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2 Locally compact grapes

Recall:
Definition 2.1. Suppose X # (J is a set. A topology on X is a family 7 € P(X) satisfying the following:
e . XerT

o If U,V er then UV e 7 (and hence closed under finite intersections)

UUiET

el

o If { U; }ieI C 7 then

We call the pair (X, 7) a topological space.

Ezample 2.2 (Initial topologies). Suppose X # J; suppose we have topological spaces { (Y;,7;) }ier and maps
fi: X = Y, for each i. We define

for each « € U there are i1,...,%, € I and }

(X, { fi bier) = {U € P(X) : v, er,.....Vi, €rs, such that weMp_y £ (Vi )SU
Sets of the form

) £ Vi)
k=1

as above form a base for (X, { f; }ier); sets of the form f; (V) form a sub-base.

Ezxample 2.3.
Product topology Suppose

X:nn

el

with projections 7;: X — Y;. We let

X 1 = o (X, {mi bier)

el

The basic open sets are of the form

[V
el
where each V; € 7; and all for all but finitely many ¢ we have V; = Y;.
Metric topology If p: X xX — [0, 0) is a metric, then the metric topology is given by 7, = o(X, { p(x, -) }zex)-
Recall:

Definition 2.4. If (X,0),(Y,7) are topological spaces and f: X — Y, then we say f is continuous if
f71(V) e o for each V e 7. A subset K € X is compact (with respect to o) if whenever

KgUm

i€l

for U; € o, there are iq,...,7, € I such that

k=1

Definition 2.5. A topological space (X, 7) is locally compact if for any z € X there is U € 7 with z € U
such that U is compact. (Recall

U=(Y{X\V:Ver,ValU=g}

is the closure of U.)



Ezxample 2.6.
1. (R, 7)) is locally compact.
2. Suppose X # (J; consider the discrete topology (X, P(X)). This is locally compact.
3. Suppose { (X, 7;) Yier is a family of locally compact spaces. Then
(H Xi, X', z)
i€l iel
is locally compact if and only if all but finitely many (X;,7;) are compact.
Rough.

(<= ) Use Tychonofl’s theorem.

(=) Each basic open set is of the form

U=V, x-—Vi,x ] X

i€NN\{i1,.0yin }

If (X;,,7i,) is not compact for some ig € I\{iy,...,i, } then m; (U) = X;, is not compact, so U;,
is not compact. O
4. Suppose X be an infinite dimensional vector space over R. Suppose ||-|| is a norm on X. A lemma

of Riesz tells us that if ) € X is a closed subspace, then there is « € b1 (X) (the unit ball) such that
dist(x,Y) > % (This is a good exercise; use the Hahn-Banach theorem.) Inductively, we can find a
sequence (z,)%_; < by(X) such that ||z, — z,,|| > & for n # m. Hence no ball z + b,(X) = B(z,r)

n=1 =
(where r > 0) is pre-compact; i.e. has compact closure.

5. Suppose F < X’ (the algebraic dual) be a subspace which separates points; i.e.

[ ker(f) = {0}

feF

Then (X,0(X,F)) is not locally compact. For example, if Vi,...,V,, are neighbourhoods of 0 in R,
then

U=
k=1
contains a subspace J of X. Using the Hahn-Banach theorem, we can find f € F such that f (V) =R;
so f(U) is not compact, so U is not compact.

Definition 2.7. Suppose G is a grape. A topology 7 € P(G) is called a grape topology if the following maps
are continuous:

e - (GxG,mrxT1)—>(G,T1)

o ()71 (G,T)—(G,7)
Remark 2.8. In fact, this is equivalent to requiring that the map G x G — G given by (x,y) — xy~! be
continuous. Indeed, if this holds, then y — (e,y) — ey~! = y~! is continuous, so (r,y) — (z,y7!) —
x(y~ 1)~ = 2y is as well.
Proposition 2.9. Suppose (G, 1) is a topological grape.

1. IfUert and x € G then

2U={ay:yeU}LUzx={yz:yeU}er
and if & # A< G then

AU ={ay:ac A,ye U}, UA={ya:yeUacA}er



2. If U e 7 with e € U then there is V € T with e € V such that V2 = VV < U. Furthermore, we can
arrange that V be symmetric: i.e. that V== {y t:yeV}=V.

3. If H is a subgrape of G, then so too is H.

4. If H is an open subgrape of G, then H is closed.

5. If K, L are compact subsets of G, then so too is KL.

6. If K is compact in G and C is closed, then KC' is closed.
Proof.

1. Ifze G, let L,: G — G be y — xy; then L, is continuous as the composition of y — (z,y) — zy. But
L' = L, is also continuous; so L, is a homeomorphism. Hence 2U = L,(U) € 7. Furthermore

AU = UaUET
acA

Right multiplication is similar.

2. Let u: G xG — G be (z,y) — xy. Then =1 (U) is an open neighbourhood of (e, €), and hence contains
a basic open set Vi x Vo with ee V; and e € Va. Let V =V, n V5. We can replace V with V-1 nV to

get symmetry; V! is open, being the image of an open set by the homeomorphism z ~— 271

3. If z,y € H, write

r = limz,
«

= lim
Y A Yp

where (z.), (yg) are nets in H. Then

ry = limzyp = limlim z,ys € H
B B o

eH
By continuity of  — 2!, we see that for z € H we have 7! € H as well.

4. Note that

H=G\ |J =H
2eG\H open

| —

open

So H is closed.
5. Tychonoff’s theorem tells us that K x L € G x G is compact; hence KL = u(K x L) is compact.

6. Suppose zk € KC. Then z = lim, kayo with k. € K and y, € C. By dropping to subnet, we may
assume that k£ = lim, k, € K. Then

k~lz = lim k;lkaya = lim y,
«@ [e3

So limg Yo = k2 € C. [0 Proposition 2.9

Let (G, T) be a topological grape and H a subgrape of G. The collection of left cosets G/H comes equipped
with a quotient topology 7¢ym = {W = P(G/H): q~*(W) e 7}, where ¢: G — G/H is x — xH. (This is the
final topology determined by q.)

Notice that if U € 7 then ¢! (¢(U)) = UH € 7. Hence {q(U) :Uert} < Ta/m; 1-e. the map ¢ is open.

Definition 2.10. The space (G/H,7g/) is called a homogeneous space.



Proposition 2.11. Suppose (G, 1) is a topological grape, H a subgrape of G. Then
1. If H is closed in G then (G/H,7q/y) is Hausdorff.
2. If H is normal in G then (G/H,Tq/i) is a topological grape.
3. If there is x € G such that {x } is closed then (G,T) is Hausdorff.

Proof.

1. If 2,y € G have q(x) # q(y) then e ¢ xHy~ ' (indeed if we had e = zhy~! then y = xh). Since H is
assumed to be closed we have xHy ' is closed. So by Proposition 2.9 there is some V =Vl e r
with e € V such that V2 < G\(zHy™!). But then e¢ VaHy~V = (VaH)(VyH)~!; indeed, if we had
e = vrhy ' for he H and v,v’' € V, then v=1(v')™! = zh!~y e V2 nzHy ™!, contradicting our choice
of V. Hence VaH nVyH = ¢, so q(Vz) nq(Vy) = & in G/H.

2. If H is normal, then ¢ is a homomorphism:
q(x)q(y) = xHyH = xyHy~'yH = xyH = q(zy)

If 2,y € G and W € 7¢/y with q(x)q(y) € W then zy € ¢~ (W) € 7; so, by continuity of multiplication
in G, there are U,V € 7 such that z € U, y € V, and UV < ¢~ *(W). So q(U)q(V) = q(UV) < W; this
shows continuity of (xH,yH) — zyH as a map (G/H) x (G/H) — G/H. Continuity of zH — 2~ 'H
is similar.

3. We have {e} = L,-1({z}) is a closed subgrape, as the image of a closed set under a homeomorphism.
So G = G/{ e} is Hausdorff by (1). O Proposition 2.11

Remark 2.12. Tf {e} is not closed then {e} is the smallest closed subgrape containing e. (This follows from
Proposition 2.9.) Hence

{eb=afels™!
zeG
since the z{ e }z~! are closed subgrapes containing e; this is then normal. So G/{ e} is a Hausdorff topological
grape.
Our convention will then be to replace any topological grape (G, 7) with (G/{e}, To /m) and thus assume
(G, 7) is Hausdorft.

Definition 2.13. A locally compact (Hausdorfl) grape (abbreviated l.c.g.) is a topological grape (G, 7)
which is also a locally compact (Hausdorff) space.

Remark 2.14.

1. IfxreGand U e 7 has z € U and U is compact (El which case we say U is relatively compact), then for
any y € G we have yz~'U = L,,-1(U) € L,,-1(U). Hence to check local compactness of a topological
grape, it suffices, to exhibit a compact neighbourhood of one point (usually e).

2. If G is a l.c.g. and H is a normal subgrape, then G/N is locally compact. Indeed, if e € U € 7 with U

compact, then ¢(U) < ¢(U) is compact in G/N.

3. If (X, 7) is a locally compact (Hausdorfl) space, then any open subset U € X and any closed subset
C < X, each with the relativized topology, is itself locally compact.

Ezample 2.15.
1. Let G be any grape with 74 = P(G) the discrete topology. Then (G, 74) is a l.c.g.
2. Consider ((R,+),7) is a l.c.g.



3. If {(Gi,7:) }ier are Le.g.’s, then
(n Gi, X Ti)
iel iel
is a l.c.g. if and only if all but finitely many of the (G;, ;) are compact.

In particular, (R™, +) with the product topology (equivalently, any norm topology) is a locally compact
grape. Also, if { F; }ier is a family of finite grapes, then

[~

i€l
(where the F; is endowed with the discrete topology) is a compact grape and hence a l.c.g.
If F < I is finite then

GF:{(mi)ieIeHFiZSU¢=€fOI‘aH’L'EF}

i€l
is an open normal subgrape.

4. We give a construction of the p-adic numbers.

Set construction Fix a prime number p. Let
0
R, =[] z/p'z
n=0

which is a compact ring; i.e. (z,y) — = + y and (z,y) — xy are continuous. As a notational
convention, we identify Z/p"Z with {0,1,...,p" — 1}. The quotient map [-],»: Z — Z/p"Z is a
ring homomorphism which factors through Z/p™Z for m € {0,...,n}. We let

Op = {(xn)p_o € Rp : [xn]pn = 1 for all n e N}

This is clearly a subring of R,. If (2%*)4ea € O, is a net converging to z € R, then for each n € N

there is a,, € A such that for k € {0,...,n} we have z{f = 3. Thus for k€ {1,...,n} we have
xp_1 = x5 = [27]px = [xr]pr. Hence x € O, so O, is closed, and is thus a compact subring of
R,.

Let 1 = (1,1,...), which is the identity in R, and O,.

Density of Z1 (and Nyl) in O, and p-series representations The map Z — O, given by m —
ml = ([m],, [m]p2,...) is a ring homomorphism. If z = (z,)*_, € O, (where x, € Z/p"T'Z =
{0,...,p" "t —1}) then

k
J?k]]. = ([:L'k]p, ey [Ik]pk,ﬂjk,l‘k, .. ) i X

and hence Ng1 = O, (where Ny = {0} U N); hence Z1 = Q,. We call O, the ring of p-adic
integers. Notice that if x = (z,,)°_, € O, then each

n n
T — [;vk] k
T, = 2o+ Z 7kppk= Zakpk
k=1 p k=0
where each a, € {0,...,p — 1} is uniquely determined. Hence we may think of

[oe]

T ~ Z arp®
k=0

One can check that the map O, — (Z/pZ)N° given by z — (ay);", is a homeomorphism, though
not a homomorphism. (Here the latter is endowed with the product topology.)



Valuation and norm Given z € OQ,, we let
vp(z) = inf{n e Ny :z, #0} =sup{k e Ny :p"* |z, for all n e Ny}
We have v,(0) = inf & = supNy = 0. We let |z|, = p~*»®) (where |0], = p~® = 0).
Proposition 2.16. For x,y € O, we have
(a) vp(x) = 0 if and only if x = 0; i.e. |x|, = 0 if and only if x = 0.
(b) vp(zy) = vp(x) + vp(y); i-e. |2yly = l2lpylp-
(¢) vp(x +y) = minfvy(x),vp(y) }; ie. |2+ ylp < max{ |z, [yl, }-
(d) Of ={ueOy:u" exists} = {ueOQ,: |ul, =1}
Proof.

(a) Obvious.
(b) Notice that by the series representation we have

0 if n <wvy(x)
-Tn = n .
Zk:vp(:r) akpk ifn > Up(l')
The result then follows.
(¢) Also follows from the series representation.
(d) Notice that if u € Q) then
0= vp(1) = vp(uu™") = vy(u) + vy(u™)
where v, (u), vy(u™t) = 0. Hence vy,(u) = 0. O Proposition 2.16

Corollary 2.17. The map p: O, x O, — [0,00) given by (z,y) — |z — y|, is a metric on O, with

Tp = ( X Td> 'Oy
neNy

(the restriction of the product topology).
Proof. =1 €Oy, so if z,y, 2z € Op, then

plx,2) =z —zlp =z —y+y—z2[p, <max{|z —ylp, |y — 2|, } < p(z,y) + p(y, 2)

and p(z,y) = |z —ylp, = |(-1)(y — z)|, = p(y,z). Also p(z,y) = 0 if and only if z = y. Finally,
note

Vo(z,p™™) ={xo} x - x {&p_1} x (H Z/pF T A @p)
k=n

with the former a base for 7, at x and the latter a base for the product topology at x.
O Corollary 2.17

Proposition 2.18.
(a) OF = {ue Oy :|ul, =}; note the latter set is {ue Oy :ug # 0} = 0p\pOy,.
(b) If z€ O,\{0} then x = p*»@u for some u e 0, .

Proof.

(a) The containment < is given above. For the reverse containment, suppose u € Q) with ug # 0.
There is a unique vy € Z/pZ\{0} such that ugvy = 1. Then, since [u1], = ug we have
ged(ug,p) = 1; so uy is a unit in Z/p?Z. Hence there is v; in Z/p*Z such that viu; = 1, and
we necessarily have that [v1], = vo since [v1u1], = 1 = voup; we proceed inductively. We
find for each n € N a v, € Z/p"™'Z such that ged(v,,p) = 1 and vyu, = 1; 80 [v,]pr = vp_1.
Thus v = (v,)% o = u™ L.



(b) This follows from the first part and our series representation of x,,. [0 Proposition 2.18
Remark 2.19. If m € Z with ged(m, p) = 1, then m1 € O, . Hence { ;- : n € Z,m € N, ged(m, p) =
1} < Q is in fact isomorphic to a dense subring of Q).

Corollary 2.20.

(a) O is open and closed in @y, and is a topological grape.

(b) The family of non-trivial ideals, and hence of closed subgrapes of Oy, is pO, 2p* 20, 2 - -

Proof.

(a) pO, is the p-open ball around 0 of radius p~!, and is a subgrape. Then 0, = 0,\p0,. Tt
remains to check that u — u~! is continuous on Q%. If u,u’ € O, with |[u — /[, = p~", then
up, = uj, for ke {0,...,n—1}. Thus [u™! — ()7 =p™ = |u— /.

(b) pO, = 0,\0y is clearly the unique maximal ideal. Using Proposition 2.18, we see that p"tO,
is the unique maximal ideal of p"Q,. Since Z1 = O, we see that any closed subgrape is a

(closed) ideal. O Corollary 2.20
Remark 2.21. Note that 1 + p"Q), is an open subgrape of @, for n € N.

p-adic numbers Since ||, is multiplicative on O, and |z|, = 0 if and only if x = 0, we see that Q,, is
an integral domain. Hence we may consider the field of quotients

Qp={§:x,y€@p,y¢0}

u

with ¥ = & if and only if 2w = uy. We have that any y € 0,\{ 0} admits form p’» W)y for u € 0,

hence .

r_ T
y  pur®)
Thus
Q, = {pfl:xemk,keNO}
Recall that

n
T — [ZL’k] k
Ty = o + Z 716;01)]@
k=1 p

SO
xl = ﬁ + i Tk — ['rk]Pk pk'—m
propm 2 pk

As before, we may thus write r € Q,, as

o0
r= Z app®
k=m
for some m € Z with each a; € {0,...,p — 1}. Consider the map
Qp — (2/p2)® " x (Z/p2™
re— (...,0,0,am,@mi1,-.-)
where

(2)pz)® N = @D Z/pZ = {(...,am,am+1,...,a-1 : m € =N, aj, = 0 for all but finitely many k }
i€—N

is endowed with the discrete topology.
TODO 1. Something about this being isomorphic to a dense subring?



Hence O, < @, is an open subgrape, and determines the topology. We have that Q, is a topological
field; i.e. all reasonable field operations are continuous.

5. Suppose (K, 7) is a locally compact topological field.

Aside 2.22. If F is a finite field, then F((X)) (the ring of Laurent series over IF) is a topological field.
(Regarded as a subspace of FZ with power series operations.)

TODO 2. Does this work?

Then GL,(K) = {a € M,(K) : det(a) # 0} is open in M,(K) =~ K" and hence locally compact.
Multiplication is given by polynomials, and hence is continuous, and inversion is given by Cramer’s rule
via rational functions, and is thus continuous. Thus GL,(K) is a locally compact grape.

6. SL,,(K) = {a € My,(K) : det(a) = 1} is closed in M,(K) = K", and hence is locally compact; it is

a locally compact grape. Also O, (K) = {u € M,(K) : uu® = e} is a closed subgrape. (Note that

uu® = e is given by polynomial equations.)
7. U(n) = {ue M,(C) : uu* = e} is a closed subgrape of GL,(C). It is bounded, hence compact (by
Heine-Borel).

3 Haar integral and Haar measures

Let G be a locally compact grape. If f: G — C, let f-z,z-f: G — C be (f-z)(y) = f(xy) and
(- f)ly) = f(yx). (We write f - z(y) to mean (f-x)(y).) Notice if z,2’ € G and y € G, then (f - (z2))(y) =
J(wa'y) = (F-2)(a'y) = ((f - @) - ')y L. [+ (aa’) = (f -) -’ Likewise we get (v') - f = @ - (o' - ).

Let C.(G) ={f: G — C| f continuous, supp(f) = {z € G : f(z) # 0} compact }. We call this the linear
space of compactly supported functions on G. Thanks to Urysohn’s lemma, we get C.(G) 2 {0}. By Tietze’s
extension theorem, given K, F < G with K compact, E closed, and K n E = (J, we have that there is
feCH(G)={feCAG)\{0}: f(x) =0 for all z € G} such that fI K = and f|E = 0. (This is a strong
form of “regularity”.)

Ezercise 3.1. Prove this in a locally compact metric space.

Proposition 3.2. If f € C.(G) then
tim | -~ flle = 0= lim[la- f— fll
In this case we say that f is (left and right) uniformly continuous.

Proof. Suppose ¢ > 0. Let K = W supp(f) where W = W1 is a relatively compact neighbourhood of e. For
each y € K we have |y- f — f(y)1|: G — C (where 1 is the constant function) is continuous with value 0 at e;
hence there is a neighbourhood U, of e such that

[f(xy) = fW)l =y flz) = fly)l <e
for x € U,. Find a neighbourhood V;, = Vy*1 of e such that Vy2 c Uy. Then

Kc U Vyy
yeK
S0 .
K< U Vz‘hyj
j=1
Let
n
V=wn()V,
j=1



soeeVand V™! =V. Supposenow z € V. If ye€ K then y Vy,y; € Uy,y; for some j; in particular, we
have yy;1 € V,. Thus
Ty = zyyj_lyj eVV,y; € Vijyj c Uy, y;

Hence by our choice of U, we have

[f(zy) = F)l < |f(zy) = flyp)l + [f ;) = fy)| < 2¢

If y ¢ K, suppose we had W, nsupp(f) # . Then there would be z € W, nsupp(f); so z = wy for some
w e W, and hence y = w2z € Wsupp(f) € K, a contradiction. So Wy nsupp(f) = &. Henceif e V< W
we would have f(zy) =0 = f(y), so |f(zy) — f(y)] <e. O Proposition 3.2

Theorem 3.3 (Existence of the left Haar integral). There exists a (linear) functional I: C.(G) — C
satisfying:

1. I(f)>04f feCHG)={ge C.(G)\{0}:g(x) >0 for allz € G }.
2. I(f-x) = I(f) for all f € C.(G) and x € G.
Proof. We give a construction in stages.

