Course notes for PMATH 810

Christa Hawthorne
Lectures by Kenneth R. Davidson

Contents

1 Banach algebras 1
2 Riesz functional calculus 12
3 Commutative Banach algebras 19
3.1 The non-unital case 24
3.1.1 $\quad L^{1}(G)$ 26
4 Banach *-algebras 32
5 Non-commutative Banach algebras and their representation theory 34
5.1 Automatic continuity 41
6 C*-algebras 43
6.1 Operators on a Hilbert space 46
6.2 Positive elements 47
6.3 Ideals and quotients 51
7 Concrete C*-algebras 55
7.1 Review of weak and strong operator topologies 55
7.2 Projections in von Neumann algebras 61
8 Representations of C^{*}-algebras 62
8.1 GNS construction 63
8.2 Representations and ideals 69
9 Spectral theory for normal operators 71
9.1 Spectral measures 76
9.2 Multiplicity 77

My thanks to Dan Ursu for the use of his notes when I was absent.

1 Banach algebras

Definition 1.1. A Banach algebra is an associative algebra \mathfrak{A} over \mathbb{C} (or \mathbb{R}, but not for us) which has a norm that makes $(\mathfrak{A},\|\cdot\|)$ a Banach space and satisfies

$$
\|x y\| \leq\|x\|\|y\|
$$

and if \mathfrak{A} has a unit (which we will denote e or 1) then $\|e\|=1$.

Remark 1.2. The above implies that multiplication is jointly continuous. Indeed, we have

$$
x_{1} y_{1}-x_{2} y_{2}=x_{1} y_{1}-x_{2} y_{1}+x_{2} y_{1}-x_{2} y_{2}=\left(x_{1}-x_{2}\right) y_{1}+x_{2}\left(y_{1}-y_{2}\right)
$$

so

$$
\left\|x_{1} y_{1}-x_{2} y_{2}\right\| \leq\left\|x_{1}-x_{2}\right\|\left\|y_{1}\right\|+\left\|x_{2}\right\|\left\|y_{1}-y_{2}\right\|
$$

Hence if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $x_{n} y_{n} \rightarrow x_{1} y_{1}$.
Example 1.3.

1. If \mathfrak{X} is a Banach space then $\mathcal{B}(\mathfrak{X})$ is a Banach algebra (with $\|T\|=\sup \{\|T x\|:\|x\| \leq 1\}$).
2. If X is a compact Hausdorff space then $C(X)$ is a Banach space where $\|f\|_{\infty}=\sup \{|f(x)|: x \in X\}$. If X is locally compact and Hausdorff then we define $C_{0}(X)$ to consist of the continuous functions f on X such that for all $\varepsilon>0$ the set $\{x \in X:|f(x)| \geq \varepsilon\}$ is compact; we define $C_{b}(X)$ to consist of the bounded continuous functions. For both $C_{0}(X)$ and $C_{b}(X)$ the norm $\|f\|_{\infty}=\sup \{|f(x)|: x \in X\}$ confers a Banach algebra structure.
3. Consider the set $C^{(n)}[a, b]$ of functions on $[a, b]$ with n continuous derivatives. Our product rule is

$$
(f g)^{(k)}=\sum\binom{k}{j} f^{(j)} g^{(k-j)}
$$

The norm

$$
\|f\|_{C^{n}}=\sum_{k=0}^{n} \frac{\left\|f^{(k)}\right\|_{\infty}}{k!}
$$

makes $C^{(n)}[a, b]$ into a Banach algebra.
Exercise 1.4. Check that $\|f g\|_{C^{n}} \leq\|f\|_{C^{n}}\|g\|_{C^{n}}$.
4. Suppose G is a locally compact abelian grape (e.g. $\mathbb{R}^{n}, \mathbb{T}^{k}, \mathbb{T}^{k} \times \mathbb{R}^{n}, \ldots$). We get a Haar measure m on G : a regular Borel measure that is translation-invariant (i.e. $m(A+s)=m(A)$ for Borel $A \subseteq G$ and $s \in G)$. We define $L^{1}(G)$ to be the set of measurable f on G such that

$$
\|f\|_{1}=\int|f| \mathrm{d} m<\infty
$$

The product on $L^{1}(G)$ is given by convolution:

$$
(f * g)(t)=\int_{G} f(s) g(t-s) \mathrm{d} m(s)
$$

One can check that

- $g * f=f * g$
- $(f * g) * h=f *(g * h)$ (this follows form Fubini).

For the norm bound, note that

$$
\begin{aligned}
\|f * g\|_{1} & =\int_{G}|(f * g)(t)| \mathrm{d} m(t) \\
& =\int_{G}\left|\int_{G} f(s) g(t-s) \mathrm{d} m(s)\right| \mathrm{d} m(t) \\
& \leq \int_{G} \int_{G}|f(s) \| g(\underbrace{t-s}_{u})| \mathrm{d} m(s) \mathrm{d} m(t) \\
& =\int_{G} \int_{G}|f(s) \| g(u)| \mathrm{d} m(s) \mathrm{d} m(u) \\
& =\|f\|_{1}\|g\|_{1}
\end{aligned}
$$

(since the Jacobian of $(s, t) \mapsto(s, u)$ is

$$
\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right|=1
$$

).
5. Consider $A(\mathbb{D})$ the disk algebra consisting of $f(z)$ continuous on $\overline{\mathbb{D}}$ and analytic on $\mathbb{D}=\{z \in \mathbb{Z}:|z|<1\}$. Together with the norm

$$
\|f\|=\sup _{|z| \leq 1}|f(z)|=\sup _{|z|=1}|f(z)|
$$

(where the second equality is by the maximum modulus principle) forms a Banach algebra. Then $A(\mathbb{D}) \subseteq C(\mathbb{D})$; in fact $A(\mathbb{D}) \subseteq C(\mathbb{T})$ where $\mathbb{T}=\{z:|z|=1\}=\partial \overline{\mathbb{D}}$. Indeed the map $f \mapsto f \upharpoonright \mathbb{T}$ is isometric.
6. For $T \in \mathcal{B}(\mathfrak{X})$ where \mathfrak{X} is a Banach space, we define $\mathcal{A}(T)=\overline{\{p(T): p \in \mathbb{C}[z]\}}^{\|\cdot\|} \subseteq \mathcal{B}(\mathfrak{X})$. If $T \in \mathcal{B}(\mathcal{H})$ for \mathcal{H} a Hilbert space we define $C^{*}(T)=\overline{\operatorname{alg}\left\{I, T, T^{*}\right\}}{ }^{\|\cdot\|}$. (Here alg is "the algebra generated by".)
7. If (X, μ) is a measure space we define $L^{\infty}(\mu)$ to be the set of measurable f such that f is essentially bounded (i.e. there is t such that $\mu(\{x:|f(x)|>t\})=0$) modulo $f \sim g$ if $f-g=0$ almost everywhere. The norm is given by

$$
\|f\|_{\infty}=\inf \{t: \mu(\{x:|f(x)|>t\})=0\}=\operatorname{ess} . \sup |f|
$$

We have an embedding $L^{\infty}(\mu) \hookrightarrow \mathcal{B}\left(L^{2}(\mu)\right)$ given by $f \mapsto M_{f}$ where $M_{f}(h)=f h$.
Remark 1.5. If \mathfrak{A} is a Banach algebra without unit we define $\mathfrak{A}^{+}=\{(a, \lambda): a \in \mathfrak{A}, \lambda \in \mathbb{C}\}$; we write $(a, \lambda)=a+\lambda e$. We define

$$
\begin{aligned}
(a+\lambda e)(b+\mu e) & =(a b+\lambda b+\mu a)+\lambda \mu e \\
\|a+\lambda e\| & =\|a\|+|\lambda|
\end{aligned}
$$

so

$$
\|(a+\lambda e)(b+\mu e)\| \leq\|a\|\|b\|+|\lambda|\|b\|+|\mu|\|a\|+|\lambda \mu|=(\|a\|+|\lambda|)(\|b\|+|\mu|)
$$

In fact \mathfrak{A} is a (closed) maximal ideal in \mathfrak{A}^{+}.
Proposition 1.6. Every Banach algebra \mathfrak{A} is isometrically isomorphic to a subalgebra of $\mathcal{B}(\mathfrak{X})$ for some Banach space \mathfrak{X}.
Proof. We map \mathfrak{A} into $\mathcal{B}\left(\mathfrak{A}^{+}\right)$by $a \mapsto L_{a}$ where $L_{a} x=a x$. Then

$$
\|a\|=\|a e\| \leq\left\|L_{a}\right\|=\sup \left\{\|a x\|: x \in \mathfrak{A}^{+},\|x\| \leq 1\right\} \leq \sup \left\{\|a\|\|x\|: x \in \mathfrak{A}^{+},\|x\| \leq 1\right\}=\|a\|
$$

so this is indeed an isometry.
Proposition 1.6
Definition 1.7. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$.

- The spectrum of a is $\sigma_{\mathfrak{A}}(a)=\{\lambda \in \mathbb{C}: \lambda 1-a$ is not invertible $\}$. (If the \mathfrak{A} is clear from context we will sometimes omit it and write $\sigma(a)$.)
- The resolvent of a is $\rho(a)=\mathbb{C} \backslash \sigma(a)$.
- The resolvent function $R(a, \lambda)=(\lambda-a)^{-1}$ is defined on $\rho(a)$.

Definition 1.8. Suppose $T \in \mathcal{B}(\mathfrak{X})$ for some Banach space \mathfrak{X}.

- We define the point spectrum $\sigma_{p}(T)$ to be the set of eigenvalues of T : those λ for which there is $x \neq 0$ such that $T x=\lambda x$.
- We define the approximate point spectrum $\sigma_{\pi}(T)$ to be the set of $\lambda \in \mathbb{C}$ such that $\lambda I-T$ is not bounded below. (An operator T is bounded below if there is $\varepsilon>0$ such that $\|T x\| \geq \varepsilon\|x\|$ for all $x \in \mathfrak{X}$.)
- We define the compression spectrum $\gamma(T)$ to be $\{\lambda: \overline{(\lambda I-T) \mathfrak{X}} \neq \mathfrak{X}\}$; i.e. the λ for which $\lambda I-T$ does not have dense range.

Theorem 1.9. For $T \in \mathcal{B}(\mathfrak{X})$ with \mathfrak{X} a Banach space, the following are equivalent:

1. T is invertible.
2. T maps \mathfrak{X} bijectively to itself.
3. T is bounded below and has dense range.
4. T and T^{*} are bounded below $\left(T^{*} \in \mathcal{B}\left(\mathfrak{X}^{*}\right)\right)$.
5. T^{*} is invertible in $\mathcal{B}\left(\mathfrak{X}^{*}\right)$.

Proof.
$\xrightarrow{(1) \Longrightarrow(2)}$ Immediate.
$(2) \Longrightarrow(1)$ Banach isomorphism theorem.
$\underline{\mathbf{(1)} \Longrightarrow(\mathbf{3)}}$ Note that $x=T^{-1}(T x)$; so $\|x\| \leq\left\|T^{-1}\right\|\|T x\|$, and $\|T x\| \geq\left(\left\|T^{-1}\right\|\right)^{-1}\|x\|$, and T is bounded below. (Surjectivity implies dense range.)
$\underline{(3) \Longrightarrow(2)}$ If $x \neq 0$ then $\|T x\| \geq \varepsilon\|x\|>0$; hence $T x \neq 0$, and T is injective. For surjectivity, suppose $y \in \mathfrak{X}$; then since T has dense range there are x_{n} such that $y_{n}=T x_{n} \rightarrow y$. Then in particular the y_{n} are Cauchy; since

$$
\left\|y_{n}-y_{m}\right\|=\left\|T\left(x_{n}-x_{m}\right)\right\| \geq \varepsilon\left\|x_{n}-x_{m}\right\|
$$

we get that the x_{n} are also Cauchy, and thus have a limit $x \in \mathfrak{X}$. Then

$$
T x=\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} y_{n}=y
$$

and T is surjective.
$\underline{\mathbf{1})} \Longrightarrow \mathbf{(5)}$ By hypothesis we have $I_{\mathfrak{X}}=T^{-1} T=T T^{-1}$; so

$$
I_{\mathfrak{X}^{*}}=I_{\mathfrak{X}}^{*}=T^{*}\left(T^{-1}\right)^{*}=\left(T^{-1}\right)^{*} T^{*}
$$

so T^{*} is invertible in $\mathcal{B}\left(X^{*}\right)$.
$\mathbf{(5)} \Longrightarrow(4)$ If T^{*} is invertible then T^{*} is bounded below (by $1 \Longrightarrow 3$); also $(1 \Longrightarrow 5)$ implies that $T^{* *}$ is invertible and thus bounded below. But $T=T^{* *} \upharpoonright \mathfrak{X}$; so T is bounded below.
$\mathbf{(4)} \Longrightarrow \mathbf{(3)} T$ is bounded below by hypothesis. Note that

$$
(\operatorname{Ran} T)^{\perp}=\{f \in \mathfrak{X}^{*}: \underbrace{f(T x)}_{\left(T^{*} f\right)(x)}=0 \text { for all } x \in \mathfrak{X}\}=\left\{f: T^{*} f=0\right\}=\operatorname{ker}\left(T^{*}\right)=\{0\}
$$

(since T^{*} is bounded below). By the Hahn-Banach theorem if $\overline{\operatorname{Ran} T}$ were a proper subspace then there would be $0 \neq f \in \mathfrak{X}^{*}$ such that $f \upharpoonright \overline{\operatorname{Ran} T}=0$, a contradiction. So $\overline{\operatorname{Ran} T}=\mathfrak{X}$, and T has dense range.

Corollary 1.10. If $T \in \mathcal{B}(\mathfrak{X})$ then $\sigma(T)=\sigma_{\pi}(T) \cup \gamma(T)$.
Proposition 1.11. Suppose \mathfrak{A} is a unital Banach algebra. If $\|a\|<1$ then $1-a$ is invertible.

Proof. If $x \in \mathbb{C}$ and $|x|<1$ then

$$
\frac{1}{1-x}=\sum_{n=}^{\infty} x^{n}
$$

If $\|a\|<1$, define

$$
b=\sum_{n=0}^{\infty} a^{n}
$$

(where $a^{0}=1$). To see that this is well-defined, note that

$$
\sum_{n=0}^{\infty}\left\|a^{n}\right\| \leq \sum_{n=0}^{\infty}\|a\|^{n}<\infty
$$

So the sequence

$$
b_{k}=\sum_{n=0}^{k} a^{n}
$$

is a convergent sequence, and b is well-defined in \mathfrak{A} as the limit of the b_{k}. Since multiplication is continuous we get that

$$
(1-a) b=\lim _{k \rightarrow \infty}(1-a) b_{k}=\lim _{k \rightarrow \infty}(1-a) \sum_{n=0}^{k} a^{n}=\lim _{k \rightarrow \infty}\left(1-a^{k+1}\right)=1
$$

(since $\left.\left\|a^{k+1}\right\| \leq\|a\|^{k+1} \rightarrow 0\right)$. Also $(1-a) b_{k}=b_{k}(1-a)$, so $b(1-a)=(1-a) b=1$, as desired.
\square Proposition 1.11
Corollary 1.12. \mathfrak{A}^{-1} is open and $a \mapsto a^{-1}$ is a continuous antihomomorphism $\mathfrak{A}^{-1} \rightarrow \mathfrak{A}^{-1}$. (Note that \mathfrak{A}^{-1} is a grape under multiplication and $(a b)^{-1}=b^{-1} a^{-1}$.)

Proof. The previous proposition says that $b_{1}(1)=\{a:\|1-a\|<1\} \subseteq \mathfrak{A}^{-1}$. Suppose $a \in \mathfrak{A}^{-1}$ and $b \in \mathfrak{A}$ with $\|b\|<\frac{1}{\left\|a^{-1}\right\|}$. Then $a-b=a\left(1-a^{-1} b\right)$ and $\left\|a^{-1} b\right\| \leq\left\|a^{-1}\right\|\|b\|<1$. So $1-a^{-1} b$ is invertible (in fact the inverse is

$$
\sum_{n=0}^{\infty}\left(a^{-1} b\right)^{n}
$$

). So $a-b$ is invertible with

$$
(a-b)^{-1}=\left(1-a^{-1} b\right)^{-1} a^{-1}=\sum_{n=0}^{\infty}\left(a^{-1} b\right)^{n} a^{-1}
$$

So $b_{\left\|a^{-1}\right\|^{-1}}(a) \subseteq \mathfrak{A}^{-1}$, and \mathfrak{A}^{-1} is open.
$(a b)^{-1}=b^{-1} a^{-1}$ shows that $a \mapsto a^{-1}$ is an antihomomorphism; bijectivity follows from $a=\left(a^{-1}\right)^{-1}$. It remains to check continuity. If $\|a\|<1$ then

$$
\left\|(1-a)^{-1}-1\right\|=\left\|\sum_{n=0}^{\infty} a^{n}-1\right\|=\left\|\sum_{n=1}^{\infty} a^{n}\right\| \leq \sum_{n=1}^{\infty}\|a\|^{n}=\frac{\|a\|}{1-\|a\|}
$$

As $a \rightarrow 0$ we have

$$
\frac{\|a\|}{1-\|a\|} \rightarrow 0
$$

(uniform estimate). Thus if $b_{n} \rightarrow 1$ then $a_{n}=1-b_{n} \rightarrow 0$, and $b_{n}^{-1}=\left(1-a_{n}\right)^{-1} \rightarrow 1$. So inversion is continuous at 1. So if $a \in \mathfrak{A}^{-1}$ and $a_{n} \in \mathfrak{A}^{-1}$ converge to a, eventually $\left\|a-a_{n}\right\|<\frac{1}{\left\|a^{-1}\right\|}$. Then write $a_{n}=a-b_{n}=a\left(1-a^{-1} b_{n}\right)$ so $a^{-1} b_{n} \rightarrow 0$. Then $a_{n}^{-1}=\left(1-a^{-1} b_{n}\right)^{-1} a^{-1} \rightarrow a^{-1}$, and inversion is indeed continuous.

Proposition 1.13. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$. Then $\rho(a)$ is open and $\sigma(a)$ is a compact subset of $\{\lambda \in \mathbb{C}:|\lambda| \leq\|a\|\}$.

Proof. Note that

$$
\rho(a)=\{\lambda: \lambda 1-a \text { is invertible }\}=\varphi^{-1}(\underbrace{\mathfrak{A}^{-1}}_{\text {open }})
$$

where $\varphi: \lambda \mapsto \lambda 1-a$. Alternatively, if $\lambda_{0}-a$ is invertible then

$$
b_{\left\|\left(\lambda_{0}-a\right)^{-1}\right\|^{-1}}\left(\lambda_{0}-a\right)
$$

is contained in \mathfrak{A}^{-1} and $\left\{\lambda:\left|\lambda-\lambda_{0}\right|<\left\|\left(\lambda_{0}-a\right)^{-1}\right\|^{-1}\right\}$. So $\sigma(a)=\mathbb{C} \backslash \rho(a)$ is closed.
If $|\lambda|>\|a\|$ then

$$
\lambda-a=\lambda\left(1-\frac{a}{\lambda}\right)
$$

But $\left\|\frac{a}{\lambda}\right\|=\frac{\|a\|}{|\lambda|}<1$, so $1-\frac{a}{\lambda}$ is invertible. So $\lambda-a$ is invertible; so $\sigma(a) \subseteq\{\lambda:|\lambda| \leq\|a\|\}$; so it is closed and bounded, and thus compact.
TODO 1. Connectives?
\square Proposition 1.13
Example 1.14.

1. Let $\mathcal{H}=L^{2}(0,1), f \in \mathcal{H}$, and $M_{f} h=f h$ for $h \in L^{2}(0,1)$.

Claim 1.15. $\left\|M_{f}\right\|=\|f\|_{\infty}=$ ess. $\sup |f|$.
Proof. Note that

$$
\begin{aligned}
\left\|M_{f}\right\|^{2} & =\sup \left\{\|f h\|_{2}^{2}:\|h\|_{2} \leq 1\right\} \\
& =\sup \left\{\int|f h|^{2}:\|h\|_{2} \leq 1\right\} \\
& \leq \sup \left\{\int\|f\|_{\infty}^{2}|h|^{2}:\|h\|_{2} \leq 1\right\} \\
& =\|f\|_{\infty}^{2} \sup \left\{\|h\|_{2}^{2}:\|h\|_{2} \leq 1\right\} \\
& =\|f\|_{\infty}^{2}
\end{aligned}
$$

So $\left\|M_{f}\right\| \leq\|f\|_{\infty}$.
For $\varepsilon>0$, let $A_{\varepsilon}=\left\{x:|f(x)|>\|f\|_{\infty}-\varepsilon\right\}$; then $m\left(A_{\varepsilon}\right)>0$. Let $h_{\varepsilon}=\frac{\chi_{A_{\varepsilon}}}{m\left(A_{\varepsilon}\right)^{\frac{1}{2}}}$. Then

$$
\begin{gathered}
\left\|h_{\varepsilon}\right\|_{2}^{2}=\int \frac{\chi_{A_{\varepsilon}}}{m\left(A_{\varepsilon}\right)}=1 \\
\left|f h_{\varepsilon}\right| \geq\left(\|f\|_{\infty}-\varepsilon\right) \frac{\chi_{\varepsilon}}{m\left(A_{\varepsilon}\right)^{\frac{1}{2}}}
\end{gathered}
$$

So

$$
\left\|f h_{\varepsilon}\right\| \geq\left(\|f\|_{\infty}-\varepsilon\right)\left\|h_{\varepsilon}\right\|=\|f\|_{\infty}-\varepsilon
$$

and

$$
\|M f\| \geq \sup _{\varepsilon>0}\|f\|_{\infty}-\varepsilon=\|f\|_{\infty}
$$

Note that $f \mapsto M_{f}$ is an algebra homomorphism of $L^{\infty}(0,1)$ into $B\left(L^{2}(0,1)\right)$ which is isometric. What is M_{f}^{*} ? Well, for $h, k \in L^{2}(0,1)$ we have

$$
\begin{aligned}
\left\langle M_{f}^{*} h, k\right\rangle & =\left\langle h, M_{f} k\right\rangle \\
& =\langle h, f k\rangle \\
& =\int h \overline{f k} \\
& =\int(\bar{f} h) \bar{k} \\
& =\langle\bar{f} h, k\rangle \\
& =\left\langle M_{\bar{f}} h, k\right\rangle
\end{aligned}
$$

So $M_{f}^{*}=M_{\bar{f}}$.
Claim 1.16. $\sigma\left(M_{f}\right)=\sigma_{L^{\infty}}(f)=$ ess. $\operatorname{ran}(f)=\left\{\lambda: m\left(f^{-1}\left(b_{\varepsilon}(\lambda)\right)\right)>0\right.$ for all $\left.\varepsilon>0\right\}$.
Proof. Note that

$$
\mathbb{C} \backslash \text { ess. } \operatorname{ran}(f)=\left\{\lambda: \exists \varepsilon>0 \text { such that } m\left(f^{-1}\left(b_{\varepsilon}(\lambda)\right)\right)=0\right\}
$$

If $\lambda \notin$ ess. $\operatorname{ran}(f)$ then there is ε such that $|f(x)-\lambda|>\varepsilon$ almost everywhere; so $\frac{1}{f-\lambda} \in L^{\infty}$ (since $\left|\frac{1}{f-\lambda}\right| \leq \frac{1}{\varepsilon}$ almost everywhere). So $f-\lambda$ is invertible in L^{∞}.
Note that $I=M_{1}$ and $\lambda I-M_{f}=M_{\lambda-f}$. So

$$
M_{\lambda-f} M_{\frac{1}{\lambda-f}}=M_{\frac{1}{\lambda-f}} M_{\lambda-f}=M_{1}=I
$$

So if $\lambda \notin$ ess. $\operatorname{ran}(f)$ then $\lambda-f$ is invertible in L^{∞} and $M_{\lambda-f}$ is invertible in $\mathcal{B}\left(L^{2}(0,1)\right)$.
If $\lambda \in$ ess. $\operatorname{ran}(f)$ then $\frac{1}{\lambda-f}$ is not essentially bounded and may take value $+\infty$ somewhere; so $\lambda-f$ is not invertible in L^{∞}.
For $\varepsilon>0$ let $A_{\varepsilon}=\{x:|f(x)-\lambda|<\varepsilon\}$; then $m\left(A_{\varepsilon}\right)>0$. Let $h_{\varepsilon}=\frac{\chi_{A_{\varepsilon}}}{m\left(A_{\varepsilon}\right)^{\frac{1}{2}}}$. Then $\left|M_{\lambda-f} h_{\varepsilon}\right|=$ $\left|(\lambda-f) h_{\varepsilon}\right|<\varepsilon\left|h_{\varepsilon}\right|$; so $\left\|M_{\lambda-f} h_{\varepsilon}\right\|<\varepsilon$. So $M_{\lambda-f}$ is not bounded below, and $M_{\lambda-f}$ is not invertible. Claim 1.16

Example 1.17. Consider M_{x}. We have $\overline{\operatorname{Ran}(x)}=$ ess. $\operatorname{ran}(x)=[0,1]$ and $\sigma_{p}\left(M_{x}\right)=\emptyset$. If $M_{x} h=x h=\lambda h$ then $(x-\lambda) h=0$ almost everywhere; since $x-\lambda \neq 0$ almost everywhere, we get that $h=0$ almost everywhere.
If $\lambda \in[0,1]$, then $M_{\lambda-x}$ is not bounded below.
We have

$$
\overline{\operatorname{Ran} M_{\lambda-x}} \supseteq \bigcup M_{\lambda-x} L^{2}([0, \lambda-\varepsilon] \cup[\lambda+\varepsilon, 1])
$$

Since $|\lambda-x| \geq \varepsilon$ on $B_{\varepsilon}=[0, \lambda-\varepsilon] \cup[\lambda+\varepsilon, 1]$ and $M_{\lambda-f}: L^{2}\left(B_{\varepsilon}\right) \rightarrow L^{2}\left(B_{\varepsilon}\right)$, we get that $M_{\lambda-x}$ is invertible on $L^{2}\left(B_{\varepsilon}\right)$ and $M_{\lambda-x} L^{2}\left(B_{\varepsilon}\right)=L^{2}\left(B_{\varepsilon}\right)$. So

$$
\overline{\operatorname{Ran} M_{\lambda-x}} \supseteq \overline{\bigcup_{\varepsilon>0} L^{2}\left(B_{\varepsilon}\right)}=L^{2}(0,1)
$$

2. Let $\mathcal{H}=\ell_{2}$ with orthonormal basis $\left\{e_{n}: n \geq 0\right\}$. If $\left(d_{n}: n \in \mathbb{N}\right)$ is bounded we let $D=\operatorname{diag}\left(\left(d_{n}: n \in\right.\right.$ \mathbb{N})) so

$$
D\left(\sum a_{n} e_{n}\right)=\sum d_{n} a_{n} e_{n}
$$

So $\|D\|=\sup \left|d_{n}\right|$, and $\sigma(D)=\overline{\left\{d_{n}\right\}}$.
3. Let S be the unilateral shift on ℓ_{2} so

$$
S \sum_{n \geq 0} a_{n} e_{n}=\sum_{n \geq 0} a_{n} e_{n+1}
$$

The adjoint has

$$
\begin{aligned}
\left\langle S^{*} \sum a_{n} e_{n}, \sum b_{n} e_{n}\right\rangle & =\left\langle\sum a_{n} e_{n}, S \sum b_{n} e_{n}\right\rangle \\
& =\left\langle\sum a_{n} e_{n}, \sum b_{n} e_{n+1}\right\rangle \\
& =\sum_{n=0}^{\infty} a_{n+1} \overline{b_{n}} \\
& =\left\langle\sum_{n=0}^{\infty} a_{n+1} e_{n}, \sum b_{n} e_{n}\right\rangle
\end{aligned}
$$

So

$$
S^{*} e_{n}= \begin{cases}e_{n-1} & \text { if } n \geq 1 \\ 0 & \text { if } n=0\end{cases}
$$

is the backwards shift.
Proposition 1.18. If \mathcal{H} is a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$ then $\sigma\left(T^{*}\right)=\sigma(T)^{*}$ (where the latter is pointwise complex conjugation).

Proof. If $\lambda \notin \sigma(T)$ then $(\lambda I-T)(\lambda I-T)^{-1}=I=(\lambda I-T)^{-1}(\lambda I-T)$. Taking adjoints we find that

$$
\left((\lambda I-T)^{-1}\right)^{*}\left(\bar{\lambda} I-T^{*}\right)=I^{*}=I=\left(\bar{\lambda} I-T^{*}\right)\left((\lambda I-T)^{-1}\right)^{*}
$$

so $\left(\bar{\lambda} I-T^{*}\right)^{-1}=\left((\lambda I-T)^{-1}\right)^{*}$. Since $T=T^{* *}$ this is reversible. So $\rho\left(T^{*}\right)=\rho(T)^{*}$. Proposition 1.18

Note that $S^{*} S=I$ but $S S^{*}=I-P_{\mathbb{C} e_{0}}$ where $P_{\mathbb{C} e_{0}}=e_{0} e_{0}^{*}$.
Notation 1.19. If $x, y \in \mathcal{H}$ then $x y^{*} \in \mathcal{B}(\mathcal{H})$ of rank 1 is given by $\left(x y^{*}\right)(z)=x\left(y^{*} z\right)=\langle z, y\rangle x$.
So S, S^{*} are not invertible. We have that S is injective but not surjective, with $\operatorname{Ran}(S)=\left(\mathbb{C} e_{0}\right)^{\perp}$; also S^{*} is surjective but not injective with $S^{*} e_{0}=0$, and $\operatorname{ker}\left(S^{*}\right)=\mathbb{C} e_{0}$. So $0 \in \sigma(S)$.
We have $\|S\|=\left\|S^{*}\right\|=1$ and S is an isometry $(\|S x\|=\|x\|$ for all $x)$. So $\sigma(S) \subseteq \overline{\mathbb{D}}=\{\lambda:|\lambda| \leq 1\}$. If $S^{*} x=\lambda x$ where $x=\left(x_{0}, x_{1}, \ldots\right)$ then $x_{n+1}=\lambda x_{n}$ for all n; so $x=x_{0}\left(1, \lambda, \lambda^{2}, \ldots\right)$. Then

$$
\|x\|_{2}^{2}=\left|x_{0}\right|^{2} \sum_{n=0}^{\infty}|\lambda|^{2 n}= \begin{cases}\frac{\left|x_{0}\right|^{2}}{1-|\lambda|^{2}}<\infty & \text { if }|\lambda|<1 \\ 0 & \text { if } x_{0}=0 \\ \infty & \text { else }\end{cases}
$$

So if $x_{\lambda}=\left(1, \lambda, \lambda^{2}, \ldots\right)$ for $|\lambda|<1$ then $S^{*} x_{\lambda}=\lambda x_{\lambda}$. So $\sigma_{p}\left(S^{*}\right)=\mathbb{D}$. So $\sigma\left(S^{*}\right)=\overline{\mathbb{D}}$ and $\sigma(S)=\overline{\mathbb{D}}$.
If $S x=\lambda x$ for $\lambda \neq 0$ then $x_{0}=0=x_{1}=x_{2}=\cdots$; so $\lambda \notin \sigma_{p}(S)$. Also $0 \notin \sigma_{p}(S)$ because S is isometric. So $\sigma_{p}(S)=\emptyset$.
Suppose $|\lambda|=1$; let $x_{n}=\frac{1}{\sqrt{n}}\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n-1}, 0,0,0 \ldots\right)$. Then

$$
S^{*} x_{n}=\frac{1}{\sqrt{n}}\left(\lambda, \lambda^{2}, \ldots, \lambda^{n-1}, 0,0, \ldots\right)
$$

so

$$
S^{*} x_{n}-\lambda x_{n}=\frac{1}{\sqrt{n}}\left(0, \ldots, 0,-\lambda^{n}, 0,0, \ldots\right)
$$

and $\left\|\left(S^{*}-\lambda\right) x_{n}\right\|=\frac{1}{\sqrt{n}} \rightarrow 0$, so $S^{*}-\lambda$ isn't bounded below. Also

$$
S x_{n}=\frac{1}{\sqrt{n}}\left(0,1, \lambda, \lambda^{2}, \ldots, \lambda^{n-2}, \lambda^{n-1}, 0, \ldots\right)
$$

and

$$
\bar{\lambda} x_{n} \frac{1}{\sqrt{n}}\left(\bar{\lambda}, 1, \lambda, \ldots, \lambda^{n-2}, 0,0, \ldots\right)
$$

so

$$
\left\|(S-\bar{\lambda} I) x_{n}\right\|=\left\|\frac{1}{\sqrt{n}}\left(-\bar{\lambda}, 0, \ldots, 0, \lambda^{n-1}, 0, \ldots\right)\right\|=\sqrt{\frac{2}{n}} \rightarrow 0
$$

and $S-\bar{\lambda}$ is not bounded below.
Definition 1.20. Suppose $\Omega \subseteq \mathbb{C}$ is open and \mathfrak{X} is a Banach space. We say $f: \Omega \rightarrow \mathfrak{X}$ is strongly analytic on Ω if for all $z_{0} \in \Omega$ there is $r>0$ and $\left(x_{n}: n \geq 0\right)$ in \mathfrak{X} such that

$$
f(z)=\sum_{n=0}^{\infty} x_{n}\left(z-z_{0}\right)^{n}
$$

converges absolutely and uniformly on $\left\{z:\left|z-z_{0}\right| \leq r\right\}$. We say f is weakly analytic if for all $\varphi \in \mathfrak{X}^{\prime}$ we have that $\varphi \circ f: \Omega \rightarrow \mathbb{C}$ is analytic.

Exercise 1.21 (Homework). Weakly analytic implies strongly analytic. (I think he said something about Banach-Steinhaus?)

Theorem 1.22. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$.

1. For $\lambda, \mu \in \rho(a)$ we have

$$
\frac{R(a, \lambda)-R(a, \mu)}{\lambda-\mu}=-R(a, \lambda) R(a, \mu)
$$

2. $R(a, \lambda)$ is a strongly analytic function on $\rho(a)$.
3. $R^{\prime}(a, \lambda)=-R(a, \lambda)^{2}$.
4. $\|R(a, \lambda)\| \rightarrow 0$ as $|\lambda| \rightarrow \infty$.

Proof.

1. We have $\left(R(a, \lambda)-R(a, \mu)(\lambda-a)(\mu-a)=(\mu-a)-(\lambda-a)=\mu-\lambda\right.$; multiply by $\frac{R(a, \lambda)-R(a, \mu)}{\lambda-\mu}$ to get the desired result.
2. If $\lambda_{0} \in \rho(a)$ and $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|\left(\lambda_{0}-a\right)^{-1}\right\|}$.

$$
\begin{gathered}
\lambda-a=\left(\lambda_{0}-a\right)-\left(\lambda_{0}-\lambda\right) \\
=\left(\lambda_{0}-a\right)\left(1-\left(\lambda_{0}-\lambda\right)\left(\lambda_{0}-a\right)^{-1}\right) \\
\left\|\left(\lambda_{0}-\lambda\right)\left(\lambda_{0}-a\right)^{-1}\right\|=\left|\lambda_{0}-\lambda\right|\left\|\left(\lambda_{0}-a\right)^{-1}\right\|<1
\end{gathered}
$$

So

$$
(\lambda-a)^{-1}=\sum_{n=0}^{\infty}\left(\left(\lambda_{0}-\lambda\right)\left(\lambda_{0}-a\right)^{-1}\right)^{n}\left(\lambda_{0}-a\right)^{-1}=\sum_{n=0}^{\infty}(-1)^{n}\left(\lambda_{0}-a\right)^{-n-1}\left(\lambda-\lambda_{0}\right)^{n}
$$

If $0<R<\frac{1}{\left\|\left(\lambda_{0}-a\right)^{-1}\right\|}$ then if $\left|\lambda-\lambda_{0}\right| \leq R$ then $\left\|\left(\lambda-\lambda_{0}\right)\left(\lambda_{0}-a\right)^{-1}\right\| \leq \frac{R}{\left\|\left(\lambda_{0}-a\right)^{-1}\right\|}=r<1$. So

$$
\sum \|\left(\left(\lambda_{)}-\lambda\right)\left(\lambda_{0}-a\right)^{-1}\| \|\left(\lambda_{0}-a\right)^{-1}\left\|\leq \sum r^{n}\right\|\left(\lambda_{0}-a\right)^{-1} \|=\frac{\left\|\left(\lambda_{0}-a\right)^{-1}\right\|}{1-r}<\infty\right.
$$

So convergence is absolute and uniform (by M-test) on $\left\{\lambda:\left|\lambda-\lambda_{0}\right| \leq R\right\}$. So $R(a, \lambda)$ is strongly analytic.
3. We note that

$$
R^{\prime}(a, \mu)=\lim _{\lambda \rightarrow \mu} \frac{R(a, \lambda)-R(a, \mu)}{\lambda-\mu}=-R(a, \mu)^{2}
$$

4. If $|\lambda|=2\|a\|$ then $(\lambda-a)^{-1}=\lambda^{-1}\left(1-\lambda^{-1} a\right)^{-1}=\lambda^{-1} \sum\left(\lambda^{-1} a\right)^{n}$. So

$$
\left\|(\lambda-a)^{-1}\right\| \leq \frac{1}{|\lambda|} \sum_{n=0}^{\infty}\left\|\left(\lambda^{-1} a\right)^{n}\right\| \leq \frac{1}{|\lambda|} \sum \frac{1}{2^{n}}=\frac{2}{|\lambda|}
$$

So $\|R(a, \lambda)\| \leq \frac{2}{|\lambda|} \rightarrow 0$ as $|\lambda| \rightarrow \infty$.
Theorem 1.22
Theorem 1.23 (Liouville). If $f: \mathbb{C} \rightarrow \mathfrak{X}$ is a weakly analytic entire function which is bounded then it is constant.

Proof. For all $\varphi \in \mathfrak{X}^{\prime}$ we have $\varphi \circ f: \mathbb{C} \rightarrow \mathbb{C}$ is entire and bounded. So $\varphi \circ f$ is constant by Liouville's theorem. By Hahn-Banach we have that f is constant: if $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ then there would be φ such that $\varphi\left(f\left(z_{1}\right)-f\left(z_{2}\right)\right) \neq 0$.
\square Theorem 1.23
Theorem 1.24. Suppose \mathfrak{A} is a unital Banach algebra. Then $\sigma(a)$ is not empty.
Proof. If $\sigma(a)=\emptyset$ then $R(a, \lambda)$ is entire, strongly analytic, and has $\|R(a, \lambda)\| \rightarrow 0$ as $|\lambda| \rightarrow \infty$, and is thus bounded. So by Liouville's theorem it is constant, a contradiction since $R(a, 0)=-a^{-1} \neq(1-a)^{-1}=R(a, 1)$.
\square Theorem 1.24
If $K \subseteq \mathbb{C}$ is compact we let $\operatorname{Rat}(K)$ consist of rational functions $\frac{p(x)}{q(x)}$ with $p, q \in \mathbb{C}[x]$ such that the poles (zeroes of q) lie in $\mathbb{C} \backslash K$. If $\sigma(a)=K$ and $\frac{p}{q} \in \operatorname{Rat}(K)$ then we may write $q(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{m}\right)$ with each $\alpha_{i} \notin K$; then $q(a)=\left(a-\alpha_{1} 1\right) \cdots\left(a-\alpha_{m} 1\right)$, and $q(a)^{-1}=\left(a-\alpha_{1} 1\right)^{-1} \cdots\left(a-\alpha_{m} 1\right)^{-1}$ is well-defined because $\alpha_{i} \notin K=\sigma(a)$. We can then define $\frac{p}{q}(a)=p(a) q\left(a^{-1}\right)$. This is a well-defined algebra homomorphism of $\operatorname{Rat}(\sigma(a))$ into \mathfrak{A}.
Theorem 1.25 (Spectral mapping theorem for rational functions). If $a \in \mathfrak{A}$ and $f=\frac{p}{q} \in \operatorname{Rat}(\sigma(a))$ then $\sigma(f(a))=f(\sigma(a))$.
Proof. Write $f=\frac{p}{q}$ with

$$
q(x)=\prod_{i=1}^{m}\left(x-\alpha_{i}\right)
$$

If $\lambda \in \mathbb{C}$ then we may write $f(x)-\lambda 1=\frac{p_{1}(x)}{q(x)}$ with

$$
p_{1}(x)=\prod_{j=1}^{n}\left(x-\beta_{j}\right)
$$

Then

$$
f(a)-\lambda 1=p_{1}(a) q(a)^{-1}=\prod_{j=1}^{n}\left(a-\beta_{j} 1\right) q(a)^{-1}
$$

So

$$
\begin{aligned}
\lambda \in \sigma(f(a)) & \Longleftrightarrow f(a)-\lambda 1 \text { is not invertible } \\
& \Longleftrightarrow \exists j \text { such that } a-\beta_{j} 1 \text { is not invertible } \\
& \Longleftrightarrow \exists j \text { such that } \beta_{j} \in \sigma(a)
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda \in f(\sigma(a)) & \Longleftrightarrow \exists \beta \in \sigma(a) \text { such that } f(\beta)-\lambda=0 \\
& \Longleftrightarrow \exists x \in \sigma(a) \text { such that } \prod_{j=1}^{n}\left(x-\beta_{j}\right) q(x)=0 \\
& \Longleftrightarrow \exists j \text { such that } x=\beta_{j}
\end{aligned}
$$

TODO 2. Typo here?
But the last equivalences are the same.
Definition 1.26. The spectral radius of a is $\operatorname{spr}(a)=\sup \{|\lambda|: \lambda \in \sigma(a)\}$.
Theorem 1.27. Suppose \mathfrak{A} is a unital Banach algebra and $a \in \mathfrak{A}$. Then

$$
\operatorname{spr}(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}
$$

Proof. By the spectral mapping theorem we have $\sigma\left(a^{n}\right)=\sigma(a)^{n}$. Since $\operatorname{spr}(a) \leq\|a\|$ we have

$$
\operatorname{spr}(a)=\operatorname{spr}\left(a^{n}\right)^{\frac{1}{n}} \leq\left\|a^{n}\right\|^{\frac{1}{n}}
$$

thus

$$
\operatorname{spr}(a) \leq \inf _{n \geq 1}\left\|a^{n}\right\|^{\frac{1}{n}}
$$

Recall that $R(a, \lambda)=(\lambda-a)^{-1}$ is analytic on $\mathbb{C} \backslash \sigma(a)$. Hence for $|\lambda|>\|a\|$ we have

$$
R(a, \lambda)=\sum_{n=0}^{\infty} a^{n} \lambda^{-n-1}
$$

TODO 3. why? Something about a power series around ∞ ?
If $\varphi \in \mathfrak{A}^{\prime}$ then

$$
\varphi(R(a, \lambda))=\sum_{n=0}^{\infty} \varphi\left(a^{n}\right) \lambda^{-n-1}
$$

is scalar-valued and analytic on $\rho(a) \supseteq \mathbb{C} \backslash\{\lambda:|\lambda| \leq \operatorname{spr}(a)\}$; note that this last set is the biggest disk around \mathbb{C} on which R is defined. In particular, convergence is absolute and uniform over $|\lambda| \geq r+\varepsilon$ (with $r=\operatorname{spr}(a))$. So

$$
\sup _{n \geq 0}\left|\varphi\left(a^{n}\right)\right|(r+\varepsilon)^{-n-1}<\infty
$$

(as the terms in the series approach 0). So

$$
\sup _{n \geq 0}\left|\varphi\left(\left(\frac{a}{r+\varepsilon}\right)^{n}\right)\right| \leq \frac{C(\varphi)}{r+\varepsilon}
$$

for some constant $C(\varphi)$ (depending on φ). Hence by the uniform boundedness principle we have

$$
\sup _{n \geq 0}\left\|\left(\frac{a}{r+\varepsilon}\right)^{n}\right\|=C^{\prime}<\infty
$$

Thus $\left\|a^{n}\right\| \leq C^{\prime}(r+\varepsilon)^{n}$, and hence $\left\|a^{n}\right\|^{\frac{1}{n}} \leq\left(C^{\prime}\right)^{\frac{1}{n}}(r+\varepsilon) \rightarrow r+\varepsilon$. So

$$
\limsup _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}} \leq r \leq \inf \left\|a^{n}\right\|^{\frac{1}{n}}
$$

TODO 4. port limsup typesetting to essential range?
So $r=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}=\inf \left\|a^{n}\right\|^{\frac{1}{n}}$. Theorem 1.27

Remark 1.28. $R(a, \lambda)=\sum_{n=0}^{\infty} a^{n} \lambda^{-n-1}$ converges absolutely and uniformly on $\{\lambda:|\lambda| \geq r+\varepsilon\}$.
Exercise 1.29. Check the details of this.
Proposition 1.30 (Mazur). If \mathfrak{A} is a Banach field then $\mathfrak{A}=\mathbb{C} 1$.
Proof. If $a \in \mathfrak{A}$ then $\sigma(a) \neq 0$. Pick $\lambda \in \sigma(a)$; then $a-\lambda 1$ is not invertible, so since \mathfrak{A} is a field we get that $a-\lambda 1=0$ and $a=\lambda 1$. Proposition 1.30

2 Riesz functional calculus

Suppose U is open and contains $\sigma(a)$. Suppose f is a holomorphic function on U and $\lambda \in \sigma(a)$. Cauchy's theorem tells us that to evaluate $f(\lambda)$ we can draw a rectifiable curve

TODO 5. rectifiable?
\mathcal{C} such that $\mathcal{C} \subseteq U \backslash \sigma(a)$ and the winding number

$$
\operatorname{ind}_{\mathcal{C}}(z)= \begin{cases}0 & \text { if } z \in \mathbb{C} \backslash U \\ 1 & \text { if } z \in K\end{cases}
$$

TODO 6. K ?
Then by Cauchy's theorem we have

$$
f(\lambda)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{f(z)}{z-\lambda} \mathrm{d} z
$$

for $z \in \sigma(a)$.
We can try to define $f(a)$ by

$$
f(a)=\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)(z 1-a)^{-1} \mathrm{~d} z
$$

Note that $(z 1-a)^{-1}$ is defined on $\mathbb{C} \backslash \sigma(a)$, and thus on \mathcal{C}; also $f(z)$ is defined and analytic on $U \supseteq \mathcal{C}$. So $f(z)(z-a)^{-1}$ is defined on $U \backslash \sigma(a)$; it is analytic, and thus continuous.

