y)

Indeed, in general we have

/Cg(z)dz = limZg(fi)(Zi —2i—1)
=lim Y g(&)(z — %)
= lim Z g*(&)(Z — 7iz1) (where g*(2) = g(2))

:/69*(1U)dw
= —/* 9" (w)dw

where C* = —C (necessary since C has winding number —1 around o (7T*).) O Claim 2.9

Proposition 2.10 (Relative spectra). Suppose 1 € 2 C B are two Banach algebras with the same unit.
Then if a € 2 then oy (a) 2 om(a) and dog(a) C dop(a). (Here O denotes the boundary.)

Ezample 2.11. Consider A(D) with X C D compact with T C X; then we get an embedding A(D) —% C(X)
given by f— f [ X. Since T C X we have

llox () = sup|f(2)] = I/l am)
reX

We can thus consider A(D) € C(X). Consider z € A(D); we have 0 4(p)(z) = Ran(z) =D, and o¢(x)(2) =
Ran(ax(z)) = X.

We will need a definition before proving Proposition 2.10.

Definition 2.12. We say a € 2 is a right (left, two-sided) topological divisor of zero if there are x,, € 2 with
|z|| = 1 and ||z,al — 0.

Claim 2.13. If A — a is a right or left topological divisor of zero then it isn’t invertible (so A € o(a)).
Proof. If (A —a)~! exists then (A — a)(A — a)~! = z; 50 ||z]| < [[z(A — a)||[|(A — @)}, and

]

m <|lz(A = a)

So A — a is not a right topological zero divisor. The case of left topological zero divisors is similar.
O Claim 2.13
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Claim 2.14. If X € Ooy(a) then A — a is a two-sided topological divisor of zero.

Proof. Since A € Jog(a) there are A, € py(a) such that A\, — A. Then
An—a)'A=—a) = —a) "M —a+A=X) =14+ —a) ' (A= Ay)
is not invertible. So by Proposition 1.11 we get that

[A=An) A —a) [ >1

and 1
A —a)" Y| >
10w =07 2 =
Aside 2.15. This shows that 1
—a) "> -
I —a)™ || = Bt (. 0(@))
which is occasionally useful to know.
Let
(>‘n B -t
Ty = —
[(An —a)= ]|
Then 0\ 1A A )
14+ Ay —a)” —\n 1
(3~ o)l = | G < A A <20 A 50
[(An —a)~ ] [(An = a)~!]]
and A — a is a right topological divisor of zero. Since (A — a)z,, = x, (X — a) it is also a left topological divisor
of zero. O Claim 2.14

We are now ready to prove Proposition 2.10.

Proof. If A € py(a) then we have some (A —a)™! € A C B; s0 A € pg(a). So ox(a) C oy (a).

If A € 0oy (a) then A — a is a right topological divisor of zero by the claim. So it is a right topological
divisor of zero in 9B as well (using the same z,). So A € o (a). But there are A, € py(a) C px(a) with
An = A So A € o (a). O Proposition 2.10

3 Commutative Banach algebras

Let A be a commutative Banach algebra with unity.

Definition 3.1. A linear functional ¢: 2 — C is multiplicative if ¢(ab) = ¢(a)p(b) for all a,b € A and
p(1) =1.
Proposition 3.2. If ¢ is a multiplicative linear functional on A then ||| =1 (and so ¢ is continuous).

Proof. Since (1) = 1 we have ||p|| > d%‘” = 1. Suppose we had ||¢|| > 1. Then there is € 2 with ||z| <1

and |p(z)| > 1. Let a = 20 S0 p(a) =1 and [ja]| < m < 1. Let

b:ianeﬁl
n=1

Note that v = a + ab; so ¢(b) = ¢(a) + ¢(a)p((b) = 1 + ¢(b), and 0 = 1, a contradiction. So ||¢|| = 1.
O Proposition 3.2
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If ¢ is a multiplicative linear functional then ker(p) is a closed ideal of codimension 1; so ker(yp) is a
maximal ideal. Conversely, suppose M is a maximal ideal; so 1 ¢ M and A1 N M = 0. So b1(1) N M = 0.

The closure of an ideal is a (proper) ideal; in particular M is also an ideal. Indeed, if m € M then there
are m, € M with m,, — m; so if a € 2 then

am = limam,, € M
~—~—
eM
and M is a subspace, so M is a subspace. It is proper since MNby(1)=Mnb (1) =0.
But M C M and M is maximal; so M = M and M is closed. So /M is a field.

Aside 3.3. If 2 is a Banach algebra and J is a closed two-sided ideal then 2(/J is an algebra and a Banach
space. Also if a,b € % and we let a = a+ J and b = b + J then

at+ j )b+ _k
eJ €J

labll = lI(a+ J)(0 + D) < I( < inf fla+illlb+ &l = /1ol

TODO 11. Another inf somewhere?

So 2/.J is a Banach algebra.

So A/M is a Banach field; so by Proposition 1.30 we get an isomorphism ¢: A/M = C. So M has
codimension 1. Since % is an isomorphism we have ¢ (1) = 1. Define p,;: %4 — C by

A 28 C
X y

A/M

Then ¢ is multiplicative.
We have thus shown most of the following:

Theorem 3.4. There is a bijective correspondence between multiplicative linear funnctionals on A and
maximal ideals. Moreover, this set is non-empty.

Proof. We have seen that the map ¢ +— ker() maps multiplicative linear functionals to maximal ideals; we
have seen that this has inverse taking M to the above composition ¢jy.

Claim 3.5.

TODO 12. unlhd? [hd? trianglelefteq?
If I <A is a proper ideal then there is a maximal ideal M D I.

Proof. We use Zorn’s lemma. Consider the set J of proper ideals J <2{ such that J O I. If C is some totally
ordered (by C) subset of J then
J=\JJ

Jec
is an ideal. It is proper since 1 ¢ J for all J € C, s0 1 ¢ J'. So J’ is an upper bound for C in J. So by Zorn’s
lemma J contains a maximal element M, which is a maximal ideal. O Claim 3.5
But {0} is a proper ideal. So there is a maximal ideal. O Theorem 3.4

Definition 3.6. The collection My of all multiplicative linear functionals on 2l is considered as a subset of
A" endowed with the weak* topology; we call this the mazimal ideal subspace of .

Definition 3.7. The Gelfand transform is the homomorphism I': 2 — C(Myg) given by I'(a) = a where
a(p) = ¢(a).

Theorem 3.8 (Gelfand). Mg is a compact Hausdorff space, and T is a contractive homomorphism into
C(Mg) and T' () separates points in Mgy.
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Proof. If a,b € 2A then ab(y) = p(ab) = p(a)p(b) = a(©)b(¢). So I'(ab) = I'(a)L'(b). Clearly T is linear.
If p, € My with ¢, — ¢ then

p(ab) = lim g, (ab) = lim o (a)pa(b) = (a)p(b)

So My is a weak*-closed subset of by (2'); by Banach-Alaoglu theorem, we have that by (') is weak*-compact;
so My is weak™-compact. Also note that

a(p) = ¢(a) = limpq(a) = lima(p,)

so @ is continuous. To see that I' is contractive, note that

[all = sup [a(p)| = sup [p(a)| < |all
pEM PEMy

A

To see that I'(2 separates points in My, we note that if ¢, € Mg have ¢ # 1 then Ja € 2 such that
a(p) = p(a) # Y(a) =a(y). O Theorem 3.8

Theorem 3.9. Suppose A is a commutative unital Banach algebra. Then
1. a is invertible in A if and only if a is invertible in C'(My).
2. 0(a) = 0c(my) (@) = Ran(a).

3. ||a]| = spr(a).

Proof.

1. If @ is invertible in & then aa=! = 1. So I'(a)T'(a=!) = I'(1) = 1, and I'(a) is invertible. If a is not
invertible then J = a2l is proper since 1 ¢ J (this uses commutativity of (). So J is contained in some
maximal ideal, which corresponds to some ¢ € My with 0 = ¢(a) = a(y); so @ is not invertible.

2. Follows directly from previous item.
3. We have
[[all = supfa(p)| = sup{[A[ : A € o(a) = Ran(a) } = spr(a)
as desired. O Theorem 3.9

Definition 3.10. Suppose 2 is a commutative Banach algebra with unity. The radical of 2 is rad(2) =
ker(T) ={a:a=0}. We say 2 is semisimple if rad(2) = {0}; i.e. T is injective.
Proposition 3.11. rad(2) = {a € A : spr(a) = 0} = {a : lim||a”||# = 0} is the set of quasi-nilpotent
elements of A.

Ezample 3.12.

1. Consider 2 = C(X) with X compact and Hausdorff. Then for x € X we have e,(f) = f(z) is
multiplicative; so ker(e;) = { f : f(z) =0} is a maximal ideal. Suppose M is a maximal ideal; we can
define ker(M) ={x € X : f(z) =0forall f € M }. If x € ker(M) then M C ker(e,), and hence by
maximality we have M = ker(e,,).

What if ker(M) = (7 Then for all x € X there is f, € M such that f,(x) # 0. Let U, =
{y € X : f.(y) # 0}; these form an open cover of X, so by compactness there is a finite subcover

XCU, U---UU,,. Let
9= fofo. = |fn
=1 =1

so g € M. But then g is invertible; so M = 2( is not proper.

250

Hence M¢(x) = X as a set. The topology on M¢(x) is the weak™* topology induced by (', w*). The
sub-basic open sets in M¢(x) are { ¢ € Mg (x) : [p(a) — A| < }; this corresponds via the above to
{x € X :]a(x) — A| < r}, which are open in X because a is continuous. Hence the map v: X — My
we (implicitly) defined above is continuous, injective, and surjective; since both X and Mg are compact
and Hausdorff, we get that v is a homeomorphism. So M¢(x) = X.
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2. Consider ¢*(Z) with

TODO 13. This is a Banach algebra under convolution I guess?

0 else

§n(k){1 ifk=n

Note that 0, * 8 = dngm. If ¢ € My (zy with ¢(01) = a then ¢(d,) = @(d7) = ¢(01)" = ™.

TODO 14. connective

la™| < ||6n]l1 = 1 for all n; also |a| < 1 and |a~!| < 1 implies |a| = 1. We have thus determined a
function M1 (z) — T.

Conversely if |a| = 1 define

where

f = Zandn

(so || fll1 = Dolan| < 00). Then ||pqll = ||(@™)nezllco = 1 (using the fact that ¢1(Z) = l(Z)). If

ne”Z

then
(f*9)(n) = arbn s

keZ
This lies in ¢1(Z); indeed

ST Slarbackl =S lanl Y lbacil = I/l llgl:
n k n

k

absolutely convergent

Also

xg) =y a"(f *

neE”Z

= Z a” Z akbn_k

neZ keZ

= E akak g oz"‘kbn,k (since absolute convergence lets us rearrange the sum)
kEZ nez

= Z akak Z o/bz

keZ LeZ

= va(9)palf)

So ¢, is multiplicative. Also ¢ is determined by ¢(d1) = a. So this is a bijection My (zy — T. Also
© > ©(01) is continuous by definition of the weak* topology. Thus this is a homeomorphism.

What of the Gelfand transform? Well T': ¢1(Z) — C(T) by T'(f) = f where f(a) = @o(f). Write
o = exp(if) with 0 < 0 < 27; then

exp (i6)) Z ap, exp(ind)

n=—oo
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TODO 15. Here f(n) = a,?

The range of I" is the algebra A(T) of all continuous functions on T whose Fourier series is absolutely
convergent.

Theorem 3.13 (Wiener). If f € A(T) and f(exp(i@)) # 0 for all 0 then % e A(T).

Proof. We have R N N
oam (f) = on@(f) =ocer)(f) =Ran f

where the first equality is because the algebras are isomorphic, and the second is Gelfand’s theorem.
But 0 ¢ Ran f, s0 0 ¢ o4(1)(f), and f is invertible in A(T). 0 Theorem 3.13

3. Consider A(D) and ¢}(ZT) with Z* = Ny. Note that A(D) is the closure of the polynomials in C'(D). If
f € AD) then f,.(z) = f(rz) for 0 < r < 1 has Fourier series

f~ Z ay, exp(ind)

n>0

S~ Z anr"™ exp(infh)
n>0
So
fr(z) = Z anr"z"

n>0

converges absolutely and uniformly, and lies in the C(D)-norm-closure of C[z]. Also f is continuous on

D, and hence uniformly continuous. So f,. — f uniformly. Thus f is also a limit of polynomials.

So { z } generates A(ID) as a unital Banach algebra. So any ¢ € M 4(p) is determined by (2) = A; note
that |A| < ||z|| = 1. Conversely if A € D we let px(f) = f(N), which is clearly multiplicative. We get
MA(]D) =D.

The case ¢!(Z. ) is similar, using ¢(d;) = A; note here that |\ < [|6;]|1 = 1. We get ¢1(Z) — C(D)
given by mapping f = (a,)n>0 to

Fo) =3 ane”
n=0
for z € D; this is a contractive hoommorphism. If A € D then o, (f) = A()\) is multiplicative.

Theorem 3.14. Suppose A, B are Banach algebras; suppose B is commutative and semisimple. Then every
algebra homomorphism 0: A — B is (automatically) continuous.

Proof. We are given the Gelfand map I': B — C (M) is injective. Suppose ¢ € Mg. Then pod: A — Cis
multiplicative; hence [j¢ 0 0] < 1.

If 2 is not commutative then C = (ab — ba) is the commutator ideal, and is in the kernel of §. We get a
diagram

A/c —0 B
ﬂ/ J{w
2 C

with ¢ 0§ continuous (has norm < 1) and ||g|| < 1. So ||f¢] < 1.

We apply the closed graph theorem. If a,, € 2 with a,, — 0 and 6(a,,) — b, we must show that b = 0. If
p € Mg then

N a,)—0
(pob)( an )
—0

But also ¢(6(an)) — »(b); so ¢(b) = 0. This holds for all p; so T'(b) = 0. But T is injective; so b = 0. So by
the closed graph theorem we get that 6 is continuous. O Theorem 3.14
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Corollary 3.15. If 2l is a commutative semisimple Banach algebra then
1. A has a unique Banach algebra norm up to equivalence of norms.

2. Every automorphism of 2 is continuous.

Proof.

1. Let ||-|| be the norm on 2. Suppose that ||-|| is & norm on 2 which makes 2 into a Banach algebra
(2, Il is complete and [lab]] < lallJjb]l. Define j: (24 [1I) = (2, I} by 7(a) = a. Then j is an
algebra homomorphism, and is thus continuous by the theorem. So j is continuous, injective, and
surjective, and is htus invertible. Thus c|la|| < ||a|| < C]la]| for some 0 < ¢ < C.

2. Easy. O Corollary 3.15
Corollary 3.16. C°[0,1] has no norm that makes it a Banach algebra.

Proof. Suppose ||-|| is a Banach algebra norm on C*°[0,1]. Let j: C*°[0,1] — C[0,1] be j(f) = f; note that
C0,1] is commutative and semisimple. So j is continuous by theorem. Thus

I/l = sup |£(a)| < CIS|

Claim 3.17. The map D: C*[0,1] — C°°[0,1] given by Df = f' is continuous.

Proof. D is everywhere defined, so we can use the closed graph theorem. Suppose f, € C*[0,1] has
Il = 0 and Df,, = fI — g € C*°[0,1]; i.e. ||f} — gl| = 0. Suppose f,, € C*°[0,1] has ||f.|| — 0 and
Df, = fl —geC®0,1];ie. ||f, —gll = 0. Then || fulloc = 0, 0 ||f} — glloc = 0. 0 <2 <y <1 then

Yy Yy Yy Yy
[ = [ ruwaer o= )@t =Gaw) - fuo) + [ - f0a
Thus ” ”
[ st < 151+ 15+ o St <200+ o= Sl 10
Thus
Y
/ g(B)dt = 0
for all z,y; thus ¢ = 0. Thus D is continuous by the closed graph theorem. O Claim 3.17

So there is co such that || || < cal|f|l. Let f(t) = exp(2cat), so f' = 2caf. Then 2co||f|| = ||f']] < c2llfl;
so ||f]l =0 and f =0, a contradiction. O Corollary 3.16

3.1 The non-unital case
In this section, 2l is non-unital.
TODO 16. Are we still commutative?

Definition 3.18. An ideal T <2l is modular if /I is unital; i.e. there is u € 2 such that a — au,a —ua € T
for all a € A. An ideal is mazimal modular if it is maximal among modular ideals.

Remark 3.19.
1. If 2 is unital, then every proper ideal is modular.

2. If T is modular with unit « modulo I, then if I C J <2 with u ¢ J, then J is modular with unit «
modulo J.
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Theorem 3.20. FEvery modular ideal is contained in a maximal modular ideal, and maximal modular ideals
are closed.

Proof. Suppose I is a modular ideal with unit « modulo I. Suppose J is a proper ideal containing I; then u
is also a unit modulo J, and thus since J is proper we have u ¢ J.

We now use Zorn’s lemma. Suppose C = { J, } is a chain of modular ideals containing I. Then J = JC
is an ideal; since u ¢ J, for all a we get u ¢ J, so J is modular by previous remark. So by Zorn’s lemma we
get a maximal modular ideal containing I.

Claim 3.21. If M is modular with unit v modulo M, then by(u) N M = 0.

Proof. Suppose x € M with ||z —u|| < 1. Work in 2, = 2 & Ce, a unital Banach algebra containing 2.
Then e + (z — ) is invertible in 2, with inverse e + y for some y € 2. Then

e=(e+z—u)Ae+y)=re+y+ Az +zy— Iu—uy

Thus
I1-Ne=(y—uy)+ A +azy) —Iued
—_—— ——
eM eM
So A =1;s0u ¢ M, a contradiction. O Claim 3.21

In particular, we get u ¢ M, so M is also a modular ideal; hence if M is maximal then M = M is closed.
0 Theorem 3.20

Proposition 3.22. Suppose 2 is a non-unital commutative Banach algebra. If ¢ is a multiplicative linear
functional then ||p|| < 1.

Proof. Same as in the unital case for bounded above. O Proposition 3.22

Remark 3.23. In the unital case we required ¢(1) =1 for ¢ to be a multiplicative linear functional; this no
longer makes sense (since we’re non-unital), so we instead require ¢ # 0.

Theorem 3.24. There is a natural bijection ¢ — ker(yp) between My and mazimal modular ideals of 2.

Proof. If ¢ is multiplicative and non-zero then ¢: 2 — C is surjective, so C = 2/ker(yp) is unital; so
M = ker(p) is modular and has codimension 1, and is thus maximal.

Conversely, suppose M is a maximal modular ideal. So M is closed; so 2/M is a (unital, by modularity)
Banach algebra. We show that 21/M is a field, and is thus C by Mazur.

Suppose otherwise. Let ¢: 20 — /M be the quotient map; so there is a € 2\ M such that ¢(a) # 0
is not invertible. Then J = (p(a)) = ¢(a)A/M is a proper ideal; so ¢~ '(J) < A with M G ¢~!(J). But
A/~ 1(J) = (A/M)/J is unital; so ¢~ 1(J) is modular, contradicting maximality of M.