1. Fix ¢ in CH(G). Then for f in CF(G), we let

(fip)= inf{

n n
¢j ¢ there exist z1,...,2, € G,c1,...,cp > 0,1 € N such that f < Zap-mj}
i=1 j=1

J

Notice that if U = {z € G : ¢p(z) > %||¢[|s }, we see that supp(f) is covered by finitely many translates
z71U; it follows that (f : ) < 0.

Claim 3.4. For f,g€ Ct(G) and ¢ > 0 we have the following:

(a) (f-z:0)=(f:9).

b) (f+g:9)<(f:9)+(g:9).
(c) (cfro)=c(f:¢).
(d) f<g = (f:o)<(9:9).
(e) (f:o)<(f:9)(g:9).

Proof. The first four are straightforward; we sketch the last. If

n

for ¢j,b; > 0 and =z, y; € G, then

and hence

and the result follows. 0 Claim 3.4

10



Now, fix another ¢ € CF(G), and for f € CF(G) let
(f: )
(¥

Then the first three properties tell us that I,: Cf (G) — [0, 00) is left translation-invariant, subadditive,
and R>%-homogeneous. Furthermore, the last property yields that

1,(f) =

~

whence it follows that

<I(f) <(f: ) (1)

. A somewhat technical claim:

Claim 3.5. If f,g € CH(G) and € > 0 then there is a neighbourhood V' of e such that I,(f) + I,(g) <
I,(f + g) + € whenever supp(f) < V.

Proof. Let k € CH(G) satisfy k| supp(f +g) = 1; let 6 > 0, and set h = f + g + dk. We then let

ISHESTIS RN

(with each of them 0 outside of the supports of f,g). Then by Proposition 3.2 applied to f’, ¢’ we get a
neighbourhood V of e such that

(@) = f'(y)] <0,1g'(x) —g'(y)] <o (2)
whenever y~1z € V. Suppose ¢ € CF(G) with supp(p) S V; suppose z1,...,7, € G and c1,..., ¢, > 0
satisfy
h < 2 cjp - xj_l
j=1
Then for x € G we have

f(z) = Z z)ejp(r; L) 2 (z) + 6)cjp;(xy L2)

j=1

where the last inequality follows from the choice of ¢ and (2). Likewise we see that

9< 2, (g () + S)ejp-wyt

j=1
Now " "
’ / g g
e
So
(F o)+ (g5 0) < N () + D)y + D)o/ () + 0
j=1 J=1
éi(l—i—%)cj
j=1

11



Recall that our v is fixed. Now, dividing by (¢ : ¢) and taking infimum in the ¢; relative to the
definition of (h : ¢), and applying Claim 3.4, we see that

I,() + Tp(g) < (1 +20),(h) < (1 +26)(I,(f + g) + T, (k)
Now, choose 6 > 0 (and hence V') small enough so that
20I,(f 4+ g) + (14 20)0I,(k) <e
and the claim follows. O Claim 3.5

. We are now ready to draw our conclusion. Consider
1
X = 1_[ Wa (p:f)
feci @

which is compact by Tychonoff’s theorem. By Equation (1) we get (Iso(f))fecj(c) € X for any
p e CSH(G).

Given a neighbourhood V of e we let

KV)= { (Lo(f))fecj(c) :supp(p) S V} cX

Then K is a closed set of a compact space, and is thus compact. Then if Vi,...,V,, are neighbourhoods
of e, then

N EWV) DK<ﬂ VJ) * &

j=1 j=1

Thus S = [J{ K(V) : V a neighbourhood of e } # ¥ by finite intersection property; let (I(f))feC:r(G) €
S. Given f,g € Cf(G) and € > 0 there is a neighbourhood V of e and ¢ € C} (G) with supp(p) € V
such that

I(f) —1o(f) <e
11(g) — 1,(g9)| < e
I(f+9)—1(ft9)<e

and further by Claim 3.5 and Claim 3.4 we can arrange V such that

|I¢(f) + Igo(g) - Isa(f +g)l<e

We then find that
[I(f) +1(g) = I(f + g)| < 4e
Since € > 0 is arbitrary, we find that I: C}(G) — (0,0) is an additive functional. By Claim 3.4, we
get that I is R>%-homogeneous.
We now extend I to all of C.(G). We set 1(0) = 0. Suppose f € CX(G) (i.e. it is real-valued) and we

can write f = fi — fo = g1 — g2 for f1, f2,9192 = 0. Then f1 + g2 = g1 + f2, so I(f1 + g2) = I(9+ f2),
and by additivity we get that I(f) = I(f1) — I(f2) = I(g1) — I(g2) is well-defined. This clearly is
R-homogeneous. Now for arbitrary f € C.(G), we let

I(f) =1(Re f) + 4l (Im f)

It is straightforward to check that I is C-homogeneous. It then follows from Claim 3.4 and the definition
of S that I(f-xz) = I(f) for f € CH(G) and z € G. Hence this left-invariance holds generally. Finally,
for f € CH(G), we have I(f) > 0 by definition of S < X. O Theorem 3.3
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Theorem 3.6 (Existence of left Haar measure). Let B(G) = o{(7) (the o-algera on G generated by open sets)
be the Borel o-algebra. Then there is a measure m: B(G) — [0, 0] satisfying the following:

1. m is a Radon measure: it is outer reqular (m(E) is the infimum of the measures of the open sets
containing E), inner reqular on open sets (m(E) is the supremum of the measures of compact sets
contained in E, if E is open), finite on compact sets.

2. m is left-invariant: if E € B(G) and x € G then m(zE) = m(E).
3. m(U) >0 for any U e T\{ T }.

Sketch of proof. The Riesz representation theorem provides a Radon measure m for which

1) = | sam

for all f € C.(G). We have for = € G that

[ smamt) = 167-2) = 105 = [_gam
¢ G
In particular, if U is open then for f € C.(G) we have supp(f) < U if and only if supp(f - ) € 271U, so

m(U) = sup{ I(f) : f € CI"V(G),supp(f) < U }
=sup{I(f - x): f € C"Y(G),supp(f -z) c 27U}
=m(x'U)

So we see that m(U) = m(zU) for z € G. Then if E € B(G) we have
m(E) =inf{m{U):EcUet}
and it follows that m(zE) = m(E). That m(U) > 0 for U € 7\{ & } follows from
m(U) = sup{ I(f) : | € C"Y(G),supp(f) < U}
and that I(f) > 0 for f € C+(G). O Theorem 3.6

Theorem 3.7 (“Uniqueness” of left Haar measure). If m’: B(G) — [0, 0] is a left-invariant measure, then
there is ¢ = 0 such that m' = em.

Proof. 1t suffices to show that the map
§¢ fdm/
§o fdm

is constant for f in C}(G). This constant ¢ > 0 hence satisfies that

[ =ef s

and it will follow that m’ = ¢m. To this end, fix f,g € CF(G) and € > 0. By uniform continuity of f and g
there is a neighbourhood V = V! of e such that

|f(zy) — f(yx)| < e
lg(zy) —g(yx)| < e

f

for x € V,y € G. Fix h € CS(Q) satisfying h(r~1) = h(zx) for x € G and supp(h) < V. (One could for
example pick k' € CF (G) with supp(h’) € V and let h(z) = #'(z) + I/(z71).) We use Tonelli’s theorem:

[ nam [ gam’ = [ [ 1) @pam(aian ) = [ [ 1) @oame)anw)

13



and

Jhdm ffdm JJ (y)dm(z)
_ th (™ 'y) f(z)dm’ (y)dm(z)
- j j B~ y) f()dm (x)dm (y)
J f Fyz)dm(z)dm’ (y)

J J Fly@)dm(z)dm’ ()

Thus
‘Jhdmjfdm - hdm dem‘ JJ |f xy) (yx)\ dm/(y)dm(z)
em’(V supp(f) u supp(f)V) Jhdm
Sf',v
So
§fdm"  §hdm/ m/(Stv)
§ fdm = (fdm
Likewise we get
§gdm’ [ hdm/ Em’(Sgy)
§ gdm = {gdm
S0
Lrdm’ Sgdn!| __(m(Spy) | m(Syy)
Sfdm Sfdm Sgdm
Notice though that if V/ € V then Sy v+ € Sy v ; thus if we shrink ¢ > 0 we shrink V. [0 Theorem 3.7

TODO 3. Missing stuff

Last time: introduced L'(G) = Sl(G)HN1 = C’C(G)M1

latter equality because m is regular on open sets.)

the closure of the simple integrable functions. (The

4 The modular function

Given F € B(G) we have that Ex € B(G) for x € G. (Since R,: G — G is a homeomorphism and
Ex = R_',(E).) Define m,: B(G) — [0,%] by m,(E) = m(Ez). One can check that m, is left-invariant
and positive on open sets. Hence by Theorem 3.7 we get m, = A(z)m for some A(z) € (0, 0).

Notice that if y € G then for E with 0 < m(E) < o0 we get

A(zy)m(E) = m(Ezy) = A(y)m(Ex) = A(z)A(y)m(E)
so A: G — (0,00) € R* is a homomorphism.
Definition 4.1. We call this the modular function. We say G is unimodular if A = 1.

Proposition 4.2.
1. For f € LY(G) (or f € C.(G)) we have for x € G that

L fdm = A(z) Lx - fdm

14



2. A: G — (0,00) € R* is continuous.
Proof.
1. If E € B(G) with m(E) < c then

A(x)f 1gdm = A(x)m(E) = m(Ez) = J 1g.dm = J z7t 1gdm
G G G
So, replacing x by 7!, we see that

A(x)f x - 1gdm =J 1gdm
G G

Then, if ¢ € S(G), then
J pdm = A(m)f x - pdm
G G

Now, if f € L1 (G) (i.e. f > 0 m-almost-everywhere), then there is (,,)%_; < SL (G) such that ¢, / f
(increasing pointwise converges) m-almost-everywhere. Then by monotone convergence theorem we get

1 1
x - fdm = lim :Ewpndm:limiJ Sﬁndm=7ffdm
L =0 Jg n—» Az) Jo Az) Ja

We are now done, since L' (G) = span(L! (G)).

. Suppose f € CF(G), e > 0, and V = V1 is a relatively compact neighbourhood of e such that
|- f— flloo <€ for x € V. Then for x € V we have

|SGx-fdm—SG fdm’ < Selz - f— fldm < m(supp(f)V)
< €
S fdm S fdm S fdm

Picking &’ < € necessitates taking V’ < V', so we see that A is continuous at e. Now if y € G and z € V

Ax)~ 1] =

then

|A(zy) — A(y)| = [A(z) — 1|A(y) < eA(y)

so A is continuous at y.

Notation 4.3. For the left integral we write

JG f(z)dz

or less commonly

| s

[

to mean

Proposition 4.4.

1. The integral on C.(G) given by
1

1= [ o5

18 right-invariant.

2. For f € LY(G) we have

15
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Proof.
1. If y € G and f € C.(G) we have
1 1
Jor- 1055500 = | s 5

2. We have for f € CH(G) and y € G that

Ay)dz =

A Lf( Neh Lf( NEh

0< Lf @) A@)dx - Lf(yw‘l)ﬁdx _ Lf((xy‘l)‘l)ﬁdw _ L ) Aéf) dz

1

by the first part. (Notice that ¢: G — G given by = — z~* is a homeomorphism, and hence Borel
measurable, so f o is Borel measurable if f is.) Hence there is ¢ > 0 such that

JG f(x’l)A(lm)dx = (:L; f(z)dz

for f € C.(G) (and hence f € L'(QG)).
Now, if ¢ # 1 then there is a relatively compact neighbourhood U = U~! of e such that

LR O T
Az) 2¢
for x € U. Then
0= 1y(x dr —c| 1y(x)dx
J, i}J)Am J
1U:13_1

\%
3
—~
=
T
—
\
S
\
[\
Y
\
=
N———

a contradiction. So ¢ = 1. 0 Proposition 4.4

Notation 4.5. If z € G and f € L'(G), we define = = f, f  x, f* € L'(G) by declaring for m-almost-every y

zx f(y)
fxa(y)

Il
~

(z7'y)
1y 1
flyx )A(z)
1

) =fy™)
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The last proposition then tells us that

£l = L\f(w)ldw = llz s flly = 11f =2l = /¥l

Notice that

(fra)xy=f=(zy)

(fra)* =a"lxf
(f*=f

zwf=f-z}

Proposition 4.6. For f € L'(G) we have
limfle s £~ flly =0 = limf =2 f])

Proof. First, consider g € C.(G). Suppose € > 0; let V = V! be a relatively compact neighbourhood of e
such that

lz-g—gllo <e
1

Aw)

<e€

for all x € V. Then

lg*x =gl <llg*x— gllom(supp(g)V)
< (gl o=l + |7 = 1)l )mioumpiay )
< (1 +¢)e +€l|glleo) m(supp(g) V)

So we're done. Now iff € L'(G) and € > 0, we can find g € C.(G) such that ||f — g||1 < &; it then follows by
the usual estimates that
limsup||f =z — f|l1 < 3¢
r—e

and so, as € > 0 is arbitrary, we get the limit, as desired. [0 Proposition 4.6
Theorem 4.7 (Weil’s integral relation). Let N be a closed normal subgrape of G.

1. If f € C.(G) then the map x — § f(an)dn is constant of cosets of N, and hence defines a map Tn f
on G/N. Furthermore Ty f € Co(G), and the operator T : Co(G) — C.(G/N) satisfies

(a) Tn(CF(G)) < CF(G/N)
(b) In(f-y) = (Inf) - (yN) foryeG.
2. The functional

f— Tnf(xzN)dzN
G/N

is a left Haar integral. Hence we may write

jG/N JN f(zn)dndaN

(Notice that the constant on mg is thus dictated by choices of my and mg/n-)

Proof.

17



1.

2.

Coro

Notice that if n’ € N then
f f(zn'n)dn = J f(zn)dn
N N

Hence we get a function T f: G/N — C.

We check continuity on G/N. Suppose € > 0, fix V = V! a relatively compact neighbourhood of ¢;

so ||f-y— fllow <eforyeV. Then fix x € G and h € C’C[O’l](G) with V2~ supp(f) = 1. Then for
y €V (so yN € gqn(V) where gy : G — G/N is the quotient map) we have

TN f( yzN
~—
yNxN

)T f(aN)| = \ [ o)~ smnan

< f | (yn)— f(an) (n)dn < em (supp(R)AN)
N

which shows continuity since if &’ < & we can build A with smaller support. So T f is continuous. Also
supp(Tn f) < gn(supp(f)) is compact, so T f € Ce(G/N).

If f e CH(G) has f(x) > 0 for some x € G, we can find an open neighbourhood U of e such that
f(zy) > 2 f(x) for y € U. Then

L t@)an = L @)ma (U A N) > 0

TNf(xN)zj-Nf(xn)dHZJU V2 5

(Clearly f(zN) = 0 for general z.) Finally

T (f - y)(xN) = fN f - y(en)dn = fN flyan)dn = Ty f(yaN) = (T f) - (yN)(@N)

Follows from the first part immediately. OO0 Theorem 4.7

llary 4.8. The modular functions on G and N satisfy Ay = Ag|N.

Proof. If n’ € N and f € C(G) then

JG n' - f(z)dz = JG/N JN n' - f(zn)dndzN
_ L/N JN F(ann’)dndzN
_ L/N m JN f(aen)dndzN

1

so Ap(n) = Ag(n'). O Corollary 4.8

Unimodularity makes computing integrals simpler. Indeed,

L f(2)dz = L f(yz)dz = L flay)ds = L f(&")da

Proposition 4.9. G is unimodular in the following cases:

1.

G is abelian, compact, or discrete

2. G is perfect: i.e. G = [G,G] (the closure of the grape generated by the commutators [z, y] = xyz~ly~1).

3. G/Z(@G) is unimodular (Z(G) is the centre.

4. G admits a unimodular closed normal subgrape N for which G/N is compact.

Proof.
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1. Trivial for G abelian; for G compact, the (left) Haar measure is the counting measure.

Let us fully consider the compact case. Here A(G) is a compact subgrape of (0,00) € R*. The map
log: (0,00) — R is an isomorphism. If a € R\{0} then Z« is not compact. Hence {0} is the only
compact subgrape of R, and hence {1} is the only compact subgrape of (0, o).

2. Tt is clear that A([z1,y1] - [n,yn]) = 1; by continuity, we then get A(z) =1 for all z € G.
3. We should note that Z = Z(G) is closed and normal. If y € G and f € C.(G) then

L y- f(x)dz = L/Z L y- f(z2)dzdxZz
= L/Z L f(zzy)dzdzZ

= JG/Z fz flzyz)dzdzZ

= J Ty f(xZyZ)dxZ
Gz

= J Tzf(a;‘Z)dl‘Z
G/Z

:J f(x)dx
G
Hence A(y) = 1.

4. Since AgIN = Ay = 1, we get a homomorphism A: G/N — (0,0) (by 1st isomorphism theorem)
with Aogn = Ag. If W < (0,0) is open, then

A (W)= _av_(ATI(W))

open map open in G

Thus A is continuous. By (1), we get that A(G/N) = {1}. O Proposition 4.9
Example 4.10.

1. Suppose K is a locally compact field. Let |K| > 3. (Aside: we will use capital letters for singular
matrices and lower-case for invertible matrices.) Let { Ey; }7';_; be the matrix unit for M, (K): i.e.
E;jEre = 6j1Eie. We will show that SL,,(K) is perfect, and hence unimodular.

(a) If Ae K and 1, j, k are distinct (for n > 3) then

[6 + >\Ezk; e+ Ekj] = (6 + )\Elk)(e + Ekj)(e — )\Ezk)(e — Ekj) =e+ )‘EU

G o) 6 D16 )

and the equation A = (1 — a?) always admits solutions for [K| > 3.

(b) We claim S = (e + AE;; : A e K,i,j € {1,...,n},i # j) is all of SL,(K). Indeed, using only
elementary operations of adding one row to another, for any a € SL,,(K) there is s € S for which
sa is diagonal:

If n = 2 we have

a1

s
sa = diag(aq,...,qn) =

19



Then see that

1 (%)
1— a1 Q9

. 1- o 0%

(6+E12 dlag(al,...,an) e+ a E21 = 3

2
Qo
and
1 (%) 1
1—a1 a (e5Ye]
(e+ (1 —1)Ea;) o3 (e —azErn) = s
(07% Qo

An evident induction shows that a € S.
(c) Combining the two statements, we get SL,,(K) = S < [SL,,(K), SL,(K)] < SL, (K).
2. Let Ke {R,C} and G = GL,(K). We observe that Z = Z(GL,(K)) = K*e. Also from the first
example we have that SL,,(K) = [G,G]. Let H = Z - SL,,(K).

If n is odd and K = R or n is arbitrary and K = C then H = G. Ifn is even and K = R, then
H = GL,(R)o = det™'((0,00)) is open, and thus closed; furthermore, we get GL,(R)o 1 a GL,(R)
where det(a) = —1.

Either way, we get that H is open and normal in G with G/H finite, and hence compact. We have
H/Z =~ SL,(K)/Z~ SL,(K). But SL,(K) is perfect, and hence the quotient is perfect; so H/Z is
unimodular. Thus so is H and hence G.

3. (Euclidean motion.) We let E(n) = R x SO(n). (SO(n) is the orthogonal real matrices of determinant
1.) Then N = R x {e} is normal and unimodular, with E(n)/N =~ SO(n) compact. Hence E(n) is
unimodular.