Theorem 2.1. Suppose \mathfrak{X} is a Banach space; suppose \mathcal{C} is a rectifiable curve in \mathbb{C} and $f: \mathcal{C} \rightarrow \mathfrak{X}$ is continuous. Then

$$
\int_{\mathcal{C}} f(z) \mathrm{d} z
$$

makes sense as a Riemann integral.
Proof. Parametrize \mathcal{C} by arc length s for $0 \leq s \leq L$. Take partitions Δ consisting of $0=s_{0}<s_{1}<\cdots<$ $s_{n}=L$ and Ξ consisting of $\xi_{i} \in \varphi\left(\left[s_{i-1}, \ldots, s_{i}\right]\right)$ for $1 \leq i \leq n$. If $\varphi:[0, L] \rightarrow \mathcal{C}$ is our parametrization then our Riemann sum is

$$
J(\Delta, \Xi)=\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(\varphi\left(s_{i}\right)-\varphi\left(s_{i-1}\right)\right)
$$

We define

$$
\operatorname{mesh}(\Delta)=\max _{1 \leq i \leq n}\left(s_{i}-s_{i-1}\right)
$$

Claim 2.2. $\lim _{\operatorname{mesh}(\Delta) \rightarrow 0} J(\Delta, \Xi)$ converges; we call this limit $\int_{\mathcal{C}} f(z) \mathrm{d} z$.
TODO 7. I believe this is a limit of nets?
Proof. Suppose $\varepsilon>0$. By continuity of f there is $\delta>0$ such that $|s-t|<\delta$ implies $\|f(\varphi(s))-f(\varphi(t))\|<\varepsilon$. Suppose $\left(\Delta_{1}, \Xi_{1}\right)$ and $\left(\Delta_{2}, \Xi_{2}\right)$ both have mesh $<\delta$. Let $\Delta=\Delta_{1} \cup \Delta_{2}=\left\{0=s_{0}<s_{1} \cdots<s_{n}=L\right\}$, and for $p \in\{1,2\}$ write $\Delta_{p}=\left\{s_{i}: i \in J_{p}\right\}$ with $\{0, n\} \subseteq J_{p} \subseteq\{0, \ldots, n\}$. Let $\Xi=\left\{\varphi\left(s_{i}\right): 1 \leq i \leq n\right\}$. We compare $J\left(\Delta_{p}, \Xi_{p}\right.$ to $J(\Delta, \Xi)$.

$$
J(\Delta, \Xi)-J\left(\Delta_{p}, \Xi_{p}\right)=\sum_{i=1}^{n} f\left(\varphi\left(s_{i}\right)\right)\left(\varphi\left(s_{i}\right)-\varphi\left(s_{i-1}\right)\right)-\sum f\left(\xi_{j}\right)\left(\varphi\left(s_{i}\right)-\varphi\left(s_{i-1}\right)\right)
$$

where $j \in J_{p}$ satisfies $\left[s_{i-1}, s_{i}\right] \subseteq\left[s_{j}, s_{j^{\prime}}\right]$ with $\left[s_{j}, s_{j^{\prime}}\right]$ an interval in Δ_{p}. Hence

$$
\begin{aligned}
\left\|J(\Delta, \Xi)-J\left(\Delta_{p}, \Xi_{p}\right)\right\| & =\left\|\sum_{i=1}^{n} f\left(\varphi\left(s_{i}\right)\right)\left(\varphi\left(s_{i}\right)-\varphi\left(s_{i-1}\right)\right)-\sum f\left(\xi_{j}\right)\left(\varphi\left(s_{i}\right)-\varphi\left(s_{i-1}\right)\right)\right\| \\
& \leq \sum_{i=1}^{n}\left\|f\left(\varphi\left(s_{i}\right)\right)-f\left(\xi_{j}\right)\right\|\left|\varphi\left(s_{i}\right)-\varphi\left(s_{i-1}\right)\right| \text { (note } \varphi\left(s_{i}\right) \text { and } \xi_{j} \text { are within } \delta \text { of each other) } \\
& <\sum_{i=1}^{n} \varepsilon\left(s_{i}-s_{i-1}\right) \\
& =\varepsilon L
\end{aligned}
$$

So $\left\|J\left(\Delta_{1}, \Xi_{1}\right)-J\left(\Delta_{2}, \Xi_{2}\right)\right\|<(2 L) \varepsilon$. So the Riemann sums are Cauchy, and thus converge.

Theorem 2.3 (Riesz functional calculus). Suppose \mathfrak{A} a unital Banach algebra and $a \in \mathfrak{A}$. If $f \in \operatorname{Hol}(U)$ with $U \subseteq \mathbb{C}$ an open set containing $\sigma(a)$, we define

$$
f(a)=\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)(z-a)^{-1} \mathrm{~d} z
$$

where \mathcal{C} is a curve in $U \backslash \sigma(a)$ such that

$$
\operatorname{ind}_{\mathcal{C}}(z)= \begin{cases}1 & \text { if } z \in \sigma(a) \\ 0 & \text { if } z \notin U\end{cases}
$$

Then

1. This definition is independent of the choice of \mathcal{C}; hence $f(a)$ is well-defined.
2. $(f+g)(a)=f(a)+g(a)$ and $(\lambda f)(a)=\lambda \cdot f(a)$.
3. $(f g)(a)=f(a) g(a)$. (Hence, combining all the above, we get that $f \mapsto f(a)$ is a homomorphism.)
4. If

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

is analytic in a disk $D_{R}\left(z_{0}\right) \supseteq \sigma(a)$ then

$$
f(a)=\sum_{n=0}^{\infty} a_{n}\left(a-z_{0} 1\right)^{n}
$$

Proof.

1. Suppose $\mathcal{C}_{1}, \mathcal{C}_{2}$ are permissable curves. Then $\mathcal{C}=\mathcal{C}_{1}-\mathcal{C}_{2}$ (i.e. union of \mathcal{C}_{1} and \mathcal{C}_{2} with the orientation of \mathcal{C}_{2} reversed) is a curve such that

$$
\operatorname{ind}_{\mathcal{C}}(z)= \begin{cases}0 & \text { if } z \in \mathbb{C} \backslash U \\ 0 & \text { if } z \in \sigma(a)\end{cases}
$$

So $f(z)(z-a)^{-1}$ is analytic on $U \backslash \sigma(a)$, and $\mathcal{C} \subseteq U \backslash \sigma(a)$; so \mathcal{C} is homologous to zero in $U \backslash \sigma(a)$. Taking $\varphi \in \mathfrak{A}^{\prime}$ we have

$$
\begin{aligned}
\varphi\left(\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)(z-a)^{-1} \mathrm{~d} x\right) & =\frac{1}{2 \pi i} \int_{\mathcal{C}} \underbrace{f(z) \varphi\left((z-a)^{-1}\right)}_{\text {scalar-valued and analytic in } U \backslash \sigma(a)} \mathrm{d} z \\
& =0
\end{aligned}
$$

by Cauchy's theorem. But this holds for all $\varphi \in \mathfrak{A}^{\prime}$. So by the Hahn-Banach theorem we get

$$
\left.0=\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)(z-a)^{-1} \mathrm{~d} z=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} f(z)(z-a)^{-1}\right) \mathrm{d} z-\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} f(z)(z-a)^{-1} \mathrm{~d} z
$$

2. If $f \in \operatorname{Hol}(U)$ and $g \in \operatorname{Hol}(V)$ with $U, V \supseteq \sigma(a)$ then $f, g \in \operatorname{Hol}(U \cap V)$; so one can choose \mathcal{C} to work for both f and g. The claim then follows from linearity of the integral.
3. Suppose $f, g \in \operatorname{Hol}(U)$. Choose a curve \mathcal{C} as required. Let $V=\left\{\lambda: \operatorname{ind}_{\mathcal{C}}(\lambda)=1\right\} \supseteq \sigma(a)$; so V is open. Choose \mathcal{C}_{2} in $V \backslash \sigma(a)$ satisfying the requirements. In particular if $\lambda \in \mathcal{C}_{2}$ then $\operatorname{ind}_{\mathcal{C}_{1}}(\lambda)=1$ (since $\left.\mathcal{C}_{2} \subseteq V\right)$ and if $\lambda \in \mathcal{C}_{1}$ then $\operatorname{ind}_{\mathcal{C}_{2}}(\lambda)=0$ (since $\left.\mathcal{C}_{1} \subseteq \mathbb{C} \backslash V\right)$. Then

$$
\begin{aligned}
f(a) g(a) & =\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} f(z)(z-a)^{-1} \mathrm{~d} z \frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} g(w)(w-a)^{-1} \mathrm{~d} w \\
& =\frac{1}{(2 \pi i)^{2}} \int_{\mathcal{C}_{1}} \int_{\mathcal{C}_{2}} f(z) g(w) R(a, z) R(a, w) \mathrm{d} z \mathrm{~d} w \\
& =\frac{1}{(2 \pi i)^{2}} \int_{\mathcal{C}_{1}} \int_{\mathcal{C}_{2}} f(z) g(w) \frac{R(a, z)-R(a, w)}{w-z} \mathrm{~d} z \mathrm{~d} w \text { (by Theorem 1.22)} \\
& =\frac{1}{(2 \pi i)^{2}} \int_{\mathcal{C}_{1}} \int_{\mathcal{C}_{2}} f(z) g(w) \frac{R(a, z)}{w-z} \mathrm{~d} z \mathrm{~d} w-\frac{1}{(2 \pi i)^{2}} \int_{\mathcal{C}_{1}} \int_{\mathcal{C}_{2}} f(z) g(w) \frac{R(a, w)}{w-z} \mathrm{~d} z \mathrm{~d} w \\
& =\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} f(z) R(a, z)(\underbrace{\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} \frac{g(w)}{w-z} \mathrm{~d} w}_{=0 \text { since ind } \mathcal{C}_{2}(\underbrace{}_{\in \mathcal{C}_{1}}}) \mathrm{d} z+\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} g(w) R(a, w)(\underbrace{\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{f(z)}{z-w} \mathrm{~d} z}_{\mathcal{C}_{2}}) \mathrm{d} w \\
& =\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} g(w) f(w)(w-a)^{-1} \mathrm{~d} w \\
& =(f g)(a)
\end{aligned}
$$

TODO 8. Typeset above better
4. Let $\mathcal{C}=z_{0}+r \exp (i \theta)$ for $0 \leq \theta \leq 2 \pi$ and $r<R$ be sufficiently large to enclose $\sigma(a)$. Then the Taylor expansion

$$
f(z)=\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n}
$$

converges absolutely and uniformly on
TODO 9. in?
Then

$$
\begin{aligned}
f(a) & =\frac{1}{2 \pi i} \int_{\mathcal{C}} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}(z-a)^{-1} \mathrm{~d} z \\
& =\sum_{n=0}^{\infty} a_{n} \frac{1}{2 \pi i} \int_{\mathcal{C}}\left(z-z_{0}\right)^{n}(z-a)^{-1} \mathrm{~d} z \\
& =\sum_{n=0}^{\infty} a_{n}\left(a-z_{0}\right)^{n}
\end{aligned}
$$

as desired.
Theorem 2.3
Corollary 2.4 (Spectral mapping theorem for analytic functions). If $f \in \operatorname{Hol}(U)$ with $U \supseteq \sigma(a)$ then $\sigma(f(a))=f(\sigma(a))$.

Proof.
(\subseteq) If $\lambda \notin f(\sigma(a))$ then $f(z)-\lambda \neq 0$ on $\sigma(a)$. Let $V=\{z \in U: f(z) \neq \lambda\}$; so V is an open set containing $\sigma(a)$, and

$$
g(z)=\frac{1}{\lambda-f(z)}
$$

is analytic on V. But then $g(z)(\lambda-f(z))=1$, so $g(a)(\lambda-f(a))=1=(\lambda-f(a)) g(a)$; so $\lambda \notin \sigma(f(a))$.
(〇) If $\lambda \in f(\sigma(a))$ then there is $w \in \sigma(a)$ such that $f(w)=\lambda$. So $\lambda-f(z)=(z-w) g(z)$ for some $g \in \operatorname{Hol}(U)$; so $\lambda-f(a)=\underbrace{(a-w)}_{\text {not invertible }} g(a)$, and $\lambda-f(a)$ is not invertible. So $\lambda \in \sigma(f(a))$.

Corollary 2.4

Example 2.5.

1. Let $\mathcal{H}=\ell_{2}$ with orthonormal basis $\left\{e_{n}\right\}_{n \geq 0}$. Let $D \in \mathcal{B}\left(\ell_{2}\right)$ be $\operatorname{diag}\left(d_{0}, d_{1}, \ldots\right)$; i.e. $D e_{n}=d_{n} e_{n}$. Then $\sigma(D)=\left\{d_{n}: n \in \mathbb{N}\right\}$. Suppose $f \in \operatorname{Hol}(U)$ with $U \supseteq \sigma(D)$. Find \mathcal{C}. Note that if $z \notin \sigma(D)$ then $z I-D=k \operatorname{diag}\left(\frac{1}{z-d_{n}}: n \in \mathbb{N}\right)$. Then

$$
\begin{aligned}
f(D) e_{n} & =\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)(z I-D)^{-1} e_{n} \mathrm{~d} z \\
& =\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z) \frac{1}{z-d_{n}} e_{n} \mathrm{~d} z \\
& =\frac{1}{2 \pi i}\left(\int_{\mathcal{C}} f(z) \frac{1}{z-d_{n}} \mathrm{~d} z\right) e_{n} \\
& =f\left(d_{n}\right) e_{n}
\end{aligned}
$$

So $f(D)=\operatorname{diag}\left(f\left(d_{n}\right): n \in \mathbb{N}\right)$.
2. Suppose $A \in \mathcal{M}_{n}$. By Jordan form theorem A is similar to a direct sum of Jordan blocks

$$
A \sim J_{1} \oplus \cdots \oplus J_{p}
$$

with

$$
J_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{i} & 1 \\
0 & 0 & \cdots & 0 & \lambda_{i}
\end{array}\right)_{k_{i} \times k_{i}}
$$

with $\sum_{i=1}^{p} k_{i}=n$.
Suppose $f \in \operatorname{Hol}(U)$ with $U \supseteq \sigma(A)=\left\{\lambda 1, \ldots, \lambda_{p}\right\}$. Note also that $\sigma\left(J_{i}\right)=\left\{\lambda_{i}\right\}$. Since f is analytic near λ_{i} we get

$$
f(z)=\sum_{m=0}^{\infty} a_{m}\left(z-\lambda_{i}\right)^{m}
$$

on a neighborhood of λ_{i}. By last item of previous theorem we have

$$
\begin{aligned}
& f\left(J_{i}\right)=\sum_{m=0}^{\infty} a_{m}\left(J_{i}-\lambda_{i} I\right)^{m} \\
& =\sum_{n=0}^{\infty} a_{n}\left(\begin{array}{cccc}
0 & 1 & & \\
& \ddots & & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)^{n} \\
& =\sum_{n=0}^{\infty} a_{n}\left(\begin{array}{ccccc}
0 & & 1 & & \\
& \ddots & & \ddots & \\
& & & & \\
& & & & 1 \\
& & & & \\
& & & & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{k_{i}-1} \\
& \ddots & \ddots & \vdots \\
& & & a_{1} \\
& & & a_{0}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) & \cdots & \frac{f^{\left(k_{i}-1\right)}}{\left(k_{i}-1\right)!} \\
& \ddots & \ddots & \vdots \\
& & & f^{\prime}\left(\lambda_{i}\right) \\
& & & f\left(\lambda_{i}\right)
\end{array}\right)
\end{aligned}
$$

So

$$
f(A)=f\left(S\left(\sum^{\oplus} J_{i}\right) S^{-1}\right)=S f\left(\sum^{\oplus} J_{i}\right) S^{-1}=S\left(\sum^{\oplus} f\left(J_{i}\right) S^{-1}\right.
$$

If $\sigma(A)=\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ with

$$
K_{i}=\max \left\{k: A \text { has a Jordan block of size } k \text { with eigenvalue } \lambda_{i}\right\}
$$

then $\operatorname{dim}\left(\operatorname{ker}\left(A-\lambda_{i} I\right)^{s}\right.$ stops increasing at K_{i}. Write

$$
f(z)=\underbrace{p(z)}_{\text {degree }<n}+\underbrace{\left(\prod_{i=1}^{p}\left(z-\lambda_{i}\right)^{K_{i}}\right)}_{\text {minimal polynomial of } A} g(z)
$$

Then $f(A)=p(A)$.

Theorem 2.6. Suppose $T \in \mathcal{B}(\mathfrak{X})$. Suppose $\sigma(T)=\sigma_{1} \sqcup \sigma_{2}$ where the σ_{i} are disjoint compact sets. Then there are idempotents $E_{1}, E_{2} \in \mathcal{B}(\mathfrak{X})$ such that $E_{1}+E_{2}=I$ and $E_{i} T=T E_{i}$. We may also demand that the $\mathcal{M}_{i}=\operatorname{Ran}\left(E_{i}\right)$ are complementary subspace (i.e. $\mathcal{M}_{1} \cap \mathcal{M}_{2}=\{0\}$ and $\mathcal{M}_{1}+\mathcal{M}_{2}=\mathfrak{X}$), $T \mathcal{M}_{i} \subseteq \mathcal{M}_{i}$ (the \mathcal{M}_{i} are invariant subspaces for T), and if $T_{i}=T \upharpoonright \mathcal{M}_{i} \in \mathcal{B}\left(\mathcal{M}_{i}\right)$ then $\sigma\left(T_{i}\right)=\sigma_{i}$.

Proof. Find open $U=U_{1} \sqcup U_{2}$ with $U_{i} \supseteq \sigma_{i}$ and $U_{1} \cap U_{2}=\emptyset$. Let $f \in \operatorname{Hol}(U)$ be given by

$$
z \mapsto \begin{cases}1 & \text { if } z \in U_{1} \\ 0 & \text { if } z \in U_{2}\end{cases}
$$

Let $E_{1}=f(T)$ and $E_{2}=I-E_{1}=g(T)$ where $g=1-f$. Then $f=f^{2}$ and $g=g^{2}$, so $E_{1}=E_{1}^{2}$ and $E_{2}=E_{2}^{2}$; also $E_{1}+E_{2}=I$. Then since $f(T) T=T f(T)$ we get $E_{1} T=T E_{1}$. Let $\mathcal{M}_{i}=\operatorname{Ran}\left(E_{i}\right)=\operatorname{ker}\left(E_{1-i}\right)$. Then

$$
E_{1} E_{2}=(f g)(T)=0(T)=0
$$

Also $\operatorname{Ran}\left(E_{1}\right) \subseteq \operatorname{ker}\left(E_{2}\right)$ and $\operatorname{Ran}\left(E_{2}\right) \subseteq \operatorname{ker}\left(E_{1}\right)$; furthermore if $x \in \operatorname{ker}\left(E_{2}\right)$ then $x=I x=\left(E_{1}+E_{2}\right) x=E_{1} x$, so $\operatorname{ker}\left(E_{2}\right) \subseteq \operatorname{Ran}\left(E_{1}\right)$.

Thus the \mathcal{M}_{i} are closed because $\operatorname{ker}\left(E_{i}\right)$ are closed. If $x \in \mathcal{M}_{1} \cap \mathcal{M}_{2}$ then $x=E_{1} x=E_{1}\left(E_{2} x\right)=0$. If $x \in \mathfrak{X}$ then $x=E_{1} x+E_{2} x \in \mathcal{M}_{1}+\mathcal{M}_{2} ;$ so $\mathcal{M}_{1}+\mathcal{M}_{2}=\mathfrak{X}$. Also $T\left(E_{1} \mathfrak{X}\right)=E_{1} T \mathfrak{X} \subseteq E_{1} \mathfrak{X}$, so it's invariant.

Claim 2.7. $\sigma\left(T_{1}\right)=\sigma_{1}$.
Proof. If $\lambda \in \rho(T)$ then $I=(\lambda I-T)^{-1}(\lambda I-T)$. So

$$
I_{\mathcal{M}_{1}}=I \upharpoonright \mathcal{M}_{1}=(\lambda I-T)^{-1}(\lambda I-T) \upharpoonright \mathcal{M}_{1}=\underbrace{\left((\lambda I-T)^{-1} \upharpoonright \mathcal{M}_{1}\right)}_{\text {maps } \mathcal{M}_{1} \text { into } \mathcal{M}_{1}} \underbrace{\left(\lambda I_{\mathcal{M}_{1}}-T_{1}\right)}_{\text {range } \subseteq \mathcal{M}_{1}}
$$

and likewise with right-multiplication. So $\lambda \in \rho\left(T_{i}\right)$.
If $\lambda \notin \sigma_{1}$ then $\frac{1}{\lambda-z}$ is analytic on a neighbourhood U_{1} of σ_{1} (and we may assume $\overline{U_{1}} \cap \sigma_{2}=\emptyset$). Let

$$
g(z)= \begin{cases}\frac{1}{\lambda-z} & \text { if } z \in U_{1} \\ 0 & \text { if } z \in U_{2}\end{cases}
$$

Then $g(T)(\lambda I-T)=f(T)$ where

$$
f(z)= \begin{cases}1 & \text { if } z \in U_{1} \\ 0 & \text { if } z \in U_{2}\end{cases}
$$

So $I_{\mathcal{M}_{1}}=g(T)(\lambda I-T) \upharpoonright \mathcal{M}_{1}=(\lambda I-T) g(T) \upharpoonright \mathcal{M}_{1}$. So $\lambda \in \rho\left(T_{1}\right)$, and $\sigma\left(T_{1}\right) \subseteq \sigma_{1}$; similarly we get $\sigma\left(T_{2}\right) \subseteq \sigma_{2}$.

Subclaim 2.8. $\sigma\left(T_{1} \oplus T_{2}\right)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{2}\right)$.
Proof. Indeed, we have

$$
\lambda I-\left(T_{1} \oplus T_{2}\right)=\left(\lambda I_{\mathcal{M}_{1}}-T_{1}\right) \oplus\left(\lambda I_{\mathcal{M}_{2}}-T_{2}\right)
$$

If $\lambda \in \rho\left(T_{1}\right) \cap \rho\left(T_{2}\right)$ then

$$
(\lambda-T)^{-1}=\left(\lambda-T_{1}\right)^{-1} \oplus\left(\lambda-T_{2}\right)^{-1}
$$

If $\lambda \in \sigma\left(T_{1}\right)$ then $\lambda I_{\mathcal{M}_{1}}-T_{1}$ either is not bounded below, in which case $\lambda-T$ is not bounded below, or has range not dense in \mathcal{M}_{1}, in which case $\overline{\operatorname{Ran}(T)} \subseteq \overline{\mathcal{M}_{2}+\operatorname{Ran}\left(\lambda-T_{1}\right)}$ is proper. So $\sigma\left(T_{1}\right) \subseteq \sigma(T)$.
\square Subclaim 2.8
So $\sigma\left(T_{1}\right)=\sigma_{1}$ and $\sigma\left(T_{2}\right)=\sigma_{2}$. Claim 2.7

Suppose \mathcal{H} is a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$. Suppose $U \supseteq \sigma(a)$ is open and $f \in \operatorname{Hol}(U)$. What is $f(T)^{*}$? Well $\sigma\left(T^{*}\right)=\sigma(T)^{*}$ (complex conjugate) so $U^{*} \supseteq \sigma\left(T^{*}\right)$. Let $f^{*}(z)=\overline{f(z)}$ for $z \in U^{*}$; so $f^{*} \in \operatorname{Hol}\left(U^{*}\right)$.
TODO 10. I think $f^{*}(z)$ should be $\overline{f(\bar{z})}$.
Claim 2.9. $f(T)^{*}=f^{*}\left(T^{*}\right)$.

Proof. For $x, y \in \mathcal{H}$ we have

$$
\begin{aligned}
\left\langle f(T)^{*} x, y\right\rangle & =\langle x, f(T) y\rangle \\
& =\left\langle x, \frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)(z-T)^{-1} \mathrm{~d} z \cdot y\right\rangle \\
& =\overline{\left\langle\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)(z-T)^{-1} y \mathrm{~d} z, x\right\rangle} \\
& =\frac{\frac{1}{2 \pi i} \int_{\mathcal{C}} f(z)\left\langle(z-T)^{-1} y, x\right\rangle \mathrm{d} z}{} \\
= & \frac{-1}{2 \pi \bar{i}} \int_{\mathcal{C}^{*}} f^{*}(w) \overline{\left\langle(\bar{w}-T)^{-1} y, x\right\rangle} \mathrm{d} w \\
& =\frac{1}{2 \pi i} \int_{\mathcal{C}^{*}} f^{*}(w)\left\langle x,(\bar{w}-T)^{-1} y\right\rangle \mathrm{d} w \\
& =\frac{1}{2 \pi i} \int_{\mathcal{C}^{*}} f^{*}(w)\left\langle\left(w-T^{*}\right)^{-1} x, y\right\rangle \mathrm{d} w \\
& =\left\langle f^{*}\left(T^{*}\right) x, y\right\rangle
\end{aligned}
$$

Indeed, in general we have

$$
\begin{aligned}
\overline{\int_{\mathcal{C}} g(z) \mathrm{d} z} & =\lim \overline{\sum g\left(\xi_{i}\right)\left(z_{i}-z_{i-1}\right)} \\
& =\lim \sum \overline{g\left(\xi_{i}\right)}\left(\overline{z_{i}}-\overline{z_{i-1}}\right) \\
& =\lim \sum g^{*}\left(\overline{\xi_{i}}\right)\left(\overline{z_{i}}-\overline{z_{i-1}}\right)\left(\text { where } g^{*}(z)=\overline{g(\bar{z})}\right) \\
& =\int_{\overline{\mathcal{C}}} g^{*}(w) \mathrm{d} w \\
& =-\int_{\mathcal{C}^{*}} g^{*}(w) \mathrm{d} w
\end{aligned}
$$

where $\mathcal{C}^{*}=-\overline{\mathcal{C}}$ (necessary since $\overline{\mathcal{C}}$ has winding number -1 around $\sigma\left(T^{*}\right)$.)
\square Claim 2.9
Proposition 2.10 (Relative spectra). Suppose $1 \in \mathfrak{A} \subseteq \mathfrak{B}$ are two Banach algebras with the same unit. Then if $a \in \mathfrak{A}$ then $\sigma_{\mathfrak{A}}(a) \supseteq \sigma_{\mathfrak{B}}(a)$ and $\partial \sigma_{\mathfrak{A}}(a) \subseteq \partial \sigma_{\mathfrak{B}}(a)$. (Here ∂ denotes the boundary.)
Example 2.11. Consider $A(\mathbb{D})$ with $X \subseteq \overline{\mathbb{D}}$ compact with $\mathbb{T} \subseteq X$; then we get an embedding $A(\mathbb{D}) \xrightarrow{\alpha_{x}} C(X)$ given by $f \mapsto f \upharpoonright X$. Since $\mathbb{T} \subseteq X$ we have

$$
\left\|\alpha_{X}(f)\right\|=\sup _{x \in X}|f(x)|=\|f\|_{A(\mathbb{D})}
$$

We can thus consider $A(\mathbb{D}) \subseteq C(X)$. Consider $z \in A(\mathbb{D})$; we have $\sigma_{A(\mathbb{D})}(z)=\operatorname{Ran}(z)=\overline{\mathbb{D}}$, and $\sigma_{C(X)}(z)=$ $\operatorname{Ran}\left(\alpha_{X}(z)\right)=X$.

We will need a definition before proving Proposition 2.10.
Definition 2.12. We say $a \in \mathfrak{A}$ is a right (left, two-sided) topological divisor of zero if there are $x_{n} \in \mathfrak{A}$ with $\left\|x_{n}\right\|=1$ and $\left\|x_{n} a\right\| \rightarrow 0$.
Claim 2.13. If $\lambda-a$ is a right or left topological divisor of zero then it isn't invertible (so $\lambda \in \sigma(a))$.
Proof. If $(\lambda-a)^{-1}$ exists then $x(\lambda-a)(\lambda-a)^{-1}=x$; so $\|x\| \leq\|x(\lambda-a)\|\left\|(\lambda-a)^{-1}\right\|$, and

$$
\frac{\|x\|}{\left\|(\lambda-a)^{-1}\right\|} \leq\|x(\lambda-a)\|
$$

So $\lambda-a$ is not a right topological zero divisor. The case of left topological zero divisors is similar.
Claim 2.13

Claim 2.14. If $\lambda \in \partial \sigma_{\mathfrak{A}}(a)$ then $\lambda-a$ is a two-sided topological divisor of zero.
Proof. Since $\lambda \in \partial \sigma_{\mathfrak{A}}(a)$ there are $\lambda_{n} \in \rho_{\mathfrak{A}}(a)$ such that $\lambda_{n} \rightarrow \lambda$. Then

$$
\left(\lambda_{n}-a\right)^{-1}(\lambda-a)=\left(\lambda_{n}-a\right)^{-1}\left(\lambda_{n}-a+\lambda-\lambda_{n}\right)=1+\left(\lambda_{n}-a\right)^{-1}\left(\lambda-\lambda_{n}\right)
$$

is not invertible. So by Proposition 1.11 we get that

$$
\left\|\left(\lambda-\lambda_{n}\right)\left(\lambda_{n}-a\right)^{-1}\right\| \geq 1
$$

and

$$
\left\|\left(\lambda_{n}-a\right)^{-1}\right\| \geq \frac{1}{\left|\lambda-\lambda_{n}\right|}
$$

Aside 2.15. This shows that

$$
\| \mu-a)^{-1} \| \geq \frac{1}{\operatorname{dist}(\mu, \sigma(a))}
$$

which is occasionally useful to know.
Let

$$
x_{n}=\frac{\left(\lambda_{n}-a\right)^{-1}}{\left\|\left(\lambda_{n}-a\right)^{-1}\right\|}
$$

Then

$$
\left\|x_{n}(\lambda-a)\right\|=\left\|\frac{1+\left(\lambda_{n}-a\right)^{-1}\left(\lambda-\lambda_{n}\right)}{\left\|\left(\lambda_{n}-a\right)^{-1}\right\|}\right\| \leq \frac{1}{\left\|\left(\lambda_{n}-a\right)^{-1}\right\|}+\left|\lambda-\lambda_{n}\right| \leq 2\left|\lambda-\lambda_{n}\right| \rightarrow 0
$$

and $\lambda-a$ is a right topological divisor of zero. Since $(\lambda-a) x_{n}=x_{n}(\lambda-a)$ it is also a left topological divisor of zero.

Claim 2.14
We are now ready to prove Proposition 2.10.
Proof. If $\lambda \in \rho_{\mathfrak{A}}(a)$ then we have some $(\lambda-a)^{-1} \in \mathfrak{A} \subseteq \mathfrak{B}$; so $\lambda \in \rho_{\mathfrak{B}}(a)$. So $\sigma_{\mathfrak{B}}(a) \subseteq \sigma_{\mathfrak{A}}(a)$.
If $\lambda \in \partial \sigma_{\mathfrak{A}}(a)$ then $\lambda-a$ is a right topological divisor of zero by the claim. So it is a right topological divisor of zero in \mathfrak{B} as well (using the same x_{n}). So $\lambda \in \sigma_{\mathfrak{B}}(a)$. But there are $\lambda_{n} \in \rho_{\mathfrak{A}}(a) \subseteq \rho_{\mathfrak{B}}(a)$ with $\lambda_{n} \rightarrow \lambda$. So $\lambda \in \partial \sigma_{\mathfrak{B}}(a)$. \square Proposition 2.10

3 Commutative Banach algebras

Let \mathfrak{A} be a commutative Banach algebra with unity.
Definition 3.1. A linear functional $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ is multiplicative if $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in \mathfrak{A}$ and $\varphi(1)=1$.

Proposition 3.2. If φ is a multiplicative linear functional on \mathfrak{A} then $\|\varphi\|=1$ (and so φ is continuous).
Proof. Since $\varphi(1)=1$ we have $\|\varphi\| \geq \frac{|1|}{\|1\|}=1$. Suppose we had $\|\varphi\|>1$. Then there is $x \in \mathfrak{A}$ with $\|x\| \leq 1$ and $|\varphi(x)|>1$. Let $a=\frac{x}{\varphi(x)}$. So $\varphi(a)=1$ and $\|a\| \leq \frac{1}{|\varphi(x)|}<1$. Let

$$
b=\sum_{n=1}^{\infty} a^{n} \in \mathfrak{A}
$$

Note that $v=a+a b$; so $\varphi(b)=\varphi(a)+\varphi(a) \varphi(b)=1+\varphi(b)$, and $0=1$, a contradiction. So $\|\varphi\|=1$.

If φ is a multiplicative linear functional then $\operatorname{ker}(\varphi)$ is a closed ideal of codimension 1 ; so $\operatorname{ker}(\varphi)$ is a maximal ideal. Conversely, suppose M is a maximal ideal; so $1 \notin M$ and $\mathfrak{A}^{-1} \cap M=\emptyset$. So $b_{1}(1) \cap M=\emptyset$.

The closure of an ideal is a (proper) ideal; in particular \bar{M} is also an ideal. Indeed, if $m \in \bar{M}$ then there are $m_{n} \in M$ with $m_{n} \rightarrow m$; so if $a \in \mathfrak{A}$ then

$$
a m=\lim \underbrace{a m_{n}}_{\in M} \in \bar{M}
$$

and M is a subspace, so \bar{M} is a subspace. It is proper since $\bar{M} \cap b_{1}(1)=M \cap b_{1}(1)=\emptyset$.
But $M \subseteq \bar{M}$ and M is maximal; so $M=\bar{M}$ and M is closed. So \mathfrak{A} / M is a field.
Aside 3.3. If \mathfrak{A} is a Banach algebra and J is a closed two-sided ideal then \mathfrak{A} / J is an algebra and a Banach space. Also if $a, b \in \mathfrak{A}$ and we let $\dot{a}=a+J$ and $\dot{b}=b+J$ then

$$
\|\dot{a} \dot{b}\|=\|(a+J)(b+J)\| \leq\|(a+\underbrace{j}_{\in J})(b+\underbrace{k}_{\in J})\| \leq \inf _{j, k \in J}\|a+j\|\|b+k\|=\|\dot{a}\|\|\dot{b}\|
$$

TODO 11. Another inf somewhere?
So \mathfrak{A} / J is a Banach algebra.
So \mathfrak{A} / M is a Banach field; so by Proposition 1.30 we get an isomorphism $\psi: \mathfrak{A} / M \cong \mathbb{C}$. So M has codimension 1. Since ψ is an isomorphism we have $\psi(\dot{1})=1$. Define $\varphi_{M}: \mathfrak{A} \rightarrow \mathbb{C}$ by

Then φ is multiplicative.
We have thus shown most of the following:
Theorem 3.4. There is a bijective correspondence between multiplicative linear funnctionals on \mathfrak{A} and maximal ideals. Moreover, this set is non-empty.

Proof. We have seen that the map $\varphi \mapsto \operatorname{ker}(\varphi)$ maps multiplicative linear functionals to maximal ideals; we have seen that this has inverse taking M to the above composition φ_{M}.

Claim 3.5.

TODO 12. unlhd? lhd? trianglelefteq?
If $I \triangleleft \mathfrak{A}$ is a proper ideal then there is a maximal ideal $M \supseteq I$.
Proof. We use Zorn's lemma. Consider the set \mathcal{J} of proper ideals $J \triangleleft \mathfrak{A}$ such that $J \supseteq I$. If \mathcal{C} is some totally ordered (by \subseteq) subset of \mathcal{J} then

$$
J^{\prime}=\bigcup_{J \in \mathcal{C}} J
$$

is an ideal. It is proper since $1 \notin J$ for all $J \in \mathcal{C}$, so $1 \notin J^{\prime}$. So J^{\prime} is an upper bound for \mathcal{C} in \mathcal{J}. So by Zorn's lemma \mathcal{J} contains a maximal element M, which is a maximal ideal. Claim 3.5

But $\{0\}$ is a proper ideal. So there is a maximal ideal.
Theorem 3.4
Definition 3.6. The collection $\mathcal{M}_{\mathfrak{A}}$ of all multiplicative linear functionals on \mathfrak{A} is considered as a subset of \mathfrak{A}^{\prime} endowed with the weak* topology; we call this the maximal ideal subspace of \mathfrak{A}.

Definition 3.7. The Gelfand transform is the homomorphism $\Gamma: \mathfrak{A} \rightarrow C\left(\mathcal{M}_{\mathfrak{A}}\right)$ given by $\Gamma(a)=\widehat{a}$ where $\widehat{a}(\varphi)=\varphi(a)$.

Theorem 3.8 (Gelfand). $\mathcal{M}_{\mathfrak{A}}$ is a compact Hausdorff space, and Γ is a contractive homomorphism into $C\left(\mathcal{M}_{\mathfrak{A}}\right)$ and $\Gamma(\mathfrak{A})$ separates points in $\mathcal{M}_{\mathfrak{A}}$.

Proof. If $a, b \in \mathfrak{A}$ then $\widehat{a b}(\varphi)=\varphi(a b)=\varphi(a) \varphi(b)=\widehat{a}(\varphi) \widehat{b}(\varphi)$. So $\Gamma(a b)=\Gamma(a) \Gamma(b)$. Clearly Γ is linear.
If $\varphi_{\alpha} \in \mathcal{M}_{\mathfrak{A}}$ with $\varphi_{\alpha} \xrightarrow{w^{*}} \varphi$ then

$$
\varphi(a b)=\lim _{\alpha} \varphi_{\alpha}(a b)=\lim _{\alpha} \varphi_{\alpha}(a) \varphi_{\alpha}(b)=\varphi(a) \varphi(b)
$$

So $\mathcal{M}_{\mathfrak{A}}$ is a weak ${ }^{*}$-closed subset of $\overline{b_{1}\left(\mathfrak{A}^{\prime}\right)}$; by Banach-Alaoglu theorem, we have that $\overline{b_{1}\left(\mathfrak{A}^{\prime}\right)}$ is weak*-compact; so $\mathcal{M}_{\mathfrak{A}}$ is weak ${ }^{*}$-compact. Also note that

$$
\widehat{a}(\varphi)=\varphi(a)=\lim \varphi_{\alpha}(a)=\lim \widehat{a}\left(\varphi_{a}\right)
$$

so \widehat{a} is continuous. To see that Γ is contractive, note that

$$
\|\widehat{a}\|=\sup _{\varphi \in \mathcal{M}_{2 l}}|\widehat{a}(\varphi)|=\sup _{\varphi \in \mathcal{M}_{2 t}}|\varphi(a)| \leq\|a\|
$$

To see that $\Gamma\left(\mathfrak{A}\right.$ separates points in $\mathcal{M}_{\mathfrak{A}}$, we note that if $\varphi, \psi \in \mathcal{M}_{\mathfrak{A}}$ have $\varphi \neq \psi$ then $\exists a \in \mathfrak{A}$ such that $\widehat{a}(\varphi)=\varphi(a) \neq \psi(a)=\widehat{a}(\psi)$.
\square Theorem 3.8
Theorem 3.9. Suppose \mathfrak{A} is a commutative unital Banach algebra. Then

1. a is invertible in \mathfrak{A} if and only if \widehat{a} is invertible in $C\left(\mathcal{M}_{\mathfrak{A})}\right)$.
2. $\sigma(a)=\sigma_{C\left(\mathcal{M}_{\mathfrak{2}}\right)}(\widehat{a})=\operatorname{Ran}(\widehat{a})$.
3. $\|\widehat{a}\|=\operatorname{spr}(a)$.

Proof.

1. If a is invertible in \mathfrak{A} then $a a^{-1}=1$. So $\Gamma(a) \Gamma\left(a^{-1}\right)=\Gamma(1)=1$, and $\Gamma(a)$ is invertible. If a is not invertible then $J=a \mathfrak{A}$ is proper since $1 \notin J$ (this uses commutativity of \mathfrak{A}). So J is contained in some maximal ideal, which corresponds to some $\varphi \in \mathcal{M}_{\mathfrak{A}}$ with $0=\varphi(a)=\widehat{a}(\varphi)$; so \widehat{a} is not invertible.
2. Follows directly from previous item.
3. We have

$$
\|\widehat{a}\|=\sup |\widehat{a}(\varphi)|=\sup \{|\lambda|: \lambda \in \sigma(a)=\operatorname{Ran}(\widehat{a})\}=\operatorname{spr}(a)
$$

as desired.Theorem 3.9
Definition 3.10. Suppose \mathfrak{A} is a commutative Banach algebra with unity. The radical of \mathfrak{A} is $\operatorname{rad}(\mathfrak{A})=$ $\operatorname{ker}(\Gamma)=\{a: \widehat{a}=0\}$. We say \mathfrak{A} is semisimple if $\operatorname{rad}(\mathfrak{A})=\{0\}$; i.e. Γ is injective.
Proposition 3.11. $\operatorname{rad}(\mathfrak{A})=\{a \in \mathfrak{A}: \operatorname{spr}(a)=0\}=\left\{a: \lim \left\|a^{n}\right\|^{\frac{1}{n}}=0\right\}$ is the set of quasi-nilpotent elements of \mathfrak{A}.
Example 3.12.

1. Consider $\mathfrak{A}=C(X)$ with X compact and Hausdorff. Then for $x \in X$ we have $\varepsilon_{x}(f)=f(x)$ is multiplicative; so $\operatorname{ker}\left(\varepsilon_{x}\right)=\{f: f(x)=0\}$ is a maximal ideal. Suppose M is a maximal ideal; we can define $\operatorname{ker}(M)=\{x \in X: f(x)=0$ for all $f \in M\}$. If $x \in \operatorname{ker}(M)$ then $M \subseteq \operatorname{ker}\left(\varepsilon_{x}\right)$, and hence by maximality we have $M=\operatorname{ker}\left(\varepsilon_{x}\right)$.
What if $\operatorname{ker}(M)=\emptyset$? Then for all $x \in X$ there is $f_{x} \in M$ such that $f_{x}(x) \neq 0$. Let $U_{x}=$ $\left\{y \in X: f_{x}(y) \neq 0\right\}$; these form an open cover of X, so by compactness there is a finite subcover $X \subseteq U_{x_{1}} \cup \cdots \cup U_{x_{n}}$. Let

$$
g=\sum_{i=1}^{n} f_{x_{i}} \overline{f_{x_{i}}}=\sum_{i=1}^{n}\left|f_{x_{i}}\right|^{2}>0
$$

so $g \in M$. But then g is invertible; so $M=\mathfrak{A}$ is not proper.
Hence $\mathcal{M}_{C(X)}=X$ as a set. The topology on $\mathcal{M}_{C(X)}$ is the weak* topology induced by $\left(\mathfrak{A}^{\prime}, w^{*}\right)$. The sub-basic open sets in $\mathcal{M}_{C(X)}$ are $\left\{\varphi \in \mathcal{M}_{C(X)}:|\varphi(a)-\lambda|<r\right\}$; this corresponds via the above to $\{x \in X:|a(x)-\lambda|<r\}$, which are open in X because a is continuous. Hence the map $\gamma: X \rightarrow \mathcal{M}_{\mathfrak{A}}$ we (implicitly) defined above is continuous, injective, and surjective; since both X and $\mathcal{M}_{\mathfrak{A}}$ are compact and Hausdorff, we get that γ is a homeomorphism. So $\mathcal{M}_{C(X)} \approx X$.
2. Consider $\ell^{1}(\mathbb{Z})$ with

TODO 13. This is a Banach algebra under convolution I guess?

$$
\delta_{n}(k)= \begin{cases}1 & \text { if } k=n \\ 0 & \text { else }\end{cases}
$$

Note that $\delta_{n} * \delta_{m}=\delta_{n+m}$. If $\varphi \in \mathcal{M}_{\ell^{1}(\mathbb{Z})}$ with $\varphi\left(\delta_{1}\right)=\alpha$ then $\varphi\left(\delta_{n}\right)=\varphi\left(\delta_{1}^{n}\right)=\varphi\left(\delta_{1}\right)^{n}=\alpha^{n}$.
TODO 14. connective
$\left|\alpha^{n}\right| \leq\left\|\delta_{n}\right\|_{1}=1$ for all n; also $|\alpha| \leq 1$ and $\left|\alpha^{-1}\right| \leq 1$ implies $|\alpha|=1$. We have thus determined a function $\mathcal{M}_{\ell^{1}(\mathbb{Z})} \rightarrow \mathbb{T}$.
Conversely if $|\alpha|=1$ define

$$
\varphi_{\alpha}(f)=\sum_{n \in \mathbb{Z}} a_{n} \alpha^{n}
$$

where

$$
f=\sum_{n \in \mathbb{Z}} a_{n} \delta_{n}
$$

(so $\left.\|f\|_{1}=\sum\left|a_{n}\right|<\infty\right)$. Then $\left\|\varphi_{\alpha}\right\|=\left\|\left(\alpha^{n}\right)_{n \in \mathbb{Z}}\right\|_{\infty}=1$ (using the fact that $\ell_{1}(\mathbb{Z})^{\prime}=\ell_{\infty}(\mathbb{Z})$). If

$$
g=\sum_{n \in \mathbb{Z}} b_{n} \delta_{n}
$$

then

$$
(f * g)(n)=\sum_{k \in \mathbb{Z}} a_{k} b_{n-k}
$$

This lies in $\ell^{1}(\mathbb{Z})$; indeed

$$
\sum_{k} \underbrace{\sum_{n}\left|a_{k} b_{n-k}\right|}=\sum_{k}\left|a_{k}\right| \sum_{n}\left|b_{n-k}\right|=\|f\|_{1}\|g\|_{1}
$$

absolutely convergent

Also

$$
\begin{aligned}
\varphi_{\alpha}(f * g) & =\sum_{n \in \mathbb{Z}} \alpha^{n}(f * g)(n) \\
& =\sum_{n \in \mathbb{Z}} \alpha^{n} \sum_{k \in \mathbb{Z}} a_{k} b_{n-k} \\
& =\sum_{k \in \mathbb{Z}} a_{k} \alpha^{k} \sum_{n \in \mathbb{Z}} \alpha^{n-k} b_{n-k} \text { (since absolute convergence lets us rearrange the sum) } \\
& =\sum_{k \in \mathbb{Z}} a_{k} \alpha^{k} \sum_{\ell \in \mathbb{Z}} \alpha^{\ell} b_{\ell} \\
& =\varphi_{\alpha}(g) \varphi_{\alpha}(f)
\end{aligned}
$$

So φ_{α} is multiplicative. Also φ is determined by $\varphi\left(\delta_{1}\right)=\alpha$. So this is a bijection $\mathcal{M}_{\ell^{1}(\mathbb{Z})} \rightarrow \mathbb{T}$. Also $\varphi \mapsto \varphi\left(\delta_{1}\right)$ is continuous by definition of the weak* topology. Thus this is a homeomorphism.
What of the Gelfand transform? Well $\Gamma: \ell^{1}(\mathbb{Z}) \rightarrow C(\mathbb{T})$ by $\Gamma(f)=\widehat{f}$ where $\widehat{f}(\alpha)=\varphi_{\alpha}(f)$. Write $\alpha=\exp (i \theta)$ with $0 \leq \theta<2 \pi$; then

$$
\widehat{f}(\exp (i \theta))=\sum_{n=-\infty}^{\infty} a_{n} \exp (i n \theta)
$$

TODO 15. Here $f(n)=a_{n}$?
The range of Γ is the algebra $A(\mathbb{T})$ of all continuous functions on \mathbb{T} whose Fourier series is absolutely convergent.
Theorem 3.13 (Wiener). If $f \in A(\mathbb{T})$ and $\widehat{f}(\exp (i \theta)) \neq 0$ for all θ then $\frac{1}{\hat{f}} \in A(\mathbb{T})$.
Proof. We have

$$
\sigma_{A(\mathbb{T})}(\widehat{f})=\sigma_{\ell^{1}(\mathbb{Z})}(f)=\sigma_{C(\mathbb{T})}(\widehat{f})=\operatorname{Ran} \widehat{f}
$$

where the first equality is because the algebras are isomorphic, and the second is Gelfand's theorem. But $0 \notin \operatorname{Ran} \widehat{f}$, so $0 \notin \sigma_{A(\mathbb{T})}(\widehat{f})$, and \widehat{f} is invertible in $A(\mathbb{T})$.