So 2A/M is a Banach field, and is thus C. So 2/M = C, and ¢ defines a multiplicative linear functional.

O Theorem 3.24

Theorem 3.25. Suppose 2 is a non-unital commutative Banach algebra; let A, = A B Ce be the unitization.
Then Mg = Ma, \ { ¢oo } where poc(a+ Xe) = X is the multiplicative linear functional on Ay with kernel 2.
Moreover, Mgy is the locally compact Hausdorff space with topology induced as a subset of Mg and Mg, is
the 1-point compactification of Msyy.

Definition 3.26. If X is Hausdorff and locally compact (i.e. every point x € X has a neighbourhood U such
that U is compact) then the 1-point compactification of X is the space Xy = X U{p} where U C X open is
open in X; and neighbourhoods of p have the form {p} U (X \ K) where K C X is compact.

Remark 3.27. X, is compact because if { U, } is an open cover, then there is ag with p € Uy,; s0 K = X1 \U,,
is compact in X, and the U, cover K. So there is a finite subcover K C Uy, U- - -UU,,,; then X C U, U---UU,,, .

X, is Hausdorff because if 2 € X then there is open U C X such that K = U is compact. Then z € U
and p € X \ K are separated by disjoint opens. (That z,y € X are separated by opens is just that X is
Hausdorff.)

25



Proof of Theorem 3.25. If ¢ € Mg then ¢ [ % is a multiplicative lienar functional. But ¢ [ 20 = 0, and
otherwise ¢ [ 2 # 0 (since 2 C ker(y) implies ¢ = puo). So Mg, \ { Yoo } restricts to elements of Mg If
p1 [ A =2 [ Athen for a + Ae € A4 we have

pr(a+Ae) = pi(a) + A = pa(a) + A = pa(a + Ae)

So 1 = wa.
Conversely, if ¢ € My we define @(a + Ae) = ¢(a) + A; one can check that ¢ — ¢ is a homomorphism.
We now verify the statement about the topology. In Mgy, the basic open sets have form

U(F,0) = {9 € Ma :|p(a;) —po(a;)] <1,1 <i<n}
where ¢g € Mg and F = {ay,...,a, } €2 is finite. In My, the basic open neighbourhoods are of the form
V(G 0) = {p € M, :|p(b;) —po(bi)] <1,1<i<n}

for pg € Mgy
TODO 17. A, ?
and G = {b1,...,b, } C Mg, is finite. Write b; = a; + Ase, where a; € 2 and A\; € C. Then

lp(bi) — wo(bi)] = [p(ai) + A — polai) — i

Soif F={ai,...,a,} then

U(F, o) if Jip such that |¢o(as,)] > 1

V(G,0) =V (F,po) = {U(F ©00) U{ s } else

Thus the open sets of Mg have form V'\ { ¢o } for V open in My . Thus the topology on Mg is induced
from My, . Since My, is compact and Hausdorff, we get that Mg is locally compact and Hausdorft.

If 2 € Mgy then by Hausdorfness there is U 3 z and V' 3 p open such that UNV = . So U C Mg, \V is
compact; so My is locally compact and Hausdorff. Neighbourhoods of ¢ have the form { ¢ } U (Mg \ K)
where K C My is compact. So Mg, is the one-point compactification of Mg. [0 Theorem 3.25

3.1.1 LYG)

Suppose G is a locally compact abelian grape; i.e.
e (7 is an abelian grape
e G has a locally compact topology

e (z,y) — zy is continuous G x G — G

1

e 1 +— x~ - is continuous G — G.

Then L!(G) is a commutative Banach algebra under convolution. It is unital if and only if G is discrete, in
which case J. is the unit. (Examples to keep in mind are G = T and G = R.)

Such grapes have a Haar measure: a translation-invariant o-finite Borel measure such that o(K) < co
if K is compact. We usually normalize so that if G is compact then m(G) = 1 and if G is discrete th;zn
d

)

m(e) = 1. When integrating with respect to m we will sometimes just write dz. (So on T we have dz = 5.

Definition 3.28. A character of a locally compact abelian grape G is a continuous homomorphism v: G — T.

If 7,8 are characters then (y8)(z) = v(x)d(x) is also a character; also (y~1)(x) = (y(x))~! = y(x) is also
a character. So the set G of all characters on G is a grape; we call this the dual grape of G.
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Theorem 3.29. Suppose G is a locally compact abelian grape. Then ~y € G determines

/)= /G (@)

Then @5 is a multiplicative linear functional in L'(G), and every multiplicative linear functional arises in
this way.

Proof. v(z) is continuous and |y(z)| = 1; so v € L>(G). So ¢, is a continuous linear functional on L'(G).
Suppose f,g € L'(G). Then

oy (f % g) = /ﬁ(f*g)( )dz

/ / )9y ) dydz

/ 1(y~12)g(y ™ x)dzdy (using Fubini and ~(z) = y(y)y(y "))

Il
\\

( / 7(t)g(t)dtdy (by translation invariance)
= @ Al

(Note that vy(x)f(x)g(y~tx) € Ll(G X (), so Fubini’s theorem holds.) So ¢, € Mp1(q).
Conversely let ¢ € M1 (). Since L'(G)" = L*°(G) there is x € L>(G) such that

- /G f(@)x(z)dz

with || x]lec = |l¢]| < 1. Also ¢ # 0 so there is g € L'(G) such that ¢(g) = 1. For f € L*(G) we have
p(f) = w(f)so(g)

/ /f Yo(y™'z) ydx

(fxg)(x)

= / f) / 9(y~'x)x(x)dzdy (Fubini)
G G

Let Lyg)(z) = g(y~'a be the (left) translation of g. A basic measure theory fact is that y — L, g is contained
in L'. (e.g. for f € L'(R) if we define f,(x) = f(z —y) then ||f — f,|| = 0 as y — 0.) Hence, continuing the

above equations, we find
f)= /Gf(y)w(Lyg)dy

Since y — L, g is continuous, we get that ¢ is continuous. Define v(y) = ¢(L,g) is a continuous map G — C.
A computation:

(9 Lag)(®) = [ 9(5)(Lng)(s™ 005
— [ttt s
— [oa gty e @) s
— [ ota 91907y s

- / (Leg)(5) (Lyg) (s~ 11)ds
= ((Log) * (Lyg)) (1)
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So

So «v is multiplicative. So

(@) = le(Leg)l < [lelliLzgll < 1- gl

So |y(z™)] = |v(z)™] < |lg|lx for all n € Z. So taking n > 0 we find |y(x)| < 1, and taking n < 0 we find
|v(z)| > 1. So y(z) € T, and ~ is a character. O Theorem 3.29

Corollary 3.30. G has a locally compact Hausdorff topology induced by this bijection with M (qy, with

Yo —+ 7y if and only of ¢, v, o in L' (G)" = L, which occurs if and only if v N v in L.
Definition 3.31. For f € L'(G) we define

RN ~

F) =Tf() = | f@)y()dz € Co(G)

the Fourier transform of f.
Example 3.32.
1. In ¢1(Z) we have 7 =T, done earlier.
TODO 18. ref

2. Consider L!(T). We claim T = Z. Indeed, for all n € Z we have 7,,(t) = t" a multiplicative map T — T.

ll-1l

Then LY(T) 2 C(T) 2 { fx(t) =tF : k € Z}, with L}(T) =span{ fx : k € Z} . Then
n 1 [ . 0 ifk#n
_ k — — =
O (fi) = /t t'dt = 277/0 exp(if(k —n))dd = {1 Hken

and

G0 = [ an =i foctan {1

So fr * fr = fr is an idempotent, and fj * fp = 0 with k £ £.
It ¢ € Mpi(r) then
e(fr)? = o(fx* fx) = () € {0,1}
and
e(fi)e(fe) = o(fu* fe) =0
if k# 4. TheAn ©(fx) is not zero for all k implies ¢ = 0. So there is a unique n such that ¢(f,) = 1; so
© = n. So T="27.

3. Consider L'(R). We claim R = R. If s € R we have ¢,(z) = exp(isz) € R. Suppose ¢ is a character

on L*(R); so ¢ is a continuous, multiplicative map R — T. So ¢(0) = 1, and Re(¢(z)) > % on some

[~6,4]. So
5
cs = /0 p(z)dz # 0
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So

Let

Then ¢'(t) = (is)p(t). So ¢(t) = cexp(ist) and 1 = ¢(0) = ¢ and 1 = |p(t)| = |exp(ist)| for all ¢; so
seR. So p = ;.

So as a set we have R = R. The topology on R is induced by (L*(R),w*). If s, — s in R then

exp(isat) — exp(ist) uniformly on [—n, n] for all n € N. So exp(isqt) N exp(ist) in L. If g € Cpo(R)
(i.e. has compact support) then g(t) exp(—isat) — g(t) exp(ist) uniformly. Thus

en(9) = / g(t) exp(—isat)dt / o(t) exp —istdt = o, (g)

But we can approximate f € L! by g € Cpo(R). So R — R is continuous.

Lemma 3.33. If f € LY(R) and g € L>=(R) is uniformly continuous and limy,_o(f * g)(z) = 0.
TODO 19. Defer until later?

Lemma 3.34 (Riemann-Lebesgue). If f € L'(R) then

lim f(z)=0

|z|— 00

Proof. Suffices to prove this for g € Cyo(R); so ¢ is uniformly continuous with supp(K) C [—n, n]
TODO 20. I assume K = supp(g) instead?

and if € > 0 there is § > 0 such that whenever |z — y| < § we have |g(x) — g(y)| < e. If |z is big then
i) = [ g(t) exp(-iat)at

= —/g(t) exp(—ix(t—i— g))dt

Q .
=— [ glt— ;) exp(—ixt)dt

/
%/ g(t) — g(t — g)) exp(—ixt)dt

If |Z| < 6 (so |z| > Z)) then

e—0

1/ 2 )
gl <y [ clexp(-istide < 2 F
n—3o

[0 Lemma 3.34
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In particular if ¢, v, s in L then either there is a cofinal subset sg such that sz — 0o, which by
Riemann-Lebesgue implies ¢, v, 0, a contradiction, or it is eventually bounded. Look at the cluster
points in R. If s5 — ¢ and sgr — s with s # ¢ then @, w—> ¢ and Doy w—> Psy SO Psqa 7L*> s; all this
implies the topology on R is homeomorphic to R.

TODO 21. Connectives.

Theorem 3.35. Suppose G is a locally compact abelian grape; let G be the dual grape with the w* topology.
Then

1. (z,7) = y(x) is continuous on G x G.
2. If K C G is compact and C C G is compact then

N(K,r):{'yeé:|7(:E)—1|<rf0rallx€K}
NC,ry={zeG:|y(z) =1 <7 forallyeC}

are open in G and G, respectively.
3. {N(K,r)y : K C G compact,r > 0,7 € CA?} is a base for the topology of G.

4. Gisa locally compact grape (i.e. (y1,72) — 71751 is continuous.)

Proof.
1. Write f,(y) = f(z~1y). Then

:/ fz(t)wdt
G
-/ e g

/ f(s)y(zs)dt (translation-invariance)
/ (s

Claim 3.36. (z,7) — fZ(’y) is continuous on G x G.

Proof. Fix (zg,7). Translation is continuous in L!(G), so there is open V' 3 zq such that ﬂfw_fwo h <e
for all z € V. Since 7y is weak*-continuous there is open W 3 ~yq such that |f5, (v) — fz, (70)| < € for
all vy € W. Then if z € V and v € W we have

Bo0) = Fa o)l < 1R ) = T+ 1T () = Fo(30)]
]/ Jult) = Foo (07000 \+s

< ||fl fl‘o”l +e
< 2e

as desired. O Claim 3.36

_ <fx(v)>
)
Pick f so that f(%) # 0. So f(w) # 0 on some neighbourhood W 3 ~y. So () is the quotient of

continuous functions with non-zero denominator near -y, and is thus continuous at (zg,o)-

Now
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2. Suppose K C G is open and r > 0. Then
N(K,r) = {7: ()~ 1] <re € K }

Suppose 9 € N(K,7); so |yo(x) — 1| < r for z € K. But for each = € K, continuity of (z,v) — ()
means there is are neighbourhoods V,, © x and W, > ~y such that for all y € V. and v € W, we have
|v(y) — 1] < r. The V, form an open cover of K; so there is a finite subcover K C V,, U--- UV, . Let

W:ﬁWxi

i=1
which is open in G and contains vo. So if v € W then |y(z) — 1| < r (since & € Vj, for some i and
W C W,,). So W C N(K,r).

The second part is quite similar.

3. Without loss of generality we may assume vy = e. Suppose W is open in G with 0 € W. So there are
fis--+y fn € LY(G) such that

Oe{v:1fily)—file) <1L,1<i<n}CW

We use the fact that Coo(G) is dense in L'(G); we replace f; by continuous, compactly supperted
function. Let K be compact and contain

| supp(£:)

i=1

Let
B 1

- max; | fillx
If v € N(K,r) then for 1 <i < n we have

Tt~ Fule)| = \ | 506 - var
< /K A (8) — 1]t

<l fillx
<1

Soee N(K,r) C{v:|fi(y) = file)l < 1,1 <i<n} CW. So the N(K,r) form a base for the
topology.

4. Suppose y1,72 € G. Suppose 7172*1 e N(K,r)fyw;l, If 1 € N(K,§)y and 75 € N(K, §)y2 then
717" S N(K, 5)N(K, 5)"'mv, . But

N(K.5) = {7: (1) -1 < 5.1 € K}
N(K,5)={y: ) -1l < 5.t K}
N(E. D) ={v: ™) -1l < S.teK)

So for v{ € N(K, %)~ € N(K,%)~" we have
_ ror
72 (#) = 1 = (1) =9 (0)] < ) =1+ 1 = ()] < stg ="

So

My, ' C N(K, §)N(K» 5) Myet € N,y !

and continuity follows. O Theorem 3.35
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4 Banach *-algebras

Definition 4.1. A Banach *-algebra is a Banach algebra 2 with a continuous involution a — a* such that

1. (a*)* =a.
2. (Aa)* = Aa* and (a +b)* = a* + b*.
3. (ab)* = b*a*.

Example 4.2.

1. C(X) and Co(X) with f*(z) = f(z).

2. B(H) where H is a Hilbert space, and the involution is the Hilbert space adjoint.

3. Consider L}(R).

Proposition 4.3. L*(R) is a Banach *-algebra with involution f*(z) = f(—=x

transformation is a *~homomorphism.

Proof. Easy to check the *-algebra properties. Also

Fis) = / 1 (&) exp(—isz)de
/ e
- [ s

/f ——

x) exp(—isz)dx

x) exp(isx)dx

|
\">

as desired.

). Moreover the Gelfand/Fourier

O Proposition 4.3

Definition 4.4. If 2 is a (non-unital) Banach algebra, a bounded (norm 1) approzimate identity is a net
{ en } such that suplles| < oo (< 1) such that ae, — a and e,a — a for all a € .

Proposition 4.5. e, = §Xx[—p-1,,-1] form a norm 1 approzimate identity for L'(R).

Proof. Indeed, if f € L'(R), then since translation is continuous then for any & > 0 there is § > 0 such that

Ifz = fllh <eif |z] <. The if% < ¢ we have
(eoxf =Dl = [ 5t~ w)esw)da ~ (0
R
:%7lft—x x——/f do
9 [
=2 [ 0 s
Thus
len* f—fl < / / | fu(£) — f(£)|dzdt
[[fe—Ffll1<e
<e€
as desired.
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Most of these facts hold for arbitrary locally compact grapes, but we hope to save ourselves some
technicalities by working just with R.

Lemma 4.6. If f € L*(R) and g € L=(R) then f * g € Co(R) and is uniformly continuous.
Proof. Note that

I(f+9)(@) = (f*9)(y)] < /|(f(l’*t) — fly—1)g(t)[dt

< lglle 15~ 2) = 7t = e

= |lgllec |l fz = fyllr
= HQHOOHJC_fy—»Lnl

—0asxz—y—0

So f * g is uniformly continuous; it remains to show that f € Cy(R). Suppose for contradiction that there
were ¢ > 0 and |z,,| — oo such that |f * g(z,)| > €. By uniform continuity there is § > 0 such that |z —y| < §
implies |f * g(x) — f * g(y)| < 5. Without loss of generality assume |z,, — z,,,| > 26 for all n # m. Then the

(2 — 6,2, + §) are disjoint, and
Tp+0 zn+5€
[ gz [T Sar—es

n Tp—0
So
Tpn+6 0
oo>Hf*gH1zZ/ [frgl > ed =00
n>1 Tn—0 n—1
a contradiction. So f * g € Co(R). O Lemma 4.6

Theorem 4.7. L'(R) is semisimple.
Proof. Suppose 0 # f € rad(L*(R)); i.e. spr(f) # 0 (by Theorem 3.9). Let

n
Up = §X[,L 1] e L™

be a norm 1 approximate identity for L'(R); so f x u,, — f, so there is ng such that f * u,, # 0 and
[ *upn, €rad(LY(R)). Replace f with f * u,, so without loss of generality we have f € Co(R) N L(R) and
spr(f) = 0. Define f* € LY(R) by f*(t) = f(—t). So f x f* € rad(L*(R) N Cp(R); so

ﬁﬂ@z/ﬂwwwm

=/ﬂW®&
— /12

>0

Note that
I1£115 = /If(t)llf(t)ldt < N fllsoll 111

is finite, since f € L*(R) N L>®(R).
Define F: L' — C by F(g) = f * f* * g(0). Then

[F(9)] = ‘/f*f*(t)g(—t)dt’ < f o lloollglly

so F' is continuous. Define a sesquilinear form on L!(R) by (g, h) = F(g * h*), which is then continuous by
the above. Then

(g, g) = fx [ xgxg (0)=(fxg)*(f*9)"(0)=|f*gl3>0
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Then

Y(h,g) = f*[f* *h*g(O)

//f FYOh(s)g™(—s — t)dsdt
//f I )g(s + t)dsdt

P(h,g) = // f* () )g(s + t)dsdt
= [ [ @5y om s)gts + s
=1(g,h) "

So 1 is conjugate linear. Then by Cauchy-Schwarz we get [¢0(g, h)| < 1(g, g)2¢(h, h)2. Then

Y (Un,un) = (f * un) * (f * un)*(0)

1+ wnll3

1
norr 2
5 [ I8

I1£113

IN

TODO 22. f,7 f57?
Let K = ||f||3. Then
|F(g)| = lim |F(g* uy)|
’I’L‘)OO\A,_/
P(g,un)

. PNE B
Tim [F(gx g7)[2 [t (un, un)|?
K?F(g+g")?

1 1 1
K1§(K§F(g*g* *g*g")?)

IIA
M

IN

KiKTF((g+g*)?)T

K*KiK% . K7 F((g*g*)2" )=
K7 5 fllooll(g % g%)2 17
K|\ f * f*]lcospr(g * g°)?

VARV

Take g = f * f*. Then
F(fxf)=fxf*fxf0)=|f*f3>0
a contradiction. So rad(L'(R)) = 0. O Theorem 4.7

5 Non-commutative Banach algebras and their representation
theory

Definition 5.1. A left ideal J of a (Banach) algebra 2 is modular if there is e € 2\ .J such that A(1 —e) C J.