4. (Heisenberg.) Let

a closed subgrape. We have

and H/Z(H) =~ R2. Thus H is unimodular.

5. (Conjugation automorphism.) For z € G, let v(z) € Aut(G) be v(z)(y) = zyxz~1.

v(z)v(z"). Then

Notice y(zz') =

(where § is as in assignment 1).

Suppose @ € Aut(G). If G is compact, then a(G) = G implies §(a) = 1. If G is discrete, then
|a(F)| = |F| for each finite F' < G implies §(a) = 1.

Suppose G, A are unimodular and A acts continuously on G by automorphisms. Consider S = G x A.
Then by assignment 1 we get A(y, 5) = §(5).
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6. If H is open in G and G is unimodular, then H is unimodular.

However, if H is closed and non-open in G, we may have that G is unimodular and H is not. Consider

for example G = SL2 (]R) and
H = 0 b QX E (0 OO) beR
= 1) , ,

Then H =R % (0,00) with a(b) = ab (non-unimodular action) so H is not unimodular thanks to the
first item.

7. It is possible that IV is a unimodular open normal subgrape of G yet G is not unimodular. Indeed,
consider G =R x {2" : n € Z}; this is an open subgrape of R x (0, o).

5 The convolution algebra of measures
Let
M(G) = {p: B(G) - C | u a Radon measure }
My(G) ={u: B(G) - [0,0) | i a (finite) measure }

Definition 5.1. If E € B(G), we define the total variation to be

0
|| (E —sup{Em B = |_|Ej, each EjeB(G)}

j=1
Fact 5.2. If p € M(G) then |u| € M4 (G).

Fact 5.3 (Hahn-Jordan decomposition). Fach € M(G) can be written p = (u1 — po) + i(us — pa where
i, pa € My (G). Furthermore, we can arrange that py L po and pg L py (i.e. G = Ey u Ey such that
w2l E1 =0 and py [ Es = 0), and in this context the decomposition is unique.

Generally we have
[y pa < |pl < — po| + ps — pal
and |p1 — po| < p1 + pe, ete. If pg L opo then |y — po| = p1 + po, ete.

Theorem 5.4 (Riesz representation theorem). Let Co(G) = CC(G)”'HOO; this is a Banach space. Then
Co(G)* = M(G) via the pairing

oy = n(f) = f fdu
G
Furthermore,
su{ | [ 1] £ cu@nlslhe <1} = 14
which we define to be ||pl|1-

Remark 5.5 (Approximation by “compactly supported” measures). Given u € M(G) and € > 0, the inner
regularity of || provides compact K < G such that|u|(G) < |u|(K) + €; thus |p|(G\K) < e. If we let
pur: B(G) — C be ug(F) = u(E n K), then

lppxl = llnexll = lnex (G) = [u[(G\K) <€
Theorem 5.6. Given u,v € M(Q) there is a unique measure p % v such that for f € Co(G) (or f € C.(G))

we have
ffd,u*y Jffxydu )dv(y)

Then (p,v) — w* v is bilinear and associative (i.e. (uxv)*p = p=* (v = p) where p e M(G)) and satisfies
lee = v|lr < |lplll|v]l1. Hence (M(G),#) is a Banach algebra.
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This product is called the convolution product.
Before we begin, we give some facts about the Radon product measure.
Our setup: suppose X,Y are locally compact Hausdorff spaces. We define the product of the Borel
o-algebras by
BX)®B(Y)=0(ExF:FeB(X),FeB(Y))

Clearly B(X)®B(Y) € B(X xY).
A problem: unless both X and Y are separable, we cannot guarantee equality.

Example 5.7. Let X =Y = {0,1}! where |I| > Xy or X =Y = R,. Nico suspects that & holds in both
cases.

Theorem 5.8. Given two Radon measures p: B(X) — [0,00] and v: B(Y) — [0,00], there is a unique
measure 4 X v on B(X xY) such that

nyfd/”” Jffxydu Y (y Jffxydu Ydpu(z)

for f e Co(X xY). (We call this the restricted Fubini property (F.).) This is the unique measure on
B(X xY) such that (ux v)(E x F) = u(E)v(F) for E € B(X) and F € B(Y). (We call this the product

property (P).)
We call this the Radon product measure.

Corollary 5.9. If pe M(X),ve M(Y) are complex Radon measures, then there is p x ve M(X xY) for
which (F.) and (P) hold.

Fact 5.10 (Fubini for Radon products). For pe M(X), ve M(Y), and f € B?(X xY) (i.e. f is uniformly
bounded and Borel measurable), we have that

IF»J(ﬂ%yMV@)
Y
y— L [z, y)du(z)

are Borel measurable on X and Y, respectively, and

nyfd/“V Jffwydu ) (y Jffxydu Ydu(z)

Proof of Theorem 5.6.
1. We define “actions” of M (G) on C.(G). Given f € Co(G) and pe M(G) we let f-pu,u- f: G— C be

(f () =plz-f)

= L fyz)dp(y)
(1)) = p(f )

- | st

Let us see that u - f € Co(G). Let V be a neighbourhood of e such that |f(x) — f(2')| < e if 2’27t e V.
Then for such z,z’ we have

(qu@—Orﬁ@N=L[U@w—fwwMM@
f\fmy £(a'y)] dal(w)
< elul(@)

22



(Note that complex measures are by definition finite.) So p - f is continuous. Furthermore, we have

(- (@ f [f(@y)| dlul(y) < [ Flloolrl(G) = N1 1ol ]l
PN

Again, for e > 0, let K = G be compact and f' € C.(GQ) satisfy ||u — ukl|1 < e and ||f — f'|lo < e.
Then
e f = e flloo + i - f = e - [l
= prcllallfllee + sl lf = £l
—

<llulh

e f— k- fllo <|
|

<
<

< e(llflleo = llll2)
It is clear that supp(ug - f') € supp(f)K ~!; hence p - f € Co(G). The case f -y is similar.
2. We check an “associativity”: that if u,v € M(G) and f € Co(G), then p- (f -v) = (- f) v

For x € G we have

(- (F 1)) = j (f - »)(ay)du(y)

fffzxydu )du(y)

_ J f F(zey)du(y)dv(z) (by Fubini)
G JG
=((p-f)-v)(z)
as desired.

3. We now come to the finale. We define for u,v € M(G) and f € Cj

| ratus ) = ey = -0 )
(By Riesz representation theorem this specifies p * v.) The map (u,v) — p * v is bilinear and also

(= ) ()] = T - OE< Nullally - flloo < Tell oo

so it follows that p = v defines a bounded linear functional on Cy(X), and hence an element of M(G)
with [l vy < [lpll ]

It remains to check associativity. Let also p € M(G). We have for f € Cy(G) that

(s (v % p))( Jffxydu d(v + p)(y)

(v=p)(f - p)
:V-(p'(f'u))
=v-((p-f) p) (by associativity above)

as desired. OO0 Theorem 5.6
Remark 5.11.
1. Fix v € M(G). Then both p+— p*v and p — v = p are weak*-weak*® continuous on M(G) =~ Cy(G)*.
Indeed, let R, : Cy(G) — CoG) be R, (f) = f-v. Then v+ p = RE(u).
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2. For z € G let 6,: B(G) — {0,1} < C be given by

51(E)={1 ifxeFE

0 else

(We call this a Dirac measure.) If f € Co(G) then f = f(x)1{,} d,-almost-everywhere. So

L fdb, = f(z)

Then if z,y € G and f € Cy(G), then

(6,6,)(f) = fG L F(@'y )6, ()8, () = F(2y) = 62y (f)

ie 0y %0y = 0gy. Also 0y - f=a- fand f-6, = f-x.
3. Let Bf (M(Q)) ={ue M (G): u(G) <1}.
Exercise 5.12. Thisis a convex set with Ext(B; (M (G))) ={0}u{d,: 2 € G}.

Then by Krein-Milman theorem, we have that convolution is the unique weak*-weak* continuous
product on M (G) satisfying Item 2.

6 Atomic/continuous and Lebesgue decompositions

Let pe M(G). Let

0

A = (e G lul((a)) > 0) = Uf o6 lulfz) > 1 |

n=1

So A(p) is countable, and hence Borel. Furthermore, we have

0> ul(A) = D) Iz = ) [u({z})

2eA(p) zeA(p)

It follows that

pa= Y wl{z))o,

€A ()

is a measure. We let p. = p— pg; so pe L pg (with G = A(p) u (G\A(n))). Hence pu = pg + pe and
|l = lpal + lpeel; so
lually = [1[(G) = [lpalls + llpellx

Let

My(G) =span{d, : z € G}
=~ (1(G)
M.(G)={peM(G):u({x})=0for any x € G}
Then My(G) is a closed subspace and M.(G) is a subspace, which is closed since the defining formula

of convolution yields that u +— p. is a bounded idempotent map on M (G) with range M.(G). We write
M(G) = My(G)®1 M.(G) since all p € M(G) admit a decomposition p = g+ pe with ||pll1 = ||pall1 + || el 1-

Theorem 6.1 (Lebesgue decomposition). Let u € M(G). We have pn = ps + pg where ps L m, p, < m with
A dia e 11(@), e for f e Cy(G) we have

dm dm
i,
[ ran= | sam+ | Pzam
G el ¢ dm
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We have p, L jtq 50 |l = aells + llealls. Write

M(G)= M(G) @& M,(G)
—
space of singular space of absolutely continuous

Suppose G is discrete; then
lte|(G) = sup{ |p.|(K) : K € G compact (hence finite) } =0
;_\f__/
=0
So = pg, and M(G) = My(G) = £(G). One can check that ¢1(G) = an{ 0z : x € G} is a Banach algebra.
Suppose G is not discrete. Thenm({z}) = m(z{x}) = m({e}) = ({e} is a non-open closed set,
and hence locally null.) Thus M,(G) € M.(G). Thus if v € M.(G) we get the Lebesgue decomposition
V= Ve + Vg with v.g L m and v, €« m.
In summary, if 4 € M(G), we write
= pd + fe = fd T fes t
all mutually singular. We then have
M(G) = Md(G) @1 Mcs(G) @1 Md(G) = gl(G) @1 Mcs(G) &1 LI(G)

JM:ZG)

Fact 6.2. My(G) = (*(G) is a closed subalgebra.
Question 6.3. What about M.(G), M,(G) = L*(GQ), or M.4(G)?

7 More convolutions

What does p * v look like as a measure?

Theorem 7.1. If u,v e M(G) and E € B(G), then (p+v)(E) = (u x v)(r~1(E)), where 7: G x G — G is
the product map.

Remark 7.2.

1. 7 is continuous, and hence Borel measurable; so 7~ (E) € B(G x G) for E € B(G).

2. Fubini’s theorem yields that

(1 x V) (Y (B)) = f 1s (i x )
f lgomd(p x v)
GxG
:f d( x v)(z, )
GxG

J 1g(zy)du(z)dr(y)
aJa

Proof of Theorem 7.1. We have
p= (o — p2) +i(p — Zluk
where p, € M4 (G); likewise for v. So

3 3
Wy = 2 Eilﬁéuk*w
k=04£=0

We can thus assume that p* v e M, (G).



1. Let us first consider compact K © G. Let € > 0; let U be open with U 2 K and (u*v)(U\K) < e. Let
fe clo (@) satisfy f1K =1 and supp(f) € U (by Urysohn’s lemma). Then

(4 x V) (K)) = L L 1 (o) dpu()d(y)
< L Lf(xy)du(x)dV(y)

Since € was arbitrary, we get that
(1 V) (x 1K) < (s v)(K)

2. Now consider a (u * v)-null set N € B(G). If K < 7~ }(IN) € G x G is compact, then 7(K) is compact
with 7(K) € N, and is thus (p * v)-null. Then by Item 1 we have

0< (pxv)(K) < (nxv)(a~H(n(K))) < (pxv)(r(K)) =0
Since Radon measures are inner regular, on bounded sets, we get
(1 x v)(r~H(N)) = sup{ (1 x v)(K) : K = 77 (N), K compact} =0
So 7~ Y(N) is (u x v)-null.

3. Suppose U < G is open. For each n € N we can find compact K,, € U so (u#v)(U) < (ux v)(K,)+n"1.

Then find f, € CI*Y(G) with supp(f,) € U and fo 1Ky, = 1; let g, = max{ f1,..., fn }. Then (i v)-
almost-everywhere we have g, /" 1y as n — 0. (We let

[00)
F:QM

so U\F is (p * v)-null, and g, — 1y on F u (G\U).)

Hence by monotone convergence theorem, using the fact that (u x v)-almost-everywhere we have
gnom /1y om (by Item 2), we get that

(3 ) O) = |y omd(ux )

= lim gnomd(p X v)

n—aoo GXG

= lim | gpd(p=*v)
G

n—0o0

J lyd(p = v)
e
— (p ) (V)

4. Now let E € B(G), and find open U,vmE such that (u = v)(U,\E) < n~!. Then let

m:ﬁm

k=1
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so we have 1y, — 1 on
[oe]
G\(\Va)uE
n=1

i.e. (1 *v)-almost-everywhere. Hence by Item 2, we get (u x v)-almost-everywhere that 1y, or — lgom.
Thus by Lebesgue dominated convergence theorem we get that

(e x v)(n~H(E))

lim 1y, omd(p * v)

n=% Joxa

= lim | 1y, d(p=*v)

n—o0 G

(nxv)(E)

[0 Theorem 7.1
Remark 7.3. Some consequences:
1. For u,v, E as above we have
(we)E) = | | 1pnanany)
1gy-1 (z)dp(z)dr(y)

w(Ey~")dv(y)

Il
Q 'Q ’Q K
Q

and similarly

(o 1)(E) = L v(z ) B)dpu(z)

2. Let

B*(G) =span{1g : F € B(G) }H'HaC = {¢: G — C| ¢ bounded and Borel-measurable }

By LDCT we have for ¢ € B®(G) that
| s = [ pomdtuxn) = | | clniuaany)
G Gx@ cJa

3. Let L*(G) = B*(G)/N,,, where
No = {f € B®(G) : f =0 m-locally-almost-everywhere }
ie. if K < f~1(C\{0}) is compact then m(K) = 0. Then a version of Riesz representation theorem
tells us that L'(G)* =~ L*(G) via
{frp) = L fedm

Corollary 7.4. M.(G) and My(G) are ideals in M(G).
Proof. If N € B(G) an du,v € M(G), we have

(e r)) = |

p(Ny () = [ vla N)du(o)
G

el

Suppose one of u, v lies in M.(G) and N = {zg}. Then clearly (u = v)({xo}) = 0. Thus p* v e M.(G).
Likewise if N is m-~(locally)-null and one of p,v lies in M,(G), then for N € N with N’ € B(G) we

have for any = € G that x 7! N’, N’z~1 are also m-(locally)-null. Thus (u * v)(N’) = 0. Thus pu * v € M,(G).

O Corollary 7.4
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Remark 7.5. M.s(G) need not be a subalgebra of M(G). Consider G = K x K for K an infinite compact
grape, and my the normalized Haar measure on K. Then one can check that

(mg X 8) * (de X M) =My X Mg =mg < Mg
and K x {e},{e} x K are mg-null. So mg X 8¢, 0. X mi € Mcs(G).
Fact 7.6 (Hard). M_.s(R) is not a subalgebra of M(R). M.s(T) is not a subalgebra of M(T).

Theorem 7.7 (Bochner integral for bounded continuous functions). Suppose X is a locally compact space
and L a Banach space, and let

G(X, L) = {F: X — L | F continuous, || |l = sup|| f(z)]| < OO}
zeX

Then there is a bilinear map (integral)
Co(X,G)x M(X) > L
(F,p) — f Fdu
X
with
[ rau < 1ebolud
X

Furthermore if T € B(L, L") (bounded linear operator), then

T(JX qu) _ LToqu

Proof.

1. Let
S=8(X,L)=span{1g(-)¢: E€ B(G),£€ L}

Each ® € S admits a standard form

o= qg,()¢
j=1

where &,...,&, € L and En, ..., E, € B(G) satisty E; n E; = J for i # j. Then S is a linear space of
L-valued functions.

For pe M(X) and ® as above, we let

f du= Y u(EE;
X i

One checks that this is well-defined, that the map
SxM(X)—>L
(P, ) Hf Pdp
X

is bilinear, that

Hj <I>duH < 1@ ]olluls
X

T(JX @du) = LTocbdu
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2. Let S = S(X, L) . Hence it ¥ € S then
U= lim &,

n—o0

©
(o)
X n=1
J Wdp
X

This value is independent of the choice of ®,,; thus the “usual” norm estimate and composition with
bounded linear operators holds.

for some (®,)%_; in §. Then

n=1

is Cauchy in £, and hence has a limit

3. Let K € X be compact. If F'e€ Cp(X, L), then F(K) is compact in £, and hence is totally bounded.
i.e. given € > 0 we have

F(K) < | B(&,e)
j=1
where £1,...,&, € L. Let By = F7Y(B(£1,¢)) n K, and let

B =F (B@,e)\ U B(«si,s>> N K

i=1

for je{2,...,n}. Then
n
j=1

and we have

max(|[F(z) — @(z)[| = [(FTK) — @[l < ¢

Hence by Item 2 we have

J Fdu
K

is “good”.
4. Given p e M(X), find a sequence of compact sets for which
Jim [u[(X\K,) =0

Given F € Cy(X, L), let

160 — Emll = HJX FPd(ux, - k)

gn:J Fd[t:j quKn
K, b'e
(recall pug (E) = u(E n K)). Then for n,m € N we have

< [Flloollpx, — pr, |

< [ Flloo |l (B A Kom)

S [ Flloo ([l (GNE ) + [ (G\E))

So (&,)%_; is Cauchy in £. We call the limit

f Fdu
X

one checks that this is independent of the sequence (K, );°_;. This integral is “good”. O Theorem 7.7
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Definition 7.8. A Banach space X is a Banach G-module if there is an action
GxX—->X
(,8) » - ¢
such that
e for a fixed z the map £ — x - £ is linear

e there is C' > 0 such that ||z - £|| < CJ|¢|| for all z,¢

e for any fixed £ € X the map z — x - £ is a continuous map G — X. (Strong operator continuity.)
Theorem 7.9. X is a Banach M(G)-module with the action (u,&) — w- & satisfying

e Bilinearity

o |-l < CllullLligll

o (uxv)-&=p-(v-§).
Proof. Let

u-£=f z - &dp(z)
G

We us properties of the integral to check the last property. Let w € X* so s — (w, s-&) is in Cp(G) € B*®(QG)
and we have

nlps)-© = || o) Odvie)uty)

- L<“’ z- L y- de(y)>du(w)
v-E

- | o @ i)
= (W, - (v-€))
(One should check the first equality.) So (u#v) & =pu-(v-§). O Theorem 7.9

Recall our notation

zx f)(y) = fla™y)
frx)(y) = flyz= ) (A(z)) ™

for m-almost-every y. These make L'(G) both a left and right contractive G-module; i.e. || * f||1 = ||f|1 =
|f * 2||1. Thus we have that L!(G) is a contractive Banach M (G)-module with

u*f=Lw*fdu(w)

(
(

fru= | featuta)
G
with [ s £l < [l and | » ol < s s
Recall that M,(G) =~ L'(G) by Radon-Nikodym theorem. (Recall M,(G) is the family of complex

measures that are absolutely continuous with respect to m; recall further that this is an ideal of M(G).)
Thus if v € M,(G) with v « m, say with C‘f—; = fe LY(G). We write v = fm; i.e.

