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1 Banach algebras

Definition 1.1. A Banach algebra is an associative algebra A over C (or R, but not for us) which has a
norm that makes (A, ∥·∥) a Banach space and satisfies

∥xy∥ ≤ ∥x∥∥y∥

and if A has a unit (which we will denote e or 1) then ∥e∥ = 1.

1



Remark 1.2. The above implies that multiplication is jointly continuous. Indeed, we have

x1y1 − x2y2 = x1y1 − x2y1 + x2y1 − x2y2 = (x1 − x2)y1 + x2(y1 − y2)

so
∥x1y1 − x2y2∥ ≤ ∥x1 − x2∥∥y1∥+ ∥x2∥∥y1 − y2∥

Hence if xn → x and yn → y then xnyn → x1y1.

Example 1.3.

1. If X is a Banach space then B(X) is a Banach algebra (with ∥T∥ = sup{ ∥Tx∥ : ∥x∥ ≤ 1 }).

2. If X is a compact Hausdorff space then C(X) is a Banach space where ∥f∥∞ = sup{ |f(x)| : x ∈ X }.
If X is locally compact and Hausdorff then we define C0(X) to consist of the continuous functions f
on X such that for all ε > 0 the set {x ∈ X : |f(x)| ≥ ε } is compact; we define Cb(X) to consist of
the bounded continuous functions. For both C0(X) and Cb(X) the norm ∥f∥∞ = sup{ |f(x)| : x ∈ X }
confers a Banach algebra structure.

3. Consider the set C(n)[a, b] of functions on [a, b] with n continuous derivatives. Our product rule is

(fg)(k) =
∑(

k

j

)
f (j)g(k−j)

The norm

∥f∥Cn =

n∑
k=0

∥f (k)∥∞
k!

makes C(n)[a, b] into a Banach algebra.

Exercise 1.4. Check that ∥fg∥Cn ≤ ∥f∥Cn∥g∥Cn .

4. Suppose G is a locally compact abelian grape (e.g. Rn,Tk,Tk × Rn, . . .). We get a Haar measure m on
G: a regular Borel measure that is translation-invariant (i.e. m(A+ s) = m(A) for Borel A ⊆ G and
s ∈ G). We define L1(G) to be the set of measurable f on G such that

∥f∥1 =

∫
|f |dm <∞

The product on L1(G) is given by convolution:

(f ∗ g)(t) =
∫
G

f(s)g(t− s)dm(s)

One can check that

• g ∗ f = f ∗ g
• (f ∗ g) ∗ h = f ∗ (g ∗ h) (this follows form Fubini).

For the norm bound, note that

∥f ∗ g∥1 =

∫
G

|(f ∗ g)(t)|dm(t)

=

∫
G

∣∣∣∣∫
G

f(s)g(t− s)dm(s)

∣∣∣∣dm(t)

≤
∫
G

∫
G

|f(s)||g(t− s︸︷︷︸
u

)|dm(s)dm(t)

=

∫
G

∫
G

|f(s)||g(u)|dm(s)dm(u)

= ∥f∥1∥g∥1
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(since the Jacobian of (s, t) 7→ (s, u) is ∣∣∣∣1 −1
0 1

∣∣∣∣ = 1

).

5. Consider A(D) the disk algebra consisting of f(z) continuous on D and analytic on D = { z ∈ Z : |z| < 1 }.
Together with the norm

∥f∥ = sup
|z|≤1

|f(z)| = sup
|z|=1

|f(z)|

(where the second equality is by the maximum modulus principle) forms a Banach algebra. Then
A(D) ⊆ C(D); in fact A(D) ⊆ C(T) where T = { z : |z| = 1 } = ∂D. Indeed the map f 7→ f ↾ T is
isometric.

6. For T ∈ B(X) where X is a Banach space, we define A(T ) = { p(T ) : p ∈ C[z] }
∥·∥
⊆ B(X). If T ∈ B(H)

for H a Hilbert space we define C∗(T ) = alg{ I, T, T ∗ }
∥·∥

. (Here alg is “the algebra generated by”.)

7. If (X,µ) is a measure space we define L∞(µ) to be the set of measurable f such that f is essentially
bounded (i.e. there is t such that µ({x : |f(x)| > t }) = 0) modulo f ∼ g if f − g = 0 almost everywhere.
The norm is given by

∥f∥∞ = inf{ t : µ({x : |f(x)| > t }) = 0 } = ess. sup|f |

We have an embedding L∞(µ) ↪→ B(L2(µ)) given by f 7→Mf where Mf (h) = fh.

Remark 1.5. If A is a Banach algebra without unit we define A+ = { (a, λ) : a ∈ A, λ ∈ C }; we write
(a, λ) = a+ λe. We define

(a+ λe)(b+ µe) = (ab+ λb+ µa) + λµe

∥a+ λe∥ = ∥a∥+ |λ|

so
∥(a+ λe)(b+ µe)∥ ≤ ∥a∥∥b∥+ |λ|∥b∥+ |µ|∥a∥+ |λµ| = (∥a∥+ |λ|)(∥b∥+ |µ|)

In fact A is a (closed) maximal ideal in A+.

Proposition 1.6. Every Banach algebra A is isometrically isomorphic to a subalgebra of B(X) for some
Banach space X.

Proof. We map A into B(A+) by a 7→ La where Lax = ax. Then

∥a∥ = ∥ae∥ ≤ ∥La∥ = sup{ ∥ax∥ : x ∈ A+, ∥x∥ ≤ 1 } ≤ sup{ ∥a∥∥x∥ : x ∈ A+, ∥x∥ ≤ 1 } = ∥a∥

so this is indeed an isometry. Proposition 1.6

Definition 1.7. Suppose A is a unital Banach algebra and a ∈ A.

• The spectrum of a is σA(a) = {λ ∈ C : λ1− a is not invertible }. (If the A is clear from context we will
sometimes omit it and write σ(a).)

• The resolvent of a is ρ(a) = C \ σ(a).

• The resolvent function R(a, λ) = (λ− a)−1 is defined on ρ(a).

Definition 1.8. Suppose T ∈ B(X) for some Banach space X.

• We define the point spectrum σp(T ) to be the set of eigenvalues of T : those λ for which there is x ̸= 0
such that Tx = λx.
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• We define the approximate point spectrum σπ(T ) to be the set of λ ∈ C such that λI−T is not bounded
below. (An operator T is bounded below if there is ε > 0 such that ∥Tx∥ ≥ ε∥x∥ for all x ∈ X.)

• We define the compression spectrum γ(T ) to be {λ : (λI − T )X ≠ X }; i.e. the λ for which λI − T does
not have dense range.

Theorem 1.9. For T ∈ B(X) with X a Banach space, the following are equivalent:

1. T is invertible.

2. T maps X bijectively to itself.

3. T is bounded below and has dense range.

4. T and T ∗ are bounded below (T ∗ ∈ B(X∗)).

5. T ∗ is invertible in B(X∗).

Proof.

(1) =⇒ (2) Immediate.

(2) =⇒ (1) Banach isomorphism theorem.

(1) =⇒ (3) Note that x = T−1(Tx); so ∥x∥ ≤ ∥T−1∥∥Tx∥, and ∥Tx∥ ≥ (∥T−1∥)−1∥x∥, and T is bounded
below. (Surjectivity implies dense range.)

(3) =⇒ (2) If x ≠ 0 then ∥Tx∥ ≥ ε∥x∥ > 0; hence Tx ̸= 0, and T is injective. For surjectivity, suppose
y ∈ X; then since T has dense range there are xn such that yn = Txn → y. Then in particular the yn
are Cauchy; since

∥yn − ym∥ = ∥T (xn − xm)∥ ≥ ε∥xn − xm∥

we get that the xn are also Cauchy, and thus have a limit x ∈ X. Then

Tx = lim
n→∞

Txn = lim
n→∞

yn = y

and T is surjective.

(1) =⇒ (5) By hypothesis we have IX = T−1T = TT−1; so

IX∗ = I∗X = T ∗(T−1)∗ = (T−1)∗T ∗

so T ∗ is invertible in B(X∗).

(5) =⇒ (4) If T ∗ is invertible then T ∗ is bounded below (by 1 =⇒ 3); also (1 =⇒ 5) implies that T ∗∗ is
invertible and thus bounded below. But T = T ∗∗ ↾ X; so T is bounded below.

(4) =⇒ (3) T is bounded below by hypothesis. Note that

(RanT )⊥ = { f ∈ X∗ : f(Tx)︸ ︷︷ ︸
(T∗f)(x)

= 0 for all x ∈ X } = { f : T ∗f = 0 } = ker(T ∗) = { 0 }

(since T ∗ is bounded below). By the Hahn-Banach theorem if RanT were a proper subspace then
there would be 0 ̸= f ∈ X∗ such that f ↾ RanT = 0, a contradiction. So RanT = X, and T has dense
range. Theorem 1.9

Corollary 1.10. If T ∈ B(X) then σ(T ) = σπ(T ) ∪ γ(T ).

Proposition 1.11. Suppose A is a unital Banach algebra. If ∥a∥ < 1 then 1− a is invertible.
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Proof. If x ∈ C and |x| < 1 then

1

1− x
=

∞∑
n=

xn

If ∥a∥ < 1, define

b =

∞∑
n=0

an

(where a0 = 1). To see that this is well-defined, note that

∞∑
n=0

∥an∥ ≤
∞∑
n=0

∥a∥n <∞

So the sequence

bk =

k∑
n=0

an

is a convergent sequence, and b is well-defined in A as the limit of the bk. Since multiplication is continuous
we get that

(1− a)b = lim
k→∞

(1− a)bk = lim
k→∞

(1− a)
k∑

n=0

an = lim
k→∞

(1− ak+1) = 1

(since ∥ak+1∥ ≤ ∥a∥k+1 → 0). Also (1 − a)bk = bk(1 − a), so b(1 − a) = (1 − a)b = 1, as desired.
Proposition 1.11

Corollary 1.12. A−1 is open and a 7→ a−1 is a continuous antihomomorphism A−1 → A−1. (Note that A−1

is a grape under multiplication and (ab)−1 = b−1a−1.)

Proof. The previous proposition says that b1(1) = { a : ∥1 − a∥ < 1 } ⊆ A−1. Suppose a ∈ A−1 and b ∈ A
with ∥b∥ < 1

∥a−1∥ . Then a− b = a(1− a−1b) and ∥a−1b∥ ≤ ∥a−1∥∥b∥ < 1. So 1− a−1b is invertible (in fact

the inverse is
∞∑
n=0

(a−1b)n

). So a− b is invertible with

(a− b)−1 = (1− a−1b)−1a−1 =

∞∑
n=0

(a−1b)na−1

So b∥a−1∥−1(a) ⊆ A−1, and A−1 is open.
(ab)−1 = b−1a−1 shows that a 7→ a−1 is an antihomomorphism; bijectivity follows from a = (a−1)−1. It

remains to check continuity. If ∥a∥ < 1 then

∥(1− a)−1 − 1∥ =

∥∥∥∥∥
∞∑
n=0

an − 1

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
n=1

an

∥∥∥∥∥ ≤
∞∑
n=1

∥a∥n =
∥a∥

1− ∥a∥

As a→ 0 we have
∥a∥

1− ∥a∥
→ 0

(uniform estimate). Thus if bn → 1 then an = 1 − bn → 0, and b−1
n = (1 − an)−1 → 1. So inversion is

continuous at 1. So if a ∈ A−1 and an ∈ A−1 converge to a, eventually ∥a − an∥ < 1
∥a−1∥ . Then write

an = a − bn = a(1 − a−1bn) so a
−1bn → 0. Then a−1

n = (1 − a−1bn)
−1a−1 → a−1, and inversion is indeed

continuous. Corollary 1.12
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Proposition 1.13. Suppose A is a unital Banach algebra and a ∈ A. Then ρ(a) is open and σ(a) is a
compact subset of {λ ∈ C : |λ| ≤ ∥a∥ }.

Proof. Note that
ρ(a) = {λ : λ1− a is invertible } = φ−1(A−1︸︷︷︸

open

)

where φ : λ 7→ λ1− a. Alternatively, if λ0 − a is invertible then

b∥(λ0−a)−1∥−1(λ0 − a)

is contained in A−1 and {λ : |λ− λ0| < ∥(λ0 − a)−1∥−1 }. So σ(a) = C \ ρ(a) is closed.
If |λ| > ∥a∥ then

λ− a = λ(1− a

λ
)

But ∥ aλ∥ =
∥a∥
|λ| < 1, so 1− a

λ is invertible. So λ− a is invertible; so σ(a) ⊆ {λ : |λ| ≤ ∥a∥ }; so it is closed

and bounded, and thus compact.

TODO 1. Connectives?

Proposition 1.13

Example 1.14.

1. Let H = L2(0, 1), f ∈ H, and Mfh = fh for h ∈ L2(0, 1).

Claim 1.15. ∥Mf∥ = ∥f∥∞ = ess. sup|f |.

Proof. Note that

∥Mf∥2 = sup{ ∥fh∥22 : ∥h∥2 ≤ 1 }

= sup

{∫
|fh|2 : ∥h∥2 ≤ 1

}
≤ sup

{∫
∥f∥2∞|h|2 : ∥h∥2 ≤ 1

}
= ∥f∥2∞ sup{ ∥h∥22 : ∥h∥2 ≤ 1 }
= ∥f∥2∞

So ∥Mf∥ ≤ ∥f∥∞.

For ε > 0, let Aε = {x : |f(x)| > ∥f∥∞ − ε }; then m(Aε) > 0. Let hε =
χAε

m(Aε)
1
2
. Then

∥hε∥22 =

∫
χAε

m(Aε)
= 1

|fhε| ≥ (∥f∥∞ − ε)
χε

m(Aε)
1
2

So
∥fhε∥ ≥ (∥f∥∞ − ε)∥hε∥ = ∥f∥∞ − ε

and
∥Mf∥ ≥ sup

ε>0
∥f∥∞ − ε = ∥f∥∞

Claim 1.15
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Note that f 7→Mf is an algebra homomorphism of L∞(0, 1) into B(L2(0, 1)) which is isometric. What
is M∗

f ? Well, for h, k ∈ L2(0, 1) we have

⟨M∗
f h, k⟩ = ⟨h,Mfk⟩

= ⟨h, fk⟩

=

∫
hfk

=

∫
(fh)k

= ⟨fh, k⟩
= ⟨Mfh, k⟩

So M∗
f =Mf .

Claim 1.16. σ(Mf ) = σL∞(f) = ess. ran(f) = {λ : m(f−1(bε(λ))) > 0 for all ε > 0 }.

Proof. Note that

C \ ess. ran(f) = {λ : ∃ε > 0 such that m(f−1(bε(λ))) = 0 }

If λ /∈ ess. ran(f) then there is ε such that |f(x) − λ| > ε almost everywhere; so 1
f−λ ∈ L

∞ (since∣∣∣ 1
f−λ

∣∣∣ ≤ 1
ε almost everywhere). So f − λ is invertible in L∞.

Note that I =M1 and λI −Mf =Mλ−f . So

Mλ−fM 1
λ−f

=M 1
λ−f

Mλ−f =M1 = I

So if λ /∈ ess. ran(f) then λ− f is invertible in L∞ and Mλ−f is invertible in B(L2(0, 1)).

If λ ∈ ess. ran(f) then 1
λ−f is not essentially bounded and may take value +∞ somewhere; so λ− f is

not invertible in L∞.

For ε > 0 let Aε = {x : |f(x) − λ| < ε }; then m(Aε) > 0. Let hε =
χAε

m(Aε)
1
2
. Then |Mλ−fhε| =

|(λ − f)hε| < ε|hε|; so ∥Mλ−fhε∥ < ε. So Mλ−f is not bounded below, and Mλ−f is not invertible.
Claim 1.16

Example 1.17. ConsiderMx. We have Ran(x) = ess. ran(x) = [0, 1] and σp(Mx) = ∅. IfMxh = xh = λh
then (x− λ)h = 0 almost everywhere; since x− λ ̸= 0 almost everywhere, we get that h = 0 almost
everywhere.

If λ ∈ [0, 1], then Mλ−x is not bounded below.

We have
RanMλ−x ⊇

⋃
Mλ−xL

2([0, λ− ε] ∪ [λ+ ε, 1])

Since |λ − x| ≥ ε on Bε = [0, λ − ε] ∪ [λ + ε, 1] and Mλ−f : L
2(Bε) → L2(Bε), we get that Mλ−x is

invertible on L2(Bε) and Mλ−xL
2(Bε) = L2(Bε). So

RanMλ−x ⊇
⋃
ε>0

L2(Bε) = L2(0, 1)

2. Let H = ℓ2 with orthonormal basis { en : n ≥ 0 }. If (dn : n ∈ N) is bounded we let D = diag((dn : n ∈
N)) so

D
(∑

anen

)
=
∑

dnanen

So ∥D∥ = sup|dn|, and σ(D) = { dn }.
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3. Let S be the unilateral shift on ℓ2 so

S
∑
n≥0

anen =
∑
n≥0

anen+1

The adjoint has 〈
S∗
∑

anen,
∑

bnen

〉
=
〈∑

anen, S
∑

bnen

〉
=
〈∑

anen,
∑

bnen+1

〉
=

∞∑
n=0

an+1bn

=

〈 ∞∑
n=0

an+1en,
∑

bnen

〉

So

S∗en =

{
en−1 if n ≥ 1

0 if n = 0

is the backwards shift.

Proposition 1.18. If H is a Hilbert space and T ∈ B(H) then σ(T ∗) = σ(T )∗ (where the latter is
pointwise complex conjugation).

Proof. If λ /∈ σ(T ) then (λI − T )(λI − T )−1 = I = (λI − T )−1(λI − T ). Taking adjoints we find that

((λI − T )−1)∗(λI − T ∗) = I∗ = I = (λI − T ∗)((λI − T )−1)∗

so (λI − T ∗)−1 = ((λI − T )−1)∗. Since T = T ∗∗ this is reversible. So ρ(T ∗) = ρ(T )∗.
Proposition 1.18

Note that S∗S = I but SS∗ = I − PCe0 where PCe0 = e0e
∗
0.

Notation 1.19. If x, y ∈ H then xy∗ ∈ B(H) of rank 1 is given by (xy∗)(z) = x(y∗z) = ⟨z, y⟩x.

So S, S∗ are not invertible. We have that S is injective but not surjective, with Ran(S) = (Ce0)⊥; also
S∗ is surjective but not injective with S∗e0 = 0, and ker(S∗) = Ce0. So 0 ∈ σ(S).
We have ∥S∥ = ∥S∗∥ = 1 and S is an isometry (∥Sx∥ = ∥x∥ for all x). So σ(S) ⊆ D = {λ : |λ| ≤ 1 }.
If S∗x = λx where x = (x0, x1, . . .) then xn+1 = λxn for all n; so x = x0(1, λ, λ

2, . . .). Then

∥x∥22 = |x0|2
∞∑
n=0

|λ|2n =


|x0|2
1−|λ|2 <∞ if |λ| < 1

0 if x0 = 0

∞ else

So if xλ = (1, λ, λ2, . . .) for |λ| < 1 then S∗xλ = λxλ. So σp(S
∗) = D. So σ(S∗) = D and σ(S) = D.

If Sx = λx for λ ̸= 0 then x0 = 0 = x1 = x2 = · · ·; so λ /∈ σp(S). Also 0 /∈ σp(S) because S is isometric.
So σp(S) = ∅.
Suppose |λ| = 1; let xn = 1√

n
(1, λ, λ2, . . . , λn−1, 0, 0, 0 . . .). Then

S∗xn =
1√
n
(λ, λ2, . . . , λn−1, 0, 0, . . .)

so

S∗xn − λxn =
1√
n
(0, . . . , 0,−λn, 0, 0, . . .)
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and ∥(S∗ − λ)xn∥ = 1√
n
→ 0, so S∗ − λ isn’t bounded below. Also

Sxn =
1√
n
(0, 1, λ, λ2, . . . , λn−2, λn−1, 0, . . .)

and

λxn
1√
n
(λ, 1, λ, . . . , λn−2, 0, 0, . . .)

so

∥(S − λI)xn∥ =
∥∥∥∥ 1√

n
(−λ, 0, . . . , 0, λn−1, 0, . . .)

∥∥∥∥ =

√
2

n
→ 0

and S − λ is not bounded below.

Definition 1.20. Suppose Ω ⊆ C is open and X is a Banach space. We say f : Ω→ X is strongly analytic on
Ω if for all z0 ∈ Ω there is r > 0 and (xn : n ≥ 0) in X such that

f(z) =

∞∑
n=0

xn(z − z0)n

converges absolutely and uniformly on { z : |z − z0| ≤ r }. We say f is weakly analytic if for all φ ∈ X′ we
have that φ ◦ f : Ω→ C is analytic.

Exercise 1.21 (Homework). Weakly analytic implies strongly analytic. (I think he said something about
Banach-Steinhaus?)

Theorem 1.22. Suppose A is a unital Banach algebra and a ∈ A.

1. For λ, µ ∈ ρ(a) we have
R(a, λ)−R(a, µ)

λ− µ
= −R(a, λ)R(a, µ)

2. R(a, λ) is a strongly analytic function on ρ(a).

3. R′(a, λ) = −R(a, λ)2.

4. ∥R(a, λ)∥ → 0 as |λ| → ∞.

Proof.

1. We have(R(a, λ)−R(a, µ)(λ− a)(µ− a) = (µ− a)− (λ− a) = µ− λ; multiply by R(a,λ)−R(a,µ)
λ−µ to get

the desired result.

2. If λ0 ∈ ρ(a) and |λ− λ0| < 1
∥(λ0−a)−1∥ .

λ− a = (λ0 − a)− (λ0 − λ)
= (λ0 − a)(1− (λ0 − λ)(λ0 − a)−1)

∥(λ0 − λ)(λ0 − a)−1∥ = |λ0 − λ|∥(λ0 − a)−1∥ < 1

So

(λ− a)−1 =

∞∑
n=0

((λ0 − λ)(λ0 − a)−1)n(λ0 − a)−1 =

∞∑
n=0

(−1)n(λ0 − a)−n−1(λ− λ0)n

If 0 < R < 1
∥(λ0−a)−1∥ then if |λ− λ0| ≤ R then ∥(λ− λ0)(λ0 − a)−1∥ ≤ R

∥(λ0−a)−1∥ = r < 1. So

∑
∥((λ) − λ)(λ0 − a)−1∥∥(λ0 − a)−1∥ ≤

∑
rn∥(λ0 − a)−1∥ = ∥(λ0 − a)

−1∥
1− r

<∞

So convergence is absolute and uniform (by M-test) on {λ : |λ − λ0| ≤ R }. So R(a, λ) is strongly
analytic.

9



3. We note that

R′(a, µ) = lim
λ→µ

R(a, λ)−R(a, µ)
λ− µ

= −R(a, µ)2

4. If |λ| = 2∥a∥ then (λ− a)−1 = λ−1(1− λ−1a)−1 = λ−1
∑

(λ−1a)n. So

∥(λ− a)−1∥ ≤ 1

|λ|

∞∑
n=0

∥(λ−1a)n∥ ≤ 1

|λ|
∑ 1

2n
=

2

|λ|

So ∥R(a, λ)∥ ≤ 2
|λ| → 0 as |λ| → ∞. Theorem 1.22

Theorem 1.23 (Liouville). If f : C → X is a weakly analytic entire function which is bounded then it is
constant.

Proof. For all φ ∈ X′ we have φ ◦ f : C → C is entire and bounded. So φ ◦ f is constant by Liouville’s
theorem. By Hahn-Banach we have that f is constant: if f(z1) ̸= f(z2) then there would be φ such that
φ(f(z1)− f(z2)) ̸= 0. Theorem 1.23

Theorem 1.24. Suppose A is a unital Banach algebra. Then σ(a) is not empty.

Proof. If σ(a) = ∅ then R(a, λ) is entire, strongly analytic, and has ∥R(a, λ)∥ → 0 as |λ| → ∞, and is thus
bounded. So by Liouville’s theorem it is constant, a contradiction since R(a, 0) = −a−1 ̸= (1−a)−1 = R(a, 1).

Theorem 1.24

If K ⊆ C is compact we let Rat(K) consist of rational functions p(x)
q(x) with p, q ∈ C[x] such that the poles

(zeroes of q) lie in C \K. If σ(a) = K and p
q ∈ Rat(K) then we may write q(x) = (x− α1) · · · (x− αm) with

each αi /∈ K; then q(a) = (a− α11) · · · (a− αm1), and q(a)−1 = (a− α11)
−1 · · · (a− αm1)−1 is well-defined

because αi /∈ K = σ(a). We can then define p
q (a) = p(a)q(a−1). This is a well-defined algebra homomorphism

of Rat(σ(a)) into A.

Theorem 1.25 (Spectral mapping theorem for rational functions). If a ∈ A and f = p
q ∈ Rat(σ(a)) then

σ(f(a)) = f(σ(a)).

Proof. Write f = p
q with

q(x) =

m∏
i=1

(x− αi)

If λ ∈ C then we may write f(x)− λ1 = p1(x)
q(x) with

p1(x) =

n∏
j=1

(x− βj)

Then

f(a)− λ1 = p1(a)q(a)
−1 =

n∏
j=1

(a− βj1)q(a)−1

So

λ ∈ σ(f(a)) ⇐⇒ f(a)− λ1 is not invertible

⇐⇒ ∃j such that a− βj1 is not invertible

⇐⇒ ∃j such that βj ∈ σ(a)

and

λ ∈ f(σ(a)) ⇐⇒ ∃β ∈ σ(a) such that f(β)− λ = 0

⇐⇒ ∃x ∈ σ(a) such that

n∏
j=1

(x− βj)q(x) = 0

⇐⇒ ∃j such that x = βj

10



TODO 2. Typo here?

But the last equivalences are the same. Theorem 1.25

Definition 1.26. The spectral radius of a is spr(a) = sup{ |λ| : λ ∈ σ(a) }.

Theorem 1.27. Suppose A is a unital Banach algebra and a ∈ A. Then

spr(a) = lim
n→∞

∥an∥ 1
n

Proof. By the spectral mapping theorem we have σ(an) = σ(a)n. Since spr(a) ≤ ∥a∥ we have

spr(a) = spr(an)
1
n ≤ ∥an∥ 1

n

thus
spr(a) ≤ inf

n≥1
∥an∥ 1

n

Recall that R(a, λ) = (λ− a)−1 is analytic on C \ σ(a). Hence for |λ| > ∥a∥ we have

R(a, λ) =

∞∑
n=0

anλ−n−1

TODO 3. why? Something about a power series around ∞?

If φ ∈ A′ then

φ(R(a, λ)) =

∞∑
n=0

φ(an)λ−n−1

is scalar-valued and analytic on ρ(a) ⊇ C \ {λ : |λ| ≤ spr(a) }; note that this last set is the biggest disk
around C on which R is defined. In particular, convergence is absolute and uniform over |λ| ≥ r + ε (with
r = spr(a)). So

sup
n≥0
|φ(an)|(r + ε)−n−1 <∞

(as the terms in the series approach 0). So

sup
n≥0

∣∣∣∣φ(( a

r + ε

)n)∣∣∣∣ ≤ C(φ)

r + ε

for some constant C(φ) (depending on φ). Hence by the uniform boundedness principle we have

sup
n≥0

∥∥∥∥( a

r + ε

)n∥∥∥∥ = C ′ <∞

Thus ∥an∥ ≤ C ′(r + ε)n, and hence ∥an∥ 1
n ≤ (C ′)

1
n (r + ε)→ r + ε. So

lim sup
n→∞

∥an∥ 1
n ≤ r ≤ inf∥an∥ 1

n

TODO 4. port limsup typesetting to essential range?

So r = limn→∞∥an∥
1
n = inf∥an∥ 1

n . Theorem 1.27

Remark 1.28. R(a, λ) =
∑∞
n=0 a

nλ−n−1 converges absolutely and uniformly on {λ : |λ| ≥ r + ε }.
Exercise 1.29. Check the details of this.

Proposition 1.30 (Mazur). If A is a Banach field then A = C1.

Proof. If a ∈ A then σ(a) ̸= 0. Pick λ ∈ σ(a); then a− λ1 is not invertible, so since A is a field we get that
a− λ1 = 0 and a = λ1. Proposition 1.30

11



2 Riesz functional calculus

Suppose U is open and contains σ(a). Suppose f is a holomorphic function on U and λ ∈ σ(a). Cauchy’s
theorem tells us that to evaluate f(λ) we can draw a rectifiable curve

TODO 5. rectifiable?

C such that C ⊆ U \ σ(a) and the winding number

indC(z) =

{
0 if z ∈ C \ U
1 if z ∈ K

TODO 6. K?

Then by Cauchy’s theorem we have

f(λ) =
1

2πi

∫
C

f(z)

z − λ
dz

for z ∈ σ(a).
We can try to define f(a) by

f(a) =
1

2πi

∫
C
f(z)(z1− a)−1dz

Note that (z1− a)−1 is defined on C \ σ(a), and thus on C; also f(z) is defined and analytic on U ⊇ C. So
f(z)(z − a)−1 is defined on U \ σ(a); it is analytic, and thus continuous.

Theorem 2.1. Suppose X is a Banach space; suppose C is a rectifiable curve in C and f : C → X is continuous.
Then ∫

C
f(z)dz

makes sense as a Riemann integral.

Proof. Parametrize C by arc length s for 0 ≤ s ≤ L. Take partitions ∆ consisting of 0 = s0 < s1 < · · · <
sn = L and Ξ consisting of ξi ∈ φ([si−1, . . . , si]) for 1 ≤ i ≤ n. If φ : [0, L]→ C is our parametrization then
our Riemann sum is

J(∆,Ξ) =

n∑
i=1

f(ξi)(φ(si)− φ(si−1))

We define
mesh(∆) = max

1≤i≤n
(si − si−1)

Claim 2.2. lim
mesh(∆)→0

J(∆,Ξ) converges; we call this limit

∫
C
f(z)dz.