Remark 5.2.

1. If 2 is unital then every proper left ideal is modular.
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2. If J is a 2-sided ideal which is left and right modular then the same e works for both. Indeed, given
e1,ez € A\ J such that A(1 —ey) C J and (1 — e2)?A C J, we have es — eseg € J and e1 — ezeq € J; so
e1 —eg € J. Then

(1*61)211 (1762)2[+(62*61)91g J+J:J

as desired.

Proposition 5.3. Suppose A is a non-unital Banach algebra; let A, = A+ C1 be the unitization. If I is a
proper ideal of Ay with I L A then Iy = I NA is a modular left ideal of A. Conversely if Iy is a modular left
ideal of A with right modular unit e then I = Iy + C(1 — e) is a proper left ideal of A4.

Proof.

(== ) Since Iy & I and 2 has codimension 1 in 4, we get that Iy has codimension 1in I. Pick a+A1 € I\ Iy;
note that A # 0. So 1+ A tael. Let e=—-A"ta. SoA(1 —e) =A(1+A"ta) CINA = Iy; so I is
modular.

(<=) Iy is proper, so I is proper (by a dimension argument). Then 2, I = 2Al; + 2A(1 —e) + (C1)I C
Ip+1+1=1. So I is a left ideal. O Proposition 5.3

Corollary 5.4. If I is a left modular ideal of 2 with right modular unit e then by(e) N1 = 0.

Proof. Suppose a € T has ||a —e|| < 1. Then (1 —e) +a € I + C(1 — e) is contained in a proper left ideal of
A, ; but (1 —e)+a =1+ a— eis invertible in A4 by Proposition 1.11, a contradiction. (Proper ideals don’t
contain invertibles.) O Corollary 5.4

Proposition 5.5. If I is a left modular ideal with right modular unit e and I C J with J a proper left ideal
then J is modular with the same unit e. Hence I is contained in a mazximal modular left ideal, and such ideals
are closed.

Proof. Note that J N bi(e) = 0. Indeed, otherwise by proof of the previous corollary we would have
J + C(1 — e) = 2 which is impossible since J is proper; so J + C(1 — e) has codimension > 1. Then
2A(1 —e) C I CJ. Maximality is by Zorn’s lemma, and we note that .J is still proper since it is disjoint from
b1(e), so maximal implies closed. O Proposition 5.5

Definition 5.6. If X is a vector space and £(X) the space of linear maps from X — X, a representation of
2 is a homomorphism 7: 2 — £(X). This makes X into a left A-module by a - = = 7(a)z. We say (X, ) is
a trivial module if X = C and m = 0. We say X is irreducible if 0 and X are the only submodules and X is
not trivial.

Proposition 5.7. Suppose X is an irreducible left A-module.
1. If 0 £ 29 € X then Axg = X.

2. I, ={a:a -0 =0} =kery(x9) is a mazimal modular left ideal with right modular unit e for any e
satisfying e - xg = xg.

3. ker(m) =, kerx(x) is the intersection of mazximal modular ideals (and is thus closed). Also ker(mw) =
I, A ={a:aA C I } for any o # 0.
Proof.

1. RAzg is a submodule of X, so by irreducibility either 2z = X or Axo = {0}. Suppose the latter; then
Cxg is a non-zero submodule and is thus X, so X is trivial, a contradiction.

2. Pick e such that exg = 2o by (1). Then for a € 2 we have
a(l —e)xzg = axy — alexg) = axg —axg =0

So A(1—e) C I, and I, is modular. Suppose J 2 I is a left ideal; then Jxg # 0 is a submodule, so
Jxg = X. So there is f € J such that fag =2p. SoA—-Af=A(1—-f) C L, CJ;80ACAf+J C J,
and J = 2. So I, is maximal.
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3. First part is evident. If a2 C I, and x € X, we can pick b € 2 such that bz

= z. Then

ax = abxry C (a)xg = {0}; so a € ker(w). Conversely if a € ker(w) then for all b € 2 we have
0 = a(bzg) = (ab)xg, so ab € I,,. So ker(w) = I, : 2. O Proposition 5.7

Proposition 5.8. If I is a maximal modular left ideal in 2 then there is a continuous representation ™ on a

Banach space X with a vector 0 # xo € X such that I = I, and ker(w) =1 : 2.

Proof. Let X = /I as a Banach space. Define 7(a)(b+ I) = ab+ I. (Check that this is well-defined.) Then

Im(a)ll = sup [jab]|
bl <1

< sup infllal[[|b+ |
llol|<1 *€T
< lall

So it is continuous. Let e be a right modular unit for I; let o = é. Then

IL,={a:aé=0}={a:aecl}=1I

So ker(m) = I, : A =1:2. O Proposition 5.8

Definition 5.9 (Talked to Ken after the fact). Suppose 2 is a Banach algebra. A Banach module is an
2-module X that is also a Banach space such that for any a € 2 the map ¢,: X — X given by z +— ax is
a bounded linear operator on X and furthermore the map 2 — C(X) given by a — ¢, is continuous. A
continuous representation is a continuous algebra homomorphism 7: 2 — C(X) for some Banach space X; i.e.
a representation such that each m(a) lies in C(X) (rather than just £(X)) and 7: 2 — C(X) is continuous.

Theorem 5.10. Suppose X is an irreducible A-module and xo # 0; so by the above I, ={a:a-xo =0} is
a mazimal ideal. Then 0: A1, — X defined by O(a+I) = a - xg is a well-defined module isomorphism and
the norm ||azo|| = ||a + I|| makes X into a Banach space. Moreover if X is already a Banach module then 0

18 a Banach space isomorphism.

Proof. Since I, - xo = 0, we get that 6 is well-defined. If € X then there is b such that x = bxg. So

O(a Q‘,./) = 0(ab) = abxy = a(bzo = ab(b)
eI

So 6 is a morphism of modules; it is bijective since
0(a) = 0(b) < axy = bxo
<~ (a—b)xg=0
= a—-bel,,
<~ a=b

The proposed norm is just the norm on 2/I and /I is a Banach 2-module.
If X already has a norm ||-||x and the action is continuous then ||| < co. Thena

10(a)l|x = [la-xo|lx = ll(a+i)zollx

for all 2 € I,. So
10(@)ll < infli7lllla + ill|zollx = (I llllzoll)llal

So 6 is continuous and bijective, and is thus invertible by the Banach isomorphism theorem.

Ezercise 5.11. Check that 6! is also a morphism of bimodules.
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So 6 is an isomorphism of Banach modules. [0 Theorem 5.10
TODO 23. I think I = I, throughout.
Definition 5.12. A 2-sided ideal J <2l is primitive if it is the kernel of an irreducible representation.

Corollary 5.13. The primitive ideals of 2 have form I : A = {a:aA C I} for I a maximal modular left
ideal.

Definition 5.14. The radical rad(2l) is

ﬂ ker(m)

7 irreducible

We say 2 is semisimple if rad(A) = {0}. We say 2 is radical if 2 has no irreducible representations.
Example 5.15.

1. Consider 2 = %,, C M,,(C) = B(C") consisting of the upper triangular n x n matrices; we use the norm

1T = sup ||Tx]|

lzll<1

What are the left ideals of €,,? Suppose we have such I, and A € I. Supose a;,j, 7 0. Recall the
matrix units F;; = e;e}, so Ejjz = (x,e;)e;; note Ey; € T,y if i < j. Then

FEiigAej, = aigjei

Aeio = E :aio,jej
J

But

So

TODO 24. Some conclusion about upward closed sets of indices within a column.

For i < j <n we have J; = {T € T, : t;; = 0} is a maximal 2-sided ideal of codimension 1, and is
thus maximal as a left ideal. Then we have 7: ¥,,/J; — C given by T + t;;; then 7; is irreducible and
ker(m;) = J;. Suppose I is a left ideal but I Z J; for all j. Then there is A; € I such that a;; # 0; so
E;;jA; € I. But Ran(Ej;A4;) = Ce; = E;;A; is the set of matrices with 0 outside the " column and 1

ajj

in the (4, j)-entry (and upper triangular).

0

So 1
I A= Z iEjjAj

a;j
and A is upper triangular with 1’s on the diagonal. So A is invertible, and I = %,,. So the J; are the
maximal left ideals. So

rad(%,) = ﬂ ker(r;) = T2
j=1

the strictly upper triangular matrices.
2. Consider 2 = M,,; the only ideals are {0} and M,,.
Claim 5.16. The mazimal left ideals have form I, = {A e M,, : Ax =0} for x #0.
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Proof. Clearly id: M,, — B(C™) is irreducible. So the I, are maximal modular left ideals. Conversely
suppose [ is a left ideal but for all z # 0 there is A, € I such that A,z # 0. Let ey,...,e, be
the standard basis; let A e;7 = u # 0. Let B = |jul|"?eju*; so BA¢,e1 = e;. Then B, and hence

Cy = BA,,, have rank 1; so C; = eqv} for some vy with (vq,e1) # 0.
Take z L v1; then A,z # 0; find rank-1 By (again can take ||z|~?ex*)
TODO 25. Really?

and let Cy = By A,; so Cy = eqv} for some vg with (ve, z) # 0. So { vy, vs } is linearly independent.

Now take x L {1, vz }, etc. We build e;v} € I such that {vy,...,v, } are linearly independent and

z : *
€i1}j

is invertible. So I = M,,.

O Claim 5.16

The representation on M, /I, is just the identity representation because id: M,, — B(C™). Fix x # 0,
and get I, = { A: Az = 0} maximal modular. So id is isomorphic to a representation on M, /I,. So id

is the unique (up to equivalence) irreducible representation of M,.

Theorem 5.17. Suppose A is a Banach algebra, and consider 1 € Ay if A is not unital. Then the following

are equivalent:

(1) a €rad(2A).

(21) a is in the intersection of all mazimal modular left ideals of 2.
(2r) a is in the intersection of all mazimal modular right ideals of 2.
(3) o(ab) ={0} for allbe 2.

(3%) o(ba) ={0} for allbe 2.

(41) ab — X is left-invertible for all A # 0 and b € 2.

(41’) ba — A is left-invertible for all A # 0 and b € 2.

(41) ab — X is right-invertible for all A # 0 and b € 2.

(41’) ba — A is right-invertible for all A # 0 and b € 2.

TODO 26. Mathmode for description labels?
Lemma 5.18. If A # 0 and ab — X is left (right) invertible then so is ba — .
Proof. Let u € A satisfy u(ab — A) = 1. Then bua(ba — A) = bu(ab — X\)a = ba. Then

(bua—l)(ba_/\):ba—(ba—/\) .

A A
as desired.
Hence
e 41 is equivalent to 4I’.
e 4r is equivalent to 4r’.
e 3 is equivalent to 3’.

Proof of Theorem 5.17.
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(1) < (21) Done. Indeed we have

rad(2) = ﬂ ker(m) = n{ ker(wr) : I maximal left modular }

7 irreducible
(3) = (41,4r) Immediate.

(1) = (41) Suppose there is A # 0 and b such taht ab — X is not left invertible. Then J = 2A(1 — A~ 1ab) =
2(ab— \) is a proper ideal and has A~ab as a right modular unit; so .J is left modular, and is contained
in some I maximal left modular. Then we have 7: 2 — L(2(/I) with

m(a)b=ab= X #0
so a ¢ kerm, and a ¢ rad(2).

(41’) = (21) Suppose there is a maximal modular left ideal I with a ¢ I. So @ # 0 in /I, which is an

irreducible module. So there is b € 2 such that ba = 1. So ba — 1 € I is contained in a proper left ideal;
so ba — 1 is not left invertible.

(1) = (3) Suppose a € rad(A), b € 2A, and A # 0. Since 1 implies 41 we get that ab — A has left inverse u;
so 1 = u(ab— \) = uab — A\u, and uab € rad(2) (since a € rad(2A)). So Au = uab — 1 is left-invertible
again since 1 implies 41. So there is v such that v(Au) = 1; so w is left- and right-invertible, and is thus
invertible. So ab — A = u~! is invertible.

(21) <= (2r) Use the fact that 3 is left-right blind. O Theorem 5.17

Definition 5.19. If X is a non-trivial Banach 2l-module we say X is topologically irreducible if the only
closed submodules are {0} and X.

Ezample 5.20. There are topologically irreducible Banach modules that aren’t algebraically irreducible. (i.e.
what we called irreducible before.) Consider F the free monoid on {z,y }; this is the set of words 4y - - - iy,
with £ > 0 and each i; € {z,y}. We define v - w to be their concatenation: if v =iy ---i; and w = j; -+ J¢

then v-w =iy ---igjy - - - jo. Let A = £1(FF) be the set of

Z ApU

vGF;

HZ)\UU ’ = Z|>‘”| < 00

We define v - w = vw, so (\v)(pw) = (Au)vw. Define 7: £1(F) — B(f2) by 7(x) = S the unilateral shift and
m(y) = S*. So

subject to

7T($L'k1 y£1 . kayenl — Skl (S*)el . Skvn (S*)gnz
If € is the empty word

w(e)=1
= m(yz)
=5"S
m(zy) = SS*
(e —axy)=1-58"
= epep

So

m(z" (e — zy)y’) = SieoeS(S*)j = (Sieo)(SjeE‘)) = ei€;

So Ran/;(Fy) DO span{ E;; } = K is the space of compact operators, which acts transitively. So it’s
topologically irreducible. But X = ¢4 (F;)eo C g £2; so it’s not algebraically irreducible.
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Theorem 5.21 (Schur’s lemma). Suppose 2 is a Banach algebra and X an irreducible A-module. Let
D={T e L(X):Ta=aT forallacA}. Then D=CI.

Proof. Note that D is an algebra (it’s a subspace, and closed under multiplication). We claim that D C CI.
Suppose T' € D\ {0}; so TX # {0} is a submodule and a(Tz) = T(ax) € TX. So TX = X; so
ker(T') # X is a submodule. If z € ker(T') then T'(az) = a(Tx) = 0; so ker(T) = {0}, and T is invertible.
But now
alT™ ' =T Ta)T' =T 'ATT' =T""a

so T~' € D, and D is a division algebra.
Now, X is irreducible, so without loss of generality we take X = 21/I,,, for any 0 # zg € X.

TODO 27. ref
(Recall I, = {a €A :axg=0}.) In particular the 2-action is continuous on X. So if T' € D then

IT|| = sup ||Tzl| = sup [T Jzoll < sup  [(z+i)Taoll < sup  inf [lafl[|Tzol| = [[Tol| < oo
0

at_1
llzfl<1 llat-Lq <1 o llat-Lq <1 llatLsg || <1 E€ Lo

So D C B(X). Also D is closed: if T;, € D and (T3,), — T then

al = lim a7, = lim Th,a=Ta
n— oo n— oo

So D is a Banach division ring containing CI; so D = CI by Mazur’s theorem. 0 Theorem 5.21
Definition 5.22. Suppose 2 is a Banach algebra and X a 2-module. We say 2 is
e transitive if Axg = X for all xg # 0

e k-transitive if whenever x1,. ..,z linearly independent in X and y,...,yr € X there is a € 2 such
that ax; =y; for 1 <1 <k

e strictly transitive if it is k-transitive for all £ > 1.
Theorem 5.23 (Jacobson density theorem). If X is an irreducible A-module then 2 is strictly transitive in
2.
Standing assumption: X is an irreducible 2-module.

Lemma 5.24. Suppose x1,x2 € X are linearly independent. Then there is a € A such that ax; = 0 and
azrs # 0.

Proof. Suppose not; suppose ax; = 0 implies azg = 0. Define T: X — X linear by T'(az1) = axs for all
a € 2; this is defined on X = 2z, and if azq = bz then (a — b)z; = 0 implies (a — b)ze = 0 and axy = bx,.
So T is well-defined and linear. If b € 2 and x = ax; then

T(bx) = T(bax1) = blaxs) = bT(axy) = bTx

SoTb=0bTand T € D =CI. So x5 € Czxy, a contradiction. [0 Lemma 5.24
Lemma 5.25. Suppose n > 3 and x1,...,x, are linearly independent in X. Then there is a € A such that
ar|y =axe =+ =arp_1 = 0 # ax,.

Proof. Proceed by induction on n. Our induction hypothesis: if B is any Banach algebra and Y an irreducible
B-module and y1,...,yp—1 € Y linearly independent then there is b € % such that by; = - -+ = by, 20 #
byn71~

Lemma 5.24 gives the base case n = 2.

For the induction step, let M = span{ xi,..., 2,2 }. Let

n—2
‘B:ﬂ I, ={a:aM =0}
=1 closed left ideal

Let Y = X/M. Then if b € B we have b(x + M) = bzx € bx + M; so Y is a B-module with b(z) = bz.
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Claim 5.26. Y s an irreducible B-module.

Proof. Suppose 0 #y; € Y and yo € Yy say y1 =2+ M and yo =2’ + M. Then = ¢ M and x1,...,2Z,_2
are linearly independent and span M; so x1,...,%y_2,x is linearly independent. So by induction hypothesis
(for 2 acting on X) there is a € A such that ax; = -+ = axp_2 = 0 # ax. Then a € B and ax # 0, so there
is ¢ € A such that cax = x’. Then ca € B and

(ca)yi(ca)i = cix = ' = 1,

TODO 28. Dot cax

So B is transitive in Y. So Y is irreducible. O Claim 5.26

Now x1,...,x, are linearly independent and z,,_1,x, are linearly independent in Y = X/M. 'Since
Y is an irreducible B Lemma 5.24 yields that there is b € B such that bx,,_; = 0 and bz,, # 0. So
bry = bxg = -+ = bxp_o = 0 and bx,—1 € M but bz, ¢ M. So either bx,_; = 0 or {bx,_1,bx, } is
linearly independent. By Lemma 5.24 there is ¢ € 2 such that cbx,_1 = 0 and ¢bx,, # 0. So if a = ¢b then
ary =+ = ar,_1 = 0 # az,, as desired. 0 Lemma 5.25

Proof of Theorem 5.23. Suppose x1,...,x, are linearly independent in X and y1,...,y, € X. Then by
Lemma 5.25 there is a; € 2 such that

Oif 4 # 5
a;T; = o .
z; #0 ifi=j

By transitivity there is b; € & such that b;z; = y;. Let

a = ijaj cA
j=1

Then az; = y; for 1 < j <n. So A is n-transitive for n > 1. O Theorem 5.23

5.1 Automatic continuity

Theorem 5.27 (B. Johnson). If X is a Banach space and w: 2 — B(X) makes X an irreducible A module
then m is continuous.

Proof. First note that ker(7) is primitive, and is thus closed. We have the following commuting diagram:

A —L A/ ker(m)
B(X)
Then X is also an irreducible 2/ ker(7)-module. If 7 is continuous then m = 7 o ¢ is continuous. So without
loss of generality we may assume 7 is injective.
If dim(X) < oo then dim(B(X)) = (dim(X))? < oo; since 7 is injective we get dim(2) < oo, and linearity
of 7 implies continuity.