(Fm)(E) = | pam
So for h € Cy(G) we get
{fm,h) = J hfdm
G
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Proposition 7.10.
1. For pe M(G) and f € LY(G) (so fm e M,(G)), we have
o (fm) = (o x fym
(fm) s p = (f = p)m
2. For f,g € LY(G) we define
frg=(fm)xg =J f(@)x + gdu
G
(Bochner integral). Then
f(gm) = f*gzj f#yg(y)dy
G

and

(f = g)m = (fm) = (gm)
Proof.
1. If h e Cy(G) we have

h(zy)du(z) f(y)dy

“J. ).
Jch (y)dydu(y) (Fubini)
f (z~y)dydpu(y)

h(y) f f(z7y)dp(z)dy (Fubini)
= J hu = fdm
G

and hence p# (fm) = (u# f)m. The rest is similar.
2. Similar. ] Proposition 7.10

So (L'(@G), *) is a Banach algebra, canonically isomorphic to M,(G) < M(G). We call this the (L'-)grape
algebra.

Theorem 7.11. Let X be a non-degenerate Banach L'(G)-module; i.e. there is a bilinear map L' (G)x X — X
written (f,€) — f - & such that

o [If &l < ClfILlE]l (where C > 0 is independent of f,&).
o (fxg)-&=Ff-(9-9).
o Xy =span{f -&: fe L' (G),£€ X} is dense in X.

Then X is a Banach G-module.

Proof. Let (fa)a in L'(G) be a contractive summability kernel. (We'll see these on A2; in particular, we
require || fo|1 <1 and

lim fo = f = f
for f € L*(G).) Define an action G x Xy — Xy by

j=1
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We first check that this is well-defined. It is sufficient to check that if

D=0
j=1
then .
(z*f;)- & =0
j=1
Note, however, that
0= Z fi-&
j=1

I
)
*

"
7~
e
ol
i‘f‘r
N———

i.e. -0 = 0. Similarly, this action is linear on Xj, and is thus well-defined.
Now if

So=DFi"&eX
j=1

and x € G we have

lic{nZ(x*fa*fj)'fj

j=1

= ﬁ;ﬂ”ﬂ? * fo - &oll

< limsup C ||z = foll1]1€oll
o —_—

<1

[z - &oll =

< Clléoll

Hence if we define mo(z) € B(Xy) by mo(x)& = x - & for & € Xy, then {mo(z) : 2 € G } is a uniformly bounded
family of operators, and hence extends to a uniformly bounded family of operators { 7(z) : x € G} < B(X).

We let z- £ = m(x)¢ and ||z - | < [|[=(2)]|[|€]] < CI€]]-
It remains to check continuity in G. Suppose £ € X and € > 0; pick

So= D1 &eX
j=1
with ||€ — &]| < e. Let V be a neighbourhood of e such that

€
lz = f; — fill < W
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for x € V. Then for z € V we have
1€ —z-&ll < 11§ —&oll + |60 — - &oll + (|- & — 2 - &
<@+ C)e D CIf5 —z = filhlI&]

Jj=1

< (1+20)
as desired. [J Theorem 7.11

Our conclusion: there is a bijective correspondence between Banach G-modules and Banach L!(G)-
modules: given a Banach G-module, Theorem 7.9 gives rise to a Banach M (G)-module (non-degenerate
for L*(@)), which restricts to a Banach L'(G) =~ M,(G)-module, which by the last theorem gives rise to a
G-module. (We will see on A2 that if X' is a G-module then f, -& % ¢ for € € X, which gives non-degeneracy.)

Ezample 7.12. Consider M.(G)< M(G) a closed ideal, with
M(G) = My(G)®n M(G)
—_——
=01(G)
Then (1(G) ~ M(G)/M.(G) is a quotient algebra, and hence a Banach M (G)-module. Note that
pede =Y, w{yNoy
yeA(p)
Since ||, — dy|l1 = 1 for z # a’, this is not a continuous G-module.

Theorem 7.13 (Wendel). Suppose G and H are locally compact grapes. If there is an isometric isomorphism
®: LY(G) — LY(H), then there is a continuous isomorphism p: G — H with continuous inverse.

The requirement that ® be isometric is important:

Example 7.14. Consider Z4 and Zo x Zy. It transpires that ¢*(Zg) = (1(Zy x Zy) = C({1,...,4}) via a
non-isometric isomorphism.

Proof of Theorem 7.183. 1. Let
MLNG) = {T e B(LY(G)) : T(f »g) = T(f) * g for f,g€ L'(G)}
(Here B(L'(G)) refers to bounded linear operators, not Borel sets.)
Claim 7.15. Then MLY(G) = {T, : p€ M(G)} where T),(f) = p = f and | T,|| = ||ul1-
Proof. Suppose T € ML'(G), and let (f,)a be a contractive summability kernel in L' (G). Then(T'(fa))a

is a bounded net in L'(G) — M(G), and hence admits a weak*-cluster-point by Banach-Alaoglu. By
taking a subnet, we may assume that in the weak*topology we have

p=lmT(fa)
Hence in M(G) we have
(s Fym = s (fm)
= W lm T(f,) * (fm)
= wh-Im(T(f.) * )m
=w*-1limT(fo = f)m
But since fq * f = fin L'(G) and T is bounded (and hence continuous), we have that T(fo * f) = T(f)

in L(G), so
i T(fa * fm = T(f)m

in norm, and in particular in the weak*topology.
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TODO 4. Typography

sopx f=T(f);1e. T =T,.

We have ||T,|| < ||p]l1 already. Conversely, we have

I Tull = sup|[ T (fa) I
= sup||p * fall1
«

=sup sup [(p* fo,h)|
o hECo(G)
lIhllo<1

> sup limsup[{u, fo-h )|

Inles<t o a
=>h (A2)

= sup [(u, h)l
1Al

=[xl

as desired. O Claim 7.15

2. We define ®: M(G) — M(H) by letting Ty, =®oTuo ®~!. (Exercise, using Item 1.) Then & is an
isometric isomorphism which is strictly continuous: if (ua)q is a net in M(G) and p € M(G) has

limpg = f=p=*f

for any f € L'(G), then

~ ~

Hm @ (pa) * g = P(p) * g

[e%

3,strict

for any g € L'(H). Notice that z; % zin G if and only if 0z, — & in M(G). (Forward direction
obvious, reverse an easy exercise.)

3. Let

G =ExtB(M(G))={20,:2€T,zeG}
—_

closed unit

Then G =T x G (as sets, and by a weak*-homeomorphism). Then &), being a surjective isometry, has
&(G) = H = Ext B(M(H))

(Note that this together with linearity imply that ¢ is surjective.) We define (: G — T and ¢: G — H
by
Then N N N

C(my>5tp(zy) = @(&:y) = @(5I)Q)(5y) = C($>C<y)6¢(r)ap(y)

So C(xy)C(2)C(Y)dery = Op(ay)tp(x)p(y)- But depy is supported on {eq }, and Oy (zy) 1 (2)p(y) 15 2
probability measure. So ¢ and ¢ are homomorphisms.

3,strict

Now suppose x; L 2in G. So dz; — 05 in M(G). Then

i,strict
————

(@) = D(0a,) B(8,) = C(2)dp(a)

So ((xix_l)éw(ww_l) strict, de, - We see by taking subsets if we must that 1 is the only cluster point

of ((x;z~1) in T. Tt follows that ¢ and ¢ are continuous.
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4. We check that ¢~': H — G is continuous. Note that ®~1: L'(H) — L'(G) gives rise to a continuous
homomorphism x: H — T and a continuous isomorphism ¢: H — G. If x € G then
0y = D71 od(4,)
®—1 (check)
o (C(@)dp(a))
()07 (B ()
C(2)x (0 (2)) 0y (@)

We deduce that (¢ o p)(z) = 2. So 1o ¢ = id, and ¢ = p~ L. 0 Theorem 7.13

8 Unitary representations

Let H be a Hilbert space and U(H) ={U € B(H) : U*U =1 =UU* }.

Warning 8.1. In the infinite-dimensional setting, we must check both equalities U*U = I = UU?¥; it’s possible
for one to be satisfied but not the other.

Notation 8.2. For dual pairings, we will use (-, -). For sesquilinear forms, we will use {:|-). In this class
we will use the physics convention: conjugate-linearity in the first argument, and linearity in the second
argument.

On B(H) we consider, in addition to the norm topology, the weak operator topology and the strong operator
topology:

wo = o(B(H),{T — (&, Tn): B(H) - C,&,neH})
50 = o(B(H),{T — T¢: B(H) — (H, |-||), € H})
We have Two S 7505 i.e. Ty S0, implies Ty, WO« 1.
Proposition 8.3.

1. The map B(B(H)) x B(B(H)) — B(B(H)) (closed unit balls) given by (S,T) — ST is Ts0 X TsO-TsO
continuous.

2. On U(H), the relativized topologies Tso [U(H) = Two [U(H).
Hence (U(H), Two) is a topological grape.
Proof.
1. Suppose S, 592, 5 and T, 599 min B(B(H)). Then for £ € H we have

[SaTal = STE|| < [|SaTal — SaTE| + [[SaTE — STE|

<
< || Toé = TE| + [|SaTE — STE|
20

2. Suppose U, WO U in U(H). Then for £ € H we have

Ul — UE||? = (Uak — UE|Unk — UE)
= 2||¢|1* — 2Re{Uat | Ue)
% 2||¢|1” — 2RUE | UE)
=0

as desired. O Proposition 8.3
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Remark 8.4.
1. The second item fails in B(B(H). Indeed, let U: ¢?(Z) — (?(Z) be the bilateral shift Ud,, = §,,41; so
U e U(H) € B(B(H)). One can check that U™ 2" 0 while ||U"¢|| = ||€]| for & € (2(Z).

WO,n
—

2. The map (S, T) — ST is not (Two X Two)-Two continuous. Let U be as above. So U™, U™ 0

but UU—" = 0.
3. For a fixed S the maps T'— T'S, T — ST, and T — T* are Two-Two continuous. (Check this.)

4. T — T* is not 7s0-Tso continuous. (Consider the unilateral shift S: ¢2(N) — ¢?(N) so S&,, = S,41
Then (S*)™ — 0 but S™ is always an isometry.

Proposition 8.5. U(H) is the only subgrape of B(B(H)).
Proof. It U,U~! € B(B(H)) then for £ € H we have
€l = 1010¢] < Jvel < el
s0 U€] = [¢]. henee .
E1& =€l = UEI" = & 1U*UE)

where (U*U)* = U*U, so we can use the polarization identity: on any &, € H we have

3 3
AW, my = Y iR+ iFn| e+ itny = ) iNE+ iy | UFU(E + i) = &€ | U*U)
k=0 k=0
SoU*U =1,and U* =U*UU ' = UL O Proposition 8.5

Definition 8.6. A unitary representation is a homomorphism 7: G — U(H), with H a Hilbert space, which
is 7g-Tso continuous. (If z - ¢ = 7(z)&, we get a “unitary” Banach G-module.

Theorem 8.7. There is a bijective correspondence between

(1) Unitary representations w: G — U(H) with H a Hilbert space.

(#") Contractive (i.e. C = 1) Banach G-modules on a Hilbert space.

(ii) Non-degenerate =-representations w1 : L' (G) — B(H) with H a Hilbert space.
(ii") Contractive representations w1 : L*(G) — B(H) with H a Hilbert space.
TODO 5. typography

Proof. For (i) <= (i) and (i1) <= (ii’), we collect prior propositions on unitaries and the G-module to
L' (G)-module correspondence. It remains to check that (i) <= (ii).
If 7: G — U(H) is a unitary representation, then for f € L'(G) we let 71 (f) € B(H) be

i (f)E = L fa)m(x)e

(Bochner integral) for £ € H. Then for £, € H we have
(mu(f)*€my = & lm(f)m
- | r@xeim@mas

=ffm@@*mmm

J‘ Fa ) (A (@) (@) | nyde (using 7(z) = 7(x)*)
f*(x)

fq )¢ | myda

— m (eI )
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So w1 (f)* = mi(f*). Conversely, if m: L'(G) — U(H) is a »-homomorphism and (f,)s is a summability
kernel for L!(G), then (f*), is a summability kernel (check, might be useful on assignment), and we define

m(z)* = WO-lim 7y (2 * fo)* = WO-limm (f¥ +2™1) = w(a™ 1)

One should check the first equality.
TODO 6. What?
O TODO 5

9 Gelfand theory for commutative Banach algebras

Let A be a commutative Banach algebra: so ||ab]| < ||a||||b|] and ab = ba, ete.

FEzxzample 9.1.

1. Consider Cy(X) where X is a locally compact Hausdorff space. This is unital if and only if X is
compact.

2. Consider (L'(G),*) with G abelian. This is unital if and only if G is discrete (so L'(G) = (1(G)).
(For the left-to-right implication, consider the multiplier Tt,,—s, if f is the identity for L*(G). Then
| Tfm—s.|| = || fm —bc|l1, and the latter is > 1 = ||&.|| if G is non-discrete, while T,,_s, = 0 if L'(G) is
unital.)

3. If S is an abelian semigrape, consider (¢(.S), *) with

Z a(s)ds * Z b(t)o; = Z Z a(s)b(t) [0

SES teS u€eS \ s,teSx
st=u

It is possible for £1(S) to be unital, with S being unital.

4. Consider D={z€eC:|z|] <1} and
A(D) = { f e C(D) : f]D is holomorphic }
Definition 9.2. We let the (Gelfand) spectrum of A be
A= {x: A— C|x # 0, x linear, C-multiplicative }

We refer to the elements of A as characters.

We from now on assume that A is unital.
Proposition 9.3. Let A be as above and x € A. Then

1 x(14) = 1.

2. If ae A* (i.e. a is invertible) then x(a) # 0.

3. |x(a)| < |la|| for a € A.
Proof.

1. Since x # 0 we have a so x(a) # 0, and x(1a)x(a) = x(a).

2. We have 1 = x(14) = x(aa™!) = £(a)é(a™t).
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3. If A e C with |A| > ||a|| then |[A\~!a|| < 1, and
0
Ma—a) =X 1a=A"a) = A7 Y A"
n=0

(convergence in the Banach space A), so x(Al4 —a) # 0. ie. X # x(a) if [\| > |la||. The result
follows. [1 Proposition 9.3

Corollary 9.4. With A as above we have that Ac A* isw* --compact.
Proof. Since A < B(A*), it suffices to show that A is w*-closed (by Banach-Alaoglu). If (xa )« is a net in A
with yq wha, X, then for a,b e A we have
x(ab) = lim x(ab) = lim xa (a)xa(b) = x(a)x(b)
and
1 =limxa(14) = x(14)

so x # 0. 0 Corollary 9.4
Lemma 9.5. Suppose A is as above and I & A is an ideal. Then

1. Tn A* = .

2. T< A and is also an ideal.

3. T is contained in a mazximal ideal T € M & A.

4. If T is maximal then it is closed.
Proof.

1. fae A then 14 €aA,soa¢T.

2. If ||b]| < 1 in A then 1 — b e A*. Indeed,

(1-b)' = i b
n=0

sothe openset U ={aeA:|a—14]]<1} < A*. ThenZnU = &, hence I nU = &, and Z & A.
Also if
a= lim a,
n—o0
for a,, € Z and b € A then

ba = lim ba, €T

n—o0

So 7 is an ideal.

. LetZ={J S A:J anideal,Z < J}. Then Z is partially ordered by inclusion. If ' € = is a chain
then
K= U Je=
Jer

(using (1.)), and K is an upper bound for I'. By Zorn’s lemma we are done.
4. We use (2.) and maximality. O Lemma 9.5
Theorem 9.6.
1. Ifac Atheno(a) ={AeC: A\l —a¢ A} # &.
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2. (Gelfand-Mazur) If a (commutative, unital) Banach algebra is a division ring, then A = Cl 4.
Proof.
1. This is done exactly as in the case B(X) (bounded operators on X).
2. If there were a € A\C1 4, then A1 —a ¢ A* for all A € C, contradicting the first point. [0 Theorem 9.6

Theorem 9.7. If A is a unital commutative Banach algebra, then its set of distinct mazimal ideals is
{ker(x) : x € A}. (i.e. if x1 # x2 then ker(x1) # ker(x2).)

Proof. Since A/ker(x) = C is a field, each ker(x is a maximal ideal. If ker(x) = ker(x’) then for any a € A
we have

x(a)l4 — a € ker(x) = ker(x')
S0
X'(a) = X' (x(a)1a = (x(a) 4 — a)) = x(a)
sox =x.
If M is a maximal ideal of A then A/M (with quotient norm
la + M| = inf |la — b]|
beM

which one should check forms a Banach algebra) admits no proper ideals. Indeed, if J & A/M is an ideal,
then M < ¢71(J) & A (where ¢: A — A/M is the quotient map) and ¢~*(7) is an ideal, so ¢~ 1(J) = M,
and J = {0+ M }. Thus for a € AAM we have

la+Me(a+ M) (A/M)

principal ideal

and a + M € (A/M)*. By the Gelfand-Mazur theorem, we have A/M = C(14 + M). Let x: A — C be
given by x(a)(14 + M) = a+ M. Then x € A and M = ker(x). O Theorem 9.7

Corollary 9.8.

1. We have
A\A* = U ker
zed

2. If a € A then

n

sup[x(a)| = lim [|a"
XEA

Proof.

1. If a € A*, we already saw that

a € A\ U ker(x)

zeA
If a € A\NA* then aA is a proper ideal, and hence is contained in a maximal ideal ker(y).

2. Let A\e C and a € A. Then

Aeo(a) <= Myq—ae AA"

<= A4 —ac€ker(y) for some x € A

— A=x(a)
Hence )
sup|x(a)| = max |A| = lim [la"[|*
xed eo(a) n—0o0
by Beurling’s spectral radius formula. O Corollary 9.8
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10 Abelian harmonic analysis

Let G be a locally compact abelian grape.
Remark 10.1. Both L'(G) and M(G) are abelian Banach algebras. (Indeed we have

JG hd(u *v) = JG fG h(zy)du(z)dv(y)

at which point we can apply Fubini-Tonelli.)
Proposition 10.2. Suppose 7: G — C* is a continuous homomorphism. Then

1. 7 =|7|c where o: G — T is a continuous homomorphism.

2. 7 is bounded if and only if T(G) < T.

3. The set G = {o: G — T| o a continuous homomorphism} is a grape under pointwise operations.
Proof.

1. We let

forz € G.

2. We have |7](G) < (0,0). Then 7 is bounded if and only if |7|(G) = {1}.

3. Obvious. Notice that o~! = & (pointwise conjugation). [0 Proposition 10.2
Definition 10.3. We call G the dual grape of G.
Theorem 10.4. We have

1. L/(\G) = {XJ:UEG} where

Xo(f) = | fadm
G

(Recall L/EE) is the Gelfand spectrum.) Note that G < Cy(G) < L®(G).

2. Gu {0} is a w*- compact set in L*(G), and hence G is w*- locally compact.

~

3. (G,w*) is a locally compact grape.
Proof.

1. Let
Ao LY(G) = 11(G) if G discrete
| LYG) @ Coe > M(G)  else

If x € L/(E), define ¥: A — C by X(f + A0.) = x(f) + A and ¥ € A. Hence ||¥|| < 1, so ||x]| =
IXTLY(G)|| < 1, and in particular x is bounded.

—_

We fix x € L(GQ) and let f,ge LY (G) with x(f),x(g9) # 0. Then for x € G we have

xX(@=* f)x(g) =x(@=* f*g)=x(@x=*g=*f)=x(=*g)x(f)

Hence
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is independent of f € L'(G)\ ker(x). Notice that o is bounded in a:

_ @ Pl _ e flh _ NIk

(O~ Ol ()

and o is continuous as the map G — L!(G) given by x + x * f is continuous.
If 2,y € G and f e L'(G)\ker(x) then x(f = f) = x(f)?> # 0, so

_x(w*y*f*f)_x(x*f*y*f)_gzg
Y N § E I e

|o()]

so 0: G — C* is a bounded homomorphism, and o € G.