Theorem 3.13
3. Consider $A(\mathbb{D})$ and $\ell^{1}\left(\mathbb{Z}^{+}\right)$with $\mathbb{Z}^{+}=\mathbb{N}_{0}$. Note that $A(\mathbb{D})$ is the closure of the polynomials in $C(\overline{\mathbb{D}})$. If $f \in A(\mathbb{D})$ then $f_{r}(z)=f(r z)$ for $0 \leq r<1$ has Fourier series

$$
\begin{aligned}
f & \sim \sum_{n \geq 0} a_{n} \exp (i n \theta) \\
f_{r} & \sim \sum_{n \geq 0} a_{n} r^{n} \exp (i n \theta)
\end{aligned}
$$

So

$$
f_{r}(z)=\sum_{n \geq 0} a_{n} r^{n} z^{n}
$$

converges absolutely and uniformly, and lies in the $C(\overline{\mathbb{D}})$-norm-closure of $\mathbb{C}[z]$. Also f is continuous on $\overline{\mathbb{D}}$, and hence uniformly continuous. So $f_{r} \rightarrow f$ uniformly. Thus f is also a limit of polynomials.
So $\{z\}$ generates $A(\mathbb{D})$ as a unital Banach algebra. So any $\varphi \in \mathcal{M}_{A(\mathbb{D})}$ is determined by $\varphi(z)=\lambda$; note that $|\lambda| \leq\|z\|=1$. Conversely if $\lambda \in \overline{\mathbb{D}}$ we let $\varphi_{\lambda}(f)=f(\lambda)$, which is clearly multiplicative. We get $\mathcal{M}_{A(\mathbb{D})}=\overline{\mathbb{D}}$.
The case $\ell^{1}\left(\mathbb{Z}_{+}\right)$is similar, using $\varphi\left(\delta_{1}\right)=\lambda$; note here that $|\lambda| \leq\left\|\delta_{1}\right\|_{1}=1$. We get $\ell^{1}(\mathbb{Z}) \rightarrow C(\overline{\mathbb{D}})$ given by mapping $f=\left(a_{n}\right)_{n \geq 0}$ to

$$
\widehat{f}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

for $z \in \overline{\mathbb{D}}$; this is a contractive hoommorphism. If $\lambda \in \overline{\mathbb{D}}$ then $\varphi_{\lambda}(f)=\widehat{f}(\lambda)$ is multiplicative.
Theorem 3.14. Suppose $\mathfrak{A}, \mathfrak{B}$ are Banach algebras; suppose \mathfrak{B} is commutative and semisimple. Then every algebra homomorphism $\theta: \mathfrak{A} \rightarrow \mathfrak{B}$ is (automatically) continuous.

Proof. We are given the Gelfand map $\Gamma: \mathfrak{B} \rightarrow C\left(\mathcal{M}_{\mathfrak{B}}\right)$ is injective. Suppose $\varphi \in \mathcal{M}_{\mathfrak{B}}$. Then $\varphi \circ \theta: \mathfrak{A} \rightarrow \mathbb{C}$ is multiplicative; hence $\|\varphi \circ \theta\| \leq 1$.

If \mathfrak{A} is not commutative then $C=\overline{\langle a b-b a\rangle}$ is the commutator ideal, and is in the kernel of θ. We get a diagram

with $\varphi \circ \tilde{\theta}$ continuous (has norm ≤ 1) and $\|q\| \leq 1$. So $\|\theta \varphi\| \leq 1$.
We apply the closed graph theorem. If $a_{n} \in \mathfrak{A}$ with $a_{n} \rightarrow 0$ and $\theta\left(a_{n}\right) \rightarrow b$, we must show that $b=0$. If $\varphi \in \mathcal{M}_{\mathfrak{B}}$ then

$$
(\varphi \circ \theta)(\underbrace{a_{n}}_{\rightarrow 0}) \rightarrow 0
$$

But also $\varphi\left(\theta\left(a_{n}\right)\right) \rightarrow \varphi(b)$; so $\varphi(b)=0$. This holds for all φ; so $\Gamma(b)=0$. But Γ is injective; so $b=0$. So by the closed graph theorem we get that θ is continuous.

Corollary 3.15. If \mathfrak{A} is a commutative semisimple Banach algebra then

1. \mathfrak{A} has a unique Banach algebra norm up to equivalence of norms.
2. Every automorphism of \mathfrak{A} is continuous.

Proof.

1. Let $\|\cdot\|$ be the norm on \mathfrak{A}. Suppose that $\|\|\cdot\|$ is a norm on \mathfrak{A} which makes \mathfrak{A} into a Banach algebra $(\mathfrak{A},\|\cdot\| \|)$ is complete and $\|a b\| \leq\|a\|\| \| b \|$. Define $j:(\mathfrak{A},\|\cdot\| \cdot \|) \rightarrow(\mathfrak{A},\|\cdot\|)$ by $j(a)=a$. Then j is an algebra homomorphism, and is thus continuous by the theorem. So j is continuous, injective, and surjective, and is htus invertible. Thus $c\|a\| \leq\|a\| \leq C\|a\|$ for some $0<c \leq C$.
2. Easy.

Corollary 3.15
Corollary 3.16. $C^{\infty}[0,1]$ has no norm that makes it a Banach algebra.
Proof. Suppose $\|\cdot\|$ is a Banach algebra norm on $C^{\infty}[0,1]$. Let $j: C^{\infty}[0,1] \rightarrow C[0,1]$ be $j(f)=f$; note that $C[0,1]$ is commutative and semisimple. So j is continuous by theorem. Thus

$$
\|f\|_{\infty}=\sup _{0 \leq x \leq 1}|f(x)| \leq C\|f\|
$$

Claim 3.17. The map $D: C^{\infty}[0,1] \rightarrow C^{\infty}[0,1]$ given by $D f=f^{\prime}$ is continuous.
Proof. D is everywhere defined, so we can use the closed graph theorem. Suppose $f_{n} \in C^{\infty}[0,1]$ has $\left\|f_{n}\right\| \rightarrow 0$ and $D f_{n}=f_{n}^{\prime} \rightarrow g \in C^{\infty}[0,1]$; i.e. $\left\|f_{n}^{\prime}-g\right\| \rightarrow 0$. Suppose $f_{n} \in C^{\infty}[0,1]$ has $\left\|f_{n}\right\| \rightarrow 0$ and $D f_{n}=f_{n}^{\prime} \rightarrow g \in C^{\infty}[0,1]$; i.e. $\left\|f_{n}^{\prime}-g\right\| \rightarrow 0$. Then $\left\|f_{n}\right\|_{\infty} \rightarrow 0$, so $\left\|f_{n}^{\prime}-g\right\|_{\infty} \rightarrow 0$. If $0 \leq x<y \leq 1$ then

$$
\int_{x}^{y} g(t) \mathrm{d} t=\int_{x}^{y} f_{n}^{\prime}(t) \mathrm{d} t+\int_{x}^{y}\left(g-f_{n}^{\prime}\right)(t) \mathrm{d} t=\left(f_{n}(y)-f_{n}(x)\right)+\int_{x}^{y}\left(g-f_{n}^{\prime}\right)(t) \mathrm{d} t
$$

Thus

$$
\left|\int_{x}^{y} g(t) \mathrm{d} t\right| \leq\left|f_{n}(y)\right|+\left|f_{n}(x)\right|+\int_{x}^{y}\left\|g-f_{n}^{\prime}\right\|_{\infty} \mathrm{d} t \leq 2\left\|f_{n}\right\| \infty+\left\|g-f_{n}^{\prime}\right\|_{\infty} \cdot 1 \rightarrow 0
$$

Thus

$$
\int_{x}^{y} g(t) \mathrm{d} t=0
$$

for all x, y; thus $g=0$. Thus D is continuous by the closed graph theorem.
So there is c_{2} such that $\left\|f^{\prime}\right\| \leq c_{2}\|f\|$. Let $f(t)=\exp \left(2 c_{2} t\right)$, so $f^{\prime}=2 c_{2} f$. Then $2 c_{2}\|f\|=\left\|f^{\prime}\right\| \leq c_{2}\|f\|$; so $\|f\|=0$ and $f=0$, a contradiction.

3.1 The non-unital case

In this section, \mathfrak{A} is non-unital.
TODO 16. Are we still commutative?
Definition 3.18. An ideal $I \triangleleft \mathfrak{A}$ is modular if \mathfrak{A} / I is unital; i.e. there is $u \in \mathfrak{A}$ such that $a-a u, a-u a \in I$ for all $a \in \mathfrak{A}$. An ideal is maximal modular if it is maximal among modular ideals.

Remark 3.19.

1. If \mathfrak{A} is unital, then every proper ideal is modular.
2. If I is modular with unit u modulo I, then if $I \subseteq J \triangleleft \mathfrak{A}$ with $u \notin J$, then J is modular with unit u modulo J.

Theorem 3.20. Every modular ideal is contained in a maximal modular ideal, and maximal modular ideals are closed.

Proof. Suppose I is a modular ideal with unit u modulo I. Suppose J is a proper ideal containing I; then u is also a unit modulo J, and thus since J is proper we have $u \notin J$.

We now use Zorn's lemma. Suppose $\mathcal{C}=\left\{J_{\alpha}\right\}$ is a chain of modular ideals containing I. Then $J=\bigcup \mathcal{C}$ is an ideal; since $u \notin J_{\alpha}$ for all α we get $u \notin J$, so J is modular by previous remark. So by Zorn's lemma we get a maximal modular ideal containing I.
Claim 3.21. If M is modular with unit u modulo M, then $b_{1}(u) \cap M=\emptyset$.
Proof. Suppose $x \in M$ with $\|x-u\|<1$. Work in $\mathfrak{A}_{+}=\mathfrak{A} \oplus \mathbb{C} e$, a unital Banach algebra containing \mathfrak{A}. Then $e+(x-u)$ is invertible in \mathfrak{A}_{+}, with inverse $\lambda e+y$ for some $y \in \mathfrak{A}$. Then

$$
e=(e+x-u)(\lambda e+y)=\lambda e+y+\lambda x+x y-\lambda u-u y
$$

Thus

$$
(1-\lambda) e=\underbrace{(y-u y)}_{\in M}+\underbrace{(\lambda x+x y)}_{\in M}-\lambda u \in \mathfrak{A}
$$

So $\lambda=1$; so $u \notin M$, a contradiction.
Claim 3.21
In particular, we get $u \notin \bar{M}$, so \bar{M} is also a modular ideal; hence if M is maximal then $M=\bar{M}$ is closed. Theorem 3.20

Proposition 3.22. Suppose \mathfrak{A} is a non-unital commutative Banach algebra. If φ is a multiplicative linear functional then $\|\varphi\| \leq 1$.

Proof. Same as in the unital case for bounded above.
Proposition 3.22
Remark 3.23. In the unital case we required $\varphi(1)=1$ for φ to be a multiplicative linear functional; this no longer makes sense (since we're non-unital), so we instead require $\varphi \neq 0$.

Theorem 3.24. There is a natural bijection $\varphi \mapsto \operatorname{ker}(\varphi)$ between $\mathcal{M}_{\mathfrak{A}}$ and maximal modular ideals of \mathfrak{A}.
Proof. If φ is multiplicative and non-zero then $\varphi: \mathfrak{A} \rightarrow \mathbb{C}$ is surjective, so $\mathbb{C} \cong \mathfrak{A} / \operatorname{ker}(\varphi)$ is unital; so $M=\operatorname{ker}(\varphi)$ is modular and has codimension 1 , and is thus maximal.

Conversely, suppose M is a maximal modular ideal. So M is closed; so \mathfrak{A} / M is a (unital, by modularity) Banach algebra. We show that \mathfrak{A} / M is a field, and is thus \mathbb{C} by Mazur.

Suppose otherwise. Let $\varphi: \mathfrak{A} \rightarrow \mathfrak{A} / M$ be the quotient map; so there is $a \in \mathfrak{A} \backslash M$ such that $\varphi(a) \neq 0$ is not invertible. Then $J=\langle\varphi(a)\rangle=\varphi(a) \mathfrak{A} / M$ is a proper ideal; so $\varphi^{-1}(J) \unlhd \mathfrak{A}$ with $M \varsubsetneqq \varphi^{-1}(J)$. But $\mathfrak{A} / \varphi^{-1}(J)=(\mathfrak{A} / M) / J$ is unital; so $\varphi^{-1}(J)$ is modular, contradicting maximality of M.

So \mathfrak{A} / M is a Banach field, and is thus \mathbb{C}. So $\mathfrak{A} / M \cong \mathbb{C}$, and φ defines a multiplicative linear functional. Theorem 3.24

Theorem 3.25. Suppose \mathfrak{A} is a non-unital commutative Banach algebra; let $\mathfrak{A}_{+}=\mathfrak{A} \oplus \mathbb{C} e$ be the unitization. Then $\mathcal{M}_{\mathfrak{A}}=\mathcal{M}_{\mathfrak{A}_{+}} \backslash\left\{\varphi_{\infty}\right\}$ where $\varphi_{\infty}(a+\lambda e)=\lambda$ is the multiplicative linear functional on \mathfrak{A}_{+}with kernel \mathfrak{A}. Moreover, $\mathcal{M}_{\mathfrak{A}}$ is the locally compact Hausdorff space with topology induced as a subset of $\mathcal{M}_{\mathfrak{A}_{+}}$and $\mathcal{M}_{\mathfrak{A}_{+}}$is the 1-point compactification of $\mathcal{M}_{\mathfrak{A}}$.

Definition 3.26. If X is Hausdorff and locally compact (i.e. every point $x \in X$ has a neighbourhood U such that \bar{U} is compact) then the 1-point compactification of X is the space $X_{+}=X \cup\{p\}$ where $U \subseteq X$ open is open in X_{+}and neighbourhoods of p have the form $\{p\} \cup(X \backslash K)$ where $K \subseteq X$ is compact.

Remark 3.27. X_{+}is compact because if $\left\{U_{\alpha}\right\}$ is an open cover, then there is α_{0} with $p \in U_{\alpha_{0}}$; so $K=X_{+} \backslash U_{\alpha_{0}}$ is compact in X, and the U_{α} cover K. So there is a finite subcover $K \subseteq U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}}$; then $X \subseteq U_{\alpha_{0}} \cup \cdots \cup U_{\alpha_{n}}$.
X_{+}is Hausdorff because if $x \in X$ then there is open $U \subseteq X$ such that $K=\bar{U}$ is compact. Then $x \in U$ and $p \in X \backslash K$ are separated by disjoint opens. (That $x, y \in X$ are separated by opens is just that X is Hausdorff.)

Proof of Theorem 3.25. If $\varphi \in \mathcal{M}_{\mathfrak{A}_{+}}$then $\varphi \upharpoonright \mathfrak{A}$ is a multiplicative lienar functional. But $\varphi_{\infty} \upharpoonright \mathfrak{A}=0$, and otherwise $\varphi \upharpoonright \mathfrak{A} \neq 0$ (since $\mathfrak{A} \subseteq \operatorname{ker}(\varphi)$ implies $\left.\varphi=\varphi_{\infty}\right)$. So $\mathcal{M}_{\mathfrak{A}_{+}} \backslash\left\{\varphi_{\infty}\right\}$ restricts to elements of $\mathcal{M}_{\mathfrak{A}}$. If $\varphi_{1} \upharpoonright \mathfrak{A}=\varphi_{2} \upharpoonright \mathfrak{A}$ then for $a+\lambda e \in \mathfrak{A}_{+}$we have

$$
\varphi_{1}(a+\lambda e)=\varphi_{1}(a)+\lambda=\varphi_{2}(a)+\lambda=\varphi_{2}(a+\lambda e)
$$

So $\varphi_{1}=\varphi_{2}$.
Conversely, if $\varphi \in \mathcal{M}_{\mathfrak{A}}$ we define $\widetilde{\varphi}(a+\lambda e)=\varphi(a)+\lambda$; one can check that $\varphi \mapsto \widetilde{\varphi}$ is a homomorphism. We now verify the statement about the topology. In $\mathcal{M}_{\mathfrak{A}}$, the basic open sets have form

$$
U\left(F, \varphi_{0}\right)=\left\{\varphi \in \mathcal{M}_{\mathfrak{A}}:\left|\varphi\left(a_{i}\right)-\varphi_{0}\left(a_{i}\right)\right|<1,1 \leq i \leq n\right\}
$$

where $\varphi_{0} \in \mathcal{M}_{\mathfrak{A}}$ and $F=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathfrak{A}$ is finite. In $\mathcal{M}_{\mathfrak{A}_{+}}$the basic open neighbourhoods are of the form

$$
V\left(G, \varphi_{0}\right)=\left\{\varphi \in \mathcal{M}_{\mathfrak{A}_{+}}:\left|\varphi\left(b_{i}\right)-\varphi_{0}\left(b_{i}\right)\right|<1,1 \leq i \leq n\right\}
$$

for $\varphi_{0} \in \mathcal{M}_{\mathfrak{A}}$
TODO 17. \mathfrak{A}_{+}?
and $G=\left\{b_{1}, \ldots, b_{n}\right\} \subseteq \mathcal{M}_{\mathfrak{A}_{+}}$is finite. Write $b_{i}=a_{i}+\lambda_{i} e$, where $a_{i} \in \mathfrak{A}$ and $\lambda_{i} \in \mathbb{C}$. Then

$$
\left|\varphi\left(b_{i}\right)-\varphi_{0}\left(b_{i}\right)\right|=\left|\varphi\left(a_{i}\right)+\lambda_{i}-\varphi_{0}\left(a_{i}\right)-\lambda_{i}\right|
$$

So if $F=\left\{a_{1}, \ldots, a_{n}\right\}$ then

$$
V\left(G, \varphi_{0}\right)=V\left(F, \varphi_{0}\right)= \begin{cases}U\left(F, \varphi_{0}\right) & \text { if } \exists i_{0} \text { such that }\left|\varphi_{0}\left(a_{i_{0}}\right)\right| \geq 1 \\ U\left(F, \varphi_{0}\right) \cup\left\{\varphi_{\infty}\right\} & \text { else }\end{cases}
$$

Thus the open sets of $\mathcal{M}_{\mathfrak{A}}$ have form $V \backslash\left\{\varphi_{\infty}\right\}$ for V open in $\mathcal{M}_{\mathfrak{A}_{+}}$. Thus the topology on $\mathcal{M}_{\mathfrak{A}}$ is induced from $\mathcal{M}_{\mathfrak{A}_{+}}$. Since $\mathcal{M}_{\mathfrak{A}_{+}}$is compact and Hausdorff, we get that $\mathcal{M}_{\mathfrak{A}}$ is locally compact and Hausdorff.

If $x \in \mathcal{M}_{\mathfrak{A}}$ then by Hausdorfness there is $U \ni x$ and $V \ni p$ open such that $U \cap V=\emptyset$. So $\bar{U} \subseteq \mathcal{M}_{\mathfrak{A}_{+}} \backslash V$ is compact; so $\mathcal{M}_{\mathfrak{A}}$ is locally compact and Hausdorff. Neighbourhoods of φ_{∞} have the form $\left\{\varphi_{\infty}\right\} \cup\left(\mathcal{M}_{\mathfrak{A}} \backslash K\right)$ where $K \subseteq \mathcal{M}_{\mathfrak{A}}$ is compact. So $\mathcal{M}_{\mathfrak{A}_{+}}$is the one-point compactification of $\mathcal{M}_{\mathfrak{A}}$. \square Theorem 3.25

3.1.1 $\quad L^{1}(G)$

Suppose G is a locally compact abelian grape; i.e.

- G is an abelian grape
- G has a locally compact topology
- $(x, y) \mapsto x y$ is continuous $G \times G \rightarrow G$
- $x \mapsto x^{-1}$ is continuous $G \rightarrow G$.

Then $L^{1}(G)$ is a commutative Banach algebra under convolution. It is unital if and only if G is discrete, in which case δ_{e} is the unit. (Examples to keep in mind are $G=\mathbb{T}$ and $G=\mathbb{R}$.)

Such grapes have a Haar measure: a translation-invariant σ-finite Borel measure such that $\sigma(K)<\infty$ if K is compact. We usually normalize so that if G is compact then $m(G)=1$ and if G is discrete then $m(e)=1$. When integrating with respect to m we will sometimes just write $\mathrm{d} x$. (So on \mathbb{T} we have $\mathrm{d} x=\frac{\mathrm{d} \theta}{2 \pi}$.)

Definition 3.28. A character of a locally compact abelian grape G is a continuous homomorphism $\gamma: G \rightarrow \mathbb{T}$.

If γ, δ are characters then $(\gamma \delta)(x)=\gamma(x) \delta(x)$ is also a character; also $\left(\gamma^{-1}\right)(x)=(\gamma(x))^{-1}=\overline{\gamma(x)}$ is also a character. So the set \widehat{G} of all characters on G is a grape; we call this the dual grape of G.

Theorem 3.29. Suppose G is a locally compact abelian grape. Then $\gamma \in \widehat{G}$ determines

$$
\varphi_{\delta}(f)=\int_{G} f(x) \overline{\gamma(x)} \mathrm{d} x
$$

Then φ_{δ} is a multiplicative linear functional in $L^{1}(G)$, and every multiplicative linear functional arises in this way.
Proof. $\gamma(x)$ is continuous and $|\gamma(x)|=1$; so $\gamma \in L^{\infty}(G)$. So φ_{γ} is a continuous linear functional on $L^{1}(G)$. Suppose $f, g \in L^{1}(G)$. Then

$$
\begin{aligned}
\varphi_{\gamma}(f * g) & =\int_{G} \overline{\gamma(x)}(f * g)(x) \mathrm{d} x \\
& =\int_{G} \overline{\gamma(x)} \int_{G} f(y) g\left(y^{-1} x\right) \mathrm{d} y \mathrm{~d} x \\
& \left.=\int_{G} \overline{\gamma(y)} f(y) \int_{G} \overline{\gamma\left(y^{-1} x\right)} g\left(y^{-1} x\right) \mathrm{d} x \mathrm{~d} y \text { (using Fubini and } \gamma(x)=\gamma(y) \gamma\left(y^{-1} x\right)\right) \\
& =\int_{G} \overline{\gamma(y)} f(y) \int_{G} \overline{\gamma(t)} g(t) \mathrm{d} t \mathrm{~d} y \text { (by translation invariance) } \\
& =\varphi_{\gamma}(f) \gamma(g)
\end{aligned}
$$

(Note that $\overline{\gamma(x)} f(x) g\left(y^{-1} x\right) \in L^{1}(G \times G)$, so Fubini's theorem holds.) So $\varphi_{\gamma} \in \mathcal{M}_{L^{1}(G)}$.
Conversely let $\varphi \in \mathcal{M}_{L^{1}(G)}$. Since $L^{1}(G)^{\prime}=L^{\infty}(G)$ there is $\chi \in L^{\infty}(G)$ such that

$$
\varphi(f)=\int_{G} f(x) \chi(x) \mathrm{d} x
$$

with $\|\chi\|_{\infty}=\|\varphi\| \leq 1$. Also $\varphi \neq 0$ so there is $g \in L^{1}(G)$ such that $\varphi(g)=1$. For $f \in L^{1}(G)$ we have

$$
\begin{aligned}
\varphi(f) & =\varphi(f) \varphi(g) \\
& =\varphi(f * g) \\
& =\int_{G} \chi(x) \underbrace{\int_{G} f(y) g\left(y^{-1} x\right) y}_{(f * g)(x)} \mathrm{d} x \\
& =\int_{G} f(y) \int_{G} g\left(y^{-1} x\right) \chi(x) \mathrm{d} x \mathrm{~d} y \text { (Fubini) }
\end{aligned}
$$

Let $\left.L_{y} g\right)(x)=g\left(y^{-1} x\right.$ be the (left) translation of g. A basic measure theory fact is that $y \mapsto L_{y} g$ is contained in L^{1}. (e.g. for $f \in L^{1}(\mathbb{R})$ if we define $f_{y}(x)=f(x-y)$ then $\left\|f-f_{y}\right\| \rightarrow 0$ as $y \rightarrow 0$.) Hence, continuing the above equations, we find

$$
\varphi(f)=\int_{G} f(y) \varphi\left(L_{y} g\right) \mathrm{d} y
$$

Since $y \mapsto L_{y} g$ is continuous, we get that φ is continuous. Define $\gamma(y)=\overline{\varphi\left(L_{y} g\right)}$ is a continuous map $G \rightarrow \mathbb{C}$.
A computation:

$$
\begin{aligned}
\left(g * L_{x y} g\right)(t) & =\int g(s)\left(L_{x y} g\right)\left(s^{-1} t\right) \mathrm{d} s \\
& =\int g(s) g\left(y^{-1} x^{-1} s^{-1} t\right) \mathrm{d} s \\
& =\int g\left(x^{-1} s\right) g\left(y^{-1} x^{-1}\left(x^{-1} s\right)^{-1} t\right) \mathrm{d} s \\
& =\int g\left(x^{-1} s\right) g\left(s^{-1} y^{-1} t\right) \mathrm{d} s \\
& =\int\left(L_{x} g\right)(s)\left(L_{y} g\right)\left(s^{-1} t\right) \mathrm{d} s \\
& =\left(\left(L_{x} g\right) *\left(L_{y} g\right)\right)(t)
\end{aligned}
$$

So

$$
\begin{aligned}
\gamma(x y) & =\overline{\varphi\left(L_{x y} g\right)} \\
& =\overline{\varphi(g) \varphi\left(L_{x y} g\right)} \\
& =\overline{\varphi\left(g * L_{x y} g\right)} \\
& =\overline{\varphi\left(L_{x} g * L_{y} g\right)} \\
& =\overline{\varphi\left(L_{x} g\right) \varphi\left(L_{y} g\right)} \\
& =\gamma(x) \gamma(y)
\end{aligned}
$$

So γ is multiplicative. So

$$
|\gamma(x)|=\left|\overline{\varphi\left(L_{x} g\right)}\right| \leq\|\varphi\|\left\|L_{x} g\right\|_{1} \leq 1 \cdot\|g\|_{1}
$$

So $\left|\gamma\left(x^{n}\right)\right|=\left|\gamma(x)^{n}\right| \leq\|g\|_{1}$ for all $n \in \mathbb{Z}$. So taking $n \geq 0$ we find $|\gamma(x)| \leq 1$, and taking $n \leq 0$ we find $|\gamma(x)| \geq 1$. So $\gamma(x) \in \mathbb{T}$, and γ is a character.

Corollary 3.30. \widehat{G} has a locally compact Hausdorff topology induced by this bijection with $\mathcal{M}_{L^{1}(G)}$, with $\gamma_{\alpha} \rightarrow \gamma$ if and only of $\varphi_{\gamma_{\alpha}} \xrightarrow{w^{*}} \varphi_{\gamma}$ in $L^{1}(G)^{\prime}=L^{\infty}$, which occurs if and only if $\gamma_{\alpha} \xrightarrow{w^{*}} \gamma$ in L^{∞}.

Definition 3.31. For $f \in L^{1}(G)$ we define

$$
\widehat{f}(\gamma)=\Gamma f(\gamma)=\int f(x) \overline{\gamma(x)} \mathrm{d} x \in C_{0}(\widehat{G})
$$

the Fourier transform of f.
Example 3.32.

1. In $\ell_{1}(\mathbb{Z})$ we have $\widehat{\mathbb{Z}}=\mathbb{T}$, done earlier.

TODO 18. ref
2. Consider $L^{1}(\mathbb{T})$. We claim $\widehat{\mathbb{T}}=\mathbb{Z}$. Indeed, for all $n \in \mathbb{Z}$ we have $\gamma_{n}(t)=t^{n}$ a multiplicative map $\mathbb{T} \rightarrow \mathbb{T}$. Then $L^{1}(\mathbb{T}) \supseteq C(\mathbb{T}) \supseteq\left\{f_{k}(t)=t^{k}: k \in \mathbb{Z}\right\}$, with $L^{1}(\mathbb{T})=\overline{\operatorname{span}\left\{f_{k}: k \in \mathbb{Z}\right\}}{ }^{\|\cdot\|_{1}}$. Then

$$
\varphi_{\gamma_{n}}\left(f_{k}\right)=\int t^{k} t^{n} \mathrm{~d} t=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (i \theta(k-n)) \mathrm{d} \theta= \begin{cases}0 & \text { if } k \neq n \\ 1 & \text { if } k=n\end{cases}
$$

and

$$
\left(f_{k} * f_{\ell}\right)(t)=\int s^{k}\left(s^{-1} t\right)^{\ell} \mathrm{d} s=t^{\ell} \int s^{k-\ell} \mathrm{d} s= \begin{cases}f_{k} & \text { if } k=\ell \\ 0 & \text { if } k \neq \ell\end{cases}
$$

So $f_{k} * f_{k}=f_{k}$ is an idempotent, and $f_{k} * f_{\ell}=0$ with $k \neq \ell$.
If $\varphi \in \mathcal{M}_{L^{1}(\mathbb{T})}$ then

$$
\varphi\left(f_{k}\right)^{2}=\varphi\left(f_{k} * f_{k}\right)=\varphi\left(f_{k}\right) \in\{0,1\}
$$

and

$$
\varphi\left(f_{k}\right) \varphi\left(f_{\ell}\right)=\varphi\left(f_{k} * f_{\ell}\right)=0
$$

if $k \neq \ell$. Then $\varphi\left(f_{k}\right)$ is not zero for all k implies $\varphi=0$. So there is a unique n such that $\varphi\left(f_{n}\right)=1$; so $\varphi=\varphi_{n}$. So $\widehat{\mathbb{T}}=\mathbb{Z}$.
3. Consider $L^{1}(\mathbb{R})$. We claim $\widehat{\mathbb{R}}=\mathbb{R}$. If $s \in \mathbb{R}$ we have $\varphi_{s}(x)=\exp (i s x) \in \widehat{\mathbb{R}}$. Suppose φ is a character on $L^{1}(\mathbb{R})$; so φ is a continuous, multiplicative map $\mathbb{R} \rightarrow \mathbb{T}$. So $\varphi(0)=1$, and $\operatorname{Re}(\varphi(x))>\frac{1}{2}$ on some $[-\delta, \delta]$. So

$$
c_{\delta}=\int_{0}^{\delta} \varphi(x) \mathrm{d} x \neq 0
$$

So

$$
\varphi(t) c_{\delta}=\varphi(t) \int_{0}^{\delta} \varphi(x) \mathrm{d} x=\int_{0}^{\delta} \varphi(t+x) \mathrm{d} x=\int_{t}^{t+\delta} \varphi(x) \mathrm{d} x
$$

φ is continuous, so RHS is differentiable. So

$$
\begin{aligned}
\varphi^{\prime}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\int_{t}^{t+\delta} \varphi(x) \mathrm{d} x\right) \\
& =\varphi(t+\delta)-\varphi(t) \\
& =\varphi(t)(\varphi(\delta)-1)
\end{aligned}
$$

Let

$$
s=\frac{\varphi(\delta)-1}{i c_{\delta}}
$$

Then $\varphi^{\prime}(t)=(i s) \varphi(t)$. So $\varphi(t)=c \exp (i s t)$ and $1=\varphi(0)=c$ and $1=|\varphi(t)|=|\exp (i s t)|$ for all t; so $s \in \mathbb{R}$. So $\varphi=\varphi_{s}$.
So as a set we have $\widehat{\mathbb{R}}=\mathbb{R}$. The topology on $\widehat{\mathbb{R}}$ is induced by $\left(L^{\infty}(\mathbb{R}), w^{*}\right)$. If $s_{\alpha} \rightarrow s$ in \mathbb{R} then $\exp \left(i s_{\alpha} t\right) \rightarrow \exp (i s t)$ uniformly on $[-n, n]$ for all $n \in \mathbb{N}$. So $\exp \left(i s_{\alpha} t\right) \xrightarrow{w^{*}} \exp (i s t)$ in L^{∞}. If $g \in C_{00}(\mathbb{R})$ (i.e. has compact support) then $g(t) \exp \left(-i s_{\alpha} t\right) \rightarrow g(t) \exp (i s t)$ uniformly. Thus

$$
\varphi_{s_{\alpha}}(g)=\int g(t) \exp \left(-i s_{\alpha} t\right) \mathrm{d} t \rightarrow \int g(t) \exp -i s t \mathrm{~d} t=\varphi_{s}(g)
$$

But we can approximate $f \in L^{1}$ by $g \in C_{00}(\mathbb{R})$. So $\mathbb{R} \rightarrow \widehat{\mathbb{R}}$ is continuous.
Lemma 3.33. If $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$ is uniformly continuous and $\lim _{|x| \rightarrow \infty}(f * g)(x)=0$.
TODO 19. Defer until later?
Lemma 3.34 (Riemann-Lebesgue). If $f \in L^{1}(\mathbb{R})$ then

$$
\lim _{|x| \rightarrow \infty} \widehat{f}(x)=0
$$

Proof. Suffices to prove this for $g \in C_{00}(\mathbb{R})$; so g is uniformly continuous with $\operatorname{supp}(K) \subseteq[-n, n]$
TODO 20. I assume $K=\operatorname{supp}(g)$ instead?
and if $\varepsilon>0$ there is $\delta>0$ such that whenever $|x-y|<\delta$ we have $|g(x)-g(y)|<\varepsilon$. If $|x|$ is big then

$$
\begin{aligned}
\widehat{g}(x) & =\int g(t) \exp (-i x t) \mathrm{d} t \\
& =-\int g(t) \exp \left(-i x\left(t+\frac{\pi}{x}\right)\right) \mathrm{d} t \\
& =-\int g\left(t-\frac{\pi}{x}\right) \exp (-i x t) \mathrm{d} t \\
& =\frac{1}{2} \int\left(g(t)-g\left(t-\frac{\pi}{x}\right)\right) \exp (-i x t) \mathrm{d} t
\end{aligned}
$$

If $\left|\frac{\pi}{x}\right|<\delta\left(\right.$ so $\left.\left.|x|>\frac{\pi}{\delta}\right)\right)$ then

$$
|\widehat{g}(x)| \leq \frac{1}{2} \int_{n-\delta}^{n} \varepsilon \left\lvert\, \exp \left(-i x t \left\lvert\, \mathrm{d} t \leq \frac{2 n+\delta}{2} \varepsilon \rightarrow 0\right.\right.\right.
$$

In particular if $\varphi_{s_{\alpha}} \xrightarrow{w^{*}} \varphi_{s}$ in L^{∞} then either there is a cofinal subset s_{β} such that $s_{\beta} \rightarrow \infty$, which by Riemann-Lebesgue implies $\varphi_{s_{\beta}} \xrightarrow{w^{*}} 0$, a contradiction, or it is eventually bounded. Look at the cluster points in \mathbb{R}. If $s_{\beta} \rightarrow t$ and $s_{\beta^{\prime}} \rightarrow s$ with $s \neq t$ then $\varphi_{s_{\beta}} \xrightarrow{w^{*}} \varphi_{t}$ and $\varphi_{s_{\beta^{\prime}}} \xrightarrow{w^{*}} \varphi_{s}$, so $\varphi_{s \alpha} \xrightarrow{\psi^{*}} \varphi_{s}$; all this implies the topology on $\widehat{\mathbb{R}}$ is homeomorphic to \mathbb{R}.
TODO 21. Connectives.

Theorem 3.35. Suppose G is a locally compact abelian grape; let \widehat{G} be the dual grape with the w^{*} topology. Then

1. $(x, \gamma) \mapsto \gamma(x)$ is continuous on $G \times \widehat{G}$.
2. If $K \subseteq G$ is compact and $C \subseteq \widehat{G}$ is compact then

$$
\begin{aligned}
N(K, r) & =\{\gamma \in \widehat{G}:|\gamma(x)-1|<r \text { for all } x \in K\} \\
N(C, r) & =\{x \in G:|\gamma(x)-1|<r \text { for all } \gamma \in C\}
\end{aligned}
$$

are open in \widehat{G} and G, respectively.
3. $\left\{N(K, r) \gamma_{0}: K \subseteq G\right.$ compact, $\left.r>0, \gamma_{0} \in \widehat{G}\right\}$ is a base for the topology of \widehat{G}.
4. \widehat{G} is a locally compact grape (i.e. $\left(\gamma_{1}, \gamma_{2}\right) \mapsto \gamma_{1} \gamma_{2}^{-1}$ is continuous.)

Proof.

1. Write $f_{x}(y)=f\left(x^{-1} y\right)$. Then

$$
\begin{aligned}
\widehat{f}_{x}(\gamma) & =\int_{G} f_{x}(t) \overline{\gamma(t)} \mathrm{d} t \\
& =\int_{G} f(\underbrace{x^{-1} t}_{s}) \overline{\gamma(\underbrace{t}_{x s})} \mathrm{d} t \\
& =\int f(s) \overline{\gamma(x s)} \mathrm{d} t \text { (translation-invariance) } \\
& =\overline{\gamma(x)} \int_{G} f(s) \overline{\gamma(s)} \mathrm{d} t \\
& =\overline{\gamma(x)} \widehat{f}(\gamma)
\end{aligned}
$$

Claim 3.36. $(x, \gamma) \mapsto \widehat{f_{x}}(\gamma)$ is continuous on $G \times \widehat{G}$.
Proof. Fix $\left(x_{0}, \gamma_{0}\right)$. Translation is continuous in $L^{1}(G)$, so there is open $V \ni x_{0}$ such that $\left\|f_{x}-f_{x_{0}}\right\|_{1}<\varepsilon$ for all $x \in V$. Since γ_{0} is weak*-continuous there is open $W \ni \gamma_{0}$ such that $\left|\widehat{f_{x_{0}}}(\gamma)-\widehat{f_{x_{0}}}\left(\gamma_{0}\right)\right|<\varepsilon$ for all $\gamma \in W$. Then if $x \in V$ and $\gamma \in W$ we have

$$
\begin{aligned}
\left|\widehat{f_{x}}(\gamma)-\widehat{f_{x_{0}}}\left(\gamma_{0}\right)\right| & \leq\left|\widehat{f_{x}}(\gamma)-\widehat{f_{x_{0}}}(\gamma)\right|+\left|\widehat{f_{x_{0}}}(\gamma)-f_{x_{0}}\left(\gamma_{0}\right)\right| \\
& <\left|\int_{G}\left(f_{k}(t)-f_{x_{0}}(t)\right) \overline{\gamma(t)} \mathrm{d} t\right|+\varepsilon \\
& <\left\|f_{x}-f_{x_{0}}\right\|_{1}+\varepsilon \\
& <2 \varepsilon
\end{aligned}
$$

as desired. Claim 3.36

Now

$$
\gamma(x)=\overline{\left(\frac{\hat{f}_{x}(\gamma)}{\hat{f}(\gamma)}\right)}
$$

Pick f so that $\widehat{f}\left(\gamma_{0}\right) \neq 0$. So $\widehat{f}(\gamma) \neq 0$ on some neighbourhood $W \ni \gamma_{0}$. So $\gamma(x)$ is the quotient of continuous functions with non-zero denominator near γ_{0}, and is thus continuous at $\left(x_{0}, \gamma_{0}\right)$.
2. Suppose $K \subseteq G$ is open and $r>0$. Then

$$
N(K, r)=\{\gamma:|\gamma(x)-1|<r, x \in K\}
$$

Suppose $\gamma_{0} \in N(K, r)$; so $\left|\gamma_{0}(x)-1\right|<r$ for $x \in K$. But for each $x \in K$, continuity of $(x, \gamma) \mapsto \gamma(x)$ means there is are neighbourhoods $V_{x} \ni x$ and $W_{x} \ni \gamma_{0}$ such that for all $y \in V_{x}$ and $\gamma \in W_{x}$ we have $|\gamma(y)-1|<r$. The V_{x} form an open cover of K; so there is a finite subcover $K \subseteq V_{x_{1}} \cup \cdots \cup V_{x_{n}}$. Let

$$
W=\bigcap_{i=1}^{n} W_{x_{i}}
$$

which is open in \widehat{G} and contains γ_{0}. So if $\gamma \in W$ then $|\gamma(x)-1|<r$ (since $x \in V_{x_{i}}$ for some i and $W \subseteq W_{x_{i}}$. So $W \subseteq N(K, r)$.
The second part is quite similar.
3. Without loss of generality we may assume $\gamma_{0}=e$. Suppose W is open in \widehat{G} with $0 \in W$. So there are $f_{1}, \ldots, f_{n} \in L^{1}(G)$ such that

$$
0 \in\left\{\gamma:\left|\widehat{f}_{i}(\gamma)-\widehat{f}_{i}(e)\right|<1,1 \leq i \leq n\right\} \subseteq W
$$

We use the fact that $C_{00}(G)$ is dense in $L^{1}(G)$; we replace f_{i} by continuous, compactly supperted function. Let K be compact and contain

$$
\bigcup_{i=1}^{n} \operatorname{supp}\left(f_{i}\right)
$$

Let

$$
r=\frac{1}{\max _{i}\left\|f_{i}\right\|_{1}}
$$

If $\gamma \in N(K, r)$ then for $1 \leq i \leq n$ we have

$$
\begin{aligned}
\left|\widehat{f}_{i}(\gamma)-\widehat{f}_{i}(e)\right| & =\left|\int_{G} f_{i}(t)(\overline{\gamma(t)}-1) \mathrm{d} t\right| \\
& \leq \int_{K}\left|f_{i}(t)\right||\gamma(t)-1| \mathrm{d} t \\
& <r\left\|f_{i}\right\|_{1} \\
& \leq 1
\end{aligned}
$$

So $e \in N(K, r) \subseteq\left\{\gamma:\left|\widehat{f}_{i}(\gamma)-\widehat{f}_{i}(e)\right|<1,1 \leq i \leq n\right\} \subseteq W$. So the $N(K, r)$ form a base for the topology.
4. Suppose $\gamma_{1}, \gamma_{2} \in \widehat{G}$. Suppose $\gamma_{1} \gamma_{2}^{-1} \in N(K, r) \gamma_{1} \gamma_{2}^{-1}$. If $\gamma_{1}^{\prime} \in N\left(K, \frac{r}{2}\right) \gamma_{1}$ and $\gamma_{2}^{\prime} \in N\left(K, \frac{r}{2}\right) \gamma_{2}$ then $\gamma_{1} \gamma_{2}^{-1} \subseteq N\left(K, \frac{r}{2}\right) N\left(K, \frac{r}{2}\right)^{-1} \gamma_{1} \gamma_{2}^{-1}$. But

$$
\begin{aligned}
& N\left(K, \frac{r}{2}\right)=\left\{\gamma:|\gamma(t)-1|<\frac{r}{2}, t \in K\right\} \\
& N\left(K, \frac{r}{2}\right)=\left\{\gamma:|\overline{\gamma(t)}-1|<\frac{r}{2}, t \in K\right\} \\
& N\left(K, \frac{r}{2}\right)=\left\{\gamma:\left|\gamma^{-1}(t)-1\right|<\frac{r}{2}, t \in K\right\}
\end{aligned}
$$

So for $\gamma_{1}^{\prime} \in N\left(K, \frac{r}{2}\right), \gamma_{2}^{\prime} \in N\left(K, \frac{r}{2}\right)^{-1}$ we have

$$
\left|\gamma_{1} \gamma_{2}^{-1}(t)-1\right|=\left|\gamma_{1}(t)-\gamma_{2}(t)\right| \leq\left|\gamma_{1}(t)-1\right|+\left|1-\gamma_{2}(t)\right|<\frac{r}{2}+\frac{r}{2}=r
$$

So

$$
\gamma_{1} \gamma_{2}^{-1} \subseteq N\left(K, \frac{r}{2}\right) N\left(K, \frac{r}{2}\right)^{-1} \gamma_{1} \gamma_{2}^{-1} \subseteq N(K, r) \gamma_{1} \gamma_{2}^{-1}
$$

and continuity follows.

4 Banach *-algebras

Definition 4.1. A Banach *-algebra is a Banach algebra \mathfrak{A} with a continuous involution $a \mapsto a^{*}$ such that

1. $\left(a^{*}\right)^{*}=a$.
2. $(\lambda a)^{*}=\bar{\lambda} a^{*}$ and $(a+b)^{*}=a^{*}+b^{*}$.
3. $(a b)^{*}=b^{*} a^{*}$.

Example 4.2.

1. $C(X)$ and $C_{0}(X)$ with $f^{*}(x)=\overline{f(x)}$.
2. $\mathcal{B}(\mathcal{H})$ where \mathcal{H} is a Hilbert space, and the involution is the Hilbert space adjoint.
3. Consider $L^{1}(\mathbb{R})$.

Proposition 4.3. $L^{1}(\mathbb{R})$ is a Banach ${ }^{*}$-algebra with involution $f^{*}(x)=\overline{f(-x)}$. Moreover the Gelfand/Fourier transformation is a ${ }^{*}$-homomorphism.