TODO 7. I believe this is a limit of nets?

Proof. Suppose ε > 0. By continuity of f there is δ > 0 such that |s− t| < δ implies ∥f(φ(s))− f(φ(t))∥ < ε.
Suppose (∆1,Ξ1) and (∆2,Ξ2) both have mesh < δ. Let ∆ = ∆1 ∪∆2 = { 0 = s0 < s1 · · · < sn = L }, and
for p ∈ { 1, 2 } write ∆p = { si : i ∈ Jp } with { 0, n } ⊆ Jp ⊆ { 0, . . . , n }. Let Ξ = {φ(si) : 1 ≤ i ≤ n }. We
compare J(∆p,Ξp to J(∆,Ξ).

J(∆,Ξ)− J(∆p,Ξp) =

n∑
i=1

f(φ(si))(φ(si)− φ(si−1))−
∑

f(ξj)(φ(si)− φ(si−1))

12



where j ∈ Jp satisfies [si−1, si] ⊆ [sj , sj′ ] with [sj , sj′ ] an interval in ∆p. Hence

∥J(∆,Ξ)− J(∆p,Ξp)∥ =

∥∥∥∥∥
n∑
i=1

f(φ(si))(φ(si)− φ(si−1))−
∑

f(ξj)(φ(si)− φ(si−1))

∥∥∥∥∥
≤

n∑
i=1

∥f(φ(si))− f(ξj)∥|φ(si)− φ(si−1)| (note φ(si) and ξj are within δ of each other)

<

n∑
i=1

ε(si − si−1)

= εL

So ∥J(∆1,Ξ1)− J(∆2,Ξ2)∥ < (2L)ε. So the Riemann sums are Cauchy, and thus converge. TODO 7

Theorem 2.1

Theorem 2.3 (Riesz functional calculus). Suppose A a unital Banach algebra and a ∈ A. If f ∈ Hol(U)
with U ⊆ C an open set containing σ(a), we define

f(a) =
1

2πi

∫
C
f(z)(z − a)−1dz

where C is a curve in U \ σ(a) such that

indC(z) =

{
1 if z ∈ σ(a)
0 if z /∈ U

Then

1. This definition is independent of the choice of C; hence f(a) is well-defined.

2. (f + g)(a) = f(a) + g(a) and (λf)(a) = λ · f(a).

3. (fg)(a) = f(a)g(a). (Hence, combining all the above, we get that f 7→ f(a) is a homomorphism.)

4. If

f(z) =

∞∑
n=0

an(z − z0)n

is analytic in a disk DR(z0) ⊇ σ(a) then

f(a) =

∞∑
n=0

an(a− z01)n

Proof.

1. Suppose C1, C2 are permissable curves. Then C = C1 − C2 (i.e. union of C1 and C2 with the orientation
of C2 reversed) is a curve such that

indC(z) =

{
0 if z ∈ C \ U
0 if z ∈ σ(a)

So f(z)(z − a)−1 is analytic on U \ σ(a), and C ⊆ U \ σ(a); so C is homologous to zero in U \ σ(a).
Taking φ ∈ A′ we have

φ

(
1

2πi

∫
C
f(z)(z − a)−1dx

)
=

1

2πi

∫
C

f(z)φ((z − a)−1)︸ ︷︷ ︸
scalar-valued and analytic in U\σ(a)

dz

= 0

13



by Cauchy’s theorem. But this holds for all φ ∈ A′. So by the Hahn-Banach theorem we get

0 =
1

2πi

∫
C
f(z)(z − a)−1dz =

1

2πi

∫
C1

f(z)(z − a)−1)dz − 1

2πi

∫
C2

f(z)(z − a)−1dz

2. If f ∈ Hol(U) and g ∈ Hol(V ) with U, V ⊇ σ(a) then f, g ∈ Hol(U ∩ V ); so one can choose C to work
for both f and g. The claim then follows from linearity of the integral.

3. Suppose f, g ∈ Hol(U). Choose a curve C as required. Let V = {λ : indC(λ) = 1 } ⊇ σ(a); so V is open.
Choose C2 in V \ σ(a) satisfying the requirements. In particular if λ ∈ C2 then indC1

(λ) = 1 (since
C2 ⊆ V ) and if λ ∈ C1 then indC2

(λ) = 0 (since C1 ⊆ C \ V ). Then

f(a)g(a) =
1

2πi

∫
C1

f(z)(z − a)−1dz
1

2πi

∫
C2

g(w)(w − a)−1dw

=
1

(2πi)2

∫
C1

∫
C2

f(z)g(w)R(a, z)R(a,w)dzdw

=
1

(2πi)2

∫
C1

∫
C2

f(z)g(w)
R(a, z)−R(a,w)

w − z
dzdw (by Theorem 1.22)

=
1

(2πi)2

∫
C1

∫
C2

f(z)g(w)
R(a, z)

w − z
dzdw − 1

(2πi)2

∫
C1

∫
C2

f(z)g(w)
R(a,w)

w − z
dzdw

=
1

2πi

∫
C1

f(z)R(a, z)


1

2πi

∫
C2

g(w)

w − z
dw︸ ︷︷ ︸

=0 since indC2
( z︸︷︷︸

∈C1

)=0


dz +

1

2πi

∫
C2

g(w)R(a,w)


1

2πi

∫
C1

f(z)

z − w
dz︸ ︷︷ ︸

=f(w) since indC1
( w︸︷︷︸

∈C2

)=1


dw

=
1

2πi

∫
C2

g(w)f(w)(w − a)−1dw

= (fg)(a)

TODO 8. Typeset above better

4. Let C = z0 + r exp(iθ) for 0 ≤ θ ≤ 2π and r < R be sufficiently large to enclose σ(a). Then the Taylor
expansion

f(z) =
∑
n≥0

an(z − z0)n

converges absolutely and uniformly on

TODO 9. in?

Then

f(a) =
1

2πi

∫
C

∞∑
n=0

an(z − z0)n(z − a)−1dz

=

∞∑
n=0

an
1

2πi

∫
C
(z − z0)n(z − a)−1dz

=

∞∑
n=0

an(a− z0)n

as desired. Theorem 2.3

Corollary 2.4 (Spectral mapping theorem for analytic functions). If f ∈ Hol(U) with U ⊇ σ(a) then
σ(f(a)) = f(σ(a)).

14



Proof.

(⊆) If λ /∈ f(σ(a)) then f(z)− λ ̸= 0 on σ(a). Let V = { z ∈ U : f(z) ̸= λ }; so V is an open set containing
σ(a), and

g(z) =
1

λ− f(z)
is analytic on V . But then g(z)(λ− f(z)) = 1, so g(a)(λ− f(a)) = 1 = (λ− f(a))g(a); so λ /∈ σ(f(a)).

(⊇) If λ ∈ f(σ(a)) then there is w ∈ σ(a) such that f(w) = λ. So λ−f(z) = (z−w)g(z) for some g ∈ Hol(U);
so λ− f(a) = (a− w)︸ ︷︷ ︸

not invertible

g(a), and λ− f(a) is not invertible. So λ ∈ σ(f(a)). Corollary 2.4

Example 2.5.

1. Let H = ℓ2 with orthonormal basis { en }n≥0. Let D ∈ B(ℓ2) be diag(d0, d1, . . .); i.e. Den = dnen.
Then σ(D) = { dn : n ∈ N }. Suppose f ∈ Hol(U) with U ⊇ σ(D). Find C. Note that if z /∈ σ(D) then

zI −D = k diag
(

1
z−dn : n ∈ N

)
. Then

f(D)en =
1

2πi

∫
C
f(z)(zI −D)−1endz

=
1

2πi

∫
C
f(z)

1

z − dn
endz

=
1

2πi

(∫
C
f(z)

1

z − dn
dz

)
en

= f(dn)en

So f(D) = diag(f(dn) : n ∈ N).

2. Suppose A ∈Mn. By Jordan form theorem A is similar to a direct sum of Jordan blocks

A ∼ J1 ⊕ · · · ⊕ Jp

with

Ji =


λi 1 0 · · · 0
0 λi 1 0
...

. . .
. . .

...
0 0 · · · λi 1
0 0 · · · 0 λi


ki×ki

with
∑p
i=1 ki = n.

Suppose f ∈ Hol(U) with U ⊇ σ(A) = {λ1, . . . , λp }. Note also that σ(Ji) = {λi }. Since f is analytic
near λi we get

f(z) =

∞∑
m=0

am(z − λi)m

15



on a neighborhood of λi. By last item of previous theorem we have

f(Ji) =

∞∑
m=0

am(Ji − λiI)m

=

∞∑
n=0

an


0 1

. . .

0 1
0


n

=

∞∑
n=0

an



0 1
. . .

. . .

1

0



=


a0 a1 · · · aki−1

. . .
. . .

...
a1
a0



=


f(λi) f ′(λi) · · · f(ki−1)

(ki−1)!

. . .
. . .

...
f ′(λi)
f(λi)


So

f(A) = f(S(

⊕∑
Ji)S

−1) = Sf(

⊕∑
Ji)S

−1 = S(

⊕∑
f(Ji)S

−1

If σ(A) = {λ1, . . . , λp } with

Ki = max{ k : A has a Jordan block of size k with eigenvalue λi }

then dim(ker(A− λiI)s stops increasing at Ki. Write

f(z) = p(z)︸︷︷︸
degree<n

+

(
p∏
i=1

(z − λi)Ki

)
︸ ︷︷ ︸

minimal polynomial of A

g(z)

Then f(A) = p(A).

Theorem 2.6. Suppose T ∈ B(X). Suppose σ(T ) = σ1 ⊔ σ2 where the σi are disjoint compact sets. Then
there are idempotents E1, E2 ∈ B(X) such that E1 + E2 = I and EiT = TEi. We may also demand that the
Mi = Ran(Ei) are complementary subspace (i.e. M1 ∩M2 = { 0 } and M1 +M2 = X), TMi ⊆Mi (the
Mi are invariant subspaces for T ), and if Ti = T ↾Mi ∈ B(Mi) then σ(Ti) = σi.

Proof. Find open U = U1 ⊔ U2 with Ui ⊇ σi and U1 ∩ U2 = ∅. Let f ∈ Hol(U) be given by

z 7→

{
1 if z ∈ U1

0 if z ∈ U2

16



Let E1 = f(T ) and E2 = I −E1 = g(T ) where g = 1− f . Then f = f2 and g = g2, so E1 = E2
1 and E2 = E2

2 ;
also E1 + E2 = I. Then since f(T )T = Tf(T ) we get E1T = TE1. LetMi = Ran(Ei) = ker(E1−i). Then

E1E2 = (fg)(T ) = 0(T ) = 0

Also Ran(E1) ⊆ ker(E2) and Ran(E2) ⊆ ker(E1); furthermore if x ∈ ker(E2) then x = Ix = (E1+E2)x = E1x,
so ker(E2) ⊆ Ran(E1).

Thus theMi are closed because ker(Ei) are closed. If x ∈ M1 ∩M2 then x = E1x = E1(E2x) = 0. If
x ∈ X then x = E1x+ E2x ∈M1 +M2; soM1 +M2 = X. Also T (E1X) = E1TX ⊆ E1X, so it’s invariant.

Claim 2.7. σ(T1) = σ1.

Proof. If λ ∈ ρ(T ) then I = (λI − T )−1(λI − T ). So

IM1 = I ↾M1 = (λI − T )−1(λI − T ) ↾M1 = ((λI − T )−1 ↾M1)︸ ︷︷ ︸
maps M1 into M1

(λIM1 − T1)︸ ︷︷ ︸
range⊆M1

and likewise with right-multiplication. So λ ∈ ρ(Ti).
If λ /∈ σ1 then 1

λ−z is analytic on a neighbourhood U1 of σ1 (and we may assume U1 ∩ σ2 = ∅). Let

g(z) =

{
1

λ−z if z ∈ U1

0 if z ∈ U2

Then g(T )(λI − T ) = f(T ) where

f(z) =

{
1 if z ∈ U1

0 if z ∈ U2

So IM1
= g(T )(λI − T ) ↾ M1 = (λI − T )g(T ) ↾ M1. So λ ∈ ρ(T1), and σ(T1) ⊆ σ1; similarly we get

σ(T2) ⊆ σ2.

Subclaim 2.8. σ(T1 ⊕ T2) = σ(T1) ∪ σ(T2).

Proof. Indeed, we have
λI − (T1 ⊕ T2) = (λIM1

− T1)⊕ (λIM2
− T2)

If λ ∈ ρ(T1) ∩ ρ(T2) then
(λ− T )−1 = (λ− T1)−1 ⊕ (λ− T2)−1

If λ ∈ σ(T1) then λIM1
− T1 either is not bounded below, in which case λ − T is not bounded below,

or has range not dense in M1, in which case Ran(T ) ⊆ M2 +Ran(λ− T1) is proper. So σ(T1) ⊆ σ(T ).
Subclaim 2.8

So σ(T1) = σ1 and σ(T2) = σ2. Claim 2.7

Theorem 2.6

Suppose H is a Hilbert space and T ∈ B(H). Suppose U ⊇ σ(a) is open and f ∈ Hol(U). What is f(T )∗?
Well σ(T ∗) = σ(T )∗ (complex conjugate) so U∗ ⊇ σ(T ∗). Let f∗(z) = f(z) for z ∈ U∗; so f∗ ∈ Hol(U∗).

TODO 10. I think f∗(z) should be f(z).

Claim 2.9. f(T )∗ = f∗(T ∗).
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Proof. For x, y ∈ H we have

⟨f(T )∗x, y⟩ = ⟨x, f(T )y⟩

=

〈
x,

1

2πi

∫
C
f(z)(z − T )−1dz · y

〉
=

〈
1

2πi

∫
C
f(z)(z − T )−1ydz, x

〉
=

1

2πi

∫
C
f(z)⟨(z − T )−1y, x⟩dz

=
−1
2πi

∫
C∗
f∗(w)⟨(w − T )−1y, x⟩dw

=
1

2πi

∫
C∗
f∗(w)⟨x, (w − T )−1y⟩dw

=
1

2πi

∫
C∗
f∗(w)⟨(w − T ∗)−1x, y⟩dw

= ⟨f∗(T ∗)x, y⟩

Indeed, in general we have∫
C
g(z)dz = lim

∑
g(ξi)(zi − zi−1)

= lim
∑

g(ξi)(zi − zi−1)

= lim
∑

g∗(ξi)(zi − zi−1) (where g
∗(z) = g(z))

=

∫
C
g∗(w)dw

= −
∫
C∗
g∗(w)dw

where C∗ = −C (necessary since C has winding number −1 around σ(T ∗).) Claim 2.9

Proposition 2.10 (Relative spectra). Suppose 1 ∈ A ⊆ B are two Banach algebras with the same unit.
Then if a ∈ A then σA(a) ⊇ σB(a) and ∂σA(a) ⊆ ∂σB(a). (Here ∂ denotes the boundary.)

Example 2.11. Consider A(D) with X ⊆ D compact with T ⊆ X; then we get an embedding A(D)
αx
↪−→ C(X)

given by f 7→ f ↾ X. Since T ⊆ X we have

∥αX(f)∥ = sup
x∈X
|f(x)| = ∥f∥A(D)

We can thus consider A(D) ⊆ C(X). Consider z ∈ A(D); we have σA(D)(z) = Ran(z) = D, and σC(X)(z) =
Ran(αX(z)) = X.

We will need a definition before proving Proposition 2.10.

Definition 2.12. We say a ∈ A is a right (left, two-sided) topological divisor of zero if there are xn ∈ A with
∥xn∥ = 1 and ∥xna∥ → 0.

Claim 2.13. If λ− a is a right or left topological divisor of zero then it isn’t invertible (so λ ∈ σ(a)).

Proof. If (λ− a)−1 exists then x(λ− a)(λ− a)−1 = x; so ∥x∥ ≤ ∥x(λ− a)∥∥(λ− a)−1∥, and

∥x∥
∥(λ− a)−1∥

≤ ∥x(λ− a)∥

So λ − a is not a right topological zero divisor. The case of left topological zero divisors is similar.
Claim 2.13
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Claim 2.14. If λ ∈ ∂σA(a) then λ− a is a two-sided topological divisor of zero.

Proof. Since λ ∈ ∂σA(a) there are λn ∈ ρA(a) such that λn → λ. Then

(λn − a)−1(λ− a) = (λn − a)−1(λn − a+ λ− λn) = 1 + (λn − a)−1(λ− λn)

is not invertible. So by Proposition 1.11 we get that

∥(λ− λn)(λn − a)−1∥ ≥ 1

and

∥(λn − a)−1∥ ≥ 1

|λ− λn|
Aside 2.15. This shows that

∥µ− a)−1∥ ≥ 1

dist(µ, σ(a))

which is occasionally useful to know.

Let

xn =
(λn − a)−1

∥(λn − a)−1∥
Then

∥xn(λ− a)∥ =
∥∥∥∥1 + (λn − a)−1(λ− λn)

∥(λn − a)−1∥

∥∥∥∥ ≤ 1

∥(λn − a)−1∥
+ |λ− λn| ≤ 2|λ− λn| → 0

and λ− a is a right topological divisor of zero. Since (λ− a)xn = xn(λ− a) it is also a left topological divisor
of zero. Claim 2.14

We are now ready to prove Proposition 2.10.

Proof. If λ ∈ ρA(a) then we have some (λ− a)−1 ∈ A ⊆ B; so λ ∈ ρB(a). So σB(a) ⊆ σA(a).
If λ ∈ ∂σA(a) then λ− a is a right topological divisor of zero by the claim. So it is a right topological

divisor of zero in B as well (using the same xn). So λ ∈ σB(a). But there are λn ∈ ρA(a) ⊆ ρB(a) with
λn → λ. So λ ∈ ∂σB(a). Proposition 2.10

3 Commutative Banach algebras

Let A be a commutative Banach algebra with unity.

Definition 3.1. A linear functional φ : A → C is multiplicative if φ(ab) = φ(a)φ(b) for all a, b ∈ A and
φ(1) = 1.

Proposition 3.2. If φ is a multiplicative linear functional on A then ∥φ∥ = 1 (and so φ is continuous).

Proof. Since φ(1) = 1 we have ∥φ∥ ≥ |1|
∥1∥ = 1. Suppose we had ∥φ∥ > 1. Then there is x ∈ A with ∥x∥ ≤ 1

and |φ(x)| > 1. Let a = x
φ(x) . So φ(a) = 1 and ∥a∥ ≤ 1

|φ(x)| < 1. Let

b =

∞∑
n=1

an ∈ A

Note that v = a + ab; so φ(b) = φ(a) + φ(a)φ(b) = 1 + φ(b), and 0 = 1, a contradiction. So ∥φ∥ = 1.
Proposition 3.2

19



If φ is a multiplicative linear functional then ker(φ) is a closed ideal of codimension 1; so ker(φ) is a
maximal ideal. Conversely, suppose M is a maximal ideal; so 1 /∈M and A−1 ∩M = ∅. So b1(1) ∩M = ∅.

The closure of an ideal is a (proper) ideal; in particular M is also an ideal. Indeed, if m ∈M then there
are mn ∈M with mn → m; so if a ∈ A then

am = lim amn︸︷︷︸
∈M

∈M

and M is a subspace, so M is a subspace. It is proper since M ∩ b1(1) =M ∩ b1(1) = ∅.
But M ⊆M and M is maximal; so M =M and M is closed. So A/M is a field.

Aside 3.3. If A is a Banach algebra and J is a closed two-sided ideal then A/J is an algebra and a Banach
space. Also if a, b ∈ A and we let ȧ = a+ J and ḃ = b+ J then

∥ȧḃ∥ = ∥(a+ J)(b+ J)∥ ≤ ∥(a+ j︸︷︷︸
∈J

)(b+ k︸︷︷︸
∈J

)∥ ≤ inf
j,k∈J

∥a+ j∥∥b+ k∥ = ∥ȧ∥∥ḃ∥

TODO 11. Another inf somewhere?

So A/J is a Banach algebra.

So A/M is a Banach field; so by Proposition 1.30 we get an isomorphism ψ : A/M ∼= C. So M has
codimension 1. Since ψ is an isomorphism we have ψ(1̇) = 1. Define φM : A→ C by

A C

A/M

φM

q ψ

Then φ is multiplicative.
We have thus shown most of the following:

Theorem 3.4. There is a bijective correspondence between multiplicative linear funnctionals on A and
maximal ideals. Moreover, this set is non-empty.

Proof. We have seen that the map φ 7→ ker(φ) maps multiplicative linear functionals to maximal ideals; we
have seen that this has inverse taking M to the above composition φM .

Claim 3.5.

TODO 12. unlhd? lhd? trianglelefteq?
If I ◁ A is a proper ideal then there is a maximal ideal M ⊇ I.

Proof. We use Zorn’s lemma. Consider the set J of proper ideals J ◁ A such that J ⊇ I. If C is some totally
ordered (by ⊆) subset of J then

J ′ =
⋃
J∈C

J

is an ideal. It is proper since 1 /∈ J for all J ∈ C, so 1 /∈ J ′. So J ′ is an upper bound for C in J . So by Zorn’s
lemma J contains a maximal element M , which is a maximal ideal. Claim 3.5

But { 0 } is a proper ideal. So there is a maximal ideal. Theorem 3.4

Definition 3.6. The collectionMA of all multiplicative linear functionals on A is considered as a subset of
A′ endowed with the weak* topology; we call this the maximal ideal subspace of A.

Definition 3.7. The Gelfand transform is the homomorphism Γ: A → C(MA) given by Γ(a) = â where
â(φ) = φ(a).

Theorem 3.8 (Gelfand). MA is a compact Hausdorff space, and Γ is a contractive homomorphism into
C(MA) and Γ(A) separates points inMA.
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Proof. If a, b ∈ A then âb(φ) = φ(ab) = φ(a)φ(b) = â(φ)̂b(φ). So Γ(ab) = Γ(a)Γ(b). Clearly Γ is linear.

If φα ∈MA with φα
w∗

−−→ φ then

φ(ab) = lim
α
φα(ab) = lim

α
φα(a)φα(b) = φ(a)φ(b)

SoMA is a weak*-closed subset of b1(A′); by Banach-Alaoglu theorem, we have that b1(A′) is weak*-compact;
soMA is weak*-compact. Also note that

â(φ) = φ(a) = limφα(a) = lim â(φa)

so â is continuous. To see that Γ is contractive, note that

∥â∥ = sup
φ∈MA

|â(φ)| = sup
φ∈MA

|φ(a)| ≤ ∥a∥

To see that Γ(A separates points in MA, we note that if φ,ψ ∈ MA have φ ̸= ψ then ∃a ∈ A such that
â(φ) = φ(a) ̸= ψ(a) = â(ψ). Theorem 3.8

Theorem 3.9. Suppose A is a commutative unital Banach algebra. Then

1. a is invertible in A if and only if â is invertible in C(MA).

2. σ(a) = σC(MA)(â) = Ran(â).

3. ∥â∥ = spr(a).

Proof.

1. If a is invertible in A then aa−1 = 1. So Γ(a)Γ(a−1) = Γ(1) = 1, and Γ(a) is invertible. If a is not
invertible then J = aA is proper since 1 /∈ J (this uses commutativity of A). So J is contained in some
maximal ideal, which corresponds to some φ ∈MA with 0 = φ(a) = â(φ); so â is not invertible.

2. Follows directly from previous item.

3. We have
∥â∥ = sup|â(φ)| = sup{ |λ| : λ ∈ σ(a) = Ran(â) } = spr(a)

as desired. Theorem 3.9

Definition 3.10. Suppose A is a commutative Banach algebra with unity. The radical of A is rad(A) =
ker(Γ) = { a : â = 0 }. We say A is semisimple if rad(A) = { 0 }; i.e. Γ is injective.

Proposition 3.11. rad(A) = { a ∈ A : spr(a) = 0 } = { a : lim∥an∥ 1
n = 0 } is the set of quasi-nilpotent

elements of A.

Example 3.12.

1. Consider A = C(X) with X compact and Hausdorff. Then for x ∈ X we have εx(f) = f(x) is
multiplicative; so ker(εx) = { f : f(x) = 0 } is a maximal ideal. Suppose M is a maximal ideal; we can
define ker(M) = {x ∈ X : f(x) = 0 for all f ∈ M }. If x ∈ ker(M) then M ⊆ ker(εx), and hence by
maximality we have M = ker(εx).

What if ker(M) = ∅? Then for all x ∈ X there is fx ∈ M such that fx(x) ̸= 0. Let Ux =
{ y ∈ X : fx(y) ̸= 0 }; these form an open cover of X, so by compactness there is a finite subcover
X ⊆ Ux1

∪ · · · ∪ Uxn
. Let

g =

n∑
i=1

fxi
fxi

=

n∑
i=1

|fxi
|2 > 0

so g ∈M . But then g is invertible; so M = A is not proper.

HenceMC(X) = X as a set. The topology onMC(X) is the weak* topology induced by (A′, w∗). The
sub-basic open sets inMC(X) are {φ ∈ MC(X) : |φ(a)− λ| < r }; this corresponds via the above to
{x ∈ X : |a(x)− λ| < r }, which are open in X because a is continuous. Hence the map γ : X →MA

we (implicitly) defined above is continuous, injective, and surjective; since both X andMA are compact
and Hausdorff, we get that γ is a homeomorphism. SoMC(X) ≈ X.
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2. Consider ℓ1(Z) with

TODO 13. This is a Banach algebra under convolution I guess?

δn(k) =

{
1 if k = n

0 else

Note that δn ∗ δm = δn+m. If φ ∈Mℓ1(Z) with φ(δ1) = α then φ(δn) = φ(δn1 ) = φ(δ1)
n = αn.

TODO 14. connective

|αn| ≤ ∥δn∥1 = 1 for all n; also |α| ≤ 1 and |α−1| ≤ 1 implies |α| = 1. We have thus determined a
functionMℓ1(Z) → T.
Conversely if |α| = 1 define

φα(f) =
∑
n∈Z

anα
n

where
f =

∑
n∈Z

anδn

(so ∥f∥1 =
∑
|an| <∞). Then ∥φα∥ = ∥(αn)n∈Z∥∞ = 1 (using the fact that ℓ1(Z)′ = ℓ∞(Z)). If

g =
∑
n∈Z

bnδn

then
(f ∗ g)(n) =

∑
k∈Z

akbn−k

This lies in ℓ1(Z); indeed∑
k

∑
n

|akbn−k|︸ ︷︷ ︸
absolutely convergent

=
∑
k

|ak|
∑
n

|bn−k| = ∥f∥1∥g∥1

Also

φα(f ∗ g) =
∑
n∈Z

αn(f ∗ g)(n)

=
∑
n∈Z

αn
∑
k∈Z

akbn−k

=
∑
k∈Z

akα
k
∑
n∈Z

αn−kbn−k (since absolute convergence lets us rearrange the sum)

=
∑
k∈Z

akα
k
∑
ℓ∈Z

αℓbℓ

= φα(g)φα(f)

So φα is multiplicative. Also φ is determined by φ(δ1) = α. So this is a bijectionMℓ1(Z) → T. Also
φ 7→ φ(δ1) is continuous by definition of the weak* topology. Thus this is a homeomorphism.

What of the Gelfand transform? Well Γ: ℓ1(Z) → C(T) by Γ(f) = f̂ where f̂(α) = φα(f). Write
α = exp(iθ) with 0 ≤ θ < 2π; then

f̂(exp(iθ)) =

∞∑
n=−∞

an exp(inθ)
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TODO 15. Here f(n) = an?

The range of Γ is the algebra A(T) of all continuous functions on T whose Fourier series is absolutely
convergent.

Theorem 3.13 (Wiener). If f ∈ A(T) and f̂(exp(iθ)) ̸= 0 for all θ then 1

f̂
∈ A(T).

Proof. We have
σA(T)(f̂) = σℓ1(Z)(f) = σC(T)(f̂) = Ran f̂

where the first equality is because the algebras are isomorphic, and the second is Gelfand’s theorem.
But 0 /∈ Ran f̂ , so 0 /∈ σA(T)(f̂), and f̂ is invertible in A(T). Theorem 3.13

3. Consider A(D) and ℓ1(Z+) with Z+ = N0. Note that A(D) is the closure of the polynomials in C(D). If
f ∈ A(D) then fr(z) = f(rz) for 0 ≤ r < 1 has Fourier series

f ∼
∑
n≥0

an exp(inθ)

fr ∼
∑
n≥0

anr
n exp(inθ)

So
fr(z) =

∑
n≥0

anr
nzn

converges absolutely and uniformly, and lies in the C(D)-norm-closure of C[z]. Also f is continuous on
D, and hence uniformly continuous. So fr → f uniformly. Thus f is also a limit of polynomials.

So { z } generates A(D) as a unital Banach algebra. So any φ ∈MA(D) is determined by φ(z) = λ; note

that |λ| ≤ ∥z∥ = 1. Conversely if λ ∈ D we let φλ(f) = f(λ), which is clearly multiplicative. We get
MA(D) = D.

The case ℓ1(Z+) is similar, using φ(δ1) = λ; note here that |λ| ≤ ∥δ1∥1 = 1. We get ℓ1(Z) → C(D)
given by mapping f = (an)n≥0 to

f̂(z) =

∞∑
n=0

anz
n

for z ∈ D; this is a contractive hoommorphism. If λ ∈ D then φλ(f) = f̂(λ) is multiplicative.

Theorem 3.14. Suppose A,B are Banach algebras; suppose B is commutative and semisimple. Then every
algebra homomorphism θ : A→ B is (automatically) continuous.