Notice that if o # 7 in G then {zeG:o(x)#7(x)} is open in G, and hence not locally m-null, and
Xo # Xr-
Finally, notice that for g € L'(G) we have

1
x(nx

xa(g)—Lg d Lg() T d Lg() fdy [ = x(9)

gk f

2. By Banach-Alaoglu it suffices to show that G U {0} € B(L*(G)) is w*-closed. If (04), is a net in
G U {0} converging to o € B(L*(G)), we can see for f,ge L'(G) that

(f % 9.0) =i * g,00) = il f, 09, 7a) = (f,0X(g,0)

sooceGu {0}. (Note that if 7 € G then
(f gy = L L F(@)g(a y)r(y)dady = ”G F(@)g)r(zy)dady = (f, 7Xg, 7

which yields the desired result.)

Ifoe G then since the lveak*;topology is Hausdorff, there is a w*-openset W containing o such that
0¢W.But WnG=Wn(Gu{0}) is compact.

3. Let M: L*(G) — B(L*(G)) (bounded linear operators) be given by M ()¢ = ¢-¢ (m-almost-everywhere
pointwise multiplication). Then for¢,n € L?(G) we have

(€| M(p)n) = Lso & dm

eLY (@),
Cauchy-Schwarz

Also, if f € LY(G), then
(oo ) = L ofdm = Ggif - |f1} | M(o)| I}

%
Hence M is a w*-WO homeomorphism onto its range; i.e. o, —— in L®(G) if and only if M () Woe,

M(p) in M(L®(G)). Now, since for o € G we have 0(G) € T we see that M(c) € U(L*(G)). (One
checks that M (@) = M(p)*. Hence M |G: G — M(G) < U(L*(G)) is a w*-WO homeomorphism. The
result then follows. O Theorem 10.4

Proposition 10.5.

1. If G is discrete, then G is compact.
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2. If G is compact, then G is discrete.
Proof.
1. LY(@) = (1(G) is unital, so G =~ ET(E) is compact.

2. We normalize m so m(G) = 1. ifo € G\{1}, then there is y € G with o(y) # 1. hence

JG o(x)dx = JG o(yz)dx = a(y)J o(x)dx

G
and hence
J o(x)dz =0
G
Clearly
J 1(z)dz =1
G
Hence
~ 1
TeG:[(r,1)—<,1)| <=
—— 2
1
is a w*-open neighbourhood of 1 and equals 1. Thus G is discrete. [0 Proposition 10.5

FEzxzample 10.6.

1. Consider G = Z; we use additive notation. if o € Z, let z = o(1) (where 1 is the generator of Z, not its
identity). Then for n € Z we have o(n) = z". Write o = g,. Clearly for any z € T we have o, defines
an element of Z. Thus Z = {0, : z€ T}, and if z # 2’ then o, # o,/

Let us consider a w*-open neighbourhood of 1 = o7 € Z

U= () {o:€Z:[o. 8y — {02,000 <1} = [ {oeZ:|F -1 <1}

k=—n k=-—n
Write z = exp(it) for —m <t < w. For ke {—n,...,n} we have
1> [2¥ — 1) = |exp(ikt) — 1|*> = 2 — 2cos(kt)

So cos(kt) > 1 and kt € (=%, %) (modulo 2r). Hence U = {exp(it) : t € (—5, ) }. Hence a
w*-neighbourhood of o; in Z is a neighbourhood base of 1 in T. Thus T =~ { o, : z € T} has an induced
w*-topology finer than the ambient topology. On sets, comparable compact Hausdorff topologies

coincide.

2. Consider G = R. Suppose o € R. Then o is continuous with o(0) =1, so there is a > 0 so

Ja o(x)dx # 0

0

Now if y € R then
a—y

o(y) Ja o(x)dxr = Ja o(y + z)dz = j o(x)dz

0 0 -y
The fundamental theorem of calculus then tells us that o is differentiable. Now, for € R we have

o'(x) = lim oz +h) —olx) = o(z) lim a(h) —o(0)

_ /
h—0 h h0 h = o()o’(0)
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Let f(z) = exp(—o’(0)z)o(z). Then f(0) = 1 and f’'(z) = 0 (product rule) so by the mean value
theorem we have f(x) =1 for all z; i.e. o(z) = exp(zz) (where z € C). Moreover o(R) € T, so a = is
for s € R. Let 0 = o, where os(x) = exp(isx). Clearly s # ¢ in R, so o5 # oy, and o5 € R.

Consider a w*-open neighbourhood of o¢:

Use = {0eR : [(06, 1_a.a1) — {005 L [_ara)| <€}

Qa
—{USER: f (exp(isz) — 1)dx <E}
= ase]@ﬂw— <e
*

Ya(s)

where v, is an analytic and hence continuous function. Also

lim [ (s)] = Ja
and
lim ,(s) = o
a—00

We conclude that {U, . : a > 0,6 > 0} is a usual neighbourhood basis of 0 in R. Hence the weak*
topology is finer than the ambient topology. But

w*- LIE% s = 0y
(easy exercise). So the weak™® topology is coarser than the ambient topology. So
I@:{JS:SGR}QR
as locally compact grapes.

. Consdier G = T. Consider o1: R — T with o1 (¢) = exp(it); so ker(oy) = 27Z. If 7 € T then 7o o1 € R
so 7o o1(x) = exp(isx) for some s € R, with 1 = 70 01(27) = exp(i2ws), so s = n € Z. Hence
Toor(x) = exp(izn) = o1(x)" for z € R. Hence T = {z — 2" : n € Z}. The topology is discrete.

Suppose A is a commutative unital Banach algebra; e.g. A = L}(G) + C§. € M(G). Recall Beurling’s

spectral radius formula:

. 1
supx(a)|| = lim [la"[[" < [la]
X€EA

Definition 10.7. For f € L'(G) we define the Fourier transform of f to be f: G-C given by

flo) = L fadm

Theorem 10.8 (Riemann-Lebesgue, Gelfand). The map L(G) — Co(G) given by f — f is a homomorphism

~ 1
L[ flloo = T [F5 7 < (£

~

2. AG) = {f feLYG)} is dense in Co(G).

Proof. We recall that G U {0} is compact. We have that 7 (o) = x#(f) is continuous in o as G has the weak*
topology. If we let f(0) = 0, then f is continuous on G U {0} (from the proof of a previous theorem)

TODO 7. which

Hence f € Co(G). We now verify the required conditions.
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1. This is simply Beurling’s spectral radius formula.

2. We notice that A(é) is point-separating on G. (If o # 71in G then Xz # X+, so there is f € L!(G) with

~ ~

f(o) = xz(f) # x=(f) = f(7)

Since f — f is (almost) the Gelfand transform, we get that f — f is multiplicative, so A(C:’) is a
subalgebra. We also have for f € L1(G) and o € G that

Flo) = | rr@ptais = | Faa@is - | Fwota)ds = flo)

So ﬁ = f (pointwise conjugate). So by Stone-Weierstrass theorem, we’re done. 0 Theorem 10.8
Lemma 10.9. The map G x G — T given by (z,0) — o(x) is continuous.

Proof. Fix o0 € G and z € G. Let f € L(G) have f(o) # 0. Then
Jf o(yz~ dy—ffxy a(y)dy = f - (o)

Now if also 7 € G and y € G then

—

f
< |Fae) - Fam|+ |Fam - Fue)
~Fy@|+ 1 2= f -yl

Y—>x, T—0

Since f is continuous, this shows that 7(y) o(x). O Lemma 10.9

Definition 10.10. A function u: G — C is called positive-definite if for each z1,...,2, € G and n € N the

matrix [u(xj_lxl)] is positive semidefinite; i.e. if for Ay,..., A\, € C we have

n n )\1 )\1
ZZ u(xy Lo —< [u(x;lxz)] >>0

An An
Proposition 10.11. A positive-definite function u: G — C satisfies
1. u(z™") = u(z) forze G
2. Ju(z)| < ule) for x e G.

Proof. Let u =2, x1 = e, and x5 = . Then

is positive semidefinite. Then the claims are just exercises in linear algebra. O Proposition 10.11
Notation 10.12. We let Bt (G) denote the space of continuous positive definite functions on G.

So BT(G) < Cy(@).
FEzxzample 10.13.
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1. Note that G < BT (G). Indeed, if x1,...,2, € G and Ay, ..., A, € C then

Lot

2

)

=17

)\Z-)\TJ(;U] x;) =
1 E/_/
o(z;)o(w:)

2. (Reverse Fourier-Stieltjes transform) If p e M( A), we let fi: G — C be

fi(z) = | o(x)du(o)
G

If 4 e M, (G) then [i is positive definite. Indeed, suppose z1,...,z, € G and Aq,..., A, € C. Then

NUAN ') = [ |3 vela)
—

i=1j=1 Glj=1
SGU zj)o(z;)du(o)

2
du(o) =0

<.

Proposition 10.14. If p € M(CA}’) then [i is uniformly continuous.

Proof. First, suppose K = supp(u) is compact in G. Suppose € > 0, and for each 0 € K let

e U, be a neighbourhood of e in G such that x € U, implies |o(z) — 1] < ¢
e W, be a neighbourhood of ¢ in CA?, V, € U, be such that

TeEW,zeV, = |r(z)— 1] <e

(by joint continuity of G x G — T). We have that

Uw
=1

for some o1,...,0, € K, and we let
= ﬂ Vo, € G
i=1
Hence if z € V and 7 € K then |7(x) — 1| < e. Now, if 2,y € G with 2y~ € V then
ita) = ()] < [ o) = o)ldnlie) = | joley ™) = 1 d(G) < elul(@)
|

<e

Now if p € M(CA}’), we can find compact K < G so e — pxll1 < e. The usual approximation of /i by px
applies O Proposition 10.14

Corollary 10.15. If e M. (G), then Jie B*(G).
A problem: we don’t yet know that f # 0 in L'(G) implies f+#0in C’O(C:').

Proposition 10.16 (Injectivity of the reverse Fourier-Stieltjes transform). If p # v in M(é) then [i # U in
Cy(G).

Proof. If f € LY(G), we have for u € M(G) that

f Fu= | j flaja@idadn(o) = | 1(a) f@cr(xl)du(o—)dx: | r@iitaas (3)
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Let v(E) = u(E~') for E € B(G). One can check that 7(z) = Ji(z~1). Hence if Ji = 0, then since A(G) is
dense in Cy(G), we see that for h € Cy(G) we have

JA hdp =0
G

and thus p = 0. It is evident that pu — [ is linear. 0 Proposition 10.16

Theorem 10.17 (Bochner’s theorem). BT (G) = {Ji: p€ M, (G)}. Hence the map M,(G) — B*(G) given
by p— [i is a bijection.

Proof. Suppose u € BY(G)\{0}. We normalize so u(e) = |lullo = 1. Define a sesquilinear form on
LY (G) x LY(G) by

[/ gl = L £* % gudm

Notice that
LS [l < I gllallulleo < [ £l llgllx
so [- | -] is continuous on L'(G) x LY(G). Now

[/ ]9 =J f fDg(z y)uly)dady
|| FE it utey)asay
J. L7

y)u(zty)dedy

“”\

(since G is unimodular). Suppose

n
Y= Z ailg, € SY(Q)
i=1
(i.e. simple, integrable, E; € B(G), m(E;) < w0, and E; n E; = & for i # j). (Assume also that supp(yp) is
compact.)
Suppose € > 0. We can assume by taking Borel decompositions of each F; that there are x; € E; for each

4 such that -

ZZj:l‘a’i”aj' +1

u(a™y) — u(ay g |lm(E;)m(E;) <

by continuity of u. Then
n
S = Z Z(T]a,u z w)ym(E;))m(E;) = 0

i=1j=1

and

e | o] -

HM:

J . JE (u(z™'y) — u(x x;))dzdy

J

jajllail — sup fu(e™y) = wlay ) m(E;)m(E;)
(z,y)eE; x E;

i

mﬁM:

<
Hence [¢ | ¢] > —e. The decomposition above can be done for any € > 0; hence [¢ | ¢] = 0. Approximating
0

|
f in L*(GQ) by elements ¢ as above, and using continuity of [- | -] we get that [f | f] =
We may apply Cauchy-Schwarz inequality to see that

I 1gll?<Lf 1 fllg | gl
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We let V denote a base at e in relatively compact symmetric neighbourhoods. If V € V, we let ky =
(m(V))~'1y. Notice that kf = ky by unimodularity. Also (kv * ky)vey is a summability kernel; i.e.
[kv * kv |[1 <, supp(ky * kv) € V?, and

‘[ kv * kvdm = Xl(k'v *kjv) =1
G

In particular, we have

lim[ky | kv] = limf kv # kyudm = u(e) =1
1% vV Ja

and
kv 1= | by« fudm 4D [ fud
G G
Hence )
|| fum] =itk | 7P < timsuolhy | LS A= 7 11)
Let h = f* % f, so h* = h. (One should check this.) Let h*? = h x h, h** = h*? « h*? etc. Then
2
J fudm| <[f]|f] = J hudm
G G
< [n|h]2
bl
= (J h*2udm)
G
< [h*Z | h*2]i
< [h*4 | h*ﬂ%
< [
< [h*Zn | h*271]2—(n+1)
27(n+1)
= <J h*2n+1udm>
G
< [we T
1
.||
0
Thus
2 ~ e A 2 N
T 2 i e i e
[ee} 0 0 o0
Since A(G) is dense in Co(G) we have that
fn—» J fudm
G

~

extends to a continuous linear functional on Cy(G). So, by the Riesz representation theorem, there is

[en-

we M(G) with
By Equation (3), we have
| = [ s@ita s = | s
a G G

for some v. Hence u = 0. If p € CO(@) then we may write

= lim};

n—0o0
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by density of A(G). Then
| JePau= tim [ Fofodu= tim [ f2s fuudm =0
C:v n—0o0 é n—0 Jo

so € M, (G). O Theorem 10.17

Proposition 10.18 (Another class of positive definite functions). Suppose f € L' n L*(G). Then f* « f €
BT n LY(G).

Proof. That f* x f € L'(G) follows from the closure of L!(G) under convolution. We compute, for almost
every = € G,

where f(y) = f(y~1) for almost every y; note that f € L' A L%(G) by unimodularity. Since C.(G) i is dense in
L2(G), we get that L2(G) has continuity of translation (same proof as for L'(G)). Hence x> (f,z * f) is
continuous, so f* x f may be taken to be continuous. Now let z1,...,2, € G and A{,..., A\, € C. Then

(z 1x1)

i

I M: i Mz

)\7 <xj*f‘:1cl*f>

2 i * f
i=1 2

=0
as desired. O Proposition 10.18
Corollary 10.19. If f € C.(G) then f* « f € B n L(G).

We let B(G) = {ji : p € M(G)}. Since the map M(G) — V(G) € Cyu(G) (where the latter is the
collection of uniformly continuous bounded functions on G) given by u +— [i is linear (easily seen). The
Hahn-Jordan decomposition of measures then shows that B(G) = span B*(G).

Exercise 10.20 (Probably on A3). Show that the map G — B!(G) given by x + z * f is continuous in G and
isometric in the norm on BY(G) given by || f|lg1(c) = || fll1 + [|plls where f = i by Bochner’s theorem.

Theorem 10.21 (Inversion theorem). Let B(G) = B n L*(G).
1. If f € BY(G) then f e L'(G).

2. For a suitable normalization of the Haar measures mg and mg we have for f € VYG) that

= J@ f(a)a(ac)da

ie. f= f
Proof. We proceed in stages.
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(I) If he LY(G) and f = Ji € BY(G), then

(h = Ji)(e fh 2t dx—JJ )da::fﬁdu
G G

If also g = ¥ € B(G) then

ﬁﬁdu:ﬁmduz(h*p*m(e):(h*p*p): hiidv
G G

Since A(G ) {f f e LY(G)} is dense in Cy(G), we have

Sd,u = ﬁdz/ (4)
ie. ~
Azdi — Eaa
dv

almost everywhere on G.

(IT) We will define a functional J on C’C(C:’)7 which will give (1). Fix ¢ € Cc(é). For each o € supp(¢)) there
is u € C.(G) with @(o) # 0 (since C.(G) is dense in L'(G)). Then

u* xu(o) = u(o)u(c) >0

and hence, by compactness, we may find uq, ..., u, € C.(G) such that

n
gzZuf*ui
i=1

o supp(y))  supp®(§) = {o € G : §(o) # 0}

e ge BT n LY(G) < BY(G) (by the previous corollary), and hence g = v for some v € M, (C:') (by
Bochner’s theorem).

We let

where

Ym= djlsupp" h

)y

Again, Equation (4) tells us that this is independent of the choice of u € M(CAJ) with i € BY(G). Notice
that since § = v = 0, we see that J(¢) > 0 if p € CF(G). Also

J(f) = L Py (5)
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for appropriate u. Now let 1) € C.(G) and T € (A?; then for suitable v € M(é) we have

s = [ S 0aw(o) = [ £ avtro)

(Recall the change-of-variables formula

L foTdy = L fd(voTY)

for integration with respect to pushforward measures.)
Ezercise 10.22 (Probably A3). Show that

In particular, the first equation shows that ji € BY(G).
We hence see, using Equation (4), that

o
7w = [ 2au00) = sw)
é fi(o)
So J is the Haar integral. Furthermore, Equation (5) yields for suitable u and 1 € C.(G) that

fA b = J(WF) (6)
G

ie. du(o) = ﬁ(a)da. Hence p € Ma(CA}'); ie. dp = ﬁdmé with ﬁ € LY(G) (by Radon-Nikodym). This
proves (1).
To see (2), note that Equation (6) yields for z € G and suitable y that
(o) = | a@)n(o) = | _a@jito)io
G G
Writing f = fi, we are done. O Theorem 10.21

We consider what constitutes “suitable” normalizations of m¢ and mg, as in the statement of the previous
theorem.

1. Suppose G is compact and mg(G) = 1. Then for o € G we have, as in the proof of discreteness of CA?,
that
~ 1 ife=1
(o) = if o
0 else
Since 1 € BT n LY(G) < B*(G). Hence by the inversion theorem we have
1=1(e) =J (o) o(e) do=mg({1})
G =1
So mg is the counting measure.
2. Suppose G is discrete. Let mg({e}) = 1; i.e. that mg is the counting measure. Let f = 1¢.) =

* 1{@} e Bt n Ll(G) < BI(G) Then

flo) =) o@)ley(z) =1

zeG

ES
ey

and the inversion theorem yields that

me(G) = L 1dmg = JG Flo)do = fle) =1
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3. Let G = R. Let mpg satisfy mg([0,1]) = 1. We shall choose «, 3 > 0 such that amg and Smg (also

normalized as above) satisfy the inversion theorem. Since exp(—|z|) = 0 for x € R, we get on R =~ R

that
2¢

1+ 52

0
s aJ exp(—isz) exp(—|z|)dz = QaJ =
R 0

is positive-definite. Hence by the inversion theorem we have that

exp(—|z|) = QQJ explist) Bds

R 1+82

for z € R. In particular, letting x = 0, we get that

1
1=2 ——ds =2
QIBJR1+52 5 afr

1

5-- Lypical choices are a =1 and 8 = i ora=pf=

ie af =

i

2T

Remark 10.23.

1. If p,v € M(G), then = = [iv (pointwise product), so B(G) = {Ji : p € M(G)} is a subalgebra of
Cy(G).

2. Let B?(G) = B n L*(G). If f € BYG), then
memswwmu<w

so B(G) € B%(G).
Theorem 10.24 (Plancherel theorem). If f € L' n L?(G), then Hf||L2(@) = ||fllz2(a) (provided the measures

are normalized as in the inversion theorem). Furthermore, there is a unitary U: L?(G) — L? (@) such that
Uf =f for fe L' n L3(G).
Proof. We have by a previous proposition

TODO 8. ref

that f* « f € BY n L'(G) < BY(G), so the inversion theorem applies. Thus, using unimodularity of G
and the inversion theorem, we have

J;MPmnG= fHa f(a)de

so we get the first statement. R R

We have that L' n L?(G) is dense in L*(G). Let K = { f: f e L' n L*(G) } < L?(G). It remains to show
that K is dense in L2(G).

Note that K is invariant under translation: we have o = f = J/'\f for 0 € G and f e L' n L?G).