Proof. Easy to check the *-algebra properties. Also

$$
\begin{aligned}
\widehat{f^{*}}(s) & =\int_{\mathbb{R}} f^{*}(x) \exp (-i s x) \mathrm{d} x \\
& =\int_{\mathbb{R}} \overline{f(-x)} \exp (-i s x) \mathrm{d} x \\
& =\overline{\int f(-x) \exp (i s x) \mathrm{d} x} \\
& =\overline{\int f(y) \exp (-i s y) \mathrm{d} y} \\
& =\overline{\widehat{f}(s)}
\end{aligned}
$$

as desired.Proposition 4.3

Definition 4.4. If \mathfrak{A} is a (non-unital) Banach algebra, a bounded (norm 1) approximate identity is a net $\left\{e_{\alpha}\right\}$ such that sup $\left\|e_{\alpha}\right\|<\infty(\leq 1)$ such that $a e_{\alpha} \rightarrow a$ and $e_{\alpha} a \rightarrow a$ for all $a \in \mathfrak{A}$.
Proposition 4.5. $e_{n}=\frac{n}{2} \chi_{\left[-n^{-1}, n^{-1}\right]}$ form a norm 1 approximate identity for $L^{1}(\mathbb{R})$.
Proof. Indeed, if $f \in L^{1}(\mathbb{R})$, then since translation is continuous then for any $\varepsilon>0$ there is $\delta>0$ such that $\left\|f_{x}-f\right\|_{1}<\varepsilon$ if $|x|<\delta$. The if $\frac{1}{n}<\delta$ we have

$$
\begin{aligned}
\left(e_{n} * f-f\right)(t) & =\int_{\mathbb{R}} f(t-x) e_{n}(x) \mathrm{d} x-f(t) \\
& =\frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(t-x) \mathrm{d} x-\frac{2}{n} \int_{\frac{1}{n}}^{n} f(t) \mathrm{d} x \\
& =\frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}}\left(f_{x}(t)-f(t)\right) \mathrm{d} x
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|e_{n} * f-f\right\|_{1} & \leq \int_{\mathbb{R}} \frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}}\left|f_{x}(t)-f(t)\right| \mathrm{d} x \mathrm{~d} t \\
& =\frac{2}{n} \int_{-\frac{1}{n}}^{\frac{1}{n}} \underbrace{\int\left|f_{x}(t)-f(t)\right| \mathrm{d} t}_{\left\|f_{x}-f\right\|_{1}<\varepsilon} \mathrm{d} x \\
& <\varepsilon
\end{aligned}
$$

as desired.
Proposition 4.5

Most of these facts hold for arbitrary locally compact grapes, but we hope to save ourselves some technicalities by working just with \mathbb{R}.
Lemma 4.6. If $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$ then $f * g \in C_{0}(\mathbb{R})$ and is uniformly continuous.
Proof. Note that

$$
\begin{aligned}
|(f * g)(x)-(f * g)(y)| & \leq \int|(f(x-t)-f(y-t)) g(t)| \mathrm{d} t \\
& \leq\|g\|_{\infty} \int|f(t-x)-f(t-y)| \mathrm{d} t \\
& =\|g\|_{\infty}\left\|f_{x}-f_{y}\right\|_{1} \\
& =\|g\|_{\infty}\left\|f-f_{y-x}\right\|_{1} \\
& \rightarrow 0 \text { as } x-y \rightarrow 0
\end{aligned}
$$

So $f * g$ is uniformly continuous; it remains to show that $f \in C_{0}(\mathbb{R})$. Suppose for contradiction that there were $\varepsilon>0$ and $\left|x_{n}\right| \rightarrow \infty$ such that $\left|f * g\left(x_{n}\right)\right| \geq \varepsilon$. By uniform continuity there is $\delta>0$ such that $|x-y|<\delta$ implies $|f * g(x)-f * g(y)|<\frac{\varepsilon}{2}$. Without loss of generality assume $\left|x_{n}-x_{m}\right| \geq 2 \delta$ for all $n \neq m$. Then the $\left(x_{n}-\delta, x_{n}+\delta\right)$ are disjoint, and

$$
\int_{x_{n}-\delta}^{x_{n}+\delta}|f * g(t)| \mathrm{d} t \geq \int_{x_{n}-\delta}^{x_{n}+\delta} \frac{\varepsilon}{2} \mathrm{~d} t=\varepsilon \delta
$$

So

$$
\infty>\|f * g\|_{1} \geq \sum_{n \geq 1} \int_{x_{n}-\delta}^{x_{n}+\delta}|f * g| \geq \sum_{n=1}^{\infty} \varepsilon \delta=\infty
$$

a contradiction. So $f * g \in C_{0}(\mathbb{R})$.
Lemma 4.6
Theorem 4.7. $L^{1}(\mathbb{R})$ is semisimple.
Proof. Suppose $0 \neq f \in \operatorname{rad}\left(L^{1}(\mathbb{R})\right)$; i.e. $\operatorname{spr}(f) \neq 0$ (by Theorem 3.9). Let

$$
u_{n}=\frac{n}{2} \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]} \in L^{\infty}
$$

be a norm 1 approximate identity for $L^{1}(\mathbb{R})$; so $f * u_{n} \rightarrow f$, so there is n_{0} such that $f * u_{n_{0}} \neq 0$ and $f * u_{n_{0}} \in \operatorname{rad}\left(L^{1}(\mathbb{R})\right)$. Replace f with $f * u_{n}$, so without loss of generality we have $f \in C_{0}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ and $\operatorname{spr}(f)=0$. Define $f^{*} \in L^{1}(\mathbb{R})$ by $f^{*}(t)=\overline{f(-t)}$. So $f * f^{*} \in \operatorname{rad}\left(L^{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})\right.$; so

$$
\begin{aligned}
f * f^{*}(0)=\int f(t) f^{*}(-t) \mathrm{d} t & \\
& =\int f(t) \overline{f(t)} \mathrm{d} t \\
& =\|f\|_{2}^{2} \\
& >0
\end{aligned}
$$

Note that

$$
\|f\|_{2}^{2}=\int\left|f(t)\|f(t) \mid \mathrm{d} t \leq\| f\left\|_{\infty}\right\| f \|_{1}\right.
$$

is finite, since $f \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.
Define $F: L^{1} \rightarrow \mathbb{C}$ by $F(g)=f * f^{*} * g(0)$. Then

$$
|F(g)|=\left|\int f * f^{*}(t) g(-t) \mathrm{d} t\right| \leq\left\|f * f^{*}\right\|_{\infty}\|g\|_{1}
$$

so F is continuous. Define a sesquilinear form on $L^{1}(\mathbb{R})$ by $\psi(g, h)=F\left(g * h^{*}\right)$, which is then continuous by the above. Then

$$
\psi(g, g)=f * f^{*} * g * g^{*}(0)=(f * g) *(f * g)^{*}(0)=\|f * g\|_{2}^{2} \geq 0
$$

Then

$$
\begin{aligned}
\psi(h, g) & =f * f^{*} * h * g^{*}(0) \\
& =\iint\left(f * f^{*}\right)(t) h(s) g^{*}(-s-t) \mathrm{d} s \mathrm{~d} t \\
& =\iint\left(f * f^{*}\right)(t) h(s) \overline{g(s+t)} \mathrm{d} s \mathrm{~d} t \\
\overline{\psi(h, g)} & =\iint \overline{\left(f * f^{*}(t)\right) h(s)} g(s+t) \mathrm{d} s \mathrm{~d} t \\
& =\iint \underbrace{\left(f * f^{*}\right)^{*}}_{f * f^{*}}(-t) h^{*}(-s) g(s+t) \mathrm{d} s \mathrm{~d} t \\
& =\psi(g, h)
\end{aligned}
$$

So ψ is conjugate linear. Then by Cauchy-Schwarz we get $|\psi(g, h)| \leq \psi(g, g)^{\frac{1}{2}} \psi(h, h)^{\frac{1}{2}}$. Then

$$
\begin{aligned}
\psi\left(u_{n}, u_{n}\right) & =\left(f * u_{n}\right) *\left(f * u_{n}\right)^{*}(0) \\
& =\left\|f * u_{n}\right\|_{2}^{2} \\
& \leq \frac{n}{2} \int_{-\frac{1}{n}}^{\frac{1}{n}}\left\|f_{s}\right\|_{2}^{2} \\
& =\|f\|_{2}^{2}
\end{aligned}
$$

TODO 22. f_{s} ? f_{5} ?
Let $K=\|f\|_{2}^{2}$. Then

$$
\begin{aligned}
|F(g)| & =\lim _{n \rightarrow \infty}|\underbrace{F\left(g * u_{n}\right)}_{\psi\left(g, u_{n}\right)}| \\
& \leq \lim _{n \rightarrow \infty}\left|F\left(g * g^{*}\right)\right|^{\frac{1}{2}}\left|\psi\left(u_{n}, u_{n}\right)\right|^{\frac{1}{2}} \\
& =K^{\frac{1}{2}} F\left(g * g^{*}\right)^{\frac{1}{2}} \\
& \leq K^{1} \frac{1}{2}\left(K^{\frac{1}{2}} F\left(g * g^{*} * g * g^{*}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \\
& =K^{\frac{1}{2}} K^{\frac{1}{4}} F\left(\left(g * g^{*}\right)^{2}\right)^{\frac{1}{4}} \\
& \leq K^{\frac{1}{2}} K^{\frac{1}{4}} K^{\frac{1}{8}} \cdots K^{\frac{1}{2^{n}}} F\left(\left(g * g^{*}\right)^{2^{n-1}}\right)^{\frac{1}{2^{n}}} \\
& \leq K^{1-\frac{1}{2^{n}}}\left\|f * f^{*}\right\|_{\infty}\left\|\left(g * g^{*}\right)^{2^{-1}}\right\|^{\frac{1}{2^{n}}} \\
& \rightarrow K\left\|f * f^{*}\right\|_{\infty} \operatorname{spr}\left(g * g^{*}\right)^{\frac{1}{2}}
\end{aligned}
$$

Take $g=f * f^{*}$. Then

$$
F\left(f * f^{*}\right)=f * f^{*} * f * f^{*}(0)=\left\|f * f^{*}\right\|_{2}^{2}>0
$$

a contradiction. So $\operatorname{rad}\left(L^{1}(\mathbb{R})\right)=0$.Theorem 4.7

5 Non-commutative Banach algebras and their representation theory

Definition 5.1. A left ideal J of a (Banach) algebra \mathfrak{A} is modular if there is $e \in \mathfrak{A} \backslash J$ such that $\mathfrak{A}(1-e) \subseteq J$.

Remark 5.2.

1. If \mathfrak{A} is unital then every proper left ideal is modular.
2. If J is a 2 -sided ideal which is left and right modular then the same e works for both. Indeed, given $e_{1}, e_{2} \in \mathfrak{A} \backslash J$ such that $\mathfrak{A}\left(1-e_{1}\right) \subseteq J$ and $\left(1-e_{2}\right) \mathfrak{A} \subseteq J$, we have $e_{2}-e_{2} e_{1} \in J$ and $e_{1}-e_{2} e_{1} \in J$; so $e_{1}-e_{2} \in J$. Then

$$
\left(1-e_{1}\right) \mathfrak{A}=\left(1-e_{2}\right) \mathfrak{A}+\left(e_{2}-e_{1}\right) \mathfrak{A} \subseteq J+J=J
$$

as desired.

Proposition 5.3. Suppose \mathfrak{A} is a non-unital Banach algebra; let $\mathfrak{A}_{+}=\mathfrak{A}+\mathbb{C} 1$ be the unitization. If I is a proper ideal of \mathfrak{A}_{+}with $I \nsubseteq \mathfrak{A}$ then $I_{0}=I \cap \mathfrak{A}$ is a modular left ideal of \mathfrak{A}. Conversely if I_{0} is a modular left ideal of \mathfrak{A} with right modular unit e then $I=I_{0}+\mathbb{C}(1-e)$ is a proper left ideal of \mathfrak{A}_{+}.
Proof.
(\Longrightarrow) Since $I_{0} \varsubsetneqq I$ and \mathfrak{A} has codimension 1 in \mathfrak{A}_{+}, we get that I_{0} has codimension 1 in I. Pick $a+\lambda 1 \in I \backslash I_{0}$; note that $\lambda \neq 0$. So $1+\lambda^{-1} a \in I$. Let $e=-\lambda^{-1} a$. So $\mathfrak{A}(1-e)=\mathfrak{A}\left(1+\lambda^{-1} a\right) \subseteq I \cap \mathfrak{A}=I_{0}$; so I_{0} is modular.
$(\Longleftarrow) I_{0}$ is proper, so I is proper (by a dimension argument). Then $\mathfrak{A}_{+} I=\mathfrak{A} I_{0}+\mathfrak{A}(1-e)+(\mathbb{C} 1) I \subseteq$ $I_{0}+I+I=I$. So I is a left ideal. Proposition 5.3

Corollary 5.4. If I is a left modular ideal of \mathfrak{A} with right modular unit e then $b_{1}(e) \cap I=\emptyset$.
Proof. Suppose $a \in I$ has $\|a-e\|<1$. Then $(1-e)+a \in I+\mathbb{C}(1-e)$ is contained in a proper left ideal of \mathfrak{A}_{+}; but $(1-e)+a=1+a-e$ is invertible in \mathfrak{A}_{+}by Proposition 1.11, a contradiction. (Proper ideals don't contain invertibles.)
\square Corollary 5.4
Proposition 5.5. If I is a left modular ideal with right modular unit e and $I \subseteq J$ with J a proper left ideal then J is modular with the same unit e. Hence I is contained in a maximal modular left ideal, and such ideals are closed.

Proof. Note that $J \cap b_{1}(e)=\emptyset$. Indeed, otherwise by proof of the previous corollary we would have $J+\mathbb{C}(1-e)=\mathfrak{A}_{+}$which is impossible since J is proper; so $J+\mathbb{C}(1-e)$ has codimension ≥ 1. Then $\mathfrak{A}(1-e) \subseteq I \subseteq J$. Maximality is by Zorn's lemma, and we note that \bar{J} is still proper since it is disjoint from $b_{1}(e)$, so maximal implies closed. Proposition 5.5

Definition 5.6. If X is a vector space and $\mathcal{L}(X)$ the space of linear maps from $X \rightarrow X$, a representation of \mathfrak{A} is a homomorphism $\pi: \mathfrak{A} \rightarrow \mathcal{L}(X)$. This makes X into a left \mathfrak{A}-module by $a \cdot x=\pi(a) x$. We say (X, π) is a trivial module if $X=\mathbb{C}$ and $\pi=0$. We say X is irreducible if 0 and X are the only submodules and X is not trivial.

Proposition 5.7. Suppose X is an irreducible left \mathfrak{A}-module.

1. If $0 \neq x_{0} \in X$ then $\mathfrak{A} x_{0}=X$.
2. $I_{x_{0}}=\left\{a: a \cdot x_{0}=0\right\}=\operatorname{ker}_{\pi}\left(x_{0}\right)$ is a maximal modular left ideal with right modular unit e for any e satisfying $e \cdot x_{0}=x_{0}$.
3. $\operatorname{ker}(\pi)=\bigcap_{x} \operatorname{ker}_{\pi}(x)$ is the intersection of maximal modular ideals (and is thus closed). Also $\operatorname{ker}(\pi)=$ $I_{x_{0}}: \mathfrak{A}=\left\{a: a \mathfrak{A} \subseteq I_{x_{0}}\right\}$ for any $x_{0} \neq 0$.

Proof.

1. $\mathfrak{A} x_{0}$ is a submodule of X, so by irreducibility either $\mathfrak{A} x_{0}=X$ or $\mathfrak{A} x_{0}=\{0\}$. Suppose the latter; then $\mathbb{C} x_{0}$ is a non-zero submodule and is thus X, so X is trivial, a contradiction.
2. Pick e such that $e x_{0}=x_{0}$ by (1). Then for $a \in \mathfrak{A}$ we have

$$
a(1-e) x_{0}=a x_{0}-a\left(e x_{0}\right)=a x_{0}-a x_{0}=0
$$

So $\mathfrak{A}(1-e) \subseteq I_{x_{0}}$, and $I_{x_{0}}$ is modular. Suppose $J \supsetneqq I$ is a left ideal; then $J x_{0} \neq 0$ is a submodule, so $J x_{0}=X$. So there is $f \in J$ such that $f x_{0}=x_{0}$. So $\mathfrak{A}-\mathfrak{A} f=\mathfrak{A}(1-f) \subseteq I_{x_{0}} \subseteq J$; so $\mathfrak{A} \subseteq \mathfrak{A} f+J \subseteq J$, and $J=\mathfrak{A}$. So $I_{x_{0}}$ is maximal.
3. First part is evident. If $a \mathfrak{A} \subseteq I_{x_{0}}$ and $x \in X$, we can pick $b \in \mathfrak{A}$ such that $b x_{0}=x$. Then $a x=a b x_{0} \subseteq(a \mathfrak{A}) x_{0}=\{0\}$; so $a \in \operatorname{ker}(\pi)$. Conversely if $a \in \operatorname{ker}(\pi)$ then for all $b \in \mathfrak{A}$ we have $0=a\left(b x_{0}\right)=(a b) x_{0}$, so $a b \in I_{x_{0}}$. So $\operatorname{ker}(\pi)=I_{x_{0}}: \mathfrak{A}$. Proposition 5.7

Proposition 5.8. If I is a maximal modular left ideal in \mathfrak{A} then there is a continuous representation π on a Banach space X with a vector $0 \neq x_{0} \in X$ such that $I=I_{x_{0}}$ and $\operatorname{ker}(\pi)=I: \mathfrak{A}$.

Proof. Let $X=\mathfrak{A} / I$ as a Banach space. Define $\pi(a)(b+I)=a b+I$. (Check that this is well-defined.) Then

$$
\begin{aligned}
\|\pi(a)\| & =\sup _{\|\dot{b}\|<1}\|\dot{a b}\| \\
& =\sup _{\|b\|<1} \inf _{i \in I}\|a b+i\| \\
& \leq \sup _{\|b\|<1} \inf _{i \in I}\|a b+a i\| \\
& \leq \sup _{\|b\|<1} \inf _{i \in I}\|a\|\|b+i\| \\
& \leq\|a\|
\end{aligned}
$$

So it is continuous. Let e be a right modular unit for I; let $x_{0}=\dot{e}$. Then

$$
I_{x_{0}}=\{a: a \dot{e}=0\}=\{a: a e \in I\}=I
$$

So $\operatorname{ker}(\pi)=I_{x_{0}}: \mathfrak{A}=I: \mathfrak{A}$.
Proposition 5.8
Definition 5.9 (Talked to Ken after the fact). Suppose \mathfrak{A} is a Banach algebra. A Banach module is an \mathfrak{A}-module \mathfrak{X} that is also a Banach space such that for any $a \in \mathfrak{A}$ the map $\ell_{a}: X \rightarrow X$ given by $x \mapsto a x$ is a bounded linear operator on X and furthermore the map $\mathfrak{A} \mapsto \mathcal{C}(X)$ given by $a \mapsto \ell_{a}$ is continuous. A continuous representation is a continuous algebra homomorphism $\pi: \mathfrak{A} \rightarrow \mathcal{C}(\mathfrak{X})$ for some Banach space \mathfrak{X}; i.e. a representation such that each $\pi(a)$ lies in $C(\mathfrak{X})$ (rather than just $\mathcal{L}(\mathfrak{X})$) and $\pi: \mathfrak{A} \rightarrow \mathcal{C}(\mathfrak{X})$ is continuous.

Theorem 5.10. Suppose X is an irreducible \mathfrak{A}-module and $x_{0} \neq 0$; so by the above $I_{x_{0}}=\left\{a: a \cdot x_{0}=0\right\}$ is a maximal ideal. Then $\theta: \mathfrak{A} / I_{x_{0}} \rightarrow X$ defined by $\theta(a+I)=a \cdot x_{0}$ is a well-defined module isomorphism and the norm $\left\|a x_{0}\right\|=\|a+I\|$ makes X into a Banach space. Moreover if X is already a Banach module then θ is a Banach space isomorphism.

Proof. Since $I_{x_{0}} \cdot x_{0}=0$, we get that θ is well-defined. If $x \in X$ then there is b such that $x=b x_{0}$. So

$$
\theta(a \underbrace{\dot{b}}_{\in \mathfrak{A} / I})=\theta(\dot{a b})=a b x_{0}=a\left(b x_{0}=a \theta(\dot{b})\right.
$$

So θ is a morphism of modules; it is bijective since

$$
\begin{aligned}
\theta(\dot{a})=\theta(\dot{b}) & \Longleftrightarrow a x_{0}=b x_{0} \\
& \Longleftrightarrow(a-b) x_{0}=0 \\
& \Longleftrightarrow a-b \in I_{x_{0}} \\
& \Longleftrightarrow a=b
\end{aligned}
$$

The proposed norm is just the norm on \mathfrak{A} / I and \mathfrak{A} / I is a Banach \mathfrak{A}-module.
If X already has a norm $\|\cdot\|_{X}$ and the action is continuous then $\|\pi\|<\infty$. Thena

$$
\|\theta(\dot{a})\|_{X}=\left\|a \cdot x_{0}\right\|_{X}=\left\|(a+i) x_{0}\right\|_{X}
$$

for all $i \in I_{x_{0}}$. So

$$
\|\theta(\dot{a})\| \leq \inf _{i \in I}\|\pi\|\|a+i\|\left\|x_{0}\right\|_{X}=\left(\|\pi\|\left\|x_{0}\right\|\right)\|\dot{a}\|
$$

So θ is continuous and bijective, and is thus invertible by the Banach isomorphism theorem.
Exercise 5.11. Check that θ^{-1} is also a morphism of bimodules.

So θ is an isomorphism of Banach modules. Theorem 5.10

TODO 23. I think $I=I_{x_{0}}$ throughout.
Definition 5.12. A 2-sided ideal $J \unlhd \mathfrak{A}$ is primitive if it is the kernel of an irreducible representation.
Corollary 5.13. The primitive ideals of \mathfrak{A} have form $I: \mathfrak{A}=\{a: a \mathfrak{A} \subseteq I\}$ for I a maximal modular left ideal.

Definition 5.14. The radical $\operatorname{rad}(\mathfrak{A})$ is

$$
\bigcap_{\pi \text { irreducible }} \operatorname{ker}(\pi)
$$

We say \mathfrak{A} is semisimple if $\operatorname{rad}(\mathfrak{A})=\{0\}$. We say \mathfrak{A} is radical if \mathfrak{A} has no irreducible representations.
Example 5.15.

1. Consider $\mathfrak{A}=\mathfrak{T}_{n} \subseteq M_{n}(\mathbb{C})=\mathcal{B}\left(\mathbb{C}^{n}\right)$ consisting of the upper triangular $n \times n$ matrices; we use the norm

$$
\|T\|=\sup _{\|x\| \leq 1}\|T x\|
$$

What are the left ideals of \mathfrak{T}_{n} ? Suppose we have such I, and $A \in I$. Supose $a_{i_{0}, j_{0}} \neq 0$. Recall the matrix units $E_{i j}=e_{i} e_{j}^{*}$, so $E_{i j} x=\left\langle x, e_{j}\right\rangle e_{i}$; note $E_{i j} \in \mathfrak{T}_{n}$ if $i \leq j$. Then

$$
E_{i i_{0}} A e_{j_{0}}=a_{i_{0} j_{0}} e_{i}
$$

But

$$
A e_{i_{0}}=\sum_{j} a_{i_{0}, j} e_{j}
$$

So
TODO 24. Some conclusion about upward closed sets of indices within a column.
For $i \leq j \leq n$ we have $J_{i}=\left\{T \in \mathfrak{T}_{n}: t_{j j}=0\right\}$ is a maximal 2 -sided ideal of codimension 1 , and is thus maximal as a left ideal. Then we have $\pi: \mathfrak{T}_{n} / J_{j} \rightarrow \mathbb{C}$ given by $T \mapsto t_{j j}$; then π_{j} is irreducible and $\operatorname{ker}\left(\pi_{j}\right)=J_{j}$. Suppose I is a left ideal but $I \nsubseteq J_{j}$ for all j. Then there is $A_{j} \in I$ such that $a_{j j} \neq 0$; so $E_{j j} A_{j} \in I$. But $\operatorname{Ran}\left(E_{j j} A_{j}\right)=\mathbb{C} e_{j} \frac{1}{a_{j j}} E_{j j} A_{j}$ is the set of matrices with 0 outside the $j^{\text {th }}$ column and 1 in the (j, j)-entry (and upper triangular).

$$
\left(\begin{array}{lllllll}
0 & \cdots & & & & \\
& & & & & \\
& & 1 & x & x & \\
& & & & & \\
& & & & & \\
& & & & & 0
\end{array}\right)
$$

So

$$
I \ni A=\sum \frac{1}{a_{j} j} E_{j j} A_{j}
$$

and A is upper triangular with 1 's on the diagonal. So A is invertible, and $I=\mathfrak{T}_{n}$. So the J_{j} are the maximal left ideals. So

$$
\operatorname{rad}\left(\mathfrak{T}_{n}\right)=\bigcap_{j=1}^{n} \operatorname{ker}\left(\pi_{j}\right)=\mathfrak{T}_{n}^{0}
$$

the strictly upper triangular matrices.
2. Consider $\mathfrak{A}=M_{n}$; the only ideals are $\{0\}$ and M_{n}.

Claim 5.16. The maximal left ideals have form $I_{x}=\left\{A \in M_{n}: A x=0\right\}$ for $x \neq 0$.

Proof. Clearly id: $M_{n} \hookrightarrow \mathcal{B}\left(\mathbb{C}^{n}\right)$ is irreducible. So the I_{x} are maximal modular left ideals. Conversely suppose I is a left ideal but for all $x \neq 0$ there is $A_{x} \in I$ such that $A_{x} x \neq 0$. Let e_{1}, \ldots, e_{n} be the standard basis; let $A_{e_{1}} e_{1}=u \neq 0$. Let $B=\|u\|^{-2} e_{1} u^{*}$; so $B A_{e_{1}} e_{1}=e_{1}$. Then B, and hence $C_{1}=B A_{e_{1}}$, have rank 1 ; so $C_{1}=e_{1} v_{1}^{*}$ for some v_{1} with $\left\langle v_{1}, e_{1}\right\rangle \neq 0$.
Take $x \perp v_{1}$; then $A_{x} x \neq 0$; find rank-1 B_{2} (again can take $\|x\|^{-2} e_{2} x^{*}$)
TODO 25. Really?
and let $C_{2}=B_{2} A_{x}$; so $C_{2}=e_{2} v_{2}^{*}$ for some v_{2} with $\left\langle v_{2}, x\right\rangle \neq 0$. So $\left\{v_{1}, v_{2}\right\}$ is linearly independent. Now take $x \perp\left\{v_{1}, v_{2}\right\}$, etc. We build $e_{j} v_{j}^{*} \in I$ such that $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent and

$$
\sum e_{i} v_{j}^{*}
$$

is invertible. So $I=M_{n}$.
The representation on M_{n} / I_{x} is just the identity representation because id: $M_{n} \rightarrow \mathcal{B}\left(\mathbb{C}^{n}\right)$. Fix $x \neq 0$, and get $I_{x}=\{A: A x=0\}$ maximal modular. So id is isomorphic to a representation on M_{n} / I_{x}. So id is the unique (up to equivalence) irreducible representation of M_{n}.

Theorem 5.17. Suppose \mathfrak{A} is a Banach algebra, and consider $1 \in \mathfrak{A}_{+}$if \mathfrak{A} is not unital. Then the following are equivalent:
(1) $a \in \operatorname{rad}(\mathfrak{A})$.
(21) a is in the intersection of all maximal modular left ideals of \mathfrak{A}.
$(2 \mathbf{r}) a$ is in the intersection of all maximal modular right ideals of \mathfrak{A}.
(3) $\sigma(a b)=\{0\}$ for all $b \in \mathfrak{A}$.
(3') $\sigma(b a)=\{0\}$ for all $b \in \mathfrak{A}$.
(41) $a b-\lambda$ is left-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.
(4l') $b a-\lambda$ is left-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.
(41) $a b-\lambda$ is right-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.
(41') ba $-\lambda$ is right-invertible for all $\lambda \neq 0$ and $b \in \mathfrak{A}$.

TODO 26. Mathmode for description labels?
Lemma 5.18. If $\lambda \neq 0$ and $a b-\lambda$ is left (right) invertible then so is $b a-\lambda$.
Proof. Let $u \in \mathfrak{A}_{+}$satisfy $u(a b-\lambda)=1$. Then $b u a(b a-\lambda)=b u(a b-\lambda) a=b a$. Then

$$
\left(\frac{b u a-1}{\lambda}\right)(b a-\lambda)=\frac{b a-(b a-\lambda)}{\lambda}=1
$$

as desired.
Hence

- $4 l$ is equivalent to $4 l^{\prime}$.
- 4 r is equivalent to $4 r^{\prime}$.
- 3 is equivalent to 3 '.

Proof of Theorem 5.17.
$(1) \Longleftrightarrow(21)$ Done. Indeed we have

$$
\operatorname{rad}(\mathfrak{A})=\bigcap_{\pi \text { irreducible }} \operatorname{ker}(\pi)=\bigcap\left\{\operatorname{ker}\left(\pi_{I}\right): I \text { maximal left modular }\right\}
$$

$(3) \Longrightarrow(41,4 r)$ Immediate.
$(\mathbf{1}) \Longrightarrow(41)$ Suppose there is $\lambda \neq 0$ and b such taht $a b-\lambda$ is not left invertible. Then $J=\mathfrak{A}\left(1-\lambda^{-1} a b\right)=$ $\mathfrak{A}(a b-\lambda)$ is a proper ideal and has $\lambda^{-1} a b$ as a right modular unit; so J is left modular, and is contained in some I maximal left modular. Then we have $\pi: \mathfrak{A} \rightarrow \mathcal{L}(\mathfrak{A} / I)$ with

$$
\pi(a) \dot{b}=\dot{a b}=\lambda \dot{\mathrm{i}} \neq 0
$$

so $a \notin \operatorname{ker} \pi$, and $a \notin \operatorname{rad}(\mathfrak{A})$.
$\underline{\left(41^{\prime}\right)} \Longrightarrow(21)$ Suppose there is a maximal modular left ideal I with $a \notin I$. So $\dot{a} \neq 0$ in \mathfrak{A} / I, which is an irreducible module. So there is $b \in \mathfrak{A}$ such that $b \dot{a}=\dot{1}$. So $b a-1 \in I$ is contained in a proper left ideal; so $b a-1$ is not left invertible.
$(\mathbf{1)} \Longrightarrow(3)$ Suppose $a \in \operatorname{rad}(\mathfrak{A}), b \in \mathfrak{A}$, and $\lambda \neq 0$. Since 1 implies 41 we get that $a b-\lambda$ has left inverse u; so $1=u(a b-\lambda)=u a b-\lambda u$, and $u a b \in \operatorname{rad}(\mathfrak{A})($ since $a \in \operatorname{rad}(\mathfrak{A}))$. So $\lambda u=u a b-1$ is left-invertible again since 1 implies 4l. So there is v such that $v(\lambda u)=1$; so u is left- and right-invertible, and is thus invertible. So $a b-\lambda=u^{-1}$ is invertible.
$(\mathbf{2 l}) \Longleftrightarrow(2 r)$ Use the fact that 3 is left-right blind. Theorem 5.17

Definition 5.19. If X is a non-trivial Banach \mathfrak{A}-module we say X is topologically irreducible if the only closed submodules are $\{0\}$ and X.

Example 5.20. There are topologically irreducible Banach modules that aren't algebraically irreducible. (i.e. what we called irreducible before.) Consider \mathbb{F}_{2}^{+}the free monoid on $\{x, y\}$; this is the set of words $i_{1} \cdots i_{k}$ with $k \geq 0$ and each $i_{j} \in\{x, y\}$. We define $v \cdot w$ to be their concatenation: if $v=i_{1} \cdots i_{k}$ and $w=j_{1} \cdots j_{\ell}$ then $v \cdot w=i_{1} \cdots i_{k} j_{1} \cdots j_{\ell}$. Let $\mathfrak{A}=\ell_{1}\left(\mathbb{F}_{2}^{+}\right)$be the set of

$$
\sum_{v \in \mathbb{P}_{2}^{+}} \lambda_{v} v
$$

subject to

$$
\left\|\sum \lambda_{v} v\right\|=\sum\left|\lambda_{v}\right|<\infty
$$

We define $v \cdot w=v w$, so $(\lambda v)(\mu w)=(\lambda \mu) v w$. Define $\pi: \ell_{1}\left(\mathbb{F}_{2}^{+}\right) \rightarrow \mathcal{B}\left(\ell_{2}\right)$ by $\pi(x)=S$ the unilateral shift and $\pi(y)=S^{*}$. So

$$
\pi\left(x^{k_{1}} y^{\ell_{1}} \cdots x^{k_{m}} y^{\ell_{m}}=S^{k_{1}}\left(S^{*}\right)^{\ell_{1}} \cdots S^{k_{m}}\left(S^{*}\right)^{\ell_{m}}\right.
$$

If ε is the empty word

$$
\begin{aligned}
\pi(\varepsilon) & =I \\
& =\pi(y x) \\
& =S^{*} S \\
\pi(x y) & =S S^{*} \\
\pi(\varepsilon-x y) & =I-S S^{*} \\
& =e_{0} e_{0}^{*}
\end{aligned}
$$

So

$$
\pi\left(x^{n}(\varepsilon-x y) y^{j}\right)=S^{i} e_{0} e_{0}^{*}\left(S^{*}\right)^{j}=\left(S^{i} e_{0}\right)\left(S^{j} e_{0}^{*}\right)=e_{i} e_{j}^{*}
$$

So $\overline{\operatorname{Ran} \ell_{1}\left(\mathbb{F}_{2}^{+}\right)} \supseteq \overline{\operatorname{span}\left\{E_{i j}\right\}}=\mathcal{K}$ is the space of compact operators, which acts transitively. So it's topologically irreducible. But $X=\ell_{1}\left(\mathbb{F}_{2}^{+}\right) e_{0} \subseteq \ell_{1} \varsubsetneqq \ell_{2}$; so it's not algebraically irreducible.

Theorem 5.21 (Schur's lemma). Suppose \mathfrak{A} is a Banach algebra and X an irreducible \mathfrak{A}-module. Let $\mathcal{D}=\{T \in \mathcal{L}(X): T a=a T$ for all $a \in \mathfrak{A}\}$. Then $\mathcal{D}=\mathbb{C} I$.
Proof. Note that \mathcal{D} is an algebra (it's a subspace, and closed under multiplication). We claim that $\mathcal{D} \subseteq \mathbb{C} I$.
Suppose $T \in \mathcal{D} \backslash\{0\}$; so $T X \neq\{0\}$ is a submodule and $a(T x)=T(a x) \in T X$. So $T X=X$; so $\operatorname{ker}(T) \neq X$ is a submodule. If $x \in \operatorname{ker}(T)$ then $T(a x)=a(T x)=0 ;$ so $\operatorname{ker}(T)=\{0\}$, and T is invertible. But now

$$
a T^{-1}=T^{-1}(T a) T^{-1}=T^{-1} A T T^{-1}=T^{-1} a
$$

so $T^{-1} \in \mathcal{D}$, and \mathcal{D} is a division algebra.
Now, X is irreducible, so without loss of generality we take $X=\mathfrak{A} / I_{x_{0}}$ for any $0 \neq x_{0} \in X$.
TODO 27. ref
(Recall $I_{x_{0}}=\left\{a \in \mathfrak{A}: a x_{0}=0\right\}$.) In particular the \mathfrak{A}-action is continuous on X. So if $T \in \mathcal{D}$ then

$$
\|T\|=\sup _{\|x\| \leq 1}\|T x\|=\sup _{\left\|a+I_{x_{0}}\right\| \leq 1}\|T(a+\underbrace{i}_{\in I_{x_{0}}}) x_{0}\| \leq \sup _{\left\|a+I_{x_{0}}\right\| \leq 1}\left\|(x+i) T x_{0}\right\| \leq \sup _{\left\|a+I_{x_{0}}\right\| \leq 1} \inf _{i \in I_{x_{0}}}\|a\|\left\|T x_{0}\right\|=\left\|T x_{0}\right\|<\infty
$$

So $\mathcal{D} \subseteq \mathcal{B}(X)$. Also \mathcal{D} is closed: if $T_{n} \in \mathcal{D}$ and $\left(T_{n}\right)_{n} \rightarrow T$ then

$$
a T=\lim _{n \rightarrow \infty} a T_{n}=\lim _{n \rightarrow \infty} T_{n} a=T a
$$

So \mathcal{D} is a Banach division ring containing $\mathbb{C} I$; so $\mathcal{D}=\mathbb{C} I$ by Mazur's theorem.
Theorem 5.21
Definition 5.22. Suppose \mathfrak{A} is a Banach algebra and X a \mathfrak{A}-module. We say \mathfrak{A} is

- transitive if $\mathfrak{A} x_{0}=X$ for all $x_{0} \neq 0$
- k-transitive if whenever x_{1}, \ldots, x_{k} linearly independent in X and $y_{1}, \ldots, y_{k} \in X$ there is $a \in \mathfrak{A}$ such that $a x_{i}=y_{i}$ for $1 \leq i \leq k$
- strictly transitive if it is k-transitive for all $k \geq 1$.

Theorem 5.23 (Jacobson density theorem). If X is an irreducible \mathfrak{A}-module then \mathfrak{A} is strictly transitive in \mathfrak{A}.

Standing assumption: X is an irreducible \mathfrak{A}-module.
Lemma 5.24. Suppose $x_{1}, x_{2} \in X$ are linearly independent. Then there is $a \in \mathfrak{A}$ such that ax $x_{1}=0$ and $a x_{2} \neq 0$.

Proof. Suppose not; suppose $a x_{1}=0$ implies $a x_{2}=0$. Define $T: X \rightarrow X$ linear by $T\left(a x_{1}\right)=a x_{2}$ for all $a \in \mathfrak{A}$; this is defined on $X=\mathfrak{A} x_{1}$ and if $a x_{1}=b x_{1}$ then $(a-b) x_{1}=0$ implies $(a-b) x_{2}=0$ and $a x_{2}=b x_{2}$. So T is well-defined and linear. If $b \in \mathfrak{A}$ and $x=a x_{1}$ then

$$
T(b x)=T\left(b a x_{1}\right)=b\left(a x_{2}\right)=b T\left(a x_{1}\right)=b T x
$$

So $T b=b T$ and $T \in \mathcal{D}=\mathbb{C} I$. So $x_{2} \in \mathbb{C} x_{1}$, a contradiction.
Lemma 5.24
Lemma 5.25. Suppose $n \geq 3$ and x_{1}, \ldots, x_{n} are linearly independent in X. Then there is $a \in \mathfrak{A}$ such that $a x_{1}=a x_{2}=\cdots=a x_{n-1}=0 \neq a x_{n}$.
Proof. Proceed by induction on n. Our induction hypothesis: if \mathfrak{B} is any Banach algebra and Y an irreducible \mathfrak{B}-module and $y_{1}, \ldots, y_{n-1} \in Y$ linearly independent then there is $b \in \mathfrak{B}$ such that $b y_{1}=\cdots=b y_{n-2} 0 \neq$ $b y_{n-1}$.

Lemma 5.24 gives the base case $n=2$.
For the induction step, let $M=\operatorname{span}\left\{x_{1}, \ldots, x_{n-2}\right\}$. Let

$$
\mathfrak{B}=\bigcap_{i=1}^{n-2} \underbrace{I_{x_{i}}}_{\text {closed left ideal }}=\{a: a M=0\}
$$

Let $Y=X / M$. Then if $b \in \mathfrak{B}$ we have $b(x+M)=b x \in b x+M$; so Y is a \mathfrak{B}-module with $b(\dot{x})=\dot{b x}$.

Claim 5.26. Y is an irreducible \mathfrak{B}-module.
Proof. Suppose $0 \neq y_{1} \in Y$ and $y_{2} \in Y$; say $y_{1}=x+M$ and $y_{2}=x^{\prime}+M$. Then $x \notin M$ and x_{1}, \ldots, x_{n-2} are linearly independent and span M; so $x_{1}, \ldots, x_{n-2}, x$ is linearly independent. So by induction hypothesis (for \mathfrak{A} acting on X) there is $a \in \mathfrak{A}$ such that $a x_{1}=\cdots=a x_{n-2}=0 \neq a x$. Then $a \in \mathfrak{B}$ and $a x \neq 0$, so there is $c \in \mathfrak{A}$ such that cax $=x^{\prime}$. Then $c a \in \mathfrak{B}$ and

$$
(c a) y_{1}(c a) \dot{x}=c \dot{a} x=\dot{x}^{\prime}=y_{2}
$$

TODO 28. Dot cax
So \mathfrak{B} is transitive in Y. So Y is irreducible.
Claim 5.26
Now x_{1}, \ldots, x_{n} are linearly independent and $x_{n-1}^{\cdot}, \dot{x_{n}}$ are linearly independent in $Y=X / M$. Since Y is an irreducible \mathfrak{B} Lemma 5.24 yields that there is $b \in \mathfrak{B}$ such that $b x_{n-1}=\dot{0}$ and $b \dot{x_{n}} \neq \dot{0}$. So $b x_{1}=b x_{2}=\cdots=b x_{n-2}=0$ and $b x_{n-1} \in M$ but $b x_{n} \notin M$. So either $b x_{n-1}=0$ or $\left\{b x_{n-1}, b x_{n}\right\}$ is linearly independent. By Lemma 5.24 there is $c \in \mathfrak{A}$ such that $c b x_{n-1}=0$ and $c b x_{n} \neq 0$. So if $a=c b$ then $a x_{1}=\cdots=a x_{n-1}=0 \neq a x_{n}$, as desired. Lemma 5.25

Proof of Theorem 5.23. Suppose x_{1}, \ldots, x_{n} are linearly independent in X and $y_{1}, \ldots, y_{n} \in X$. Then by Lemma 5.25 there is $a_{j} \in \mathfrak{A}$ such that

$$
a_{j} x_{i}=\left\{\begin{array}{l}
\text { if } i \neq j \\
z_{j} \neq 0 \quad \text { if } i=j
\end{array}\right.
$$

By transitivity there is $b_{j} \in \mathfrak{A}$ such that $b_{j} z_{j}=y_{j}$. Let

$$
a=\sum_{j=1}^{n} b_{j} a_{j} \in \mathfrak{A}
$$

Then $a x_{j}=y_{j}$ for $1 \leq j \leq n$. So \mathfrak{A} is n-transitive for $n \geq 1$.

5.1 Automatic continuity

Theorem 5.27 (B. Johnson). If X is a Banach space and $\pi: \mathfrak{A} \rightarrow \mathcal{B}(X)$ makes X an irreducible \mathfrak{A} module then π is continuous.

Proof. First note that $\operatorname{ker}(\pi)$ is primitive, and is thus closed. We have the following commuting diagram:

Then X is also an irreducible $\mathfrak{A} / \operatorname{ker}(\pi)$-module. If $\dot{\pi}$ is continuous then $\pi=\dot{\pi} \circ q$ is continuous. So without loss of generality we may assume π is injective.

If $\operatorname{dim}(X)<\infty$ then $\operatorname{dim}(\mathcal{B}(X))=(\operatorname{dim}(X))^{2}<\infty$; since π is injective we get $\operatorname{dim}(\mathfrak{A})<\infty$, and linearity of π implies continuity.

Suppose then that $\operatorname{dim}(X)=\infty$. For $x \in X$ define a linear map $T_{x}: \mathfrak{A} \rightarrow X$ by $T_{x} a=a x$. Let $Y=\left\{x \in X: T_{x}\right.$ continuous $\}$; so $Y \subseteq X$ is a subspace. Also if $b \in \mathfrak{A}$ then

$$
\left\|T_{b x} a\right\|=\|a b x\|=\left\|T_{x}(a b)\right\| \leq\left\|T_{x}\right\|\|a b\| \leq\left(\left\|T_{x}\right\|\|b\|\right)\|a\|
$$

So $x \in Y$ implies $b x \in Y$, and Y is an \mathfrak{A}-submodule of X. So Y is $\{0\}$ or X.

Case 1. Suppose $Y=X$ and $x \in X$. Then

$$
\sup _{\|a\| \leq 1}\|\pi(a) x\|=\sup _{\|a\| \leq 1}\|a x\|=\|T x\|<\infty
$$

Hence by the uniform boundedness principle we have

$$
\|\pi\|=\sup _{\|a\| \leq 1}\|\pi(a)\|<\infty
$$

and π is continuous.
Case 2. Suppose $Y=\{0\}$. Since $\operatorname{dim}(X)=\infty$ there are linearly independent unit vectors $x_{1}, x_{2}, x_{3}, \ldots$. By the Jacobson density theorem there is $a_{n} \in \mathfrak{A}$ such that $a_{n} x_{i}=0$ for $1 \leq i<n$ and $a_{n} x_{n} \neq 0$. Let

$$
L_{n}=\bigcap_{i=1}^{n-1} I_{x_{i}}
$$

so $a_{n} \in L_{n}$ and $a_{n} \notin L_{n+1}$. Then $a_{n} x_{n} \neq 0$ so $T_{a_{n} x_{n}}$ is unbounded. Pick $b_{n} \in \mathfrak{A}$ with $\left\|b_{n}\right\|<\frac{2^{-n}}{\left\|a_{n}\right\|}$ such that

$$
\left\|b_{n} a_{n} x_{n}\right\|=\left\|T_{a_{n} x_{n}} b_{n}\right\|>n+\left\|\left(\sum_{i=1}^{n-1} b_{i} a_{i}\right) x_{n}\right\|
$$

Let

$$
b=\sum_{i=1}^{\infty} b_{i} a_{i}
$$

This converges since $\left\|b_{n} a_{n}\right\|<2^{-n}$. Then

$$
b=\sum_{i=1}^{n} b_{i} a_{i}+\sum_{i>n} b_{i} a_{i}
$$

But for $i>n$ we have $a_{i} \in L_{n}$ and then L_{n} are closed left ideals; so $b_{i} a_{i} \in L_{n}$ for $i>n$, and

$$
\sum_{i=n+1}^{\infty} b_{i} a_{i} \in L_{n}
$$

and hence

$$
\left(\sum_{i=n+1}^{\infty} b_{i} a_{i}\right) x_{n}=0
$$

But now

$$
\|\pi(b)\| \geq\left\|b x_{n}\right\|=\|\sum_{i=1}^{n-1} b_{i} a_{i} x_{n}+b_{n} a_{n} x_{n}+\underbrace{\left(\sum_{i=n+1}^{\infty} b_{i} a_{i}\right) x_{n}}_{=0}\| \geq\left\|b_{n} a_{n} x_{n}\right\|-\left\|\left(\sum_{i=1}^{n-1} b_{i} a_{i}\right) x_{n}\right\|>n
$$

a contradiction. So this case cannot hold, and we land in the first case.
Definition 5.28. Suppose X, Y are Banach spaces and $T: X \rightarrow Y$ is linear. The separating space is

$$
\mathfrak{S}(T)=\left\{y \in Y: \text { there are } x_{n} \in X \text { such that } x_{n} \rightarrow 0, T x_{n} \rightarrow y\right\}
$$

Remark 5.29. By the closed graph theorem T is continuous if and only if $\mathfrak{S}(T)=\{0\}$.

Theorem 5.30 (Johnson). Suppose $\mathfrak{A} k, \mathfrak{B}$ are Banach algebras and $\theta: \mathfrak{A} \rightarrow \mathfrak{B}$ is a surjective homomorphism. Then $\mathfrak{S}(\theta) \subseteq \operatorname{rad}(\mathfrak{B})$.
Proof. Suppose (X, π) is an irreducible Banach module for \mathfrak{B}. Then $\pi \circ \theta$ is an irreducible representation, making X an irreducible \mathfrak{A}-module. (Indeed, if $x_{1} \neq 0$ in X and $x_{2} \in X$ then there is $b \in \mathfrak{B}$ such that $b x_{1}=x_{2}$; but there is $a \in \mathfrak{A}$ such that $\theta(a)=b$, and hence $(\pi \circ \theta)(a) x_{1}=x_{2}$.) So $\pi \circ \theta: \mathfrak{A} \rightarrow \mathcal{B}(X)$ is an irreducible representation; so by Johnson's theorem we have $\pi \circ \theta$ is continuous.

If $b \in \mathfrak{S}(\theta)$ then

$$
\pi(b)=\lim _{n \rightarrow \infty} \pi\left(\theta\left(a_{n}\right)\right)=\lim _{n \rightarrow \infty} \underbrace{(\pi \circ \theta)}_{\text {continuous }} \underbrace{\left(a_{n}\right)}_{\rightarrow 0}=0
$$

So

$$
b \in \bigcap_{\pi \text { irreducible }} \operatorname{ker}(\pi)=\operatorname{rad}(\mathfrak{B})
$$

as desired. Theorem 5.30

Corollary 5.31 (Johnson). Every surjective homomorphism from a Banach algebra \mathfrak{A} to a semisimple Banach algebra \mathfrak{B} is continuous.

Proof. Given such $\theta: \mathfrak{A} \rightarrow \mathfrak{B}$ we have $\mathfrak{S}(\theta) \subseteq \operatorname{rad}(\mathfrak{B})=\{0\}$. So by the closed graph theorem θ is continuous. Corollary 5.31

Corollary 5.32. Every automorphism of a semisimple Banach algebra is continuous.
Corollary 5.33 (Uniqueness of norm). If \mathfrak{B} is a semisimple Banach algebra then all Banach algebra norms are equivalent. i.e. if $\|\cdot\|$ and $\|\cdot\| \|$ are two Banach algebra norms and $\|\cdot\|$ makes \mathfrak{B} semisimple then there is $0<c_{1} \leq c_{2}<\infty$ such that $c_{1}\|b\| \leq\|b\| \leq c_{2}\|b\|$ for all $b \in \mathfrak{B}$.
Proof. id: $(\mathfrak{B},\|\cdot\| \|) \rightarrow(\mathfrak{B},\|\cdot\|)$ is a homomorphism and is thus continuous and bijective; so θ is invertible.Corollary 5.33

Fact 5.34. Even in the commutative case, this last corollary fails if we drop the assumption of semisimplicity.