Suppose then that dim(X) = oco. For z € X define a linear map 7,,: A — X by T,a = az. Let
Y ={xz € X :T, continuous }; so Y C X is a subspace. Also if b € A then

[Tozall = llabz|| = T (ab)|| < | Tz[l[labll < (T [llI6])]a]

So z € Y implies bx € Y, and Y is an A-submodule of X. So Y is {0} or X.
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Case 1. Suppose Y = X and z € X. Then

sup ||[w(a)z|| = sup [laz| = ||Tz| < oo
lali<1 lafl<1

Hence by the uniform boundedness principle we have

7]l = sup [lw(a)]| < oo
lall<1

and 7 is continuous.

Case 2. Suppose Y = {0}. Since dim(X) = oo there are linearly independent unit vectors x1, za, 3, . . ..
By the Jacobson density theorem there is a,, € 2 such that a,x; =0 for 1 <i < n and a,z, # 0. Let

so a, € Ly, and a,, & Lyy1. Then a,x, # 0so T,
that

is unbounded. Pick b, € A with [|b,|| < £ such

n—1
(Z biai> iy
i=1

nfEn

lonanznll = [|Tapa, bnll > n +

Let -
b= Z bl'ai
i=1

This converges since ||byan| < 27". Then

i=1

i>n

But for ¢ > n we have a; € L,, and then L,, are closed left ideals; so b;a; € L,, for i > n, and

i b;a; € L,

i=n—+1
and hence
oo
( Z biai> Ty = 0
i=n—+1
But now

>n

n—1 o)
||7T(b)|| > ”bzn” = Zbiaixn + bpanz, + ( Z biai> Tl = ||bnan$n|| - |

i=1 1=n+1

n—1
<Z bi(h‘) e
i=1

a contradiction. So this case cannot hold, and we land in the first case. 0 Theorem 5.27

=0

Definition 5.28. Suppose X,Y are Banach spaces and T: X — Y is linear. The separating space is

6(T)={y €Y : there are x,, € X such that z, — 0,Tx, — y}

Remark 5.29. By the closed graph theorem T is continuous if and only if &(T") = {0 }.
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Theorem 5.30 (Johnson). Suppose Ak, B are Banach algebras and 6: A — B is a surjective homomorphism.
Then &(0) C rad(B).

Proof. Suppose (X, ) is an irreducible Banach module for 8. Then 7 o § is an irreducible representation,
making X an irreducible 2%-module. (Indeed, if 7 # 0 in X and x5 € X then there is b € B such that
bx1 = xo; but there is a € 2 such that 6(a) = b, and hence (7o 8)(a)z1 = x2.) So mob: A — B(X) is an
irreducible representation; so by Johnson’s theorem we have 7 o 6 is continuous.

If b € G(6) then

w(b) = lim 7(f(a,)) = lim (wo6) (a,)=0
continuous —0
So
be ﬂ ker(7) = rad(B)
7 irreducible
as desired. [J Theorem 5.30

Corollary 5.31 (Johnson). Every surjective homomorphism from a Banach algebra 2 to a semisimple
Banach algebra B is continuous.

Proof. Given such 6: 2 — B we have G(6) C rad(*B) = {0}. So by the closed graph theorem 6 is continuous.
0 Corollary 5.31

Corollary 5.32. FEvery automorphism of a semisimple Banach algebra is continuous.

Corollary 5.33 (Uniqueness of norm). If B is a semisimple Banach algebra then all Banach algebra norms
are equivalent. i.e. if ||-|| and ||| are two Banach algebra norms and ||| makes B semisimple then there is
0 < 1 <o < oo such that ep||b]| < bl < e2|d|| for all b € B.

Proof. id: (B, [|-]|) — (B,]]-||) is a homomorphism and is thus continuous and bijective; so 6 is invertible.
OO0 Corollary 5.33

Fact 5.34. Even in the commutative case, this last corollary fails if we drop the assumption of semisimplicity.

6 C*-algebras

Definition 6.1. A C*-algebra is a Banach *-algebra 2l such that ||a*a| = ||a||? for all a € 2.

Remark 6.2. [lal* = [la*al| < [la*[[[lall, so la]l < [la*|| < [la**]| = [lal}; so [la*|| = [|a]-

Ezxzample 6.3.
(1) Consider B(H) for H a Hilbert space. If T' € B(H) then

IT11? = IT*|IT|
> |77
=sup{ (T"Tz,y)| : z,y € H,|z| = |y =1}

> sup {(T"Tz,x)|
lz]|=1

— sup |(Tz, T}
[lz||=1

= sup HTJCH2
lz]|=1

= |T?
So |77 = ||72].-
(1) If A is a closed self-adjoint subalgebra of B(H) (i.e. if A € A then A* € ) then A is a concrete
C*-algebra.
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(1”) If T € B(H) we define C*(T) = alg{ I, T,T*} . (Here alg means “the algebra generated by”.)

(2) If X is locally compact and Hausdorff then Cy(X) is a C*-algebra with f* = f for f € Co(X). Then

£ £l = sup|f(z)f(z)| = sup|f()]* = || £]?
reX

Definition 6.4. We say a € 2 is
o self-adjoint if a = a*
e normal if aa® = a*a
e unitary if a*a =aa* =1

e positive if a = a* and o(a) C [0, 00).

Proposition 6.5. If A is a C*-algebra without unit then AT = A + C1 has a C*-algebra norm.

Proof. Setting (a + A1)* = a* + A1 makes 2" a Banach *-algebra. Let A% act on 2 by left multiplication:
a+ A~ Lo+ A € B(2). This yields a Banach *-algebra norm

lla+ Al = [1La + Ml

Then
llall = sup flabll < sup lall 8] = llal
[[oll<1 [[olI<1
bed
and )
)
llall > [la H laell' _ NlalZ_ g
= e = T

So |[all = llall. But

lla +X[I* = sup [lab+ b
Ibl<1

= sup [[(b*a* + Ab*)(ab + \b)||
llbll<1

= sup ||b*(a*a + Xa* + Xa + M)
llo]f <1

< sup |(a*a + Xa* + Xa + [AD)D||
o<1

= lla*a+ Xa® + Aa + AP

= [I(a+A)*(a+ A
< i(a+ )" lfla + Al
= lla + AJl*
So [[(a+A)*(a+ N = [la + AJ|*. O Proposition 6.5

Theorem 6.6. If 2 is an abelian C*-algebra then the Gelfand transform T': A — Co(My) is an isometric
*_isomorphism.

TODO 29. extra word? onto? continuous?
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Proof. First suppose 2 is unital. Then My is compact and T': 2 — C(Myg) is a (unital) homomorphism
with Ran(T") separates points. Let a = a* € 2 and let u; = exp(ita) for ¢ € R. Then

*

N ita)" —ita)"
iim [y i) oy,

n>0 ’ n>0

Then uju; = exp(—ita) exp(ita) = exp(0) = 1, and similarly w,uy = 1. If ¢ € My then p(u:) = @(exp(ita)) =
exp(itp(a)); so lexp(ite(a))| < |lug]] =1 for all t € R. So ¢(a) € R; i.e. I'(a) is real-valued and thus self-
adjoint. If a € 2 is arbitrary we let x = % be the “real part” of a and y = %57~ the “imaginary part”.

Then z = 2* and y = y* and a = = + ¢y. Then

Ia*)=T((z +iy)*") =T(x —iy) = E(Q—iF( )=T(z) +il'(y) =T(z+iy) =T(a)"

v
€Rr €R
So I preserves *.
Suppose a — a*. Then ||a2|| = |la*al| = [|a||2. Since a* is selt-adjoint we have [Ja%]| = [|(a2)2]| = [|la2||2 =
lla||*; continuing thus we get [|a®” || = ||a]|?>". So

la]| = lim[|a*"|*" = spr(a) = [T(a)| = sup [p(a)|
" PEMy
Note that ¢(a) runs over o(a) since Ran(I'(a)) = o(a).
If a € 2 is arbitrary then ||a||? = ||a*a|| = ||T(a*a)| = ||T'(a)||?; so T is isometric.
So I'(2() is a norm-closed, self-adjoint subalgebra of C(Myg) which separates points. By Stone-Weierstrass
theorem we get I'(2A) = C(My).
Suppose now that %[ not unital.

TODO 30. caselist

Then 2 lies in the unitization AT and Mg+ = My U { @ } is the one-point compactification of the
locally compact space Mg (where poo(a+ A) = A). Then by above we have I': 2T — C(Mg+ is an isometric
*-isomorphism. But I'(A) = { f : f(¢oo) = 0} has codimension 1. Since 2 has codimension 1 in 2" we have
I'(A) has codimension 1 in T'(A) = C(My).

TODO 31. pluses?
So I" maps A onto Co(Mg) = { f € C(Mg+) : f(poo) =0} O Theorem 6.6

Corollary 6.7. Suppose 2 is a unital C*-algebra (not necessarily abelian) and n € A is normal. Then if

C*(n) = alg{1,n,n* }”‘H then there is a homeomorphism a(n) to Mc= () that sends X € o(n) to px where
oa(n) = AX. Thus C*(n) is *isomorphic to C(o(n)).

Proof. C*(n) is a unital abelian C*-algebra. Let X = M¢«(y,). If ¢ € X then ¢(n) = A € o(n). But then
p(n*) = X so o(p(n,n*)) = p(A\, A) where p € Clz,y]. But such p(n,n*) are dense in C*(n); so since ¢ is
continuous we have that ¢ is determined by A. So the map X — o(n) given by ¢ — ©(n) is bijective and
continuous and is thus a homeomorphism. So

where n(\) = A (s0 o = idg(p))- O Corollary 6.7
Corollary 6.8. The C*-algebra C*(n,n*) is isomorphic to Co(o(n)\ {0}).

Corollary 6.9 (Continuous functional calculus for normal elements). Suppose 2 is a unital C*-algebra and
n € A is normal. Then there is a *-isomorphism I'"*: C(c(n)) — C*(n). So for f € C(o(n)) we define

f(n) =T71(f).
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Note that I'"*(id,(,)) = n and T=1(2) = n*. Also I'"*(p(2,%)) = p(n,n*). This extends to all continuous
functions.

Corollary 6.10. If n is normal and f € C(o(n)) then o(f(n)) = f(o(n))
Corollary 6.11.

1. If n is normal then ||n| = spr(n).

2. If a = a* then o(a) CR.

3. If u is unitary then o(u) C T.

Proof.
L ln]l = IT(n)[| = spr(n).
2. If a = a* then I'(a) is real-valued, so o(a) = Ran(I'(a)) C R.
3. If uu* = u*u = 1 then |T'(u)|? = 1 so ¢(u) € T for all ¢, and thus o(u) C T. O Corollary 6.11

6.1 Operators on a Hilbert space
If T € B(H) and z,y € H then

(Tx,y) = %(<Tx+y,x+y> +i(T(x +iy), » +iy) — (T(x —y),z —y) —i(T(x —iy),r — iy))

3
1
=1 > (T (@ +ity), 2+ ify)

This is the polarization identity.

TODO 32. missing parens on Tx +y?

Proposition 6.12. If U € B(H) then the following are equivalent:
1. U is unitary.
2. (Uzx,Uy) = (x,y) for allz,y € H and UH = H.

3. U is isometric (i.e. ||Uz|| = ||z|| for all x) and surjective.

Proof.
(1) = (2) (Uz,Uy) = (U*Ux,y) = (x,y). Since U is invertible we get that U is surjective.
(2) = (3) Take x =y.

3)= (1) ||z|* = (Uz,Uz) = (U*Ux,z) for all z. The polar identity yields (Ix,y) = (U*Uz,y) =
(Uz,Uy) for all z,y. So I = U*U. So U is bijective and thus invertible; so U* = U~! and U is
unitary. [ Proposition 6.12

Proposition 6.13. If N € B(H) is normal then ||[N*z|| = | Nz|| for all x € H. Hence ker(N*) = ker(N).
Proof. We have

|N*z||? = (N*z, N*z) = (NN*z,z) = (N*Nx,2) = (No, Nz) = | Nz|?
as desired. [J Proposition 6.13
Corollary 6.14. If N is normal and Fredholm then ind(N) = 0.
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Proof. T is Fredholm if Ran(T) is closed, nul(T") = dim(ker(T")) < oo, and nul(T*) = dim(H/TH) < oo.
Then ind(7T) = nul(T') — nul(T™). O Corollary 6.14

Proposition 6.15. Suppose A € B(H). Then A = A* if and only if (Azx,z) € R for all z € H.
Proof.

(=) We have
(Az,z) = (x, Ax) = (A"x,x) = (Az, x)

So (Az,x) € R.
(<=) We have

(A*y,z) = (y, Az)
= <Aw Y)

szk (x4 i*y), x + i*y)

eR
—fz (z +i*y), z + i*y)
k=0
13
= 7 2 A + (=0)f2), it (y + (<) )
k=0

—_
w

=1 D (=) AWy + (—i)Fz), (y + (—i)*z))
k=0
Ay, x)

—~

as desired.
[0 Proposition 6.15
Corollary 6.16. If A € B(H) then oc(A*A) C [0,00). So A*A is positive.
Proof. Note (A*A)* = A*A is self-adjoint. If r > 0 then
(A*A+rDz,x) = (A" Az, z) + (rz, x)
= [[Az||? + r|l=||?

> rl||?
So A*A 4 rI is bounded below, and thus has closed range and thus is surjective and is thus invertible. So

—r ¢ o(A*A) CR. Also ker(A*A +7I) ={0} so A*A + rI has dense range, and thus Ran(A*A + rI)*
ker((A*A+rI)*) ={0}. So o(A*A) C [0, 0)

TODO 33. Tidy
O Corollary 6.16

6.2 Positive elements

Proposition 6.17. Ifa € 2 and a > 0 then there is a unique b € 2 with b > 0 such that b*> = a.

Proof. Let f(x) = 22, which is continuous on o(a) C [0, ||la]|]. Let b = f(a). Note that f(z) = lim p,(z) with
pn € Clz] and p,,(0) = 0. So p,(a) € A even if 2 is not unital. So f(a) € A. Then b? = f%(a) = id(a) = a.

TODO 34. I guess we’re implicitly using the fact that (f o g)(a) = f(g(a)).
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For uniqueness, suppose ¢ > 0 with ¢? = a. Then x = id(z) = f(2?). In C*(c) we have

as desired. [0 Proposition 6.17

Proposition 6.18. Ifa = a* then there is ar,a_ € A such thatay > 0,a— >0, ara_ =0, anda =ay —a_.

Proof. Let f € C(c(a)) be

z ifx>0
T
0 ifxz<0

Let ar = f(a) and a_ = a; — a = g(a) where

g(x){o if >0

—x else

so f—¢g =1id. Then f > 0 so ay > 0; likewise ¢ > 0so a— > 0. Also ay —a_ = (f — g)(a) = a and
ara_ = (fg)(a) = 0 since (fg)(z) = 0. O Proposition 6.18

Lemma 6.19. If a = a* € 2 then the following are equivalent:
1. a>0.
2. a =02 for some b > 0.
3. For all ¢ > ||a]| we have |cl —a|| < e. (Work in 2 if 2 is not unital.)

4. There exists ¢ > ||a|| such that ||cl —al| < e.

Proof.
(1) = (2) Done.

(2) = (3) If f(z) = ¢ — 22 we have

el —al = If(®)[| = sup [f(N)] < sup |c—2®|=c
A€o (b) A€o ]lall?]

since o(b) C [0, [|b]]] and [[b]|* = [[6%(| = [|a].
(3) = (4) Clear.

(4) = (1) We have o(a) CRNb.(c) =[0,2¢] CRT (since |lc —al < ¢). So a > 0. O Lemma 6.19
Corollary 6.20. Ifa,be A witha >0 and b >0 thena+b > 0.

Proof. There is r > ||a|| such that r1 —a < r, and there is s > ||b|| such that ||s1 — b|| < s. But then

[(r+ )1 = (a+b)] <[lrl —af + st —b| <7+
Soa+b>0. [0 Corollary 6.20
Theorem 6.21. If a € A then a*a > 0.
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Proof. Write a*a = by —b_ where by >0, b_ >0, and b;b_ = 0. Pick ¢ > 0 such that 2 =b_:let t =ac.
Then ¢ = f(b—) where f(z) = /z = limp,(x) where p,, € C[z] and p,(0) = 0. Then

chy = limpy(b_)by = hm(%)(b_)b_b+ ~0

Now
t*t = c(a*a)c = c(by —b_)e=—cb_c=—c*=-b* <0
So o(t*t) C (—o00,0]. Write t = x + iy with = Re(t) and y = Im(¢) self-adjoint. Then
't = (x —iy)(z +iy) = 2* +y* +i(ey — yz)
tt* = (x +iy)(z — iy) = 2* +y* — i(zy — yz)
So t*t + tt* = 222 + 2y? > 0 by corollary.
TODO 35. ref

So tt* = (t*t + tt*) — t*t = 222 + 292 + b2 > 0. So o (tt*) C [0, c0).
But o(t*) U{0} = a(tt*) U{0}

TODO 36. ref
So o(t*t) = {0}. Then |t|> = |[t*t| = spr(t*t) = 0, and t = 0. So b> = 0, and b_ = 0. Thus
a*a="by > 0. O Theorem 6.21

Definition 6.22. If a =a* and b =b* wesay a < bif b—a > 0.
Corollary 6.23. Ifa <b in 2 and z € A then z*ax < x*bx.

Proof. Since 0 < b— a there is ¢ > 0 with ¢* = b— a; then 2*bx — 2*az = 2*(b—a)x = z*ccx = (cx)*(cz) > 0.
O Corollary 6.23

Corollary 6.24. If0 < a <b and a,b invertible then b= < a~!.

Proof. Since b > 0 we get from spectral mapping theorem that b~! > 0, and hence b=z = /b1 is well-defined.
TODO 37. ref?

Then previous corollary gives

N
N
Nl

0<b 2(b—a)b 2 =1— (b 2a?)(a?b ?)

So (b7%a¥)(a¥b™%) < 1. So [la2b™ 3|2 = ||(b~2a¥)(aZb77)|| < 1.

Aside 6.25. If ||| < 1 then 0 < z*x < 1. Since z*x > 0 and ||z*z| = ||2]|*> < 1 then o(z*z) C [0,1]; so
z*z < 1. (Indeed, 1 — z*x = g(x*z) where g(t) =1 —t for t € [0,1]; so g > 0.)

TODO 38. Better environment

Thus azb~la? = (a%b_%)(b_%a%) < 1. Thusb~! = a_%(a%ba%)a_

NI
SIS

<a:la"?=aL. O Corollary 6.24
Definition 6.26. An approzimate identity for a C*-algebra 2 is a net ey where 0 < ey <1 and

liinﬂa —aey]|=0= li>r\n||a —exall
for all a € 2.