Proof. We are given the Gelfand map Γ: B→ C(MB) is injective. Suppose φ ∈MB. Then φ ◦ θ : A→ C is
multiplicative; hence ∥φ ◦ θ∥ ≤ 1.

If A is not commutative then C = ⟨ab− ba⟩ is the commutator ideal, and is in the kernel of θ. We get a
diagram

A/C B

A C

θ̃

φθq

with φ ◦ θ̃ continuous (has norm ≤ 1) and ∥q∥ ≤ 1. So ∥θφ∥ ≤ 1.
We apply the closed graph theorem. If an ∈ A with an → 0 and θ(an)→ b, we must show that b = 0. If

φ ∈MB then
(φ ◦ θ)( an︸︷︷︸

→0

)→ 0

But also φ(θ(an))→ φ(b); so φ(b) = 0. This holds for all φ; so Γ(b) = 0. But Γ is injective; so b = 0. So by
the closed graph theorem we get that θ is continuous. Theorem 3.14

23



Corollary 3.15. If A is a commutative semisimple Banach algebra then

1. A has a unique Banach algebra norm up to equivalence of norms.

2. Every automorphism of A is continuous.

Proof.

1. Let ∥·∥ be the norm on A. Suppose that ~·~ is a norm on A which makes A into a Banach algebra
(A,~·~) is complete and ~ab~ ≤ ~a~~b~. Define j : (A,~·~) → (A,~·~) by j(a) = a. Then j is an
algebra homomorphism, and is thus continuous by the theorem. So j is continuous, injective, and
surjective, and is htus invertible. Thus c∥a∥ ≤ ~a~ ≤ C∥a∥ for some 0 < c ≤ C.

2. Easy. Corollary 3.15

Corollary 3.16. C∞[0, 1] has no norm that makes it a Banach algebra.

Proof. Suppose ∥·∥ is a Banach algebra norm on C∞[0, 1]. Let j : C∞[0, 1]→ C[0, 1] be j(f) = f ; note that
C[0, 1] is commutative and semisimple. So j is continuous by theorem. Thus

∥f∥∞ = sup
0≤x≤1

|f(x)| ≤ C∥f∥

Claim 3.17. The map D : C∞[0, 1]→ C∞[0, 1] given by Df = f ′ is continuous.

Proof. D is everywhere defined, so we can use the closed graph theorem. Suppose fn ∈ C∞[0, 1] has
∥fn∥ → 0 and Dfn = f ′n → g ∈ C∞[0, 1]; i.e. ∥f ′n − g∥ → 0. Suppose fn ∈ C∞[0, 1] has ∥fn∥ → 0 and
Dfn = f ′n → g ∈ C∞[0, 1]; i.e. ∥f ′n − g∥ → 0. Then ∥fn∥∞ → 0, so ∥f ′n − g∥∞ → 0. If 0 ≤ x < y ≤ 1 then∫ y

x

g(t)dt =

∫ y

x

f ′n(t)dt+

∫ y

x

(g − f ′n)(t)dt = (fn(y)− fn(x)) +
∫ y

x

(g − f ′n)(t)dt

Thus ∣∣∣∣∫ y

x

g(t)dt

∣∣∣∣ ≤ |fn(y)|+ |fn(x)|+ ∫ y

x

∥g − f ′n∥∞dt ≤ 2∥fn∥∞+ ∥g − f ′n∥∞ · 1→ 0

Thus ∫ y

x

g(t)dt = 0

for all x, y; thus g = 0. Thus D is continuous by the closed graph theorem. Claim 3.17

So there is c2 such that ∥f ′∥ ≤ c2∥f∥. Let f(t) = exp(2c2t), so f
′ = 2c2f . Then 2c2∥f∥ = ∥f ′∥ ≤ c2∥f∥;

so ∥f∥ = 0 and f = 0, a contradiction. Corollary 3.16

3.1 The non-unital case

In this section, A is non-unital.

TODO 16. Are we still commutative?

Definition 3.18. An ideal I ◁ A is modular if A/I is unital; i.e. there is u ∈ A such that a− au, a− ua ∈ I
for all a ∈ A. An ideal is maximal modular if it is maximal among modular ideals.

Remark 3.19.

1. If A is unital, then every proper ideal is modular.

2. If I is modular with unit u modulo I, then if I ⊆ J ◁ A with u /∈ J , then J is modular with unit u
modulo J .
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Theorem 3.20. Every modular ideal is contained in a maximal modular ideal, and maximal modular ideals
are closed.

Proof. Suppose I is a modular ideal with unit u modulo I. Suppose J is a proper ideal containing I; then u
is also a unit modulo J , and thus since J is proper we have u /∈ J .

We now use Zorn’s lemma. Suppose C = { Jα } is a chain of modular ideals containing I. Then J =
⋃
C

is an ideal; since u /∈ Jα for all α we get u /∈ J , so J is modular by previous remark. So by Zorn’s lemma we
get a maximal modular ideal containing I.

Claim 3.21. If M is modular with unit u modulo M , then b1(u) ∩M = ∅.

Proof. Suppose x ∈ M with ∥x − u∥ < 1. Work in A+ = A ⊕ Ce, a unital Banach algebra containing A.
Then e+ (x− u) is invertible in A+, with inverse λe+ y for some y ∈ A. Then

e = (e+ x− u)(λe+ y) = λe+ y + λx+ xy − λu− uy

Thus
(1− λ)e = (y − uy)︸ ︷︷ ︸

∈M

+(λx+ xy)︸ ︷︷ ︸
∈M

−λu ∈ A

So λ = 1; so u /∈M , a contradiction. Claim 3.21

In particular, we get u /∈M , so M is also a modular ideal; hence if M is maximal then M =M is closed.
Theorem 3.20

Proposition 3.22. Suppose A is a non-unital commutative Banach algebra. If φ is a multiplicative linear
functional then ∥φ∥ ≤ 1.

Proof. Same as in the unital case for bounded above. Proposition 3.22

Remark 3.23. In the unital case we required φ(1) = 1 for φ to be a multiplicative linear functional; this no
longer makes sense (since we’re non-unital), so we instead require φ ̸= 0.

Theorem 3.24. There is a natural bijection φ 7→ ker(φ) betweenMA and maximal modular ideals of A.

Proof. If φ is multiplicative and non-zero then φ : A → C is surjective, so C ∼= A/ ker(φ) is unital; so
M = ker(φ) is modular and has codimension 1, and is thus maximal.

Conversely, suppose M is a maximal modular ideal. So M is closed; so A/M is a (unital, by modularity)
Banach algebra. We show that A/M is a field, and is thus C by Mazur.

Suppose otherwise. Let φ : A → A/M be the quotient map; so there is a ∈ A \M such that φ(a) ̸= 0
is not invertible. Then J = ⟨φ(a)⟩ = φ(a)A/M is a proper ideal; so φ−1(J) ⊴ A with M ⫋ φ−1(J). But
A/φ−1(J) = (A/M)/J is unital; so φ−1(J) is modular, contradicting maximality of M .

So A/M is a Banach field, and is thus C. So A/M ∼= C, and φ defines a multiplicative linear functional.
Theorem 3.24

Theorem 3.25. Suppose A is a non-unital commutative Banach algebra; let A+ = A⊕Ce be the unitization.
ThenMA =MA+

\ {φ∞ } where φ∞(a+ λe) = λ is the multiplicative linear functional on A+ with kernel A.
Moreover,MA is the locally compact Hausdorff space with topology induced as a subset ofMA+

andMA+
is

the 1-point compactification ofMA.

Definition 3.26. If X is Hausdorff and locally compact (i.e. every point x ∈ X has a neighbourhood U such
that U is compact) then the 1-point compactification of X is the space X+ = X ∪ { p } where U ⊆ X open is
open in X+ and neighbourhoods of p have the form { p } ∪ (X \K) where K ⊆ X is compact.

Remark 3.27. X+ is compact because if {Uα } is an open cover, then there is α0 with p ∈ Uα0
; soK = X+\Uα0

is compact inX, and the Uα coverK. So there is a finite subcoverK ⊆ Uα1
∪· · ·∪Uαn

; thenX ⊆ Uα0
∪· · ·∪Uαn

.
X+ is Hausdorff because if x ∈ X then there is open U ⊆ X such that K = U is compact. Then x ∈ U

and p ∈ X \K are separated by disjoint opens. (That x, y ∈ X are separated by opens is just that X is
Hausdorff.)
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Proof of Theorem 3.25. If φ ∈ MA+ then φ ↾ A is a multiplicative lienar functional. But φ∞ ↾ A = 0, and
otherwise φ ↾ A ̸= 0 (since A ⊆ ker(φ) implies φ = φ∞). SoMA+ \ {φ∞ } restricts to elements ofMA. If
φ1 ↾ A = φ2 ↾ A then for a+ λe ∈ A+ we have

φ1(a+ λe) = φ1(a) + λ = φ2(a) + λ = φ2(a+ λe)

So φ1 = φ2.
Conversely, if φ ∈MA we define φ̃(a+ λe) = φ(a) + λ; one can check that φ 7→ φ̃ is a homomorphism.
We now verify the statement about the topology. InMA, the basic open sets have form

U(F,φ0) = {φ ∈MA : |φ(ai)− φ0(ai)| < 1, 1 ≤ i ≤ n }

where φ0 ∈MA and F = { a1, . . . , an } ⊆ A is finite. InMA+ the basic open neighbourhoods are of the form

V (G,φ0) = {φ ∈MA+
: |φ(bi)− φ0(bi)| < 1, 1 ≤ i ≤ n }

for φ0 ∈MA

TODO 17. A+?

and G = { b1, . . . , bn } ⊆ MA+ is finite. Write bi = ai + λie, where ai ∈ A and λi ∈ C. Then

|φ(bi)− φ0(bi)| = |φ(ai) + λi − φ0(ai)− λi|

So if F = { a1, . . . , an } then

V (G,φ0) = V (F,φ0) =

{
U(F,φ0) if ∃i0 such that |φ0(ai0)| ≥ 1

U(F,φ0) ∪ {φ∞ } else

Thus the open sets ofMA have form V \ {φ∞ } for V open inMA+
. Thus the topology onMA is induced

fromMA+
. SinceMA+

is compact and Hausdorff, we get thatMA is locally compact and Hausdorff.

If x ∈MA then by Hausdorfness there is U ∋ x and V ∋ p open such that U ∩V = ∅. So U ⊆MA+
\V is

compact; soMA is locally compact and Hausdorff. Neighbourhoods of φ∞ have the form {φ∞ } ∪ (MA \K)
where K ⊆MA is compact. SoMA+ is the one-point compactification ofMA. Theorem 3.25

3.1.1 L1(G)

Suppose G is a locally compact abelian grape; i.e.

• G is an abelian grape

• G has a locally compact topology

• (x, y) 7→ xy is continuous G×G→ G

• x 7→ x−1 is continuous G→ G.

Then L1(G) is a commutative Banach algebra under convolution. It is unital if and only if G is discrete, in
which case δe is the unit. (Examples to keep in mind are G = T and G = R.)

Such grapes have a Haar measure: a translation-invariant σ-finite Borel measure such that σ(K) <∞
if K is compact. We usually normalize so that if G is compact then m(G) = 1 and if G is discrete then
m(e) = 1. When integrating with respect to m we will sometimes just write dx. (So on T we have dx = dθ

2π .)

Definition 3.28. A character of a locally compact abelian grape G is a continuous homomorphism γ : G→ T.

If γ, δ are characters then (γδ)(x) = γ(x)δ(x) is also a character; also (γ−1)(x) = (γ(x))−1 = γ(x) is also

a character. So the set Ĝ of all characters on G is a grape; we call this the dual grape of G.
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Theorem 3.29. Suppose G is a locally compact abelian grape. Then γ ∈ Ĝ determines

φδ(f) =

∫
G

f(x)γ(x)dx

Then φδ is a multiplicative linear functional in L1(G), and every multiplicative linear functional arises in
this way.

Proof. γ(x) is continuous and |γ(x)| = 1; so γ ∈ L∞(G). So φγ is a continuous linear functional on L1(G).
Suppose f, g ∈ L1(G). Then

φγ(f ∗ g) =
∫
G

γ(x)(f ∗ g)(x)dx

=

∫
G

γ(x)

∫
G

f(y)g(y−1x)dydx

=

∫
G

γ(y)f(y)

∫
G

γ(y−1x)g(y−1x)dxdy (using Fubini and γ(x) = γ(y)γ(y−1x))

=

∫
G

γ(y)f(y)

∫
G

γ(t)g(t)dtdy (by translation invariance)

= φγ(f)γ(g)

(Note that γ(x)f(x)g(y−1x) ∈ L1(G×G), so Fubini’s theorem holds.) So φγ ∈ML1(G).
Conversely let φ ∈ML1(G). Since L

1(G)′ = L∞(G) there is χ ∈ L∞(G) such that

φ(f) =

∫
G

f(x)χ(x)dx

with ∥χ∥∞ = ∥φ∥ ≤ 1. Also φ ̸= 0 so there is g ∈ L1(G) such that φ(g) = 1. For f ∈ L1(G) we have

φ(f) = φ(f)φ(g)

= φ(f ∗ g)

=

∫
G

χ(x)

∫
G

f(y)g(y−1x) y︸ ︷︷ ︸
(f∗g)(x)

dx

=

∫
G

f(y)

∫
G

g(y−1x)χ(x)dxdy (Fubini)

Let Lyg)(x) = g(y−1x be the (left) translation of g. A basic measure theory fact is that y 7→ Lyg is contained
in L1. (e.g. for f ∈ L1(R) if we define fy(x) = f(x− y) then ∥f − fy∥ → 0 as y → 0.) Hence, continuing the
above equations, we find

φ(f) =

∫
G

f(y)φ(Lyg)dy

Since y 7→ Lyg is continuous, we get that φ is continuous. Define γ(y) = φ(Lyg) is a continuous map G→ C.
A computation:

(g ∗ Lxyg)(t) =
∫
g(s)(Lxyg)(s

−1t)ds

=

∫
g(s)g(y−1x−1s−1t)ds

=

∫
g(x−1s)g(y−1x−1(x−1s)−1t)ds

=

∫
g(x−1s)g(s−1y−1t)ds

=

∫
(Lxg)(s)(Lyg)(s

−1t)ds

= ((Lxg) ∗ (Lyg))(t)
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So

γ(xy) = φ(Lxyg)

= φ(g)φ(Lxyg)

= φ(g ∗ Lxyg)
= φ(Lxg ∗ Lyg)
= φ(Lxg)φ(Lyg)

= γ(x)γ(y)

So γ is multiplicative. So
|γ(x)| = |φ(Lxg)| ≤ ∥φ∥∥Lxg∥1 ≤ 1 · ∥g∥1

So |γ(xn)| = |γ(x)n| ≤ ∥g∥1 for all n ∈ Z. So taking n ≥ 0 we find |γ(x)| ≤ 1, and taking n ≤ 0 we find
|γ(x)| ≥ 1. So γ(x) ∈ T, and γ is a character. Theorem 3.29

Corollary 3.30. Ĝ has a locally compact Hausdorff topology induced by this bijection with ML1(G), with

γα → γ if and only of φγα
w∗

−−→ φγ in L1(G)′ = L∞, which occurs if and only if γα
w∗

−−→ γ in L∞.

Definition 3.31. For f ∈ L1(G) we define

f̂(γ) = Γf(γ) =

∫
f(x)γ(x)dx ∈ C0(Ĝ)

the Fourier transform of f .

Example 3.32.

1. In ℓ1(Z) we have Ẑ = T, done earlier.

TODO 18. ref

2. Consider L1(T). We claim T̂ = Z. Indeed, for all n ∈ Z we have γn(t) = tn a multiplicative map T→ T.
Then L1(T) ⊇ C(T) ⊇ { fk(t) = tk : k ∈ Z }, with L1(T) = span{ fk : k ∈ Z }

∥·∥1
. Then

φγn(fk) =

∫
tkt

n
dt =

1

2π

∫ 2π

0

exp(iθ(k − n))dθ =

{
0 if k ̸= n

1 if k = n

and

(fk ∗ fℓ)(t) =
∫
sk(s−1t)ℓds = tℓ

∫
sk−ℓds =

{
fk if k = ℓ

0 if k ̸= ℓ

So fk ∗ fk = fk is an idempotent, and fk ∗ fℓ = 0 with k ̸= ℓ.

If φ ∈ML1(T) then

φ(fk)
2 = φ(fk ∗ fk) = φ(fk) ∈ { 0, 1 }

and
φ(fk)φ(fℓ) = φ(fk ∗ fℓ) = 0

if k ̸= ℓ. Then φ(fk) is not zero for all k implies φ = 0. So there is a unique n such that φ(fn) = 1; so

φ = φn. So T̂ = Z.

3. Consider L1(R). We claim R̂ = R. If s ∈ R we have φs(x) = exp(isx) ∈ R̂. Suppose φ is a character
on L1(R); so φ is a continuous, multiplicative map R→ T. So φ(0) = 1, and Re(φ(x)) > 1

2 on some
[−δ, δ]. So

cδ =

∫ δ

0

φ(x)dx ̸= 0
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So

φ(t)cδ = φ(t)

∫ δ

0

φ(x)dx =

∫ δ

0

φ(t+ x)dx =

∫ t+δ

t

φ(x)dx

φ is continuous, so RHS is differentiable. So

φ′(t) =
d

dt

(∫ t+δ

t

φ(x)dx

)
= φ(t+ δ)− φ(t)
= φ(t)(φ(δ)− 1)

Let

s =
φ(δ)− 1

icδ

Then φ′(t) = (is)φ(t). So φ(t) = c exp(ist) and 1 = φ(0) = c and 1 = |φ(t)| = |exp(ist)| for all t; so
s ∈ R. So φ = φs.

So as a set we have R̂ = R. The topology on R̂ is induced by (L∞(R), w∗). If sα → s in R then

exp(isαt)→ exp(ist) uniformly on [−n, n] for all n ∈ N. So exp(isαt)
w∗

−−→ exp(ist) in L∞. If g ∈ C00(R)
(i.e. has compact support) then g(t) exp(−isαt)→ g(t) exp(ist) uniformly. Thus

φsα(g) =

∫
g(t) exp(−isαt)dt→

∫
g(t) exp−istdt = φs(g)

But we can approximate f ∈ L1 by g ∈ C00(R). So R→ R̂ is continuous.

Lemma 3.33. If f ∈ L1(R) and g ∈ L∞(R) is uniformly continuous and lim|x|→∞(f ∗ g)(x) = 0.

TODO 19. Defer until later?

Lemma 3.34 (Riemann-Lebesgue). If f ∈ L1(R) then

lim
|x|→∞

f̂(x) = 0

Proof. Suffices to prove this for g ∈ C00(R); so g is uniformly continuous with supp(K) ⊆ [−n, n]

TODO 20. I assume K = supp(g) instead?

and if ε > 0 there is δ > 0 such that whenever |x− y| < δ we have |g(x)− g(y)| < ε. If |x| is big then

ĝ(x) =

∫
g(t) exp(−ixt)dt

= −
∫
g(t) exp

(
−ix

(
t+

π

x

))
dt

= −
∫
g
(
t− π

x

)
exp(−ixt)dt

=
1

2

∫ (
g(t)− g

(
t− π

x

))
exp(−ixt)dt

If
∣∣π
x

∣∣ < δ (so |x| > π
δ )) then

|ĝ(x)| ≤ 1

2

∫ n

n−δ
ε|exp(−ixt|dt ≤ 2n+ δ

2
ε→ 0

Lemma 3.34
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In particular if φsα
w∗

−−→ φs in L∞ then either there is a cofinal subset sβ such that sβ →∞, which by

Riemann-Lebesgue implies φsβ
w∗

−−→ 0, a contradiction, or it is eventually bounded. Look at the cluster

points in R. If sβ → t and sβ′ → s with s ̸= t then φsβ
w∗

−−→ φt and φsβ′
w∗

−−→ φs, so φsα ̸
w∗

−−→ φs; all this

implies the topology on R̂ is homeomorphic to R.

TODO 21. Connectives.

Theorem 3.35. Suppose G is a locally compact abelian grape; let Ĝ be the dual grape with the w∗ topology.
Then

1. (x, γ) 7→ γ(x) is continuous on G× Ĝ.

2. If K ⊆ G is compact and C ⊆ Ĝ is compact then

N(K, r) = { γ ∈ Ĝ : |γ(x)− 1| < r for all x ∈ K }
N(C, r) = {x ∈ G : |γ(x)− 1| < r for all γ ∈ C }

are open in Ĝ and G, respectively.

3. {N(K, r)γ0 : K ⊆ G compact, r > 0, γ0 ∈ Ĝ } is a base for the topology of Ĝ.

4. Ĝ is a locally compact grape (i.e. (γ1, γ2) 7→ γ1γ
−1
2 is continuous.)

Proof.

1. Write fx(y) = f(x−1y). Then

f̂x(γ) =

∫
G

fx(t)γ(t)dt

=

∫
G

f(x−1t︸︷︷︸
s

)γ( t︸︷︷︸
xs

)dt

=

∫
f(s)γ(xs)dt (translation-invariance)

= γ(x)

∫
G

f(s)γ(s)dt

= γ(x)f̂(γ)

Claim 3.36. (x, γ) 7→ f̂x(γ) is continuous on G× Ĝ.

Proof. Fix (x0, γ0). Translation is continuous in L1(G), so there is open V ∋ x0 such that ∥fx−fx0
∥1 < ε

for all x ∈ V . Since γ0 is weak*-continuous there is open W ∋ γ0 such that |f̂x0
(γ)− f̂x0

(γ0)| < ε for
all γ ∈W . Then if x ∈ V and γ ∈W we have

|f̂x(γ)− f̂x0
(γ0)| ≤ |f̂x(γ)− f̂x0

(γ)|+ |f̂x0
(γ)− fx0

(γ0)|

<

∣∣∣∣∫
G

(fk(t)− fx0(t))γ(t)dt

∣∣∣∣+ ε

< ∥fx − fx0
∥1 + ε

< 2ε

as desired. Claim 3.36

Now

γ(x) =

(
f̂x(γ)

f̂(γ)

)
Pick f so that f̂(γ0) ̸= 0. So f̂(γ) ̸= 0 on some neighbourhood W ∋ γ0. So γ(x) is the quotient of
continuous functions with non-zero denominator near γ0, and is thus continuous at (x0, γ0).
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2. Suppose K ⊆ G is open and r > 0. Then

N(K, r) = { γ : |γ(x)− 1| < r, x ∈ K }

Suppose γ0 ∈ N(K, r); so |γ0(x)− 1| < r for x ∈ K. But for each x ∈ K, continuity of (x, γ) 7→ γ(x)
means there is are neighbourhoods Vx ∋ x and Wx ∋ γ0 such that for all y ∈ Vx and γ ∈Wx we have
|γ(y)− 1| < r. The Vx form an open cover of K; so there is a finite subcover K ⊆ Vx1 ∪ · · · ∪ Vxn . Let

W =

n⋂
i=1

Wxi

which is open in Ĝ and contains γ0. So if γ ∈ W then |γ(x) − 1| < r (since x ∈ Vxi
for some i and

W ⊆Wxi
). So W ⊆ N(K, r).

The second part is quite similar.

3. Without loss of generality we may assume γ0 = e. Suppose W is open in Ĝ with 0 ∈W . So there are
f1, . . . , fn ∈ L1(G) such that

0 ∈ { γ : |f̂i(γ)− f̂i(e)| < 1, 1 ≤ i ≤ n } ⊆W

We use the fact that C00(G) is dense in L1(G); we replace fi by continuous, compactly supperted
function. Let K be compact and contain

n⋃
i=1

supp(fi)

Let

r =
1

maxi∥fi∥1
If γ ∈ N(K, r) then for 1 ≤ i ≤ n we have

|f̂i(γ)− f̂i(e)| =
∣∣∣∣∫
G

fi(t)(γ(t)− 1)dt

∣∣∣∣
≤
∫
K

|fi(t)||γ(t)− 1|dt

< r∥fi∥1
≤ 1

So e ∈ N(K, r) ⊆ { γ : |f̂i(γ) − f̂i(e)| < 1, 1 ≤ i ≤ n } ⊆ W . So the N(K, r) form a base for the
topology.

4. Suppose γ1, γ2 ∈ Ĝ. Suppose γ1γ
−1
2 ∈ N(K, r)γ1γ

−1
2 . If γ′1 ∈ N(K, r2 )γ1 and γ′2 ∈ N(K, r2 )γ2 then

γ1γ
−1
2 ⊆ N(K, r2 )N(K, r2 )

−1γ1γ
−1
2 . But

N(K,
r

2
) = { γ : |γ(t)− 1| < r

2
, t ∈ K }

N(K,
r

2
) = { γ : |γ(t)− 1| < r

2
, t ∈ K }

N(K,
r

2
) = { γ : |γ−1(t)− 1| < r

2
, t ∈ K }

So for γ′1 ∈ N(K, r2 ), γ
′
2 ∈ N(K, r2 )

−1 we have

|γ1γ−1
2 (t)− 1| = |γ1(t)− γ2(t)| ≤ |γ1(t)− 1|+ |1− γ2(t)| <

r

2
+
r

2
= r

So
γ1γ

−1
2 ⊆ N(K,

r

2
)N(K,

r

2
)−1γ1γ

−1
2 ⊆ N(K, r)γ1γ

−1
2

and continuity follows. Theorem 3.35
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4 Banach *-algebras

Definition 4.1. A Banach *-algebra is a Banach algebra A with a continuous involution a 7→ a∗ such that

1. (a∗)∗ = a.

2. (λa)∗ = λa∗ and (a+ b)∗ = a∗ + b∗.

3. (ab)∗ = b∗a∗.

Example 4.2.

1. C(X) and C0(X) with f∗(x) = f(x).

2. B(H) where H is a Hilbert space, and the involution is the Hilbert space adjoint.

3. Consider L1(R).
Proposition 4.3. L1(R) is a Banach *-algebra with involution f∗(x) = f(−x). Moreover the Gelfand/Fourier
transformation is a *-homomorphism.

Proof. Easy to check the *-algebra properties. Also

f̂∗(s) =

∫
R
f∗(x) exp(−isx)dx

=

∫
R
f(−x) exp(−isx)dx

=

∫
f(−x) exp(isx)dx

=

∫
f(y) exp(−isy)dy

= f̂(s)

as desired. Proposition 4.3

Definition 4.4. If A is a (non-unital) Banach algebra, a bounded (norm 1) approximate identity is a net
{ eα } such that sup∥eα∥ <∞ (≤ 1) such that aeα → a and eαa→ a for all a ∈ A.

Proposition 4.5. en = n
2χ[−n−1,n−1] form a norm 1 approximate identity for L1(R).

Proof. Indeed, if f ∈ L1(R), then since translation is continuous then for any ε > 0 there is δ > 0 such that
∥fx − f∥1 < ε if |x| < δ. The if 1

n < δ we have

(en ∗ f − f)(t) =
∫
R
f(t− x)en(x)dx− f(t)

=
2

n

∫ 1
n

− 1
n

f(t− x)dx− 2

n

∫ n

1
n

f(t)dx

=
2

n

∫ 1
n

− 1
n

(fx(t)− f(t))dx

Thus

∥en ∗ f − f∥1 ≤
∫
R

2

n

∫ 1
n

− 1
n

|fx(t)− f(t)|dxdt

=
2

n

∫ 1
n

− 1
n

∫
|fx(t)− f(t)|dt︸ ︷︷ ︸

∥fx−f∥1<ε

dx

< ε

as desired. Proposition 4.5
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Most of these facts hold for arbitrary locally compact grapes, but we hope to save ourselves some
technicalities by working just with R.

Lemma 4.6. If f ∈ L1(R) and g ∈ L∞(R) then f ∗ g ∈ C0(R) and is uniformly continuous.

Proof. Note that

|(f ∗ g)(x)− (f ∗ g)(y)| ≤
∫
|(f(x− t)− f(y − t))g(t)|dt

≤ ∥g∥∞
∫
|f(t− x)− f(t− y)|dt

= ∥g∥∞∥fx − fy∥1
= ∥g∥∞∥f − fy−x∥1
→ 0 as x− y → 0

So f ∗ g is uniformly continuous; it remains to show that f ∈ C0(R). Suppose for contradiction that there
were ε > 0 and |xn| → ∞ such that |f ∗ g(xn)| ≥ ε. By uniform continuity there is δ > 0 such that |x− y| < δ
implies |f ∗ g(x)− f ∗ g(y)| < ε

2 . Without loss of generality assume |xn − xm| ≥ 2δ for all n ̸= m. Then the
(xn − δ, xn + δ) are disjoint, and ∫ xn+δ

xn−δ
|f ∗ g(t)|dt ≥

∫ xn+δ

xn−δ

ε

2
dt = εδ

So

∞ > ∥f ∗ g∥1 ≥
∑
n≥1

∫ xn+δ

xn−δ
|f ∗ g| ≥

∞∑
n=1

εδ =∞

a contradiction. So f ∗ g ∈ C0(R). Lemma 4.6

Theorem 4.7. L1(R) is semisimple.