$6 \quad C^{*}$-algebras

Definition 6.1. A C*-algebra is a Banach *-algebra \mathfrak{A} such that $\left\|a^{*} a\right\|=\|a\|^{2}$ for all $a \in \mathfrak{A}$.
Remark 6.2. $\|a\|^{2}=\left\|a^{*} a\right\| \leq\left\|a^{*}\right\|\|a\|$, so $\|a\| \leq\left\|a^{*}\right\| \leq\left\|a^{* *}\right\|=\|a\|$; so $\left\|a^{*}\right\|=\|a\|$.
Example 6.3.
(1) Consider $\mathcal{B}(\mathcal{H})$ for \mathcal{H} a Hilbert space. If $T \in \mathcal{B}(\mathcal{H})$ then

$$
\begin{aligned}
\|T\|^{2} & =\left\|T^{*}\right\|\|T\| \\
& \geq\left\|T^{*} T\right\| \\
& =\sup \left\{\left|\left\langle T^{*} T x, y\right\rangle\right|: x, y \in \mathcal{H},|x|=|y|=1\right\} \\
& \geq \sup _{\|x\|=1}\left|\left\langle T^{*} T x, x\right\rangle\right| \\
& =\sup _{\|x\|=1}|\langle T x, T x\rangle| \\
& =\sup _{\|x\|=1}\|T x\|^{2} \\
& =\|T\|^{2}
\end{aligned}
$$

So $\left\|T^{*} T\right\|=\left\|T^{2}\right\|$.
(1^{\prime}) If \mathfrak{A} is a closed self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ (i.e. if $A \in \mathfrak{A}$ then $A^{*} \in \mathfrak{A}$) then \mathfrak{A} is a concrete C^{*}-algebra.
(1") If $T \in \mathcal{B}(\mathcal{H})$ we define $C^{*}(T)=\overline{\operatorname{alg}\left\{I, T, T^{*}\right\}}{ }^{\|\cdot\|}$. (Here alg means "the algebra generated by".)
(2) If X is locally compact and Hausdorff then $C_{0}(X)$ is a C^{*}-algebra with $f^{*}=\bar{f}$ for $f \in C_{0}(X)$. Then

$$
\|\bar{f} f\|=\sup _{x \in X}|\overline{f(x)} f(x)|=\sup |f(x)|^{2}=\|f\|^{2}
$$

Definition 6.4. We say $a \in \mathfrak{A}$ is

- self-adjoint if $a=a^{*}$
- normal if $a a^{*}=a^{*} a$
- unitary if $a^{*} a=a a^{*}=1$
- positive if $a=a^{*}$ and $\sigma(a) \subseteq[0, \infty)$.

Proposition 6.5. If \mathfrak{A} is a C^{*}-algebra without unit then $\mathfrak{A}^{+}=\mathfrak{A}+\mathbb{C} 1$ has a C^{*}-algebra norm.
Proof. Setting $(a+\lambda 1)^{*}=a^{*}+\overline{\lambda 1}$ makes \mathfrak{A}^{+}a Banach *-algebra. Let \mathfrak{A}^{+}act on \mathfrak{A} by left multiplication: $a+\lambda \mapsto L_{a}+\lambda I \in \mathcal{B}(\mathfrak{A})$. This yields a Banach *-algebra norm

$$
\|a+\lambda\|=\left\|L_{a}+\lambda I\right\|_{\mathcal{B}(\mathfrak{A l})}
$$

Then

$$
\|a\|=\sup _{\substack{\|b\| \leq 1 \\ b \in \mathfrak{A}}}\|a b\| \leq \sup _{\|b\| \leq 1}\|a\|\|b\|=\|a\|
$$

and

$$
\|a\| \geq\left\|a \frac{a^{*}}{\left\|a^{*}\right\|}\right\|=\frac{\left\|a a^{*}\right\|}{\left\|a^{*}\right\|}=\frac{\left\|a^{*}\right\|^{2}}{\left\|a^{*}\right\|}=\|a\|
$$

So $\|a\|=\|a\|$. But

$$
\begin{aligned}
\|a+\lambda\|^{2} & =\sup _{\|b\| \leq 1}\|a b+\lambda b\|^{2} \\
& =\sup _{\|b\| \leq 1}\left\|\left(b^{*} a^{*}+\bar{\lambda} b^{*}\right)(a b+\lambda b)\right\| \\
& =\sup _{\|b\| \leq 1}\left\|b^{*}\left(a^{*} a+\lambda a^{*}+\bar{\lambda} a+|\lambda|^{2}\right) b\right\| \\
& \leq \sup _{\|b\| \leq 1}\left\|\left(a^{*} a+\lambda a^{*}+\bar{\lambda} a+|\lambda|^{2}\right) b\right\| \\
& =\left\|a^{*} a+\lambda a^{*}+\bar{\lambda} a+|\lambda|^{2}\right\| \\
& =\left\|(a+\lambda)^{*}(a+\lambda)\right\| \\
& \leq\left\|(a+\lambda)^{*}\right\|\| \| a+\lambda \| \\
& =\|a+\lambda\|^{2}
\end{aligned}
$$

So $\left\|\left\|(a+\lambda)^{*}(a+\lambda)\right\|\right\|=\|a+\lambda\|^{2}$. \square Proposition 6.5

Theorem 6.6. If \mathfrak{A} is an abelian C^{*}-algebra then the Gelfand transform $\Gamma: \mathfrak{A} \rightarrow C_{0}\left(\mathcal{M}_{\mathfrak{A}}\right)$ is an isometric *-isomorphism.

TODO 29. extra word? onto? continuous?

Proof. First suppose \mathfrak{A} is unital. Then $\mathcal{M}_{\mathfrak{A}}$ is compact and $\Gamma: \mathfrak{A} \rightarrow \mathcal{C}\left(\mathcal{M}_{\mathfrak{A}}\right)$ is a (unital) homomorphism with $\operatorname{Ran}(\Gamma)$ separates points. Let $a=a^{*} \in \mathfrak{A}$ and let $u_{t}=\exp ($ ita $)$ for $t \in \mathbb{R}$. Then

$$
u_{t}^{*}=\left(\sum_{n \geq 0} \frac{(i t a)^{n}}{n!}\right)^{*}=\sum_{n \geq 0} \frac{(-i t a)^{n}}{n!}=u_{-t}
$$

Then $u_{t}^{*} u_{t}=\exp (-i t a) \exp ($ ita $)=\exp (0)=1$, and similarly $u_{t} u_{t}^{*}=1$. If $\varphi \in \mathcal{M}_{\mathfrak{A}}$ then $\varphi\left(u_{t}\right)=\varphi(\exp ($ ita $))=$ $\exp (i t \varphi(a))$; so $|\exp (i t \varphi(a))| \leq\left\|u_{t}\right\|=1$ for all $t \in \mathbb{R}$. So $\varphi(a) \in \mathbb{R}$; i.e. $\Gamma(a)$ is real-valued and thus selfadjoint. If $a \in \mathfrak{A}$ is arbitrary we let $x=\frac{a+a^{*}}{2}$ be the "real part" of a and $y=\frac{a-a^{*}}{2 i}$ the "imaginary part". Then $x=x^{*}$ and $y=y^{*}$ and $a=x+i y$. Then

$$
\Gamma\left(a^{*}\right)=\Gamma\left((x+i y)^{*}\right)=\Gamma(x-i y)=\underbrace{\Gamma(x)}_{\in \mathbb{R}}-i \underbrace{\Gamma(y)}_{\in \mathbb{R}}=\overline{\Gamma(x)+i \Gamma(y)}=\overline{\Gamma(x+i y)}=\Gamma(a)^{*}
$$

So Γ preserves *.
Suppose $a=a^{*}$. Then $\left\|a^{2}\right\|=\left\|a^{*} a\right\|=\|a\|^{2}$. Since a^{*} is self-adjoint we have $\left\|a^{4}\right\|=\left\|\left(a^{2}\right)^{2}\right\|=\left\|a^{2}\right\|^{2}=$ $\|a\|^{4}$; continuing thus we get $\left\|a^{2^{n}}\right\|=\|a\|^{2^{n}}$. So

$$
\|a\|=\lim _{n}\left\|a^{2^{n}}\right\|^{2^{-n}}=\operatorname{spr}(a)=\|\Gamma(a)\|=\sup _{\varphi \in \mathcal{M}_{\mathfrak{A}}}|\varphi(a)|
$$

Note that $\varphi(a)$ runs over $\sigma(a)$ since $\operatorname{Ran}(\Gamma(a))=\sigma(a)$.
If $a \in \mathfrak{A}$ is arbitrary then $\|a\|^{2}=\left\|a^{*} a\right\|=\left\|\Gamma\left(a^{*} a\right)\right\|=\|\Gamma(a)\|^{2}$; so Γ is isometric.
So $\Gamma(\mathfrak{A})$ is a norm-closed, self-adjoint subalgebra of $\mathcal{C}\left(\mathcal{M}_{\mathfrak{A}}\right)$ which separates points. By Stone-Weierstrass theorem we get $\Gamma(\mathfrak{A})=\mathcal{C}\left(\mathcal{M}_{\mathfrak{A}}\right)$.

Suppose now that \mathfrak{A} not unital.
TODO 30. caselist
Then \mathfrak{A} lies in the unitization \mathfrak{A}^{+}and $\mathcal{M}_{\mathfrak{A}^{+}}=\mathcal{M}_{\mathfrak{A}} \cup\left\{\varphi_{\infty}\right\}$ is the one-point compactification of the locally compact space $\mathcal{M}_{\mathfrak{A}}$ (where $\left.\varphi_{\infty}(a+\lambda)=\lambda\right)$. Then by above we have $\Gamma: \mathfrak{A}^{+} \rightarrow \mathcal{C}\left(\mathcal{M}_{\mathfrak{A}^{+}}\right.$is an isometric *-isomorphism. But $\Gamma(\mathfrak{A})=\left\{f: f\left(\varphi_{\infty}\right)=0\right\}$ has codimension 1. Since \mathfrak{A} has codimension 1 in \mathfrak{A}^{+}we have $\Gamma(\mathfrak{A})$ has codimension 1 in $\Gamma(\mathfrak{A})=\mathcal{C}\left(\mathcal{M}_{\mathfrak{A}}\right)$.
TODO 31. pluses?
So Γ maps \mathfrak{A} onto $\mathcal{C}_{0}\left(\mathcal{M}_{\mathfrak{A}}\right)=\left\{f \in \mathcal{C}\left(\mathcal{M}_{\mathfrak{A}^{+}}\right): f\left(\varphi_{\infty}\right)=0\right\}$.
Theorem 6.6
Corollary 6.7. Suppose \mathfrak{A} is a unital C^{*}-algebra (not necessarily abelian) and $n \in \mathfrak{A}$ is normal. Then if $C^{*}(n)=\overline{\operatorname{alg}\left\{1, n, n^{*}\right\}}{ }^{\|\cdot\|}$ then there is a homeomorphism $\sigma(n)$ to $\mathcal{M}_{C^{*}(n)}$ that sends $\lambda \in \sigma(n)$ to φ_{λ} where $\varphi_{\lambda}(n)=\lambda$. Thus $C^{*}(n)$ is ${ }^{*}$-isomorphic to $\mathcal{C}(\sigma(n))$.
Proof. $C^{*}(n)$ is a unital abelian C^{*}-algebra. Let $X=\mathcal{M}_{C^{*}(n)}$. If $\varphi \in X$ then $\varphi(n)=\lambda \in \sigma(n)$. But then $\varphi\left(n^{*}\right)=\bar{\lambda}$ so $\varphi\left(p\left(n, n^{*}\right)\right)=p(\lambda, \bar{\lambda})$ where $p \in \mathbb{C}[x, y]$. But such $p\left(n, n^{*}\right)$ are dense in $C^{*}(n)$; so since φ is continuous we have that φ is determined by λ. So the map $X \rightarrow \sigma(n)$ given by $\varphi \mapsto \varphi(n)$ is bijective and continuous and is thus a homeomorphism. So

$$
\begin{aligned}
C^{*}(n) & \cong \mathcal{C}(X) \\
n & \cong \mathcal{C}(\sigma(n)) \\
& \mapsto \quad \widehat{n} \quad \mapsto \widetilde{n}
\end{aligned}
$$

where $\widetilde{n}(\lambda)=\lambda\left(\right.$ so $\left.\widetilde{n}=\operatorname{id}_{\sigma(n)}\right)$.
\square Corollary 6.7
Corollary 6.8. The C^{*}-algebra $C^{*}\left(n, n^{*}\right)$ is isomorphic to $C_{0}(\sigma(n) \backslash\{0\})$.
Corollary 6.9 (Continuous functional calculus for normal elements). Suppose \mathfrak{A} is a unital C^{*}-algebra and $n \in \mathfrak{A}$ is normal. Then there is a ${ }^{*}$-isomorphism $\Gamma^{-1}: \mathcal{C}(\sigma(n)) \rightarrow C^{*}(n)$. So for $f \in \mathcal{C}(\sigma(n))$ we define $f(n)=\Gamma^{-1}(f)$.

Note that $\Gamma^{-1}\left(\operatorname{id}_{\sigma(n)}\right)=n$ and $\Gamma^{-1}(\bar{z})=n^{*}$. Also $\Gamma^{-1}(p(z, \bar{z}))=p\left(n, n^{*}\right)$. This extends to all continuous functions.

Corollary 6.10. If n is normal and $f \in \mathcal{C}(\sigma(n))$ then $\sigma(f(n))=f(\sigma(n))$

Corollary 6.11.

1. If n is normal then $\|n\|=\operatorname{spr}(n)$.
2. If $a=a^{*}$ then $\sigma(a) \subseteq \mathbb{R}$.
3. If u is unitary then $\sigma(u) \subseteq \mathbb{T}$.

Proof.

1. $\|n\|=\|\Gamma(n)\|=\operatorname{spr}(n)$.
2. If $a=a^{*}$ then $\Gamma(a)$ is real-valued, so $\sigma(a)=\operatorname{Ran}(\Gamma(a)) \subseteq \mathbb{R}$.
3. If $u u^{*}=u^{*} u=1$ then $|\Gamma(u)|^{2}=1$ so $\varphi(u) \in \mathbb{T}$ for all φ, and thus $\sigma(u) \subseteq \mathbb{T}$.

6.1 Operators on a Hilbert space

If $T \in \mathcal{B}(\mathcal{H})$ and $x, y \in \mathcal{H}$ then

$$
\begin{aligned}
\langle T x, y\rangle & =\frac{1}{4}(\langle T x+y, x+y\rangle+i\langle T(x+i y), x+i y\rangle-\langle T(x-y), x-y\rangle-i\langle T(x-i y), x-i y\rangle) \\
& =\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\langle T\left(x+i^{k} y\right), x+i^{k} y\right\rangle
\end{aligned}
$$

This is the polarization identity.
TODO 32. missing parens on $T x+y$?
Proposition 6.12. If $U \in \mathcal{B}(\mathcal{H})$ then the following are equivalent:

1. U is unitary.
2. $\langle U x, U y\rangle=\langle x, y\rangle$ for all $x, y \in \mathcal{H}$ and $U \mathcal{H}=\mathcal{H}$.
3. U is isometric (i.e. $\|U x\|=\|x\|$ for all x) and surjective.

Proof.
$\underline{\mathbf{(1)} \Longrightarrow \mathbf{(2)}}\langle U x, U y\rangle=\left\langle U^{*} U x, y\right\rangle=\langle x, y\rangle$. Since U is invertible we get that U is surjective.
$(2) \Longrightarrow(3)$ Take $x=y$.
$\underline{\mathbf{(3)} \Longrightarrow \mathbf{(1)}}\|x\|^{2}=\langle U x, U x\rangle=\left\langle U^{*} U x, x\right\rangle$ for all x. The polar identity yields $\langle I x, y\rangle=\left\langle U^{*} U x, y\right\rangle=$ $\langle U x, U y\rangle$ for all x, y. So $I=U^{*} U$. So U is bijective and thus invertible; so $U^{*}=U^{-1}$ and U is unitary. Proposition 6.12

Proposition 6.13. If $N \in \mathcal{B}(\mathcal{H})$ is normal then $\left\|N^{*} x\right\|=\|N x\|$ for all $x \in \mathcal{H}$. Hence $\operatorname{ker}\left(N^{*}\right)=\operatorname{ker}(N)$.
Proof. We have

$$
\left\|N^{*} x\right\|^{2}=\left\langle N^{*} x, N^{*} x\right\rangle=\left\langle N N^{*} x, x\right\rangle=\left\langle N^{*} N x, x\right\rangle=\langle N x, N x\rangle=\|N x\|^{2}
$$

as desired.
Corollary 6.14. If N is normal and Fredholm then $\operatorname{ind}(N)=0$.

Proof. T is Fredholm if $\operatorname{Ran}(T)$ is closed, $\operatorname{nul}(T)=\operatorname{dim}(\operatorname{ker}(T))<\infty$, and $\operatorname{nul}\left(T^{*}\right)=\operatorname{dim}(\mathcal{H} / T \mathcal{H})<\infty$. Then $\operatorname{ind}(T)=\operatorname{nul}(T)-\operatorname{nul}\left(T^{*}\right)$.
\square Corollary 6.14
Proposition 6.15. Suppose $A \in \mathcal{B}(\mathcal{H})$. Then $A=A^{*}$ if and only if $\langle A x, x\rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$.
Proof.
(\Longrightarrow) We have

$$
\overline{\langle A x, x\rangle}=\langle x, A x\rangle=\left\langle A^{*} x, x\right\rangle=\langle A x, x\rangle
$$

So $\langle A x, x\rangle \in \mathbb{R}$.
(\Longleftarrow) We have

$$
\begin{aligned}
\left\langle A^{*} y, x\right\rangle & =\frac{\langle y, A x\rangle}{\langle A x, y\rangle} \\
& =\frac{\frac{1}{4} \sum_{k=0}^{3} i^{k} \underbrace{\left\langle A\left(x+i^{k} y\right), x+i^{k} y\right\rangle}_{\in \mathbb{R}}}{} \\
& =\frac{1}{4} \sum_{k=0}^{3}(-i)^{k}\left\langle A\left(x+i^{k} y\right), x+i^{k} y\right\rangle \\
& =\frac{1}{4} \sum_{k=0}^{3}(-i)^{k}\left\langle i^{k} A\left(y+(-i)^{k} x\right), i^{k}\left(y+(-i)^{k} x\right)\right\rangle \\
& =\frac{1}{4} \sum_{k=0}^{3}(-i)^{k}\left\langle A\left(y+(-i)^{k} x\right),\left(y+(-i)^{k} x\right)\right\rangle \\
& =\langle A y, x\rangle
\end{aligned}
$$

as desired.

Corollary 6.16. If $A \in \mathcal{B}(\mathcal{H})$ then $\sigma\left(A^{*} A\right) \subseteq[0, \infty)$. So $A^{*} A$ is positive.
Proof. Note $\left(A^{*} A\right)^{*}=A^{*} A$ is self-adjoint. If $r>0$ then

$$
\begin{aligned}
\left\langle\left(A^{*} A+r I\right) x, x\right\rangle & =\left\langle A^{*} A x, x\right\rangle+\langle r x, x\rangle \\
& =\|A x\|^{2}+r\|x\|^{2} \\
& \geq r\|x\|^{2}
\end{aligned}
$$

So $A^{*} A+r I$ is bounded below, and thus has closed range and thus is surjective and is thus invertible. So $-r \notin \sigma\left(A^{*} A\right) \subseteq \mathbb{R}$. Also $\operatorname{ker}\left(A^{*} A+r I\right)=\{0\}$ so $A^{*} A+r I$ has dense range, and thus $\operatorname{Ran}\left(A^{*} A+r I\right)^{\perp}=$ $\operatorname{ker}\left(\left(A^{*} A+r I\right)^{*}\right)=\{0\}$. So $\sigma\left(A^{*} A\right) \subseteq[0, \infty)$
TODO 33. TidyCorollary 6.16

6.2 Positive elements

Proposition 6.17. If $a \in \mathfrak{A}$ and $a \geq 0$ then there is a unique $b \in \mathfrak{A}$ with $b \geq 0$ such that $b^{2}=a$.
Proof. Let $f(x)=x^{\frac{1}{2}}$, which is continuous on $\sigma(a) \subseteq[0,\|a\|]$. Let $b=f(a)$. Note that $f(x)=\lim p_{n}(x)$ with $p_{n} \in \mathbb{C}[x]$ and $p_{n}(0)=0$. So $p_{n}(a) \in \mathfrak{A}$ even if \mathfrak{A} is not unital. So $f(a) \in \mathfrak{A}$. Then $b^{2}=f^{2}(a)=\operatorname{id}(a)=a$.
TODO 34. I guess we're implicitly using the fact that $(f \circ g)(a)=f(g(a))$.

For uniqueness, suppose $c \geq 0$ with $c^{2}=a$. Then $x=\operatorname{id}(x)=f\left(x^{2}\right)$. In $C^{*}(c)$ we have

$$
c=\operatorname{id}(c)=f\left(x^{2}(c)\right)=f\left(c^{2}\right)=f(a)=b
$$

as desired.
Proposition 6.18. If $a=a^{*}$ then there is $a_{+}, a_{-} \in \mathfrak{A}$ such that $a_{+} \geq 0, a_{-} \geq 0, a_{+} a_{-}=0$, and $a=a_{+}-a_{-}$.

Proof. Let $f \in \mathcal{C}(\sigma(a))$ be

$$
x \mapsto \begin{cases}x & \text { if } x \geq 0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Let $a_{+}=f(a)$ and $a_{-}=a_{+}-a=g(a)$ where

$$
g(x)= \begin{cases}0 & \text { if } x \geq 0 \\ -x & \text { else }\end{cases}
$$

so $f-g=$ id. Then $f \geq 0$ so $a_{+} \geq 0$; likewise $g \geq 0$ so $a_{-} \geq 0$. Also $a_{+}-a_{-}=(f-g)(a)=a$ and $a_{+} a_{-}=(f g)(a)=0$ since $(f g)(x)=0$.

Lemma 6.19. If $a=a^{*} \in \mathfrak{A}$ then the following are equivalent:

1. $a \geq 0$.
2. $a=b^{2}$ for some $b \geq 0$.
3. For all $c \geq\|a\|$ we have $\|c 1-a\| \leq c$. (Work in \mathfrak{A}_{+}if \mathfrak{A} is not unital.)
4. There exists $c \geq\|a\|$ such that $\|c 1-a\| \leq c$.

Proof.
$\xrightarrow{(1) \Longrightarrow(2)}$ Done.
$\underline{(2) \Longrightarrow(3)}$ If $f(x)=c-x^{2}$ we have

$$
\|c 1-a\|=\|f(b)\|=\sup _{\lambda \in \sigma(b)}|f(\lambda)| \leq \sup _{\lambda \in\left[0,\|a\|^{\frac{1}{2}}\right]}\left|c-x^{2}\right|=c
$$

since $\sigma(b) \subseteq[0,\|b\|]$ and $\|b\|^{2}=\left\|b^{2}\right\|=\|a\|$.
$(3) \Longrightarrow(4)$ Clear.
$\underline{\mathbf{(4)} \Longrightarrow \mathbf{(1)}}$ We have $\sigma(a) \subseteq \mathbb{R} \cap \overline{b_{c}(c)}=[0,2 c] \subseteq \mathbb{R}^{+}($since $\|c-a\| \leq c)$. So $a \geq 0$.
\square Lemma 6.19
Corollary 6.20. If $a, b \in \mathfrak{A}$ with $a \geq 0$ and $b \geq 0$ then $a+b \geq 0$.
Proof. There is $r \geq\|a\|$ such that $r 1-a \leq r$, and there is $s \geq\|b\|$ such that $\|s 1-b\| \leq s$. But then

$$
\|(r+s) 1-(a+b)\| \leq\|r 1-a\|+\|s 1-b\| \leq r+s
$$

So $a+b \geq 0$.
Theorem 6.21. If $a \in \mathfrak{A}$ then $a^{*} a \geq 0$.

Proof. Write $a^{*} a=b_{+}-b_{-}$where $b_{+} \geq 0, b_{-} \geq 0$, and $b_{+} b_{-}=0$. Pick $c \geq 0$ such that $c^{2}=b_{-}$; let $t=a c$. Then $c=f\left(b_{-}\right)$where $f(x)=\sqrt{x}=\lim p_{n}(x)$ where $p_{n} \in \mathbb{C}[x]$ and $p_{n}(0)=0$. Then

$$
c b_{+}=\lim p_{n}\left(b_{-}\right) b_{+}=\lim \left(\frac{p_{n}}{x}\right)\left(b_{-}\right) b_{-} b_{+}=0
$$

Now

$$
t^{*} t=c\left(a^{*} a\right) c=c\left(b_{+}-b_{-}\right) c=-c b_{-} c=-c^{4}=-b_{-}^{2} \leq 0
$$

So $\sigma\left(t^{*} t\right) \subseteq(-\infty, 0]$. Write $t=x+i y$ with $x=\operatorname{Re}(t)$ and $y=\operatorname{Im}(t)$ self-adjoint. Then

$$
\begin{aligned}
& t^{*} t=(x-i y)(x+i y) \\
& t t^{*}=(x+i y)(x-i y)=x^{2}+y^{2}+i(x y-y x) \\
& x^{2}+y^{2}-i(x y-y x)
\end{aligned}
$$

So $t^{*} t+t t^{*}=2 x^{2}+2 y^{2} \geq 0$ by corollary.
TODO 35. ref
So $t t^{*}=\left(t^{*} t+t t^{*}\right)-t^{*} t=2 x^{2}+2 y^{2}+b_{-}^{2} \geq 0$. So $\sigma\left(t t^{*}\right) \subseteq[0, \infty)$.
But $\sigma\left(t^{*} t\right) \cup\{0\}=\sigma\left(t t^{*}\right) \cup\{0\}$
TODO 36. ref
So $\sigma\left(t^{*} t\right)=\{0\}$. Then $\|t\|^{2}=\left\|t^{*} t\right\|=\operatorname{spr}\left(t^{*} t\right)=0$, and $t=0$. So $b_{-}^{2}=0$, and $b_{-}=0$. Thus $a^{*} a=b_{+} \geq 0$.
\square Theorem 6.21
Definition 6.22. If $a=a^{*}$ and $b=b^{*}$ we say $a \leq b$ if $b-a \geq 0$.
Corollary 6.23. If $a \leq b$ in \mathfrak{A} and $x \in \mathfrak{A}$ then $x^{*} a x \leq x^{*} b x$.
Proof. Since $0 \leq b-a$ there is $c \geq 0$ with $c^{2}=b-a$; then $x^{*} b x-x^{*} a x=x^{*}(b-a) x=x^{*} c c x=(c x)^{*}(c x) \geq 0$.
\square Corollary 6.23
Corollary 6.24. If $0 \leq a \leq b$ and a, b invertible then $b^{-1} \leq a^{-1}$.
Proof. Since $b \geq 0$ we get from spectral mapping theorem that $b^{-1} \geq 0$, and hence $b^{-\frac{1}{2}}=\sqrt{b^{-1}}$ is well-defined.
TODO 37. ref?
Then previous corollary gives

$$
0 \leq b^{-\frac{1}{2}}(b-a) b^{-\frac{1}{2}}=1-\left(b^{-\frac{1}{2}} a^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}} b^{-\frac{1}{2}}\right)
$$

So $\left(b^{-\frac{1}{2}} a^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}} b^{-\frac{1}{2}}\right) \leq 1$. So $\left\|a^{\frac{1}{2}} b^{-\frac{1}{2}}\right\|^{2}=\left\|\left(b^{-\frac{1}{2}} a^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}} b^{-\frac{1}{2}}\right)\right\| \leq 1$.
Aside 6.25. If $\|x\| \leq 1$ then $0 \leq x^{*} x \leq 1$. Since $x^{*} x \geq 0$ and $\left\|x^{*} x\right\|=\|x\|^{2} \leq 1$ then $\sigma\left(x^{*} x\right) \subseteq[0,1]$; so $x^{*} x \leq 1$. (Indeed, $1-x^{*} x=g\left(x^{*} x\right)$ where $g(t)=1-t$ for $t \in[0,1]$; so $g \geq 0$.)
TODO 38. Better environment
Thus $a^{\frac{1}{2}} b^{-1} a^{\frac{1}{2}}=\left(a^{\frac{1}{2}} b^{-\frac{1}{2}}\right)\left(b^{-\frac{1}{2}} a^{\frac{1}{2}}\right) \leq 1$. Thus $b^{-1}=a^{-\frac{1}{2}}\left(a^{\frac{1}{2}} b a^{\frac{1}{2}}\right) a^{-\frac{1}{2}} \leq a^{-\frac{1}{2}} 1 a^{-\frac{1}{2}}=a^{-1} . \square$ Corollary 6.24

Definition 6.26. An approximate identity for a C^{*}-algebra \mathfrak{A} is a net e_{λ} where $0 \leq e_{\lambda} \leq 1$ and

$$
\lim _{\lambda}\left\|a-a e_{\lambda}\right\|=0=\lim _{\lambda}\left\|a-e_{\lambda} a\right\|
$$

for all $a \in \mathfrak{A}$.
Theorem 6.27. Suppose \mathfrak{A} is a C^{*}-algebra. Then there is a bounded approximate identity for \mathfrak{A}.
Proof. Let $\Lambda=\{e \in \mathfrak{A}: e \geq 0,\|e\|<1\}$.
Claim 6.28. Λ is directed by \leq.

Proof. Suppose $a, b \in \Lambda$. We want to find $c \in A$ such that $a \leq c$ and $b \leq c$. Let $f:[0,1) \rightarrow \mathbb{R}^{+}$be $f(t)=\frac{t}{1-t}$; let $g: \mathbb{R}^{+} \rightarrow[0,1)$ be $g(t)=\frac{t}{1+t}=1-\frac{1}{1+t}$. Then

$$
g(f(t))=1-\frac{1}{1+f(t)}=1-\frac{1}{1+\frac{t}{1-t}}=1-\frac{1-t}{1-t+t}=t
$$

Let $y=f(a)+f(b) \geq 0$; let $c=g(y) \geq 0$. Then $\sigma(c)=g(\sigma(y)) \subseteq[0,1)$; so $\|c\|<1$, and $c \in \Lambda$. Since $y \geq f(a)$ we get $1+y \geq 1+f(a)$. Also note that if $x \geq 0$ then $1+x \geq 0$, and $\sigma(1+x) \subseteq[1, \infty)$; so $1+x$ is invertible. Applying this to y and $f(a)$ we get $(1+y)^{-1} \leq(a+f(a))^{-1}$. Then

$$
c=g(y)=1-(1+y)^{-1} \geq 1-(1+f(a))^{-1}=g(f(a))=a
$$

Similarly we get $c \geq b$. So Λ is directed.
If $0 \leq a \leq b \in \Lambda$ and $x \in \mathfrak{A}$ then

$$
\|x-b x\|^{2}=\left\|\left(x^{*}-x^{*} b\right)(x-b x)\right\|=\left\|x^{*}(1-b)^{2} x\right\|
$$

Aside 6.29. $0 \leq a \leq b$ does not imply that $a^{2} \leq b^{2}$. Indeed, if

$$
\begin{aligned}
a & =\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
b & =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

then $a \leq b$ but

$$
b^{2}-a^{2}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)-\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right)
$$

has determinant -1 .
Now, $0 \leq 1-b \leq 1$ so since $x^{2} \leq x$ on $[0,1]$ we have $(1-b)^{2} \leq 1-b$; so $x^{*}(1-b)^{2} x \leq x^{*}(1-b) x$. Thus

$$
\begin{aligned}
\|x-b x\|^{2} & =\left\|x^{*}(1-b)^{2} x\right\| \\
& \leq\left\|x^{*}(1-b) x\right\| \\
& \leq\left\|x^{*}(1-a) x\right\|(\text { since } 1-a \geq 1-b) \\
& \leq\|x\|^{*}\|x-a x\|
\end{aligned}
$$

Now suppose that $x \geq 0$. Let $a_{n}=g(n x)=\frac{n x}{1+n x}$; let

$$
h(t)=t\left(1-\frac{n t}{1+n t}\right) t=\frac{t^{2}}{1+n t} \leq \frac{t}{n}
$$

Then

$$
\left\|x\left(1-a_{n}\right) x\right\|=\|h(x)\| \leq \sup _{t \in[0,\|x\|]}|h(t)| \leq \frac{\|x\|}{n}
$$

If $\varepsilon>0$ choose n such that $\frac{\|x\|}{n}<\varepsilon^{2}$. Then for all $b \in \Lambda$ with $b \geq a_{n}$ we have

$$
\|x-b x\|^{2} \leq\left\|x\left(1-a_{n}\right) x\right\| \leq \frac{\|x\|}{n}<\varepsilon^{2}
$$

so $\|x-b x\|<\varepsilon$. So

$$
\lim _{b \in \Lambda} b x=x
$$

Also

$$
\lim _{b \in \Lambda} x b=\left(\lim _{b \in \Lambda} b x\right)^{*}=x^{*}=x
$$

For general $x \in A$ we have

$$
\|x-x b\|^{2}=\|x(1-b)\|^{2}=\left\|(1-b) x^{*} x(1-b)\right\| \leq \underbrace{\|1-b\| \|}_{\leq 1}\left\|\left(x^{*} x\right)-\left(x^{*} x\right) b\right\| \rightarrow 0
$$

as desired.
Theorem 6.27
Corollary 6.30. If \mathfrak{A} is a separable C^{*}-algebra then \mathfrak{A} has an approximate identity $\left\{e_{n}: n \geq 1\right\}$ with $0 \leq e_{n} \leq e_{n+1}<1$.

Proof. Exercise.

6.3 Ideals and quotients

Definition 6.31. An ideal of a C^{*}-algebra is a closed two-sided ideal.
Lemma 6.32. Suppose $\mathfrak{J} \triangleleft \mathfrak{A}$ is an ideal of \mathfrak{A}. Then \mathfrak{J} is self-adjoint.
Proof. Let $\mathfrak{B}=\mathfrak{J} \cap \mathfrak{J}^{*}$; so \mathfrak{B} is a C^{*}-algebra. (Indeed, it is closed and self-adjoint, and if $a, b \in \mathfrak{B}$ then $a b \in \mathfrak{J}$ and $a b \in \mathfrak{J}^{*}$ since $\mathfrak{J}, \mathfrak{J}^{*}$ are ideals.) Let $\left\{e_{\lambda}\right\}$ be an approximate identity for \mathfrak{B}. Then $\mathfrak{B} \supseteq \mathfrak{J}^{*}$ since $\mathfrak{J} \mathfrak{J}^{*} \subseteq \mathfrak{J A} \subseteq \mathfrak{J}$ and $\mathfrak{J} \mathfrak{J}^{*} \subseteq \mathfrak{A} \mathfrak{J}^{*}=(\mathfrak{J A})^{*}=\mathfrak{J}^{*}$.

Suppose $a \in \mathfrak{J}$ and e_{λ} is in our approximate identity. Then

$$
\begin{aligned}
\left\|a^{*}-a^{*} e_{\lambda}\right\|^{2} & =\left\|\left(a-e_{\lambda} a\right)\left(a^{*}-a^{*} e_{\lambda}\right)\right\| \\
& =\left\|\left(a a^{*}-a a^{*} e_{\lambda}\right)-e_{\lambda}\left(a a^{*}-a a^{*} e_{\lambda}\right)\right\| \\
& =\left\|\left(1-e_{\lambda}\right)\left(a a^{*}-a a^{*} e_{\lambda}\right)\right\| \\
& \leq\|a a^{*}-\underbrace{a a^{*}}_{\in \mathfrak{B}} e_{\lambda}\| \\
& \rightarrow 0
\end{aligned}
$$

So $a^{*} e_{\lambda} \rightarrow a^{*}$, and $a^{*} e_{\lambda} \in \mathfrak{J}$ since $e_{\lambda} \in \mathfrak{B} \subseteq \mathfrak{J}$. So since \mathfrak{J} is closed we get $a^{*} \in \mathfrak{J}$. So $\mathfrak{J}=\mathfrak{J}^{*}$. \square Lemma 6.32

Aside 6.33. If $0 \leq a \leq b$ then $\|a\| \leq\|b\|$. Indeed, we have $\sigma(b) \subseteq[0,\|b\|]$ so $b \leq\|b\| 1$ and $a \leq\|b\| 1$. So if $r>\|b\|$ then $r-a \geq(r-\|b\|) 1$. So $\sigma(r-a) \subseteq[r-\|b\|, \infty)$, and $\sigma(a) \subseteq(-\infty,\|b\|) \cap \mathbb{R}^{+}=[0,\|b\|]$. So $\|a\|=\operatorname{spr}(a) \leq\|b\|$.

There's probably an easier proof of the above; he came up with this on the spot when asked.
Lemma 6.34. Suppose \mathfrak{A} is a C^{*}-algebra; suppose $x, a \in \mathfrak{A}$ with $x^{*} x \leq a$. Then there is $b \in \mathfrak{A}$ such that $x=b a^{\frac{1}{4}}$ and $\|b\| \leq\|a\|^{\frac{1}{4}}$.
Proof. Let $b_{n}=x\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{4}}$. (Note that $a \geq 0$ so $a+\frac{1}{n} \geq \frac{1}{n}$ is invertible in \mathfrak{A}_{+}. Then

$$
\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{4}}=f(a)
$$

where

$$
f(x)=\frac{x^{\frac{1}{4}}}{\sqrt{x+\frac{1}{n}}} \in \mathcal{C}_{0}[0,\|a\|]
$$

So $f(a) \in \mathfrak{A}$ even whe \mathfrak{A} is not unital.) Let

$$
d_{n m}=\left(a+\frac{1}{n}\right)^{-\frac{1}{2}}-\left(a+\frac{1}{m}\right)^{-\frac{1}{2}}
$$

for $n, m \geq 1$. Then

$$
\begin{aligned}
\left\|b_{n}-b_{m}\right\|^{2} & =\left\|x d_{n m} a^{\frac{1}{4}}\right\|^{2} \\
& =\left\|a^{\frac{1}{4}} d_{n m} x^{*} x d_{n m} a^{\frac{1}{4}}\right\| \\
& \leq\left\|a^{\frac{1}{4}} d_{n m} a d_{n m} a^{\frac{1}{4}}\right\| \\
& =\left\|d_{n m} a^{\frac{3}{4}}\right\|^{2} \\
& =\left\|\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{3}{4}}-\left(a+\frac{1}{m}\right)^{-\frac{1}{2}} a^{\frac{3}{4}}\right\|^{2} \\
& =\left\|f_{n}(a)-f_{m}(a)\right\|^{2} \\
& \rightarrow 0
\end{aligned}
$$

as $n, m \rightarrow \infty$, where

$$
f_{n}(x)=\frac{x^{\frac{3}{4}}}{\sqrt{x+\frac{1}{n}}} \in \mathcal{C}_{0}[0,\|a\|]
$$

So $0 \leq f_{n} \leq f_{n+1} \leq x^{\frac{1}{4}}$, and $f_{n} \rightarrow x^{\frac{1}{4}}$ uniformly on $[0,\|a\|]$. Thus $f_{n}(a) \rightarrow a^{\frac{1}{4}}$ in \mathfrak{A}, and $\left(f_{n}(a)\right)_{n}$ is a Cauchy sequence. So $\left(b_{n}\right)_{n}$ is Cauchy, and there is a limit

$$
b=\lim _{n \rightarrow \infty} b_{n} \in \mathfrak{A}
$$

Then

$$
\begin{aligned}
\left\|x-b a^{\frac{1}{4}}\right\|^{2} & =\lim _{n \rightarrow \infty}\left\|x-b_{n} a^{\frac{1}{4}}\right\|^{2} \\
& =\lim _{n \rightarrow \infty}\left\|x-x\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{2}}\right\|^{2} \\
& =\lim _{n \rightarrow \infty}\left\|x\left(1-\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{2}}\right)^{2}\right\| \\
& =\lim _{n \rightarrow \infty}\left\|\left(1-\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{2}}\right) x^{*} x\left(1-\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{2}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left\|\left(1-\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{2}}\right) a\left(1-\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{2}}\right)\right\| \\
& =\lim _{n \rightarrow \infty} h_{n}(a) \\
& =0
\end{aligned}
$$

where

$$
h_{n}(x)=x\left(1-\sqrt{\frac{x}{x+\frac{1}{n}}}\right)^{2} \rightarrow 0
$$

uniformly on $[0,\|a\|]$. So $x=b a^{\frac{1}{4}}$. Also

$$
\begin{aligned}
\left\|b_{n}\right\|^{2} & =\left\|b_{n}^{*} b_{n}\right\| \\
& =\left\|a^{\frac{1}{4}}\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} x^{*} x\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{4}}\right\| \\
& \leq\left\|a^{\frac{1}{4}}\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a\left(a+\frac{1}{n}\right)^{-\frac{1}{2}} a^{\frac{1}{4}}\right\| \\
& =g_{n}(a) \\
& \leq\left\|g_{n}\right\|_{[0,\|a\|]} \\
& \leq\left\|a^{\frac{1}{2}}\right\| \\
& =\|a\|^{\frac{1}{2}}
\end{aligned}
$$

where

$$
g_{n}(x)=\frac{x^{\frac{3}{2}}}{x+\frac{1}{n}} \stackrel{\leq}{\longrightarrow} \sqrt{x}
$$

uniformly on $[0,\|a\|]$.
Definition 6.35. A C^{*}-subalgebra $\mathfrak{B} \subseteq \mathfrak{A}$ is hereditary if whenever $b \in \mathfrak{B}$ with $b \geq 0$ and $a \in \mathfrak{A}$ with $0 \leq a \leq b$ we must have $a \in \mathfrak{B}$.

Corollary 6.36. Ideals are hereditary subalgebras of \mathfrak{A}. Indeed, if $\mathfrak{J} \triangleleft \mathfrak{A}$ and $x^{*} x \leq a \in \mathfrak{J}$ then $x \in \mathfrak{J}$.
Proof. Write $x=b a^{\frac{1}{4}}$ with $a \in \mathfrak{J}$; so $a^{\frac{1}{4}} \in \mathfrak{J}$ and $x \in \mathfrak{J}$. Then $0 \leq b \leq a$ implies $b^{\frac{1}{2}} \in \mathfrak{J}$, and thus $b \in \mathfrak{J}$. So \mathfrak{J} is hereditary.

Theorem 6.37. If \mathfrak{A} is a C^{*}-algebra and $\mathfrak{J} \unlhd \mathfrak{A}$ then $\mathfrak{A} / \mathfrak{J}$ is a C^{*}-algebra.
Proof. $\mathfrak{J}=\mathfrak{J}^{*}$, so $\mathfrak{A} / \mathfrak{J}$ is a ${ }^{*}$-algebra: if $\dot{a}=a+\mathfrak{J}$ then $(\dot{a})^{*}=\dot{a}^{*}=a^{*}+\mathfrak{J}$. This is a Banach algebra with the quotient norm. Let $\left\{e_{\lambda}\right\}$ be an approximate identity for \mathfrak{J}.
Claim 6.38. $\|\dot{a}\|=\lim _{\lambda}\left\|a-a e_{\lambda}\right\|$.
Proof. $a e_{\lambda} \in \mathfrak{J}$, so $\|\dot{a}\| \leq\left\|a-a e_{\lambda}\right\|$. For all $\varepsilon>0$ there is $b \in \mathfrak{J}$ such that $\|a-b\|<\|\dot{a}\|+\varepsilon$. Then since $0 \leq e_{\lambda} \leq 1$ we have

$$
\begin{aligned}
\lim _{\lambda}\left\|a-a e_{\lambda}\right\| & \leq \lim _{\lambda}\left\|(a-b)\left(1-e_{\lambda}\right)\right\|+\left\|b-b e_{\lambda}\right\| \\
& \leq \lim _{\lambda}(\|\dot{a}\|+\varepsilon)(1)+\underbrace{\lim _{\lambda}\left\|b-b e_{\lambda}\right\|}_{=0} \\
& =\|\dot{a}\|+\varepsilon
\end{aligned}
$$

But $\varepsilon>0$ was arbitrary. So

$$
\lim _{\lambda}\left\|a-a e_{\lambda}\right\|=\|\dot{a}\|
$$

as claimed.
Then

$$
\begin{aligned}
\left\|\dot{a^{*}} \dot{a}\right\| & =\left\|\left(a^{*} a\right)\right\| \\
& =\lim _{\lambda}\|\underbrace{a^{*} a-a^{*} a e_{\lambda}}_{a^{*} a\left(1-e_{\lambda}\right)}\| \\
& \geq \lim _{\lambda}\left\|\left(1-e_{\lambda}\right) a^{*} a\left(1-e_{\lambda}\right)\right\| \\
& =\lim _{\lambda}\left\|a\left(1-e_{\lambda}\right)\right\|^{2} \\
& =\|\dot{a}\|^{2}
\end{aligned}
$$

Then

$$
\|\dot{a}\|^{2} \leq\left\|(\dot{a})^{*} \dot{a}\right\| \leq\left\|(\dot{a})^{*}\right\|\|\dot{a}\|=\|\dot{a}\|^{2}
$$

where for the last equality note that \mathfrak{J} is self-adjoint, so $\operatorname{dist}\left(a^{*}, \mathfrak{J}\right)=\operatorname{dist}(a, \mathfrak{J})$. Thus $\left\|(\dot{a})^{*} \dot{a}\right\|=\|\dot{a}\|^{2}$, and the C^{*}-identity holds. So $\mathfrak{A} / \mathfrak{J}$ is a C^{*}-algebra.

Theorem 6.39. Suppose $\pi: \mathfrak{A} \rightarrow \mathfrak{B}$ is a non-zero ${ }^{*}$-homomorphism between C^{*}-algebras. Then $\|\pi\|=1$. So $\mathfrak{J}=\operatorname{ker}(\pi)$ is a closed two-sided ideal. Let $\widetilde{\pi}$ be the induced map on the quotient; so the following diagram commutes:

THen $\widetilde{\pi}$ is an isometric ${ }^{*}$-monomorphism (i.e. injective ${ }^{*}$-homomorphism), and $\pi(\mathfrak{A})$ is a C^{*}-subalgebra of \mathfrak{B}.

Proof. If $a=a^{*}$ then $\sigma_{\mathfrak{B}}(\pi(a)) \subseteq \sigma_{\mathfrak{A}}(a)$: indeed, if $\lambda \notin \sigma(a)$ then $(a-\lambda)^{-1} \in \mathfrak{A}$, and $\pi\left((a-\lambda)^{-1}\right)=$ $(\pi(a)-\lambda)^{-1}$. (If \mathfrak{A} is not unital, define $\pi_{+}: \mathfrak{A}_{+} \rightarrow \mathfrak{B}_{+}$by $\pi_{+}(1)=1$; now we can sensibly talk about spectra.) Then

$$
\|\pi(a)\|=\operatorname{spr}(\pi(a)) \leq \operatorname{spr}(a)=\|a\|
$$

For general a we have

$$
\|\pi(a)\|^{2}=\left\|\pi\left(a^{*} a\right)\right\| \leq\left\|a^{*} a\right\|=\|a\|^{2}
$$

So $\|\pi\| \leq 1$ and π is continuous. So \mathfrak{J} is closed, and $\mathfrak{A} / \mathfrak{J}$ is a C^{*}-algebra; so $\widetilde{\pi}(\dot{a})=\pi(a)$ is well-defined and injective.
Claim 6.40. $\widetilde{\pi}$ is isometric.
Proof. If not, then there is $\dot{a} \in \mathfrak{A} / \mathfrak{J}$ such that

$$
r=\|\widetilde{\pi}(\dot{a})\|^{2}=\left\|\widetilde{\pi}\left((\dot{a})^{*} \dot{a}\right)\right\|<s=\|\dot{a}\|^{2}=\left\|(\dot{a})^{*} \dot{a}\right\|
$$

so $s \in \sigma\left((\dot{a})^{*} \dot{a}\right)$.
TODO 39. How'd this happen?
Let

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x \leq r \\ \frac{x-r}{s-r} & \text { if } r \leq x \leq s\end{cases}
$$

Then

$$
\left\|f\left((\dot{a})^{*} \dot{a}\right)\right\|=\sup _{x \in \sigma\left((\dot{a})^{*} \dot{a}\right)}|f(x)|=1
$$

so

$$
\left\|\widetilde{\pi}\left(f\left((\dot{a})^{*} a\right)\right)\right\|=\left\|f\left(\pi\left((\dot{a})^{*} \dot{a}\right)\right)\right\|=\|0\|=0
$$

as $\sigma\left((\dot{a})^{*} \dot{a}\right) \subseteq[0,1]$.
TODO 40.?
So $\widetilde{\pi}$ is not injective, a contradiction. So $\widetilde{\pi}$ is isometric. Claim 6.40

So in particular $\pi(\mathfrak{A})=\widetilde{\pi}(\mathfrak{A} / \mathfrak{J})$ is closed, and is thus a C^{*}-subalgebra of \mathfrak{B}.Theorem 6.39
Corollary 6.41. If $\mathfrak{J} \triangleleft \mathfrak{A}$ and \mathfrak{B} a C^{*}-subalgebra of \mathfrak{A} then $\mathfrak{B}+\mathfrak{J}$ is a C^{*}-subalgebra, and $\mathfrak{B} / \mathfrak{B} \cap \mathfrak{J} \cong \mathfrak{B}+\mathfrak{J} / \mathfrak{J}$.