Theorem 6.27. Suppose 2 is a C*-algebra. Then there is a bounded approximate identity for 2.
Proof. Let A={ecUA:e>0,|e|| <1}.
Claim 6.28. A is directed by <.
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Proof. Suppose a,b € A. We want to find ¢ € A such that a < cand b < c. Let f: [0,1) — RT be f(t) = 1

-t
let g: R —[0,1) be g(t) = &5 = 1 — 135. Then

1 1 1-1¢

g(f(t))zlfl_i_f(t) 1+ﬁ 71—7t+t:

Let y = f(a) 4+ f(b) > 0; let ¢ = g(y) > 0. Then o(c) = g(o(y)) C [0,1); so ||| < 1, and ¢ € A. Since
y > f(a) we get 1 +y > 1+ f(a). Also note that if > 0 then 14+ 2 >0, and o(1 +x) C [1,00); so 1 +x is
invertible. Applying this to y and f(a) we get (1 +y)~! < (a+ f(a))~!. Then

c=g(y)=1-1+y) " 21-(1+f(a) " =g(f(a) =a
Similarly we get ¢ > b. So A is directed. O Claim 6.28

If0<a<be A and z € 2 then
= b||? = [|(a* — 2*b) (2 — ba)[| = [|=* (1 — b)x||

Aside 6.29. 0 < a < b does not imply that a? < b?. Indeed, if
(11
=11
2 1
=)

s o (2 2\ (5 3)_ (31
b "‘(22 3 2)7\1 0
has determinant —1.

Now, 0 < 1—b <1 so since 22 < x on [0,1] we have (1 —b)? < 1—b; so 2*(1 — b)%2x < 2*(1 — b)z. Thus

then a < b but

o = bal® = 2" (1 — b)%a]
< l*(1 = b)a
<|lz*(1 — a)z|| (since 1 —a >1-10)

< [lz]"[|l= - az|

Now suppose that = > 0. Let a, = g(nz) = 22; let

14+nx’
nt 2 t
hit)=t|1— t= < —
®) ( 1+nt> 1+nt — n
Then
le(1 — an)z] = @) < sup |a(e)] < 12N
te[0,[|z|[] n

If € > 0 choose n such that @ < 2. Then for all b € A with b > a,, we have

X
o — bl < a1 — an)af < 12 < c2
n

so ||z — bz|| <e. So

limbzr = x
beA

Also *
lim xb = (lim bx) =z ==z
beA beA
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For general x € A we have

& — xb]|> = [la(1 = b)[I* = [|(1 = b)z*z(1 = b)[| < |1 = b][|(z*z) — (z*2)b]| — 0
——
<1
as desired. [J Theorem 6.27

Corollary 6.30. If 2 is a separable C*-algebra then 2 has an approximate identity {e, : n > 1} with
0<e, <ept1 <1.

Proof. Exercise. O Corollary 6.30

6.3 Ideals and quotients
Definition 6.31. An ideal of a C*-algebra is a closed two-sided ideal.

Lemma 6.32. Suppose J < is an ideal of A. Then J is self-adjoint.

Proof. Let B = JNJ*; so B is a C*-algebra. (Indeed, it is closed and self-adjoint, and if a,b € 9B then
ab € J and ab € J* since J,J* are ideals.) Let { ey } be an approximate identity for 8. Then B D JJ* since
33 CIAC Jand JJ* C AT = () =J",

Suppose a € J and ey is in our approximate identity. Then

(aa* —aa®ey) —ex(aa”™ — aa™ey)||

(1 —-ex)(aa™ —aa”ey)]]

< Jlaa® — aa™ ey
~—
€B
—0

So a*ey — a*, and a*ey € J since ey € B C J. So since J is closed we get a* € J. So J = J*.
0 Lemma 6.32

Aside 6.33. If 0 < a < b then ||a|| < ||b]|]. Indeed, we have o(b) C [0, ||b]|]] so b < ||b||1 and a < ||b]|1. So if
r > [|b]l then 7 —a > (r — [[bI)1. So o(r —a) C [r — ||b]l,00), and o(a) C (—oo, [|bll) N R* = [0, [[b]l]. So
llall = spr(a) < b]-

There’s probably an easier proof of the above; he came up with this on the spot when asked.

Lemma 6.34. Suppose A is a C*-algebra; suppose x,a € A with x*x < a. Then there is b € A such that
x=bai and ||b]| < ||a]3.

_1
Proof. Let b, = z(a+ 1) 2q%. (Note that a >0 so a + 1> L invertible in 2. Then

<a + i) 7%11% = f(a)

where
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for n,m > 1. Then

1
l|bn — bmH2 = ||zdpmai ”2
= Ha%dnmx*xdnma%H
< |laidpmadnmat ||

3
= |ldpma* ||2

1 _1 2
1 2 3 1 2 3
= a+ — a* —(a+ — al
n m

= an(a) - fm(a')Hz

— 0

as n,m — oo, where

o

fulz) = —— € Col0, ||a]]
x +

3=

S00 < fu < fap1 < i, and f, — z uniformly on [0, ||a]]. Thus f,(a) = a% in 2, and (f,(a)), is a Cauchy
sequence. So (by,), is Cauchy, and there is a limit

b= lim b, €A
n—oo
Then
lz = ba¥ || = lim ||z — bya’ |
n— 00
_1
. ( 1) 2,
= lim |z —z(a+ — a?
n— 00 n
L)
2
= lim x<1—<a+> aé)
n— 00 n
1 1
T2 1 1 T2 1
= lim 1—(@—!—) a? |x*x 1—(a+> az
n—o00 n n
N\ N\
< lim (1—<a+> a§>a<1—<a—|—) a§>H
n—o00 n n
= 5, ()
=0
where
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uniformly on [0, [|a]|]. So z = ba%. Also

||an2 = ||b2bn||

1(
a4

Q
+
| —
~
|
Nl=
8
*
8
N\
IS
+
S|
~
|
[N
IS
W=

, 1\ "2 1\ .
< a4(a+> a<a+> a*
n n
= gn(a)
< lgnllo,jal
1
< [laz]]
1
= |||l
where .
2 <
gula) = "5 5 Ve
uniformly on [0, ||al|]. O Lemma 6.34

Definition 6.35. A C*-subalgebra 8B C 2 is hereditary if whenever b € 8 with b > 0 and a € 2 with
0 < a < b we must have a € B.

Corollary 6.36. Ideals are hereditary subalgebras of 2. Indeed, if J<A and z*x < a € J then x € J.

Proof. Write x = bai with a € J; so ai € Jand x € J. Then 0 < b < a implies b: € J,and thus b€ J. So J
is hereditary. O Corollary 6.36

Theorem 6.37. If 2 is a C*-algebra and J QA then A/J is a C*-algebra.

Proof. 3 = J*, so 2A/J is a *-algebra: if @ = a + J then (@)* = a* = a* + J. This is a Banach algebra with

the quotient norm. Let { ey } be an approximate identity for J.
Claim 6.38. ||a|| = limy|ja — ae,||.

Proof. aey € J, so ||a|| < |la — aey||. For all € > 0 there is b € J such that |ja — b|| < ||@|| + e. Then since
0 <ey <1 we have

lim[la — aex|| < lim[|(a = b)(1 — ex)l| + [[b — bex|
< lim(]|a]] +€)(1) + lim]|b — be, |

T
= llal) +<
But ¢ > 0 was arbitrary. So
limlla — aex|| = [|a]
as claimed. O Claim 6.38
Then
la*al| = [[(a*a)]|

= li§\n||a*a —a*aey|
—_———
a*a(l—ey)

> 1i§n||(1 —ex)a*a(l —ey)||
= limfla(1 — )]

= [lall?
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Then
lall? < [[(@)*all < [I(a)*lall = fla]l?

where for the last equality note that J is self-adjoint, so dist(a*,J) = dist(a,J). Thus [|(a)*al = ||@|?, and
the C*-identity holds. So 2(/J is a C*-algebra. [0 Theorem 6.37

Theorem 6.39. Suppose w: A — B is a non-zero *-homomorphism between C*-algebras. Then ||w|| = 1. So
J =ker(m) is a closed two-sided ideal. Let T be the induced map on the quotient; so the following diagram
commutes:

A —1 A/

NE

THen 7 is an isometric *-monomorphism (i.e. injective *-homomorphism), and w(2A) is a C*-subalgebra of

B.

Proof. If a = a* then og(n(a)) C oy(a): indeed, if A ¢ o(a) then (a — A\)~! € 2, and 7((a — \)~7!) =
(m(a) —A)~t. (If 2 is not unital, define 74 : A, — B, by 71 (1) = 1; now we can sensibly talk about spectra.)
Then

Im(a)|l = spr(m(a)) < spr(a) = [|al|

For general a we have
7 (@)* = [7(a*a)| < lla*a]| = [la]|?

So ||| €1 and 7 is continuous. So J is closed, and 2(/J is a C*-algebra; so 7(a) = w(a) is well-defined and
injective.

Claim 6.40. 7 is isometric.
Proof. If not, then there is a € 2/J such that
r=7@)]* = [7((@)a)ll < s = llal* = l|(a)"al
so s € o((a)*a).
TODO 39. How’d this happen?
Let

Then
[f((@)*a)[|= sup [f(z)|=1

z€o((a)*a)
I7(f((@)*a)ll = 1f(x((@) )]l = [0} =0
as o((a)*a) C [0,1].

TODO 40. ?
So 7 is not injective, a contradiction. So7 is isometric. O Claim 6.40
So in particular m(2() = 7(A/J) is closed, and is thus a C*-subalgebra of B. O Theorem 6.39

Corollary 6.41. If 3<2 and B a C*-subalgebra of A then B +J is a C*-subalgebra, and B/BNJ = B+J/3J.
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Proof. Let q: 2l — 2(/J be the quotient mapping; so ¢ is a *-homomorphism. So ¢ | B: B — A/J is a
*_homomorphism. Then using the above theorem there is an isometric *-homomorphism such that the
following diagram commutes:

— R
\
\
\
\
\
\
\
\
\

B/ ker(q | B) = B/BNJ

—_ —

So ¢(B) = B+J/J is closed; so B+J = ¢ 1 (q(B)) is a closed self-adjoint subalgebra, and is thus a C*-algebra.

O Corollary 6.41

Corollary 6.42. Ifa € 2 C B with A, B unital C*-algebras then oy(a) = op(a). i.e. C*-algebras are
inverse-closed: if a € A and a=' € B then a~! € A.

Proof. We know o (a) C og(a); it remains to show that if there is b € B such that ab = ba =1 then b € 2.

Case 1. Suppose a = a*. Then € = C*(a,a™!) is abelian and contained in B. Then 0 ¢ o¢(a); so there is
f e €([=llall, [|al]]) such that

f(z) = {:1:1 if x € o¢(a)

0 ifx=0

Then a=! = f(a) in €. This also makes sense in C*(a) since f is a limit of polynomials p, with
pn(0) =0. So f(a) € C*(a); so a is invertible in C*(a) C 2.

Case 2. For the general case, suppose a € 2 and a~! € B. Then (a*a)~! = a~!(a™!)* is invertible in B. But
a*a > 0 so by the previous case we have (a*a)~! € 2. Then a=! = (a*a) ta* € A. O Corollary 6.42

7 Concrete C*-algebras

TODO 41. Section title?

7.1 Review of weak and strong operator topologies

Suppose H is a Hilbert space. We can endow B(H) with the weak operator topology by declaring T, WoT,
if (Thx,y) — (Tx,y) for all z,y € H; this is the weakest topology such that T +— (Tx,y) is continuous for all
x,y € H. The basic open neighbourhoods around 0 are given by

O0,21,...,Tn,Y1,---,Yn) ={T € B(H) : (Tx;,y;)] <1lfor1<i<n}

We can also endow B(H) with the strong operator topology by declaring Ty, SOT, ¢ Tox — Tx for all
x € H; this is the weakest topology such that T — Tz is continuous for all x € H. It is determined by
seminorms p,(T) = || Tz||; or

p(T) = <Z||Txi||2>

for x1,...,x, € H. The basic open neighbourhoods aroud 0 are given by
O(z1,...,2n) = {T D T < 1}
i=1

We also have the strong* topology SOT™ given by T, SO 7 if and only if Ty, SOT, 7 and T SOT,

The basic open neighbourhoods around 0 are
O(x1,...,T,) = {TZHTxiH? <1, T ]| = 1}
i=1 i=1
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TODO 42. I think the second sum should be norms squared? Also in the next proof

Ezample 7.1. If S is the unilateral shift then S" WOT, 0 and (S*)™ 59T 0 but S™ % 0 since the S™ are

isometries, so ||S™z| =1 4 0.
Lemma 7.2. Suppose p: B(H) — C is linear. Then the following are equivalent:

1. There exist x1,...,Tn,Y1,---,Yn € H such that

2. ¢ is WOT-continuous.
3. ¢ is SOT-continuous.

4. @ is SOT*-continuous.

Proof.
(1) = (2) Easy.
(2) = (3) Easy.
(3) = (4) Easy.

(4) = (1) We have ¢~ !(D) is a SOT*-open neighbourhood of 0. So there is x1,...,z, € H such that

¢~ (D) 2 {T STz < 1Y 1T ]| < 1 } D {T:Tw;=0,T"z; =0} C ker(e)

Then the following diagram commutes:

B(H /
H @ (1)
where T'— (Tx1,...,Tzy, T*x1,...,T*x,) — ©(T') and the latter map is continuous. We extend the

map p(B(H)) — C to ¢ on H(") by Hahn-Bnach. Then there are w; € H*,z; € H such that

V(ULy ey Upy V15 e ey V) = Z(u,,wﬁ + Z(vi,zi>
Then

n n n

gO(T) = Z(Tac“wl> + Z<Zi,T*a7i> = Z(Tz,,a%)

i=1 i=1 i=1
as desired.

Improved version:

TODO 43. Delete the first version?

Note that ¢~1(DD) is a basic SOT*-open neighbourhood of 0 and

¢ (D) D T:Z||Tmi||2<1and Z||T*yj||2<1 O{T:Tz; =0=T"y;,1<i<n,1<j<m}

i=1 j=1
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and this last is a closed subspace. Then we want ¢: H(™ @ (H*)(™) — C such that the following
diagram commutes:

B(H) 4 C
\ z[;//
H™ @ (H*) (™)
where p(T) = (Tx1,...,Txn, T*y1,...,T*Ym). Then T*y; represents the linear functional in H given
by z — (x,T*y;) = (Tx,y;); the map T — T*y,; € H* is linear.
Define ((Tx1, ..., TZn, T*y1, ..., T*Ym)) = @(T). Then ker(p) C ker(y), so 9 is well-defined. If

> ITz|?* <1
> IT ;) <1

then Y(Tx1, ..., TTn, T*y1, ..., T*ym)) €D, so [Y(Tx1,...,TTn, T*y1, ..., T*ym))| < 1. So ||| < 1.
We can thus by Hahn-Banach extend to a linear functional on H(™ @ (#*)("™) of norm < 1. But
(H™ @ (H*) ™)) = (1) ™ @ H™): so there are uy, ..., u, € H* and vy, ..., v, € H such that

n

1/)((9:17 ey Ty Yt - ~;ym)) = Z<xlvul> + Z<Uj7yj>

i=1 j=1
Then
P(T) =((Tzr, .., Tan, T Y1, Tyn)) = > (T u)+ Y (05, Ty;) =Y (Tagu)+ Y (T, y;)
as desired. O Lemma 7.2

Corollary 7.3. B(H) with topologies WOT, SOT, and SOT* have the same closed conver sets.

Proof. They have the same continuous functionals, and thus the same closed half spaces H = { T : Re(¢(T')) <
r }. By the geometric Hahn-Banach theorem, every closed convex set in a locally convex topological vector
space is the intersection of the closed half spaces containing it. O Corollary 7.3

Definition 7.4. A von Neumann algebra is a unital C*-subalgebra of B(#) which is WOT-closed.
Definition 7.5. If S C B(H), we define the commutant fo Stobe S’ ={T € B(H) : ST =TS for all S € S}.

Remark 7.6. S is always a WOT-closed unital algebra. Indeed, S is clearly a subspace. It is closed under

multiplication, as if T}, Ts € S’ then TyToS = Ty STy = ST\ Th. If Ty € S’ with T,y ~2% T then

ST =1im ST, = imT,,S = TS
(6% «@

and so &’ is WOT-closed. If S = §* then &' is self-adjoint, and is thus a von Neumann algebra.

Theorem 7.7 (Double commutant theorem). If A C B(H) is a C*-algebra which is non-degenerate (i.e.

AH = H) then 0T — VOt — (where A" = (A ).

WO T

Proof. We know ﬁSOT = A
WOT-closed.
Suppose T € A" and x1,...,x, € H; we wish to find A € A such that

T =80
by previous corollary. We know A C A” since A C A” and A" is

Ae {B € B(H) : Z”(T’ B)a;|* <1 }
i=1
where this last is a SOT neighbourhood of T
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Case 1. Suppose n = 1. Then M = Az is a closed subspace of H, and AM = AAx; = A2z, C M.
Let P be the orthogonal projection onto M. Then if A € 2 we have AP = PAP; so for A € 2
we have PA* = PA*P; so PA = PAP = AP for all A € 2, and P € %'. So TP = PT and
Txy =TPxy = PTx; € M. So there is A € 2 such that ||Tx; — Az;|| <1 (or < € for any € > 0).

Aside 7.8. Why is 2, € M? Let (ey)x be an approximate identity for 2. Since AH = H there is v € H
and A € 2 such that Az = z1; then

exr1 ~ e Axr — Ax

N~

eAx,

Case 2. Suppose n > 1. Let H") = H, & Ho & --- @ H,p. Let

A 0
AM =) A = € M, (B(H)) = B(H™)
0 A

Suppose T € B(H™) and let P; be the orthogonal projection onto H; =0® - - ®HB0D --- ® 0 with
H in the ;0 spot. We let T;; = P,TP; | H; € B(H); then

r-(Sr)r(sr)-xr,
Claim 7.9. (AM) = M, ().

Proof. Suppose T € B(H(™) commutes with (). Then if T = (T};);; and

A 0
AP — .
0 A
we have TA™M = (T;;A)i; = (ATij)i; = AT, So T € (AM) if and only if T;; € A’ for all 4,5, which
occurs if and only if T € M, (). O Claim 7.9

Claim 7.10. M, ()" = (2A")(™).

Proof. Suppose A = (A;;)ij € M, (A')". Let E;; € M,,(2') have an I in the (4, j) position and a zero
elsewhere. Then

An
0 App
E;A=|An A - Ay | =AE;= )
0 0 : 0
Ain

So A;; = 01if ¢ # j. Doing a similar trick with F;; we conclude that A; = A;; if i # j. So A = A for
some A € B(H).
Note
T 0
0 0 € M, ()

if T €. Then AT = TA™ | so examining top-left entries we get AT = T A. O Claim 7.10
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Suppose T € A" and z1,...,x, € H. We have a SOT neighbourhood of T given by

{B € BH): Y (T - By|? < 1}

Let
€

r=| 1 |¢€ H™)
Ty,

Let M = 2z and P be the orthogonal projection to M. Then PA™ = AP for all A € U; so
P e (AMY = M, (). But T € (A")™) = M(A"); s0 T™P = PT™. So

T.Z'l
T = | : | =TMPr=PT™zre M =AMz
Tx,,
So there is A € 2 such that
Tacl — Axl 2 n
1> [Tz — A g2 = : => T - A)i?
Tz, — Az, 4
as desired. 0 Theorem 7.7
N SOT SOT
Lemma 7.11. Let f(z) = 1+t2 If A, = AY, and Ay, —— S then f(Ay) —— f(9).

Proof. Note f maps [—1, 1] injectively onto itself, and f(R) C [-1,1].