Proof. Suppose 0 ̸= f ∈ rad(L1(R)); i.e. spr(f) ̸= 0 (by Theorem 3.9). Let

un =
n

2
χ[− 1

n ,
1
n ] ∈ L∞

be a norm 1 approximate identity for L1(R); so f ∗ un → f , so there is n0 such that f ∗ un0
̸= 0 and

f ∗ un0
∈ rad(L1(R)). Replace f with f ∗ un, so without loss of generality we have f ∈ C0(R) ∩ L1(R) and

spr(f) = 0. Define f∗ ∈ L1(R) by f∗(t) = f(−t). So f ∗ f∗ ∈ rad(L1(R) ∩ C0(R); so

f ∗ f∗(0) =
∫
f(t)f∗(−t)dt

=

∫
f(t)f(t)dt

= ∥f∥22
> 0

Note that

∥f∥22 =

∫
|f(t)||f(t)|dt ≤ ∥f∥∞∥f∥1

is finite, since f ∈ L1(R) ∩ L∞(R).
Define F : L1 → C by F (g) = f ∗ f∗ ∗ g(0). Then

|F (g)| =
∣∣∣∣∫ f ∗ f∗(t)g(−t)dt

∣∣∣∣ ≤ ∥f ∗ f∗∥∞∥g∥1
so F is continuous. Define a sesquilinear form on L1(R) by ψ(g, h) = F (g ∗ h∗), which is then continuous by
the above. Then

ψ(g, g) = f ∗ f∗ ∗ g ∗ g∗(0) = (f ∗ g) ∗ (f ∗ g)∗(0) = ∥f ∗ g∥22 ≥ 0
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Then

ψ(h, g) = f ∗ f∗ ∗ h ∗ g∗(0)

=

∫ ∫
(f ∗ f∗)(t)h(s)g∗(−s− t)dsdt

=

∫ ∫
(f ∗ f∗)(t)h(s)g(s+ t)dsdt

ψ(h, g) =

∫ ∫
(f ∗ f∗(t))h(s)g(s+ t)dsdt

=

∫ ∫
(f ∗ f∗)∗︸ ︷︷ ︸
f∗f∗

(−t)h∗(−s)g(s+ t)dsdt

= ψ(g, h)

So ψ is conjugate linear. Then by Cauchy-Schwarz we get |ψ(g, h)| ≤ ψ(g, g) 1
2ψ(h, h)

1
2 . Then

ψ(un, un) = (f ∗ un) ∗ (f ∗ un)∗(0)
= ∥f ∗ un∥22

≤ n

2

∫ 1
n

− 1
n

∥fs∥22

= ∥f∥22

TODO 22. fs? f5?

Let K = ∥f∥22. Then

|F (g)| = lim
n→∞

|F (g ∗ un)︸ ︷︷ ︸
ψ(g,un)

|

≤ lim
n→∞

|F (g ∗ g∗)| 12 |ψ(un, un)|
1
2

= K
1
2F (g ∗ g∗) 1

2

≤ K1 1

2
(K

1
2F (g ∗ g∗ ∗ g ∗ g∗) 1

2 )
1
2

= K
1
2K

1
4F ((g ∗ g∗)2) 1

4

≤ K
1
2K

1
4K

1
8 · · ·K 1

2n F ((g ∗ g∗)2
n−1

)
1
2n

≤ K1− 1
2n ∥f ∗ f∗∥∞∥(g ∗ g∗)2

n−1

∥ 1
2n

→ K∥f ∗ f∗∥∞ spr(g ∗ g∗) 1
2

Take g = f ∗ f∗. Then
F (f ∗ f∗) = f ∗ f∗ ∗ f ∗ f∗(0) = ∥f ∗ f∗∥22 > 0

a contradiction. So rad(L1(R)) = 0. Theorem 4.7

5 Non-commutative Banach algebras and their representation
theory

Definition 5.1. A left ideal J of a (Banach) algebra A is modular if there is e ∈ A\J such that A(1− e) ⊆ J .

Remark 5.2.

1. If A is unital then every proper left ideal is modular.
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2. If J is a 2-sided ideal which is left and right modular then the same e works for both. Indeed, given
e1, e2 ∈ A \ J such that A(1− e1) ⊆ J and (1− e2)A ⊆ J , we have e2 − e2e1 ∈ J and e1 − e2e1 ∈ J ; so
e1 − e2 ∈ J . Then

(1− e1)A = (1− e2)A+ (e2 − e1)A ⊆ J + J = J

as desired.

Proposition 5.3. Suppose A is a non-unital Banach algebra; let A+ = A+ C1 be the unitization. If I is a
proper ideal of A+ with I ̸⊆ A then I0 = I ∩ A is a modular left ideal of A. Conversely if I0 is a modular left
ideal of A with right modular unit e then I = I0 + C(1− e) is a proper left ideal of A+.

Proof.

( =⇒ ) Since I0 ⫋ I and A has codimension 1 in A+, we get that I0 has codimension 1 in I. Pick a+λ1 ∈ I\I0;
note that λ ̸= 0. So 1 + λ−1a ∈ I. Let e = −λ−1a. So A(1− e) = A(1 + λ−1a) ⊆ I ∩ A = I0; so I0 is
modular.

(⇐= ) I0 is proper, so I is proper (by a dimension argument). Then A+I = AI0 + A(1 − e) + (C1)I ⊆
I0 + I + I = I. So I is a left ideal. Proposition 5.3

Corollary 5.4. If I is a left modular ideal of A with right modular unit e then b1(e) ∩ I = ∅.

Proof. Suppose a ∈ I has ∥a− e∥ < 1. Then (1− e) + a ∈ I + C(1− e) is contained in a proper left ideal of
A+; but (1− e) + a = 1 + a− e is invertible in A+ by Proposition 1.11, a contradiction. (Proper ideals don’t
contain invertibles.) Corollary 5.4

Proposition 5.5. If I is a left modular ideal with right modular unit e and I ⊆ J with J a proper left ideal
then J is modular with the same unit e. Hence I is contained in a maximal modular left ideal, and such ideals
are closed.

Proof. Note that J ∩ b1(e) = ∅. Indeed, otherwise by proof of the previous corollary we would have
J + C(1 − e) = A+ which is impossible since J is proper; so J + C(1 − e) has codimension ≥ 1. Then
A(1− e) ⊆ I ⊆ J . Maximality is by Zorn’s lemma, and we note that J is still proper since it is disjoint from
b1(e), so maximal implies closed. Proposition 5.5

Definition 5.6. If X is a vector space and L(X) the space of linear maps from X → X, a representation of
A is a homomorphism π : A→ L(X). This makes X into a left A-module by a · x = π(a)x. We say (X,π) is
a trivial module if X = C and π = 0. We say X is irreducible if 0 and X are the only submodules and X is
not trivial.

Proposition 5.7. Suppose X is an irreducible left A-module.

1. If 0 ̸= x0 ∈ X then Ax0 = X.

2. Ix0 = { a : a · x0 = 0 } = kerπ(x0) is a maximal modular left ideal with right modular unit e for any e
satisfying e · x0 = x0.

3. ker(π) =
⋂
x kerπ(x) is the intersection of maximal modular ideals (and is thus closed). Also ker(π) =

Ix0
: A = { a : aA ⊆ Ix0

} for any x0 ̸= 0.

Proof.

1. Ax0 is a submodule of X, so by irreducibility either Ax0 = X or Ax0 = { 0 }. Suppose the latter; then
Cx0 is a non-zero submodule and is thus X, so X is trivial, a contradiction.

2. Pick e such that ex0 = x0 by (1). Then for a ∈ A we have

a(1− e)x0 = ax0 − a(ex0) = ax0 − ax0 = 0

So A(1− e) ⊆ Ix0 , and Ix0 is modular. Suppose J ⫌ I is a left ideal; then Jx0 ̸= 0 is a submodule, so
Jx0 = X. So there is f ∈ J such that fx0 = x0. So A−Af = A(1− f) ⊆ Ix0 ⊆ J ; so A ⊆ Af + J ⊆ J ,
and J = A. So Ix0

is maximal.
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3. First part is evident. If aA ⊆ Ix0 and x ∈ X, we can pick b ∈ A such that bx0 = x. Then
ax = abx0 ⊆ (aA)x0 = { 0 }; so a ∈ ker(π). Conversely if a ∈ ker(π) then for all b ∈ A we have
0 = a(bx0) = (ab)x0, so ab ∈ Ix0

. So ker(π) = Ix0
: A. Proposition 5.7

Proposition 5.8. If I is a maximal modular left ideal in A then there is a continuous representation π on a
Banach space X with a vector 0 ̸= x0 ∈ X such that I = Ix0

and ker(π) = I : A.

Proof. Let X = A/I as a Banach space. Define π(a)(b+ I) = ab+ I. (Check that this is well-defined.) Then

∥π(a)∥ = sup
∥ḃ∥<1

∥ȧb∥

= sup
∥b∥<1

inf
i∈I
∥ab+ i∥

≤ sup
∥b∥<1

inf
i∈I
∥ab+ ai∥

≤ sup
∥b∥<1

inf
i∈I
∥a∥∥b+ i∥

≤ ∥a∥

So it is continuous. Let e be a right modular unit for I; let x0 = ė. Then

Ix0
= { a : aė = 0 } = { a : ae ∈ I } = I

So ker(π) = Ix0
: A = I : A. Proposition 5.8

Definition 5.9 (Talked to Ken after the fact). Suppose A is a Banach algebra. A Banach module is an
A-module X that is also a Banach space such that for any a ∈ A the map ℓa : X → X given by x 7→ ax is
a bounded linear operator on X and furthermore the map A 7→ C(X) given by a 7→ ℓa is continuous. A
continuous representation is a continuous algebra homomorphism π : A→ C(X) for some Banach space X; i.e.
a representation such that each π(a) lies in C(X) (rather than just L(X)) and π : A→ C(X) is continuous.

Theorem 5.10. Suppose X is an irreducible A-module and x0 ̸= 0; so by the above Ix0 = { a : a · x0 = 0 } is
a maximal ideal. Then θ : A/Ix0 → X defined by θ(a+ I) = a · x0 is a well-defined module isomorphism and
the norm ∥ax0∥ = ∥a+ I∥ makes X into a Banach space. Moreover if X is already a Banach module then θ
is a Banach space isomorphism.

Proof. Since Ix0
· x0 = 0, we get that θ is well-defined. If x ∈ X then there is b such that x = bx0. So

θ(a ḃ︸︷︷︸
∈A/I

) = θ(ȧb) = abx0 = a(bx0 = aθ(ḃ)

So θ is a morphism of modules; it is bijective since

θ(ȧ) = θ(ḃ) ⇐⇒ ax0 = bx0

⇐⇒ (a− b)x0 = 0

⇐⇒ a− b ∈ Ix0

⇐⇒ a = b

The proposed norm is just the norm on A/I and A/I is a Banach A-module.
If X already has a norm ∥·∥X and the action is continuous then ∥π∥ <∞. Thena

∥θ(ȧ)∥X = ∥a · x0∥X = ∥(a+ i)x0∥X

for all i ∈ Ix0
. So

∥θ(ȧ)∥ ≤ inf
i∈I
∥π∥∥a+ i∥∥x0∥X = (∥π∥∥x0∥)∥ȧ∥

So θ is continuous and bijective, and is thus invertible by the Banach isomorphism theorem.

Exercise 5.11. Check that θ−1 is also a morphism of bimodules.
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So θ is an isomorphism of Banach modules. Theorem 5.10

TODO 23. I think I = Ix0
throughout.

Definition 5.12. A 2-sided ideal J ⊴ A is primitive if it is the kernel of an irreducible representation.

Corollary 5.13. The primitive ideals of A have form I : A = { a : aA ⊆ I } for I a maximal modular left
ideal.

Definition 5.14. The radical rad(A) is ⋂
π irreducible

ker(π)

We say A is semisimple if rad(A) = { 0 }. We say A is radical if A has no irreducible representations.

Example 5.15.

1. Consider A = Tn ⊆Mn(C) = B(Cn) consisting of the upper triangular n×n matrices; we use the norm

∥T∥ = sup
∥x∥≤1

∥Tx∥

What are the left ideals of Tn? Suppose we have such I, and A ∈ I. Supose ai0,j0 ̸= 0. Recall the
matrix units Eij = eie

∗
j , so Eijx = ⟨x, ej⟩ei; note Eij ∈ Tn if i ≤ j. Then

Eii0Aej0 = ai0j0ei

But
Aei0 =

∑
j

ai0,jej

So

TODO 24. Some conclusion about upward closed sets of indices within a column.

For i ≤ j ≤ n we have Ji = {T ∈ Tn : tjj = 0 } is a maximal 2-sided ideal of codimension 1, and is
thus maximal as a left ideal. Then we have π : Tn/Jj → C given by T 7→ tjj ; then πj is irreducible and
ker(πj) = Jj . Suppose I is a left ideal but I ̸⊆ Jj for all j. Then there is Aj ∈ I such that ajj ̸= 0; so
EjjAj ∈ I. But Ran(EjjAj) = Cej 1

ajj
EjjAj is the set of matrices with 0 outside the jth column and 1

in the (j, j)-entry (and upper triangular).
0 · · ·

1 x x

0


So

I ∋ A =
∑ 1

ajj
EjjAj

and A is upper triangular with 1’s on the diagonal. So A is invertible, and I = Tn. So the Jj are the
maximal left ideals. So

rad(Tn) =

n⋂
j=1

ker(πj) = T0
n

the strictly upper triangular matrices.

2. Consider A =Mn; the only ideals are { 0 } and Mn.

Claim 5.16. The maximal left ideals have form Ix = {A ∈Mn : Ax = 0 } for x ̸= 0.
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Proof. Clearly id : Mn ↪→ B(Cn) is irreducible. So the Ix are maximal modular left ideals. Conversely
suppose I is a left ideal but for all x ̸= 0 there is Ax ∈ I such that Axx ̸= 0. Let e1, . . . , en be
the standard basis; let Ae1e1 = u ̸= 0. Let B = ∥u∥−2e1u

∗; so BAe1e1 = e1. Then B, and hence
C1 = BAe1 , have rank 1; so C1 = e1v

∗
1 for some v1 with ⟨v1, e1⟩ ≠ 0.

Take x ⊥ v1; then Axx ̸= 0; find rank-1 B2 (again can take ∥x∥−2e2x
∗)

TODO 25. Really?

and let C2 = B2Ax; so C2 = e2v
∗
2 for some v2 with ⟨v2, x⟩ ≠ 0. So { v1, v2 } is linearly independent.

Now take x ⊥ { v1, v2 }, etc. We build ejv
∗
j ∈ I such that { v1, . . . , vn } are linearly independent and∑

eiv
∗
j

is invertible. So I =Mn. Claim 5.16

The representation on Mn/Ix is just the identity representation because id : Mn → B(Cn). Fix x ̸= 0,
and get Ix = {A : Ax = 0 } maximal modular. So id is isomorphic to a representation on Mn/Ix. So id
is the unique (up to equivalence) irreducible representation of Mn.

Theorem 5.17. Suppose A is a Banach algebra, and consider 1 ∈ A+ if A is not unital. Then the following
are equivalent:

(1) a ∈ rad(A).

(2l) a is in the intersection of all maximal modular left ideals of A.

(2r) a is in the intersection of all maximal modular right ideals of A.

(3) σ(ab) = { 0 } for all b ∈ A.

(3’) σ(ba) = { 0 } for all b ∈ A.

(4l) ab− λ is left-invertible for all λ ̸= 0 and b ∈ A.

(4l’) ba− λ is left-invertible for all λ ̸= 0 and b ∈ A.

(4l) ab− λ is right-invertible for all λ ̸= 0 and b ∈ A.

(4l’) ba− λ is right-invertible for all λ ̸= 0 and b ∈ A.

TODO 26. Mathmode for description labels?

Lemma 5.18. If λ ̸= 0 and ab− λ is left (right) invertible then so is ba− λ.

Proof. Let u ∈ A+ satisfy u(ab− λ) = 1. Then bua(ba− λ) = bu(ab− λ)a = ba. Then(
bua− 1

λ

)
(ba− λ) = ba− (ba− λ)

λ
= 1

as desired. Lemma 5.18

Hence

• 4l is equivalent to 4l’.

• 4r is equivalent to 4r’.

• 3 is equivalent to 3’.

Proof of Theorem 5.17.
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(1)⇐⇒ (2l) Done. Indeed we have

rad(A) =
⋂

π irreducible

ker(π) =
⋂
{ ker(πI) : I maximal left modular }

(3) =⇒ (4l,4r) Immediate.

(1) =⇒ (4l) Suppose there is λ ̸= 0 and b such taht ab− λ is not left invertible. Then J = A(1− λ−1ab) =

A(ab−λ) is a proper ideal and has λ−1ab as a right modular unit; so J is left modular, and is contained
in some I maximal left modular. Then we have π : A→ L(A/I) with

π(a)ḃ = ȧb = λ1̇ ̸= 0

so a /∈ kerπ, and a /∈ rad(A).

(4l’) =⇒ (2l) Suppose there is a maximal modular left ideal I with a /∈ I. So ȧ ̸= 0 in A/I, which is an

irreducible module. So there is b ∈ A such that bȧ = 1̇. So ba− 1 ∈ I is contained in a proper left ideal;
so ba− 1 is not left invertible.

(1) =⇒ (3) Suppose a ∈ rad(A), b ∈ A, and λ ̸= 0. Since 1 implies 4l we get that ab− λ has left inverse u;
so 1 = u(ab− λ) = uab− λu, and uab ∈ rad(A) (since a ∈ rad(A)). So λu = uab− 1 is left-invertible
again since 1 implies 4l. So there is v such that v(λu) = 1; so u is left- and right-invertible, and is thus
invertible. So ab− λ = u−1 is invertible.

(2l)⇐⇒ (2r) Use the fact that 3 is left-right blind. Theorem 5.17

Definition 5.19. If X is a non-trivial Banach A-module we say X is topologically irreducible if the only
closed submodules are { 0 } and X.

Example 5.20. There are topologically irreducible Banach modules that aren’t algebraically irreducible. (i.e.
what we called irreducible before.) Consider F+

2 the free monoid on {x, y }; this is the set of words i1 · · · ik
with k ≥ 0 and each ij ∈ {x, y }. We define v · w to be their concatenation: if v = i1 · · · ik and w = j1 · · · jℓ
then v · w = i1 · · · ikj1 · · · jℓ. Let A = ℓ1(F+

2 ) be the set of∑
v∈F+

2

λvv

subject to ∥∥∥∑λvv
∥∥∥ =

∑
|λv| <∞

We define v ·w = vw, so (λv)(µw) = (λµ)vw. Define π : ℓ1(F+
2 )→ B(ℓ2) by π(x) = S the unilateral shift and

π(y) = S∗. So
π(xk1yℓ1 · · ·xkmyℓm = Sk1(S∗)ℓ1 · · ·Skm(S∗)ℓm

If ε is the empty word

π(ε) = I

= π(yx)

= S∗S

π(xy) = SS∗

π(ε− xy) = I − SS∗

= e0e
∗
0

So
π(xn(ε− xy)yj) = Sie0e

∗
0(S

∗)j = (Sie0)(S
je∗0) = eie

∗
j

So Ran ℓ1(F+
2 ) ⊇ span{Eij } = K is the space of compact operators, which acts transitively. So it’s

topologically irreducible. But X = ℓ1(F+
2 )e0 ⊆ ℓ1 ⫋ ℓ2; so it’s not algebraically irreducible.
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Theorem 5.21 (Schur’s lemma). Suppose A is a Banach algebra and X an irreducible A-module. Let
D = {T ∈ L(X) : Ta = aT for all a ∈ A }. Then D = CI.

Proof. Note that D is an algebra (it’s a subspace, and closed under multiplication). We claim that D ⊆ CI.
Suppose T ∈ D \ { 0 }; so TX ≠ { 0 } is a submodule and a(Tx) = T (ax) ∈ TX. So TX = X; so

ker(T ) ̸= X is a submodule. If x ∈ ker(T ) then T (ax) = a(Tx) = 0; so ker(T ) = { 0 }, and T is invertible.
But now

aT−1 = T−1(Ta)T−1 = T−1ATT−1 = T−1a

so T−1 ∈ D, and D is a division algebra.
Now, X is irreducible, so without loss of generality we take X = A/Ix0

for any 0 ̸= x0 ∈ X.

TODO 27. ref

(Recall Ix0 = { a ∈ A : ax0 = 0 }.) In particular the A-action is continuous on X. So if T ∈ D then

∥T∥ = sup
∥x∥≤1

∥Tx∥ = sup
∥a+Ix0

∥≤1

∥T (a+ i︸︷︷︸
∈Ix0

)x0∥ ≤ sup
∥a+Ix0

∥≤1

∥(x+i)Tx0∥ ≤ sup
∥a+Ix0

∥≤1

inf
i∈Ix0

∥a∥∥Tx0∥ = ∥Tx0∥ <∞

So D ⊆ B(X). Also D is closed: if Tn ∈ D and (Tn)n → T then

aT = lim
n→∞

aTn = lim
n→∞

Tna = Ta

So D is a Banach division ring containing CI; so D = CI by Mazur’s theorem. Theorem 5.21

Definition 5.22. Suppose A is a Banach algebra and X a A-module. We say A is

• transitive if Ax0 = X for all x0 ̸= 0

• k-transitive if whenever x1, . . . , xk linearly independent in X and y1, . . . , yk ∈ X there is a ∈ A such
that axi = yi for 1 ≤ i ≤ k

• strictly transitive if it is k-transitive for all k ≥ 1.

Theorem 5.23 (Jacobson density theorem). If X is an irreducible A-module then A is strictly transitive in
A.

Standing assumption: X is an irreducible A-module.

Lemma 5.24. Suppose x1, x2 ∈ X are linearly independent. Then there is a ∈ A such that ax1 = 0 and
ax2 ̸= 0.

Proof. Suppose not; suppose ax1 = 0 implies ax2 = 0. Define T : X → X linear by T (ax1) = ax2 for all
a ∈ A; this is defined on X = Ax1 and if ax1 = bx1 then (a− b)x1 = 0 implies (a− b)x2 = 0 and ax2 = bx2.
So T is well-defined and linear. If b ∈ A and x = ax1 then

T (bx) = T (bax1) = b(ax2) = bT (ax1) = bTx

So Tb = bT and T ∈ D = CI. So x2 ∈ Cx1, a contradiction. Lemma 5.24

Lemma 5.25. Suppose n ≥ 3 and x1, . . . , xn are linearly independent in X. Then there is a ∈ A such that
ax1 = ax2 = · · · = axn−1 = 0 ̸= axn.

Proof. Proceed by induction on n. Our induction hypothesis: if B is any Banach algebra and Y an irreducible
B-module and y1, . . . , yn−1 ∈ Y linearly independent then there is b ∈ B such that by1 = · · · = byn−20 ̸=
byn−1.

Lemma 5.24 gives the base case n = 2.
For the induction step, let M = span{x1, . . . , xn−2 }. Let

B =

n−2⋂
i=1

Ixi︸︷︷︸
closed left ideal

= { a : aM = 0 }

Let Y = X/M . Then if b ∈ B we have b(x+M) = bx ∈ bx+M ; so Y is a B-module with b(ẋ) = ḃx.
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Claim 5.26. Y is an irreducible B-module.

Proof. Suppose 0 ̸= y1 ∈ Y and y2 ∈ Y ; say y1 = x+M and y2 = x′ +M . Then x /∈ M and x1, . . . , xn−2

are linearly independent and span M ; so x1, . . . , xn−2, x is linearly independent. So by induction hypothesis
(for A acting on X) there is a ∈ A such that ax1 = · · · = axn−2 = 0 ̸= ax. Then a ∈ B and ax ̸= 0, so there
is c ∈ A such that cax = x′. Then ca ∈ B and

(ca)y1(ca)ẋ = ˙cax = ẋ′ = y2

TODO 28. Dot cax

So B is transitive in Y . So Y is irreducible. Claim 5.26

Now x1, . . . , xn are linearly independent and ˙xn−1, ẋn are linearly independent in Y = X/M . Since
Y is an irreducible B Lemma 5.24 yields that there is b ∈ B such that b ˙xn−1 = 0̇ and bẋn ̸= 0̇. So
bx1 = bx2 = · · · = bxn−2 = 0 and bxn−1 ∈ M but bxn /∈ M . So either bxn−1 = 0 or { bxn−1, bxn } is
linearly independent. By Lemma 5.24 there is c ∈ A such that cbxn−1 = 0 and cbxn ≠ 0. So if a = cb then
ax1 = · · · = axn−1 = 0 ̸= axn, as desired. Lemma 5.25

Proof of Theorem 5.23. Suppose x1, . . . , xn are linearly independent in X and y1, . . . , yn ∈ X. Then by
Lemma 5.25 there is aj ∈ A such that

ajxi =

{
0if i ̸= j

zj ̸= 0 if i = j

By transitivity there is bj ∈ A such that bjzj = yj . Let

a =

n∑
j=1

bjaj ∈ A

Then axj = yj for 1 ≤ j ≤ n. So A is n-transitive for n ≥ 1. Theorem 5.23

5.1 Automatic continuity

Theorem 5.27 (B. Johnson). If X is a Banach space and π : A→ B(X) makes X an irreducible A module
then π is continuous.

Proof. First note that ker(π) is primitive, and is thus closed. We have the following commuting diagram:

A A/ ker(π)

B(X)

q

π
π̇

Then X is also an irreducible A/ ker(π)-module. If π̇ is continuous then π = π̇ ◦ q is continuous. So without
loss of generality we may assume π is injective.

If dim(X) <∞ then dim(B(X)) = (dim(X))2 <∞; since π is injective we get dim(A) <∞, and linearity
of π implies continuity.

Suppose then that dim(X) = ∞. For x ∈ X define a linear map Tx : A → X by Txa = ax. Let
Y = {x ∈ X : Tx continuous }; so Y ⊆ X is a subspace. Also if b ∈ A then

∥Tbxa∥ = ∥abx∥ = ∥Tx(ab)∥ ≤ ∥Tx∥∥ab∥ ≤ (∥Tx∥∥b∥)∥a∥

So x ∈ Y implies bx ∈ Y , and Y is an A-submodule of X. So Y is { 0 } or X.
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Case 1. Suppose Y = X and x ∈ X. Then

sup
∥a∥≤1

∥π(a)x∥ = sup
∥a∥≤1

∥ax∥ = ∥Tx∥ <∞

Hence by the uniform boundedness principle we have

∥π∥ = sup
∥a∥≤1

∥π(a)∥ <∞

and π is continuous.

Case 2. Suppose Y = { 0 }. Since dim(X) = ∞ there are linearly independent unit vectors x1, x2, x3, . . ..
By the Jacobson density theorem there is an ∈ A such that anxi = 0 for 1 ≤ i < n and anxn ̸= 0. Let

Ln =

n−1⋂
i=1

Ixi

so an ∈ Ln and an /∈ Ln+1. Then anxn ̸= 0 so Tanxn is unbounded. Pick bn ∈ A with ∥bn∥ < 2−n

∥an∥ such

that

∥bnanxn∥ = ∥Tanxnbn∥ > n+

∥∥∥∥∥
(
n−1∑
i=1

biai

)
xn

∥∥∥∥∥
Let

b =

∞∑
i=1

biai

This converges since ∥bnan∥ < 2−n. Then

b =

n∑
i=1

biai +
∑
i>n

biai

But for i > n we have ai ∈ Ln and then Ln are closed left ideals; so biai ∈ Ln for i > n, and

∞∑
i=n+1

biai ∈ Ln

and hence ( ∞∑
i=n+1

biai

)
xn = 0

But now

∥π(b)∥ ≥ ∥bxn∥ =

∥∥∥∥∥∥∥∥∥∥
n−1∑
i=1

biaixn + bnanxn +

( ∞∑
i=n+1

biai

)
xn︸ ︷︷ ︸

=0

∥∥∥∥∥∥∥∥∥∥
≥ ∥bnanxn∥ −

∥∥∥∥∥
(
n−1∑
i=1

biai

)
xn

∥∥∥∥∥ > n

a contradiction. So this case cannot hold, and we land in the first case. Theorem 5.27

Definition 5.28. Suppose X,Y are Banach spaces and T : X → Y is linear. The separating space is

S(T ) = { y ∈ Y : there are xn ∈ X such that xn → 0, Txn → y }

Remark 5.29. By the closed graph theorem T is continuous if and only if S(T ) = { 0 }.
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Theorem 5.30 (Johnson). Suppose Ak,B are Banach algebras and θ : A→ B is a surjective homomorphism.
Then S(θ) ⊆ rad(B).

Proof. Suppose (X,π) is an irreducible Banach module for B. Then π ◦ θ is an irreducible representation,
making X an irreducible A-module. (Indeed, if x1 ̸= 0 in X and x2 ∈ X then there is b ∈ B such that
bx1 = x2; but there is a ∈ A such that θ(a) = b, and hence (π ◦ θ)(a)x1 = x2.) So π ◦ θ : A → B(X) is an
irreducible representation; so by Johnson’s theorem we have π ◦ θ is continuous.

If b ∈ S(θ) then
π(b) = lim

n→∞
π(θ(an)) = lim

n→∞
(π ◦ θ)︸ ︷︷ ︸

continuous

(an)︸︷︷︸
→0

= 0

So
b ∈

⋂
π irreducible

ker(π) = rad(B)

as desired. Theorem 5.30

Corollary 5.31 (Johnson). Every surjective homomorphism from a Banach algebra A to a semisimple
Banach algebra B is continuous.

Proof. Given such θ : A ↠ B we have S(θ) ⊆ rad(B) = { 0 }. So by the closed graph theorem θ is continuous.
Corollary 5.31

Corollary 5.32. Every automorphism of a semisimple Banach algebra is continuous.

Corollary 5.33 (Uniqueness of norm). If B is a semisimple Banach algebra then all Banach algebra norms
are equivalent. i.e. if ∥·∥ and ~·~ are two Banach algebra norms and ∥·∥ makes B semisimple then there is
0 < c1 ≤ c2 <∞ such that c1∥b∥ ≤ ~b~ ≤ c2∥b∥ for all b ∈ B.