Proof. Let $q: \mathfrak{A} \rightarrow \mathfrak{A} / \mathfrak{J}$ be the quotient mapping; so q is a ${ }^{*}$-homomorphism. So $q \upharpoonright \mathfrak{B}: \mathfrak{B} \rightarrow \mathfrak{A} / \mathfrak{J}$ is a *-homomorphism. Then using the above theorem there is an isometric *-homomorphism such that the following diagram commutes:

So $q(B)=\mathfrak{B}+\mathfrak{J} / \mathfrak{J}$ is closed; so $\mathfrak{B}+\mathfrak{J}=q^{-1}(q(\mathfrak{B}))$ is a closed self-adjoint subalgebra, and is thus a C^{*}-algebra. \square Corollary 6.41

Corollary 6.42. If $a \in \mathfrak{A} \subseteq \mathfrak{B}$ with $\mathfrak{A}, \mathfrak{B}$ unital C^{*}-algebras then $\sigma_{\mathfrak{A}}(a)=\sigma_{\mathfrak{B}}\left(\right.$ a). i.e. C^{*}-algebras are inverse-closed: if $a \in \mathfrak{A}$ and $a^{-1} \in \mathfrak{B}$ then $a^{-1} \in \mathfrak{A}$.

Proof. We know $\sigma_{\mathfrak{B}}(a) \subseteq \sigma_{\mathfrak{A}}(a)$; it remains to show that if there is $b \in \mathfrak{B}$ such that $a b=b a=1$ then $b \in \mathfrak{A}$.
Case 1. Suppose $a=a^{*}$. Then $\mathfrak{C}=C^{*}\left(a, a^{-1}\right)$ is abelian and contained in \mathfrak{B}. Then $0 \notin \sigma_{\mathcal{C}}(a)$; so there is $f \in \mathfrak{C}([-\|a\|,\|a\|])$ such that

$$
f(x)= \begin{cases}x^{-1} & \text { if } x \in \sigma_{\mathfrak{C}}(a) \\ 0 & \text { if } x=0\end{cases}
$$

Then $a^{-1}=f(a)$ in \mathfrak{C}. This also makes sense in $C^{*}(a)$ since f is a limit of polynomials p_{n} with $p_{n}(0)=0$. So $f(a) \in C^{*}(a)$; so a is invertible in $C^{*}(a) \subseteq \mathfrak{A}$.
Case 2. For the general case, suppose $a \in \mathfrak{A}$ and $a^{-1} \in \mathfrak{B}$. Then $\left(a^{*} a\right)^{-1}=a^{-1}\left(a^{-1}\right)^{*}$ is invertible in \mathfrak{B}. But $a^{*} a \geq 0$ so by the previous case we have $\left(a^{*} a\right)^{-1} \in \mathfrak{A}$. Then $a^{-1}=\left(a^{*} a\right)^{-1} a^{*} \in \mathfrak{A}$.Corollary 6.42

7 Concrete C*-algebras

TODO 41. Section title?

7.1 Review of weak and strong operator topologies

Suppose \mathcal{H} is a Hilbert space. We can endow $\mathcal{B}(\mathcal{H})$ with the weak operator topology by declaring $T_{\alpha} \xrightarrow{\text { wот }} T$ if $\left\langle T_{\alpha} x, y\right\rangle \rightarrow\langle T x, y\rangle$ for all $x, y \in \mathcal{H}$; this is the weakest topology such that $T \mapsto\langle T x, y\rangle$ is continuous for all $x, y \in \mathcal{H}$. The basic open neighbourhoods around 0 are given by

$$
\mathcal{O}\left(0, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left\{T \in \mathcal{B}(\mathcal{H}):\left|\left\langle T x_{i}, y_{i}\right\rangle\right|<1 \text { for } 1 \leq i \leq n\right\}
$$

We can also endow $\mathcal{B}(\mathcal{H})$ with the strong operator topology by declaring $T_{\alpha} \xrightarrow{\text { SOT }}$ if $T_{\alpha} x \rightarrow T x$ for all $x \in \mathcal{H}$; this is the weakest topology such that $T \mapsto T x$ is continuous for all $x \in \mathcal{H}$. It is determined by seminorms $p_{x}(T)=\|T x\|$; or

$$
p(T)=\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|^{2}\right)^{\frac{1}{2}}
$$

for $x_{1}, \ldots, x_{n} \in \mathcal{H}$. The basic open neighbourhoods aroud 0 are given by

$$
\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)=\left\{T: \sum_{i=1}^{n}\left\|T x_{i}\right\|^{2}<1\right\}
$$

We also have the strong* topology SOT * given by $T_{\alpha} \xrightarrow{\text { SOT }^{*}} T$ if and only if $T_{\alpha} \xrightarrow{\text { SOT }} T$ and $T_{\alpha}^{*} \xrightarrow{\text { SOT }} T^{*}$. The basic open neighbourhoods around 0 are

$$
\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)=\left\{T \sum_{i=1}^{n}\left\|T x_{i}\right\|^{2}<1, \sum_{i=1}^{n}\left\|T^{*} x_{i}\right\|=1\right\}
$$

TODO 42. I think the second sum should be norms squared? Also in the next proof
Example 7.1. If S is the unilateral shift then $S^{n} \xrightarrow{\text { WOT }} 0$ and $\left(S^{*}\right)^{n} \xrightarrow{\text { SOT }} 0$ but $S^{n} \xrightarrow{\text { SOT }} 0$ since the S^{n} are isometries, so $\left\|S^{n} x\right\|=1 \nrightarrow 0$.

Lemma 7.2. Suppose $\varphi: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}$ is linear. Then the following are equivalent:

1. There exist $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathcal{H}$ such that

$$
\varphi(T)=\sum_{i=1}^{n}\left\langle T x_{i}, y_{i}\right\rangle
$$

2. φ is WOT-continuous.
3. φ is SOT-continuous.
4. φ is $S O T^{*}$-continuous.

Proof.
$(1) \Longrightarrow(2)$ Easy.
$(2) \Longrightarrow(3)$ Easy.
$(3) \Longrightarrow(4)$ Easy.
$\underline{(4) \Longrightarrow(1)}$ We have $\varphi^{-1}(\mathbb{D})$ is a SOT *-open neighbourhood of 0 . So there is $x_{1}, \ldots, x_{n} \in \mathcal{H}$ such that

$$
\varphi^{-1}(\mathbb{D}) \supseteq\left\{T: \sum\left\|T x_{i}\right\|^{2}<1, \sum\left\|T^{*} x_{i}\right\|<1\right\} \supseteq\left\{T: T x_{i}=0, T^{*} x_{i}=0\right\} \subseteq \operatorname{ker}(\varphi)
$$

Then the following diagram commutes:

where $T \mapsto\left(T x_{1}, \ldots, T x_{n}, T^{*} x_{1}, \ldots, T^{*} x_{n}\right) \mapsto \varphi(T)$ and the latter map is continuous. We extend the $\operatorname{map} \rho(\mathcal{B}(\mathcal{H})) \rightarrow \mathbb{C}$ to ψ on $\mathcal{H}^{(2 n)}$ by Hahn-Bnach. Then there are $w_{i} \in \mathcal{H}^{*}, z_{i} \in \mathcal{H}$ such that

$$
\psi\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)=\sum\left\langle u_{i}, w_{i}\right\rangle+\sum\left\langle v_{i}, z_{i}\right\rangle
$$

Then

$$
\varphi(T)=\sum_{i=1}^{n}\left\langle T x_{i}, w_{i}\right\rangle+\sum_{i=1}^{n}\left\langle z_{i}, T^{*} x_{i}\right\rangle=\sum_{i=1}^{n}\left\langle T z_{i}, x_{i}\right\rangle
$$

as desired.
Improved version:
TODO 43. Delete the first version?
Note that $\varphi^{-1}(\mathbb{D})$ is a basic SOT* *-open neighbourhood of 0 and
$\varphi^{-1}(\mathbb{D}) \supseteq\left\{T: \sum_{i=1}^{n}\left\|T x_{i}\right\|^{2}<1\right.$ and $\left.\sum_{j=1}^{m}\left\|T^{*} y_{j}\right\|^{2}<1\right\} \supseteq\left\{T: T x_{i}=0=T^{*} y_{j}, 1 \leq i \leq n, 1 \leq j \leq m\right\}$
and this last is a closed subspace. Then we want $\psi: \mathcal{H}^{(n)} \oplus\left(\mathcal{H}^{*}\right)^{(m)} \rightarrow \mathbb{C}$ such that the following diagram commutes:

where $\rho(T)=\left(T x_{1}, \ldots, T x_{n}, T^{*} y_{1}, \ldots, T^{*} y_{m}\right)$. Then $T^{*} y_{j}$ represents the linear functional in \mathcal{H} given by $x \mapsto\left\langle x, T^{*} y_{j}\right\rangle=\left\langle T x, y_{j}\right\rangle$; the map $T \mapsto T^{*} y_{j} \in \mathcal{H}^{*}$ is linear.
Define $\psi\left(\left(T x_{1}, \ldots, T x_{n}, T^{*} y_{1}, \ldots, T^{*} y_{m}\right)\right)=\varphi(T)$. Then $\operatorname{ker}(\rho) \subseteq \operatorname{ker}(\varphi)$, so ψ is well-defined. If

$$
\begin{array}{r}
\sum\left\|T x_{i}\right\|^{2}<1 \\
\sum\left\|T^{*} y_{j}\right\|^{2}<1
\end{array}
$$

then $\psi\left(\left(T x_{1}, \ldots, T x_{n}, T^{*} y_{1}, \ldots, T^{*} y_{m}\right)\right) \in \mathbb{D}$, so $\left|\psi\left(\left(T x_{1}, \ldots, T x_{n}, T^{*} y_{1}, \ldots, T^{*} y_{m}\right)\right)\right|<1$. So $\|\psi\| \leq 1$. We can thus by Hahn-Banach extend to a linear functional on $\mathcal{H}^{(n)} \oplus\left(\mathcal{H}^{*}\right)^{(m)}$ of norm ≤ 1. But $\left(\mathcal{H}^{(n)} \oplus\left(\mathcal{H}^{*}\right)^{(m)}\right)^{*}=\left(\mathcal{H}^{*}\right)^{(n)} \oplus \mathcal{H}^{(m)}$; so there are $u_{1}, \ldots, u_{n} \in \mathcal{H}^{*}$ and $v_{1}, \ldots, v_{m} \in \mathcal{H}$ such that

$$
\psi\left(\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right)=\sum_{i=1}^{n}\left\langle x_{i}, u_{i}\right\rangle+\sum_{j=1}^{m}\left\langle v_{j}, y_{j}\right\rangle
$$

Then
$\varphi(T)=\psi\left(\left(T x_{1}, \ldots, T x_{n}, T^{*} y_{1}, \ldots, T^{*} y_{m}\right)\right)=\sum\left\langle T x_{i}, u_{i}\right\rangle+\sum\left\langle v_{j}, T^{*} y_{j}\right\rangle=\sum\left\langle T x_{i}, u_{i}\right\rangle+\sum\left\langle T v_{j}, y_{j}\right\rangle$
as desired.
Corollary 7.3. $\mathcal{B}(\mathcal{H})$ with topologies WOT, SOT, and SOT* have the same closed convex sets.
Proof. They have the same continuous functionals, and thus the same closed half spaces $H=\{T: \operatorname{Re}(\varphi(T)) \leq$ $r\}$. By the geometric Hahn-Banach theorem, every closed convex set in a locally convex topological vector space is the intersection of the closed half spaces containing it.

Corollary 7.3
Definition 7.4. A von Neumann algebra is a unital C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ which is WOT-closed.
Definition 7.5. If $\mathcal{S} \subseteq \mathcal{B}(\mathcal{H})$, we define the commutant fo \mathcal{S} to be $\mathcal{S}^{\prime}=\{T \in \mathcal{B}(\mathcal{H}): S T=T S$ for all $S \in \mathcal{S}\}$.

Remark 7.6. \mathcal{S}^{\prime} is always a WOT-closed unital algebra. Indeed, \mathcal{S} is clearly a subspace. It is closed under multiplication, as if $T_{1}, T_{2} \in \mathcal{S}^{\prime}$ then $T_{1} T_{2} S=T_{1} S T_{2}=S T_{1} T_{2}$. If $T_{\alpha} \in \mathcal{S}^{\prime}$ with $T_{\alpha} \xrightarrow{\text { WOT }} T$ then

$$
S T=\lim _{\alpha} S T_{\alpha}=\lim _{\alpha} T_{\alpha} S=T S
$$

and so \mathcal{S}^{\prime} is WOT-closed. If $\mathcal{S}=\mathcal{S}^{*}$ then \mathcal{S}^{\prime} is self-adjoint, and is thus a von Neumann algebra.
Theorem 7.7 (Double commutant theorem). If $\mathfrak{A} \subseteq \mathcal{B}(\mathcal{H})$ is a C^{*}-algebra which is non-degenerate (i.e. $\overline{\mathfrak{A H}}=\mathcal{H}$) then $\overline{\mathfrak{A}}^{\mathrm{SOT}}=\overline{\mathfrak{A}}^{\mathrm{WOT}}=\mathfrak{A}^{\prime \prime}$ (where $\left.\mathfrak{A}^{\prime \prime}=\left(\mathfrak{A}^{\prime}\right)^{\prime}\right)$.
Proof. We know $\overline{\mathfrak{A}}^{\text {SOT }}=\overline{\mathfrak{A}}^{\text {WOT }}$ by previous corollary. We know $\overline{\mathfrak{A}}^{\text {SOT }} \subseteq \mathfrak{A}^{\prime \prime}$ since $\mathfrak{A} \subseteq \mathfrak{A}^{\prime \prime}$ and $\mathfrak{A}^{\prime \prime}$ is WOT-closed.

Suppose $T \in \mathfrak{A}^{\prime \prime}$ and $x_{1}, \ldots, x_{n} \in \mathcal{H}$; we wish to find $A \in \mathfrak{A}$ such that

$$
A \in\left\{B \in \mathcal{B}(\mathcal{H}): \sum_{i=1}^{n}\left\|(T-B) x_{i}\right\|^{2}<1\right\}
$$

where this last is a SOT neighbourhood of T.

Case 1. Suppose $n=1$. Then $M=\overline{\mathfrak{A} x_{1}}$ is a closed subspace of \mathcal{H}, and $\mathfrak{A} M=\overline{\mathfrak{A} \overline{\mathfrak{A} x_{1}}}=\overline{\mathfrak{A}^{2} x_{1}} \subseteq M$. Let P be the orthogonal projection onto M. Then if $A \in \mathfrak{A}$ we have $A P=P A P$; so for $A \in \mathfrak{A}$ we have $P A^{*}=P A^{*} P$; so $P A=P A P=A P$ for all $A \in \mathfrak{A}$, and $P \in \mathfrak{A}^{\prime}$. So $T P=P T$ and $T x_{1}=T P x_{1}=P T x_{1} \in M$. So there is $A \in \mathfrak{A}$ such that $\left\|T x_{1}-A x_{1}\right\|<1($ or $<\varepsilon$ for any $\varepsilon>0)$.
Aside 7.8. Why is $x_{1} \in M$? Let $\left(e_{\lambda}\right)_{\lambda}$ be an approximate identity for \mathfrak{A}. Since $\overline{\mathfrak{A H}}=\mathcal{H}$ there is $x \in \mathcal{H}$ and $A \in \mathfrak{A}$ such that $A x \approx x_{1}$; then

$$
\underbrace{e_{\lambda} x_{1}}_{\in \mathfrak{A} x_{1}} \approx e_{\lambda} A x \rightarrow A x
$$

Case 2. Suppose $n>1$. Let $\mathcal{H}^{(n)}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \cdots \oplus \mathcal{H}_{n}$. Let

$$
\mathfrak{A}^{(n)}=\left\{A^{(n)}=\left(\begin{array}{lll}
A & & 0 \\
& \ddots & \\
0 & & A
\end{array}\right) \in \mathcal{M}_{n}(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}\left(\mathcal{H}^{(n)}\right)\right\}
$$

Suppose $T \in \mathcal{B}\left(\mathcal{H}^{(n)}\right)$ and let P_{j} be the orthogonal projection onto $\mathcal{H}_{j}=0 \oplus \cdots \oplus \mathcal{H} \oplus 0 \oplus \cdots \oplus 0$ with \mathcal{H} in the $j^{\text {th }}$ spot. We let $T_{i j}=P_{i} T P_{j} \upharpoonright H_{j} \in \mathcal{B}(\mathcal{H})$; then

$$
T=\left(\sum P_{i}\right) T\left(\sum P_{j}\right)=\sum_{i, j} T_{i j}
$$

Claim 7.9. $\left(\mathfrak{A}^{(n)}\right)^{\prime}=\mathcal{M}_{n}\left(\mathfrak{A}^{\prime}\right)$.
Proof. Suppose $T \in \mathcal{B}\left(\mathcal{H}^{(n)}\right)$ commutes with $\mathfrak{A}^{(n)}$. Then if $T=\left(T_{i j}\right)_{i j}$ and

$$
A^{(n)}=\left(\begin{array}{lll}
A & & 0 \\
& \ddots & \\
0 & & A
\end{array}\right)
$$

we have $T A^{(n)}=\left(T_{i j} A\right)_{i j}=\left(A T_{i j}\right)_{i j}=A^{(n)} T$. So $T \in\left(\mathfrak{A}^{(n)}\right)^{\prime}$ if and only if $T_{i j} \in \mathfrak{A}^{\prime}$ for all i, j, which occurs if and only if $T \in \mathcal{M}_{n}\left(\mathfrak{A}^{\prime}\right)$.
Claim 7.10. $\mathcal{M}_{n}\left(\mathfrak{A}^{\prime}\right)^{\prime}=\left(\mathfrak{A}^{\prime \prime}\right)^{(n)}$.
Proof. Suppose $A=\left(A_{i j}\right)_{i j} \in \mathcal{M}_{n}\left(\mathfrak{A}^{\prime}\right)^{\prime}$. Let $E_{i j} \in \mathcal{M}_{n}\left(\mathfrak{A}^{\prime}\right)$ have an I in the (i, j) position and a zero elsewhere. Then

$$
E_{i i} A=\left(\begin{array}{cccc}
& 0 & & \\
A_{i 1} & A_{i 2} & \cdots & A_{i n} \\
& 0 & &
\end{array}\right)=A E_{i i}=\left(\begin{array}{ccc}
& A_{i 1} & \\
& A_{i 2} & \\
0 & \vdots & 0 \\
& A_{i n}
\end{array}\right)
$$

So $A_{i j}=0$ if $i \neq j$. Doing a similar trick with $E_{i j}$ we conclude that $A_{i i}=A_{j j}$ if $i \neq j$. So $A=A^{(n)}$ for some $A \in \mathcal{B}(\mathcal{H})$.
Note

$$
\left(\begin{array}{ccc}
T & 0 & \\
0 & 0 & \\
& & \ddots .
\end{array}\right) \in \mathcal{M}_{n}\left(\mathfrak{A}^{\prime}\right)
$$

if $T \in \mathfrak{A}^{\prime}$. Then $A^{(n)} T=T A^{(n)}$, so examining top-left entries we get $A T=T A$.

Suppose $T \in \mathfrak{A}^{\prime \prime}$ and $x_{1}, \ldots, x_{n} \in \mathcal{H}$. We have a SOT neighbourhood of T given by

$$
\left\{B \in \mathcal{B}(\mathcal{H}): \sum\left\|(T-B) x_{i}\right\|^{2}<1\right\}
$$

Let

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathcal{H}^{(n)}
$$

Let $M=\overline{\mathfrak{A}^{(n)} x}$ and P be the orthogonal projection to M. Then $P A^{(n)}=A^{(n)} P$ for all $A \in \mathfrak{A}$; so $P \in\left(\mathfrak{A}^{(n)}\right)^{\prime}=\mathcal{M}_{n}\left(\mathfrak{A}^{\prime}\right)$. But $T^{(n)} \in\left(\mathfrak{A}^{\prime \prime}\right)^{(n)}=\mathcal{M}\left(\mathfrak{A}^{\prime}\right)^{\prime}$; so $T^{(n)} P=P T^{(n)}$. So

$$
T^{(n)} x=\left(\begin{array}{c}
T x_{1} \\
\vdots \\
T x_{n}
\end{array}\right)=T^{(n)} P x=P T^{(n)} x \in M=\overline{\mathfrak{A}^{(n)} x}
$$

So there is $A \in \mathfrak{A}$ such that

$$
1>\left\|T^{(n)} x-A^{(n)} x\right\|^{2}=\left\|\left(\begin{array}{c}
T x_{1}-A x_{1} \\
\vdots \\
T x_{n}-A x_{n}
\end{array}\right)\right\|^{2}=\sum_{i=1}^{n}\left\|(T-A) x_{i}\right\|^{2}
$$

as desired.
Theorem 7.7
Lemma 7.11. Let $f(x)=\frac{2 t}{1+t^{2}}$. If $A_{\alpha}=A_{\alpha}^{*}$ and $A_{\alpha} \xrightarrow{\text { SOT }} S$ then $f\left(A_{\alpha}\right) \xrightarrow{\text { SOT }} f(S)$.
Proof. Note f maps $[-1,1]$ injectively onto itself, and $f(\mathbb{R}) \subseteq[-1,1]$.
Suppose $x \in \mathcal{H}$. Then

$$
\begin{aligned}
f\left(A_{\alpha}\right) x-f(S) x & =\left(2\left(I+A_{\alpha}^{2}\right)^{-1} A_{\alpha}-2 S\left(1+S^{2}\right)^{-1}\right) x \\
& =2\left(1+A_{\alpha}^{2}\right)^{-1}\left(A_{\alpha}-S\right)(\underbrace{\left(I+S^{2}\right)^{-1} x}_{u})+\underbrace{2\left(1+A_{\alpha}^{2}\right)^{-1} A_{\alpha}}_{f\left(A_{\alpha}\right)}\left(S-A_{\alpha}\right) \underbrace{S\left(I+S^{2}\right)^{-1} x}_{v} \\
& =2\left(1+A_{\alpha}^{2}\right)^{-1}\left(A_{\alpha}-S\right) u+f\left(A_{\alpha}\right)\left(S-A_{\alpha}\right) v
\end{aligned}
$$

Now, $\left.A_{\alpha}-S\right) u \rightarrow 0$, and since

$$
\left\|2\left(1+A_{\alpha}^{2}\right)^{-1}\right\| \leq\left\|\frac{2}{1+x^{2}}\right\|_{\mathbb{R}}=2
$$

we get $2\left(1+A_{\alpha}^{2}\right)^{-1}\left(A_{\alpha}-S\right) u \rightarrow 0$, and hence $\left(S-A_{\alpha}\right) v \rightarrow 0$. Then since $\left\|f\left(A_{\alpha}\right)\right\| \leq\|f\|_{\infty}=1$ we have $f\left(A_{\alpha}\right)\left(S-A_{\alpha}\right) v \rightarrow 0$.
\square Lemma 7.11
Theorem 7.12 (Kaplansky's density theorem). Suppose \mathfrak{A} is a non-degenerate C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$. Then ${\overline{b_{1}\left(\mathfrak{A}_{\mathrm{sa}}\right)}}^{\text {SOT }}={\overline{b_{1}\left(\mathfrak{A}_{\mathrm{sa}}^{\prime \prime}\right)}}^{\|\cdot\|}$ and ${\overline{b_{1}(\mathfrak{A})}}^{\text {SOT }}=\overline{b_{1}\left(\mathfrak{A}^{\prime \prime}\right)}\|\cdot\|$.
Proof. Suppose $S \in \overline{b_{1}\left(\mathfrak{A}_{\mathrm{sa}}^{\prime \prime}\right)}$. Let $T=g(S)$ (where g is the inverse function of $f \upharpoonright[-1,1]:[-1,1] \rightarrow[-1,1]$). Then $T=T^{*} \in \overline{b_{1}\left(\mathfrak{A}_{\mathrm{sa}}^{\prime \prime}\right)}$. By the double commutant theorem there are $A_{\alpha} \in \mathfrak{A}$ such that $A_{\alpha} \xrightarrow{\text { WOT }} T$, and thus $A_{\alpha}^{*} \xrightarrow{\text { WOT }} T^{*}=T$. So $\frac{A_{\alpha}+A_{\alpha}^{*}}{2} \xrightarrow{\text { WOT }} T$. So $T \in \overline{\mathfrak{A}}_{\mathrm{sa}}^{\text {WOT }}=\overline{\mathfrak{A}}_{\mathrm{sa}}^{\text {SOT }}$. So there is $A_{\alpha}=A_{\alpha}^{*} \in \mathfrak{A}_{\mathrm{sa}}$ such that $A_{\alpha} \xrightarrow{\text { SOT }} T$. Thus by lemma we have $f\left(A_{\alpha}\right) \xrightarrow{\text { SOT }} f(T)=f(g(S))=S$; also $\left\|f\left(A_{\alpha}\right)\right\| \leq\|f\|_{\mathbb{R}}=1$.

If $T \in \overline{b_{1}\left(\mathfrak{A}^{\prime \prime}\right)}$ then

$$
\left(\begin{array}{cc}
0 & T \\
T^{*} & 0
\end{array}\right) \in \overline{b_{1}\left(\mathcal{M}_{2}\left(\mathfrak{A}^{\prime \prime}\right)\right)}=\mathcal{M}_{2}(\mathfrak{A})^{\prime \prime}
$$

So there is

$$
A_{\alpha}=\left(\begin{array}{ll}
A_{\alpha, 11} & A_{\alpha, 12} \\
A_{\alpha, 21} & A_{\alpha, 22}
\end{array}\right) \in b_{1}\left(\mathcal{M}_{2}(\mathfrak{A})\right)_{\mathrm{sa}}
$$

Thus

$$
A_{\alpha} \xrightarrow{\mathrm{SOT}}\left(\begin{array}{cc}
0 & T \\
T^{*} & 0
\end{array}\right)
$$

So $\left\|A_{\alpha, 12}\right\| \leq\left\|A_{\alpha}\right\| \leq 1$, and $A_{\alpha, 12} \xrightarrow{\text { SOT }} T$.
Theorem 7.12
Definition 7.13. We say $U \in \mathcal{B}(\mathcal{H})$ is a partial isometry if $U \upharpoonright(\operatorname{ker}(U))^{\perp}$ is isometric.
Proposition 7.14. Suppose $U \in \mathcal{B}(\mathcal{H})$. Then the following are equivalent:

1. U is a partial isometry.
2. $U^{*} U$ and $U U^{*}$ are projections.

TODO 44. or?
3. $U=U U^{*} U$.

Proof.
$\underline{\mathbf{(1)} \Longrightarrow \mathbf{(2)}}$ Suppose U is a partial isometry. Then $\mathcal{H}=(\operatorname{ker}(U)) \oplus(\operatorname{ker}(U))^{\perp}$. Then $U \upharpoonright(\operatorname{ker}(U))^{\perp}$ is an isometry onto $\operatorname{Ran}(U)\left(\right.$ closed $\left.U \mathcal{H}=U(\operatorname{ker}(U))^{\perp}\right)$.

TODO 45. words
But $\operatorname{ker}\left(U^{*}\right)=(\operatorname{Ran}(U))^{\perp}$, and $U^{*} \upharpoonright \operatorname{Ran}(U)$ is an isometry onto $(\operatorname{ker}(U))^{\perp}$ such that $U^{*} U=P_{\operatorname{ker}(U)}^{\perp}$. Likewise $U U^{*}$ is the projection onto $P_{\operatorname{ker}\left(U^{*}\right)}^{\perp}=P_{\operatorname{Ran}(U)}$ (since U^{*} is also a partial isometry).
$\underline{\mathbf{(2)} \Longrightarrow \mathbf{(1)}} U^{*} U$ a projection means that $U \upharpoonright(\operatorname{ker}(U))^{\perp}=S \in \mathcal{B}\left((\operatorname{ker}(U))^{\perp}, \mathcal{H}\right)$ and $S^{*} S=I_{(\operatorname{ker}(U))^{\perp}}$. So S is an isometry. So $U \upharpoonright(\operatorname{ker}(U))^{\perp}$ is an isometry; so U is a partial isomorphism.
$\underline{\mathbf{(2)} \Longrightarrow \mathbf{(3)}} U=U P_{\operatorname{ker}(U)}^{\perp}=U U^{*} U$.
$\underline{\mathbf{(3)}} \Longrightarrow \mathbf{(2)} U^{*} U=U^{*}\left(U U^{*} U\right)=\left(U^{*} U\right)^{2}$ so $U^{*} U$ is a projection. Similarly $U U^{*}$ is a projection.
\square Proposition 7.14
Theorem 7.15 (Polar decomposition). Suppose $T \in \mathcal{B}(\mathcal{H})$. Then $|T|=\left(T^{*} T\right)^{\frac{1}{2}} \in C^{*}(T)$ and there is a partial isometry $U \in W^{*}(T)$ (the von Neumann algebra generated by T, which is $C^{*}(T)^{\prime \prime}$) such that $T=U|T|$.

Proof. We have $T^{*} T \in C^{*}(T)$ and $T^{*} T \geq 0$, so if $f(x)=x^{\frac{1}{2}} \in \mathcal{C}\left[0,\|T\|^{2}\right]$ then $|T|=f\left(T^{*} T\right) \in C^{*}(T)$.
If $x \in \mathcal{H})$ then

$$
\left.\||T| x\|^{2}=\langle | T|x,|T| x\rangle=\left.\langle | T\right|^{2} x, x\right\rangle=\left\langle T^{*} T x, x\right\rangle=\langle T x, T x\rangle=\|T x\|^{2}
$$

so $\||T| x\|=\|T x\|$ for all $x \in \mathcal{H}$. Define $U \in \mathcal{B}(\mathcal{H})$ as follows. If $x \in \operatorname{ker}(T)=\operatorname{ker}(|T|)$ we set $U x=0$. If $x \in \operatorname{Ran}(|T|)$, say $x=|T| y$ define $U x=T y$; so $\|U x\|=\|T y\|=\||T| y\|=\|x\|$. So U is isometric on $\operatorname{Ran}(|T|)$. By continuity, we extend U to an isometry on $\overline{\operatorname{Ran}(|T|)}$; but $\overline{\operatorname{Ran}(|T|)}=(\operatorname{ker}(|T|))^{\perp}$. So U is a partial isometry and $U \overline{\operatorname{Ran}(T)}=\overline{\operatorname{Ran}(T)}$.

If $x \in \operatorname{ker}(T)$ then $U|T| x=0=T x$. If $x=|T| y \in \operatorname{Ran}(|T|)$ then $U|T| y=T y$ (by definition); this extends by continuity to $\operatorname{Ran}(|T|)^{\perp}$
TODO 46. $\overline{\operatorname{Ran}(|T|)} ? \operatorname{ker}(|T|)^{\perp}$?
To show that $U \in W^{*}(T)=C^{*}(T)^{\prime \prime}$ it suffices to show that $U X=X U$ for $X \in C^{*}(T)^{\prime}$. So Suppose $X \in C^{*}(T)^{\prime}$.

Note that $X \operatorname{ker}(T) \subseteq \operatorname{ker}(T)$; indeed, if $T x=0$ then $T(X x)=X(T x)=0$. So $U x=0$, so $X U x=0$ and $U(X x)=0$. So $X U=U X$ on $\operatorname{ker}(U)=\operatorname{ker}(T)$. Suppose $x=|T| y \in \operatorname{Ran}(|T|)$. Then

$$
U X x=U X|T| y=U|T| X y=T X y=X T y=X U|T| y=X U x
$$

So $U X-X U=0$ in $\operatorname{ker}(U) \oplus(\operatorname{ker}(U))^{\perp}=\mathcal{H}$. So $U X=X U$. So $U \in C^{*}(T)^{\prime \prime}=W^{*}(T)$.

Remark 7.16.

1. If T is invertible then $U=T|T|^{-1} \in C^{*}(T)$.
2. If $f \in C_{0}((0,\|T\|])$ then $U f(|T|) \in C^{*}(T)$. (See assignment 3.)

7.2 Projections in von Neumann algebras

Lemma 7.17. Suppose $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ is an increasing net of self-adjoint operators in $\mathcal{B}(\mathcal{H})$ bounded above by M. Then in SOT we have a limit $A=\lim _{\lambda} A_{\lambda}$ and A is the least upper bound of the A_{λ}.
Proof. For $x \in \mathcal{H}$ we have $\left\langle A_{\lambda} x, x\right\rangle \leq M\|x\|^{2}$; so $\left\langle A_{\lambda} x, x\right\rangle$ is an increasing net of real numbers that is bounded above. So

$$
\Omega(x)=\lim _{\lambda}\left\langle A_{\lambda} x, x\right\rangle
$$

exists. Define

$$
\begin{aligned}
\langle A x, y\rangle & =\frac{1}{4}(\Omega(x+y)-\Omega(x-y)+i \Omega(x+i y)-i \Omega(x+i y)) \\
& =\lim _{\lambda} \frac{1}{4}\left(\left\langle A_{\lambda}(x+y), x+y\right\rangle-\left\langle A_{\lambda}(x-y), x-y\right\rangle+i\left\langle A_{\lambda}(x+i y), x+i y\right\rangle-i\left\langle A_{\lambda}(x-i y), x-i y\right\rangle\right) \\
& =\lim _{\lambda}\left\langle A_{\lambda} x, y\right\rangle
\end{aligned}
$$

So if A is the WOT limit of the A_{λ} then $A \in \mathcal{B}(\mathcal{H})$.
If $B \geq A_{\lambda}$ for all λ then

$$
\langle B x, x\rangle \geq \sup _{\lambda}\left\langle A_{\lambda} x, x\right\rangle=\lim \left\langle A_{\lambda} x, x\right\rangle=\langle A x, x\rangle
$$

So $\langle(B-A) x, x\rangle \geq 0$ for all x; so $B \geq A$. Thus A is the least upper bound of the A_{λ}.
If $B \geq 0$ then $[x, y]=\langle B x, y\rangle$ is a sesquilinear form, and thus satisfies the Cauchy-Schwarz inequality; i.e. $[x, y] \leq[x, x]^{\frac{1}{2}}[y, y]^{\frac{1}{2}}$. So

$$
\|B x\|^{2}=\langle B x, B x\rangle=[x, B x] \leq[x, x]^{\frac{1}{2}}[B x, B x]^{\frac{1}{2}}=\langle B x, x\rangle^{\frac{1}{2}}\left\langle B^{3} x, x\right\rangle^{\frac{1}{2}}
$$

Since $A-A_{\lambda} \geq 0$ we have $\left\langle\left(A-A_{\lambda}\right) x, x\right\rangle \rightarrow 0$. Fix λ_{0}. For $\lambda \geq \lambda_{0}$ we have $A-A_{\lambda} \leq A-A_{\lambda_{0}}$; so $\left\|A-A_{\lambda}\right\| \leq\left\|A-A_{\lambda_{0}}\right\|$. Thus

$$
\begin{aligned}
\left\|\left(A-A_{\lambda}\right) x\right\|^{2} & \leq\left\langle\left(A-A_{\lambda}\right) x, x\right\rangle^{\frac{1}{2}}\left\langle\left(A-A_{\lambda}\right)^{3} x, x\right\rangle^{\frac{1}{2}} \\
& \leq\left\langle\left(A-A_{\lambda}\right) x, x\right\rangle^{\frac{1}{2}}\left\|A-A_{\lambda}\right\|^{\frac{3}{2}}\|x\| \\
& \leq\langle(\underbrace{A-A_{\lambda}}_{\rightarrow 0}) x, x\rangle^{\frac{1}{2}} \underbrace{\left\|A-A_{\lambda_{0}}\right\|^{\frac{3}{2}}\|x\|}_{\text {constant }}
\end{aligned}
$$

so $A_{\lambda} x \rightarrow A x$ for all x. So $A_{\lambda} \xrightarrow{\text { SOT }} A$.
\square Lemma 7.17
Corollary 7.18. If $\left(P_{\lambda}\right)_{\lambda}$ is an increasing net of projections then the SOT-limit P of P_{λ} is the projection onto

$$
\overline{\bigcup_{\lambda \in \Lambda} \operatorname{Ran}\left(P_{\lambda}\right)}
$$

Proof. $P_{\lambda} \leq I$, so we have a bounded, increasing net. So the SOT-limit P of P_{λ} exists. Let $M_{\lambda}=\operatorname{Ran}\left(P_{\lambda}\right)$ and

$$
M=\overline{\bigcup_{\lambda \in \Lambda} M_{\lambda}}
$$

If $x \perp M$ then $P_{\lambda} x=0$ for all λ; so $P x=0$. If $x \in M_{\lambda_{0}}$ then $x=P_{\lambda} x$ for all $\lambda \geq \lambda_{0}$; so $P x=x$. Thus $P x=x$ for all

$$
x \in \bigcup_{\lambda \in \Lambda} M_{\lambda}
$$

so by continuity of P we get $P x=x$ for all $x \in M$. So $P=P_{M}$.

Suppose $A=A^{*} \in \mathcal{B}(\mathcal{H})$; translate and scale A so that $\sigma(A) \subseteq[0,1]$. We want projections in $W^{*}(A)$. Suppose $\mathcal{O} \subseteq[0,1]$ is open; consider $\left\{f(A): f \in \mathcal{C}[0,1], 0 \leq f \leq \chi_{\mathcal{O}}\right\} \subseteq C^{*}(A)$. This is a directed set, since if $f, g \leq \chi_{\mathcal{O}}$ in $\mathcal{C}[0,1]$ then $f \vee g \in \mathcal{C}[0,1]$ with $f, g \leq f \vee g \leq \chi_{\mathcal{O}}$. So $f(A), g(A) \leq(f \vee g)(A) \in C^{*}(A) \cong \mathcal{C}(\sigma(A))$. By lemma (since all are bounded by I) we get

$$
P_{\mathcal{O}}=\sup \left\{f(A): f \in \mathcal{C}[0,1], 0 \leq f \leq \chi_{\mathcal{O}}\right\}
$$

exists as a SOT-limit, and is thus in $W^{*}(A)$.
Claim 7.19. $P_{\mathcal{O}}=P_{\mathcal{O}}^{2}$.
Proof. Note $P_{\mathcal{O}} \leq I$. If $f \in \mathcal{C}[0,1]$ with $0 \leq f \leq \chi_{\mathcal{O}}$ then $0 \leq f^{\frac{1}{2}} \leq \chi_{\mathcal{O}}$.
Note by the double commutant theorem that since $P_{\mathcal{O}} \in W^{*}(A)$ we get $P_{\mathcal{O}}$ commutes with $C^{*}(A)$ (since $C^{*}(A)$ is abelian). But $P_{\mathcal{O}} \geq f^{\frac{1}{2}}(A)$; so since they commute we have $P_{\mathcal{O}}^{2} \geq f(A)$,

TODO 47.?
so $P_{\mathcal{O}}^{2} \geq P_{\mathcal{O}}$. But $0 \leq P_{\mathcal{O}} \leq I$; so $P_{\mathcal{O}}^{2} \leq P_{\mathcal{O}} \leq P_{\mathcal{O}}^{2}$. So $P_{\mathcal{O}}=P_{\mathcal{O}}^{2}$ is a projection.
Claim 7.19
Suppose $n \geq 1$; divide $[0,1]$ into 2^{n} equal segments. Let $P_{j, n}=P_{\left(j 2^{-n}, 2\right)}$; let

$$
A_{n}=2^{-n} \sum_{j=1}^{2^{n}} P_{j, n} \in W^{*}(A)=\sup \left\{f(A): f \in \mathcal{C}[0,1], f \leq 2^{-n} \sum_{j=1}^{2^{n}} \chi_{\left(j 2^{-n}, 2\right)}\right\} \leq A
$$

Then $A_{n} \geq A-2^{-n} I$, so $A=\lim _{n} A_{n}$ in norm.
Corollary 7.20. $A \in \overline{\left.\operatorname{Conv(Proj}\left(W^{*}(A)\right)\right)}\|\cdot\|$. Thus if \mathfrak{A} is a von Neumann algebra then $\overline{\operatorname{Conv}(\operatorname{Proj}(\mathfrak{A}))}\|\cdot\|=$ $b_{1}\left(\mathfrak{A}_{\geq 0}\right)$.
Proof. We showed the first part above. For the second, note that if $A \in \mathfrak{A}$ with $0 \leq A \leq I$ then $A \in$ $\overline{\operatorname{Conv}\left(\operatorname{Proj}\left(W^{*}(A)\right)\right)}{ }^{\|\cdot\|} \subseteq \overline{\operatorname{Conv}(\operatorname{Proj}(\mathfrak{A}))}\|\cdot\|$. Corollary 7.20

Note that the projections are the extreme points of $b_{1}\left(\mathfrak{A}_{+}\right)$, and the symmetries are the extreme points of $b_{1}\left(\mathfrak{A}_{\mathrm{sa}}\right)$.

Corollary 7.21. $\operatorname{Conv}(\operatorname{Sym}(\mathfrak{A}))=b_{1}\left(\mathfrak{A}_{\mathrm{sa}}\right)$.
(The symmetries are self-adjoint unitaries, and we have for $P-P^{\perp}=2 P-I, P$ projections that $A \mapsto 2 A-I$ maps $b_{1}\left(\mathfrak{A}_{+}\right)$bijectively to $b_{1}\left(\mathfrak{A}_{\mathrm{sa}}\right)$.)

8 Representations of C*-algebras

Definition 8.1. A representation π of a C^{*}-algebra \mathfrak{A} is a *-homomorphism to $\mathcal{B}(\mathcal{H})$. It is non-degenerate if $\overline{\mathfrak{A H}}=\mathcal{H}$. We say π is topologically irreducible if $\pi(\mathfrak{A})$ has no closed invariant subspaces; we say π is algebraically irreducible if $\pi(\mathfrak{A})$ has no proper submodules (i.e. if $x \neq 0$ then $\pi(\mathfrak{A}) x=\mathcal{H})$).

Lemma 8.2. π is topologically irreducible if and only if $\pi(\mathfrak{A})^{\prime}=\mathbb{C} I$.
Proof.
(\Longleftarrow) Suppose M is a closed subspace with $\pi(\mathfrak{A}) M=M$; so $\mathcal{H}=M \oplus M^{\perp}$ with

$$
\pi(\mathfrak{A}) \subseteq\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)
$$

But $\pi(\mathfrak{A})=\pi(\mathfrak{A})^{*}$; so

$$
\pi(\mathfrak{A}) \subseteq\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right)=\left\{\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\right\}^{\prime}=\left\{P_{M}\right\}^{\prime}
$$

So $P_{M} \in \pi(\mathfrak{A})^{\prime}$.
(\Longrightarrow) Suppose $\pi(\mathfrak{A})^{\prime} \neq \mathbb{C} I$; then there is a projection $P=P^{2}$ with $P \notin\{0, I\}$ and $P \in \pi(\mathfrak{A})^{\prime}$. Then $M=\operatorname{Ran}(P)$ is invariant, and π is not topologically irreducible.

Lemma 8.2
Lemma 8.3. Suppose π is a topologically irreducible representation of \mathfrak{A}. Suppose M is a subspace with $\operatorname{dim}(M)<\infty$. Let $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there is $a \in \mathfrak{A}$ with $\|a\| \leq\|T\|$ such that $\|(T-\pi(a)) \upharpoonright M\|<\varepsilon$.

Proof. Let $\operatorname{dim}(M)=n$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ an orthonormal basis for M; without loss of generality assume $\|T\|=1$. Then since $\pi(\mathfrak{A})^{\prime}=\mathbb{C} I$ we get $\pi(\mathfrak{A})^{\prime \prime}=(\mathbb{C} I)^{\prime}=\mathcal{B}(\mathcal{H})$. By Kaplansky's density theorem we have $\overline{b_{1}(\mathcal{B}(\mathcal{H}))}=\overline{b_{1}(\pi(\mathfrak{A}))}$ SOT . Pick $a \in \mathfrak{A}$ such that $\|\pi(a)\|<1$ and $\left\|T e_{i}-\pi(a) e_{i}\right\|<\frac{\varepsilon}{n}$ for $1 \leq i \leq n$. Then

$$
\|(T-\pi(a)) \upharpoonright M\| \leq\left\|(T-\pi(a)) P_{M}\right\| \leq \sum_{i=1}^{n}\left\|(T-\pi(a)) P_{\mathbb{C} e_{i}}\right\|<n \cdot \frac{\varepsilon}{n}=\varepsilon
$$

Then we have

$$
\begin{aligned}
\mathfrak{A} & \xrightarrow{q} \mathfrak{A} / \operatorname{ker}(\pi) \xrightarrow{\widetilde{\pi}} \mathcal{B}(\mathcal{H}) \\
a \mapsto\|\dot{a}\|<1 & \mapsto\|\pi(a)\|<1
\end{aligned}
$$

Choose $a_{1} \in a+\operatorname{ker}(\pi)$ such that $\left\|a_{1}\right\|<\|\dot{a}\|+\delta<1$. We then use a_{1}.
Theorem 8.4 (Kadison's transitivity theorem). Suppose $\pi: \mathfrak{A} \rightarrow \mathcal{B}(\mathcal{H})$ is topologically irreducible and $\operatorname{dim}(M)<\infty$; suppose $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$. Then there is $a \in \mathfrak{A}$ with $\|a\|<\|T\|+\varepsilon$ such that $\pi(a) \upharpoonright M=T \upharpoonright M$.

Proof. Use the lemma to find $a_{0} \in \mathfrak{A}$ with $\left\|a_{0}\right\| \leq\|T\|$ such that $\|(T-\pi(a)) \upharpoonright M\|<\frac{\varepsilon}{4}$, and let $T_{1}=$ $(T-\pi(a)) P_{M}$. Find $a_{1} \in \mathfrak{A}$ with $\left\|a_{1}\right\| \leq\left\|T_{1}\right\|<\frac{\varepsilon}{4}$ such that $\left\|\left(T_{1}-\pi\left(a_{1}\right)\right) \upharpoonright M\right\|<\frac{\varepsilon}{8}$; then let $T_{2}=$ $T-\pi\left(a_{0}\right)-\pi\left(a_{1}\right)$. Recursively find $a_{n} \in \mathfrak{A}$ such that $\left\|a_{n}\right\|<\frac{\varepsilon}{2^{n+1}}$ such that

$$
\left\|T-\pi\left(a_{0}+a_{1}+\cdots+a_{n}\right)\right\|<\frac{\varepsilon}{2^{n+2}}
$$

Let $a=\sum_{n \geq 0} a_{n}$; so

$$
\|a\| \leq\left\|a_{0}\right\|+\sum \frac{\varepsilon}{2^{n+1}}<\|T\|+\frac{\varepsilon}{2}+\varepsilon 2
$$

and

$$
(T-\pi(a)) \upharpoonright M=\lim _{n}\left(T-\pi\left(\sum_{i=0}^{n} a_{i}\right)\right) \upharpoonright M=0
$$

as desired.
\square Theorem 8.4
Corollary 8.5. If π is topologically irreducible then π is algebraically irreducible.
Proof. Suppose $x, y \in \mathcal{H}$ with $x \neq 0$. Let $T=y \frac{x^{*}}{\|x\|^{2}}$, so $T x=y$. Then there is a such that $\pi(a) x=y$; so the action is transitive.
\square Corollary 8.5

8.1 GNS construction

This is Gelfand-Naimark-Segal.
Definition 8.6. A linear functional f on a C^{*}-algebra \mathfrak{A} is called positive if $a \geq 0$ implies $f(a) \geq 0$. A positive linear functional of norm 1 is called a state.
Example 8.7. If $\pi: \mathfrak{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a non-degenerate representation and $x \in \mathcal{H}$ with $\|x\|=1$ then $f(a)=$ $\langle\pi(a) x, x\rangle$ is a state.