Suppose z € H. Then
f(A)z — f(S)z = (21 + A2) " Aq —25(1 4+ §*) Nz
=21+ A2) Ay — S) (I + 5)a) +2(1 + A2) 1A, (S — An) S(I + 52) !

| —
u f(Aa) v
=2(1+A3) " (Aa = S)u+ f(Aa)(S — Aa)v
Now, A, — S)u — 0, and since
2
21+ A2)7 < =
200+ 4270 < | 1752
we get 2(1 + A2)"1 (A, — S)u — 0, and hence (S — A,)v — 0. Then since ||f(Aa)|| < ||f]lcc = 1 we have
f(AQ)(S — Ay)v — 0. O Lemma 7.11
Theorem 7.12 (Kaplansky’s density theorem). Suppose 2 is a non-degenerate C*-subalgebra of B(H). Then
|- |-
bl(msa)SOT _ bl(Ql” )u Il and bl(m)SOT _ bl(Ql”)d I
Proof. Suppose S € by (7). Let T = g(S) (where g is the inverse function of f [ [~1,1]: [=1,1] — [~1,1]).
Then T = T* € by (A,). By the double commutant theorem there are A, € A such that A, Wort, T, and
thus A%, WOT, 1 — 7. So LA WOT 7 Qo T c ﬂdeOT = QLMISOT So there is A, = A}, € g, such

that Ay -2 T. Thus by lemma we have f(A,) SOT, f(T) = f(g(S)) = S; also ||f(Au)]| < |fllr = 1.
If T € by (A”) then

(T(’)* €> € b1 (M2(A7)) = Ma(21)"

So there is

Agr Aa2
Ay = ’ ' € by (Mo ())sa
(Aa,Ql Aa,22) 1(M:())
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Thus
A SOT 0o T
SOT

So [[Aa 12| < Aol <1, and Ay 12 — T 0 Theorem 7.12

Definition 7.13. We say U € B(H) is a partial isometry if U | (ker(U))~ is isometric.
Proposition 7.14. Suppose U € B(H). Then the following are equivalent:
1. U 1s a partial isometry.

2. U*U and UU* are projections.
TODO 44. or?

3. U=UU"U.

Proof.

(1) = (2) Suppose U is a partial isometry. Then H = (ker(U)) @ (ker(U))*. Then U | (ker(U))* is an
isometry onto Ran(U) (closed UH = U (ker(U))*).

TODO 45. words
But ker(U*) = (Ran(U))*, and U* | Ran(U) is an isometry onto (ker(U))* such that U*U = Pkler(U).
Likewise UU* is the projection onto PkLer(U*) = Pran(v) (since U™ is also a partial isometry).

(2) = (1) U*U a projection means that U | (ker(U))* = S € B((ker(U))*,H) and 5*S = Iyer(1ry)~- So S
is an isometry. So U | (ker(U))* is an isometry; so U is a partial isomorphism.

(2) = (8) U=UPL = UU"U.
(8) = (2) U*U =U*(UU*U) = (U*U)? so U*U is a projection. Similarly UU* is a projection.
[0 Proposition 7.14

Theorem 7.15 (Polar decomposition). Suppose T € B(H). Then |T| = (T*T)z € C*(T) and there is a
partial isometry U € W*(T) (the von Neumann algebra generated by T, which is C*(T)") such that T = U|T.

Proof. We have T*T € C*(T) and T*T > 0, so if f(z) = 22 € C[0,||T|?] then |T| = f(T*T) € C*(T).
If x € H) then

IT]2|? = (| Tz, |T|e) = (T, 2) = (T*Tz,z) = (Tz, Tz) = | Tz|?

so |||T|z|| = ||Tz|| for all x € H. Define U € B(H) as follows. If z € ker(T') = ker(|T]) we set Uz = 0. If
x € Ran(|T|), say « = |T'|y define Uz = Ty; so ||Uz|| = ||Ty|| = |I|T|yll = ||=||. So U is isometric on Ran(|T]).
By continuity, we extend U to an isometry on Ran(|T]); but Ran(|T|) = (ker(|T]))t. So U is a partial
isometry and URan(T') = Ran(T).

If © € ker(T) then U|T|z =0 =Tz. If x = |T|y € Ran(|T|) then U|T|y = T'y (by definition); this extends
by continuity to Ran(|T])*

TODO 46. Ran(|T|)? ker(|T|)*?

To show that U € W*(T') = C*(T)" it suffices to show that UX = XU for X € C*(T)". So Suppose
X e C*(T).

Note that X ker(T') C ker(7T'); indeed, if Tz = 0 then T'(Xz) = X(Tz) =0. So Uz =0, so XUz =0 and
U(Xz)=0. So XU =UX on ker(U) = ker(T). Suppose = |T|y € Ran(|T|). Then

UXe=UXTly=UT|Xy=TXy=XTy=XU|Tly=XUzx
So UX — XU = 0 in ker(U) @ (ker(U))* = H. So UX = XU. So U € C*(T)" = W*(T). O Theorem 7.15
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Remark 7.16.
1. If T is invertible then U = T|T|~! € C*(T).
2. If f € Co((0,|T||]]) then Uf(|T]) € C*(T). (See assignment 3.)

7.2 Projections in von Neumann algebras

Lemma 7.17. Suppose (Ax)xea is an increasing net of self-adjoint operators in B(H) bounded above by M.
Then in SOT we have a limit A = limy Ay and A is the least upper bound of the Aj.

Proof. For x € H we have (Ayz,z) < M||z||?; so (Ayz,z) is an increasing net of real numbers that is bounded
above. So
Qx) = li>I\n<A)\:c,x>

exists. Define

(Az,y) = i(Q(x +y) — Uz —y) +iQ(z +iy) — iQ(x + iy))

= lim i(@‘h(x +y),z+y) — Az —y),z —y) +i{Ax(z + iy),z +iy) — i(Ar(z — iy),z — iy))

So if A is the WOT limit of the Ay then A € B(H).
If B> A, for all X then

(Bx,x) > sup{Axz,z) = lim(Az, x) = (Az, )
A

So ((B— A)xz,z) >0 for all z; so B> A. Thus A is the least upper bound of the A,.
If B > 0 then [z,y] = (Bx,y) is a sesquilinear form, and thus satisfies the Cauchy-Schwarz inequality; i.e.

[z, 9] < [z, 2] [y, y]%. So
|Bz|?* = (Bx, Bx) = [z, Bx] < [x,2]?[Bz, Bz]? = (Bx,z)? (B%z,x)?

Since A — Ay > 0 we have ((A — Ax)z,z) — 0. Fix Ag. For A > A\g we have A — Ay < A — A,,; so
JA— Ax]l < 14 - Ayl Thus

1(A — Ax)z|® < (A — ANz, 2)% (A - Ax)x,z)?

1
2
1
2
1

< (A= An)z,2)2 A= Ayl ]
1 3
S ((A-Ayz,z)7 [[A = Ay |17 |||
—0 constant
so Ayx — Ax for all . So A, 50T, 4. 0 Lemma 7.17

Corollary 7.18. If (Py)y is an increasing net of projections then the SOT-limit P of Py is the projection
onto

U Ran(Py)

AEA

Proof. Py < I, so we have a bounded, increasing net. So the SOT-limit P of Py exists. Let M) = Ran(Py)
and

M= M,
AEA
If x L M then Pyxz = 0 for all \; so Px = 0. If x € M), then x = Pyx for all A > A\y; so Pr = x. Thus

Px = x for all
S U My,
AeA

so by continuity of P we get Px = x for all x € M. So P = Py,. O Corollary 7.18
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Suppose A = A* € B(H); translate and scale A so that o(A4) C [0,1]. We want projections in W*(A).
Suppose O C [0,1] is open; consider { f(A) : f € C[0,1],0 < f < xo } € C*(A). This is a directed set, since if
f,9 < xo inC[0,1] then fvg € C[0,1] with f, g < fVg < xo. So f(A),g(4) < (fVg)(A) € C*(A) = C(a(A)).
By lemma (since all are bounded by I) we get

Po =sup{f(A): feC0,1],0< f<xo0}
exists as a SOT-limit, and is thus in W*(A).
Claim 7.19. Pp = P3.

Proof. Note Po <I.If f € C[0,1] with 0 < f < o then 0 < fz < yo.
Note by the double commutant theorem that since Po € W*(A) we get Po commutes with C*(A) (since
C*(A) is abelian). But Pp > f2(A); so since they commute we have P34 > f(A),

TODO 47. ?
so P3 > Po. But 0 < Pp < I;s0 P4 < Po < P3. So Pp = P} is a projection. O Claim 7.19
Suppose n > 1; divide [0, 1] into 2™ equal segments. Let P;,, = Pja-n ); let

2 2m
Ay =2"" Pip € WH(A) =supg f(A): feC0],f <27 X(orgz ¢ <A
j=1 j=1
Then A, > A—27"I, so A =lim,, A,, in norm.
Il

Corollary 7.20. A € Conv(Proj(W=*(A))) I _

b1 (A>0).

Proof. We showed the first part above. For the second, note that if A € 2 with 0 < A < I then A €
COI’IV(PI‘Oj(W*(A)))‘Hl C Conv(Proj(Ql))”'H. O Corollary 7.20

. Thus if A is a von Neumann algebra then Conv(Proj(2l))

Note that the projections are the extreme points of by (2(;), and the symmetries are the extreme points of

bl (lea)-
Corollary 7.21. Conv(Sym(2()) = by (sa).

(The symmetries are self-adjoint unitaries, and we have for P— P+ = 2P —1I, P projections that A > 24—1
maps b1 (24) bijectively to b1 (Usa)-)

8 Representations of C*-algebras
Definition 8.1. A representation 7 of a C*-algebra 2 is a *-homomorphism to B(#H). It is non-degenerate

if AH = H. We say 7 is topologically irreducible if m(2) has no closed invariant subspaces; we say 7 is
algebraically irreducible if w(2A) has no proper submodules (i.e. if z # 0 then 7(A)z = H)).

Lemma 8.2. 7 is topologically irreducible if and only if m(2A)" = CI.
Proof.
(<= ) Suppose M is a closed subspace with 7(2A)M = M; so H = M & M~ with

But () = 7 (20)*; so

So Py € m(2A).
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(=) Suppose m(2)" # CI; then there is a projection P = P? with P ¢ {0,1} and P € 7(2)’. Then
M = Ran(P) is invariant, and 7 is not topologically irreducible. [0 Lemma 8.2

Lemma 8.3. Suppose 7 is a topologically irreducible representation of A. Suppose M is a subspace with
dim(M) < co. Let T € B(H) and € > 0. Then there is a € A with ||a|| < ||T|| such that ||(T —7(a)) | M|| < e.

Proof. Let dim(M) = n and {ey,...,e, } an orthonormal basis for M; without loss of generality assume
IT]] = 1. Then since w(2A) = CI we get m(A)"” = (CI)’ = B(H). By Kaplansky’s density theorem we have

bi(B(H)) = bi(m(A)) T Pick a € 2 such that |[7(a)]| <1 and ||[Te; — m(a)e;|| < £ for 1 <i <n. Then

n

1T = (@) | M| < (T = (@) Parl) < YIT = (@) Pecill <m- = =
i=1

Then we have
AL A/ ker(n) = B(H)
ar Jal <1 = |r(a)] <1
Choose a; € a + ker(w) such that [Ja;|| < ||a]| +J < 1. We then use a;. [0 Lemma 8.3

Theorem 8.4 (Kadison’s transitivity theorem). Suppose 7: 2 — B(H) is topologically irreducible and
dim(M) < oo; suppose T € B(H) and € > 0. Then there is a € A with ||a]] < ||T|| + € such that
ma) [ M =T M.

Proof. Use the lemma to find ag € A with [lag|| < ||[T']| such that |[(T" — 7(a)) [ M| < §, and let Ty =

(T' — n(a))Py. Find a; € A with [aq]] < ||T1]] < § such that |[(T7 — 7(a1)) [ M| < g; then let Th =

T — 7(ag) — m(a1). Recursively find a,, € 2 such that ||a,| < 557 such that

g

1T = m(ao + a1+ +an)ll < 5755

Let a = Zn>0 Up; SO
2 . )

and

(T — m(a)) [M:IiTan<T—7T<Zai>> M =0
=0

as desired. [0 Theorem 8.4
Corollary 8.5. If m is topologically irreducible then m is algebraically irreducible.

Proof. Suppose =,y € H with z #£ 0. Let T = yﬁ, so Tz = y. Then there is a such that w(a)x = y; so the
action is transitive. O Corollary 8.5

8.1 GNS construction
This is Gelfand-Naimark-Segal.

Definition 8.6. A linear functional f on a C*-algebra 2 is called positive if ¢ > 0 implies f(a) > 0. A
positive linear functional of norm 1 is called a state.

Ezample 8.7. If w: 2 — B(H) is a non-degenerate representation and x € H with ||z|| = 1 then f(a) =
(m(a)z,x) is a state.

Proof. If a > 0 then 7(a) > 0, so (m(a)z,z) > 0. Also || f|| < ||I7||||z||> = 1. If 1 € A then f(1) = (x(1)z,z) =

(Iz,z) = 1; so ||f|]| = 1. If 2 is not unital, we will see that if (ey), is an approximate identity then
SO

m(ex) =2 I so [[£]] > suplf(ex)] = 1. O
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Remark 8.8. If f is a positive linear functional then [a,b] = f(b*a) (for a,b € A) is a sesquilinear form on 2;
it is linear in a and conjugate-linear in b, and [a,a] = f(a*a) > 0. So Cauchy-Schwarz inequality holds, and

[f(b*a)| = |[a.b]| < [a,a)2[b,b]2 = f(a"a)2 f(b"D)?

Lemma 8.9. Suppose f is a positive linear functional on 2A. If 1 € A then ||f|| = f(1). If (ex)r is an
approzimate identity then || f|| = sup f(ex) < oo. In particular, positive linear functionals are continuous.

Proof.

Case 1. Suppose 2 is unital. If 0 < a <1 then 0 < f(a) < f(1). If a € A with [laf| <1 then 0 <a*a <1, s0
f(a*a) < f(1). Then

f(a)| = |f(1*a)| < f(a*a)? f(1"1)% < f(1)
So [IF]l < (1) < If]-

Case 2. Suppose 2 is non-unital.

Claim 8.10. f [ 2>¢ is continuous.

Proof. If not there are a,, > 0 with ||a,|| < 27" and f(a,) > 1; then

a:ZanGQ[ZQ

n>1
and
N N
f(a) Zf(zan> :Zf(an) >N
n=1 n=1
a contradiction. O Claim 8.10

Aside 8.11. In this section we may use 2, to mean Asg.
So f is continuous, and there is ¢ such that f(a) < C|la|| for all @ > 0. Now if a € 2 then
a=Re(a)+ilm(a) =by —b_ +i(cy —c_)
with
<]l < [IRe(a)]] < o]
lexll < [Tm(a)]] < la]|

Then
|f(a)] < f(by) + f(b=) + fler) + f(e—) < 4C]a|

Thus M = sup, f(ex) < oo and M = limy f(ey) since the ey is an increasing net. Note also that
0<ex<1,s00<el <ey, and f(e3) < flex) < M.

Now, by continuity we have
|F(@)]? = lim|F(era)
< li)r\n|f(a*a)||f(e?\)\ (Cauchy-Schwarz)
< lim|| £ [la|* M

= || £Illlal/*M
So
I£1I” = HSIH11<>1|J”(G)|2 <sup|fl[-1-M=|f[-M
So ||f|l £ M =supy, f(ex) < || f]I- 0 Lemma 8.9
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Theorem 8.12 (GNS). Suppose f is a state on a C*-algebra 2. Then there is a representation wg: A — B(Hy)
and a unit vector §y € Hy such that

1. f(a) = (m(a)és. &5)
2. & is a cyclic vector; i.e. T(A)Er = Hy.

Proof. Let N={ae®: f(a*a) =0}. If a € N and b € A then by Cauchy-Schwarz we have
la.B)] = £ (0" a)| < f(a"a)* (D)% =0
So N={a:[a,bl=0forallbeA}; so N is a subspace. If a € N and b € 2 then
f((ba)*(ba)) = f(a”b*ba) < [[b]* f(a*a) = 0

so N is a left ideal. Since f is continuous, we get that N is closed. So 2(/N is a Banach space, with elements
a = a+ N. We define an inner product by (a,b) = f(b*a) = [a,b]. Given representatives a,a +n and b,b+m
with n,m € N we have

f((b+m)*(a+n)) = f(b*a+ m*a+b*n+m*n)

Since b*n,m*n € N we have f(b*n +m*n) =0. Since f > 0if a = z + iy (so a* = x — iy) then

fla) = f(z)+i f(y)
—~— ~~

eR €R

and f(a*) = f(z) —if(y) = f(a). So f(m*a) = f(a*m) = 0 since m € N implies a*m € N. Thus
f(b+m)*(a+mn)) = f(b*a). .

So (a,b) is well-defined. Also if 0 = (a,a) = f(a*a) then a € N and a = 0; so this is a positive definite
inner product. We have an inner product norm ||al2 = (a, d}é. The completion of (A/N, ||-||2) is a Hilbert
space. Define mp: %A — L(A/N) by mo(a)b = (ab). Then ab = a(b+ N) = ab+ aN C ab+ N, so this is
independent of the choice of b. Also 7 is a homomorphism of algebras; furthermore

(mo(a")b, &) = ((a*b), &)
(c*a”)

*
ca*b

So mg(a*) = mo(a)*, and mg is a *~homomorphism. Also

Imo(a)ll = sup ||mo(a)bl|
ol <1

— sup f((ab)*ab)?
F@*b)<1

= sup f(b*a*ab)%
Frb)<t

< sup (fal®f(b*b))%

so ||mol] <1 and mg is continuous. We can extend 7y to a continuous linear operator m¢(a) in B(Hy); then
mwp: A — B(Hy) is a *-representation on Hy.

Case 1. Suppose 1 € 2; we then let £ = 1. Then [|&f|> = f(1*1) = f(1) = ||f|| = 1. Then

(m(a)és. &) = (n(a)1,1) = f(1"al) = f(a)
Also ()1 = {a:a €A} =Hy; s0 & is cyclic.
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Case 2. Suppose 2 is not unital; let (ey) be an approximate identity.

Claim 8.13. (ex)x is Cauchy.