Furthermore, K is invariant under multiplication by {Z : x € G }: we have %f = .r/;k\f for x € G and
fe L' L?(G@). We shall use this to show that K+ = {0}, which in a Hilbert space suffices to show density.
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Suppose then that 1) € K. Then for ¢ € K we have
0= wl3) = | el (o

So 1 = 0 by the uniqueness proposition for inverse transform.
TODO 9. ref
Fix f € CF(G) with

eo(1) = JG fdmg =1

so there is a neighbourhood U of 1 with ¢o(7) > 0 for 7 € U. In particular, for ¢ as above we have

Then ¢g = fe K has

02@(5*4100) :0*(E(5*<p0) :0*@900

(One should check this.) Hene o #1(7) = 0 for almost every 7 € U; i.e. ¢(g7) = 0 for such 7. Thus
ma-almost-everywhere we have ¢ = 0. 0 Theorem 10.24

Remark 10.25. If f € L' A L%(G) (with K as above), then U* f = f,
flo) = | r@)otao

TODO 10. Conjunction?

We do this using the first computation in the proof of the Plancherel theorem.
Lemma 10.26.

1. If o, 0 € Co(@G), then @ x1p = h for some h e BY(G).

2. Let AP(G) = {f: feBP(G)} forpe{1,2}. Then AP(G) is dense in L?(G).
Proof.

1. C.(G) < L3(@G), so @ = U¥p, ¢ = U*p € L2(G), and p = = @ € L1(G). But & € B(G) for any
we LYG); so g+ e BYG). Let h = ¢ 1), and apply the inversion theorem.

2. Suppose f € L”(CA}') and € > 0. Let (k;); be a contractive summability kernel for Ll(é). Then for some
i we have || f — k; = f||, <e (A2Q1). Let o, 9 € C.(G) satisfy

[ki — el <e
1= fllp <e
Then
If =@ tllp < If = ki x fllp + [k = f = ki % llp + ki = — 0 =]l
<et+et+e [|Yp
——
<e+| £l
Thus by the first item, we have ¢ = € Al(CA}’) c A%( A), so we are done. O Lemma 10.26

Our goal now is Pontryagin duality. If z € G, we let Z € G be Z(0) = o(z). We wish to show that the map

G — G given by x — T is a surjective homeomorphism.
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Remark 10.27. Tt is evident that 2 — Z is a homomorphism.

Given a symmetric relatively compact neighbourhood V € G of e, we let hy =

ﬁlv * ]_V Then

1. Since 1}, = 1y (using unimodularity), we have that hy € BT n L'(G) < BY(G).

2. supp(hy) € V2

3. The value at e is given by
1

wle) = o

J ly(z)ly(z te)dz = 1
v

Warning 10.28. (hy)vey (where V is the class of symmetric neighbourhoods of e) is not a summability kernel.

Proposition 10.29. The map G — G given by x — T 1is injective.
Proof. For hy as above, the inversion theorem yields that
hy (z) = J hy (0)o(z)do = f hyvidmg,
G G

If x # e, find V so = ¢ V?; then

~

L?@dm@ =hy(z)=0#1=hy(l) = JGh ¢ dmg
1

Soz#1=c¢

O Proposition 10.29

Theorem 10.30 (Pontryagin duality theorem). The map G — G given by x — I is a surjective homeomor-

phism.

Proof. Let T = {Z:2e G} < G.

(I) We show that the map G — T given by x — Z is a homeomorphism onto its image. Suppose (x4 ) 1s &

net in G and zg € G. Consider the following convergences:

1. 2o > 20 in G.
2. f(ra) = f(x0) for all fe BY(G). (This is o(G, B*(G))-convergence.)

~ o ~ . pay
3. To — xp in G.

We will show that these are equivalent.

Since BY(G) < Cy(G), we get (1) implies (2). For hy as above we have xq * hyy € BY(G). If (2) holds,

then

hy (25 20) = (x0 * hv) () = (20 * hy) (o) = hv(e) = 1

Hence by construction of hy we see that z, 'z, is eventually inside V2. Thus (2) implies (1).

On G the topology w* = J(LOO(CA;'),LI((A?)) coincides with 7 = J(LOO(C:'),Al(CA;')). Indeed, T € w*,

A~

and since Al(G) is dense in Ll(@), we get that 7| ball(L*(G)) (closed unit ball) is Hausdorff. Two

~

comparable compact Hausdorff topologies on ball(L*(G)) must coincide. Now we use the inversion

theorem: if f € BY(G) and = € G then

f@) = | Fyotapar = | faamg

It is then immediate that (2) and (3) are equivalent.

(IT) T is closed in G. By A1Q]1, since I' is homeomorphic to G, we get that I' is complete, and thus closed.
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~

(ITI) We show that I" = G. IfT S G, then there is x € G and a neighbourhood U of 14 such that

U2x nT = @. Hence if p,9 € Cj(@) with suppe € U and suppy < Uy, then ¢ =1 # 0 but
(p = )(Z) = 0 for each Z € . By lemma

TODO 11. ref

there is h e BI(C:') such that h = © * 1); so, by inversion theorem, we have

0=nh(z) = L h(o)Z(o)do = f@ h(o)o(z M )do = h(z™1)

~
~

(Recall if h € Ll(é) then h e A(G).) Hence h =0 on G by uniqueness proposition

TODO 12. ref

This contradicts our construction, so I' = G. 0 Theorem 10.30

Definition 10.31. If u € M(G), we let the Fourier-Stieltjes transform of u be
o) = | o@duta)

for 0 € G. We let B(G) = {i: pe M(G)} < Cp(G).

A~

Theorem 10.32 (Uniqueness theorem). The Fourier-Stieltjes transform M(G) — B(G) is injective. Hence
the Fourier transform L'(G) — A(G) given by f — f is injective.

Proof. Let v: G — G be u(z) = 7. Given u e M(G), we have o.~' € M(G). Then for o € G we have

o —

o) = | o) dute) = [La@H(uor ) e) = ot @)
G ~—~— G
2(3)
Hence if 1 # 0 then gz o:~! # 0; by the uniqueness proposition
TODO 13. ref

we then have that ,M/OL\_l # 0, and i # 0. (It is clear that u — [i is linear.) 0 Theorem 10.32

11 Harmonic analysis on compact grapes
Let G be a compact grape. We always assume m(G) = 1.
Fact 11.1.
1. If 7: G — B(H)* is a representation, then there is S € B(H)* such that Sm(G)S™ < U(H).

2. If m: G — B(X)* where X is a finite-dimensional Banach space, then there is invertible S: X — H
such that Sm(G)S~! < U(H). (For us H always means a Hilbert space.)

The moral is that for us it suffices to consider unitary representations of G.
Fact 11.2 (Projections on Hilbert spaces).

(i) If £L < H is a closed subspace, then there is a unique orthogonal projection Py € B(H) with P} = P} = Pr.
and Ran Py = L.

(ii) If P = P? = P* in B(H), then P = P; with L = Ran(P) (automatically closed).
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(iii) If € € M has ||€]| = 1 then Pe = Pee = £\ ). (i-e. Pe(n) = €& ) = & [m)E.)
(i) If §,n e H with |[€]] = [nll, then

1Pe = Pyll < 16C€ 1) = & DI+ 1&n |- = nén [ Il < 201§ = 7l
Hence the map & — Pr is continuous.
Definition 11.3. Suppose 7: G — U(H) be a unitary.
e A closed subspace £ of H is w-invariant if w(x)L < L for each z € G.
e We say 7 is irreducible if the only non-zero closed w-invariant subspace is H.
Lemma 11.4.
1. A closed subspace L S H is w-invariant if and only if n(x)Pr = Pew(z) for each x € G.
2. A closed subspace L S H is w-invariant if and only if L is m-invariant.
Proof.
1. (=) For z € G we have 7(z)Pz = Pym(x)P;. Hence
Per(z) = (n(z™Y)Pp)* = (Pew(z™ Y Pe)* = Pen(2) Py = n(x) P,

(since w(z71) = (m(x)) ™! = (w(2))*).

(<) Obvious.
2. We have P, = I — Py commutes with each 7(x) exactly when P, does. O Lemma 11.4
Proposition 11.5. If H is finite-dimensional then it admits an irreducible w-invariant subspace.
Proof. Let £ # {0} be a m-invariant subspace of minimal dimension. O Proposition 11.5
Theorem 11.6. Suppose G is a compact grape and w: G — U(H) a unitary representation. Then
1. m admits a non-zero, finite-dimensional m-invariant subspace.
2. If m is irreducible, then it is finite-dimensional.

3. Generally (without assuming irreducibility), = is completely reducible: there is a family { Lo }aca of
closed subspaces such that
(a) Each L, is w-invariant.
(b) Each L, is irreducible for m.
(c) Lo L Ls for a# S in A.

(d) The internal direct sum

(—Bﬁa :{Zfai :neN a,...,ay distinct in A, &,, EL%}

acA i=1
is dense in H.

(Note that these conditions together with the assumption that the L, are closed will imply that the L,
are finite-dimensional.) We write
™= @ 7T() fﬁa

acA
on

H=1t-P Lo

acA
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Note that by Pythagoras’ theorem every £ € H can be written uniquely in the form

522504

acA

with each &, € L, and
€17 = 7 éall?

acA
Proof.
1. Fix £ € H with ||£]| = 1. Consider the operator

K& = J Pﬂ(w)gdl‘
G

(Bochner integral, since 2 — Py (,)¢ is continuous). Each of these is rank 1 and thus a compact operator;
so K¢ € K(#H) (the Banach space of compact operators on #). Also if ,{ € A then

<&mo:L@m&mxwmwx
=L@@mo@w@@m

::‘[;<n\ﬂ<x>g<w(x)£|<>>dw
= (n| Ke¢)

) Kg‘ = K¢. If welet n = ¢ = (, then we get
€1Kee) = [ [€lm@ePds
G
where (¢ | m(e)€) =1 > 0; hence (¢ | K¢&) > 0, and K¢ # 0. Also,if y € G and n € H then
w(WKen = | wy)a(@e s
G

:me@@xw@mm
= Kem(y)n

Thus 7(y) K¢ = Kem(y). We now apply the spectral theorem to K¢ to get a sequence of orthogonal
projections { Py, P, ...} (perhaps finite) and Ay, Ag,... € R\{0} such that

lim A, =0
n—0oo0
and
o K¢ = Z An P, (converges in norm, if the sequence is infinite).

n=1,2,...
e Each 1 < dim(P,(H)) < .
e PP, =0ifn#m.
e For T' e B(H) we have TK¢ = KT if and only if TP, = P,T for each n.
We thus have 7(z)P, = P,n(z) for each x € G; so L,, = Ran P, is m-invariant.
2. By (1) and the last proposition, if 7 is infinite dimensional, then it admits an (irreducible) 7-invariant

subspace.
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3. We let
A ={X={Laq}aea, : A satisfies (a)-(c) above }

By (1) and the last proposition we get A # J and A is partially ordered by <. Let I' € A be a chain;
so{L:L =L, for some a € Ay,A e '} € A is an upper bound for A. By Zorn’s lemma, there is a
maximal element p = { Ly }aeca, € A. Let

Then M is 7-invariant by continuity of each 7(z). If M+ # {0}, then (1) and the last proposition
yield an irreducible 7-invariant subspace £ € M. Then u u { £} € A violates maximality of j, a
contradiction. 0 Theorem 11.6

Lemma 11.7 (Schur’s lemma). Suppose w: G — U(H) is a finite-dimensional unitary representation. Then
1. m is irreducible if and only if (w(G)) ={T € B(H) : Tr(z) = w(x)T for allz € G} is CI.

2. If ': G —> U(H') is another unitary representation and © and 7' are irreducible, then if A€ B(H,H')
satisfies Am(x) = n'(x)(A) for each x € G, then A = cU for some c € C and unitary U. (In particular,
if ¢ # 0 we get dim(H) = dim(H').

We sometimes call elements of (7(G))" intertwiners. The finite dimensional assumption is actually

superfluous, once we know the spectral theorem for von Neumann algebras.
Proof.

1. If T € (w(@))’ then so too is T*. Indeed, for x € G we have
T*n(z) = (r(z7'T)* = (Tr(z™')* = w(2)T*

Hence each Re(T) = (T + T*),Im(T) = &(T — T*) € (x(G))". If A = A* € (7(G))’, we can use
spectral theorem to write

A= i APy
k=1

Then each Py has Pym(x) = 7(x) Py for all x € G; so Ran(Py) is m-invariant.

(=) If 7 is irreducible, then A = A* € (7(G))’ implies A = cI for c€ R.
( <) The only orthogonal projections in (7(G))" are 0 and I; we then use the previous lemma.
TODO 14. Ref?

2. If Am(x) = 7’(z)A then

o ker(A) is m-invariant, and hence either{0} or H.

e Ran(A) is n'-invariant, and hence respectively either H or {0 }.

So A is either 0 or invertible. In the latter case we hvave
A*Am(z) = A*n'(2)A = w(x)A*A
(where the last equality follows as in (1)). So A*A = ¢I for some ¢ > 0. Let U = ﬁA. O Lemma 11.7

Corollary 11.8. If G is a compact abelian grape, then each irreducible representation is multiplication by a
character o € G on C.

Again, had we more spectral theory, we could dispense with the compactness hypothesis.
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Proof. If m: G — U(H) is an irreducible representation, then for z € G we have 7(z) € (7(G))" = CI. Hence
we can write 7(z) = o(z)I for o(z) € T (since 7 is unitary). Moreover we have

o(ay)l = w(xy) = m(z)7(y) = (o(x)I)(o(y)]) = o(z)o(y)l
Clearly « — o(x) is continuous, as 7 is. By irreducibility, we get dim(#H,) = 1. 0 Corollary 11.8

Definition 11.9. If 7: G — U(H) and 7’: G — U(#H') are unitary representations (not necessarily irreducible
or finite dimensional), then we say 7 is unitarily equivalent to =" if there is a unitary U € B(H’, H) such that
Ur'(z) = w(x)U for x € G; i.e. '(x) = U*n(x)U. We then set

Irr(G) = {7: G — U(d) : 7 a continuous homomorphism, (7(G))" = CI; (in My(C))}

where U(d) is the d x d unitary grape. We let G = Irr(G)/~ where 7 ~ 7’ if 7 and 7’ are unitarily equivalent.
“Properly” speaking, we have

={[r]|7: G - U(H,) (finite dimensional irreducible unitary representation) }

We have a “standard abuse of notation”: we consider G as a full set of representatlon of its equivalence classes;
i.e. we write “r € G” rather than [7] € G. We have the convention that 7 # 7/ in G means that 7 & ’.

11.1 Matrix coefficient functions

Given 7 € @, we let
Tr = span{ (& |m()n) : §,n € Hr } < C(G) < L*(G)
since m(G) = 1. (Note that if U € U(H,) then {U& | w(-)Uny =& | U*n(-)Un); so m — T, is independent of

equivalence clabs.)
Let dr = dim(#H,) and {e1,...,eq} be an orthonormal basis for H,. Then for £, € H, we have

dr dr
Elm()ny = Cej |©ej |7() p ei|me <£\€ Xeilm) (el m(-)ei)
Then with respect to the basis {e1,...,eq, } we have that m(z) = [m;;(x)], and T = span{m; : i,j €

{1,...,d; }}. This leads to:
Theorem 11.10 (Schur’s orthogonality relations). Suppose 7,7’ € G. Then
1. If 7 # 7' (i.e. they aren’t unitarily equivalent) then T, L Ty in L*(G).

2. If¢,n,(,w e Hy, then
—_ 1
L Elm@)ndClm(z)wydz = (1M w)
In particular, with the notation as above, we get that {/d,m;; : 4,5 € {1,...,d }} is an orthonormal
basis for 7.
Proof. Suppose A € B(Hn,Hr), and let

A= | n()Ar'(z~Vdz
AffG () Ar’(z1)d

(Bochner integral in a finite-dimensional Banach space). Then for y € G we have

~

Ar'(y) = L m(z)Ar'( z 7'y )dz = Lw(yx)Aw’(fldx =n(z)A

(y~to)~t
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Hence, by Schur’s lemma, we have

i 0 ifmr#n
cl else

where ¢ # 0. Now suppose &, € Hyr, (,w € Hor, and A = w(|-> € B(H, Hy). Then
A= f x)w{r'(z)n |- Hdz
€10 = | €I @n| s
- | T In(eyda

Hence if m # 7/, we get the first result. If 7 = 7/, then A = cI for some c € C; we compute

1

()

(where the last equality follows from Parseval). O Theorem 11.10

Definition 11.11. We set
=@ T <C@) < L*(G)

el

We look to defining the tensor product of representations. If H,H’ are finite dimensional Hilbert spaces,
then on H ® H’, the quantity

Zfi@@l‘
i—1 j=1

is well-defined and sesquilinear. (To check this, one fixes n ® 7’ and checks that (£,£') — Q& |n®n') is
bilinear on H x H’ (where H has the same addition and conjugated scalar multiplication; i.e. a - & = @f).
One then does the same on the right.) If #,H’ have orthonormal bases {e1,...,eq} and {e},... €}, }, then
{ei®e;ief{l,...,d},je{l,...,d }} is a basis for H @ H' with {e; ® €} |ex ® €)) = 0;;0,¢ (Kronecker §).
So{e;®ej:ie{l,...,d},je{l,...,d }} is an orthonormal basis for H @ H'. If w e H® H’, we write

d d
/
DIPLE
i=1j=1

@1 )= >0 D& InpndE  mpw

i=1j=1

and
d d

wlwy =2 Y lwiy? =0

i=1j=1

59



is non-zero if w # 0. So ¢{-|-) is an inner product on H ® H'.
If U € U(H) and U’ € U(H'), then

URU)) &®& =D, Us&U'E

i=1 i=1
is a well-defined unitary operator. Given 7,7’ € C:’, the map

TR :G—>UHr®Har)

x— m(r) @7 ()

defines a unitary representation of GG that is independent of unitary equivalence class up to unitary equivalence.
Warning 11.12. There is no reason to expect that m# ® 7’ be irreducible.

By complete reducibility, we have

TRn = @ﬂ'l(m")

i=1

for mq,...,m, € G and m; € N the “multiplicity”. So T(G) is an algebra of functions. Indeed, given 7, n’ € G
and &,m € Hy, (,w e Hy, we have

ElmCmClm(w) =ER TR ()n@w)

~(eo (oo
i=1

<§®c 3 Pz-m<->Pijn®w>

i=1j=1
= YD UPERQ) | mi() Py (n®@w))
i=1j=1
e T(G)
where P;; are orthogonal projections.
Definition 11.13 (Conjugate representation). Suppose 7 € G and {e1,...,eq, } an orthonormal basis for

Hr with m;;(-) = {ej |m(-)e;). We define 7: G — U(H,) by T(x) = [m;;(z)] (with respect to the chosen
orthonormal basis).

Suppose 7 = U*n'(-)U for unitary U. Then (U*);;, = Uy;. Then

dr
7 =U*r"(")U = 2 Uz‘kﬂfce(')UEJ’]
ki=1
So
dr - o
7= > Unmp( Vg5 | = (O)*7 ()T
k=1

(where U = [U;;]). Thus 7 ~ 7’ implies 7 ~ 7/.

Note also that 7(G) is conjugate-closed: we have (¢|n(-)n) = (¢ |7(-)7) where £ and 7 are pointwise
conjugated with respect to some orthonormal basis.

Remark 11.14. If G is abelian then for 0,0’ € G we have o®c =00’ as CQC ~ C; henced = o~ L.

Notation 11.15. We let \: G — U(L?(G)) be the left regular representation, so A\(z)f(y) = f(z~1y) for
almost every y. Note that C(G) < L?(G) is a dense (hence not closed) A-invariant subspace.