Proof. If $a \geq 0$ then $\pi(a) \geq 0$, so $\langle\pi(a) x, x\rangle \geq 0$. Also $\|f\| \leq\|\pi\|\|x\|^{2}=1$. If $1 \in \mathfrak{A}$ then $f(1)=\langle\pi(1) x, x\rangle=$ $\langle I x, x\rangle=1$; so $\|f\|=1$. If \mathfrak{A} is not unital, we will see that if $\left(e_{\lambda}\right)_{\lambda}$ is an approximate identity then $\pi\left(e_{\lambda}\right) \xrightarrow{\text { SOT }} I$; so $\|f\| \geq \sup \left|f\left(e_{\lambda}\right)\right|=1$.

Remark 8.8. If f is a positive linear functional then $[a, b]=f\left(b^{*} a\right)$ (for $a, b \in \mathfrak{A}$) is a sesquilinear form on \mathfrak{A}; it is linear in a and conjugate-linear in b, and $[a, a]=f\left(a^{*} a\right) \geq 0$. So Cauchy-Schwarz inequality holds, and

$$
\left|f\left(b^{*} a\right)\right|=|[a, b]| \leq[a, a]^{\frac{1}{2}}[b, b]^{\frac{1}{2}}=f\left(a^{*} a\right)^{\frac{1}{2}} f\left(b^{*} b\right)^{\frac{1}{2}}
$$

Lemma 8.9. Suppose f is a positive linear functional on \mathfrak{A}. If $1 \in \mathfrak{A}$ then $\|f\|=f(1)$. If $\left(e_{\lambda}\right)_{\lambda}$ is an approximate identity then $\|f\|=\sup f\left(e_{\lambda}\right)<\infty$. In particular, positive linear functionals are continuous.

Proof.
Case 1. Suppose \mathfrak{A} is unital. If $0 \leq a \leq 1$ then $0 \leq f(a) \leq f(1)$. If $a \in \mathfrak{A}$ with $\|a\| \leq 1$ then $0 \leq a^{*} a \leq 1$, so $f\left(a^{*} a\right) \leq f(1)$. Then

$$
|f(a)|=\left|f\left(1^{*} a\right)\right| \leq f\left(a^{*} a\right)^{\frac{1}{2}} f\left(1^{*} 1\right)^{\frac{1}{2}} \leq f(1)
$$

So $\|f\| \leq f(1) \leq\|f\|$.
Case 2. Suppose \mathfrak{A} is non-unital.
Claim 8.10. $f \upharpoonright \mathfrak{A}_{\geq 0}$ is continuous.
Proof. If not there are $a_{n} \geq 0$ with $\left\|a_{n}\right\|<2^{-n}$ and $f\left(a_{n}\right)>1$; then

$$
a=\sum_{n \geq 1} a_{n} \in \mathfrak{A}_{\geq 0}
$$

and

$$
f(a) \geq f\left(\sum_{n=1}^{N} a_{n}\right)=\sum_{n=1}^{N} f\left(a_{n}\right)>N
$$

a contradiction.
Claim 8.10
Aside 8.11. In this section we may use \mathfrak{A}_{+}to mean $\mathfrak{A}_{\geq 0}$.
So f is continuous, and there is c such that $f(a) \leq C\|a\|$ for all $a \geq 0$. Now if $a \in \mathfrak{A}$ then

$$
a=\operatorname{Re}(a)+i \operatorname{Im}(a)=b_{+}-b_{-}+i\left(c_{+}-c_{-}\right)
$$

with

$$
\begin{aligned}
& \left\|b_{ \pm}\right\| \leq\|\operatorname{Re}(a)\| \leq\|a\| \\
& \left\|c_{ \pm}\right\| \leq\|\operatorname{Im}(a)\| \leq\|a\|
\end{aligned}
$$

Then

$$
|f(a)| \leq f\left(b_{+}\right)+f\left(b_{-}\right)+f\left(c_{+}\right)+f\left(c_{-}\right) \leq 4 C\|a\|
$$

Thus $M=\sup _{\lambda} f\left(e_{\lambda}\right)<\infty$ and $M=\lim _{\lambda} f\left(e_{\lambda}\right)$ since the e_{λ} is an increasing net. Note also that $0 \leq e_{\lambda} \leq 1$, so $0 \leq e_{\lambda}^{2} \leq e_{\lambda}$, and $f\left(e_{\lambda}^{2}\right) \leq f\left(e_{\lambda}\right) \leq M$.
Now, by continuity we have

$$
\begin{aligned}
|f(a)|^{2} & =\lim _{\lambda}\left|f\left(e_{\lambda} a\right)\right|^{2} \\
& \leq \lim _{\lambda}\left|f\left(a^{*} a\right) \| f\left(e_{\lambda}^{2}\right)\right| \text { (Cauchy-Schwarz) } \\
& \leq \lim _{\lambda}\|f\|\|a\|^{2} M \\
& =\|f\|\|a\|^{2} M
\end{aligned}
$$

So

$$
\|f\|^{2}=\sup _{\|a\| \leq 1}|f(a)|^{2} \leq \sup \|f\| \cdot 1 \cdot M=\|f\| \cdot M
$$

So $\|f\| \leq M=\sup _{\lambda} f\left(e_{\lambda}\right) \leq\|f\|$.

Theorem 8.12 (GNS). Suppose f is a state on a C^{*}-algebra \mathfrak{A}. Then there is a representation $\pi_{f}: \mathfrak{A} \rightarrow \mathcal{B}\left(\mathcal{H}_{f}\right)$ and a unit vector $\xi_{f} \in \mathcal{H}_{f}$ such that

1. $f(a)=\left\langle\pi(a) \xi_{f}, \xi_{f}\right\rangle$
2. ξ_{f} is a cyclic vector; i.e. $\overline{\pi(\mathfrak{A}) \xi_{f}}=\mathcal{H}_{f}$.

Proof. Let $N=\left\{a \in \mathfrak{A}: f\left(a^{*} a\right)=0\right\}$. If $a \in N$ and $b \in \mathfrak{A}$ then by Cauchy-Schwarz we have

$$
|[a, b]|=\left|f\left(b^{*} a\right)\right| \leq f\left(a^{*} a\right)^{\frac{1}{2}} f\left(b^{*} b\right)^{\frac{1}{2}}=0
$$

So $N=\{a:[a, b]=0$ for all $b \in \mathfrak{A}\}$; so N is a subspace. If $a \in N$ and $b \in \mathfrak{A}$ then

$$
f\left((b a)^{*}(b a)\right)=f\left(a^{*} b^{*} b a\right) \leq\|b\|^{2} f\left(a^{*} a\right)=0
$$

so N is a left ideal. Since f is continuous, we get that N is closed. So \mathfrak{A} / N is a Banach space, with elements $\dot{a}=a+N$. We define an inner product by $\langle\dot{a}, \dot{b}\rangle=f\left(b^{*} a\right)=[a, b]$. Given representatives $a, a+n$ and $b, b+m$ with $n, m \in N$ we have

$$
f\left((b+m)^{*}(a+n)\right)=f\left(b^{*} a+m^{*} a+b^{*} n+m^{*} n\right)
$$

Since $b^{*} n, m^{*} n \in N$ we have $f\left(b^{*} n+m^{*} n\right)=0$. Since $f \geq 0$ if $a=x+i y$ (so $a^{*}=x-i y$) then

$$
f(a)=\underbrace{f(x)}_{\in \mathbb{R}}+i \underbrace{f(y)}_{\in \mathbb{R}}
$$

and $f\left(a^{*}\right)=f(x)-i f(y)=\overline{f(a)}$. So $f\left(m^{*} a\right)=\overline{f\left(a^{*} m\right)}=0$ since $m \in N$ implies $a^{*} m \in N$. Thus $\left.f(b+m)^{*}(a+n)\right)=f\left(b^{*} a\right)$.

So $\langle\dot{a}, \dot{b}\rangle$ is well-defined. Also if $0=\langle\dot{a}, \dot{a}\rangle=f\left(a^{*} a\right)$ then $a \in N$ and $\dot{a}=\dot{0}$; so this is a positive definite inner product. We have an inner product norm $\|\dot{a}\|_{2}=\langle\dot{a}, \dot{a}\rangle^{\frac{1}{2}}$. The completion of $\left(\mathfrak{A} / N,\|\cdot\|_{2}\right)$ is a Hilbert space. Define $\pi_{0}: \mathfrak{A} \rightarrow \mathcal{L}(\mathfrak{A} / N)$ by $\pi_{0}(a) \dot{b}=(a b)$. Then $a \dot{b}=a(b+N)=a b+a N \subseteq a b+N$, so this is independent of the choice of b. Also π_{0} is a homomorphism of algebras; furthermore

$$
\begin{aligned}
\left\langle\pi_{0}\left(a^{*}\right) \dot{b}, \dot{c}\right\rangle & =\left\langle\left(a^{\dot{*}} b\right), \dot{c}\right\rangle \\
& =f\left(c^{*} a^{*} b\right) \\
& =f\left((a c)^{*} b\right) \\
& =\langle\dot{b},(\dot{a} c)\rangle \\
& =\left\langle\dot{b}, \pi_{0}(a) \dot{c}\right\rangle \\
& =\left\langle\pi_{0}(a)^{*} \dot{b}, \dot{c}\right\rangle
\end{aligned}
$$

So $\pi_{0}\left(a^{*}\right)=\pi_{0}(a)^{*}$, and π_{0} is a ${ }^{*}$-homomorphism. Also

$$
\begin{aligned}
\left\|\pi_{0}(a)\right\| & =\sup _{\|\dot{b}\| \leq 1}\left\|\pi_{0}(a) \dot{b}\right\| \\
& =\sup _{f\left(b^{*} b\right) \leq 1} f\left((a b)^{*} a b\right)^{\frac{1}{2}} \\
& =\sup _{f\left(b^{*} b\right) \leq 1} f\left(b^{*} a^{*} a b\right)^{\frac{1}{2}} \\
& \leq \sup _{f\left(b^{*} b\right) \leq 1}\left(\|a\|^{2} f\left(b^{*} b\right)\right)^{\frac{1}{2}} \\
& =\|a\|
\end{aligned}
$$

so $\left\|\pi_{0}\right\| \leq 1$ and π_{0} is continuous. We can extend π_{0} to a continuous linear operator $\pi_{f}(a)$ in $\mathcal{B}\left(\mathcal{H}_{f}\right)$; then $\pi_{f}: \mathfrak{A} \rightarrow \mathcal{B}\left(\mathcal{H}_{f}\right)$ is a ${ }^{*}$-representation on \mathcal{H}_{f}.
Case 1. Suppose $1 \in \mathfrak{A}$; we then let $\xi_{f}=\dot{1}$. Then $\left\|\xi_{f}\right\|^{2}=f\left(1^{*} 1\right)=f(1)=\|f\|=1$. Then

$$
\left\langle\pi(a) \xi_{f}, \xi_{f}\right\rangle=\langle\pi(a) \dot{1}, \dot{1}\rangle=f\left(1^{*} a 1\right)=f(a)
$$

Also $\pi(\mathfrak{A}) \dot{1}=\{\dot{a}: a \in \mathfrak{A}\}=\mathcal{H}_{f} ;$ so ξ_{f} is cyclic.

Case 2. Suppose \mathfrak{A} is not unital; let $\left(e_{\lambda}\right)_{\lambda}$ be an approximate identity.
Claim 8.13. $\left(\dot{e_{\lambda}}\right)_{\lambda}$ is Cauchy.
Proof. Note that $1=\|f\|=\lim _{\lambda} f\left(e_{\lambda}\right)$. If $\varepsilon>0$ and

$$
\begin{aligned}
& f\left(e_{\lambda}\right)>1-\varepsilon \\
& f\left(e_{\mu}\right)>1-\varepsilon
\end{aligned}
$$

then there is ν with $e_{\nu} \geq e_{\lambda}$ and $e_{\nu} \geq e_{\mu}$, and so $f\left(e_{\nu}\right) \geq f\left(e_{\lambda}\right)>1-\varepsilon$. So $\left\|e_{\nu} e_{\lambda}-e_{\lambda}\right\|<\varepsilon$ and $\left\|e_{\nu} e_{\mu}-e_{\mu}\right\|<\varepsilon$. Then

$$
\left\|\dot{e_{\nu}}-\dot{e_{\mu}}\right\|^{2}=f\left(\left(e_{\nu}-e_{\mu}\right)^{2}\right)=f\left(e_{\nu}^{2}+e_{\mu}^{2}-e_{\nu} e_{\mu}-e_{\mu} e_{\nu}\right)
$$

But

$$
\left|f\left(e_{\nu} e_{\mu}\right)\right|=\left|f\left(e_{\mu}\right)+f\left(e_{\nu} e_{\mu}-e_{\mu}\right)\right| \geq 1-\varepsilon-\left\|e_{\nu} e_{\mu}-e_{\mu}\right\|>1-2 \varepsilon
$$

and also $\left|f\left(e_{\mu} e_{\nu}\right)\right|=\left|\overline{f\left(e_{\nu} e_{\mu}\right)}\right|>1-2 \varepsilon$. Thus

$$
\left\|\dot{e_{\nu}}-\dot{e_{\mu}}\right\|^{2} \leq f\left(e_{\nu}^{2}\right)+f\left(e_{\mu}\right)^{2}-2(1-2 \varepsilon) \leq 2-2+4 \varepsilon=4 \varepsilon
$$

TODO 48. something about this being because e_{ν}, e_{μ} being norm 1 and positive?
so $\left\|\dot{e_{\nu}}-\dot{e_{\mu}}\right\| \leq 2 \sqrt{\varepsilon}$. Then

$$
\left\|\dot{e_{\mu}}-\dot{e_{\lambda}}\right\| \leq\left\|\dot{e_{\mu}}-\dot{e_{\nu}}\right\|+\left\|\dot{e_{\nu}}-\dot{e_{\lambda}}\right\|<2 \sqrt{\varepsilon}+2 \sqrt{\varepsilon}=4 \sqrt{\varepsilon}
$$

and $\left(e_{\lambda}\right)_{\lambda}$ is Cauchy.
Claim 8.13
Let $\xi_{f}=\lim _{\lambda} \dot{e_{\lambda}}$. Then

$$
\left\langle\pi(a) \xi_{f}, \xi_{f}\right\rangle=\lim _{\lambda}\left\langle\pi(a) \dot{e_{\lambda}}, \dot{e_{\lambda}}\right\rangle=\lim _{\lambda} f\left(e_{\lambda} a e_{\lambda}\right)=f(a)
$$

and

$$
\begin{aligned}
\left\|\dot{a}-\pi(a) \xi_{f}\right\|^{2} & =\lim _{\lambda}\left\|\dot{a}-\pi(a) \dot{e_{\lambda}}\right\|^{2} \\
& =\lim _{\lambda}\left\|\dot{a}-\left(a \dot{e}_{\lambda}\right)\right\|^{2} \\
& =0
\end{aligned}
$$

TODO 49. something about how the penultimate is equal to $\left\|\dot{a}-\left(e_{\lambda} a\right)\right\|$ and in turn to $\left\|\dot{a}-\pi\left(e_{\lambda}\right) \dot{a}\right\|$?

Thus $\pi\left(e_{\lambda}\right) \dot{a} \rightarrow \dot{a}$; so $\pi\left(e_{\lambda}\right) \xrightarrow{\text { SOT }} I$. So $\overline{\pi(\mathfrak{A}) \xi_{f}}=\overline{\mathfrak{A} / N}=\mathcal{H}_{f}$ is then cyclic. Also

$$
1=\lim _{\lambda} f\left(e_{\lambda}\right)=\lim _{\lambda}\left\langle\pi\left(e_{\lambda}\right) \xi_{f}, \xi_{f}\right\rangle=\left\langle\xi_{f}, \xi_{f}\right\rangle
$$

Theorem 8.12
Corollary 8.14. If \mathfrak{A} is not unital and f is a state then f extends uniquely to a state on \mathfrak{A}^{+}by setting $f(1)=1$.

Proof. Suppose g is a Hahn-Banach extension of f to \mathfrak{A}^{+}; so $\|g\|=1 \geq|g(1)|$. Let $g(1)=\alpha$. Then $1=\lim _{\lambda} f\left(e_{\lambda}\right)$ and $0 \leq e_{\lambda} \leq 1$, so $-1 \leq 1-2 e_{\lambda} \leq 1$, and

$$
1 \geq\left|g\left(1-2 e_{\lambda}\right)\right|=\left|\alpha-2 f\left(e_{\lambda}\right)\right| \rightarrow|\alpha-2|
$$

Then since $|\alpha| \leq 1$ and $|\alpha-2| \leq 1$ we get $\alpha \in \overline{\mathbb{D}} \cap(2+\overline{\mathbb{D}})=\{1\}$. So $g(1)=1$, a nd g is unique.
Also

$$
g(\alpha+\lambda 1)=\left\langle(\pi(a)+\lambda I) \xi_{f}, \xi_{f}\right\rangle=\widetilde{\pi}(a+\lambda 1)
$$

where $\tilde{\pi}: \mathfrak{A}^{+} \rightarrow \mathcal{B}\left(\mathcal{H}_{f}\right)$ is $\widetilde{\pi}(a)=\pi(a)$ and $\widetilde{\pi}(1)=I$; so $\widetilde{\pi}$ is *-linear, and $g \geq 0$.

Lemma 8.15. Suppose f is a linear functional on \mathfrak{A}.

1. If $1 \in \mathfrak{A}$ and $f(1)=1=\|f\|$, then f is a state.
2. If $\left(e_{\lambda}\right)_{\lambda}$ is an approximate identity and $1=\|f\|=\lim _{\lambda} f\left(e_{\lambda}\right)$ then f is a state.

Proof.

1. If $a=a^{*}$ write $f(a)=x+i y$ for $x, y \in \mathbb{R}$. Then

$$
|f(a+i t 1)|^{2}=|(x+i y)+i t|^{2}=x^{2}+(y+t)^{2} \leq\|a+i t 1\|^{2}
$$

But $a+i t 1$ is normal and $\sigma(a+i t 1)=\sigma(a)+i t \subseteq[-\|a\|,\|a\|]+i t$. So $\|a+i t\|=\operatorname{spr}(a+i t)=\sqrt{\|a\|^{2}+t^{2}}$. Thus

$$
\|a\|^{2}+t^{2} \geq x^{2}+(y+t)^{2}=x^{2}+y^{2}+2 y t+t^{2}
$$

So $x^{2}+y^{2}+2 y t \leq\|a\|^{2}$ for all $t \in \mathbb{R}$. So $y=0$, and $f(a) \in \mathbb{R}$.
If $a=a^{*}$ with $0 \leq a \leq 1$ then $-1 \leq 2 a-1 \leq 1$. So $-1 \leq 2 f(a)-1 \leq 1$ since $\|f\|=1$ and $f(a) \in \mathbb{R}$. Thus $0 \leq f(a) \leq 1$. So $f \geq 0$, and f is a state.
2. Extend f by Hahn-Banach to a norm 1 functional on \mathfrak{A}^{+}. Then $\lim _{\lambda} f\left(e_{\lambda}\right)=1$, so by the same proof as the previous corollary we get $g(1)=1$. So by the unital case we get that g is a state. So f is a state.
\square Lemma 8.15
Definition 8.16. The state space of \mathfrak{A} is $S(\mathfrak{A})=\left\{f \in A^{*}: f \geq 0,\|f\|=1\right\}$; the quasi-state space of \mathfrak{A} is $Q(\mathfrak{A})=\left\{f \in \mathfrak{A}^{*}: f \geq 0,\|f\| \leq 1\right\}$.

Remark 8.17. If \mathfrak{A} is unital then $S(\mathfrak{A})$ is weak*-compact: indeed,

$$
S(\mathfrak{A})=\left\{f \in \mathfrak{A}^{*}: 1=f(1)=\|f\|\right\}=\underbrace{\overline{b_{1}\left(\mathfrak{A}^{*}\right)}}_{\text {weak*-compact }} \cap \underbrace{\left\{f \in \mathfrak{A}^{*}: f(1)=1\right\}}_{\text {weak*-closed }}
$$

If \mathfrak{A} is not unital then generally $S(\mathfrak{A})$ is not weak*-compact. But $Q(\mathfrak{A})$ is always weak*-compact: indeed,

$$
Q(\mathfrak{A})=\overline{b_{1}\left(\mathfrak{A}^{*}\right)} \cap \bigcap_{a \geq 0} \underbrace{\left\{f \in \mathfrak{A}^{*}: f(a) \geq 0\right\}}_{\text {weak } *-\text { closed }}
$$

Example 8.18. Consider $\mathfrak{A}=\mathcal{C}_{0}((0,1])^{*}=\mathcal{M}((0,1])$, the space of complex regular Borel measures; then $S(\mathfrak{A})$ is the space of probability measures. Let $\mu_{n}=n \cdot\left(m \upharpoonright\left(0, n^{-1}\right]\right)$ (where m is the Lebesgue measure); then $\mu_{n} \xrightarrow{w^{*}} 0$ (i.e. δ_{0}). So $S(\mathfrak{A})$ isn't weak*-closed.

Definition 8.19. A state f is pure if $g \in \mathfrak{A}^{*}$ and $0 \leq g \leq f$ implies there is $t \in[0,1]$ with $g=t f$.
Proposition 8.20. $f \in S(\mathfrak{A})$ is pure if and only if it is extreme.
Aside 8.21. $C=\left\{g \in \mathfrak{A}^{*}: g \geq 0\right\}$ is a weak*-closed cone. The pure states lie on extreme rays. If $1 \in \mathfrak{A}$ then

$$
S(\mathfrak{A})=C \cap\left\{g \in \mathfrak{A}^{*}: g(1)=1\right\}=C \cap\left\{g \in \mathfrak{A}^{*}:\|g\|=1\right\}
$$

Proof of Proposition 8.20.
(\Longrightarrow) Suppose f is not extreme; say $f=\frac{1}{2}(g+h)$ for $g, h \in S(\mathfrak{A})$ and $g, h \neq f$. Then $0 \leq \frac{1}{2} g \leq f$ but $g \neq t f$ for $t \in[0,1]$; so f is not pure.
(\Longleftarrow) Suppose f is not pure; then there is g with $0 \leq g \leq f$ with $g \notin \mathbb{R}_{+} f$. Let $h=f-g \geq 0$. Then

$$
f=\|g\|\left(\|g\|^{-1} g\right)+\|h\|\left(\|h\|^{-1} h\right)
$$

with $\|g\|^{-1} g,\|h\|^{-1} h \in S(\mathfrak{A})$; furthermore if $\left(e_{\lambda}\right)_{\lambda}$ is an approximate identity then

$$
\|g\|+\|h\|=\lim _{\lambda} g\left(e_{\lambda}\right)+h\left(e_{\lambda}\right)=\lim _{\lambda} f\left(e_{\lambda}\right)=1
$$

So f is not extreme.
Proposition 8.20
Lemma 8.22. $\operatorname{ext}(Q(\mathfrak{A}))=\{0\} \cup \operatorname{ext}(S(\mathfrak{A}))$. $S o \overline{\operatorname{Conv}(\operatorname{ext}(S(\mathfrak{A})))} w^{*} \supseteq S(\mathfrak{A})$.
Proof. If $f \in Q(\mathfrak{A})$ with $0<\|f\|<1$ then it is clear that f is not an extreme point. Clearly $0 \in \operatorname{ext}(Q(\mathfrak{A}))$, and by a triangle inequality argument we get that $\operatorname{ext}(S(\mathfrak{A})) \subseteq \operatorname{ext}(Q(A))$. So $\operatorname{ext}(Q(\mathfrak{A}))=\{0\} \cup \operatorname{ext}(S(\mathfrak{A}))$.

By Krein-Milman we have $\overline{\operatorname{Conv}(\{0\} \cup \operatorname{ext}(S(\mathfrak{A})))^{w^{*}}}=Q(\mathfrak{A}) \supseteq S(\mathfrak{A})$. So if $f \in S(\mathfrak{A})$ there is $\left(f_{\lambda}\right)_{\lambda}$ in $\operatorname{Conv}(\{0\} \cup \operatorname{ext}(S(\mathfrak{A})))$ such that $f_{\lambda} \xrightarrow{w^{*}} f$. Write $f_{\lambda}=\left(1-t_{\lambda}\right) \cdot 0+t_{\lambda} g_{\lambda}$ with $g \in \operatorname{Conv}(\operatorname{ext}(S(\mathfrak{A}))) \subseteq S(\mathfrak{A})$ and $0 \leq t_{\lambda} \leq 1$; then $\left\|f_{\lambda}\right\|=t_{\lambda}$. But $\{f \in Q(\mathfrak{A}):\|f\| \leq r\}$ is weak ${ }^{*}$-compact; so $\lim _{\lambda} t_{\lambda}=1$, and $g_{\lambda} \xrightarrow{w^{*}} f$. So $f \in \overline{\operatorname{Conv}(\operatorname{ext}(S(\mathfrak{A})))}$.
\square Lemma 8.22
Lemma 8.23. If f is a state with $G N S$ representation $\left\langle\pi_{f}, \xi_{f}, \mathcal{H}_{f}\right\rangle$ then $\{g: 0 \leq g \leq f\} \leftrightarrow\left\{H \in \pi_{f}(\mathfrak{A})^{\prime}\right.$: $0 \leq H \leq I\}$ with $g(a)=\left\langle\pi_{f}(a) \xi_{f} \mid H \xi_{f}\right\rangle \leftrightarrow H$

Proof. If $H \in \pi_{f}(\mathfrak{A})^{\prime}$ with $0 \leq H \leq I$ then

$$
g(a)=\left\langle\pi_{f}(a) \xi_{f} \mid H \xi_{f}\right\rangle=\left\langle\left. H^{\frac{1}{2}} \pi_{f}(a) \xi_{f} \right\rvert\, H^{\frac{1}{2}} \xi_{f}\right\rangle=\left\langle\left.\pi_{f}(a) H^{\frac{1}{2}} \xi_{f} \right\rvert\, H^{\frac{1}{2}} \xi_{f}\right\rangle
$$

so $g \geq 0$. Then

$$
(f-g)(a)=\left\langle\pi_{f}(a) \xi_{f} \mid(I-H) \xi_{f}\right\rangle=\cdots=\left\langle\left.\pi_{f}(a)(I-H)^{\frac{1}{2}} \xi_{f} \right\rvert\,(I-H)^{\frac{1}{2}} \xi_{f}\right\rangle \geq 0
$$

for $a \geq 0$. So $0 \leq f \leq g$.
Conversely if $0 \leq g \leq f$ we define a sesquilinear form on \mathfrak{A} / N (where $N=\left\{a \in \mathfrak{A}: f\left(a^{*} a\right)=0\right\}$) by $[\dot{a} \mid \dot{b}]_{g}=g\left(b^{*} a\right)$. This is positive as $g \geq 0$, and well defined as if $a \in N$ then $0 \leq g\left(a^{*} a\right) \leq f\left(a^{*} a\right)=0$ and the same proof from before applies. Also $[\dot{a} \mid \dot{a}]_{g}=g\left(a^{*} a\right) \leq f\left(a^{*} a\right)=\|\dot{a}\|_{\mathcal{H}_{f}}^{2}$, so our form is of norm ≤ 1. Thus there is $H \in \mathcal{B}(\mathcal{H})$ such that $[\dot{a} \mid \dot{b}]=\langle H \dot{a}\rangle \dot{b}_{\mathcal{H}_{f}}$; since our form is positive and norm ≤ 1, we get $H \geq 0$ and $\|H\| \leq 1$. So $0 \leq H \leq I$. Now for $a \in \mathfrak{A}$ we have

$$
\langle(H \pi(a)-\pi(a) H) \dot{c} \mid \dot{b}\rangle=\langle H \pi(a) \dot{c} \mid \dot{b}\rangle-\left\langle H \dot{c} \mid \pi\left(a^{*}\right) \dot{\rangle}\right\rangle=g\left(b^{*} \pi(a) c\right)-g\left(b^{*} \pi(a) c\right)=0
$$

So $H \in \pi(\mathfrak{A})^{\prime}$.
Lemma 8.23
Theorem 8.24. If $f \in S(\mathfrak{A})$ then π_{f} is irreducible if and only if f is pure.
Proof. Note that

$$
\begin{aligned}
\pi_{f} \text { irreducible } & \Longleftrightarrow \pi_{f}(\mathfrak{A})^{\prime}=\mathbb{C} I \\
& \Longleftrightarrow\{g: 0 \leq g \leq f\}=\{t f: 0 \leq t \leq 1\} \\
& \Longleftrightarrow f \text { is pure }
\end{aligned}
$$

as desired.
Lemma 8.25. If $a=a^{*} \in \mathfrak{A}$ then there is a pure state f such that $|f(a)|=\|a\|$.
Proof. Since $a=a^{*}$ we get $C_{0}^{*}(a) \cong \mathcal{C}_{0}(\sigma(a) \backslash\{0\})$.
TODO 50. $C^{*}(a)$?

The "evaluation at $\lambda=\|a\|$ or $\lambda=-\|a\|$ " functional is a state on $C_{0}^{*}(a)$ that norms a; i.e. $f_{0} \in S\left(C_{0}^{*}(a)\right)$ and $f_{0}(a)= \pm\|a\|$. By Hahn-Banahch this extends to $f \in \mathfrak{A}^{*}$ of norm 1. If $\left(e_{\lambda}\right)_{\lambda}$ is an approximate identity for $C_{0}^{*}(a) k$ then $f_{0}\left(e_{\lambda}\right) \rightarrow 1$; so $f\left(e_{\lambda}\right) \rightarrow 1$, and f is a state. If $\left(d_{\mu}\right)_{\mu}$ is an approximate identity for \mathfrak{A} then for all $r<1$ there is λ such that $f\left(e_{\lambda}\right)>r$; so there is $d_{\mu}>e_{\lambda}$ such that $f\left(d_{\mu}\right)>r$.

Let $\mathcal{F}=\{f \in S(\mathfrak{A}): f(a)=\|a\|\}$ or $\mathcal{F}=\{f \in S(\mathfrak{A}): f(a)=-\|a\|\}$. Then \mathcal{F} is non-empty, weak ${ }^{*}$-closed, and convex.

Claim 8.26. \mathcal{F} is a face of $Q(A)$.
Proof. Suppose $f \in \mathcal{F}$ with $f=\frac{1}{2}(g+h)$ for $g, h \in Q(\mathfrak{A})$. Then

$$
\pm a=f(a)=\frac{g(a)+h(a)}{2} \leq \frac{\|a\|+\|a\|}{2}
$$

TODO 51. Last inequality may need slight modification
So $g(a)=h(a)= \pm\|a\|$; thus $g, h \in \mathcal{F}$.
Claim 8.26
By Krein-Milman we get that \mathcal{F} has an extreme point f_{0}. But a face of a face is a face; so $f_{0} \in \operatorname{ext}(Q(\mathfrak{A}))$ and $f_{0} \neq 0$. So $f_{0} \in \operatorname{ext}(S(\mathfrak{A}))$.
\square Lemma 8.25
Theorem 8.27 (GNS). If \mathfrak{A} is a C^{*}-algebra then

$$
\pi=\bigoplus_{f \text { pure }} \pi_{f}
$$

is a faithful *-representation. If \mathfrak{A} is separable then a countable collection of pure states is sufficient.
Proof. By lemma if $a=a^{*}$ there is a pure state f with $|f(a)|=\|a\| .\left(f(a)=\left\langle\pi_{f}(a) \xi_{f} \mid \xi_{f}\right\rangle.\right)$ So $\left\|\pi_{f}(a)\right\|=\|a\|$, and $\|\pi(a)\|=\|a\|$.

For a arbitrary we have

$$
\|\pi(a)\|^{2}=\left\|\pi\left(a^{*} a\right)\right\|=\left\|a^{*} a\right\|=\|a\|^{2}
$$

so π is isometric.
If \mathfrak{A} is separable choose $\left\{a_{n}: n \in \mathbb{N}\right\}$ dense in $b_{1}\left(\mathfrak{A}_{\mathrm{sa}}\right)$. For each a_{n} choose f_{n} pure such that $\left\|\pi_{f}\left(a_{n}\right)\right\|=$ $\left\|a_{n}\right\|$. Let

$$
\sigma=\bigoplus_{n} \pi_{f_{n}}
$$

Then $\left\|\sigma\left(a_{n}\right)\right\|=\left\|a_{n}\right\|$ for all n, so $\|\sigma(a)\|=\|a\|$ for all $a=a^{*}$ with $\|a\| \leq 1$. So σ is isometric.

Corollary 8.28. C^{*}-algebras are semisimple.
Proof. We have

$$
\operatorname{rad}(\mathfrak{A})=\bigcap_{\pi \text { irreducible }} \operatorname{ker}(\pi) \subseteq \bigcap_{f \text { pure }} \operatorname{ker}\left(\pi_{f}\right)=\{0\}
$$

as desired.Corollary 8.28

8.2 Representations and ideals

Proposition 8.29. Suppose \mathfrak{A} is a C^{*}-algebra and $J \triangleleft$ is an ideal. If π is a non-degenerate ${ }^{*}$-representation of J on \mathcal{H} then there is a unique $\widetilde{\pi}=\operatorname{ind}(\pi): \mathfrak{A} \rightarrow \mathcal{B}(\mathcal{H})$ such that $\widetilde{\pi} \upharpoonright=\pi$. Moreover if π is irreducible then so is $\widetilde{\pi}$.

Proof. We have $\mathcal{H}=\overline{\pi(J) \mathcal{H}}$. Define $\widetilde{\pi}(a) \pi(j) x=\pi(a j) x$. (This is forced, and thus unique.) Is this welldefined? Suppose $\pi\left(j_{1}\right) x_{1}=\pi\left(j_{2}\right) x_{2}$. Let $\left(e_{\lambda}\right)_{\lambda}$ be an approximate identity for J; we need to show that $\pi\left(a j_{1}\right) x_{1}=\pi\left(a j_{2}\right) x_{2}$ for all $a \in \mathfrak{A}$. But

$$
\pi\left(a j_{1}\right) x_{1}=\lim _{\lambda} \pi\left(a e_{\lambda} j_{1}\right) x_{1}=\lim _{\lambda} \pi\left(a e_{\lambda}\right) \pi\left(j_{1}\right) x_{1}=\lim _{\lambda} \pi\left(a e_{\lambda}\right) \pi\left(j_{2}\right) x_{2}=\lim _{\lambda} \pi\left(a e_{\lambda} j_{2}\right) x_{2}=\pi\left(a j_{2}\right) x_{2}
$$

Also $\widetilde{\pi}$ is linear and multiplicative. Also

$$
\begin{aligned}
\left\langle\widetilde{\pi}\left(a^{*}\right) \pi\left(j_{1} x_{1}\right) \mid \pi\left(j_{2} x_{2}\right)\right\rangle & =\left\langle\pi\left(j_{2}^{*}\right) \pi\left(a^{*} j_{1}\right) x_{1} \mid x_{2}\right\rangle \\
& =\left\langle\pi\left(j_{2}^{*} a^{*} j_{1}\right) x_{1} \mid x_{2}\right\rangle \\
& =\left\langle\pi\left(j_{2}^{*} a^{*}\right) \pi\left(j_{1}\right) x_{1} \mid x_{2}\right\rangle \\
& =\left\langle\pi\left(j_{1}\right) x_{1} \mid \pi\left(a j_{2}\right) x_{2}\right\rangle \\
& =\left\langle\pi\left(j_{1}\right) x_{1} \mid \widetilde{\pi}(a) \pi\left(j_{2}\right) x_{2}\right\rangle \\
& =\left\langle\widetilde{\pi}(a)^{*} \pi\left(j_{1}\right) x_{1} \mid \pi\left(j_{2}\right) x_{2}\right\rangle
\end{aligned}
$$

(on a dense subset at least). Finally, we have

$$
\begin{aligned}
\|\widetilde{\pi}(a)\| & =\sup _{\|\pi(j) x\| \leq 1}\|\pi(a j) x\| \\
& =\sup \sup _{\lambda}\left\|\pi\left(a e_{\lambda} j\right) x\right\| \\
& =\sup \sup _{\lambda}\left\|\pi\left(a e_{\lambda}\right) \pi(j) x\right\| \\
& \leq \sup _{\lambda} \sup _{\lambda}\left\|a e_{\lambda}\right\| 1 \\
& \leq\|a\|
\end{aligned}
$$

so $\widetilde{\pi}(a)$ is bounded. So $\widetilde{\pi}$ is bounded as well, and extends to a *-representation on all of \mathcal{H}.
Proposition 8.29
Proposition 8.30. Suppose $\pi: \mathfrak{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a^{*}-representation and $J \triangleleft \mathfrak{A}$. Let $M=\overline{\pi(J) \mathcal{H}}$. Then M is a subrepresentation, so $\pi \cong \pi_{1} \oplus \pi_{2}$ for $\pi_{1}: \mathfrak{A} \rightarrow \mathcal{B}(M)$ and $\pi_{2}: \mathfrak{A} \rightarrow \mathcal{B}\left(M^{\perp}\right)$. Then $\pi_{1}=\operatorname{ind}(\pi \upharpoonright J)$ and $\pi_{2} \upharpoonright J=0$ (so π_{2} factors through \mathfrak{A} / J).

Proof. It is clear that M is invariant, hence reducing by taking adjoints we can write $\pi=\pi_{1} \oplus \pi_{2}$. Then $\pi_{1} \upharpoonright J: J \rightarrow \mathcal{B}(M)$ is non-degenerate; so $\pi_{1}=\operatorname{ind}\left(\pi_{1} \upharpoonright J\right)$ by lemma. Also $\pi(J) \upharpoonright M^{\perp}=0$, so $\operatorname{ker}\left(\pi_{2}\right) \supseteq J ;$ thus π_{2} factors through \mathfrak{A} / J.

Proposition 8.30
Example 8.31. Let $\mathfrak{A}=\mathcal{B}(\mathcal{H})$ for \mathcal{H} separable. Let $\mathcal{K}=\mathcal{K}(\mathcal{H})$; this is the only proper ideal of \mathfrak{A}.
Indeed, if $\mathcal{J} \triangleleft \mathcal{B}(\mathcal{H})$ with $0 \neq J \in \mathcal{J}$ then there is x, y such that $J x=y \neq 0$; then given u, v there are rank one R, S such that $R(u)=x$ and $S(y)=v$. Then $S J R$ is rank one and sends $u \mapsto v$, and $S J R$ lies in \mathcal{J}; so $\mathcal{K} \subseteq \mathcal{J}$. If $J \in \mathcal{J} \backslash \mathcal{K}$ then $T=J^{*} J \in \mathcal{J}$ is not compact; without loss of generality assume $\sigma(T) \subseteq[0,1]$. If $K=K^{*} \geq 0$ compact, then $\sigma(K)=\left\{0, \lambda 1, \lambda_{2}, \ldots\right\}$ with the $\lambda_{n} \rightarrow 0$; the eigenspaces $E_{K}\left(\lambda_{n}\right)$ are finite dimensional. Conversely if there is $\lambda \in \sigma(T)$ with $\operatorname{dim}(E-\{\lambda\})=\infty(=P$ an infinite rank projection, $\left.C^{*}(T) \subseteq \mathcal{J}\right)$ then there is an isometry S such that $S \mathcal{H}=P \mathcal{H}$, and $X \in \mathcal{B}(\mathcal{H})$ such that $S X S^{*}=P\left(S X S^{*}\right) P \in \mathcal{J}$. So $X=S^{*}\left(S X S^{*}\right) S \in \mathcal{J}$. Then $\sigma(T) \cap[r, 1]$ is uncountable. There is a projection

$$
P=\sup _{0 \leq f \leq \chi_{[r, 1]}} f(T) \in W^{*}(T)
$$

with $P T \geq r P$ of infinite rank. So there is $Y \in \mathcal{B}(\mathcal{H})$ with $Y T=P$, etc.
Assume $\pi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ and $\pi_{1}=\operatorname{ind}(\pi \upharpoonright K)$ and $\pi_{2}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H}) / \mathcal{K} \rightarrow \mathcal{B}\left(\mathcal{K}_{2}\right)$. Then $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}\left(\mathcal{K}_{1}\right)$, with $\mathcal{K}_{1}=\overline{\pi(\mathcal{K}) \mathcal{K}} . \mathcal{K}$ has only 1 irreducible represnetation up to unitary equivalence, namely id. Then

$$
\pi=\operatorname{id}(\alpha) \oplus \pi_{2}
$$

where the former is weak*-continuous and the latter is not.

9 Spectral theory for normal operators

Recall that if N is normal (i.e. $N^{*} N=N N^{*}$) then $C^{*}(N) \cong \mathcal{C}(\sigma(N))$ is abelian. More generally if the N_{α} are commuting normal operators, then by Fuglede's theorem $C^{*}\left(\left\{N_{\alpha}\right\}_{\alpha}\right)$ is abelian, so is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X; if it is separable, then X is compact and metrizable.
Example 9.1. If μ is a Borel probability measure on X, there is a $*$-representation $\pi_{\mu}: \mathcal{C}(X) \rightarrow \mathcal{B}\left(L^{2}(\mu)\right)$ given by $\pi_{\mu}(f) h=f h$. Then

$$
\left\langle\pi_{\mu}(\bar{f}) h, k\right\rangle=\langle\bar{f} h, k\rangle=\int(\bar{f} h) \bar{k} \mathrm{~d} \mu=\int h(\overline{f k}) \mathrm{d} \mu=\langle h, f k\rangle=\left\langle h, \pi_{\mu}(f) k\right\rangle=\left\langle\pi_{\mu}(f)^{*} h, k\right\rangle
$$

So $\pi_{\mu}(\bar{f})=\pi_{\mu}(f)^{*}$, and π_{μ} is a $*$-homomorphism. Also

$$
\left\|\pi_{\mu}(f)\right\|=\underbrace{\operatorname{ess} \sup |f(x)|}_{\text {w.r.t. } \mu} \leq\|f\|_{\infty}
$$

and 1 is a cyclic vector: $\overline{\pi_{\mu}(\mathcal{C}(X)) 1}=\overline{\mathcal{C}(X)}^{L^{2}(\mu)}=L^{2}(\mu)$.
Theorem 9.2. Suppose $\pi: \mathcal{C}(X) \rightarrow \mathcal{B}(\mathcal{H})$ is a representation with cyclic vector x with $\|x\|=1$. Then there is a regular Borel probability measure μ on X such that π is unitarily equivalent to π_{μ} (i.e. there is unitary $U: L^{2}(\mu) \rightarrow \mathcal{H}$ such that $\left.\pi(f)=U \pi_{\mu}(f) U^{*}\right)$.

Proof. Define a state in $\mathcal{C}(X)$ by $\varphi(f)=\langle\pi(f) x, x\rangle$. (It is positive and linear, and $\|\varphi\|=\varphi(1)=\|x\|^{2}=1$.) By Riesz representation theorem there is a positive regular Borel measure μ on X such that $\varphi(f)=\int f \mathrm{~d} \mu$. Then $\|\mu\|=\int 1 \mathrm{~d} \mu=\varphi(1)=1$; so μ is a probability measure.

Define $U: \mathcal{C}(X) \rightarrow \mathcal{H}$ by $U f=\pi(f) x$. Then

$$
\|U f\|^{2}=\langle\pi(f) x, \pi(f) x\rangle=\left\langle\pi\left(|f|^{2}\right) x, x\right\rangle=\varphi\left(|f|^{2}\right)=\int|f|^{2} \mathrm{~d} \mu=\|f\|_{L^{2}(\mu)}^{2}
$$

Since $\mathcal{C}(X)$ is dense in $L^{2}(\mu)$ and U is isometric on $\left(\mathcal{C}(X),\|\cdot\|_{L^{2}(\mu)}\right)$ we get that U extends by continuity to $U: L^{2}(\mu) \rightarrow \mathcal{H}$ which is isometric. But $\operatorname{Ran}(U)$ is closed, and thus contains $\overline{\pi(\mathcal{C}(X)) x}=\mathcal{H}$; so U is unitary. If $f, g \in \mathcal{C}(X)$ then

$$
U \pi_{\mu}(f) g=U f g=\rho(f g) x=\rho(f) \rho(g) x=\rho(f) U g
$$

TODO 52. ρ ? Mean π ?
This holds for $g \in \mathcal{C}(X)$, and $\mathcal{C}(X)$ is dense in $L^{2}(\mu)$; so by continuity we get $U \pi_{\mu}(f)=\rho(f) U$, and so $\rho(f)=U \pi_{\mu}(f) U^{*}$.
\square Theorem 9.2
Lemma 9.3. Suppose \mathfrak{A} is a C^{*}-algebra and $\pi: \mathfrak{A} \rightarrow \mathcal{B}(\mathcal{H})$ a non-degenerate ${ }^{*}$-representation. Then there is a decomposition $\mathcal{H}=\bigoplus_{\alpha} H_{\alpha}$ where each \mathcal{H}_{α} is a reducing subspace for $\pi\left(\mathfrak{A}\right.$ and $\pi(\mathfrak{A}) \upharpoonright \mathcal{H}_{\alpha}$ has a cyclic vector x_{α}.

TODO 53. Reducing subspace?
Proof. If $0 \neq x$ then $\mathcal{H}_{x}=\overline{\pi(\mathfrak{A}) x}=\overline{\pi(\mathfrak{A})^{\prime \prime} x}$
TODO 54. Single'? Double?
is a reducing subspace, and contains $I x=x$. If $0 \neq y \perp \mathcal{H}_{x}$ then $\mathcal{H}_{y} \perp \mathcal{H}_{x}$: indeed, if $a, b \in \mathfrak{A}$ then $\langle\pi(a) y, \pi(b) x\rangle=\left\langle y, \pi\left(a^{*} b\right) x\right\rangle=0$.

So by Zorn's lemma there is a maximal collection of vectors $\left\{x_{\alpha}\right\}_{\alpha}$ in \mathcal{H} such that $\mathcal{H}_{x_{\alpha}} \perp \mathcal{H}_{x_{\beta}}$ for all $\alpha \neq \beta$. Let $M=\left(\sum \mathcal{H}_{\alpha}\right)^{\perp}$. Suppose M were not $\{0\}$; then there is $0 \neq y \in M$, so that $y \perp \mathcal{H}_{x_{\alpha}}$ for all α. So $\mathcal{H}_{y} \perp \mathcal{H}_{x_{\alpha}}$ for all α; so $\mathcal{H}_{y} \subseteq M$. So $\left\{x_{\alpha}\right\}_{\alpha} \cup\{y\}$ is a larger family, contradicting maximality. So $M=0$, and $\mathcal{H}=\bigoplus_{\alpha} \mathcal{H}_{x_{\alpha}}$.
\square Lemma 9.3

Theorem 9.4 (Spectral theorem v1). If N is a normal operator on a separable Hilbert space then N is unitarily equivalent to a multiplication operator.