Proof. Note that 1 = ||f|| = limy f(ex). If e > 0 and

f(e)\)>1*€
fley) >1—¢

then there is v with e, > e) and e, > e,, and so f(e,) > f(ex) > 1 —¢. So |le,ex —en|| < € and
lleve, —eu]l < e. Then

lew = €ill* = fllew — e)®) = fle + €, — evep — epen)

But
|f(even)| = [fen) + fleven —eu)| > 1 —e—leve, —epul >1—2¢

and also |f(eue,)| = [f(even)| > 1 — 2e. Thus
e, — eull? < f(e2) + flen)? —2(1 —26) <2 —2+4e = de
TODO 48. something about this being because e,, e, being norm 1 and positive?
so ||e, — eyl < 2y/e. Then
e, —exll < ll€n — el + [l€, — exll < 2vE + 2vE = 4v/e

and (ex)x is Cauchy. O Claim 8.13

Let & = limy €. Then
(m(a)¢y,&p) = lim(m(a)ex, €x) = lim f(exaer) = f(a)
and
la = m(a)¢s||* = liml|a — m(a)ex|?
= limfla — (aéx)|*
—0

TODO 49. something about how the penultimate is equal to ||a — (exa)|| and in turn to ||a — w(ex)al ¢

Thus 7(ex)d — a; so m(ey) 5911 S0 m(A) = A/N = Hjy is then cyclic. Also
1= lim f(ex) = lim(r(exn)&r, &) = &5, &5)
O Theorem 8.12

Corollary 8.14. If A is not unital and f is a state then f extends uniquely to a state on At by setting
71 =1,
Proof. Suppose g is a Hahn-Banach extension of f to 2A*; so [lg|| = 1 > |g(1)|. Let g(1) = a. Then
1=1limy f(ex) and 0 < ey <1,s0 -1 <1-—2¢y <1, and

1> [g(1 = 2ex)| = [ — 2f(ex)| = oo — 2|

Then since |a| <1and [a — 2| <1weget a € DN(2+D)={1}. So g(1) = 1,and g is unique.
Also
gla+ A1) = ((m(a) + A)&f, &) = T(a+ A1)

where 7: At — B(Hy) is 7(a) = 7(a) and 7(1) = I; so 7 is *-linear, and g > 0. O Corollary 8.14
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Lemma 8.15. Suppose [ is a linear functional on 2.
1. If1eAand f(1) =1=||f|l, then f is a state.

2. If (ex)x is an approzimate identity and 1 = ||f|| = limy f(ey) then f is a state.

Proof.

1. If a = a* write f(a) = x + iy for z,y € R. Then
|f(a+it])]* = |(z +iy) +it]* = 2° + (y + 1)* < |la + itl]]?

But a+itl is normal and o(a+itl) = o(a)+it C [—||all, ||la|]]+it. So |la+it|| = spr(a+it) = +/||a]|® + 2.
Thus

lal|> + % > 2% + (y + t)* = 2 + y* + 2yt +
So 2% +y? + 2yt < ||a||? for all t € R. So y = 0, and f(a) € R.
Ifa=a"with0<a<1then -1<2a—1<1. So—-1<2f(a)—1<1since|f||=1and f(a) €R.
Thus 0 < f(a) <1. So f >0, and f is a state.

2. Extend f by Hahn-Banach to a norm 1 functional on 2. Then limy f(e)) = 1, so by the same proof
as the previous corollary we get g(1) = 1. So by the unital case we get that ¢ is a state. So f is a
state. 0 Lemma 8.15

Definition 8.16. The state space of Ais S(A) ={f € A*: f > 0,|f|| = 1}; the quasi-state space of A is
QR ={feA :f>0|fll<1}

Remark 8.17. If 2 is unital then S(2) is weak*-compact: indeed,

SR ={fe:1=r)=lfl}= b@) n{feA:fl)=1}

weak*-compact weak*-closed

If 2 is not unital then generally S(2() is not weak*-compact. But Q(21) is always weak™-compact: indeed,

Q) =bi(A)N () {f €A : fla) >0}

a>0

weakx—closed

Ezample 8.18. Consider A = Co((0, 1])* = M((0, 1]), the space of complex regular Borel measures; then S(21)
is the space of probability measures. Let p, = n- (m | (0,n71]) (where m is the Lebesgue measure); then

n v (i.e. o). So S(2A) isn’t weak*-closed.
Definition 8.19. A state f is pure if g € A* and 0 < g < f implies there is ¢t € [0,1] with g = tf.
Proposition 8.20. f € S(2) is pure if and only if it is extreme.

Aside 8.21. C={geA*:g >0} is a weak*-closed cone. The pure states lie on extreme rays. If 1 € 2 then

SR)Y=Cn{geA:g(1)=1}=Cn{geA* g =1}

Proof of Proposition 8.20.

(=) Suppose f is not extreme; say f = 1(g + h) for g,h € S(A) and g,h # f. Then 0 < 1g < f but
g £ tf for t € 0,1]; so f is not pure.
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= uppose f 1s not pure; then there 1s g wit <g< fwithg +f. Let h=f—-g>0. en
S fi hen there i ith 0 f with R,f. Let h=f 0. Th

£ =lgliClgl =" g) + IIICIAI~"R)

with [|g||~tg, ||h]|"th € S(A); furthermore if (ey)y is an approximate identity then
lgll + 1]l = lim g(ex) + h(ex) = lim f(ex) =1

So f is not extreme. [0 Proposition 8.20

Lemma 8.22. ext(Q(2)) = {0} Uext(S(2)). So Conv(ext(S@)))" 2 S(2).

Proof. If f € Q) with 0 < || f|| < 1 then it is clear that f is not an extreme point. Clearly 0 € ext(Q(2l)),

and by a triangle inequality argument we get that ext(S()) C ext(Q(A4)). So ext(Q(A)) = {0} Uext(S(A)).
By Krein-Milman we have Conv({0 } U ext(S(Ql)))u) =Q) 2 S®A). Soif f e S(A) there is (fr)x in

Conv ({0} Uext(S(A))) such that fy == f. Write fy = (1 —t)) -0+ txgx with g € Conv(ext(S(21))) C S(A)

and 0 < ¢y <1; then ||fall = tx. But {f € Q) : ||f|| <r} is weak*-compact; so limy ty = 1, and gy SN f.
So f € Conv(ext(S(2L))). O Lemma 8.22

Lemma 8.23. If f is a state with GNS representation (g, ¢, Hy) then {g:0< g < f} < {H emp(A) :
0 < H < T} with g(a) = (mp(a)és|HEs) <+ H

Proof. If H € mp(1)" with 0 < H < I then
gla) = (mp(a)és|HER) = (HEmp(a)Ep|HEES) = (mp(a) HEEF| HEES)
so g > 0. Then
(f — 9)(a) = (mp(@)és|(I — H)ep) = -+ = (mp(a)(I — H)2&f|(I — H)ZEp) > 0

fora>0.So0< f<g.

Conversely if 0 < g < f we define a sesquilinear form on A/N (where N = {a € A : f(a*a) = 0}) by
[a|b], = g(b*a). This is positive as g > 0, and well defined as if a € N then 0 < g(a*a) < f(a*a) = 0 and the
same proof from before applies. Also [a|a], = g(a*a) < f(a*a) = ||(z||3{f, so our form is of norm < 1. Thus

there is H € B(H) such that [a]b] = (Hd)bq.[f; since our form is positive and norm < 1, we get H > 0 and
|H|| < 1. So 0 < H < I. Now for a € 2 we have

(Hr(a) = m(a)H)él) = (Hm(a)élb) — (Hélm(a*)b) = g(bm(a)e) — g(b*m(a)e) = 0
So H € w(A)'. O Lemma 8.23
Theorem 8.24. If f € S(2) then wy is irreducible if and only if f is pure.
Proof. Note that

7y irreducible <= 7;(A) = CI
— {g:0<g<f}={tf:0<t<1}
<= f is pure

as desired. O Theorem 8.24
Lemma 8.25. If a = a* € 2 then there is a pure state f such that |f(a)| = | a|.

Proof. Since a = a* we get Cj(a) = Co(o(a) \ {0}).

TODO 50. C*(a)?
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The “evaluation at A = |ja]| or A = —||a||” functional is a state on C§(a) that norms a; i.e. fo € S(Cg(a))
and fo(a) = £l/a]|. By Hahn-Banahch this extends to f € 2* of norm 1. If (ey), is an approximate identity
for C(a)k then fo(ex) — 1;s0 f(ex) — 1, and f is a state. If (d,,), is an approximate identity for 2 then
for all 7 < 1 there is A such that f(ey) > r; so there is d,, > ey such that f(d,) > r.

Let F = {f € S®) : f(a) = |la||} or F = {f € SQ) : f(a) = —|la||}. Then F is non-empty,
weak*-closed, and convex.

Claim 8.26. F is a face of Q(A).
Proof. Suppose f € F with f = 3(g + h) for g,h € Q(A). Then

_ gla) +ha) _ o + o]

:t = =
TODO 51. Last inequality may need slight modification
So g(a) = h(a) = £||a||; thus g,h € F. O Claim 8.26

By Krein-Milman we get that F has an extreme point fo. But a face of a face is a face; so fy € ext(Q(2))
and fo # 0. So fo € ext(S(A)). O Lemma 8.25

Theorem 8.27 (GNS). If 2 is a C*-algebra then

71':@77']0

f pure
is a faithful *-representation. If 2 is separable then a countable collection of pure states is sufficient.

Proof. By lemma if a = a* there is a pure state f with |f(a)| = ||la||. (f(a) = (7r(a)s|€s).) So ||ms(a)] = ||all,
and [[7(a)[| = [lall
For a arbitrary we have
Iw(@)|* = l[7(a*a)|| = lla*a]| = [la]]?

so 7 is isometric.
If 2 is separable choose { a,, : n € N} dense in b1 (2s,). For each a,, choose f, pure such that |7 (a,)| =

lan]. Let
=Py,
n

Then ||o(an)|| = |lan| for all n, so ||o(a)|] = |la|| for all a = a* with ||a|| < 1. So o is isometric.
O Theorem 8.27

Corollary 8.28. C*-algebras are semisimple.

Proof. We have
rad@) = [ ker(m) € [ ker(ry) ={0}

7 irreducible f pure

as desired. [0 Corollary 8.28

8.2 Representations and ideals

Proposition 8.29. Suppose A is a C*-algebra and J< is an ideal. If 7 is a non-degenerate *-representation
of J on H then there is a unique ™ = ind(m): A — B(H) such that 7 |[= 7. Moreover if w is irreducible then
S0 I8 T.
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Proof. We have H = w(J)H. Define 7(a)n(j)x = w(aj)z. (This is forced, and thus unique.) Is this well-
defined? Suppose 7(j1)x1 = m(j2)x2. Let (ex)r be an approximate identity for .J; we need to show that
m(aji)x1 = w(ajs)xzo for all a € A. But

m(ajy)zy = liinﬂ(aele)xl = li/{nw(aeA)w(ﬁ)xl = li/r\nw(aeA)w(jg)xg = li>r\n m(aenjz)re = m(aja)xs

Also 7 is linear and multiplicative. Also

*

%
2
50" j1)w1|T2)
.
2

(m(

(m(

(m(jza®)m(j1)z1|22)
= (m(j1)x1|m(aj2)w2)

(m(j1)z1 |7 (a)m(j2)z2)

(7 (

a) m(j1)z1 |7 (j2)w2)
(on a dense subset at least). Finally, we have

[7(a)| = sup |lw(aj)z|
= ()al<1
= sup SIiPIIF(aeAJ')xH
= sup sgpllﬂ(aex)ﬂ(j)xll
< supsupllaey |1
A
<lal

*_representation on all of H.

] Proposition 8.29

so 7(a) is bounded. So 7 is bounded as well, and extends to a

Proposition 8.30. Suppose w: A — B(H) is a *-representation and J<A. Let M = n(J)H. Then M is
a subrepresentation, so ™ = m @ mp for m: A — B(M) and mo: A — B(M*1). Then m = ind(x | J) and
w2 [ J =0 (so w2 factors through A/J ).

Proof. Tt is clear that M is invariant, hence reducing by taking adjoints we can write m = m; @ mo. Then
71 [ J: J — B(M) is non-degenerate; so m; = ind(m; | J) by lemma. Also 7(J) [ M+ = 0, so ker(ma) D J;
thus o factors through 20/J. O Proposition 8.30

Ezample 8.31. Let A = B(H) for H separable. Let K = K(#); this is the only proper ideal of 2I.

Indeed, if J <« B(H) with 0 # J € J then there is x,y such that Jx = y # 0; then given u,v there
are rank one R, S such that R(u) = x and S(y) = v. Then SJR is rank one and sends u — v, and SJR
liessin J;80 CC J. If J € J\K then T = J*J € J is not compact; without loss of generality assume
o(T) € [0,1]. If K = K* > 0 compact, then o(K) = {0,Al, Ao, ...} with the A\, — 0; the eigenspaces
Ek (M) are finite dimensional. Conversely if there is A € o(T) with dim(E — {\}) = co (= P an infinite
rank projection, C*(T) C J) then there is an isometry S such that SH = PH, and X € B(H) such that
SXS*=P(SXS*)PeJ. SoX =8*(SXS5*)S € J. Then o(T)N|[r,1] is uncountable. There is a projection

P= sup f(T)eW*(T)
0<f<x[r,1)

with PT > rP of infinite rank. So there is Y € B(H) with YT = P, etc.
Assume 7: B(H) — B(K) and 7 = ind(7 [ K) and 7mo: B(H) — B(H)/K — B(K2). Then B(H) — B(K1),
with Iy = 7(K)K. K has only 1 irreducible represnetation up to unitary equivalence, namely id. Then

m=id(a) ® 7o

where the former is weak*-continuous and the latter is not.

70



9 Spectral theory for normal operators

Recall that if N is normal (i.e. N*N = NN*) then C*(N) = C(c(N)) is abelian. More generally if the N,
are commuting normal operators, then by Fuglede’s theorem C*({ N },) is abelian, so is isomorphic to C(X)
for some compact Hausdorff space X if it is separable, then X is compact and metrizable.

Ezample 9.1. If ;1 is a Borel probability measure on X, there is a *-representation 7, : C(X) — B(L?(u))
given by 7, (f)h = fh. Then

(mu (), k) = (fh, k) = /(?h)Edu = /h(ﬁ)du = (h, fk) = (b mu (k) = (mu(f)" D, K)

So m,(f) = mu(f)*, and 7, is a *-homomorphism. Also

17 ()1l = ess.supl f(z)] < [|fll
—_————

w.r.t. p

L (1)

and 1 is a cyclic vector: 7,(C(X))1 = C(X) = L%(p).

Theorem 9.2. Suppose 7: C(X) — B(H) is a representation with cyclic vector x with ||z|| = 1. Then there
is a regular Borel probability measure p on X such that 7 is unitarily equivalent to 7, (i.e. there is unitary
U: L*(pu) — H such that ©(f) = Un,(f)U*).

Proof. Define a state in C(X) by ¢(f) = (7(f)z,x). (It is positive and linear, and ||| = ¢(1) = ||z]|> = 1.)
By Riesz representation theorem there is a positive regular Borel measure p on X such that ¢(f) = f fdu.
Then ||| = [1dp = (1) = 1; so u is a probability measure.

Define U: C(X) — H by Uf = n(f)z. Then

IUFII* = (x(f)a, w(fla) = (x(1f1*)z, 2) = o(|f]*) = /Iflzdu = 1£11Z2 )

Since C(X) is dense in L?(p) and U is isometric on (C(X), |||l z2¢.)) we get that U extends by continuity to

U: L*(u) — H which is isometric. But Ran(U) is closed, and thus contains 7(C(X))x = H; so U is unitary.
If f,g € C(X) then

Unu(flg=Ufg=p(fg)x = p(f)p(9)z = p(f)Ug
TODO 52. p? Mean 7?

This holds for g € C(X), and C(X) is dense in L?(u); so by continuity we get U, (f) = p(f)U, and so
p(f) =Umu (U O Theorem 9.2

Lemma 9.3. Suppose 2 is a C*-algebra and 7: A — B(H) a non-degenerate *-representation. Then there
is a decomposition H = @, Ho where each Hy is a reducing subspace for m(A and 7(A) | Hq has a cyclic
vector x,.

TODO 53. Reducing subspace?

Proof. Tt 0 # x then H, = 7(A)z = =(A)"z
TODO 54. Single’? Double?

is a reducing subspace, and contains Jx = . If 0 # y L H, then H, L H,: indeed, if a,b € A then
(m(a)y, m(b)x) = (y, m(a"b)x) = 0.
So by Zorn’s lemma there is a maximal collection of vectors { x4 }o in H such that H,, L H,, for all

a# B. Let M = (3. Ha)". Suppose M were not {0}; then there is 0 # y € M, so that y L H,, for all a.
So Hy, L Hy, forall a; so Hy C M. So { x4 o U{y} is a larger family, contradicting maximality. So M = 0,
and H =P, Ha..- O Lemma 9.3
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Theorem 9.4 (Spectral theorem v1). If N is a normal operator on a separable Hilbert space then N is
unitarily equivalent to a multiplication operator.

Proof. C*(N) = C(X) (in fact X = o(N)) via f € C(X) — f(IN) by the continuous functional calculus; this
is a *-representation. By lemma we get
e @

1<i<a

(where o € NU{w}) such that m;(f) = f(N) [ H; is a cyclic representation. Then there are probability
measures /1; on o(N) such that m;(f) = M} on L?(p;). In particular 7(id) = N. So N = @, m;(id) = @ M4

on P, L2 (ps)- -
Let Y = 0(N) x N. Suppose pp € M(Y) with u [ o(N) x {i} = 27" u;; then u is a probability measure.

Then
L(n) =@ L*(o(N) x {i},n) = P L2 " = P L* (i)
Let h(z,i) = z; then My, = @ M2 " = @M/ = N. (It U;: L2(p;) — L*(27 ;) is Ush = 25 h then
jUinl = [ 2{hPacw) = bl

and U;Msh = U;fh = 2% fh = M2 h = M;U;h.) O Theorem 9.4

Example 9.5. Suppose N is normal and compact. Then o(N) is finite or an infinite sequence converging
to 0 € o(N). If N is cyclic then N = M, on L?(o(N)) = ?(o(N)). If 4 € M(c(N)) then since o(N)) is
countable we can write

Hn= Zgid)\i

N=@PHN

acting on L2(u) = (2. So N is diagonalizable. In general if N is a direct sum of diagonals it is diagonalizable.
Ifo(N)={A,:n>1}U{0} then there are d,, = dim(ker(N — A\, I)) < oo so that

where \; range over o(N). So

N%’diag()\l,)\h...,/\17)\2,)\2,...,)\2,...

dy da

Definition 9.6. If 2 is a C*-subalgebra of B(H), we say « € H is a separating vector if whenever A € 2 has
Ax =0 then A =0.

Remark 9.7. If x is a cyclic vector for 2 then it is a separating vector for 2U'.

Proof. Suppose B € " and Bx = 0. Then for all A € A we have B(Az) = A(Bz) =0. So B | 2z =0, and

=H
thus B = 0. O

Definition 9.8. We say m: A — B(H) is multiplicity-free if 7(A)" is abelian.
The idea is that if 7 = 19 @ p @ p then it has multiplicity; then the operators

0 0 0
0 CL11[ CL12]
0 a21[ U,QQI

lie in 7(2()".

Definition 9.9. A masa (maximal abelian self-adjoint subalgebra) is an abelian C*-subalgebra of B(H) not
contained in any larger abelian C*-algebra.
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Remark 9.10. If 2 is a masa then 2 C ' and A C A" = QWOT, and A C" is still abelian. So 2 is

WOT-closed (and thus a von Neumann algebra).
If A7 G A, pick B € A"\ 2”; then B commutes with 21", so C*(B,2l") is abelian. So C  (B,2")" is
abelian, and contains 2, a contradiction. So 2’ = A" = 2.