Proof. id : (B,~·~) → (B, ∥·∥) is a homomorphism and is thus continuous and bijective; so θ is invertible.
Corollary 5.33

Fact 5.34. Even in the commutative case, this last corollary fails if we drop the assumption of semisimplicity.

6 C*-algebras

Definition 6.1. A C*-algebra is a Banach *-algebra A such that ∥a∗a∥ = ∥a∥2 for all a ∈ A.

Remark 6.2. ∥a∥2 = ∥a∗a∥ ≤ ∥a∗∥∥a∥, so ∥a∥ ≤ ∥a∗∥ ≤ ∥a∗∗∥ = ∥a∥; so ∥a∗∥ = ∥a∥.
Example 6.3.

(1) Consider B(H) for H a Hilbert space. If T ∈ B(H) then

∥T∥2 = ∥T ∗∥∥T∥
≥ ∥T ∗T∥
= sup{ |⟨T ∗Tx, y⟩| : x, y ∈ H, |x| = |y| = 1 }
≥ sup

∥x∥=1

|⟨T ∗Tx, x⟩|

= sup
∥x∥=1

|⟨Tx, Tx⟩|

= sup
∥x∥=1

∥Tx∥2

= ∥T∥2

So ∥T ∗T∥ = ∥T 2∥.

(1’) If A is a closed self-adjoint subalgebra of B(H) (i.e. if A ∈ A then A∗ ∈ A) then A is a concrete
C*-algebra.
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(1”) If T ∈ B(H) we define C∗(T ) = alg{ I, T, T ∗ }
∥·∥

. (Here alg means “the algebra generated by”.)

(2) If X is locally compact and Hausdorff then C0(X) is a C*-algebra with f∗ = f for f ∈ C0(X). Then

∥ff∥ = sup
x∈X
|f(x)f(x)| = sup|f(x)|2 = ∥f∥2

Definition 6.4. We say a ∈ A is

• self-adjoint if a = a∗

• normal if aa∗ = a∗a

• unitary if a∗a = aa∗ = 1

• positive if a = a∗ and σ(a) ⊆ [0,∞).

Proposition 6.5. If A is a C*-algebra without unit then A+ = A+ C1 has a C*-algebra norm.

Proof. Setting (a+ λ1)∗ = a∗ + λ1 makes A+ a Banach *-algebra. Let A+ act on A by left multiplication:
a+ λ 7→ La + λI ∈ B(A). This yields a Banach *-algebra norm

~a+ λ~ = ∥La + λI∥B(A)

Then
~a~ = sup

∥b∥≤1
b∈A

∥ab∥ ≤ sup
∥b∥≤1

∥a∥∥b∥ = ∥a∥

and

~a~ ≥
∥∥∥∥a a∗

∥a∗∥

∥∥∥∥ =
∥aa∗∥
∥a∗∥

=
∥a∗∥2

∥a∗∥
= ∥a∥

So ~a~ = ∥a∥. But

~a+ λ~2 = sup
∥b∥≤1

∥ab+ λb∥2

= sup
∥b∥≤1

∥(b∗a∗ + λb∗)(ab+ λb)∥

= sup
∥b∥≤1

∥b∗(a∗a+ λa∗ + λa+ |λ|2)b∥

≤ sup
∥b∥≤1

∥(a∗a+ λa∗ + λa+ |λ|2)b∥

= ~a∗a+ λa∗ + λa+ |λ|2~

= ~(a+ λ)∗(a+ λ)~

≤ ~(a+ λ)∗~~a+ λ~

= ~a+ λ~2

So ~(a+ λ)∗(a+ λ)~ = ~a+ λ~2. Proposition 6.5

Theorem 6.6. If A is an abelian C*-algebra then the Gelfand transform Γ: A→ C0(MA) is an isometric
*-isomorphism.

TODO 29. extra word? onto? continuous?
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Proof. First suppose A is unital. Then MA is compact and Γ: A → C(MA) is a (unital) homomorphism
with Ran(Γ) separates points. Let a = a∗ ∈ A and let ut = exp(ita) for t ∈ R. Then

u∗t =

∑
n≥0

(ita)n

n!

∗

=
∑
n≥0

(−ita)n

n!
= u−t

Then u∗tut = exp(−ita) exp(ita) = exp(0) = 1, and similarly utu
∗
t = 1. If φ ∈MA then φ(ut) = φ(exp(ita)) =

exp(itφ(a)); so |exp(itφ(a))| ≤ ∥ut∥ = 1 for all t ∈ R. So φ(a) ∈ R; i.e. Γ(a) is real-valued and thus self-
adjoint. If a ∈ A is arbitrary we let x = a+a∗

2 be the “real part” of a and y = a−a∗
2i the “imaginary part”.

Then x = x∗ and y = y∗ and a = x+ iy. Then

Γ(a∗) = Γ((x+ iy)∗) = Γ(x− iy) = Γ(x)︸︷︷︸
∈R

−iΓ(y)︸︷︷︸
∈R

= Γ(x) + iΓ(y) = Γ(x+ iy) = Γ(a)∗

So Γ preserves *.
Suppose a = a∗. Then ∥a2∥ = ∥a∗a∥ = ∥a∥2. Since a∗ is self-adjoint we have ∥a4∥ = ∥(a2)2∥ = ∥a2∥2 =

∥a∥4; continuing thus we get ∥a2n∥ = ∥a∥2n . So

∥a∥ = lim
n
∥a2

n

∥2
−n

= spr(a) = ∥Γ(a)∥ = sup
φ∈MA

|φ(a)|

Note that φ(a) runs over σ(a) since Ran(Γ(a)) = σ(a).
If a ∈ A is arbitrary then ∥a∥2 = ∥a∗a∥ = ∥Γ(a∗a)∥ = ∥Γ(a)∥2; so Γ is isometric.
So Γ(A) is a norm-closed, self-adjoint subalgebra of C(MA) which separates points. By Stone-Weierstrass

theorem we get Γ(A) = C(MA).
Suppose now that A not unital.

TODO 30. caselist

Then A lies in the unitization A+ and MA+ =MA ∪ {φ∞ } is the one-point compactification of the
locally compact spaceMA (where φ∞(a+ λ) = λ). Then by above we have Γ: A+ → C(MA+ is an isometric
*-isomorphism. But Γ(A) = { f : f(φ∞) = 0 } has codimension 1. Since A has codimension 1 in A+ we have
Γ(A) has codimension 1 in Γ(A) = C(MA).

TODO 31. pluses?

So Γ maps A onto C0(MA) = { f ∈ C(MA+) : f(φ∞) = 0 }. Theorem 6.6

Corollary 6.7. Suppose A is a unital C*-algebra (not necessarily abelian) and n ∈ A is normal. Then if

C∗(n) = alg{ 1, n, n∗ }
∥·∥

then there is a homeomorphism σ(n) toMC∗(n) that sends λ ∈ σ(n) to φλ where
φλ(n) = λ. Thus C∗(n) is *-isomorphic to C(σ(n)).

Proof. C∗(n) is a unital abelian C*-algebra. Let X =MC∗(n). If φ ∈ X then φ(n) = λ ∈ σ(n). But then
φ(n∗) = λ so φ(p(n, n∗)) = p(λ, λ) where p ∈ C[x, y]. But such p(n, n∗) are dense in C∗(n); so since φ is
continuous we have that φ is determined by λ. So the map X → σ(n) given by φ 7→ φ(n) is bijective and
continuous and is thus a homeomorphism. So

C∗(n) ∼= C(X) ∼= C(σ(n))
n 7→ n̂ 7→ ñ

where ñ(λ) = λ (so ñ = idσ(n)). Corollary 6.7

Corollary 6.8. The C*-algebra C∗(n, n∗) is isomorphic to C0(σ(n) \ { 0 }).

Corollary 6.9 (Continuous functional calculus for normal elements). Suppose A is a unital C*-algebra and
n ∈ A is normal. Then there is a *-isomorphism Γ−1 : C(σ(n)) → C∗(n). So for f ∈ C(σ(n)) we define
f(n) = Γ−1(f).
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Note that Γ−1(idσ(n)) = n and Γ−1(z) = n∗. Also Γ−1(p(z, z)) = p(n, n∗). This extends to all continuous
functions.

Corollary 6.10. If n is normal and f ∈ C(σ(n)) then σ(f(n)) = f(σ(n))

Corollary 6.11.

1. If n is normal then ∥n∥ = spr(n).

2. If a = a∗ then σ(a) ⊆ R.

3. If u is unitary then σ(u) ⊆ T.

Proof.

1. ∥n∥ = ∥Γ(n)∥ = spr(n).

2. If a = a∗ then Γ(a) is real-valued, so σ(a) = Ran(Γ(a)) ⊆ R.

3. If uu∗ = u∗u = 1 then |Γ(u)|2 = 1 so φ(u) ∈ T for all φ, and thus σ(u) ⊆ T. Corollary 6.11

6.1 Operators on a Hilbert space

If T ∈ B(H) and x, y ∈ H then

⟨Tx, y⟩ = 1

4
(⟨Tx+ y, x+ y⟩+ i⟨T (x+ iy), x+ iy⟩ − ⟨T (x− y), x− y⟩ − i⟨T (x− iy), x− iy⟩)

=
1

4

3∑
k=0

ik⟨T (x+ iky), x+ iky⟩

This is the polarization identity.

TODO 32. missing parens on Tx+ y?

Proposition 6.12. If U ∈ B(H) then the following are equivalent:

1. U is unitary.

2. ⟨Ux,Uy⟩ = ⟨x, y⟩ for all x, y ∈ H and UH = H.

3. U is isometric (i.e. ∥Ux∥ = ∥x∥ for all x) and surjective.

Proof.

(1) =⇒ (2) ⟨Ux,Uy⟩ = ⟨U∗Ux, y⟩ = ⟨x, y⟩. Since U is invertible we get that U is surjective.

(2) =⇒ (3) Take x = y.

(3) =⇒ (1) ∥x∥2 = ⟨Ux,Ux⟩ = ⟨U∗Ux, x⟩ for all x. The polar identity yields ⟨Ix, y⟩ = ⟨U∗Ux, y⟩ =
⟨Ux,Uy⟩ for all x, y. So I = U∗U . So U is bijective and thus invertible; so U∗ = U−1 and U is
unitary. Proposition 6.12

Proposition 6.13. If N ∈ B(H) is normal then ∥N∗x∥ = ∥Nx∥ for all x ∈ H. Hence ker(N∗) = ker(N).

Proof. We have

∥N∗x∥2 = ⟨N∗x,N∗x⟩ = ⟨NN∗x, x⟩ = ⟨N∗Nx, x⟩ = ⟨Nx,Nx⟩ = ∥Nx∥2

as desired. Proposition 6.13

Corollary 6.14. If N is normal and Fredholm then ind(N) = 0.
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Proof. T is Fredholm if Ran(T ) is closed, nul(T ) = dim(ker(T )) < ∞, and nul(T ∗) = dim(H/TH) < ∞.
Then ind(T ) = nul(T )− nul(T ∗). Corollary 6.14

Proposition 6.15. Suppose A ∈ B(H). Then A = A∗ if and only if ⟨Ax, x⟩ ∈ R for all x ∈ H.

Proof.

( =⇒ ) We have
⟨Ax, x⟩ = ⟨x,Ax⟩ = ⟨A∗x, x⟩ = ⟨Ax, x⟩

So ⟨Ax, x⟩ ∈ R.

(⇐= ) We have

⟨A∗y, x⟩ = ⟨y,Ax⟩
= ⟨Ax, y⟩

=
1

4

3∑
k=0

ik ⟨A(x+ iky), x+ iky⟩︸ ︷︷ ︸
∈R

=
1

4

3∑
k=0

(−i)k⟨A(x+ iky), x+ iky⟩

=
1

4

3∑
k=0

(−i)k⟨ikA(y + (−i)kx), ik(y + (−i)kx)⟩

=
1

4

3∑
k=0

(−i)k⟨A(y + (−i)kx), (y + (−i)kx)⟩

= ⟨Ay, x⟩

as desired.

Proposition 6.15

Corollary 6.16. If A ∈ B(H) then σ(A∗A) ⊆ [0,∞). So A∗A is positive.

Proof. Note (A∗A)∗ = A∗A is self-adjoint. If r > 0 then

⟨(A∗A+ rI)x, x⟩ = ⟨A∗Ax, x⟩+ ⟨rx, x⟩
= ∥Ax∥2 + r∥x∥2

≥ r∥x∥2

So A∗A+ rI is bounded below, and thus has closed range and thus is surjective and is thus invertible. So
−r /∈ σ(A∗A) ⊆ R. Also ker(A∗A+ rI) = { 0 } so A∗A+ rI has dense range, and thus Ran(A∗A+ rI)⊥ =
ker((A∗A+ rI)∗) = { 0 }. So σ(A∗A) ⊆ [0,∞)

TODO 33. Tidy

Corollary 6.16

6.2 Positive elements

Proposition 6.17. If a ∈ A and a ≥ 0 then there is a unique b ∈ A with b ≥ 0 such that b2 = a.

Proof. Let f(x) = x
1
2 , which is continuous on σ(a) ⊆ [0, ∥a∥]. Let b = f(a). Note that f(x) = lim pn(x) with

pn ∈ C[x] and pn(0) = 0. So pn(a) ∈ A even if A is not unital. So f(a) ∈ A. Then b2 = f2(a) = id(a) = a.

TODO 34. I guess we’re implicitly using the fact that (f ◦ g)(a) = f(g(a)).
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For uniqueness, suppose c ≥ 0 with c2 = a. Then x = id(x) = f(x2). In C∗(c) we have

c = id(c) = f(x2(c)) = f(c2) = f(a) = b

as desired. Proposition 6.17

Proposition 6.18. If a = a∗ then there is a+, a− ∈ A such that a+ ≥ 0, a− ≥ 0, a+a− = 0, and a = a+−a−.

Proof. Let f ∈ C(σ(a)) be

x 7→

{
x if x ≥ 0

0 if x ≤ 0

Let a+ = f(a) and a− = a+ − a = g(a) where

g(x) =

{
0 if x ≥ 0

−x else

so f − g = id. Then f ≥ 0 so a+ ≥ 0; likewise g ≥ 0 so a− ≥ 0. Also a+ − a− = (f − g)(a) = a and
a+a− = (fg)(a) = 0 since (fg)(x) = 0. Proposition 6.18

Lemma 6.19. If a = a∗ ∈ A then the following are equivalent:

1. a ≥ 0.

2. a = b2 for some b ≥ 0.

3. For all c ≥ ∥a∥ we have ∥c1− a∥ ≤ c. (Work in A+ if A is not unital.)

4. There exists c ≥ ∥a∥ such that ∥c1− a∥ ≤ c.

Proof.

(1) =⇒ (2) Done.

(2) =⇒ (3) If f(x) = c− x2 we have

∥c1− a∥ = ∥f(b)∥ = sup
λ∈σ(b)

|f(λ)| ≤ sup
λ∈[0,∥a∥

1
2 ]

|c− x2| = c

since σ(b) ⊆ [0, ∥b∥] and ∥b∥2 = ∥b2∥ = ∥a∥.

(3) =⇒ (4) Clear.

(4) =⇒ (1) We have σ(a) ⊆ R ∩ bc(c) = [0, 2c] ⊆ R+ (since ∥c− a∥ ≤ c). So a ≥ 0. Lemma 6.19

Corollary 6.20. If a, b ∈ A with a ≥ 0 and b ≥ 0 then a+ b ≥ 0.

Proof. There is r ≥ ∥a∥ such that r1− a ≤ r, and there is s ≥ ∥b∥ such that ∥s1− b∥ ≤ s. But then

∥(r + s)1− (a+ b)∥ ≤ ∥r1− a∥+ ∥s1− b∥ ≤ r + s

So a+ b ≥ 0. Corollary 6.20

Theorem 6.21. If a ∈ A then a∗a ≥ 0.

48



Proof. Write a∗a = b+ − b− where b+ ≥ 0, b− ≥ 0, and b+b− = 0. Pick c ≥ 0 such that c2 = b−; let t = ac.
Then c = f(b−) where f(x) =

√
x = lim pn(x) where pn ∈ C[x] and pn(0) = 0. Then

cb+ = lim pn(b−)b+ = lim
(pn
x

)
(b−)b−b+ = 0

Now
t∗t = c(a∗a)c = c(b+ − b−)c = −cb−c = −c4 = −b2− ≤ 0

So σ(t∗t) ⊆ (−∞, 0]. Write t = x+ iy with x = Re(t) and y = Im(t) self-adjoint. Then

t∗t = (x− iy)(x+ iy) = x2 + y2 + i(xy − yx)
tt∗ = (x+ iy)(x− iy) = x2 + y2 − i(xy − yx)

So t∗t+ tt∗ = 2x2 + 2y2 ≥ 0 by corollary.

TODO 35. ref

So tt∗ = (t∗t+ tt∗)− t∗t = 2x2 + 2y2 + b2− ≥ 0. So σ(tt∗) ⊆ [0,∞).
But σ(t∗t) ∪ { 0 } = σ(tt∗) ∪ { 0 }

TODO 36. ref

So σ(t∗t) = { 0 }. Then ∥t∥2 = ∥t∗t∥ = spr(t∗t) = 0, and t = 0. So b2− = 0, and b− = 0. Thus
a∗a = b+ ≥ 0. Theorem 6.21

Definition 6.22. If a = a∗ and b = b∗ we say a ≤ b if b− a ≥ 0.

Corollary 6.23. If a ≤ b in A and x ∈ A then x∗ax ≤ x∗bx.

Proof. Since 0 ≤ b−a there is c ≥ 0 with c2 = b−a; then x∗bx−x∗ax = x∗(b−a)x = x∗ccx = (cx)∗(cx) ≥ 0.
Corollary 6.23

Corollary 6.24. If 0 ≤ a ≤ b and a, b invertible then b−1 ≤ a−1.

Proof. Since b ≥ 0 we get from spectral mapping theorem that b−1 ≥ 0, and hence b−
1
2 =
√
b−1 is well-defined.

TODO 37. ref?

Then previous corollary gives

0 ≤ b− 1
2 (b− a)b− 1

2 = 1− (b−
1
2 a

1
2 )(a

1
2 b−

1
2 )

So (b−
1
2 a

1
2 )(a

1
2 b−

1
2 ) ≤ 1. So ∥a 1

2 b−
1
2 ∥2 = ∥(b− 1

2 a
1
2 )(a

1
2 b−

1
2 )∥ ≤ 1.

Aside 6.25. If ∥x∥ ≤ 1 then 0 ≤ x∗x ≤ 1. Since x∗x ≥ 0 and ∥x∗x∥ = ∥x∥2 ≤ 1 then σ(x∗x) ⊆ [0, 1]; so
x∗x ≤ 1. (Indeed, 1− x∗x = g(x∗x) where g(t) = 1− t for t ∈ [0, 1]; so g ≥ 0.)

TODO 38. Better environment

Thus a
1
2 b−1a

1
2 = (a

1
2 b−

1
2 )(b−

1
2 a

1
2 ) ≤ 1. Thus b−1 = a−

1
2 (a

1
2 ba

1
2 )a−

1
2 ≤ a− 1

2 1a−
1
2 = a−1. Corollary 6.24

Definition 6.26. An approximate identity for a C*-algebra A is a net eλ where 0 ≤ eλ ≤ 1 and

lim
λ
∥a− aeλ∥ = 0 = lim

λ
∥a− eλa∥

for all a ∈ A.

Theorem 6.27. Suppose A is a C*-algebra. Then there is a bounded approximate identity for A.

Proof. Let Λ = { e ∈ A : e ≥ 0, ∥e∥ < 1 }.

Claim 6.28. Λ is directed by ≤.
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Proof. Suppose a, b ∈ Λ. We want to find c ∈ A such that a ≤ c and b ≤ c. Let f : [0, 1)→ R+ be f(t) = t
1−t ;

let g : R+ → [0, 1) be g(t) = t
1+t = 1− 1

1+t . Then

g(f(t)) = 1− 1

1 + f(t)
= 1− 1

1 + t
1−t

= 1− 1− t
1− t+ t

= t

Let y = f(a) + f(b) ≥ 0; let c = g(y) ≥ 0. Then σ(c) = g(σ(y)) ⊆ [0, 1); so ∥c∥ < 1, and c ∈ Λ. Since
y ≥ f(a) we get 1 + y ≥ 1 + f(a). Also note that if x ≥ 0 then 1 + x ≥ 0, and σ(1 + x) ⊆ [1,∞); so 1 + x is
invertible. Applying this to y and f(a) we get (1 + y)−1 ≤ (a+ f(a))−1. Then

c = g(y) = 1− (1 + y)−1 ≥ 1− (1 + f(a))−1 = g(f(a)) = a

Similarly we get c ≥ b. So Λ is directed. Claim 6.28

If 0 ≤ a ≤ b ∈ Λ and x ∈ A then

∥x− bx∥2 = ∥(x∗ − x∗b)(x− bx)∥ = ∥x∗(1− b)2x∥

Aside 6.29. 0 ≤ a ≤ b does not imply that a2 ≤ b2. Indeed, if

a =

(
1 1
1 1

)
b =

(
2 1
1 1

)
then a ≤ b but

b2 − a2 =

(
2 2
2 2

)
−
(
5 3
3 2

)
=

(
3 1
1 0

)
has determinant −1.

Now, 0 ≤ 1− b ≤ 1 so since x2 ≤ x on [0, 1] we have (1− b)2 ≤ 1− b; so x∗(1− b)2x ≤ x∗(1− b)x. Thus

∥x− bx∥2 = ∥x∗(1− b)2x∥
≤ ∥x∗(1− b)x∥
≤ ∥x∗(1− a)x∥ (since 1− a ≥ 1− b)
≤ ∥x∥∗∥x− ax∥

Now suppose that x ≥ 0. Let an = g(nx) = nx
1+nx ; let

h(t) = t

(
1− nt

1 + nt

)
t =

t2

1 + nt
≤ t

n

Then

∥x(1− an)x∥ = ∥h(x)∥ ≤ sup
t∈[0,∥x∥]

|h(t)| ≤ ∥x∥
n

If ε > 0 choose n such that ∥x∥
n < ε2. Then for all b ∈ Λ with b ≥ an we have

∥x− bx∥2 ≤ ∥x(1− an)x∥ ≤
∥x∥
n

< ε2

so ∥x− bx∥ < ε. So
lim
b∈Λ

bx = x

Also

lim
b∈Λ

xb =

(
lim
b∈Λ

bx

)∗

= x∗ = x
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For general x ∈ A we have

∥x− xb∥2 = ∥x(1− b)∥2 = ∥(1− b)x∗x(1− b)∥ ≤ ∥1− b∥︸ ︷︷ ︸
≤1

∥(x∗x)− (x∗x)b∥ → 0

as desired. Theorem 6.27

Corollary 6.30. If A is a separable C*-algebra then A has an approximate identity { en : n ≥ 1 } with
0 ≤ en ≤ en+1 < 1.

Proof. Exercise. Corollary 6.30

6.3 Ideals and quotients

Definition 6.31. An ideal of a C*-algebra is a closed two-sided ideal.

Lemma 6.32. Suppose J ◁ A is an ideal of A. Then J is self-adjoint.

Proof. Let B = J ∩ J∗; so B is a C*-algebra. (Indeed, it is closed and self-adjoint, and if a, b ∈ B then
ab ∈ J and ab ∈ J∗ since J, J∗ are ideals.) Let { eλ } be an approximate identity for B. Then B ⊇ JJ∗ since
JJ∗ ⊆ JA ⊆ J and JJ∗ ⊆ AJ∗ = (JA)∗ = J∗.

Suppose a ∈ J and eλ is in our approximate identity. Then

∥a∗ − a∗eλ∥2 = ∥(a− eλa)(a∗ − a∗eλ)∥
= ∥(aa∗ − aa∗eλ)− eλ(aa∗ − aa∗eλ)∥
= ∥(1− eλ)(aa∗ − aa∗eλ)∥
≤ ∥aa∗ − aa∗︸︷︷︸

∈B

eλ∥

→ 0

So a∗eλ → a∗, and a∗eλ ∈ J since eλ ∈ B ⊆ J. So since J is closed we get a∗ ∈ J. So J = J∗.
Lemma 6.32

Aside 6.33. If 0 ≤ a ≤ b then ∥a∥ ≤ ∥b∥. Indeed, we have σ(b) ⊆ [0, ∥b∥] so b ≤ ∥b∥1 and a ≤ ∥b∥1. So if
r > ∥b∥ then r − a ≥ (r − ∥b∥)1. So σ(r − a) ⊆ [r − ∥b∥,∞), and σ(a) ⊆ (−∞, ∥b∥) ∩ R+ = [0, ∥b∥]. So
∥a∥ = spr(a) ≤ ∥b∥.

There’s probably an easier proof of the above; he came up with this on the spot when asked.

Lemma 6.34. Suppose A is a C*-algebra; suppose x, a ∈ A with x∗x ≤ a. Then there is b ∈ A such that
x = ba

1
4 and ∥b∥ ≤ ∥a∥ 1

4 .

Proof. Let bn = x
(
a+ 1

n

)− 1
2 a

1
4 . (Note that a ≥ 0 so a+ 1

n ≥
1
n is invertible in A+. Then(

a+
1

n

)− 1
2

a
1
4 = f(a)

where

f(x) =
x

1
4√

x+ 1
n

∈ C0[0, ∥a∥]

So f(a) ∈ A even whe A is not unital.) Let

dnm =

(
a+

1

n

)− 1
2

−
(
a+

1

m

)− 1
2
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for n,m ≥ 1. Then

∥bn − bm∥2 = ∥xdnma
1
4 ∥2

= ∥a 1
4 dnmx

∗xdnma
1
4 ∥

≤ ∥a 1
4 dnmadnma

1
4 ∥

= ∥dnma
3
4 ∥2

=

∥∥∥∥∥
(
a+

1

n

)− 1
2

a
3
4 −

(
a+

1

m

)− 1
2

a
3
4

∥∥∥∥∥
2

= ∥fn(a)− fm(a)∥2

→ 0

as n,m→∞, where

fn(x) =
x

3
4√

x+ 1
n

∈ C0[0, ∥a∥]

So 0 ≤ fn ≤ fn+1 ≤ x
1
4 , and fn → x

1
4 uniformly on [0, ∥a∥]. Thus fn(a)→ a

1
4 in A, and (fn(a))n is a Cauchy

sequence. So (bn)n is Cauchy, and there is a limit

b = lim
n→∞

bn ∈ A

Then

∥x− ba 1
4 ∥2 = lim

n→∞
∥x− bna

1
4 ∥2

= lim
n→∞

∥∥∥∥∥x− x
(
a+

1

n

)− 1
2

a
1
2

∥∥∥∥∥
2

= lim
n→∞

∥∥∥∥∥∥x
(
1−

(
a+

1

n

)− 1
2

a
1
2

)2
∥∥∥∥∥∥

= lim
n→∞

∥∥∥∥∥
(
1−

(
a+

1

n

)− 1
2

a
1
2

)
x∗x

(
1−

(
a+

1

n

)− 1
2

a
1
2

)∥∥∥∥∥
≤ lim
n→∞

∥∥∥∥∥
(
1−

(
a+

1

n

)− 1
2

a
1
2

)
a

(
1−

(
a+

1

n

)− 1
2

a
1
2

)∥∥∥∥∥
= lim
n→∞

hn(a)

= 0

where

hn(x) = x

(
1−

√
x

x+ 1
n

)2

→ 0
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uniformly on [0, ∥a∥]. So x = ba
1
4 . Also

∥bn∥2 = ∥b∗nbn∥

=

∥∥∥∥∥a 1
4

(
a+

1

n

)− 1
2

x∗x

(
a+

1

n

)− 1
2

a
1
4

∥∥∥∥∥
≤

∥∥∥∥∥a 1
4

(
a+

1

n

)− 1
2

a

(
a+

1

n

)− 1
2

a
1
4

∥∥∥∥∥
= gn(a)

≤ ∥gn∥[0,∥a∥]
≤ ∥a 1

2 ∥
= ∥a∥ 1

2

where

gn(x) =
x

3
2

x+ 1
n

≤−→
√
x

uniformly on [0, ∥a∥]. Lemma 6.34

Definition 6.35. A C*-subalgebra B ⊆ A is hereditary if whenever b ∈ B with b ≥ 0 and a ∈ A with
0 ≤ a ≤ b we must have a ∈ B.

Corollary 6.36. Ideals are hereditary subalgebras of A. Indeed, if J ◁ A and x∗x ≤ a ∈ J then x ∈ J.

Proof. Write x = ba
1
4 with a ∈ J; so a

1
4 ∈ J and x ∈ J. Then 0 ≤ b ≤ a implies b

1
2 ∈ J, and thus b ∈ J. So J

is hereditary. Corollary 6.36

Theorem 6.37. If A is a C*-algebra and J ⊴ A then A/J is a C*-algebra.

Proof. J = J∗, so A/J is a *-algebra: if ȧ = a+ J then (ȧ)∗ = ȧ∗ = a∗ + J. This is a Banach algebra with
the quotient norm. Let { eλ } be an approximate identity for J.

Claim 6.38. ∥ȧ∥ = limλ∥a− aeλ∥.