Proof. $C^{*}(N) \cong \mathcal{C}(X)$ (in fact $X=\sigma(N)$) via $f \in \mathcal{C}(X) \mapsto f(N)$ by the continuous functional calculus; this is a *-representation. By lemma we get

$$
\mathcal{H}=\bigoplus_{1 \leq i<\alpha} \mathcal{H}_{i}
$$

(where $\alpha \in \mathbb{N} \cup\{\omega\}$) such that $\pi_{i}(f)=f(N) \upharpoonright \mathcal{H}_{i}$ is a cyclic representation. Then there are probability measures μ_{i} on $\sigma(N)$ such that $\pi_{i}(f) \cong M_{f}^{\mu_{i}}$ on $L^{2}\left(\mu_{i}\right)$. In particular $\pi(\mathrm{id})=N$. So $N \cong \bigoplus_{i} \pi_{i}(\mathrm{id}) \cong \bigoplus M_{z}^{\mu_{i}}$ on $\bigoplus_{i} L^{2}\left(\mu_{i}\right)$.

Let $Y=\sigma(N) \times \mathbb{N}$. Suppose $\mu \in M(Y)$ with $\mu \upharpoonright \sigma(N) \times\{i\}=2^{-i} \mu_{i}$; then μ is a probability measure. Then

$$
L^{2}(\mu)=\bigoplus L^{2}(\sigma(N) \times\{i\}, \mu)=\bigoplus L^{2}\left(2^{-i} \mu_{i} \cong \bigoplus L^{2}\left(\mu_{i}\right)\right.
$$

Let $h(x, i)=x$; then $M_{h} \cong \bigoplus M_{\mathrm{id}}^{2^{-i} \mu_{i}} \cong \bigoplus M_{\mathrm{id}}^{\mu_{i}} \cong N$. (If $U_{i}: L^{2}\left(\mu_{i}\right) \rightarrow L^{2}\left(2^{-i} \mu_{i}\right)$ is $U_{i} h=2^{\frac{i}{2}} h$ then

$$
\left\|U_{i} h\right\|_{2}^{2}=\int 2^{i}|h|^{2} \mathrm{~d}\left(2^{-i} \mu_{i}\right)=\|h\|_{L^{2}(\mu)}
$$

and $\left.U_{i} M_{f} h=U_{i} f h=2^{\frac{i}{2}} f h=M_{f} 2^{\frac{i}{2}} h=M_{f} U_{i} h.\right)$
Theorem 9.4
Example 9.5. Suppose N is normal and compact. Then $\sigma(N)$ is finite or an infinite sequence converging to $0 \in \sigma(N)$. If N is cyclic then $N \cong M_{z}$ on $L^{2}(\sigma(N))=\ell^{2}(\sigma(N))$. If $\mu \in M(\sigma(N))$ then since $\left.\sigma(N)\right)$ is countable we can write

$$
\mu=\sum \varepsilon_{i} \delta_{\lambda_{i}}
$$

where λ_{i} range over $\sigma(N)$. So

$$
N \cong \bigoplus \lambda_{i}
$$

acting on $L^{2}(\mu) \cong \ell^{2}$. So N is diagonalizable. In general if N is a direct sum of diagonals it is diagonalizable. If $\sigma(N)=\left\{\lambda_{n}: n \geq 1\right\} \cup\{0\}$ then there are $d_{n}=\operatorname{dim}\left(\operatorname{ker}\left(N-\lambda_{n} I\right)\right)<\infty$ so that

$$
N \cong \operatorname{diag}(\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{d_{1}}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{d_{2}}, \ldots
$$

Definition 9.6. If \mathfrak{A} is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$, we say $x \in \mathcal{H}$ is a separating vector if whenever $A \in \mathfrak{A}$ has $A x=0$ then $A=0$.

Remark 9.7. If x is a cyclic vector for \mathfrak{A} then it is a separating vector for \mathfrak{A}^{\prime}.
Proof. Suppose $B \in \mathfrak{A}^{\prime}$ and $B x=0$. Then for all $A \in \mathfrak{A}$ we have $B(A x)=A(B x)=0$. So $B \upharpoonright \underbrace{\overline{\mathfrak{A} x}}_{=\mathcal{H}}=0$, and thus $B=0$.

Definition 9.8. We say $\pi: \mathfrak{A} \rightarrow \mathcal{B}(\mathcal{H})$ is multiplicity-free if $\pi(\mathfrak{A})^{\prime}$ is abelian.
The idea is that if $\pi \cong \pi_{0} \oplus \rho \oplus \rho$ then it has multiplicity; then the operators

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & a_{11} I & a_{12} I \\
0 & a_{21} I & a_{22} I
\end{array}\right)
$$

lie in $\pi(\mathfrak{A})^{\prime}$.
Definition 9.9. A masa (maximal abelian self-adjoint subalgebra) is an abelian C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ not contained in any larger abelian C^{*}-algebra.

Remark 9.10. If \mathfrak{A} is a masa then $\mathfrak{A} \subseteq \mathfrak{A}^{\prime}$ and $\mathfrak{A} \subseteq \mathfrak{A}^{\prime \prime}=\overline{\mathfrak{A}}^{\text {wot }}$, and $\overline{\mathfrak{A}}^{\text {wot }}$ is still abelian. So \mathfrak{A} is WOT-closed (and thus a von Neumann algebra).

If $\mathfrak{A}^{\prime \prime} \varsubsetneqq \mathfrak{A}^{\prime}$, pick $B \in \mathfrak{A}^{\prime} \backslash \mathfrak{A}^{\prime \prime}$; then B commutes with $\mathfrak{A}^{\prime \prime}$, so $C^{*}\left(B, \mathfrak{A}^{\prime \prime}\right)$ is abelian. So $C *\left(B, \mathfrak{A}^{\prime \prime}\right)^{\prime \prime}$ is abelian, and contains $\mathfrak{A}^{\prime \prime}$, a contradiction. So $\mathfrak{A}^{\prime}=\mathfrak{A}^{\prime \prime}=\mathfrak{A}$.
Lemma 9.11. Suppose \mathfrak{A} is an abelian subalgebra of $\mathcal{B}(\mathcal{H})$ and \mathcal{H} is separable. Then \mathfrak{A}^{\prime} has a cyclic vector, so $\mathfrak{A}^{\prime \prime}$ has a separating vector.

Proof. Decompose $\mathcal{H}=\oplus \mathcal{H}_{i}$ where $\mathfrak{A}^{\prime} \upharpoonright \mathcal{H}_{i}$ has a cyclic vector x_{i}. Let $x=\sum_{i=1}^{\infty} 2^{-i} x_{i}$. Then \mathcal{H}_{i} reduces \mathfrak{A}^{\prime}, so $P_{\mathcal{H}_{i}} \in \mathfrak{A}^{\prime \prime}$. But $\mathfrak{A}^{\prime \prime}=\overline{\mathfrak{A}}^{\text {WOT }} \subseteq \mathfrak{A}^{\prime}$ (where this last is because \mathfrak{A} is abelian). So $P_{\mathcal{H}_{i}} \in \mathfrak{A}^{\prime}$.

Then x is cyclic. Indeed, $x_{i}=\overline{2^{i}} P_{\mathcal{H}_{i}} x \in \mathfrak{A}^{\prime}$, so $\mathcal{H}_{i}=\overline{\mathcal{A}^{\prime} x_{i}} \subseteq \overline{\mathfrak{A}^{\prime} x}$; so $\mathcal{H}=\overline{\mathfrak{A}^{\prime} x}$. Thus x is separating for $\mathfrak{A}^{\prime \prime}$.
\square Lemma 9.11
Theorem 9.12. Suppose $\rho: \mathcal{C}(X) \rightarrow \mathcal{B}(\mathcal{H})$ is a ${ }^{*}$-representation where \mathcal{H} is separable. Then the following are equivalent:

1. $\rho(\mathcal{C}(X))$ has a cyclic vector.
2. ρ is multiplicity free.
3. $\rho(\mathcal{C}(X))^{\prime \prime}$ is a masa.
4. $\rho(\mathcal{C}(X))^{\prime \prime}$ is unitarily equivalent to $L^{\infty}(\mu)$ acting on $L^{2}(\mu)$ by multiplication for some probability measure μ on X.

Proof.
$(1) \Longrightarrow(2$ and 4$)$ Suppose $\rho(\mathcal{C}(X))$ has a cyclic vector; then there is a regular Borel probability measure μ on X such that $\rho \cong \pi_{\mu}$. Suppose $T \in \pi_{\mu}(\mathcal{C}(X))^{\prime} ;$ let $h=T 1 \in L^{2}(\mu)$. For $g \in \mathcal{C}(X)$ we have $T g=T M_{g} 1=M_{g} T 1=g h$. So $\|g h\|_{2}=\|T g\|_{2} \leq\|T\|\|g\|_{2}$. Then $\|h\|_{L^{2}(\mu)} \leq\|T\|$; indeed, otherwise there is $r \geq\|T\|$ such that $A=\{x:|h(x)| \geq r\}$ has $\mu(A)>0$. But $\mathcal{C}(X)$ is dense in $L^{2}(\mu)$; so there is $g_{n} \in \mathcal{C}(X)$ such that $\left\|g_{n}\right\|_{2} \leq \sqrt{\mu(A)}$ and $g_{n} \rightarrow \chi_{A}$ in $L^{2}(\mu)$. So $\|T\|\left\|\chi_{A}\right\|<r\left\|\chi_{A}\right\|<\left\|\chi_{A} h\right\|=$ $\lim \left\|g_{n} h\right\| \leq\|T\| \sup \left\|g_{n}\right\|_{2}=\|T\|\left\|\chi_{A}\right\|$, a contradiction. So by continuity $T=M_{h}$ and $h \in L^{\infty}(\mu)$. So $\mathfrak{A}^{\prime}=\left\{M_{h}: h \in L^{\infty}(\mu)\right\} \supseteq \mathfrak{A}$, and we have shown (2).
But also $\mathfrak{A}^{\prime \prime}=\overline{\mathfrak{A}}^{\text {wOT }} \subseteq \mathfrak{A}^{\prime}$, and \mathfrak{A}^{\prime} is abelian, so $\mathfrak{A}^{\prime} \subseteq \mathfrak{A}^{\prime \prime}$. Thus $\mathfrak{A}^{\prime \prime}=\mathfrak{A}^{\prime}=\left\{M_{h}: h \in L^{\infty}(\mu)\right\}$, and we have shown (4).
$\underline{(2) \Longrightarrow(3)} \mathfrak{A}^{\prime}$ abelian, so the same argument shows that $\mathfrak{A}^{\prime}=\mathfrak{A}^{\prime \prime} ;$ so $\mathfrak{A}^{\prime \prime}$ is a masa.
$\underline{(4) \Longrightarrow(1)} 1$ is a cyclic vector for $\pi_{\mu}(\mathcal{C}(X))$.
$\underline{(3) \Longrightarrow(1)} \rho(\mathcal{C}(X))$ is abelian, so lemma says $\rho(\mathcal{C}(X))^{\prime}=\mathfrak{A}^{\prime}$ has a cyclic vector. But $\mathfrak{A}^{\prime \prime}=\mathfrak{A}^{\prime}$; so $\mathfrak{A}{ }^{\prime \prime}$ has a cyclic vector x. Then

$$
\overline{\rho(\mathcal{C}(X)) x}=\overline{\overline{\rho(\mathcal{C}(X))}}{ }^{\text {WOT }} x=\overline{\mathfrak{A}^{\prime \prime} x}=\mathcal{H}
$$

so x is a cyclic vector for $\rho(\mathcal{C}(X))$.
Theorem 9.12
Lemma 9.13. We have $L^{\infty}(\mu)$ acting on $L^{2}(\mu)$ by multiplication (where μ is a regular Borel probability measure). The weak* topology on $L^{\infty}(\mu)=L^{1}(\mu)^{*}$ coincides with the WOT and the ultraweak topology on $\mathcal{M}\left(L^{\infty}(\mu)\right)=\left\{M_{h}: h \in L^{\infty}(\mu)\right\}$.
Proof. All these topologies are the weakest topologies making certain linear functionals continuous. The weak* topology on $L^{\infty}(\mu)$ corresponds to the maps

$$
h \mapsto \int h f \mathrm{~d} \mu
$$

for $f \in L^{1}(\mu)$; the WOT on $\mathcal{M}\left(L^{\infty}(\mu)\right)$ corresponds to the maps

$$
h \mapsto\left\langle M_{h} x, y\right\rangle
$$

for $x, y \in \mathcal{H}$;

TODO 55. $L^{2}(\mu)$?
the ultraweak topology on $\mathcal{M}\left(L^{\infty}(\mu)\right)$ corresponds to the maps

$$
h \mapsto \sum_{i}\left\langle M_{h} x_{i}, y_{i}\right\rangle
$$

where

$$
\sum_{i}\left\|x_{i}\right\|\left\|y_{i}\right\|<\infty
$$

If $f \in L^{1}(\mu)$ and $x=|f|^{\frac{1}{2}} \operatorname{sgn}(f), y=|f|^{\frac{1}{2}} \in L^{2}(\mu)$ then

$$
\left\langle M_{h} x, y\right\rangle=\int h x \bar{y} \mathrm{~d} \mu=\int h f \mathrm{~d} \mu
$$

So WOT-continuous implies ultraweak continuous.
Consider

$$
h \mapsto\left\langle M_{h} x, y\right\rangle=\int h x \bar{y} \mathrm{~d} \mu
$$

Consider $f=x \bar{y} \in L^{1}(\mu)$. Then $\|x \bar{y}\|_{1} \leq\|x\|_{2}\|y\|_{2}$. Consider the ultraweak continuous functional

$$
h \mapsto \sum_{i=1}^{\infty}\left\langle M_{h} x_{i}, y_{i}\right\rangle=\sum_{i=1}^{\infty} \int h f_{i} \mathrm{~d} \mu=\int h \sum_{i} f_{i} \mathrm{~d} \mu
$$

where $f_{i}=x_{i} \overline{y_{i}}$, so $\left\|f_{i}\right\|_{1} \leq\left\|x_{i}\right\|_{2}\left\|y_{i}\right\|_{2}$ and $\sum_{i} f_{i} \in L^{1}$.
TODO 56. some words

Lemma 9.14. Suppose μ, ν are regular Borel probability measures on X a compact metric space. Then there is a *-isomorphism $\sigma: L^{\infty}(\mu) \rightarrow L^{\infty}(\nu)$ such that $\sigma \upharpoonright \mathcal{C}(X)$ is the "identity" if and only if μ and ν are mutually absolutely continuous. Moreover the ${ }^{*}$-isomorphism is weak*-continuous.

Proof.
(\Longleftarrow) By the Radon-Nikodym theorem $\nu=k \mu$ for some $k \in L^{1}$ (with $k>0$ almost everywhere. So define $U: L^{2}(\mu) \rightarrow L^{2}(\nu)$ by $U f=k^{-\frac{1}{2}} f$. Then

$$
\|U f\|_{L^{2}(\nu)}^{2}=\int\left|k^{-\frac{1}{2}} f\right|^{2} \mathrm{~d} \nu=\int k^{-1}|f|^{2} k \mathrm{~d} \mu=\|f\|_{L^{2}(\mu)}^{2}
$$

So U is isometric and surjective. If $h, f \in L^{\infty}(\mu)=L^{\infty}(\nu)$ then

$$
U M_{h}^{\mu} f=U h f=k^{-\frac{1}{2}} h f=M_{h}^{\nu}\left(k^{-\frac{1}{2}} f\right)=M_{h}^{\nu} U f
$$

So $M_{h}^{\nu}=U M_{h}^{\mu} U^{*}$. This is a ${ }^{*}$-isomorphism between $L^{\infty}(\mu)$ and $L^{\infty}(\nu)$ which is WOT-continuous, and thus weak*-continuous.
(\Longrightarrow) Suppose $\sigma: L^{\infty}(\mu) \rightarrow L^{\infty}(\nu)$ is a ${ }^{*}$-isomorphism such that if $f \in \mathcal{C}(X)$ then $\sigma(f)=f$. We view σ as a $\operatorname{map} \mathcal{M}\left(L^{\infty}(\mu)\right) \rightarrow \mathcal{M}\left(L^{\infty}(\nu)\right)$.
Claim 9.15. σ is normal: if $\left(f_{\alpha}\right)_{\alpha}$ is a bounded increasing net in $L^{\infty}(\mu)$ with $\sup _{\alpha} f_{\alpha}=f \in L^{\infty}$ then $\sigma(f)=\sup _{\alpha} \sigma\left(f_{\alpha}\right)$.

Proof. Note that $f \geq 0$ implies $\sigma(f) \geq 0$ because it is a *-homomorphism. So $\left(\sigma\left(f_{\alpha}\right)\right)_{\alpha}$ is an increasing net, and is bounded. Let $g=\sup _{\alpha} \sigma\left(f_{\alpha}\right)$; let $h=\sigma^{-1}(g)$. We know that

$$
\sigma\left(f_{\alpha}\right) \leq g=\sup _{\alpha} \sigma\left(f_{\alpha}\right) \leq \sigma(f)
$$

where the last inequality is because $f \geq f_{\alpha}$ implies $\sigma(f) \geq \sigma\left(f_{\alpha}\right)$. So $f_{\alpha} \leq h \leq f$. So $f=\sup _{\alpha} f_{\alpha} \leq$ $h \leq f$, and $h=f$. So $g=\sigma(f)=\sup _{\alpha} \sigma\left(f_{\alpha}\right)$.
\square Claim 9.15

Suppose $\mathcal{O} \subseteq X$ is open. For $n \geq 1$ let

$$
f_{n}(x)= \begin{cases}1 & \text { if } x \in \mathcal{O} \text { and } \operatorname{dist}\left(x \mathcal{O}^{c}\right) \geq \frac{1}{n} \\ n \operatorname{dist}\left(x, \mathcal{O}^{c}\right) \text { if } \operatorname{dist}\left(x, \mathcal{O}^{c}\right) \leq \frac{1}{n} & \end{cases}
$$

Then $f_{n} \leq f_{n+1}$ with $\sup _{n} f_{n}=\chi_{\mathcal{O}}$. So

$$
\sigma\left(\chi_{\mathcal{O}}\right)=\sup \sigma\left(f_{n}\right)=\sup f_{n}=\chi_{\mathcal{O}}
$$

Now let $\Sigma=\left\{E \subseteq X: E\right.$ measurable, $\left.\sigma\left(\chi_{E}\right)=\chi_{E}\right\}$.
Claim 9.16. Σ is a σ-algebra.
Proof. For closure under complements, we have

$$
\sigma\left(\chi_{E^{c}}\right)=\sigma\left(1-\chi_{E}\right)=1-\chi_{E}=\chi_{E^{c}}
$$

for $E, F \in \Sigma$. For closure under intersection, we have

$$
\sigma\left(\chi_{E \cap F}\right)=\sigma\left(\chi_{E} \chi_{F}\right)=\sigma\left(\chi_{E}\right) \sigma\left(\chi_{F}\right)=\chi_{E} \chi_{F}=\chi_{E \cap F}
$$

for $E, F \in \in \Sigma$. If ($E_{i}: i \geq 1$) are pairwise disjoint and

$$
E=\bigcup_{i \in \mathbb{N}} E_{i}
$$

then
$\sigma\left(\chi_{E}\right)=\sigma\left(\sup _{n \geq 1} \chi_{E_{1}} \cup \cdots \cup \chi_{E_{n}}\right)=\sup _{n \geq 1} \sigma\left(\chi_{E_{1} \cup \cdots \cup E_{n}}\right)=\sup _{n \geq 1} \sigma\left(\chi_{E_{1}}+\cdots+\chi_{E_{n}}\right)=\sup _{n \geq 1} \chi_{E_{1} \cup \cdots \cup E_{n}}=\chi_{E}$
So Σ is a σ-algebra.
But Σ contains all open sets and all sets of measure 0 (since $\sigma(0)=0)$. So Σ is all measurable sets. So σ is the identity on all simple functions, which are norm-dense. So σ is the "identity".Lemma 9.14

Theorem 9.17. Suppose $\sigma: \mathcal{C}(X) \rightarrow \mathcal{B}(\mathcal{H})$ is a non-degenerate representation with \mathcal{H} separable. Let $\mathcal{M}=\sigma(\mathcal{C}(X))^{\prime \prime}$. Then there is a regular Borel probability measure μ on X such that $L^{\infty}(\mu) \cong \mathcal{M}$ via a *-isomorphism $\tilde{\sigma}$ which extends σ and is a weak*-WOT homeomorphism.

Proof. \mathcal{M} is an abelian von Neumann algebra; so since \mathcal{M}^{\prime} has a cyclic vector we get that \mathcal{M} has a separating vector x. Let $\mathcal{K}=\overline{\mathcal{M} x}$. The restriction map $\rho: \mathcal{M} \rightarrow \mathcal{B}(\mathcal{K})$ (with $\rho(T)=T \upharpoonright \mathcal{K})$ is a WOT-continuous *-isomorphism. Since x is a separating vector we get that ρ is injective, and thus isometric.

Claim 9.18. $\rho(\mathcal{M})$ is WOT-closed.
Proof. Suppose $A \in b_{1}\left(\overline{\rho(\mathcal{M})}^{\text {WOT }}\right)$. Then by Kaplansky's density theorem there are $A_{\alpha}=\rho\left(T_{\alpha}\right)$ such that $T_{\alpha} \in \mathcal{M}$ with $\left\|T_{\alpha}\right\| \leq 1$ and $\rho\left(T_{\alpha}\right) \xrightarrow{\text { WOT }} A$. Drop to a subnet so $T_{\alpha_{\beta}} \xrightarrow{\text { WOT }} T$ (possibly since ($b_{1}(\mathcal{B}(\mathcal{H})$, WOT) is compact by Banach-Alaoglu). Then ρ is WOT-WOT-continuous; so $\rho(T)=A \in \rho(\mathcal{M}) . \quad \square$ Claim 9.18
$\rho(\mathcal{M})$ has x as a cyclic vector; so there is μ_{1} a regular probability measure such that $\rho(\mathcal{M}) \cong L^{\infty}\left(\mu_{1}\right)$ acting on $L^{2}\left(\mu_{1}\right)$. Then $\sigma^{\prime}: \mathcal{M} \rightarrow \mathcal{M} \upharpoonright \mathcal{K}^{\perp}$ can be written as a direct sum of cyclic representations. So

$$
\mathcal{H} \cong \mathcal{K} \oplus \bigoplus_{n \geq 2} \mathcal{K}_{n}
$$

such that each $\mathcal{M} \upharpoonright \mathcal{K}_{n}$ is cyclic. So there are probability measures μ_{n} such that $\mathcal{M} \upharpoonright \mathcal{K} \cong L^{\infty}\left(\mu_{n}\right)$ on $L^{2}\left(\mu_{n}\right)$. Let

$$
\mu=\sum_{n \geq 1} 2^{-n} \mu_{n}
$$

Then $\sigma: \mathcal{C}(X) \rightarrow \mathcal{B}\left(\bigoplus_{n} \mathcal{K}_{n}\right)$ by $\sigma(f)=\bigoplus_{n} \sigma_{n} \mapsto \bigoplus M_{f}^{\mu_{n}}$. So $\sigma_{n}(f)=M_{f}^{\mu_{n}}$ for all $f \in L^{\infty}\left(\mu_{n}\right)$. We get a $\operatorname{map} \tilde{\sigma}: L^{\infty}(\mu) \xrightarrow{* \text {-isomorphism }} \mathcal{B}(\mathcal{H})$ given by

$$
\widetilde{\sigma}(f)=\bigoplus_{n \geq 1} M_{f}^{\mu_{n}}
$$

Thus $\mu_{n} \ll \mu_{1}$. So $\mu \cong \mu_{1}$.
TODO 57. Following claim somewhere above?
Claim 9.19. $\mu_{n} \ll \mu_{1}$.
Proof. Otherwise there is E measurable such that $\mu_{n}(E)>0$ but $\mu(E)=0$. Then $\chi_{E} \neq 0$ in $\mathcal{M} \upharpoonright \mathcal{K}_{n}$; so $\chi_{E} \in L^{\infty}(\mu)$ with $\widetilde{\sigma}\left(\chi_{E}\right) \neq 0$ since $\sigma_{n}\left(\chi_{E}\right) \neq 0$ But σ_{1} is injective, so $\sigma_{1}\left(\chi_{E}\right) \neq 0$, a contradiction. Claim 9.19

$$
\text { So } \mathcal{M}=\widetilde{\sigma}\left(L^{\infty}(\mu)\right) \cong L^{\infty}(\mu)\left(\text { which is also isomorphic to } L^{\infty}\left(\mu_{1}\right)\right)
$$

Theorem 9.20 (L^{∞} functional calculus). Suppose N is a normal operator on a separable Hilbert space. Then there is a Borel probability measure μ on $\sigma(N)$ such that the continuous functional calculus $\sigma: \mathcal{C}(\sigma(N)) \rightarrow \mathcal{B}(\mathcal{H})$ extends to a weak*-WOT continuous *-homomorphism $\tilde{\sigma}: L^{\infty}(\mu) \rightarrow \mathcal{B}(\mathcal{H})$. (One thinks of this as mapping $\left.f \mapsto M_{h}.\right)$

Proof. $\sigma(\mathcal{C}(\sigma(N)))^{\prime \prime}=\mathcal{M} \cong L^{\infty}(\mu)$ for some probability measure μ on $\sigma(N)$, and the map $\widetilde{\sigma}: L^{\infty}(\mu) \rightarrow \mathcal{M}$ extends σ and is weak*-WOT-continuous.

9.1 Spectral measures

Suppose N is normal on a separable Hilbert space \mathcal{H}. Then $\widetilde{\sigma}: L^{\infty}(\mu) \xrightarrow{* \text {-isomorphism }}\{N\}^{\prime \prime}$. Let Σ be the set of measurable subsets of $\sigma(N)$ (or \mathbb{C}); let $E_{N}: \Sigma \rightarrow \mathcal{B}(\mathcal{H})$ be $E_{N}(A)=\chi_{A}(N)=\widetilde{\sigma}\left(\chi_{A}\right)$. This is a projection valued measure.
(Countable additivity) Suppose the A_{i} are pairwise disjoint and measurable. Then

$$
\tilde{\sigma}\left(\chi \cup A_{i}\right)=\tilde{\sigma}\left(\sup \chi_{A_{1} \cup \cdots \cup A_{n}}\right)=\sup \tilde{\sigma}\left(\chi_{A_{1} \cup \ldots \cup A_{n}}\right)=\sup \sum \tilde{\sigma}\left(\chi_{A_{i}}\right)=\sum \tilde{\sigma}\left(\chi_{A_{i}}\right)
$$

So

$$
E_{N}\left(\bigsqcup_{i} A_{i}\right)=\operatorname{SOT} \sum_{i=1}^{\infty} E_{N}\left(A_{i}\right)
$$

If $f=\sum a_{i} \chi_{E_{i}}$ with the E_{i} pairwise disjoint then

$$
\int f \mathrm{~d} E_{N}:=\sum a_{i} E_{N}\left(E_{i}\right)=\widetilde{\sigma}(f)
$$

extend to $f \in L^{\infty}$ by

$$
\int f \mathrm{~d} E_{N}:=\widetilde{\sigma}(f)
$$

Lemma 9.21. If \mathcal{M} is an abelian von Neumann algebra on a separable \mathcal{H} then there is $A=A^{*} \in \mathcal{M}$ such that $\mathcal{M}=C^{*}(A)^{\prime \prime}$.
Proof. $\mathcal{M} \cong L^{\infty}(\mu)$. Find a collection $\left\{E_{n}\right\}_{n \geq 1}$ of orthogonal projections in \mathcal{M} such that $\mathcal{M}={\overline{\operatorname{span}\left\{E_{n}\right\}}}^{\text {wot }}$. Pull out (countably many) atoms. Technical part: take $\left\{\mathcal{O}_{n}\right\}$ open that determine the topology of X, and make sure that we can approxiate $\chi_{\mathcal{O}_{n}}$.

Let

$$
A=\sum_{n=1}^{\infty} 3^{-n} \chi_{E_{n}}
$$

Then

$$
\frac{1}{3} \chi_{E_{1}} \leq A \leq \frac{1}{2}
$$

Then

$$
A \chi_{E_{1}}^{c}=\sum_{n=2}^{\infty} 3^{-n} \chi_{E_{n} \cap E_{1}^{c}} \leq \frac{1}{6} \chi_{E_{1}^{c}}
$$

So

$$
A=\underbrace{A \chi_{E_{1}}}_{\geq \frac{1}{3} \chi_{E_{1}}}+\underbrace{A \chi_{E_{1}^{c}}}_{\leq \frac{1}{6} \chi_{E_{1}^{c}}}
$$

But

$$
\begin{aligned}
& \sigma\left(A \chi_{E_{1}} \upharpoonright E_{1} \mathcal{H}\right) \subseteq\left[\frac{1}{3}, \frac{1}{2}\right] \\
& \sigma\left(A \chi_{E_{1}^{c}} \upharpoonright E_{1}^{c} \mathcal{H}\right) \subseteq\left[0, \frac{1}{6}\right]
\end{aligned}
$$

So if we let

$$
f(x)= \begin{cases}1 & \text { if } x \in\left[\frac{1}{3}, \frac{1}{2}\right] \\ 0 & \text { if } x \in\left[0, \frac{1}{6}\right]\end{cases}
$$

then $f \in \mathcal{C}(\sigma(A))$, and

$$
f(A)=f\left(A \chi_{E_{1}} \oplus A \chi_{E_{1}^{c}}\right)=\tilde{\sigma}\left(\chi_{E_{1}}\right) \oplus 0=E_{1}
$$

Thus $E_{1} \in \sigma^{*}(A)$. So

$$
3\left(A-\frac{1}{3} E_{1}\right)=\sum_{n=2}^{\infty} 3^{1-n} \chi_{E_{n}}
$$

etc. $E_{n} \in C^{*}(A)$ for $n \geq 1$. So

$$
C^{*}(A)=C^{*}\left(E_{n}\right)
$$

and

$$
C^{*}(A)^{\prime \prime}=C^{*}\left(E_{n}\right)^{\prime \prime}=\mathcal{M}
$$

Corollary 9.22. \mathcal{M} an abelian von Neumann algebra in a separable hilbert space \mathcal{H} there is probability measure μ on $[0,1]$ such that $\mathcal{M} \cong L^{\infty}(\mu)$.

Proof. $\mathcal{M}=C^{*}(A)^{\prime \prime} \cong L^{\infty}(\mu)$ with μ a probability measure on $\sigma(A) \subseteq \mathbb{R}$.
Corollary 9.22

9.2 Multiplicity

For us \mathcal{H} is separable.
Definition 9.23. We say a representation π has multiplicity n for $1 \leq n \leq \aleph_{0}$ if $\pi \cong \underbrace{\sigma \oplus \cdots \oplus \sigma}_{n}=\sigma^{(n)}$ where σ is multiplicity-free (i.e. $\sigma(\mathfrak{A})^{\prime}$ is abelian).

Recall that if $\mathfrak{A}=\mathcal{C}(X)$ then σ is multiplicity free if and only if $\sigma \cong \sigma_{\mu}$ on $L^{2}(\mu)$ by multiplication; so $\sigma(\mathcal{C}(X))^{\prime}=\sigma(\mathcal{C}(X))^{\prime \prime} \cong L^{\infty}(\mu)$ acting on $L^{2}(\mu)$.
Theorem 9.24. If $\sigma \cong \sigma_{\mu}$ is a multiplicity-free rerpesentation of $\mathcal{C}(X)$ and $\pi=\sigma^{(n)}$, then $\pi(\mathcal{C}(X))^{\prime} \cong$ $M_{n}\left(L^{\infty}(\mu)\right)$. Hence the multiplicity of π is well-defined.

Proof. We have $\pi \cong \sigma_{\mu}^{(n)}$ acting on $L^{2}(\mu)^{(n)}=\underbrace{L^{2}(\mu) \oplus \cdots \oplus L^{2}(\mu)}_{n}$ via $\pi(h)=\operatorname{diag}\left(M_{h}, M_{h}, \ldots, M_{h}\right)$. If $A \in \pi(\mathcal{C}(X))^{\prime}$, we write A as an $n \times n$ matrix $A=\left[A_{i j}\right]_{i j}$ with respect to this decomposition. Then

$$
0=\pi(h) A-A \pi(h)=\left[M_{h} A_{i j}-A_{i j} M_{h}\right]_{i j}
$$

if and only if each $A_{i j} \in \sigma_{\mu}(\mathcal{C}(X))^{\prime}=L^{\infty}(\mu)$. So $\pi(\mathcal{C}(X))^{\prime}=M_{n}\left(L^{\infty}(\mu)\right)$.
What if $n=\aleph_{0}$? Then A has a matrix $\left[A_{i j}\right]_{i, j \geq 1}$. Then the same argument shows $A_{i j} \in L^{\infty}(\mu)$ and

$$
\pi(\mathcal{C}(X))^{\prime}=\left\{B=\left[M_{h_{i j}}\right]_{i j}: h_{i j} \in L^{\infty}(\mu),\|A\|<\infty\right\}=\mathcal{B}(\mathcal{H}) \bar{\otimes} L^{\infty}(\mu)
$$

where we take the WOT-closure of the tensor product.
Suppose π also has multiplicity $m<n$; so $\pi \cong \sigma_{\nu}^{(m)}$. Then

$$
M_{n}\left(L^{\infty}(\mu)\right) \cong \pi(\mathcal{C}(X))^{\prime} \cong M_{m}\left(L^{\infty}(\nu)\right)
$$

Suppose φ is a multiplicative linear functional on $L^{\infty}(\nu)$; it induces a map $\varphi^{(m)}: M_{m}\left(L^{\infty}(\nu)\right) \rightarrow M_{m}$ given by $\varphi^{(m)}\left(\left[M_{h_{i j}}\right]_{i j}\right)=\left[\varphi\left(h_{i j}\right)\right]_{i j}$. Then $\varphi^{(m)}$ is a homomorphism: it is linear and multiplicative. Indeed, we have

$$
\left[M_{h_{i j}}\right]\left[M_{g_{i j}}\right]=\left[M_{\sum_{k=1}^{m} h_{i j} g_{k j}}\right]
$$

and

$$
\varphi^{(m)}\left(\left[M_{h_{i j}}\right]\right) \varphi^{(m)}\left(\left[M_{g_{i j}}\right]\right)=\left[\varphi\left(h_{i j}\right)\right]\left[\varphi\left(g_{i j}\right)\right]=\left[\sum \varphi\left(h_{i k}\right) \varphi\left(g_{k j}\right)\right]=\left[\varphi\left(\sum h_{i j} g_{k j}\right)\right]=\varphi^{(m)}\left(\left[M_{h_{i j}}\right]\left[M_{g_{i j}}\right]\right)
$$

So we get unital *-homomorphisms

$$
M_{n}(\mathbb{C} 1 \hookrightarrow M_{n}\left(L^{\infty}(\mu)\right) \cong M_{m}\left(L^{\infty}(\nu)\right) \underbrace{\varphi^{(m)}}_{\text {surjective }} M_{m}(\mathbb{C})
$$

So we get a unital ${ }^{*}$-homomorphism $M_{n} \rightarrow M_{m}$ with $m<n$.
If $n<\infty$ then M_{n} is simple; so $n^{2}=\operatorname{dim}\left(M_{n}\right) \leq \operatorname{dim}\left(M_{m}\right)=m^{2}$, a contradiction. If $n=\aleph_{0}$ then $M_{\aleph_{0}}=\mathcal{B}(\mathcal{H})$ only has one proper ideal: the compact operators \mathcal{K}. Also $\operatorname{dim}(\mathcal{B}(\mathcal{H}))=\operatorname{dim}(\mathcal{B}(\mathcal{H}) / \mathcal{K})=2^{\aleph_{0}}$. So there are no finite dimensional quotients, a contradiction. So multiplicity is well-defined. - Theorem 9.24

Definition 9.25. Suppose $\pi: \mathcal{C}(X) \rightarrow \mathcal{B}(\mathcal{H})$ where \mathcal{H} is separable. A projection $P \in \pi(\mathcal{C}(X))^{\prime \prime}$ has multiplicity n if $\pi(\mathcal{C}(X)) \upharpoonright P H$ has multiplicity n.

Proposition 9.26. There is a largest projection P_{n} of multiplicity n.
Proof. Let $\left(P_{\alpha}\right)_{\alpha}$ be the collection of all multiplicity n projections in $\pi(\mathcal{C}(X))^{\prime \prime} \cong L^{\infty}(\mu)$. So there are measurable sets A_{α} such that $P_{\alpha} \cong M_{\chi_{A_{\alpha}}}$. Let t be the supremum over all finite subsets of $\mu\left(A_{\alpha_{1}} \cup \cdots \cup A_{\alpha_{m}}\right)$. Choose $F_{i}=A_{\alpha_{i, 1}} \cup \cdots \cup A_{\alpha_{i, m}}$ such that $\mu\left(F_{i}\right) \rightarrow t$. Let $F=\bigcup_{i=1}^{\infty} F_{i}$. Then

$$
t=\sup \mu\left(F_{i}\right) \leq \mu(F)=\lim _{m \rightarrow \infty} \mu\left(F_{1} \cup \cdots \cup F_{m}\right) \leq t
$$

So $\mu(F)=t$.
Claim 9.27. $\mu\left(A_{\alpha} \backslash F\right)=0$ for all α.
Proof. Say $\mu\left(A_{\alpha} \backslash F\right)=\delta>0$. Pick i_{0} such that $\mu\left(F_{i_{0}}\right)>t-\frac{\delta}{2}$. Then

$$
t \geq \mu\left(F_{i_{0}} \cup A_{\alpha}\right) \geq \mu\left(F_{i_{0}}\right)+\mu\left(A_{\alpha} \backslash F\right)>t-\frac{\delta}{2}+\delta>t
$$

a contradiction.

So there is a countable set $\left(P_{i}\right)_{i}$ of multiplicity n such that

$$
\bigvee_{i \geq 1} P_{i}=M_{\chi_{F}}=\bigvee P_{\alpha}
$$

Let $Q_{1}=P_{1}$ and

$$
Q_{n+1}=P_{n+1}\left(\bigvee_{i=1}^{n} P_{i}\right)^{\perp}
$$

Then $Q_{i} Q_{j}=0$ if $i \neq j$ and

$$
\sum_{i=1}^{n} Q_{i}=\bigvee_{i=1}^{n} P_{i}
$$

So

$$
Q=\sum_{i=1}^{\infty} Q_{i}=\bigvee_{i \geq 1} P_{i}=\bigvee P_{\alpha}
$$

and $Q_{i} \cong M_{\chi_{B_{i}}}$ with the B_{i} pairwise disjoint, measurable. Each P_{i} has multiplicity n and $Q_{i} \leq P_{i}$, so each Q_{i} has multiplicity n. Then

$$
\begin{aligned}
P_{i} \mathcal{C}(X)^{\prime} & \cong M_{n}\left(L^{\infty}\left(A_{i}\right)\right) \\
Q_{i} \mathcal{C}(X)^{\prime} & \cong M_{n}\left(L^{\infty}\left(B_{i}\right)\right)
\end{aligned}
$$

with each $B_{i} \subseteq A_{i}$. Then since the Q_{i} are pairwise orthogonal we get

$$
Q \pi\left(\mathcal{C}(X)^{\prime}\right)=\sum Q_{i} \pi(\mathcal{C}(X))^{\prime} \cong \sum M_{n}\left(L^{\infty}\left(B_{i}\right)\right) \cong M_{n}\left(L^{\infty}\left(\bigcup B_{i}\right)\right)=M_{n}\left(L^{\infty}(F)\right)
$$

So Q has multiplicity n and is the biggest.
Proposition 9.26
Lemma 9.28. If $\pi: \mathcal{C}(X) \rightarrow \mathcal{B}(\mathcal{H})$ with \mathcal{H} separable then there is $0 \neq P$ a projection in $\pi(\mathcal{C}(X))^{\prime \prime}$ of uniform multiplicity. (i.e. P has a multiplicity.)

Proof. $\pi(\mathcal{C}(X))^{\prime \prime}$ is an abelian von Neumann algebra; so there is a separating vector x_{1}; let $M_{1}=\overline{\pi(\mathcal{C}(X)) x_{1}}$. Then M_{1} is reducing so $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright M_{1}$ is maximal abelian, isomorphic to $L^{\infty}\left(\mu_{1}\right)$; call $\mu_{1}=\mu$. Then $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright M_{1}^{\perp}$ is an abelian von Neumann algebra, so there is a separating vector x_{2}; let $M_{2}=\overline{\pi(\mathcal{C}(X)) x_{2}}$. Then M_{2} is reducing so $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright M_{2}$ is maximal abelian, isomorphic to $L^{\infty}\left(\mu_{2}\right)$ with $\mu_{2} \ll \mu_{1}=\mu$. Recursively find separating x_{n+1} of $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright\left(M_{1}+\cdots+M_{n}\right)^{\perp}$ and let $M_{n+1}=\overline{\pi(\mathcal{C}(X))}$; then $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright$ $M_{n+1} \cong L^{\infty}\left(\mu_{n+1}\right)$ with $\mu_{n+1} \ll \mu_{n}$.

There is A_{n} measurable such that $\mu_{n} \approx \mu \upharpoonright A_{n}$; then $X=A_{1} \supseteq A_{2} \supseteq \cdots$. Suppose there is a smallest $n+1$ such that $\mu_{n+1} \not \approx \mu_{n+1}$. Then $\mu \approx \mu_{1} \approx \cdots \approx \mu_{n} \not \approx \mu_{n+1}$. Then A_{1}, \ldots, A_{n} have full measure but $\mu\left(A_{n+1}\right)<1$. Let $P \in \pi(\mathcal{C}(X))^{\prime \prime} \cong L^{\infty}(\mu)$ correspond to $\chi_{A_{n+1}^{c}} \in L^{\infty}(\mu)$. Let $B=A_{n+1}^{c}$. Then $P \upharpoonright M_{i} \cong M_{\chi_{B}}$ for $1 \leq i \leq n$ and $P \upharpoonright M_{i}=0$ if $i \geq n+1$. So

$$
P \cong M_{\chi_{B}}^{(n)} \oplus 0
$$

Also $P\left(\left(\sum M_{i}\right)^{\perp}\right)=0$. Then

$$
P \pi(\mathcal{C}(X))^{\prime \prime} \cong P\left(\left(\bigoplus_{i \geq 1} \pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright M_{i}\right) \oplus\left(\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright\left(\sum M_{i}\right)^{\perp}\right)\right)
$$

Then

$$
P \upharpoonright\left(\sum_{i=1}^{n} M_{i}\right)^{\perp}=0
$$

since x_{n+1} is separating; but $M_{\chi_{B}} \upharpoonright M_{n+1}=0$, so $M_{\chi_{B}} \upharpoonright\left(\sum_{i=1}^{n} M_{i}\right)^{\perp}=0$.

$$
P_{\pi(\mathcal{C}(X))^{\prime \prime}}=\underbrace{\bigoplus_{i=1}^{n} L^{\infty}(B) \upharpoonright P M_{i}}_{\text {multiplicity } n} \oplus 0
$$

So P has multiplicity n. This is fine if $n<\infty$; suppose then that $n=\aleph_{0}$. Then $\mu_{n} \approx \mu$ for all $n \geq 1$ and $\left\{x_{n}: n \geq 1\right\}$ are separating vectors for $\pi(\mathcal{C}(X))^{\prime \prime} \cong L^{\infty}(\mu)$. By Zorn's lemma we can extend this to a maximal family of separating vectors $\left\{y_{j}\right\}$ such that $N_{j}=\pi(\mathcal{C}(X)) y_{j}$ are pairwise orthogonal. Then $\pi(\mathcal{C}(X)) \upharpoonright N_{j} \cong L^{\infty}(\mu)$ a masa on J_{j}. Let $R=\left(\sum N_{J}\right)^{\perp}$; we know $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright R$ does not have a separating vector for $L^{\infty}(\mu)$. So $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright R \cong L^{\infty}(\nu)$ with $\nu \ll \mu$ but $\nu \not \approx \mu$. So $\nu \approx \chi_{D} \mu$ with $\mu(D)<1$. Let $P \in \pi(\mathcal{C}(X))^{\prime \prime}$ correspond to $\chi_{D^{c}} \in L^{\infty}(\mu)$; so $P \upharpoonright R=0$. Thus $P \mathcal{H}=\bigoplus P N_{j}$ and $\pi(\mathcal{C}(X))^{\prime \prime} \upharpoonright P N_{j} \cong L^{\infty}\left(D^{c}\right)$; so P has multiplicity $\aleph_{0} . \quad \square$ Lemma 9.28

Theorem 9.29. Suppose $\pi: \mathcal{C}(X) \rightarrow \mathcal{B}(\mathcal{H})$ with \mathcal{H} separable. Then there are pairwise orthogonal projections P_{n} with $1 \leq n \leq \aleph_{0}$ the maximal projections of multiplicity n. The SOT sum

$$
\sum_{n=1}^{\infty} P_{n}+P_{\aleph_{0}}=I
$$

So $\pi \cong \bigoplus_{n=1}^{\infty} \sigma_{\mu_{n}}^{(n)} \oplus \sigma_{\mu_{\aleph_{0}}}^{\left(\aleph_{0}\right)}$ with $\mu_{n} \perp \mu_{m}$ if $n \neq m$ and

$$
\mu=\sum \mu_{n}+\mu_{\aleph_{0}}
$$

Proof. By lemma there is a largest projection P_{n} of multiplicity n. Then $\pi(\mathcal{C}(X)) \upharpoonright P_{n} \mathcal{H} \cong \sigma_{\mu_{n}}^{(n)}(\mathcal{C}(X))$. Then $P_{n} P_{m}=0$ if $n \neq m$ because on the intersection we have two multiplicities, a contradiction. If the SOT sum

$$
\sum_{n=1}^{\infty} P_{n}+P_{\aleph_{0}}=Q<I
$$

then look at $\pi(\mathcal{C}(X)) \upharpoonright Q^{\perp} \mathcal{H}$. By last lemma we get $Q^{\perp} \geq P$ and P has multiplicity n; but this contradicts maximality of P_{n}. So $Q=I$.

Theorem 9.29
Theorem 9.30 (Weyl-von Neumann-Berg). Suppose N is a normal operator on separable \mathcal{H} and $\varepsilon>0$. Then there is an orthonormal basis $\left\{e_{n}\right\}$ and a diagonal operator $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots\right)$ with respect to $\left\{e_{n}\right\}$ such that $K=N-D$ is compact and $\|N-D\|<\varepsilon$; so $N=D+K$ is the sum of a diagonal and a small compact.

Suppose A and B are approximately unitarily equivalent (a.u.e.). If there is a sequence of unitary U_{n} such that $B=\lim _{n \rightarrow \infty} U_{n}^{*} A U_{n}$ in norm then $A \sim_{\text {a.u.e. }} B$ if and only if $\overline{\mathcal{U}(A)}=\overline{\mathcal{U}(B)}$ (where $\mathcal{U}(A)=\left\{U^{*} A U\right.$: U unitary $\}$). In this case for all $\varepsilon>0$ there is U such that $B-U^{*} A U$ is compact and has norm $<\varepsilon$.

Done in Ken's book, same chapter as normal operators. See also Voiculescu's theorem for a noncommutative version.