Lemma 9.11. Suppose 2 is an abelian subalgebra of B(H) and H is separable. Then ' has a cyclic vector,
so A" has a separating vector.
Proof. Decompose H = @ H; where ' | H; has a cyclic vector z;. Let x = E;’il 27%z;. Then H, reduces

A’ so Py, € A”. But A" = AV v (where this last is because 2 is abelian). So Py, € 2.
Then x is cyclic. Indeed, z; = 2Py, v € A, so H; = Wx; C A'x; so H = WAx. Thus z is separating for

A7 O Lemma 9.11

Theorem 9.12. Suppose p: C(X) — B(H) is a *-representation where H 1is separable. Then the following
are equivalent:

1. p(C(X)) has a cyclic vector.
2. p is multiplicity free.
3. p(C(X))" is a masa.

4. p(C(X))" is unitarily equivalent to L°° (1) acting on L?(p) by multiplication for some probability measure
won X.

Proof.

(1) = (2 and 4) Suppose p(C(X)) has a cyclic vector; then there is a regular Borel probability measure
p on X such that p 2 m,. Suppose T € m,(C(X))’; let h = T1 € L?(u). For g € C(X) we have
Tg=TM,1 = M,T1 = gh. So ||gh|l2 = || Tgll2 < |T[||lg|l2. Then ||h|z2¢,) < ||T]|; indeed, otherwise
there is r > ||T|| such that A = {z : |h(z)| > r} has u(A) > 0. But C(X) is dense in L?(u); so there
is gn € C(X) such that [lgnlla < \/u(A) and g, — xa in L2(p). So [T[Ixall < rllxal < Ilxahll =
lim||gnh|l < ||T||supllgnllz = |ITIlIx4ll, & contradiction. So by continuity T'= M}, and h € L*(u). So
A ={Mpy:he L)} DA and we have shown (2).

But also 07 =" " C A, and A is abelian, so A’ CA”. Thus A" =A" = { M}, : h € L>(u) }, and

we have shown (4).

(2) = (8) A’ abelian, so the same argument shows that A" = ”; so A" is a masa.
(4) = (1) 1is a cyclic vector for 7, (C(X)).

(3) = (1) p(C(X)) is abelian, so lemma says p(C(X))" = A’ has a cyclic vector. But A" = A’; so A” has a
cyclic vector x. Then

PCXNz = p(C(X)) o =Wa=H

so z is a cyclic vector for p(C(X)). O Theorem 9.12

Lemma 9.13. We have L*(u) acting on L?(pn) by multiplication (where p is a reqular Borel probability
measure). The weak* topology on L>(u) = L' (u)* coincides with the WOT and the ultraweak topology on
ML () = { My h € L(s) .

Proof. All these topologies are the weakest topologies making certain linear functionals continuous. The
weak™ topology on L>° (1) corresponds to the maps

h»—)/hfdﬂ

for f € L'(u); the WOT on M(L>(u)) corresponds to the maps
h— <tha y>
for z,y € H;

73



TOD

O 55. L?(u)?

the ultraweak topology on M(L*(u)) corresponds to the maps

where

It f e

hi= > (Myzi,ys)

> syl < oo
LY(p) and = = | f|* sgn(f),y = | f|¥ € L*() then

(Mg = [ hogdn = [ bfan

So WOT-continuous implies ultraweak continuous.
Consider

h— (Mpx,y) = /ha:ydu

Consider f = 2y € L'(u1). Then ||z7|l1 < ||#]]2]|y|l2. Consider the ultraweak continuous functional

where

TOD

b S M) = 3 [ hidn= [ 1Y fds
=1 i=1 i

fi = zii, so || fill < |lzill2llwill2 and Y2, fi € L.
O 56. some words

O Lemma 9.13

Lemma 9.14. Suppose p,v are regular Borel probability measures on X a compact metric space. Then
there is a *-isomorphism o: L™ (u) — L (v) such that o | C(X) is the “identity” if and only if u and v are
mutually absolutely continuous. Moreover the *-isomorphism is weak*-continuous.

Proof.

(=

(=

) By the Radon-Nikodym theorem v = ku for some k € L'( with k& > 0 almost everywhere. So define
U: L*(p) — L2(v) by Uf = k=2 f. Then

U812 = [ P = [P = g
So U is isometric and surjective. If h, f € L>=(u) = L*°(v) then
UM{'f=Uhf =k 3hf =My (k" f) = MUf

So M} = UM}/U*. This is a *-isomorphism between L () and L*°(v) which is WOT-continuous, and
thus weak*-continuous.

) Suppose o: L= (u) — L°°(v) is a *-isomorphism such that if f € C(X) then o(f) = f. We view o as
a map M(L>(u)) = M(L>®(v)).

Claim 9.15. o is normal: if (fo)a i a bounded increasing net in L (u) with sup,, fo = f € L then

o(f) =sup, o(fa)-

Proof. Note that f > 0 implies o(f) > 0 because it is a *-homomorphism. So (¢(f,))« is an increasing
net, and is bounded. Let g = sup,, o(f.); let h = 0~1(g). We know that

o(fa) <g= sup o(fa) <o(f)

where the last inequality is because f > f, implies o(f) > 0(fa). So fo <h < f. So f =sup,, fa <
h<f,and h=f. So g =0(f) =sup, o(fa)- O Claim 9.15
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Suppose O C X is open. For n > 1 let

1
n

fola) = {1 . - if x € O and dist(zO°) >
ndist(z, 0°)if dist(z, 0¢) < +
Then f, < fny1 with sup,, fn = xo. So
o(xo) =supo(fn) = sup fn = xo
Now let ¥ = { E C X : F measurable,c(xg) = x& }

Claim 9.16. X is a o-algebra.
Proof. For closure under complements, we have

o(xge) =0(l—xr)=1-XE = Xp-
for E, F € X. For closure under intersection, we have

o(xenr) = o(XExF) = 0(XE)o(XF) = XEXF = XEnF

for E,F ec X. If (E; : i > 1) are pairwise disjoint and

E=JE

ieN

then

o(xg)=o(supxp, U---Uxg,) =supo(Xp,u.-uE,) =Supo(Xe, + -+ XE,) = SUD XE,U--UE, = XE
n>1 n>1 n>1 n>1

So ¥ is a o-algebra. O Claim 9.16

But ¥ contains all open sets and all sets of measure 0 (since o(0) = 0). So ¥ is all measurable sets. So
o is the identity on all simple functions, which are norm-dense. So o is the “identity”. [ Lemma 9.14

Theorem 9.17. Suppose o: C(X) — B(H) is a non-degenerate representation with H separable. Let
M = o(C(X))". Then there is a reqular Borel probability measure pu on X such that L=(u) 2 M via a
*_isomorphism o which extends o and is a weak*-WOT homeomorphism.

Proof. M is an abelian von Neumann algebra; so since M’ has a cyclic vector we get that M has a separating
vector x. Let K = Mux. The restriction map p: M — B(K) (with p(T) =T | K) is a WOT-continuous
*_isomorphism. Since z is a separating vector we get that p is injective, and thus isometric.

Claim 9.18. p(M) is WOT-closed.

— WO
Proof. Suppose A € by (p(./\/l)w T). Then by Kaplansky’s density theorem there are A, = p(T,,) such that
WOT WOT

To € M with ||T,[] <1 and p(Ti,) —— A. Drop to a subnet so T,,, —— T (possibly since (b;(B(H), WOT)
is compact by Banach-Alaoglu). Then p is WOT-WOT-continuous; so p(T) = A € p(M). O Claim 9.18

p(M) has = as a cyclic vector; so there is p; a regular probability measure such that p(M) = L% (uy)
acting on L?(u1). Then o': M — M | K+ can be written as a direct sum of cyclic representations. So

H=Ke DK,

n>2

such that each M | K,, is cyclic. So there are probability measures p,, such that M | K = L>(u,,) on L?(py,).

Let
p=> 2",

n>1
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Then o: C(X) — B(D,, Ky) by o(f) =D, 0n = @ Ms". So 0, (f) = My" for all f € L>(u,). We get a

map o: L>®(p) rrisomorphism B(#) given by

a(f) = P M}
n>1
Thus p, << p1. So 1= py.
TODO 57. Following claim somewhere above?
Claim 9.19. p,, << y;.

Proof. Otherwise there is E measurable such that p,(E) > 0 but u(E) = 0. Then xg # 0in M | Ky;
so xg € L®(p) with o(xg) # 0 since o,(xg) # 0 But o1 is injective, so o1(xg) # 0, a contradiction.
O Claim 9.19

So M =5 (L>*(u)) = L>°(u) (which is also isomorphic to L (u1)). O Theorem 9.17

Theorem 9.20 (L™ functional calculus). Suppose N is a normal operator on a separable Hilbert space. Then
there is a Borel probability measure p on o(N) such that the continuous functional calculus o: C(a(N)) — B(H)
extends to a weak*-WOT continuous *-homomorphism o: L= (u) — B(H). (One thinks of this as mapping
[ M)

Proof. o(C(c(N)))”" = M = L*(u) for some probability measure p on o(N), and the map &: L>=(u) — M

extends o and is weak*-WQT-continuous. 0 Theorem 9.20

9.1 Spectral measures

*-isomorphism

Suppose N is normal on a separable Hilbert space H. Then &: L% () {N}". Let X be the set
of measurable subsets of o(N) (or C); let Ex: X — B(H) be En(A) = xa(N) = 5(xa). This is a projection
valued measure.

(Countable additivity) Suppose the A; are pairwise disjoint and measurable. Then

F(xUA,) = 0(SUPXA,0--UA,) = SUPT(Xa,U-04,) =P Y F(xa,) = > _5(xa,)

En <|_| Ai> =SOT i En(4)

=1

If f =3 a;xg, with the E; pairwise disjoint then

[ aEy = Y aimw(E) =50

extend to f € L™ by
[ aEw=35)

Lemma 9.21. If M is an abelian von Neumann algebra on a separable H then there is A = A* € M such

that M = C*(A)".

— —_WOT
Proof. M = L*°(p). Find a collection { E,, },>1 of orthogonal projections in M such that M = span{ E,, } .
Pull out (countably many) atoms. Technical part: take { O,, } open that determine the topology of X, and
make sure that we can approxiate xo,, .
Let

o
A= z_:l 37nXEn
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Then

1 1
— <A< -
B =4 =5
Then
. SN 1
AxE, = D3 " Xmanms < GXEr
n=2
So
A= Axg, + AxEs
N——" ——
>EXE, S%XE%
But
(A [ E1H) C L1
p -
XE, 1 =133
1
o 1) € [0,
So if we let

then f € C(c(A)), and

Thus F; € 0*(A4). So

ete. E, € C*(A) for n > 1. So

and

C*(A)/I — C*(En)// — M
O Lemma 9.21

Corollary 9.22. M an abelian von Neumann algebra in a separable hilbert space H there is probability
measure i on [0,1] such that M = L (u).

Proof. M = C*(A)” = L*°(u) with p a probability measure on o(A4) C R. O Corollary 9.22

9.2 Multiplicity
For us H is separable.

Definition 9.23. We say a representation 7 has multiplicity n for 1 <n < Ry if r = o@--- @0 = o™
—_————
n

where o is multiplicity-free (i.e. o(2l)’ is abelian).

Recall that if 2 = C(X) then o is multiplicity free if and only if ¢ 2 o, on L?(p) by multiplication; so
o(C(X)) = o(C(X))" = L°(u) acting on L2(p).

1%

Theorem 9.24. If o = 0, is a multiplicity-free rerpesentation of C(X) and 7 = o™, then 7(C(X))’
M, (L*°(n)). Hence the multiplicity of m is well-defined.
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Proof. We have 7 = O'l(,,n) acting on L?(u)™ = L*(u) @ --- @ L*(p) via 7(h) = diag(My,, My, ..., M,). If

A en(C(X)), we write A as an n x n matrix A = [A;;];; with respect to this decomposition. Then
0= ﬂ(h)A - Aﬂ'(h) = [MhAij — Aith]ij

if and only if each A;; € 0,(C(X)) = L>(u). So 7(C(X))" = M, (L>(u)).
What if n = R¢? Then A has a matrix [A;;]; j>1. Then the same argument shows A;; € L (p) and
m(C(X)) ={B = [Mp,li; : hij € L= (), [|A]l < 00} = B(H)SL™(u)

where we take the WOT-closure of the tensor product.
Suppose 7 also has multiplicity m < n; so m = aﬁm). Then

My (L (1)) = 7(C(X))" = My (L™ (v))

Suppose ¢ is a multiplicative linear functional on L*°(v); it induces a map @™ : M,,, (L>°(v)) — M,, given
by o™ ([My,,]i;) = [¢(hij)]ij- Then (™ is a homomorphism: it is linear and multiplicative. Indeed, we
have

[Mhij“Mgij] = [MZf’Zl hijglcj]

and

A i, D™ (M) = et = [3 ethindotony)] = [0(32 hiaows) | = o i )My, )

So we get unital *~homomorphisms
o(m)
M,,(C1 < M, (L>=(p)) = M, (L= (v)) Z— M,,(C)

surjective

So we get a unital *~homomorphism M,, — M,, with m < n.

If n < co then M, is simple; so n? = dim(M,) < dim(M,,) = m?, a contradiction. If n = Xy then
My, = B(H) only has one proper ideal: the compact operators K. Also dim(B(H)) = dim(B(H)/K) = 2%°. So
there are no finite dimensional quotients, a contradiction. So multiplicity is well-defined. O Theorem 9.24

Definition 9.25. Suppose 7: C(X) — B(H) where H is separable. A projection P € 7w(C(X))” has
multiplicity n if 7(C(X)) | PH has multiplicity n.

Proposition 9.26. There is a largest projection P, of multiplicity n.

Proof. Let (P,)a be the collection of all multiplicity n projections in w(C(X))” = L*°(u). So there are
measurable sets A, such that P, = M, , . Let ¢ be the supremum over all finite subsets of 1(Ay, U---UAq,,, ).
Choose Fj = Ay, ,U---UA such that p(F;) — t. Let F = J;o, Fi. Then

Qj,m

t=supp(F;) < p(F) = lim p(FrU---UF,) <t

So u(F) =t.
Claim 9.27. pu(Ay \ F) =0 for all a.

Proof. Say pu(As \ F) =0 > 0. Pick ig such that u(F;,) >t — 5. Then

5
t 2 p(FigUAa) 2 p(Fy) + p(Aa \ F) >t =5 +0>1

a contradiction. O Claim 9.27
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So there is a countable set (P;); of multiplicity n such that
\/ P=M,, =\/P.
i>1

Let Q1 = P; and
Then Qng =0if1 #] and

So -
Q=>Q=\/P=\/P,
i=1 i>1
and Q; = M, with the B; pairwise disjoint, measurable. Each P; has multiplicity n and Q; < P;, so each
Q; has multiplicity n. Then
PC(X) = M, (L™ (A;))
QiC(X)" = M, (L*(By))

with each B; C A;. Then since the QQ; are pairwise orthogonal we get

Qr(C(X)) = > Qur(C(X))' = Y- Ma(L2(B:) = My (27 Bi) ) = Ma(L%(F))
So @ has multiplicity n and is the biggest. [0 Proposition 9.26

Lemma 9.28. If w: C(X) — B(H) with H separable then there is 0 # P a projection in w(C(X))"” of uniform
multiplicity. (i.e. P has a multiplicity.)

Proof. m(C(X))" is an abelian von Neumann algebra; so there is a separating vector x1; let My = 7(C(X))z1.
Then M; is reducing so w(C(X))” | M; is maximal abelian, isomorphic to L (u1); call g3 = p. Then
7(C(X))" | Mi- is an abelian von Neumann algebra, so there is a separating vector xa; let My = 7(C(X))xa.
Then M, is reducing so w(C(X))” | M, is maximal abelian, isomorphic to L (ug) with pa < u1 = p.
Recursively find separating 2,11 of 7(C(X))” | (M1 +---+ M,)* and let M,, 11 = 7(C(X)); then 7(C(X))" |
My g1 22 L% (pn41) With pn 1 << pn.

There is A,, measurable such that p, ~ p [ A,; then X = A; D Ay D ---. Suppose there is a smallest
n + 1 such that pne1 % ppe1. Then p =~ py =~ -+ = p, ¥ ppy1. Then Ap, ..., A, have full measure
but p(Ay41) < 1. Let P € m(C(X))"” = L>(u) correspond to xac,, € L>(u). Let B = A7 ;. Then
PIM;=2M,, forl<i<nand P[M;=0ifi>n+1. So

P=M" a0

Also P((3>° M;)*) =0. Then

Then
" L
P <Z Mi> =0
i=1
since @41 is separating; but M, | M,41 =0,s0 My, | (O, M;)" =0.
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n
Prexyr = @LOO(B) I PM; ©0
=1

multiplicity n

So P has multiplicity n. This is fine if n < oco; suppose then that n = Ng. Then p, ~ p for all n > 1
and {z, : n > 1} are separating vectors for 7(C(X))” = L*>°(n). By Zorn’s lemma we can extend this to
a maximal family of separating vectors {y; } such that N; = n(C(X))y; are pairwise orthogonal. Then
7(C(X)) | N; = L*°(p) a masa on J;. Let R = (S N,)™*; we know m(C(X))” | R does not have a
separating vector for L>(u). So n(C(X))” | R & L*°(v) with v < u but v % u. So v = xpu with
u(D) < 1. Let P € ©(C(X))"” correspond to xpe € L>(u); so P | R = 0. Thus PH = € PN; and
©(C(X))" | PN; = L>*(D¢); so P has multiplicity R. O Lemma 9.28

Theorem 9.29. Suppose 7: C(X) — B(H) with H separable. Then there are pairwise orthogonal projections
P, with 1 < n < Ry the maximal projections of multiplicity n. The SOT sum

> Pt Py =1

n=1

Som =@, afﬁ) D oﬁff;) with py, Ly, if n #m and

H= Y n g

Proof. By lemma there is a largest projection P, of multiplicity n. Then m(C(X)) | P,H = O',(ﬁl) (C(X)). Then
P,P,, =0 if n # m because on the intersection we have two multiplicities, a contradiction. If the SOT sum

Y P+ PR, =Q<I
n=1

then look at 7(C(X)) | Q+H. By last lemma we get Q1 > P and P has multiplicity n; but this contradicts
maximality of P,. So Q = I. O Theorem 9.29

Theorem 9.30 (Weyl-von Neumann-Berg). Suppose N is a normal operator on separable H and € > 0.
Then there is an orthonormal basis { e, } and a diagonal operator D = diag(dy,ds, . ..) with respect to { e, }
such that K = N — D is compact and ||N — D|| < e; so N = D + K is the sum of a diagonal and a small
compact.

Suppose A and B are approzimately unitarily equivalent (a.u.e.). If there is a sequence of unitary Uy, such
that B = lim,,—,oc U AU, in norm then A ~q.q... B if and only if U(A) = U(B) (where U(A) = {U*AU :
U unitary}). In this case for all € > 0 there is U such that B — U* AU is compact and has norm < e.

Done in Ken’s book, same chapter as normal operators. See also Voiculescu’s theorem for a non-
commutative version.
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