Proof. aeλ ∈ J, so ∥ȧ∥ ≤ ∥a − aeλ∥. For all ε > 0 there is b ∈ J such that ∥a − b∥ < ∥ȧ∥ + ε. Then since
0 ≤ eλ ≤ 1 we have

lim
λ
∥a− aeλ∥ ≤ lim

λ
∥(a− b)(1− eλ)∥+ ∥b− beλ∥

≤ lim
λ
(∥ȧ∥+ ε)(1) + lim

λ
∥b− beλ∥︸ ︷︷ ︸

=0

= ∥ȧ∥+ ε

But ε > 0 was arbitrary. So
lim
λ
∥a− aeλ∥ = ∥ȧ∥

as claimed. Claim 6.38

Then

∥ȧ∗ȧ∥ = ∥ ˙(a∗a)∥
= lim

λ
∥a∗a− a∗aeλ︸ ︷︷ ︸

a∗a(1−eλ)

∥

≥ lim
λ
∥(1− eλ)a∗a(1− eλ)∥

= lim
λ
∥a(1− eλ)∥2

= ∥ȧ∥2
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Then
∥ȧ∥2 ≤ ∥(ȧ)∗ȧ∥ ≤ ∥(ȧ)∗∥∥ȧ∥ = ∥ȧ∥2

where for the last equality note that J is self-adjoint, so dist(a∗, J) = dist(a, J). Thus ∥(ȧ)∗ȧ∥ = ∥ȧ∥2, and
the C*-identity holds. So A/J is a C*-algebra. Theorem 6.37

Theorem 6.39. Suppose π : A→ B is a non-zero *-homomorphism between C*-algebras. Then ∥π∥ = 1. So
J = ker(π) is a closed two-sided ideal. Let π̃ be the induced map on the quotient; so the following diagram
commutes:

A A/J

B

q

π
π̃

THen π̃ is an isometric *-monomorphism (i.e. injective *-homomorphism), and π(A) is a C*-subalgebra of
B.

Proof. If a = a∗ then σB(π(a)) ⊆ σA(a): indeed, if λ /∈ σ(a) then (a − λ)−1 ∈ A, and π((a − λ)−1) =
(π(a)−λ)−1. (If A is not unital, define π+ : A+ → B+ by π+(1) = 1; now we can sensibly talk about spectra.)
Then

∥π(a)∥ = spr(π(a)) ≤ spr(a) = ∥a∥

For general a we have
∥π(a)∥2 = ∥π(a∗a)∥ ≤ ∥a∗a∥ = ∥a∥2

So ∥π∥ ≤ 1 and π is continuous. So J is closed, and A/J is a C*-algebra; so π̃(ȧ) = π(a) is well-defined and
injective.

Claim 6.40. π̃ is isometric.

Proof. If not, then there is ȧ ∈ A/J such that

r = ∥π̃(ȧ)∥2 = ∥π̃((ȧ)∗ȧ)∥ < s = ∥ȧ∥2 = ∥(ȧ)∗ȧ∥

so s ∈ σ((ȧ)∗ȧ).

TODO 39. How’d this happen?

Let

f(x) =

{
0 if 0 ≤ x ≤ r
x−r
s−r if r ≤ x ≤ s

Then
∥f((ȧ)∗ȧ)∥ = sup

x∈σ((ȧ)∗ȧ)
|f(x)| = 1

so
∥π̃(f((ȧ)∗a))∥ = ∥f(π((ȧ)∗ȧ))∥ = ∥0∥ = 0

as σ((ȧ)∗ȧ) ⊆ [0, 1].

TODO 40. ?

So π̃ is not injective, a contradiction. Soπ̃ is isometric. Claim 6.40

So in particular π(A) = π̃(A/J) is closed, and is thus a C*-subalgebra of B. Theorem 6.39

Corollary 6.41. If J◁A and B a C*-subalgebra of A then B+J is a C*-subalgebra, and B/B∩J ∼= B+J/J.
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Proof. Let q : A → A/J be the quotient mapping; so q is a *-homomorphism. So q ↾ B : B → A/J is a
*-homomorphism. Then using the above theorem there is an isometric *-homomorphism such that the
following diagram commutes:

B A/J

B/ ker(q ↾ B) = B/B ∩ J

q↾B

So q(B) = B+J/J is closed; so B+J = q−1(q(B)) is a closed self-adjoint subalgebra, and is thus a C*-algebra.
Corollary 6.41

Corollary 6.42. If a ∈ A ⊆ B with A,B unital C*-algebras then σA(a) = σB(a). i.e. C*-algebras are
inverse-closed: if a ∈ A and a−1 ∈ B then a−1 ∈ A.

Proof. We know σB(a) ⊆ σA(a); it remains to show that if there is b ∈ B such that ab = ba = 1 then b ∈ A.

Case 1. Suppose a = a∗. Then C = C∗(a, a−1) is abelian and contained in B. Then 0 /∈ σC(a); so there is
f ∈ C([−∥a∥, ∥a∥]) such that

f(x) =

{
x−1 if x ∈ σC(a)
0 if x = 0

Then a−1 = f(a) in C. This also makes sense in C∗(a) since f is a limit of polynomials pn with
pn(0) = 0. So f(a) ∈ C∗(a); so a is invertible in C∗(a) ⊆ A.

Case 2. For the general case, suppose a ∈ A and a−1 ∈ B. Then (a∗a)−1 = a−1(a−1)∗ is invertible in B. But
a∗a ≥ 0 so by the previous case we have (a∗a)−1 ∈ A. Then a−1 = (a∗a)−1a∗ ∈ A. Corollary 6.42

7 Concrete C*-algebras

TODO 41. Section title?

7.1 Review of weak and strong operator topologies

Suppose H is a Hilbert space. We can endow B(H) with the weak operator topology by declaring Tα
WOT−−−→ T

if ⟨Tαx, y⟩ → ⟨Tx, y⟩ for all x, y ∈ H; this is the weakest topology such that T 7→ ⟨Tx, y⟩ is continuous for all
x, y ∈ H. The basic open neighbourhoods around 0 are given by

O(0, x1, . . . , xn, y1, . . . , yn) = {T ∈ B(H) : |⟨Txi, yi⟩| < 1 for 1 ≤ i ≤ n }

We can also endow B(H) with the strong operator topology by declaring Tα
SOT−−−→ if Tαx → Tx for all

x ∈ H; this is the weakest topology such that T 7→ Tx is continuous for all x ∈ H. It is determined by
seminorms px(T ) = ∥Tx∥; or

p(T ) =

(
n∑
i=1

∥Txi∥2
) 1

2

for x1, . . . , xn ∈ H. The basic open neighbourhoods aroud 0 are given by

O(x1, . . . , xn) =

{
T :

n∑
i=1

∥Txi∥2 < 1

}

We also have the strong* topology SOT∗ given by Tα
SOT∗

−−−−→ T if and only if Tα
SOT−−−→ T and T ∗

α
SOT−−−→ T ∗.

The basic open neighbourhoods around 0 are

O(x1, . . . , xn) =

{
T

n∑
i=1

∥Txi∥2 < 1,

n∑
i=1

∥T ∗xi∥ = 1

}
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TODO 42. I think the second sum should be norms squared? Also in the next proof

Example 7.1. If S is the unilateral shift then Sn
WOT−−−→ 0 and (S∗)n

SOT−−−→ 0 but Sn ̸SOT−−−→ 0 since the Sn are
isometries, so ∥Snx∥ = 1 ̸→ 0.

Lemma 7.2. Suppose φ : B(H)→ C is linear. Then the following are equivalent:

1. There exist x1, . . . , xn, y1, . . . , yn ∈ H such that

φ(T ) =

n∑
i=1

⟨Txi, yi⟩

2. φ is WOT-continuous.

3. φ is SOT-continuous.

4. φ is SOT*-continuous.

Proof.

(1) =⇒ (2) Easy.

(2) =⇒ (3) Easy.

(3) =⇒ (4) Easy.

(4) =⇒ (1) We have φ−1(D) is a SOT*-open neighbourhood of 0. So there is x1, . . . , xn ∈ H such that

φ−1(D) ⊇
{
T :
∑
∥Txi∥2 < 1,

∑
∥T ∗xi∥ < 1

}
⊇ {T : Txi = 0, T ∗xi = 0 } ⊆ ker(φ)

Then the following diagram commutes:

B(H) C

H(n) ⊕ (H∗)(n)

ρ

φ

ψ

where T 7→ (Tx1, . . . , Txn, T
∗x1, . . . , T

∗xn) 7→ φ(T ) and the latter map is continuous. We extend the
map ρ(B(H))→ C to ψ on H(2n) by Hahn-Bnach. Then there are wi ∈ H∗, zi ∈ H such that

ψ(u1, . . . , un, v1, . . . , vn) =
∑
⟨ui, wi⟩+

∑
⟨vi, zi⟩

Then

φ(T ) =

n∑
i=1

⟨Txi, wi⟩+
n∑
i=1

⟨zi, T ∗xi⟩ =
n∑
i=1

⟨Tzi, xi⟩

as desired.

Improved version:

TODO 43. Delete the first version?

Note that φ−1(D) is a basic SOT*-open neighbourhood of 0 and

φ−1(D) ⊇

T :

n∑
i=1

∥Txi∥2 < 1 and

m∑
j=1

∥T ∗yj∥2 < 1

 ⊇ {T : Txi = 0 = T ∗yj , 1 ≤ i ≤ n, 1 ≤ j ≤ m }
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and this last is a closed subspace. Then we want ψ : H(n) ⊕ (H∗)(m) → C such that the following
diagram commutes:

B(H) C

H(n) ⊕ (H∗)(m)

φ

ρ ψ

where ρ(T ) = (Tx1, . . . , Txn, T
∗y1, . . . , T

∗ym). Then T
∗yj represents the linear functional in H given

by x 7→ ⟨x, T ∗yj⟩ = ⟨Tx, yj⟩; the map T 7→ T ∗yj ∈ H∗ is linear.

Define ψ((Tx1, . . . , Txn, T
∗y1, . . . , T

∗ym)) = φ(T ). Then ker(ρ) ⊆ ker(φ), so ψ is well-defined. If∑
∥Txi∥2 < 1∑
∥T ∗yj∥2 < 1

then ψ((Tx1, . . . , Txn, T
∗y1, . . . , T

∗ym)) ∈ D, so |ψ((Tx1, . . . , Txn, T ∗y1, . . . , T
∗ym))| < 1. So ∥ψ∥ ≤ 1.

We can thus by Hahn-Banach extend to a linear functional on H(n) ⊕ (H∗)(m) of norm ≤ 1. But
(H(n) ⊕ (H∗)(m))∗ = (H∗)(n) ⊕H(m); so there are u1, . . . , un ∈ H∗ and v1, . . . , vm ∈ H such that

ψ((x1, . . . , xn, y1, . . . , ym)) =

n∑
i=1

⟨xi, ui⟩+
m∑
j=1

⟨vj , yj⟩

Then

φ(T ) = ψ((Tx1, . . . , Txn, T
∗y1, . . . , T

∗ym)) =
∑
⟨Txi, ui⟩+

∑
⟨vj , T ∗yj⟩ =

∑
⟨Txi, ui⟩+

∑
⟨Tvj , yj⟩

as desired. Lemma 7.2

Corollary 7.3. B(H) with topologies WOT, SOT, and SOT* have the same closed convex sets.

Proof. They have the same continuous functionals, and thus the same closed half spaces H = {T : Re(φ(T )) ≤
r }. By the geometric Hahn-Banach theorem, every closed convex set in a locally convex topological vector
space is the intersection of the closed half spaces containing it. Corollary 7.3

Definition 7.4. A von Neumann algebra is a unital C*-subalgebra of B(H) which is WOT-closed.

Definition 7.5. If S ⊆ B(H), we define the commutant fo S to be S ′ = {T ∈ B(H) : ST = TS for all S ∈ S }.

Remark 7.6. S ′ is always a WOT-closed unital algebra. Indeed, S is clearly a subspace. It is closed under

multiplication, as if T1, T2 ∈ S ′ then T1T2S = T1ST2 = ST1T2. If Tα ∈ S ′ with Tα
WOT−−−→ T then

ST = lim
α
STα = lim

α
TαS = TS

and so S ′ is WOT-closed. If S = S∗ then S ′ is self-adjoint, and is thus a von Neumann algebra.

Theorem 7.7 (Double commutant theorem). If A ⊆ B(H) is a C*-algebra which is non-degenerate (i.e.

AH = H) then A
SOT

= A
WOT

= A′′ (where A′′ = (A′)′).

Proof. We know A
SOT

= A
WOT

by previous corollary. We know A
SOT ⊆ A′′ since A ⊆ A′′ and A′′ is

WOT-closed.
Suppose T ∈ A′′ and x1, . . . , xn ∈ H; we wish to find A ∈ A such that

A ∈

{
B ∈ B(H) :

n∑
i=1

∥(T −B)xi∥2 < 1

}

where this last is a SOT neighbourhood of T .
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Case 1. Suppose n = 1. Then M = Ax1 is a closed subspace of H, and AM = AAx1 = A2x1 ⊆ M .
Let P be the orthogonal projection onto M . Then if A ∈ A we have AP = PAP ; so for A ∈ A
we have PA∗ = PA∗P ; so PA = PAP = AP for all A ∈ A, and P ∈ A′. So TP = PT and
Tx1 = TPx1 = PTx1 ∈M . So there is A ∈ A such that ∥Tx1 −Ax1∥ < 1 (or < ε for any ε > 0).

Aside 7.8. Why is x1 ∈M? Let (eλ)λ be an approximate identity for A. Since AH = H there is x ∈ H
and A ∈ A such that Ax ≈ x1; then

eλx1︸︷︷︸
∈Ax1

≈ eλAx→ Ax

Case 2. Suppose n > 1. Let H(n) = H1 ⊕H2 ⊕ · · · ⊕ Hn. Let

A(n) =

A(n) =

A 0
. . .

0 A

 ∈Mn(B(H)) ∼= B(H(n))


Suppose T ∈ B(H(n)) and let Pj be the orthogonal projection onto Hj = 0⊕ · · · ⊕H⊕ 0⊕ · · · ⊕ 0 with
H in the jth spot. We let Tij = PiTPj ↾ Hj ∈ B(H); then

T =
(∑

Pi

)
T
(∑

Pj

)
=
∑
i,j

Tij

Claim 7.9. (A(n))′ =Mn(A
′).

Proof. Suppose T ∈ B(H(n)) commutes with A(n). Then if T = (Tij)ij and

A(n) =

A 0
. . .

0 A


we have TA(n) = (TijA)ij = (ATij)ij = A(n)T . So T ∈ (A(n))′ if and only if Tij ∈ A′ for all i, j, which
occurs if and only if T ∈Mn(A

′). Claim 7.9

Claim 7.10. Mn(A
′)′ = (A′′)(n).

Proof. Suppose A = (Aij)ij ∈Mn(A
′)′. Let Eij ∈Mn(A

′) have an I in the (i, j) position and a zero
elsewhere. Then

EiiA =

 0
Ai1 Ai2 · · · Ain

0

 = AEii =


Ai1
Ai2

0
... 0
Ain


So Aij = 0 if i ̸= j. Doing a similar trick with Eij we conclude that Aii = Ajj if i ̸= j. So A = A(n) for
some A ∈ B(H).
Note T 0

0 0
. . .

 ∈Mn(A
′)

if T ∈ A′. Then A(n)T = TA(n), so examining top-left entries we get AT = TA. Claim 7.10
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Suppose T ∈ A′′ and x1, . . . , xn ∈ H. We have a SOT neighbourhood of T given by{
B ∈ B(H) :

∑
∥(T −B)xi∥2 < 1

}
Let

x =

x1...
xn

 ∈ H(n)

Let M = A(n)x and P be the orthogonal projection to M . Then PA(n) = A(n)P for all A ∈ A; so
P ∈ (A(n))′ =Mn(A

′). But T (n) ∈ (A′′)(n) =M(A′)′; so T (n)P = PT (n). So

T (n)x =

Tx1...
Txn

 = T (n)Px = PT (n)x ∈M = A(n)x

So there is A ∈ A such that

1 > ∥T (n)x−A(n)x∥2 =

∥∥∥∥∥∥∥
Tx1 −Ax1...
Txn −Axn


∥∥∥∥∥∥∥
2

=

n∑
i=1

∥(T −A)xi∥2

as desired. Theorem 7.7

Lemma 7.11. Let f(x) = 2t
1+t2 . If Aα = A∗

α and Aα
SOT−−−→ S then f(Aα)

SOT−−−→ f(S).

Proof. Note f maps [−1, 1] injectively onto itself, and f(R) ⊆ [−1, 1].
Suppose x ∈ H. Then

f(Aα)x− f(S)x = (2(I +A2
α)

−1Aα − 2S(1 + S2)−1)x

= 2(1 +A2
α)

−1(Aα − S)((I + S2)−1x︸ ︷︷ ︸
u

) + 2(1 +A2
α)

−1Aα︸ ︷︷ ︸
f(Aα)

(S −Aα)S(I + S2)−1x︸ ︷︷ ︸
v

= 2(1 +A2
α)

−1(Aα − S)u+ f(Aα)(S −Aα)v

Now, Aα − S)u→ 0, and since

∥2(1 +A2
α)

−1∥ ≤
∥∥∥∥ 2

1 + x2

∥∥∥∥
R
= 2

we get 2(1 + A2
α)

−1(Aα − S)u → 0, and hence (S − Aα)v → 0. Then since ∥f(Aα)∥ ≤ ∥f∥∞ = 1 we have
f(Aα)(S −Aα)v → 0. Lemma 7.11

Theorem 7.12 (Kaplansky’s density theorem). Suppose A is a non-degenerate C*-subalgebra of B(H). Then

b1(Asa)
SOT

= b1(A′′
sa)

∥·∥
and b1(A)

SOT
= b1(A′′)

∥·∥
.

Proof. Suppose S ∈ b1(A′′
sa). Let T = g(S) (where g is the inverse function of f ↾ [−1, 1] : [−1, 1]→ [−1, 1]).

Then T = T ∗ ∈ b1(A′′
sa). By the double commutant theorem there are Aα ∈ A such that Aα

WOT−−−→ T , and

thus A∗
α

WOT−−−→ T ∗ = T . So
Aα+A∗

α

2

WOT−−−→ T . So T ∈ Asa
WOT

= Asa
SOT

. So there is Aα = A∗
α ∈ Asa such

that Aα
SOT−−−→ T . Thus by lemma we have f(Aα)

SOT−−−→ f(T ) = f(g(S)) = S; also ∥f(Aα)∥ ≤ ∥f∥R = 1.
If T ∈ b1(A′′) then (

0 T
T ∗ 0

)
∈ b1(M2(A′′)) =M2(A)

′′

So there is

Aα =

(
Aα,11 Aα,12
Aα,21 Aα,22

)
∈ b1(M2(A))sa
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Thus

Aα
SOT−−−→

(
0 T
T ∗ 0

)
So ∥Aα,12∥ ≤ ∥Aα∥ ≤ 1, and Aα,12

SOT−−−→ T . Theorem 7.12

Definition 7.13. We say U ∈ B(H) is a partial isometry if U ↾ (ker(U))⊥ is isometric.

Proposition 7.14. Suppose U ∈ B(H). Then the following are equivalent:

1. U is a partial isometry.

2. U∗U and UU∗ are projections.

TODO 44. or?

3. U = UU∗U .

Proof.

(1) =⇒ (2) Suppose U is a partial isometry. Then H = (ker(U)) ⊕ (ker(U))⊥. Then U ↾ (ker(U))⊥ is an

isometry onto Ran(U) (closed UH = U(ker(U))⊥).

TODO 45. words

But ker(U∗) = (Ran(U))⊥, and U∗ ↾ Ran(U) is an isometry onto (ker(U))⊥ such that U∗U = P⊥
ker(U).

Likewise UU∗ is the projection onto P⊥
ker(U∗) = PRan(U) (since U

∗ is also a partial isometry).

(2) =⇒ (1) U∗U a projection means that U ↾ (ker(U))⊥ = S ∈ B((ker(U))⊥,H) and S∗S = I(ker(U))⊥ . So S

is an isometry. So U ↾ (ker(U))⊥ is an isometry; so U is a partial isomorphism.

(2) =⇒ (3) U = UP⊥
ker(U) = UU∗U .

(3) =⇒ (2) U∗U = U∗(UU∗U) = (U∗U)2 so U∗U is a projection. Similarly UU∗ is a projection.

Proposition 7.14

Theorem 7.15 (Polar decomposition). Suppose T ∈ B(H). Then |T | = (T ∗T )
1
2 ∈ C∗(T ) and there is a

partial isometry U ∈W ∗(T ) (the von Neumann algebra generated by T , which is C∗(T )′′) such that T = U |T |.

Proof. We have T ∗T ∈ C∗(T ) and T ∗T ≥ 0, so if f(x) = x
1
2 ∈ C[0, ∥T∥2] then |T | = f(T ∗T ) ∈ C∗(T ).

If x ∈ H) then

∥|T |x∥2 = ⟨|T |x, |T |x⟩ = ⟨|T |2x, x⟩ = ⟨T ∗Tx, x⟩ = ⟨Tx, Tx⟩ = ∥Tx∥2

so ∥|T |x∥ = ∥Tx∥ for all x ∈ H. Define U ∈ B(H) as follows. If x ∈ ker(T ) = ker(|T |) we set Ux = 0. If
x ∈ Ran(|T |), say x = |T |y define Ux = Ty; so ∥Ux∥ = ∥Ty∥ = ∥|T |y∥ = ∥x∥. So U is isometric on Ran(|T |).
By continuity, we extend U to an isometry on Ran(|T |); but Ran(|T |) = (ker(|T |))⊥. So U is a partial
isometry and URan(T ) = Ran(T ).

If x ∈ ker(T ) then U |T |x = 0 = Tx. If x = |T |y ∈ Ran(|T |) then U |T |y = Ty (by definition); this extends
by continuity to Ran(|T |)⊥

TODO 46. Ran(|T |)? ker(|T |)⊥?

To show that U ∈ W ∗(T ) = C∗(T )′′ it suffices to show that UX = XU for X ∈ C∗(T )′. So Suppose
X ∈ C∗(T )′.

Note that X ker(T ) ⊆ ker(T ); indeed, if Tx = 0 then T (Xx) = X(Tx) = 0. So Ux = 0, so XUx = 0 and
U(Xx) = 0. So XU = UX on ker(U) = ker(T ). Suppose x = |T |y ∈ Ran(|T |). Then

UXx = UX|T |y = U |T |Xy = TXy = XTy = XU |T |y = XUx

So UX−XU = 0 in ker(U)⊕(ker(U))⊥ = H. So UX = XU . So U ∈ C∗(T )′′ =W ∗(T ). Theorem 7.15
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Remark 7.16.

1. If T is invertible then U = T |T |−1 ∈ C∗(T ).

2. If f ∈ C0((0, ∥T∥]) then Uf(|T |) ∈ C∗(T ). (See assignment 3.)

7.2 Projections in von Neumann algebras

Lemma 7.17. Suppose (Aλ)λ∈Λ is an increasing net of self-adjoint operators in B(H) bounded above by M .
Then in SOT we have a limit A = limλAλ and A is the least upper bound of the Aλ.

Proof. For x ∈ H we have ⟨Aλx, x⟩ ≤M∥x∥2; so ⟨Aλx, x⟩ is an increasing net of real numbers that is bounded
above. So

Ω(x) = lim
λ
⟨Aλx, x⟩

exists. Define

⟨Ax, y⟩ = 1

4
(Ω(x+ y)− Ω(x− y) + iΩ(x+ iy)− iΩ(x+ iy))

= lim
λ

1

4
(⟨Aλ(x+ y), x+ y⟩ − ⟨Aλ(x− y), x− y⟩+ i⟨Aλ(x+ iy), x+ iy⟩ − i⟨Aλ(x− iy), x− iy⟩)

= lim
λ
⟨Aλx, y⟩

So if A is the WOT limit of the Aλ then A ∈ B(H).
If B ≥ Aλ for all λ then

⟨Bx, x⟩ ≥ sup
λ
⟨Aλx, x⟩ = lim⟨Aλx, x⟩ = ⟨Ax, x⟩

So ⟨(B −A)x, x⟩ ≥ 0 for all x; so B ≥ A. Thus A is the least upper bound of the Aλ.
If B ≥ 0 then [x, y] = ⟨Bx, y⟩ is a sesquilinear form, and thus satisfies the Cauchy-Schwarz inequality; i.e.

[x, y] ≤ [x, x]
1
2 [y, y]

1
2 . So

∥Bx∥2 = ⟨Bx,Bx⟩ = [x,Bx] ≤ [x, x]
1
2 [Bx,Bx]

1
2 = ⟨Bx, x⟩ 12 ⟨B3x, x⟩ 12

Since A − Aλ ≥ 0 we have ⟨(A − Aλ)x, x⟩ → 0. Fix λ0. For λ ≥ λ0 we have A − Aλ ≤ A − Aλ0
; so

∥A−Aλ∥ ≤ ∥A−Aλ0
∥. Thus

∥(A−Aλ)x∥2 ≤ ⟨(A−Aλ)x, x⟩
1
2 ⟨(A−Aλ)3x, x⟩

1
2

≤ ⟨(A−Aλ)x, x⟩
1
2 ∥A−Aλ∥

3
2 ∥x∥

≤ ⟨(A−Aλ︸ ︷︷ ︸
→0

)x, x⟩ 12 ∥A−Aλ0
∥ 3

2 ∥x∥︸ ︷︷ ︸
constant

so Aλx→ Ax for all x. So Aλ
SOT−−−→ A. Lemma 7.17

Corollary 7.18. If (Pλ)λ is an increasing net of projections then the SOT-limit P of Pλ is the projection
onto ⋃

λ∈Λ

Ran(Pλ)

Proof. Pλ ≤ I, so we have a bounded, increasing net. So the SOT-limit P of Pλ exists. Let Mλ = Ran(Pλ)
and

M =
⋃
λ∈Λ

Mλ

If x ⊥ M then Pλx = 0 for all λ; so Px = 0. If x ∈ Mλ0
then x = Pλx for all λ ≥ λ0; so Px = x. Thus

Px = x for all
x ∈

⋃
λ∈Λ

Mλ

so by continuity of P we get Px = x for all x ∈M . So P = PM . Corollary 7.18
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Suppose A = A∗ ∈ B(H); translate and scale A so that σ(A) ⊆ [0, 1]. We want projections in W ∗(A).
Suppose O ⊆ [0, 1] is open; consider { f(A) : f ∈ C[0, 1], 0 ≤ f ≤ χO } ⊆ C∗(A). This is a directed set, since if
f, g ≤ χO in C[0, 1] then f∨g ∈ C[0, 1] with f, g ≤ f∨g ≤ χO. So f(A), g(A) ≤ (f∨g)(A) ∈ C∗(A) ∼= C(σ(A)).
By lemma (since all are bounded by I) we get

PO = sup{ f(A) : f ∈ C[0, 1], 0 ≤ f ≤ χO }

exists as a SOT-limit, and is thus in W ∗(A).

Claim 7.19. PO = P 2
O.

Proof. Note PO ≤ I. If f ∈ C[0, 1] with 0 ≤ f ≤ χO then 0 ≤ f 1
2 ≤ χO.

Note by the double commutant theorem that since PO ∈W ∗(A) we get PO commutes with C∗(A) (since

C∗(A) is abelian). But PO ≥ f
1
2 (A); so since they commute we have P 2

O ≥ f(A),

TODO 47. ?

so P 2
O ≥ PO. But 0 ≤ PO ≤ I; so P 2

O ≤ PO ≤ P 2
O. So PO = P 2

O is a projection. Claim 7.19

Suppose n ≥ 1; divide [0, 1] into 2n equal segments. Let Pj,n = P(j2−n,2); let

An = 2−n
2n∑
j=1

Pj,n ∈W ∗(A) = sup

 f(A) : f ∈ C[0, 1], f ≤ 2−n
2n∑
j=1

χ(j2−n,2)

 ≤ A
Then An ≥ A− 2−nI, so A = limnAn in norm.

Corollary 7.20. A ∈ Conv(Proj(W ∗(A)))
∥·∥

. Thus if A is a von Neumann algebra then Conv(Proj(A))
∥·∥

=
b1(A≥0).

Proof. We showed the first part above. For the second, note that if A ∈ A with 0 ≤ A ≤ I then A ∈
Conv(Proj(W ∗(A)))

∥·∥
⊆ Conv(Proj(A))

∥·∥
. Corollary 7.20

Note that the projections are the extreme points of b1(A+), and the symmetries are the extreme points of
b1(Asa).

Corollary 7.21. Conv(Sym(A)) = b1(Asa).

(The symmetries are self-adjoint unitaries, and we have for P−P⊥ = 2P−I, P projections that A 7→ 2A−I
maps b1(A+) bijectively to b1(Asa).)

8 Representations of C*-algebras

Definition 8.1. A representation π of a C*-algebra A is a *-homomorphism to B(H). It is non-degenerate
if AH = H. We say π is topologically irreducible if π(A) has no closed invariant subspaces; we say π is
algebraically irreducible if π(A) has no proper submodules (i.e. if x ̸= 0 then π(A)x = H)).

Lemma 8.2. π is topologically irreducible if and only if π(A)′ = CI.

Proof.

(⇐= ) Suppose M is a closed subspace with π(A)M =M ; so H =M ⊕M⊥ with

π(A) ⊆
(
∗ ∗
0 ∗

)
But π(A) = π(A)∗; so

π(A) ⊆
(
∗ 0
0 ∗

)
=

{(
I 0
0 0

)}′

= {PM }′

So PM ∈ π(A)′.
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( =⇒ ) Suppose π(A)′ ̸= CI; then there is a projection P = P 2 with P /∈ { 0, I } and P ∈ π(A)′. Then
M = Ran(P ) is invariant, and π is not topologically irreducible. Lemma 8.2

Lemma 8.3. Suppose π is a topologically irreducible representation of A. Suppose M is a subspace with
dim(M) <∞. Let T ∈ B(H) and ε > 0. Then there is a ∈ A with ∥a∥ ≤ ∥T∥ such that ∥(T −π(a)) ↾M∥ < ε.