Theorem 11.16 (Peter-Weyl).
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1. Forme G let {eT,. .. ;e } be an orthonormal basis for H, and let

Trj=span{m; i€ {l,....d:}} S T» € C(G) < L*(G)

Then Ty ; is A-invariant, and Ar j = Pr jA()|Tr; & T (where Py ; is the orthogonal projection onto

T.5)-

2. We have

3.

T =DTx

TeG
is uniformly dense in C(G), and hence L*-dense in L*(G).

We have

A= 6—) (=)

re@
on

dr
Q) =C-D DTy = - D H

reGI=1 e

and in particular {/dym;; 2 i,j€{1,...,dz },m€ CA?} is an orthonormal basis for L*(G).

Proof.

1.

If 2,y € G then using the matrix product we have

@)y (y) = 7y (2 Ly) = 2 ml@ ™) iy (v)

m()

i.e.
dr

7TzJ Z 7TkJ

Let U;: Hx — T ; be given by Ujell = +/d;m;;. Then for z € G we have

Ui Arj(@)Ujel = UFAg j(2)7/dei

so Uz ;(1)U; =T

Let us see that T(G) is point separating. Notice that if z # e in G and V is a symmetric relatively
compact neighbourhood of e with # € V2 then A\(x)ly = 1,y and 1,1 # 1y = A(e)ly so A(z) # A(e).
Hence if  # y in G then \(z) # \(y) (as AM(z~ty) = A(e)). By complete reducibility there is a
finite-dimensional A-invariant A-irreducible subspace £ < L?(G) such that A(x) £ # A(y)[£. Then
there are &, 1 € L such thatr = A(-) [ £ satisfies (& | w(z)n) # (& |7(y)n). Hence, by Stone-Weierstrass
we have T(G) is uniformly dense in C(G).

. We simply use (1), and use (2) to see that {v/d,m;;() : ¢,5 € {1,...,d=},m € G‘} is a maximal

orthonormal set in L?(G).

[0 Theorem 11.16
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11.2 Fourier analysis on compact grapes

Definition 11.17 (Fourier transform). If f € L}(G) and 7 € G we let

= J f(z)m(z™ dx € B(H,)
G

(Bochner integral). This is also

mji(x)

where we’ve chosen an orthonormal basis for H.

If fe L*(G) < L'(G) (by the last result of Holder/Cauchy-Schwarz inequality), then by the results on
orthonormal bases in Hilbert spaces we get L2-convergence

dx
=303 Wdemij | )N dris

ne@id*l
= Z d, (J fx)mj(x )do:) dam;;
ne@ i,j=1

§a f@)mja(z=")

> dx T((f(m)m())

el
where there may be an arithmetic error in the last formula. This leads to:

Theorem 11.18 (Inversion theorem). If f € T(G) then for x € G we have
= 2, dx Tr(f(m)m(a))

Proof. The right hand side (call it f) is in 7(G), and ||f — f]l2 = 0, so f = f on G as each is continuous.
O Theorem 11.18

Theorem 11.19 (Plancherel/Riesz-Fischer). If f € L'(G) then
fel’(G) — Z dr| f(m ™) s #r,)
el

where .,
1Al = D Kef | AeD)P?
i=1

1s the Hilbert-Schmidt norm. Furthermore we have

Nl=

1fll2 = Z | () sz

e

i.e.

(@) = - D VdHS(H

ne@
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Proof. Riesz-Fischer theorem. 0 Theorem 11.19
Theorem 11.20 (Parseval’s formula). If f,g € L?(G) then

L Fodm = Y d Te((F(m))*5(m))

ne@

Proposition 11.21 (Uniqueness). If u € M(G) then the Fourier-Stieltjes transform is given on 7 in G by
i) = | #aan)

Then if fi(w) = 0 for every 7 € G we must have u=0.
Proof. If fi(m) = 0 for all 7 then
f fdu =0
G

for all f € C(G), since 7'(G)”‘H°O = C(G) by Peter-Weyl. Hence p = 0 (by Riesz representation theorem).
[0 Proposition 11.21

for all f e T(G). So

11.3 Character theory

If p: G — U(H) is a finite-dimensional unitary representation, we define its character to be x, = Trop: G — C.

Proposition 11.22. Suppose 7,7’ € G and p: G — U(H) is a finite dimensional representation. Then

n
1. XaXn' = Xn@n' = Z mM;Xnr,, Where
i=1

n
TR = @ 7r§m")
i=1

with T € é’

2. J XaXpdm = m(m, p) := max{m e {0} UN: 7™ is equivalent to a subring of p}.
G

3. pe@ — J X, %dm =1
€]

4. If we let 1 be the trivial representation then

1 ifn’' =mn
m(1, 7 @) {O else

Proof.
1. Suppose z € G. Then



2. Suppose
p=Pmm
i=1
then .
T®p=@Pr ;)

i=1

We then use the first item and the Schur orthogonality relations.

3. If

then as above we have

=1
So
n
XoXp = Y MM X, X,
ij=1
So
n n
J Ix,|?dm = Z mimjf XX, dmdm = Z mi
G i,j=1 G , k=1
6”
This is > 1 unless p is irreducible.
4. Combine the second and third items. 0 Proposition 11.22

Definition 11.23 (Normalized characters). If 7 € G we let b, = iX”‘

Then if N
TRn = (—Bﬂ'gmi)
i=1
for distinct my,..., 7, € CAT', then
VRV <. PV o3
¥ —i=1 dﬂ—dﬂ—lxm - = dﬂ—dﬂ—/ s

| S S —

convex combination
This motivates the following:
Definition 11.24. A discrete hypergrape is a set I' such that ¢!(T") admits a product which satisfies
1. 6, -6, € Prob(T') = { (Py)rer = D Py =1,py 20 }
~el
2. There is an identity for -, call it d;

3. There is an involution v +— 7 (i.e. with v = 7) such that &; € supp(d, - d/) if and only if " = 7.
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12 Amenability

Definition 12.1 (von Neumann). A discrete grape G is called amenable (Day) provided there is a finitely
additive probability measure p: P(G) — [0, 1] satisfying

Proposition 12.2. There is a bijective correspondence between finitely additive probability measures on a set
X and
MIFP(X)={Mel®(X)* :M(e)=0if =01 (°(X),M(1)=1}

(These are called means.)

Proof. Given M € M{*(X), let u(E) = M(1g). Conversely, given a finitely additive probability measure u
consider S(X) =span{1g : E € P(X)}. Then check that

e S(X) is dense in £*(X).

e Each 1) € S(X) can be uniquely represented in the form

n
P = Z a;lg,
o1

with the a; distinct elements of C and E; n E; = & for i # j.
Define My: S(X) — C by
My(¢) = ) aip(Ey)
i=1

Then this is a bounded linear functional on S(X), and hence extends uniquely to £*°(X). O Proposition 12.2

Ezample 12.3 (Ultrafilter limits). Let ¢ be an ultrafilter on X; i.e. Y € P(X)\{ J} with A, Beld =
AnBel,and if E € P(X) then exactly one of E and X\E lies in Y.
Define dy: P(X) — [0,1] by

1 fEel
51/{(E)_{

0 else
The associated mean on ¢*(X) will be denoted L, (ultrafilter limit).

Definition 12.4. We say a discrete grape is amenable if there is M € ML (G) such that M (¢ - x) = M (p)
for ¢ € {*(G) and = € G.

Question 12.5. Now let G be a (not necessarily discrete) locally compact grape. What space replaces £*(G)?
L¥(G)? Cp(GQ)? C(G) ={p e Cy(G) : z — ¢-x: G — Cy(G) is continuous }7 (One should check that
Cu(G) is closed in Cy(G).)

Definition 12.6. Let £ be any of L*(G), Cy(G),Ciu(G). We let ME = {M € £* : M(p) = 0if p =
0, M(1) = 1} denote the means on €. We call M € ME left-invariant if M(p-x) = M(p) for ¢ € £ and
zeG.

We will tend to prefer L*(G) and Ciy(G).

65



Remark 12.7. Since the map C},(G) x G — C1,(G) given by (¢, x) — ¢ - x is continuous, we may define an
action of L1(G) on C1,(G)

o1 = | (o) f@ar
(Bochner integral) for ¢ € L}(G) and f € C1,(G).
Notation 12.8. Let
PY@G) = {f e L'(G) : f = 0 almost everywhere,f fdm = 1}
G
Proposition 12.9. Suppose M € MCi,(G). Then M is left-invariant if and only if M(p - f) = M(p) for
all o € Oy (G) and f € PL(G).
Proof.

(=) Note that
Wwﬁ=LMwwH@M=Mw

=M(y)

(<) Ifxe G and f e PY(G), then z * f € P(G). Then for ¢ € C1,(G), v € G, and f € P}(G) we have
M(p-x) =M((¢-x)- f) =M(p- (xxf)) = M(p)

(One should check the second equality.) O Proposition 12.9
Notation 12.10. We run into a problem: for ¢ € L®(G) the map = — ¢ -  may not be norm continuous.
For f e L'(G) and ¢ € L*(G), we define ¢ - f by

<s0~f,g>=f </>~f=f of * gdm
G G

Le.if Ly: L'(G) — L'(G) is convolution on the left by f, then we set ¢ - f = L}¢ (adjoint operator).
Remark 12.11. Notice that if f, f’ € L'(G) and ¢ € L®(G), then
o (fx ) = Liup (@) = (LyLp) o = Li Lo = (- ) - [
Likewise we have (¢ - f)-x = ¢ (f #x) for x € G. (One should check this.) Finally, note that
e flloo = [ILF0lleo < I LglllNloo < [1fl1llello0
Proposition 12.12. If o € L®(G) and f € L*(G), then ¢ - f € Ciu(G).

Proof. First note that for z,y € G we have

Ty

- f)-2) = (¢ f) -yl < llllollf #z = fxyls —0
One checks that this implies that ¢- f is equal almost everywhere to an element of C}, (G). O Proposition 12.12
Theorem 12.13. The following are equivalent:
1. L*(Q) admits a left-invariant mean.
2. C.(G) admits a left-invariant mean.

3. Cw(G) admits a left-invariant mean.

Proof.
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(1) = (2) Restriction.
(2) = (3) Restriction.

(8) = (1) Let (ko)aca S P(G) be a summability kernel. If ¢ € L*(G) then ¢ - k, € Cj,(G) for each «
by previous lemma. Let U be an ultrafilter on A containing all cofinal subsets. If a,b € £*(A) with
lirrfll(aa —by) = 0, then Ly (a) = Ly (b). (Recall that Ly denotes the ultrafilter limit mean.) Given
ae

left-invariant M € MC,(G), we let
My: L*(G) — C
¢ = Lu((M(p - ka))aca)
It is now straightforward to check that

e My is linear and bounded with || My|| < | M]].
o My(p) =0if p > 0in L®(G).
o My(1l) =1.

So M € ML*(G). Now if f € P1(G) then
ggka*f:f:gg}‘f*ka

(by A2). Hence for ¢ € L*(G) we have

OO0 Theorem 12.13

Corollary 12.14. G is amenable if and only if there is M € ML®(G) such that M(p - f) = M(p) for
v e L*(G) and f € PQ).

Proof. Built into the proof of the previous theorem. O Corollary 12.14
Notation 12.15. Since (L'(G))* = L*(G), we regard L'(G) < (L*(G))*.
Lemma 12.16.

1. ML*(G) is w*-compact and convez.
W*
2. PY(G) = ML*(Q).
Proof.

1. Tt is straightforward that ML®(G) is convex and w*-closed. Moreover, ML (G) < ball((L*(G))*)
(closed unit ball); hence by Banach-Alaoglu it follows that ML (G) is w*-compact. Indeed, note that
since |||l — || = 0, we have M (|¢|) < ||¢|leo- Next, by Cauchy-Schwarz inequality, we have

B1P|~ = lelelllo

1
2
0

1
2
o0

IM(@Y)| < (M@e)H(MEP)? < |0l
(note that Cauchy-Schwarz applies since M (@) is a Hermitian bilinear form). So

[M(p)| = [M (1) < [[Hleolllloo = llplloo
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w*
2. Since P1(G) € ML*®(G), we get PL(G) < ML*(G) by (1). Let M € ML*(G) < ball((L*(G))*)
(by proof of (1)). Then by Goldstine’s theorem we have a net (f)s in ball(L!(G) such that

M = w*-lim f,
Write each .
foc = Z ikfa,k
k=0

with each for = 0 and for < |fal; 50 | fakllt < |Iflli- If ¢ = 0in L*(G) then

0< M(p) = li(inz'kf farpdm
NS

>0
So since positives span L*(G) we see that
M = W*'lim(foz,o - fa,2)
O = W*-lim(faJ — fayg)
But also
1= M) =t [ (o = fa)dm = lmn( fool = 1oz )

17||fa,2|

But each of || fa.0] 1 lies in [0,1]. So

tim|| fo ol = 1

li[gnllfoa?”l =0

We conclude that 1 .
M = w*-lim ——— fo g€ PL(G) "
a || faollt
as desired. 0 Lemma 12.16
Theorem 12.17 (Reiter). The following are equivalent:
1. G is amenable.

2. There is a net (fo)a in PY(G) such that
hor¢I1Hf * foc - fa”l =0

for f e PY(G).
3. Given e >0 and K < G compact there is r € P1(G) such that |z +r —r|; <& forxe K.

4. There is a net (r,) in P1(G) such that for K = G compact we have

limsup||z #* rq — rol1 =0
& zeK

(We call such a net a Reiter net.)
5. There is a net (ry) in PY(G) such that

lim||x «rq — 74l =0
(e

for x € G. (We call such a net an asymptotically invariant net.)
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Proof.

(1) = (2

2) =)

Let M € ML*(Q) satisfy thatM (¢ - f) = M(yp) for p € L®(G) and f € PY(G) (by last corollary).
TODO 15. ref

Let (ga)aca in PH(G) satisfy
M = w* lir% Ja
aEe

(by lemma). Then for ¢ € L*(G) and f € P}(G) we have

0=M(p—¢-f)= limf Jolp — @~ f)dm = limf (f * ga — ga)pdm
acA G acA G
So
W- (111314(.]0 *Jo — ga) =0
(weak limit). If F < PY(G) is finite, we let
Cr = conv{ (f # go — ga)ger s a € A} < (I(G))F

(finite product of Banach spaces). By the Hahn-Banach theorem we have Cp' = ol (where [|-]| is
any “natural” norm on (L'(G))F). So0e Cp' = Cipll‘”. Now let

Cpia) = conv{ (f * go — ga) fepr(c)y : @ € A} < (LY(G), ||}1)" @)

Since 0 € CT:H.” for each F', we have that 0 € OPl(G)prOd. Hence there is a net (fg) in conv{g, : a € A}
such that

0 = prod- lién(f * fg — fp)

for f € P1(G). So
0 =lim|[f * f5 — fsx

for each f e PY(G).

Fix € > 0, f € P}(G), and K < G compact. Let U be a relatively compact neighbourhood of e such
that ||z = f — f|l1 <e for z € U. Then

1 1
s~ f|| < [ e s - flde <
Hm(U) 1 m(U) Ju
Let z1,...,x, € G be such that
K c UIkU
k=1

Use the hypothesis to find g such that

<é€
1

m(U)
eP1(G)

for ke {1l,....n}. So||f * fay — faolli <& Welet r = fx f,,. Thenforx e U and ke {1,...,n} we
have

1
Hlka*f*fozg - fao
—_—

1 1
[(xpz) = r — 7|1 < (xkz)*rfmlmzj*r 1+Hm(U)lka*rfao 1+Hfa071"||1
1
< - —1 + 2
a:k*(x*fx*f T U=x<f)»=fcm1 c

+ 2¢
1

<|w*f—f|1+Hf—m(1U)1u*f

< 4e
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Thus
supllz =7 —rl]; < 4e
reK

(3) = (4) Let A= {(K,e): K € G compact,e > 0}, preordered by (K,e) < (K',¢') if K € K’ and € > ¢'. For
each a = (K, ¢) € A we let r,, satisfy (3).

(4) = (5) Clear.
(5) = (1) Any w*-cluster point of an asymptotically invariant net is left-invariant. [0 Theorem 12.17
Corollary 12.18. The following are equivalent:
1. G is amenable.
2. L*(G) admits a right-invariant mean.

3. L*(G) admits a two-sided invariant mean.

Note: we are not suggesting that any left-invariant mean is also right-invariant; just that such means
exist.

Proof.

(1) = (2) Let M € MCy(G) be a left-invariant mean. Consider the map ¢ — ¢ for p € Cy(G) give by
@(z) = p(x~1). This is an isomorphism of the algebra Cy(G) with 1 =1 and @ > 0 if ¢ > 0. Let M be

given by M (p) = M(@). Then M is right-invariant. Hence there is a right-invariant mean on Cy, and
hence on L*(G).

(1) = (3) Let (f.) be an asymptotically left-invariant net in P!(G). Then (f¥) is an asymptotically right
invariant net. Consider the net (f, * f*) in P1(G). (Recall that P!(G) is closed under convolution.)
Now if x,y € G we have

s foox f& vy = fax R0 < llws fax £ xy —as forr S+ 2 for £ = fax f2I1

<
< faxy—fallh+ e fa — fall
0

Anny w*-cluster point of this last net in ML*(QG) is thus a two-sided invariant mean. [0 Corollary 12.18

13 Extent of amenable grapes

Remark 13.1. If G is compact then G is amenable.
Proposition 13.2. If G is abelian then G is amenable.

Proof. For z € G we let L, € B(L*(Q)) be L,(f) = x * f. Then L*(¢) = -z for p € L*(G). We recall that
ML*(G) is w*-compact and convex, and each L*(ML*®(G)) € ML*®(G). Since G is abelian we get that
{L%:xe G} is acommuting (semi)grape of affine maps in ML®(G). We then apply Markov-Kakutani; any
fixed point is then a left-invariant mean. OO0 Proposition 13.2

Remark 13.3. Suppose 3: G — H is a continuous homomorphism with dense range. Then the map
Clu(H) — Cy(G) given by ¢ +— ¢ o 3 satisfies:

e It is a linear isometry (dense range)

TODO 16. conjunction?

[ ] 1H0ﬂ:1G

e poB=0ifp=0.
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Note that (po ) -z = (¢ - B8(x)) o B, which is why each ¢ o 8 € Ci,(G).

Proposition 13.4. If 3: G — H is a continuous homomorphism with dense range and G is amenable, then
H is amenable.

Proof. Let Mg be a left-invariant mean on C),(G). Define My on Cy,(H) by My (¢) = Mg(¢ o 8). Then
My is a left-invariant mean on Ci, (H). O Proposition 13.4

Remark 13.5. Some consequences:

1. Let G4 be G with the discrete topology. If G4 is amenable, then so is G. Indeed, we just consider the
identity map 8: G4 — G. (In this case we say that G is discretely amenable.)

2. If N is a closed normal subgrape of G and G is amenable then so too is G/N. Indeed, we just consider
the quotient map 8: G — G/N.

Proposition 13.6. Suppose G admits an amenable closed normal subgrape N for which G/N is amenable.
Then G is amenable.

Proof. (The philosophy is to use Weil’s “integral” formula.) Let ¢: G — G/N denote the quotient map. Then
p+— poqisamap

Cu(G/N) > Cu(G:N)={peCnh(G):p=n-pforne N}

that is surjective. Indeed, if p € C,(G : N), we let $(zN) = ¢(x). Since ¢ is an open map it follows that
@€ Cu(G/N), and goqg = p.
Let My € MCy(N) be left-invariant. Let Tasy, : Ciu(G) — Ciu(G : N) be given by

Trye(x) = My(o-xIN) = My(n — p(rn))
Then
o [Tayp(@)] < |l -2l = [[¢lloo, and Thry is linear.

o |Thvo(x) — Tarne(x)] < |l — ¢ ylloo; 80 Tary e is continuous and (Thry @) - 2 = Tary (¢ - 2), s0
TMN(P € Clu(G)

o Thy (Cru(@)) € Cy(G : N) since for x € G and n € N we have
Tayp(zn) = My (¢ - (zn) IN) = My (n' = p(znn’)) = My (¢ - 2IN) = Tary p(2)

Let Thry¢ € Clo(G/N) be the associated element, as above. We have left-invariant Mg/n € MCy(G/N).