Proof. Let dim(M) = n and { e1, . . . , en } an orthonormal basis for M ; without loss of generality assume
∥T∥ = 1. Then since π(A)′ = CI we get π(A)′′ = (CI)′ = B(H). By Kaplansky’s density theorem we have

b1(B(H)) = b1(π(A))
SOT

. Pick a ∈ A such that ∥π(a)∥ < 1 and ∥Tei − π(a)ei∥ < ε
n for 1 ≤ i ≤ n. Then

∥(T − π(a)) ↾M∥ ≤ ∥(T − π(a))PM∥ ≤
n∑
i=1

∥(T − π(a))PCei∥ < n · ε
n
= ε

Then we have

A
q−→ A/ ker(π)

π̃−→ B(H)
a 7→ ∥ȧ∥ < 1 7→ ∥π(a)∥ < 1

Choose a1 ∈ a+ ker(π) such that ∥a1∥ < ∥ȧ∥+ δ < 1. We then use a1. Lemma 8.3

Theorem 8.4 (Kadison’s transitivity theorem). Suppose π : A → B(H) is topologically irreducible and
dim(M) < ∞; suppose T ∈ B(H) and ε > 0. Then there is a ∈ A with ∥a∥ < ∥T∥ + ε such that
π(a) ↾M = T ↾M .

Proof. Use the lemma to find a0 ∈ A with ∥a0∥ ≤ ∥T∥ such that ∥(T − π(a)) ↾ M∥ < ε
4 , and let T1 =

(T − π(a))PM . Find a1 ∈ A with ∥a1∥ ≤ ∥T1∥ < ε
4 such that ∥(T1 − π(a1)) ↾ M∥ < ε

8 ; then let T2 =
T − π(a0)− π(a1). Recursively find an ∈ A such that ∥an∥ < ε

2n+1 such that

∥T − π(a0 + a1 + · · ·+ an)∥ <
ε

2n+2

Let a =
∑
n≥0 an; so

∥a∥ ≤ ∥a0∥+
∑ ε

2n+1
< ∥T∥+ ε

2
+ ε2

and

(T − π(a)) ↾M = lim
n

(
T − π

(
n∑
i=0

ai

))
↾M = 0

as desired. Theorem 8.4

Corollary 8.5. If π is topologically irreducible then π is algebraically irreducible.

Proof. Suppose x, y ∈ H with x ≠ 0. Let T = y x∗

∥x∥2 , so Tx = y. Then there is a such that π(a)x = y; so the

action is transitive. Corollary 8.5

8.1 GNS construction

This is Gelfand-Naimark-Segal.

Definition 8.6. A linear functional f on a C*-algebra A is called positive if a ≥ 0 implies f(a) ≥ 0. A
positive linear functional of norm 1 is called a state.

Example 8.7. If π : A → B(H) is a non-degenerate representation and x ∈ H with ∥x∥ = 1 then f(a) =
⟨π(a)x, x⟩ is a state.

Proof. If a ≥ 0 then π(a) ≥ 0, so ⟨π(a)x, x⟩ ≥ 0. Also ∥f∥ ≤ ∥π∥∥x∥2 = 1. If 1 ∈ A then f(1) = ⟨π(1)x, x⟩ =
⟨Ix, x⟩ = 1; so ∥f∥ = 1. If A is not unital, we will see that if (eλ)λ is an approximate identity then

π(eλ)
SOT−−−→ I; so ∥f∥ ≥ sup|f(eλ)| = 1.
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Remark 8.8. If f is a positive linear functional then [a, b] = f(b∗a) (for a, b ∈ A) is a sesquilinear form on A;
it is linear in a and conjugate-linear in b, and [a, a] = f(a∗a) ≥ 0. So Cauchy-Schwarz inequality holds, and

|f(b∗a)| = |[a, b]| ≤ [a, a]
1
2 [b, b]

1
2 = f(a∗a)

1
2 f(b∗b)

1
2

Lemma 8.9. Suppose f is a positive linear functional on A. If 1 ∈ A then ∥f∥ = f(1). If (eλ)λ is an
approximate identity then ∥f∥ = sup f(eλ) <∞. In particular, positive linear functionals are continuous.

Proof.

Case 1. Suppose A is unital. If 0 ≤ a ≤ 1 then 0 ≤ f(a) ≤ f(1). If a ∈ A with ∥a∥ ≤ 1 then 0 ≤ a∗a ≤ 1, so
f(a∗a) ≤ f(1). Then

|f(a)| = |f(1∗a)| ≤ f(a∗a) 1
2 f(1∗1)

1
2 ≤ f(1)

So ∥f∥ ≤ f(1) ≤ ∥f∥.

Case 2. Suppose A is non-unital.

Claim 8.10. f ↾ A≥0 is continuous.

Proof. If not there are an ≥ 0 with ∥an∥ < 2−n and f(an) > 1; then

a =
∑
n≥1

an ∈ A≥0

and

f(a) ≥ f

(
N∑
n=1

an

)
=

N∑
n=1

f(an) > N

a contradiction. Claim 8.10

Aside 8.11. In this section we may use A+ to mean A≥0.

So f is continuous, and there is c such that f(a) ≤ C∥a∥ for all a ≥ 0. Now if a ∈ A then

a = Re(a) + i Im(a) = b+ − b− + i(c+ − c−)

with

∥b±∥ ≤ ∥Re(a)∥ ≤ ∥a∥
∥c±∥ ≤ ∥Im(a)∥ ≤ ∥a∥

Then
|f(a)| ≤ f(b+) + f(b−) + f(c+) + f(c−) ≤ 4C∥a∥

Thus M = supλ f(eλ) < ∞ and M = limλ f(eλ) since the eλ is an increasing net. Note also that
0 ≤ eλ ≤ 1, so 0 ≤ e2λ ≤ eλ, and f(e2λ) ≤ f(eλ) ≤M .

Now, by continuity we have

|f(a)|2 = lim
λ
|f(eλa)|2

≤ lim
λ
|f(a∗a)||f(e2λ)| (Cauchy-Schwarz)

≤ lim
λ
∥f∥∥a∥2M

= ∥f∥∥a∥2M

So
∥f∥2 = sup

∥a∥≤1

|f(a)|2 ≤ sup∥f∥ · 1 ·M = ∥f∥ ·M

So ∥f∥ ≤M = supλ f(eλ) ≤ ∥f∥. Lemma 8.9
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Theorem 8.12 (GNS). Suppose f is a state on a C*-algebra A. Then there is a representation πf : A→ B(Hf )
and a unit vector ξf ∈ Hf such that

1. f(a) = ⟨π(a)ξf , ξf ⟩

2. ξf is a cyclic vector; i.e. π(A)ξf = Hf .

Proof. Let N = { a ∈ A : f(a∗a) = 0 }. If a ∈ N and b ∈ A then by Cauchy-Schwarz we have

|[a, b]| = |f(b∗a)| ≤ f(a∗a) 1
2 f(b∗b)

1
2 = 0

So N = { a : [a, b] = 0 for all b ∈ A }; so N is a subspace. If a ∈ N and b ∈ A then

f((ba)∗(ba)) = f(a∗b∗ba) ≤ ∥b∥2f(a∗a) = 0

so N is a left ideal. Since f is continuous, we get that N is closed. So A/N is a Banach space, with elements
ȧ = a+N . We define an inner product by ⟨ȧ, ḃ⟩ = f(b∗a) = [a, b]. Given representatives a, a+ n and b, b+m
with n,m ∈ N we have

f((b+m)∗(a+ n)) = f(b∗a+m∗a+ b∗n+m∗n)

Since b∗n,m∗n ∈ N we have f(b∗n+m∗n) = 0. Since f ≥ 0 if a = x+ iy (so a∗ = x− iy) then

f(a) = f(x)︸︷︷︸
∈R

+i f(y)︸︷︷︸
∈R

and f(a∗) = f(x) − if(y) = f(a). So f(m∗a) = f(a∗m) = 0 since m ∈ N implies a∗m ∈ N . Thus
f(b+m)∗(a+ n)) = f(b∗a).

So ⟨ȧ, ḃ⟩ is well-defined. Also if 0 = ⟨ȧ, ȧ⟩ = f(a∗a) then a ∈ N and ȧ = 0̇; so this is a positive definite
inner product. We have an inner product norm ∥ȧ∥2 = ⟨ȧ, ȧ⟩ 12 . The completion of (A/N, ∥·∥2) is a Hilbert
space. Define π0 : A → L(A/N) by π0(a)ḃ = (ȧb). Then aḃ = a(b + N) = ab + aN ⊆ ab + N , so this is
independent of the choice of b. Also π0 is a homomorphism of algebras; furthermore

⟨π0(a∗)ḃ, ċ⟩ = ⟨( ˙a∗b), ċ⟩
= f(c∗a∗b)

= f((ac)∗b)

= ⟨ḃ, (ȧc)⟩
= ⟨ḃ, π0(a)ċ⟩
= ⟨π0(a)∗ḃ, ċ⟩

So π0(a
∗) = π0(a)

∗, and π0 is a *-homomorphism. Also

∥π0(a)∥ = sup
∥ḃ∥≤1

∥π0(a)ḃ∥

= sup
f(b∗b)≤1

f((ab)∗ab)
1
2

= sup
f(b∗b)≤1

f(b∗a∗ab)
1
2

≤ sup
f(b∗b)≤1

(∥a∥2f(b∗b)) 1
2

= ∥a∥

so ∥π0∥ ≤ 1 and π0 is continuous. We can extend π0 to a continuous linear operator πf (a) in B(Hf ); then
πf : A→ B(Hf ) is a *-representation on Hf .

Case 1. Suppose 1 ∈ A; we then let ξf = 1̇. Then ∥ξf∥2 = f(1∗1) = f(1) = ∥f∥ = 1. Then

⟨π(a)ξf , ξf ⟩ = ⟨π(a)1̇, 1̇⟩ = f(1∗a1) = f(a)

Also π(A)1̇ = { ȧ : a ∈ A } = Hf ; so ξf is cyclic.
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Case 2. Suppose A is not unital; let (eλ)λ be an approximate identity.

Claim 8.13. (ėλ)λ is Cauchy.

Proof. Note that 1 = ∥f∥ = limλ f(eλ). If ε > 0 and

f(eλ) > 1− ε
f(eµ) > 1− ε

then there is ν with eν ≥ eλ and eν ≥ eµ, and so f(eν) ≥ f(eλ) > 1 − ε. So ∥eνeλ − eλ∥ < ε and
∥eνeµ − eµ∥ < ε. Then

∥ėν − ėµ∥2 = f((eν − eµ)2) = f(e2ν + e2µ − eνeµ − eµeν)

But
|f(eνeµ)| = |f(eµ) + f(eνeµ − eµ)| ≥ 1− ε− ∥eνeµ − eµ∥ > 1− 2ε

and also |f(eµeν)| = |f(eνeµ)| > 1− 2ε. Thus

∥ėν − ėµ∥2 ≤ f(e2ν) + f(eµ)
2 − 2(1− 2ε) ≤ 2− 2 + 4ε = 4ε

TODO 48. something about this being because eν , eµ being norm 1 and positive?

so ∥ėν − ėµ∥ ≤ 2
√
ε. Then

∥ėµ − ėλ∥ ≤ ∥ėµ − ėν∥+ ∥ėν − ėλ∥ < 2
√
ε+ 2

√
ε = 4

√
ε

and (eλ)λ is Cauchy. Claim 8.13

Let ξf = limλ ėλ. Then

⟨π(a)ξf , ξf ⟩ = lim
λ
⟨π(a)ėλ, ėλ⟩ = lim

λ
f(eλaeλ) = f(a)

and

∥ȧ− π(a)ξf∥2 = lim
λ
∥ȧ− π(a)ėλ∥2

= lim
λ
∥ȧ− ( ˙aeλ)∥2

= 0

TODO 49. something about how the penultimate is equal to ∥ȧ− ( ˙eλa)∥ and in turn to ∥ȧ− π(eλ)ȧ∥?

Thus π(eλ)ȧ→ ȧ; so π(eλ)
SOT−−−→ I. So π(A)ξf = A/N = Hf is then cyclic. Also

1 = lim
λ
f(eλ) = lim

λ
⟨π(eλ)ξf , ξf ⟩ = ⟨ξf , ξf ⟩

Theorem 8.12

Corollary 8.14. If A is not unital and f is a state then f extends uniquely to a state on A+ by setting
f(1) = 1.

Proof. Suppose g is a Hahn-Banach extension of f to A+; so ∥g∥ = 1 ≥ |g(1)|. Let g(1) = α. Then
1 = limλ f(eλ) and 0 ≤ eλ ≤ 1, so −1 ≤ 1− 2eλ ≤ 1, and

1 ≥ |g(1− 2eλ)| = |α− 2f(eλ)| → |α− 2|

Then since |α| ≤ 1 and |α− 2| ≤ 1 we get α ∈ D ∩ (2 + D) = { 1 }. So g(1) = 1,a nd g is unique.
Also

g(α+ λ1) = ⟨(π(a) + λI)ξf , ξf ⟩ = π̃(a+ λ1)

where π̃ : A+ → B(Hf ) is π̃(a) = π(a) and π̃(1) = I; so π̃ is *-linear, and g ≥ 0. Corollary 8.14

66



Lemma 8.15. Suppose f is a linear functional on A.

1. If 1 ∈ A and f(1) = 1 = ∥f∥, then f is a state.

2. If (eλ)λ is an approximate identity and 1 = ∥f∥ = limλ f(eλ) then f is a state.

Proof.

1. If a = a∗ write f(a) = x+ iy for x, y ∈ R. Then

|f(a+ it1)|2 = |(x+ iy) + it|2 = x2 + (y + t)2 ≤ ∥a+ it1∥2

But a+it1 is normal and σ(a+it1) = σ(a)+it ⊆ [−∥a∥, ∥a∥]+it. So ∥a+it∥ = spr(a+it) =
√
∥a∥2 + t2.

Thus
∥a∥2 + t2 ≥ x2 + (y + t)2 = x2 + y2 + 2yt+ t2

So x2 + y2 + 2yt ≤ ∥a∥2 for all t ∈ R. So y = 0, and f(a) ∈ R.
If a = a∗ with 0 ≤ a ≤ 1 then −1 ≤ 2a− 1 ≤ 1. So −1 ≤ 2f(a)− 1 ≤ 1 since ∥f∥ = 1 and f(a) ∈ R.
Thus 0 ≤ f(a) ≤ 1. So f ≥ 0, and f is a state.

2. Extend f by Hahn-Banach to a norm 1 functional on A+. Then limλ f(eλ) = 1, so by the same proof
as the previous corollary we get g(1) = 1. So by the unital case we get that g is a state. So f is a
state. Lemma 8.15

Definition 8.16. The state space of A is S(A) = { f ∈ A∗ : f ≥ 0, ∥f∥ = 1 }; the quasi-state space of A is
Q(A) = { f ∈ A∗ : f ≥ 0, ∥f∥ ≤ 1 }.

Remark 8.17. If A is unital then S(A) is weak*-compact: indeed,

S(A) = { f ∈ A∗ : 1 = f(1) = ∥f∥ } = b1(A∗)︸ ︷︷ ︸
weak*-compact

∩{ f ∈ A∗ : f(1) = 1 }︸ ︷︷ ︸
weak*-closed

If A is not unital then generally S(A) is not weak*-compact. But Q(A) is always weak*-compact: indeed,

Q(A) = b1(A∗) ∩
⋂
a≥0

{ f ∈ A∗ : f(a) ≥ 0 }︸ ︷︷ ︸
weak∗−closed

Example 8.18. Consider A = C0((0, 1])∗ =M((0, 1]), the space of complex regular Borel measures; then S(A)
is the space of probability measures. Let µn = n · (m ↾ (0, n−1]) (where m is the Lebesgue measure); then

µn
w∗

−−→ 0 (i.e. δ0). So S(A) isn’t weak*-closed.

Definition 8.19. A state f is pure if g ∈ A∗ and 0 ≤ g ≤ f implies there is t ∈ [0, 1] with g = tf .

Proposition 8.20. f ∈ S(A) is pure if and only if it is extreme.

Aside 8.21. C = { g ∈ A∗ : g ≥ 0 } is a weak*-closed cone. The pure states lie on extreme rays. If 1 ∈ A then

S(A) = C ∩ { g ∈ A∗ : g(1) = 1 } = C ∩ { g ∈ A∗ : ∥g∥ = 1 }

Proof of Proposition 8.20.

( =⇒ ) Suppose f is not extreme; say f = 1
2 (g + h) for g, h ∈ S(A) and g, h ≠ f . Then 0 ≤ 1

2g ≤ f but
g ̸= tf for t ∈ [0, 1]; so f is not pure.
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(⇐= ) Suppose f is not pure; then there is g with 0 ≤ g ≤ f with g /∈ R+f . Let h = f − g ≥ 0. Then

f = ∥g∥(∥g∥−1g) + ∥h∥(∥h∥−1h)

with ∥g∥−1g, ∥h∥−1h ∈ S(A); furthermore if (eλ)λ is an approximate identity then

∥g∥+ ∥h∥ = lim
λ
g(eλ) + h(eλ) = lim

λ
f(eλ) = 1

So f is not extreme. Proposition 8.20

Lemma 8.22. ext(Q(A)) = { 0 } ∪ ext(S(A)). So Conv(ext(S(A)))
w∗

⊇ S(A).

Proof. If f ∈ Q(A) with 0 < ∥f∥ < 1 then it is clear that f is not an extreme point. Clearly 0 ∈ ext(Q(A)),
and by a triangle inequality argument we get that ext(S(A)) ⊆ ext(Q(A)). So ext(Q(A)) = { 0 } ∪ ext(S(A)).

By Krein-Milman we have Conv({ 0 } ∪ ext(S(A)))
w∗

= Q(A) ⊇ S(A). So if f ∈ S(A) there is (fλ)λ in

Conv({ 0 } ∪ ext(S(A))) such that fλ
w∗

−−→ f . Write fλ = (1− tλ) · 0 + tλgλ with g ∈ Conv(ext(S(A))) ⊆ S(A)
and 0 ≤ tλ ≤ 1; then ∥fλ∥ = tλ. But { f ∈ Q(A) : ∥f∥ ≤ r } is weak*-compact; so limλ tλ = 1, and gλ

w∗

−−→ f .
So f ∈ Conv(ext(S(A))). Lemma 8.22

Lemma 8.23. If f is a state with GNS representation ⟨πf , ξf ,Hf ⟩ then { g : 0 ≤ g ≤ f } ↔ {H ∈ πf (A)′ :
0 ≤ H ≤ I } with g(a) = ⟨πf (a)ξf |Hξf ⟩ ←[ H

Proof. If H ∈ πf (A)′ with 0 ≤ H ≤ I then

g(a) = ⟨πf (a)ξf |Hξf ⟩ = ⟨H
1
2πf (a)ξf |H

1
2 ξf ⟩ = ⟨πf (a)H

1
2 ξf |H

1
2 ξf ⟩

so g ≥ 0. Then

(f − g)(a) = ⟨πf (a)ξf |(I −H)ξf ⟩ = · · · = ⟨πf (a)(I −H)
1
2 ξf |(I −H)

1
2 ξf ⟩ ≥ 0

for a ≥ 0. So 0 ≤ f ≤ g.
Conversely if 0 ≤ g ≤ f we define a sesquilinear form on A/N (where N = { a ∈ A : f(a∗a) = 0 }) by

[ȧ|ḃ]g = g(b∗a). This is positive as g ≥ 0, and well defined as if a ∈ N then 0 ≤ g(a∗a) ≤ f(a∗a) = 0 and the
same proof from before applies. Also [ȧ|ȧ]g = g(a∗a) ≤ f(a∗a) = ∥ȧ∥2Hf

, so our form is of norm ≤ 1. Thus

there is H ∈ B(H) such that [ȧ|ḃ] = ⟨Hȧ⟩ḃHf
; since our form is positive and norm ≤ 1, we get H ≥ 0 and

∥H∥ ≤ 1. So 0 ≤ H ≤ I. Now for a ∈ A we have

⟨(Hπ(a)− π(a)H)ċ|ḃ⟩ = ⟨Hπ(a)ċ|ḃ⟩ − ⟨Hċ|π(a∗)ḃ⟩ = g(b∗π(a)c)− g(b∗π(a)c) = 0

So H ∈ π(A)′. Lemma 8.23

Theorem 8.24. If f ∈ S(A) then πf is irreducible if and only if f is pure.

Proof. Note that

πf irreducible ⇐⇒ πf (A)
′ = CI

⇐⇒ { g : 0 ≤ g ≤ f } = { tf : 0 ≤ t ≤ 1 }
⇐⇒ f is pure

as desired. Theorem 8.24

Lemma 8.25. If a = a∗ ∈ A then there is a pure state f such that |f(a)| = ∥a∥.

Proof. Since a = a∗ we get C∗
0 (a)

∼= C0(σ(a) \ { 0 }).

TODO 50. C∗(a)?
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The “evaluation at λ = ∥a∥ or λ = −∥a∥” functional is a state on C∗
0 (a) that norms a; i.e. f0 ∈ S(C∗

0 (a))
and f0(a) = ±∥a∥. By Hahn-Banahch this extends to f ∈ A∗ of norm 1. If (eλ)λ is an approximate identity
for C∗

0 (a)k then f0(eλ)→ 1; so f(eλ)→ 1, and f is a state. If (dµ)µ is an approximate identity for A then
for all r < 1 there is λ such that f(eλ) > r; so there is dµ > eλ such that f(dµ) > r.

Let F = { f ∈ S(A) : f(a) = ∥a∥ } or F = { f ∈ S(A) : f(a) = −∥a∥ }. Then F is non-empty,
weak*-closed, and convex.

Claim 8.26. F is a face of Q(A).

Proof. Suppose f ∈ F with f = 1
2 (g + h) for g, h ∈ Q(A). Then

±a = f(a) =
g(a) + h(a)

2
≤ ∥a∥+ ∥a∥

2

TODO 51. Last inequality may need slight modification

So g(a) = h(a) = ±∥a∥; thus g, h ∈ F . Claim 8.26

By Krein-Milman we get that F has an extreme point f0. But a face of a face is a face; so f0 ∈ ext(Q(A))
and f0 ̸= 0. So f0 ∈ ext(S(A)). Lemma 8.25

Theorem 8.27 (GNS). If A is a C*-algebra then

π =
⊕
f pure

πf

is a faithful *-representation. If A is separable then a countable collection of pure states is sufficient.

Proof. By lemma if a = a∗ there is a pure state f with |f(a)| = ∥a∥. (f(a) = ⟨πf (a)ξf |ξf ⟩.) So ∥πf (a)∥ = ∥a∥,
and ∥π(a)∥ = ∥a∥.

For a arbitrary we have
∥π(a)∥2 = ∥π(a∗a)∥ = ∥a∗a∥ = ∥a∥2

so π is isometric.
If A is separable choose { an : n ∈ N } dense in b1(Asa). For each an choose fn pure such that ∥πf (an)∥ =

∥an∥. Let
σ =

⊕
n

πfn

Then ∥σ(an)∥ = ∥an∥ for all n, so ∥σ(a)∥ = ∥a∥ for all a = a∗ with ∥a∥ ≤ 1. So σ is isometric.
Theorem 8.27

Corollary 8.28. C*-algebras are semisimple.

Proof. We have

rad(A) =
⋂

π irreducible

ker(π) ⊆
⋂

f pure

ker(πf ) = { 0 }

as desired. Corollary 8.28

8.2 Representations and ideals

Proposition 8.29. Suppose A is a C*-algebra and J◁ is an ideal. If π is a non-degenerate *-representation
of J on H then there is a unique π̃ = ind(π) : A→ B(H) such that π̃ ↾= π. Moreover if π is irreducible then
so is π̃.
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Proof. We have H = π(J)H. Define π̃(a)π(j)x = π(aj)x. (This is forced, and thus unique.) Is this well-
defined? Suppose π(j1)x1 = π(j2)x2. Let (eλ)λ be an approximate identity for J ; we need to show that
π(aj1)x1 = π(aj2)x2 for all a ∈ A. But

π(aj1)x1 = lim
λ
π(aeλj1)x1 = lim

λ
π(aeλ)π(j1)x1 = lim

λ
π(aeλ)π(j2)x2 = lim

λ
π(aeλj2)x2 = π(aj2)x2

Also π̃ is linear and multiplicative. Also

⟨π̃(a∗)π(j1x1)|π(j2x2)⟩ = ⟨π(j∗2 )π(a∗j1)x1|x2⟩
= ⟨π(j∗2a∗j1)x1|x2⟩
= ⟨π(j∗2a∗)π(j1)x1|x2⟩
= ⟨π(j1)x1|π(aj2)x2⟩
= ⟨π(j1)x1|π̃(a)π(j2)x2⟩
= ⟨π̃(a)∗π(j1)x1|π(j2)x2⟩

(on a dense subset at least). Finally, we have

∥π̃(a)∥ = sup
∥π(j)x∥≤1

∥π(aj)x∥

= sup sup
λ
∥π(aeλj)x∥

= sup sup
λ
∥π(aeλ)π(j)x∥

≤ sup sup
λ
∥aeλ∥1

≤ ∥a∥

so π̃(a) is bounded. So π̃ is bounded as well, and extends to a *-representation on all of H.
Proposition 8.29

Proposition 8.30. Suppose π : A → B(H) is a *-representation and J ◁ A. Let M = π(J)H. Then M is
a subrepresentation, so π ∼= π1 ⊕ π2 for π1 : A → B(M) and π2 : A → B(M⊥). Then π1 = ind(π ↾ J) and
π2 ↾ J = 0 (so π2 factors through A/J).

Proof. It is clear that M is invariant, hence reducing by taking adjoints we can write π = π1 ⊕ π2. Then
π1 ↾ J : J → B(M) is non-degenerate; so π1 = ind(π1 ↾ J) by lemma. Also π(J) ↾M⊥ = 0, so ker(π2) ⊇ J ;
thus π2 factors through A/J . Proposition 8.30

Example 8.31. Let A = B(H) for H separable. Let K = K(H); this is the only proper ideal of A.
Indeed, if J ◁ B(H) with 0 ̸= J ∈ J then there is x, y such that Jx = y ̸= 0; then given u, v there

are rank one R,S such that R(u) = x and S(y) = v. Then SJR is rank one and sends u 7→ v, and SJR
lies in J ; so K ⊆ J . If J ∈ J \ K then T = J∗J ∈ J is not compact; without loss of generality assume
σ(T ) ⊆ [0, 1]. If K = K∗ ≥ 0 compact, then σ(K) = { 0, λ1, λ2, . . . } with the λn → 0; the eigenspaces
EK(λn) are finite dimensional. Conversely if there is λ ∈ σ(T ) with dim(E − {λ }) = ∞ (= P an infinite
rank projection, C∗(T ) ⊆ J ) then there is an isometry S such that SH = PH, and X ∈ B(H) such that
SXS∗ = P (SXS∗)P ∈ J . So X = S∗(SXS∗)S ∈ J . Then σ(T )∩ [r, 1] is uncountable. There is a projection

P = sup
0≤f≤χ[r,1]

f(T ) ∈W ∗(T )

with PT ≥ rP of infinite rank. So there is Y ∈ B(H) with Y T = P , etc.
Assume π : B(H)→ B(K) and π1 = ind(π ↾ K) and π2 : B(H)→ B(H)/K → B(K2). Then B(H)→ B(K1),

with K1 = π(K)K. K has only 1 irreducible represnetation up to unitary equivalence, namely id. Then

π = id(α)⊕ π2

where the former is weak*-continuous and the latter is not.

70



9 Spectral theory for normal operators

Recall that if N is normal (i.e. N∗N = NN∗) then C∗(N) ∼= C(σ(N)) is abelian. More generally if the Nα
are commuting normal operators, then by Fuglede’s theorem C∗({Nα }α) is abelian, so is isomorphic to C(X)
for some compact Hausdorff space X; if it is separable, then X is compact and metrizable.

Example 9.1. If µ is a Borel probability measure on X, there is a ∗-representation πµ : C(X) → B(L2(µ))
given by πµ(f)h = fh. Then

⟨πµ(f)h, k⟩ = ⟨fh, k⟩ =
∫
(fh)kdµ =

∫
h(fk)dµ = ⟨h, fk⟩ = ⟨h, πµ(f)k⟩ = ⟨πµ(f)∗h, k⟩

So πµ(f) = πµ(f)
∗, and πµ is a ∗-homomorphism. Also

∥πµ(f)∥ = ess. sup|f(x)|︸ ︷︷ ︸
w.r.t. µ

≤ ∥f∥∞

and 1 is a cyclic vector: πµ(C(X))1 = C(X)
L2(µ)

= L2(µ).

Theorem 9.2. Suppose π : C(X)→ B(H) is a representation with cyclic vector x with ∥x∥ = 1. Then there
is a regular Borel probability measure µ on X such that π is unitarily equivalent to πµ (i.e. there is unitary
U : L2(µ)→ H such that π(f) = Uπµ(f)U

∗).

Proof. Define a state in C(X) by φ(f) = ⟨π(f)x, x⟩. (It is positive and linear, and ∥φ∥ = φ(1) = ∥x∥2 = 1.)
By Riesz representation theorem there is a positive regular Borel measure µ on X such that φ(f) =

∫
fdµ.

Then ∥µ∥ =
∫
1dµ = φ(1) = 1; so µ is a probability measure.

Define U : C(X)→ H by Uf = π(f)x. Then

∥Uf∥2 = ⟨π(f)x, π(f)x⟩ = ⟨π(|f |2)x, x⟩ = φ(|f |2) =
∫
|f |2dµ = ∥f∥2L2(µ)

Since C(X) is dense in L2(µ) and U is isometric on (C(X), ∥·∥L2(µ)) we get that U extends by continuity to

U : L2(µ)→ H which is isometric. But Ran(U) is closed, and thus contains π(C(X))x = H; so U is unitary.
If f, g ∈ C(X) then

Uπµ(f)g = Ufg = ρ(fg)x = ρ(f)ρ(g)x = ρ(f)Ug

TODO 52. ρ? Mean π?

This holds for g ∈ C(X), and C(X) is dense in L2(µ); so by continuity we get Uπµ(f) = ρ(f)U , and so
ρ(f) = Uπµ(f)U

∗. Theorem 9.2

Lemma 9.3. Suppose A is a C*-algebra and π : A→ B(H) a non-degenerate *-representation. Then there
is a decomposition H =

⊕
αHα where each Hα is a reducing subspace for π(A and π(A) ↾ Hα has a cyclic

vector xα.

TODO 53. Reducing subspace?

Proof. If 0 ̸= x then Hx = π(A)x = π(A)′′x

TODO 54. Single ′? Double?

is a reducing subspace, and contains Ix = x. If 0 ̸= y ⊥ Hx then Hy ⊥ Hx: indeed, if a, b ∈ A then
⟨π(a)y, π(b)x⟩ = ⟨y, π(a∗b)x⟩ = 0.

So by Zorn’s lemma there is a maximal collection of vectors {xα }α in H such that Hxα
⊥ Hxβ

for all

α ̸= β. Let M = (
∑
Hα)⊥. Suppose M were not { 0 }; then there is 0 ̸= y ∈M , so that y ⊥ Hxα

for all α.
So Hy ⊥ Hxα for all α; so Hy ⊆M . So {xα }α ∪ { y } is a larger family, contradicting maximality. So M = 0,
and H =

⊕
αHxα . Lemma 9.3
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Theorem 9.4 (Spectral theorem v1). If N is a normal operator on a separable Hilbert space then N is
unitarily equivalent to a multiplication operator.

Proof. C∗(N) ∼= C(X) (in fact X = σ(N)) via f ∈ C(X) 7→ f(N) by the continuous functional calculus; this
is a *-representation. By lemma we get

H =
⊕

1≤i<α

Hi

(where α ∈ N ∪ {ω }) such that πi(f) = f(N) ↾ Hi is a cyclic representation. Then there are probability
measures µi on σ(N) such that πi(f) ∼=Mµi

f on L2(µi). In particular π(id) = N . So N ∼=
⊕

i πi(id)
∼=
⊕
Mµi
z

on
⊕

i L
2(µi).

Let Y = σ(N)× N. Suppose µ ∈M(Y ) with µ ↾ σ(N)× { i } = 2−iµi; then µ is a probability measure.
Then

L2(µ) =
⊕

L2(σ(N)× { i }, µ) =
⊕

L2(2−iµi ∼=
⊕

L2(µi)

Let h(x, i) = x; then Mh
∼=
⊕
M2−iµi

id
∼=
⊕
Mµi

id
∼= N . (If Ui : L

2(µi)→ L2(2−iµi) is Uih = 2
i
2h then

∥Uih∥22 =

∫
2i|h|2d(2−iµi) = ∥h∥L2(µ)

and UiMfh = Uifh = 2
i
2 fh =Mf2

i
2h =MfUih.) Theorem 9.4

Example 9.5. Suppose N is normal and compact. Then σ(N) is finite or an infinite sequence converging
to 0 ∈ σ(N). If N is cyclic then N ∼= Mz on L2(σ(N)) = ℓ2(σ(N)). If µ ∈ M(σ(N)) then since σ(N)) is
countable we can write

µ =
∑

εiδλi

where λi range over σ(N). So

N ∼=
⊕

λi

acting on L2(µ) ∼= ℓ2. So N is diagonalizable. In general if N is a direct sum of diagonals it is diagonalizable.
If σ(N) = {λn : n ≥ 1 } ∪ { 0 } then there are dn = dim(ker(N − λnI)) <∞ so that

N ∼= diag(λ1, λ1, . . . , λ1︸ ︷︷ ︸
d1

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
d2

, . . .

Definition 9.6. If A is a C*-subalgebra of B(H), we say x ∈ H is a separating vector if whenever A ∈ A has
Ax = 0 then A = 0.

Remark 9.7. If x is a cyclic vector for A then it is a separating vector for A′.

Proof. Suppose B ∈ A′ and Bx = 0. Then for all A ∈ A we have B(Ax) = A(Bx) = 0. So B ↾ Ax︸︷︷︸
=H

= 0, and

thus B = 0.

Definition 9.8. We say π : A→ B(H) is multiplicity-free if π(A)′ is abelian.

The idea is that if π ∼= π0 ⊕ ρ⊕ ρ then it has multiplicity; then the operators0 0 0
0 a11I a12I
0 a21I a22I


lie in π(A)′.

Definition 9.9. A masa (maximal abelian self-adjoint subalgebra) is an abelian C*-subalgebra of B(H) not
contained in any larger abelian C*-algebra.
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Remark 9.10. If A is a masa then A ⊆ A′ and A ⊆ A′′ = A
WOT

, and A
WOT

is still abelian. So A is
WOT-closed (and thus a von Neumann algebra).

If A′′ ⫋ A′, pick B ∈ A′ \ A′′; then B commutes with A′′, so C∗(B,A′′) is abelian. So C ∗ (B,A′′)′′ is
abelian, and contains A′′, a contradiction. So A′ = A′′ = A.

Lemma 9.11. Suppose A is an abelian subalgebra of B(H) and H is separable. Then A′ has a cyclic vector,
so A′′ has a separating vector.

Proof. Decompose H =
⊕
Hi where A′ ↾ Hi has a cyclic vector xi. Let x =

∑∞
i=1 2

−ixi. Then Hi reduces
A′, so PHi

∈ A′′. But A′′ = A
WOT ⊆ A′ (where this last is because A is abelian). So PHi

∈ A′.
Then x is cyclic. Indeed, xi = 2iPHix ∈ A′, so Hi = A′xi ⊆ A′x; so H = A′x. Thus x is separating for

A′′. Lemma 9.11

Theorem 9.12. Suppose ρ : C(X)→ B(H) is a *-representation where H is separable. Then the following
are equivalent:

1. ρ(C(X)) has a cyclic vector.

2. ρ is multiplicity free.

3. ρ(C(X))′′ is a masa.

4. ρ(C(X))′′ is unitarily equivalent to L∞(µ) acting on L2(µ) by multiplication for some probability measure
µ on X.

Proof.

(1) =⇒ (2 and 4) Suppose ρ(C(X)) has a cyclic vector; then there is a regular Borel probability measure

µ on X such that ρ ∼= πµ. Suppose T ∈ πµ(C(X))′; let h = T1 ∈ L2(µ). For g ∈ C(X) we have
Tg = TMg1 = MgT1 = gh. So ∥gh∥2 = ∥Tg∥2 ≤ ∥T∥∥g∥2. Then ∥h∥L2(µ) ≤ ∥T∥; indeed, otherwise
there is r ≥ ∥T∥ such that A = {x : |h(x)| ≥ r } has µ(A) > 0. But C(X) is dense in L2(µ); so there
is gn ∈ C(X) such that ∥gn∥2 ≤

√
µ(A) and gn → χA in L2(µ). So ∥T∥∥χA∥ < r∥χA∥ < ∥χAh∥ =

lim∥gnh∥ ≤ ∥T∥ sup∥gn∥2 = ∥T∥∥χA∥, a contradiction. So by continuity T =Mh and h ∈ L∞(µ). So
A′ = {Mh : h ∈ L∞(µ) } ⊇ A, and we have shown (2).

But also A′′ = A
WOT ⊆ A′, and A′ is abelian, so A′ ⊆ A′′. Thus A′′ = A′ = {Mh : h ∈ L∞(µ) }, and

we have shown (4).

(2) =⇒ (3) A′ abelian, so the same argument shows that A′ = A′′; so A′′ is a masa.

(4) =⇒ (1) 1 is a cyclic vector for πµ(C(X)).

(3) =⇒ (1) ρ(C(X)) is abelian, so lemma says ρ(C(X))′ = A′ has a cyclic vector. But A′′ = A′; so A′′ has a
cyclic vector x. Then

ρ(C(X))x = ρ(C(X))
WOT

x = A′′x = H
so x is a cyclic vector for ρ(C(X)). Theorem 9.12

Lemma 9.13. We have L∞(µ) acting on L2(µ) by multiplication (where µ is a regular Borel probability
measure). The weak* topology on L∞(µ) = L1(µ)∗ coincides with the WOT and the ultraweak topology on
M(L∞(µ)) = {Mh : h ∈ L∞(µ) }.

Proof. All these topologies are the weakest topologies making certain linear functionals continuous. The
weak* topology on L∞(µ) corresponds to the maps

h 7→
∫
hfdµ

for f ∈ L1(µ); the WOT onM(L∞(µ)) corresponds to the maps

h 7→ ⟨Mhx, y⟩

for x, y ∈ H;
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TODO 55. L2(µ)?

the ultraweak topology onM(L∞(µ)) corresponds to the maps

h 7→
∑
i

⟨Mhxi, yi⟩

where ∑
i

∥xi∥∥yi∥ <∞

If f ∈ L1(µ) and x = |f | 12 sgn(f), y = |f | 12 ∈ L2(µ) then

⟨Mhx, y⟩ =
∫
hxydµ =

∫
hfdµ

So WOT-continuous implies ultraweak continuous.
Consider

h 7→ ⟨Mhx, y⟩ =
∫
hxydµ

Consider f = xy ∈ L1(µ). Then ∥xy∥1 ≤ ∥x∥2∥y∥2. Consider the ultraweak continuous functional

h 7→
∞∑
i=1

⟨Mhxi, yi⟩ =
∞∑
i=1

∫
hfidµ =

∫
h
∑
i

fidµ

where fi = xiyi, so ∥fi∥1 ≤ ∥xi∥2∥yi∥2 and
∑
i fi ∈ L1.

TODO 56. some words

Lemma 9.13

Lemma 9.14. Suppose µ, ν are regular Borel probability measures on X a compact metric space. Then
there is a *-isomorphism σ : L∞(µ)→ L∞(ν) such that σ ↾ C(X) is the “identity” if and only if µ and ν are
mutually absolutely continuous. Moreover the *-isomorphism is weak*-continuous.

Proof.

(⇐= ) By the Radon-Nikodym theorem ν = kµ for some k ∈ L1( with k > 0 almost everywhere. So define

U : L2(µ)→ L2(ν) by Uf = k−
1
2 f . Then

∥Uf∥2L2(ν) =

∫
|k− 1

2 f |2dν =

∫
k−1|f |2kdµ = ∥f∥2L2(µ)

So U is isometric and surjective. If h, f ∈ L∞(µ) = L∞(ν) then

UMµ
h f = Uhf = k−

1
2hf =Mν

h (k
− 1

2 f) =Mν
hUf

So Mν
h = UMµ

hU
∗. This is a *-isomorphism between L∞(µ) and L∞(ν) which is WOT-continuous, and

thus weak*-continuous.

( =⇒ ) Suppose σ : L∞(µ)→ L∞(ν) is a *-isomorphism such that if f ∈ C(X) then σ(f) = f . We view σ as
a mapM(L∞(µ))→M(L∞(ν)).

Claim 9.15. σ is normal: if (fα)α is a bounded increasing net in L∞(µ) with supα fα = f ∈ L∞ then
σ(f) = supα σ(fα).

Proof. Note that f ≥ 0 implies σ(f) ≥ 0 because it is a *-homomorphism. So (σ(fα))α is an increasing
net, and is bounded. Let g = supα σ(fα); let h = σ−1(g). We know that

σ(fα) ≤ g = sup
α
σ(fα) ≤ σ(f)

where the last inequality is because f ≥ fα implies σ(f) ≥ σ(fα). So fα ≤ h ≤ f . So f = supα fα ≤
h ≤ f , and h = f . So g = σ(f) = supα σ(fα). Claim 9.15
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Suppose O ⊆ X is open. For n ≥ 1 let

fn(x) =

{
1 if x ∈ O and dist(xOc) ≥ 1

n

ndist(x,Oc)if dist(x,Oc) ≤ 1
n

Then fn ≤ fn+1 with supn fn = χO. So

σ(χO) = supσ(fn) = sup fn = χO

Now let Σ = {E ⊆ X : E measurable, σ(χE) = χE }.

Claim 9.16. Σ is a σ-algebra.

Proof. For closure under complements, we have

σ(χEc) = σ(1− χE) = 1− χE = χEc

for E,F ∈ Σ. For closure under intersection, we have

σ(χE∩F ) = σ(χEχF ) = σ(χE)σ(χF ) = χEχF = χE∩F

for E,F ∈∈ Σ. If (Ei : i ≥ 1) are pairwise disjoint and

E =
⋃
i∈N

Ei

then

σ(χE) = σ(sup
n≥1

χE1
∪ · · · ∪ χEn

) = sup
n≥1

σ(χE1∪···∪En
) = sup

n≥1
σ(χE1

+ · · ·+ χEn
) = sup

n≥1
χE1∪···∪En

= χE

So Σ is a σ-algebra. Claim 9.16

But Σ contains all open sets and all sets of measure 0 (since σ(0) = 0). So Σ is all measurable sets. So
σ is the identity on all simple functions, which are norm-dense. So σ is the “identity”. Lemma 9.14

Theorem 9.17. Suppose σ : C(X) → B(H) is a non-degenerate representation with H separable. Let
M = σ(C(X))′′. Then there is a regular Borel probability measure µ on X such that L∞(µ) ∼= M via a
*-isomorphism σ̃ which extends σ and is a weak*-WOT homeomorphism.

Proof. M is an abelian von Neumann algebra; so sinceM′ has a cyclic vector we get thatM has a separating
vector x. Let K = Mx. The restriction map ρ :M → B(K) (with ρ(T ) = T ↾ K) is a WOT-continuous
*-isomorphism. Since x is a separating vector we get that ρ is injective, and thus isometric.

Claim 9.18. ρ(M) is WOT-closed.

Proof. Suppose A ∈ b1(ρ(M)
WOT

). Then by Kaplansky’s density theorem there are Aα = ρ(Tα) such that

Tα ∈M with ∥Tα∥ ≤ 1 and ρ(Tα)
WOT−−−→ A. Drop to a subnet so Tαβ

WOT−−−→ T (possibly since (b1(B(H),WOT)
is compact by Banach-Alaoglu). Then ρ is WOT-WOT-continuous; so ρ(T ) = A ∈ ρ(M). Claim 9.18

ρ(M) has x as a cyclic vector; so there is µ1 a regular probability measure such that ρ(M) ∼= L∞(µ1)
acting on L2(µ1). Then σ

′ :M→M ↾ K⊥ can be written as a direct sum of cyclic representations. So

H ∼= K ⊕
⊕
n≥2

Kn

such that eachM ↾ Kn is cyclic. So there are probability measures µn such thatM ↾ K ∼= L∞(µn) on L
2(µn).

Let
µ =

∑
n≥1

2−nµn
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Then σ : C(X)→ B(
⊕

nKn) by σ(f) =
⊕

n σn 7→
⊕
Mµn

f . So σn(f) =Mµn

f for all f ∈ L∞(µn). We get a

map σ̃ : L∞(µ)
∗-isomorphism−−−−−−−−−→ B(H) given by

σ̃(f) =
⊕
n≥1

Mµn

f

Thus µn << µ1. So µ ∼= µ1.

TODO 57. Following claim somewhere above?

Claim 9.19. µn << µ1.

Proof. Otherwise there is E measurable such that µn(E) > 0 but µ(E) = 0. Then χE ≠ 0 in M ↾ Kn;
so χE ∈ L∞(µ) with σ̃(χE) ̸= 0 since σn(χE) ̸= 0 But σ1 is injective, so σ1(χE) ̸= 0, a contradiction.

Claim 9.19

SoM = σ̃(L∞(µ)) ∼= L∞(µ) (which is also isomorphic to L∞(µ1)). Theorem 9.17

Theorem 9.20 (L∞ functional calculus). Suppose N is a normal operator on a separable Hilbert space. Then
there is a Borel probability measure µ on σ(N) such that the continuous functional calculus σ : C(σ(N))→ B(H)
extends to a weak*-WOT continuous *-homomorphism σ̃ : L∞(µ)→ B(H). (One thinks of this as mapping
f 7→Mh.)

Proof. σ(C(σ(N)))′′ =M∼= L∞(µ) for some probability measure µ on σ(N), and the map σ̃ : L∞(µ)→M
extends σ and is weak*-WOT-continuous. Theorem 9.20

9.1 Spectral measures

Suppose N is normal on a separable Hilbert space H. Then σ̃ : L∞(µ)
∗-isomorphism−−−−−−−−−→ {N }′′. Let Σ be the set

of measurable subsets of σ(N) (or C); let EN : Σ→ B(H) be EN (A) = χA(N) = σ̃(χA). This is a projection
valued measure.

(Countable additivity) Suppose the Ai are pairwise disjoint and measurable. Then

σ̃(χ⋃
Ai
) = σ̃(supχA1∪···∪An

) = sup σ̃(χA1∪···∪An
) = sup

∑
σ̃(χAi

) =
∑

σ̃(χAi
)

So

EN

(⊔
i

Ai

)
= SOT

∞∑
i=1

EN (Ai)

If f =
∑
aiχEi

with the Ei pairwise disjoint then∫
fdEN :=

∑
aiEN (Ei) = σ̃(f)

extend to f ∈ L∞ by ∫
fdEN := σ̃(f)

Lemma 9.21. IfM is an abelian von Neumann algebra on a separable H then there is A = A∗ ∈M such
thatM = C∗(A)′′.

Proof. M∼= L∞(µ). Find a collection {En }n≥1 of orthogonal projections inM such thatM = span{En }
WOT

.
Pull out (countably many) atoms. Technical part: take {On } open that determine the topology of X, and
make sure that we can approxiate χOn

.
Let

A =

∞∑
n=1

3−nχEn
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Then
1

3
χE1
≤ A ≤ 1

2

Then

AχcE1
=

∞∑
n=2

3−nχEn∩Ec
1
≤ 1

6
χEc

1

So
A = AχE1︸ ︷︷ ︸

≥ 1
3χE1

+ AχEc
1︸ ︷︷ ︸

≤ 1
6χEc

1

But

σ(AχE1 ↾ E1H) ⊆
[
1

3
,
1

2

]
σ(AχEc

1
↾ Ec1H) ⊆

[
0,

1

6

]
So if we let

f(x) =

{
1 if x ∈

[
1
3 ,

1
2

]
0 if x ∈

[
0, 16

]
then f ∈ C(σ(A)), and

f(A) = f(AχE1 ⊕AχEc
1
) = σ̃(χE1)⊕ 0 = E1

Thus E1 ∈ σ∗(A). So

3

(
A− 1

3
E1

)
=

∞∑
n=2

31−nχEn

etc. En ∈ C∗(A) for n ≥ 1. So
C∗(A) = C∗(En)

and
C∗(A)′′ = C∗(En)

′′ =M

Lemma 9.21

Corollary 9.22. M an abelian von Neumann algebra in a separable hilbert space H there is probability
measure µ on [0, 1] such thatM∼= L∞(µ).

Proof. M = C∗(A)′′ ∼= L∞(µ) with µ a probability measure on σ(A) ⊆ R. Corollary 9.22

9.2 Multiplicity

For us H is separable.

Definition 9.23. We say a representation π has multiplicity n for 1 ≤ n ≤ ℵ0 if π ∼= σ ⊕ · · · ⊕ σ︸ ︷︷ ︸
n

= σ(n)

where σ is multiplicity-free (i.e. σ(A)′ is abelian).

Recall that if A = C(X) then σ is multiplicity free if and only if σ ∼= σµ on L2(µ) by multiplication; so
σ(C(X))′ = σ(C(X))′′ ∼= L∞(µ) acting on L2(µ).

Theorem 9.24. If σ ∼= σµ is a multiplicity-free rerpesentation of C(X) and π = σ(n), then π(C(X))′ ∼=
Mn(L

∞(µ)). Hence the multiplicity of π is well-defined.
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Proof. We have π ∼= σ
(n)
µ acting on L2(µ)(n) = L2(µ)⊕ · · · ⊕ L2(µ)︸ ︷︷ ︸

n

via π(h) = diag(Mh,Mh, . . . ,Mh). If

A ∈ π(C(X))′, we write A as an n× n matrix A = [Aij ]ij with respect to this decomposition. Then

0 = π(h)A−Aπ(h) = [MhAij −AijMh]ij

if and only if each Aij ∈ σµ(C(X))′ = L∞(µ). So π(C(X))′ =Mn(L
∞(µ)).

What if n = ℵ0? Then A has a matrix [Aij ]i,j≥1. Then the same argument shows Aij ∈ L∞(µ) and

π(C(X))′ = {B = [Mhij
]ij : hij ∈ L∞(µ), ∥A∥ <∞} = B(H)⊗L∞(µ)

where we take the WOT-closure of the tensor product.

Suppose π also has multiplicity m < n; so π ∼= σ
(m)
ν . Then

Mn(L
∞(µ)) ∼= π(C(X))′ ∼=Mm(L∞(ν))

Suppose φ is a multiplicative linear functional on L∞(ν); it induces a map φ(m) : Mm(L∞(ν))→Mm given
by φ(m)([Mhij ]ij) = [φ(hij)]ij . Then φ(m) is a homomorphism: it is linear and multiplicative. Indeed, we
have

[Mhij
][Mgij ] = [M∑m

k=1 hijgkj
]

and

φ(m)([Mhij ])φ
(m)([Mgij ]) = [φ(hij)][φ(gij)] =

[∑
φ(hik)φ(gkj)

]
=
[
φ
(∑

hijgkj

)]
= φ(m)([Mhij ][Mgij ])

So we get unital *-homomorphisms

Mn(C1 ↪→Mn(L
∞(µ)) ∼=Mm(L∞(ν))

φ(m)

−−−→︸ ︷︷ ︸
surjective

Mm(C)

So we get a unital *-homomorphism Mn →Mm with m < n.
If n < ∞ then Mn is simple; so n2 = dim(Mn) ≤ dim(Mm) = m2, a contradiction. If n = ℵ0 then

Mℵ0 = B(H) only has one proper ideal: the compact operators K. Also dim(B(H)) = dim(B(H)/K) = 2ℵ0 . So
there are no finite dimensional quotients, a contradiction. So multiplicity is well-defined. Theorem 9.24

Definition 9.25. Suppose π : C(X) → B(H) where H is separable. A projection P ∈ π(C(X))′′ has
multiplicity n if π(C(X)) ↾ PH has multiplicity n.

Proposition 9.26. There is a largest projection Pn of multiplicity n.

Proof. Let (Pα)α be the collection of all multiplicity n projections in π(C(X))′′ ∼= L∞(µ). So there are
measurable sets Aα such that Pα ∼=MχAα

. Let t be the supremum over all finite subsets of µ(Aα1
∪· · ·∪Aαm

).
Choose Fi = Aαi,1

∪ · · · ∪Aαi,m
such that µ(Fi)→ t. Let F =

⋃∞
i=1 Fi. Then

t = supµ(Fi) ≤ µ(F ) = lim
m→∞

µ(F1 ∪ · · · ∪ Fm) ≤ t

So µ(F ) = t.

Claim 9.27. µ(Aα \ F ) = 0 for all α.

Proof. Say µ(Aα \ F ) = δ > 0. Pick i0 such that µ(Fi0) > t− δ
2 . Then

t ≥ µ(Fi0 ∪Aα) ≥ µ(Fi0) + µ(Aα \ F ) > t− δ

2
+ δ > t

a contradiction. Claim 9.27
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So there is a countable set (Pi)i of multiplicity n such that∨
i≥1

Pi =MχF
=
∨
Pα

Let Q1 = P1 and

Qn+1 = Pn+1

(
n∨
i=1

Pi

)⊥

Then QiQj = 0 if i ̸= j and
n∑
i=1

Qi =

n∨
i=1

Pi

So

Q =

∞∑
i=1

Qi =
∨
i≥1

Pi =
∨
Pα

and Qi ∼=MχBi
with the Bi pairwise disjoint, measurable. Each Pi has multiplicity n and Qi ≤ Pi, so each

Qi has multiplicity n. Then

PiC(X)′ ∼=Mn(L
∞(Ai))

QiC(X)′ ∼=Mn(L
∞(Bi))

with each Bi ⊆ Ai. Then since the Qi are pairwise orthogonal we get

Qπ(C(X)′) =
∑

Qiπ(C(X))′ ∼=
∑

Mn(L
∞(Bi)) ∼=Mn

(
L∞
(⋃

Bi

))
=Mn(L

∞(F ))

So Q has multiplicity n and is the biggest. Proposition 9.26

Lemma 9.28. If π : C(X)→ B(H) with H separable then there is 0 ̸= P a projection in π(C(X))′′ of uniform
multiplicity. (i.e. P has a multiplicity.)

Proof. π(C(X))′′ is an abelian von Neumann algebra; so there is a separating vector x1; let M1 = π(C(X))x1.
Then M1 is reducing so π(C(X))′′ ↾ M1 is maximal abelian, isomorphic to L∞(µ1); call µ1 = µ. Then
π(C(X))′′ ↾M⊥

1 is an abelian von Neumann algebra, so there is a separating vector x2; let M2 = π(C(X))x2.
Then M2 is reducing so π(C(X))′′ ↾ M2 is maximal abelian, isomorphic to L∞(µ2) with µ2 ≪ µ1 = µ.
Recursively find separating xn+1 of π(C(X))′′ ↾ (M1 + · · ·+Mn)

⊥ and let Mn+1 = π(C(X)); then π(C(X))′′ ↾
Mn+1

∼= L∞(µn+1) with µn+1 ≪ µn.
There is An measurable such that µn ≈ µ ↾ An; then X = A1 ⊇ A2 ⊇ · · ·. Suppose there is a smallest

n + 1 such that µn+1 ̸≈ µn+1. Then µ ≈ µ1 ≈ · · · ≈ µn ̸∼= µn+1. Then A1, . . . , An have full measure
but µ(An+1) < 1. Let P ∈ π(C(X))′′ ∼= L∞(µ) correspond to χAc

n+1
∈ L∞(µ). Let B = Acn+1. Then

P ↾Mi
∼=MχB

for 1 ≤ i ≤ n and P ↾Mi = 0 if i ≥ n+ 1. So

P ∼=M (n)
χB
⊕ 0

Also P ((
∑
Mi)

⊥) = 0. Then

Pπ(C(X))′′ ∼= P

⊕
i≥1

π(C(X))′′ ↾Mi

⊕ (π(C(X))′′ ↾ (
∑

Mi)
⊥
)

Then

P ↾

(
n∑
i=1

Mi

)⊥

= 0

since xn+1 is separating; but MχB
↾Mn+1 = 0, so MχB

↾ (
∑n
i=1Mi)

⊥
= 0.
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Pπ(C(X))′′ =

n⊕
i=1

L∞(B) ↾ PMi︸ ︷︷ ︸
multiplicity n

⊕0

So P has multiplicity n. This is fine if n < ∞; suppose then that n = ℵ0. Then µn ≈ µ for all n ≥ 1
and {xn : n ≥ 1 } are separating vectors for π(C(X))′′ ∼= L∞(µ). By Zorn’s lemma we can extend this to
a maximal family of separating vectors { yj } such that Nj = π(C(X))yj are pairwise orthogonal. Then

π(C(X)) ↾ Nj ∼= L∞(µ) a masa on Jj . Let R = (
∑
NJ)

⊥
; we know π(C(X))′′ ↾ R does not have a

separating vector for L∞(µ). So π(C(X))′′ ↾ R ∼= L∞(ν) with ν ≪ µ but ν ̸≈ µ. So ν ≈ χDµ with
µ(D) < 1. Let P ∈ π(C(X))′′ correspond to χDc ∈ L∞(µ); so P ↾ R = 0. Thus PH =

⊕
PNj and

π(C(X))′′ ↾ PNj ∼= L∞(Dc); so P has multiplicity ℵ0. Lemma 9.28

Theorem 9.29. Suppose π : C(X)→ B(H) with H separable. Then there are pairwise orthogonal projections
Pn with 1 ≤ n ≤ ℵ0 the maximal projections of multiplicity n. The SOT sum

∞∑
n=1

Pn + Pℵ0
= I

So π ∼=
⊕∞

n=1 σ
(n)
µn ⊕ σ

(ℵ0)
µℵ0

with µn ⊥ µm if n ̸= m and

µ =
∑

µn + µℵ0

Proof. By lemma there is a largest projection Pn of multiplicity n. Then π(C(X)) ↾ PnH ∼= σ
(n)
µn (C(X)). Then

PnPm = 0 if n ̸= m because on the intersection we have two multiplicities, a contradiction. If the SOT sum

∞∑
n=1

Pn + Pℵ0 = Q < I

then look at π(C(X)) ↾ Q⊥H. By last lemma we get Q⊥ ≥ P and P has multiplicity n; but this contradicts
maximality of Pn. So Q = I. Theorem 9.29

Theorem 9.30 (Weyl-von Neumann-Berg). Suppose N is a normal operator on separable H and ε > 0.
Then there is an orthonormal basis { en } and a diagonal operator D = diag(d1, d2, . . .) with respect to { en }
such that K = N −D is compact and ∥N −D∥ < ε; so N = D +K is the sum of a diagonal and a small
compact.

Suppose A and B are approximately unitarily equivalent (a.u.e.). If there is a sequence of unitary Un such
that B = limn→∞ U∗

nAUn in norm then A ∼a.u.e. B if and only if U(A) = U(B) (where U(A) = {U∗AU :
U unitary }). In this case for all ε > 0 there is U such that B − U∗AU is compact and has norm < ε.

Done in Ken’s book, same chapter as normal operators. See also Voiculescu’s theorem for a non-
commutative version.
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