Let Mg : Cu(G) — C be given by Mg(yp) = Mg/N(f;[;go). One checks that f;[;(go -x) = mgo -xzN; it
then follows that Mg is a left-invariant mean. [0 Proposition 13.6

Corollary 13.7. Solvable grapes are amenable.

Proof. Evident induction. (Recall here that G = [G(n—=1) G®=1] (closure) with G = G.)
0 Corollary 13.7

Ezample 13.8. Euclidean motion R"™ x SO(n).
Remark 13.9 (Tits). If K is a field and G < GL,,(K) (discrete) then either

e G 2 F with F =~ F; (free grape on two generators)
e G2 Gy with [G: G1] < w and G is solvable.

Proposition 13.10. If G is amenable and H is an open subgrape, then H is amenable.
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Proof. Let T be a transversal for right cosets of H in G. We define St: Cp(H) — Cy(G) by Sreo(ht) =
o(h) with h € H and t € T. Then St is a linear isometry with Sply = 1g and Sre = 0 if ¢ = 0.
Let My € MCy(H) be given by My(p) = Mg(Ste) (where Mg is a left-invariant mean in MCpg(Q)).

O Proposition 13.10

Proposition 13.11. Suppose there is a family (G )aca of open subgrapes indexed over a directed set A with
Gy € Gy if a < ' suppose each G, is amenable, and that

G:UGa

acA
Then G is amenable.

Proof. For each « let M, be a left-invariant mean in MCp(G,,). Let M, € MCy(Q) be given by M;(go) =

—~

Mo (plg,). Then (Mgy)aea lies in MCy(G), and hence has a cluster point M. If z € G, say = € G,,, and
v € Cp(@G), then for a = g, we have

—~ —~

Ma(p-x) = Ma((#la,) - 2) = Ma(ple,) = Ma(p)
It follows that M is left-invariant. O Proposition 13.11

Remark 13.12. If we do not have an increasing family of open amenable subgrapes, then we can’t conclude
that G is amenable. Consider for example
=@
xeFy

Theorem 13.13 (Fglner). The following are equivalent:
1. G is amenable.

2. Given g,0 > 0 and K < G compact, there are E € G compact and Borel N € K such that m(N) < §

and
m(zE A E)

m(E)
for x e K\N. (Here A\ denotes the symmetric difference.)

<e€

3. Given ¢ > 0 and K < G compact, there is compact F € G such that

m(zF A F) -
m(F)
for x € K. (This is the Fglner condition.)

4. There is a net (Fy,) of compact subsets of G such that for any compact K € G we have

Jim sup "2 Fe & Fa)

=0
& zeK m(Fa)
(We call this a Felner net.)

Before the proof, some consequences:

Ezample 13.14 (Discrete abelian grapes are amenable). Suppose G is an abelian grape; then

c- U @

FCG finite
By the previous proposition

TODO 17. ref
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it suffices to consider a finitely generated grape. There is an obvious quotient map qr: Z — (F). Hence it
suffices to see that any Z* (for k € N) is amenable. Consider the sequence F,, = { —n, —(n—1),...,n—1,n}*.
One checks that this is a Fglner sequence. In fact m1 r, is a Reiter sequence.

Ezample 13.15. Consider Fy = {a,by. If K < F} is finite, we let
0K ={ze K:{ax,br,a ‘2, b 'z} £ K}

Then an inequality something like |K| < 2|0K| holds (see Cayley graph), which implies that the Fglner
condition must fail.

Proof of Theorem 13.13.
(1) = (2)
(I) Given ¢’ > 0, let us find

e compact Fh 2 Fy 2 -+ 2 F,, with m(E,) > 0 and
e A\,..., A\, > 0 such that

Jj=1
such that
LIS
)= L_1p
j; m(E;)
satisfies
|z« -l <& forxe K (7

First, Retier’s, theorem gives 7 € P*(G) such that ||z 7 —r||; <&’ for x € K. There is a sequence
(f1) 4 in C.(G) such that

. / _
Jim [[f, =7l =0

Then let
1

_ ! Pl G

fn

and check that

lim ||f, — 7|1 =0
n—0o0

Hence there is f € C.(G) such that ||z = f — f||; <&’
Now we perform a “layer cake” construction. Fix n e N. For j € {1,...,n}, let

- J
N ()

- 2 F,, with m(E,). We then define

;5 e
= 1g.
U ;Hl 5,

U

So supp(f) 2 E4

This then satisfies

1
Q/J;L < f < Q/J;L + mlsupp(f)

It follows that

po oo I lem(ES) _ / m(supp(f))

1711
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Let

1 [fllom(E;) 1
wn W 1E
AR Zﬂ D[l m(Ey)
—_
)\j>0
ISPy n - . .
and observe that ¥, = Z (B )1 E; and Z A; = 1. Furthermore, it is a routine computation
m(E;)
j=1 J j=1
that
1

ln — flli < 5n + 1m(supp(f))

and hence for large enough n, say — +1 supp( f) < %, we are done.

(II) We let ¢ satisfy Equation (7), with ¢/ = (K), provided m(K) > 0 (otherwise we let N = K and
we are done). Note that if F, F € G with En F = ¢ and « € G then

ctEAE)N (xFAF)=Q

[\

” @EAE)L@FAF)=(z(BEuF)A(EUF)

Write

(with E,+1 = ). We thus have that

1=
3
gj

J
|z %9 — 1| Z 2(E\Ei+1) — 1E1¢\E7‘,+1)

j=1 )1,:1
n n )\J
= (Le(BaBi ) — 1EAE L)
1:112:1 m(Ej) (Ei\E;11) \Ei+1
n n )\l
= Z Z la(EAE 1) — LEAE., | (Pairwise disjoint supports)
i=1j=1 m(E7)
n J
Aj
j;m(Ej) ;1 (BA\Ei11)A(E\E; 1)
= z”: o leb,nB;
= m(EJ) J J
Thus
oe :vE AE
> o+ g — @l = ZA miek; £ By)

m(K)

Then we have

z m(zE; A Ej)
(5€>J |z % —plide =Y, N\ | ———L2dx
K J; U (E5)
so at least one de > meEA)E)dx we let £ = E; for this j. Let
J
Nelpeg mMEELE)
m(E)
which is closed, and thus Borel. Then N satisfies ely(z) < m(:vl?l%E)’ 0
m
m(zE A E)
N ————d 0
m(N) m(E) x <
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(2) = (3) First note that if G is discrete and m is the counting measure, we could just let § < 1 and be
done. The hard part of the proof, then, is when G is not discrete.
Let K € G be compact; let A = K U K?. Hence if z € K then m(zA n A) > m(zK) = m(K). Let
0<d< % If B < A is Borel with m(A\B) < § then for x € K we have

zAnAc (zBn B)u(z(A\B)) u (A\B)

SO

20 <m(K) < m(zAn A) < m(zB n B) +2m(A\B)
5
<

Hence 0 < m(xB n B). So xBn B # #, and x € BB~!. Thus K < BB~!. Now for ¢ > 0 the

FAF
m(xm(F) < g for z € A\AN and m(N) < 0. Let
B = A\N. Notice for C, D < G we have C\D < (C\F) u (F\D); so CAD < (CAF)u (FAD,).

Thus if x,y € B~! we have

hypothesis gives a compact F < G such that

m(z 'yF A F) = m(zF A yF)
=m(zF AF)+m(F AyF)
=m(FAz7'F) +m(y 'FAF)
<em(F)
by Equation (7). Hence for z € K € BB~! we are done.

(8) = (4) Straightforward. (Just like Reiter’s theorem.)
(4) = (1) If (F,) is a Fglner net, then (m(F ) r.) in P}(Q) is a Reiter net. O Theorem 13.13

Remark 13.16. The construction of a Fglner net above does not provide F, € F,, for a < o’. This can be
arranged, generally, but is technical. However, in practice, most Fglner nets one encounters do satisfy this.

Fact 13.17. If G is separable and amenable, then L*(G) is separable. If L*(G) is separable, then we can
extract a Reiter sequence from a Reiter net. If this last holds, then Folner sequences can be found.

13.1 Hulanicki’s theorem
Let A\: G — U(L?*(Q)) be the left regular representation: \(x)h(y) = h(x~ly) for almost every y € G. Let

AT(G) = {<h A ()n)y = i@j MOy b= (hy)7y € LA(G)® }

Note that
oe]
LX(G)N = { h = (h;)}, : each hj e L*(G), > ||h]l3 < o }

Fact 13.18. A" (G) < BT(G) = {u: G — C | u continuous, positive definite}.

(G
Notice that forh = (h;)72, < L? (GYM we have

IRy = 33 [AORD| = 25 1R AR oo

Remark 13.19. 1. If |J| > |N| and h = (h;)jes € L*(G)Y), so ZHhﬂH% < o, then h; # 0 for at most
jedJ
countably many j € J. Hence (h| A\ (-)h) € AT(G). (Easy check.)
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2. (Eymard, 64) Each u € AT (G) can be written in the form u = (h|A(-)h) for some h € L?>(G). (This is
the standard form of von Neumann algebras.)

Theorem 13.20 (Hulanicki’s theorem I). G is amenable if and only if there is a net (uy) in AT (G) such
that limu,, = 1 uniformly on compact sets.

Proof.

(=) Let (r,) in P1(G) be a Reiter net. Let h, = ré; SO

||h||2=(f |ha|2dm) =<j radm> :1
G e}

Note for a,b > 0 we have |a — b|? < |a —b|(a + b) = |a® — b?]; so for x € G we have
I\ o= hallf = | Iha(a™9) = ooy

< | Frata™) = ol
= ||z *re — 1ol
Hence
|1 - <h0¢ | A(x)ha>| = |<ha ‘ ha> - <hoz | )\((ﬂ)ha>|
< |[hall2|ha — Mx)hea |2 (by Cauchy-Schwarz)
=1
- 1
= |lz*ra —rallf
and it follows that us = {(hq | A(*)hay converges uniformly on compact sets to 1.
OO0 Theorem 13.20
TODO 18. Missing stuff

Corollary 13.21 (To Fell’s absorption). If u € AY(G) then & |n()ue AT (G). If m: G — U(H) a unitary
representation then

pe M(G),n() = | lz)duta)

G
feLNG),n(f) = ; f(x)m(z)de
both in the strong operator sense.

Proposition 13.22 (Choi’s multiplicative domain). If M < B(H) a unital C*-algebra and 7 € B(H)* a
state such that T(A*A) = |7(A)|? for Ae M, then

T7(AB) = 7(A)7(B) = 7(BA)
for Ae M and B € B(H).

Theorem 13.23 (Hulanicki’s theorem II). G is amenable if and only if for any unitary representation
7: G — U(H) we have ||7(f)|| < |A(f)|| for all f e LY(G). In diagram:

(where C* = 71'(L1(G))”'H c B(H)). We call C5 the reduced C*-algebra, sometimes denoted C)(G).
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Proof. (=) Let (uy) in AT (G) satisfy

1 = limu,
[e3

uniformly on compact sets. Since A\: L'(G) — C¥ is injective (just as shown in the proof of Peter-Weyl)

TODO 19. ref

the map A(f) — 7(f) is well-defined on A\(L!(G) (non-closed subspace of B(L?(G))).
Fix f € L}(G) and € > 0; find £ € H with ||¢]| = 1 such that

7 (I < Im(fEN* + €
For each o we have v, = uo{&|m(-)€) € AT(G) (by Corollary 13.21), and write

Va = Z<hmj |>‘()h0‘u>
j=1

where ”
Do, 13 = vale) = uale) €| m(e)€) = 1
j=1 —
=[lglI2=1
Then

7 (NI < {r(HElm(f)E) +e
=&|n(f* =) +e

- L(f* ¥ F)(@)E | 7(@)E)dz + ¢

=lim | (f*= f)(z)lia(a:) ﬂ'(x)f_zdx +e

¢l
@ Ja —_—

va ()

~tim Y, [ (7 Do, | Me)ha, )do + = (LDCT)

j=1

0
=1lim Y (ha, | A(f* 5 f)ha,,) + e
j=1
0
= hén Z ||A(f)ha” ||§ t+e
j=1

.
< ml|ACH) 1?1, 13+

Jj=1

= [AHI? +e
Since € > 0 was arbitrary, we get that ||7(f)]| < [|A(f)]].

(<) (Adapted from Brown and Ozawa). Let 0: G — T = U(C) be the trivial character. Then the
integrated forms are as follows:

e 0: M(G) — B(C) = C given by
o() = L 1dju(z) = p(G)

e 0: L'(G) — B(C) = C given by
o0 = | s

(sometimes called the augmentation character).
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Notice that o(u*) = p(G=1) = o(u), so o(f*) = a(f) for f € L'(G); so o is a *-homomorphism. By
assumption we have |o(f)| < [|[A(f)]| for f € LY(G).

If pe€ M(G) and f € PY(G) satisfies o(f) = 1, we have o(u * f) = o(u)o(f) = o(u). So

lo(w)] = lo (= I < 1A= HI < 1A AN < AW
——
<[ flli=1
ie. |o(p)] < ||A(w)|. Hence it follows that o extends to a functional, again called o, on M} = )\(M(G))H.H.
Then o(I)) = () = 1, and
S A)) = SOAG* * 1)) = o (1 5 1) = (o) > 0

and it follows that o is a state on M. (Note that this also implies that o(A*A) = (0(A))? for A € M}.)
Let 7 € B(L?*(G))* be any norm-preserving extension of o; i.e. 7} M§ = 0. We have (by the black box)
that 7 is a state on B(L*(G)).

Let M: L*(G) — B(L*(G)) be M(¢)f = ¢f m-almost-everywhere (representation of L*(G) as
multiplication operators). Then M (@) = M(p)* and M (py) = M(p)M (). We compute for z € G,
almost every y € G, and h € L?(G)

M) M (p)M@)*h(y) = Ma)M(0)(y = h(zy)) = M) (y = @(y)h(zy)) = ¢(z ™ y)h(y)

Hence \(z)M (p)\(z)* = M (¢ -x~1). By Choi’s multiplicative domain technique, we see that (since
T(A*A) = o(A*A) = |o(A)|* = |7(A)|?, for A e M)

(1o M)(p-2) = T(A(b2-1)M(£)A(02)) = T(A(G-1)) (T © M)(p)7(A(0)) = (T 0 M)()

since

Also if ¢ = 0 then o
(ToM)(p) = (o M)(p2p?) = T(M(p2)*M(p%)) > 0
and (1o M)(1) =1. So 7o M € ML*(G) is left-invariant. O Theorem 13.23

13.2 A final fact about amenability: closed subgrapes

Consider the grape ring

(C[G]z{Zaizi:al,...,aneC,xl,...,xneG}
i=1

Suppose

are elements of C[G]. We define the multiplication

ST = Z Z a; Bjwiy;

i=1j=1

and the involution

n
* — -1
S* = 2 a; ;
i=1

78



$0
n n
S*S :ZZOT e

We define a pairing: for u € Cp(G) and S € C[G] we set
{u, Sy = 2 a;ju(x;)
i=1

Fact 13.24. For u € Cy(G) we have u € BT (QG) if and only if (u,S*S) = 0 for any S € C[G].

We define a partial order on B*(G): for u,v € BT (G) we say u < v if and only if {u, S*S) < (v, S*S) for
all S e C[G]; i.e. if and only if v — u e BT (G).

Lemma 13.25. Suppose w: G — U(H) is a unitary representation.
1. Ifue BT (G) and u < {&|w(-)E) for some & € H then there is 1 € H such that uw = (n|x(-)n).
2. If u={n|n(-)ny € BT(G) for some &,n € H, then there is ( € H such that u = (| 7(-){).
Proof.
1. We observe that

e 7 extends to a x-homomorphism 7: C[G] — B(#) by

7'('(2 O[i.’EZ') = 2 CV{]T(.’EZ')
i=1 i=1

and m(S*) = w(S)*.
e The map C[G] — H given by S — m(S)¢ is linear.
We let Lo = 7(C[G])¢ (the image of this second map); we let £ = Ly (norm closure). For (S,T) €

C[G] x C[G] we let
[ST]u = Cu, S*T)

Then [-|],: C[G] x C[G] — C is sesquilinear and positive [S'| ST, = (u, S*S) = 0 for S € C[G]. Hence
Cauchy-Schwarz inequality applies, and we have
<[518i [T17)i
< (u, 5*8)2 <u T*T)z
< (€| m(S*8)Y3E | 7(T*T))? (by assumption)
= [l (S)Ellll=(T)E]

Hence [-] -], extends to a bounded sesquilinear form [-|-], on £ x £. Notice on Ly x Ly we have
[7(S)¢|m(T)E]w = (u, S*Ty and [7(S)E | m(S)E]w = {u, S*S) = 0, so this is a positive form. So the
Riesz representation theorem for Hilbert spaces provides A € B(L) such that

(ST = [w(S)E | m(T)E]u = (w(S)E | AT (T)E)

Notice also that (w(S)¢| An(S)E) = 0; so A is positive on L. Also for x € G we have

STl

[2S | 2Ty = (u, S*2™ 2Ty = (u, S*T) = [S| T

so (m(z)m(S)E | An(x)m(T)E) = (w(S)E | An(T)E), and hence m(x)* An(z) = A on Ly, and hence on L.
So Am(z) = m(z)A. We use black box the second to get A2 which satisfies w(z)Az = Azn(z) for z € G.
We then let n = Aéf.

79



2. We use polar decomposition: for S € C[G] we have
0 < [ m(S*G)m)

3
_ i 3k (e + ity | w(S*9) (€ + i*n))

h=0 >0
= Lt mm(S* )+ m) — € 7S )€ )
< (56 +m|rs 936+ )

so (&l m(-)my < (3(&+n) |7(-)(€ +n)). We then appeal to the first item to get our (. [ Lemma 13.25
Corollary 13.26. B* n C.(G) is contained in A*(G) and is a dense subset.

Proof. Suppose u € Bt n C.(G). Let K = supp(u). Let U be a relatively compact neighbourhood of e, and
let

v = ﬁ@w [ A1)
(matrix coefficient of \). So
1 KU nzU
o) = o [ )Lty = 5 E 0
so v K = 1. Hence we write u = (£ | n(-)¢) (appealing to Adam’s talk) and
Y T®N(- — (' [ AD (w
- w0 = O Lk | (T @NOEB 1) = & X

for some w’,w € L*(G)) (and we have used Fell’s absorption principle). By the lemma
TODO 20. ref
we write u = (¢ | A ()¢) € A*(G). Furthermore, if

u= Y {hi | A(hy)
j=1

we can approximate by
n

un = D 1 Chy | AC)hy)

=1

and each hy,...,h, can be L?-approximated by fi,..., fn € (G). One checks that u can be uniformly
approximated by

2A1AO ) e BY 2 Co(@)
j=1
0 Corollary 13.26
Corollary 13.27 (Hulanicki I'). G is amenable if and only if there is a net (uy) in Bt n C.(G) such that
1 =limu,
uniformly on compact sets.

Corollary 13.28. If G is amenable and H is a closed subgrape then H is amenable.

Proof. Let (uq) in BT n C.(G) be as in Hulanicki I above. Then each uy |H € BT n C.(H) (as H is closed),
and the net (uy[H) in BT n C.(H) shows that H is amenable. O Corollary 13.28

80



	Introduction
	Locally compact grapes
	Haar integral and Haar measures
	The modular function
	The convolution algebra of measures
	Atomic/continuous and Lebesgue decompositions
	More convolutions
	Unitary representations
	Gelfand theory for commutative Banach algebras
	Abelian harmonic analysis
	Harmonic analysis on compact grapes
	Matrix coefficient functions
	Fourier analysis on compact grapes
	Character theory

	Amenability
	Extent of amenable grapes
	Hulanicki's theorem
	A final fact about amenability: closed subgrapes


