Course notes for PMATH 833

Christa Hawthorne
Lectures by Nico Spronk, Winter 2018

Contents

1 Introduction 1
2 Locally compact grapes 2
3 Haar integral and Haar measures 9
4 The modular function 14
5 The convolution algebra of measures 21
6 Atomic/continuous and Lebesgue decompositions 24
7 More convolutions 25
8 Unitary representations 35
9 Gelfand theory for commutative Banach algebras 37
10 Abelian harmonic analysis 40
11 Harmonic analysis on compact grapes 54
11.1 Matrix coefficient functions 58
11.2 Fourier analysis on compact grapes 62
11.3 Character theory 63
12 Amenability 65
13 Extent of amenable grapes 70
13.1 Hulanicki's theorem 75
13.2 A final fact about amenability: closed subgrapes 78

1 Introduction

Rough outline:

- Locally compact grapes, Haar measures
- Abelian grapes, Pontryagin duality
- Compact grapes, Peter-Weyl, aspects of duality
- Amenable grapes, Hulanicki's theorem

2 Locally compact grapes

Recall:

Definition 2.1. Suppose $X \neq \varnothing$ is a set. A topology on X is a family $\tau \subseteq \mathcal{P}(X)$ satisfying the following:

- $\varnothing, X \in \tau$
- If $U, V \in \tau$ then $U \cap V \in \tau$ (and hence closed under finite intersections)
- If $\left\{U_{i}\right\}_{i \in I} \subseteq \tau$ then

$$
\bigcup_{i \in I} U_{i} \in \tau
$$

We call the pair (X, τ) a topological space.
Example 2.2 (Initial topologies). Suppose $X \neq \varnothing$; suppose we have topological spaces $\left\{\left(Y_{i}, \tau_{i}\right)\right\}_{i \in I}$ and maps $f_{i}: X \rightarrow Y_{i}$ for each i. We define

$$
\sigma\left(X,\left\{f_{i}\right\}_{i \in I}\right)=\left\{U \in \mathcal{P}(X):_{V_{i_{1}} \in \tau_{i_{1}}, \ldots, V_{i_{n}} \in \tau_{i_{n}}} \text { fur each } x \in U \text { there are } i_{1}, \ldots, i_{n} \in I \text { and } x \rightarrow \bigcap_{k=1}^{n} f_{i_{k}}^{-1}\left(V_{i_{k}}\right) \subseteq U\right\}
$$

Sets of the form

$$
\bigcap_{k=1}^{n} f_{i_{k}}^{-1}\left(V_{i_{k}}\right)
$$

as above form a base for $\sigma\left(X,\left\{f_{i}\right\}_{i \in I}\right)$; sets of the form $f_{i}^{-1}\left(V_{i}\right)$ form a sub-base.
Example 2.3.
Product topology Suppose

$$
X=\prod_{i \in I} Y_{i}
$$

with projections $\pi_{i}: X \rightarrow Y_{i}$. We let

$$
\underset{i \in I}{X} \tau_{i}=\sigma\left(X,\left\{\pi_{i}\right\}_{i \in I}\right)
$$

The basic open sets are of the form

$$
\prod_{i \in I} V_{i}
$$

where each $V_{i} \in \tau_{i}$ and all for all but finitely many i we have $V_{i}=Y_{i}$.
Metric topology If $\rho: X \times X \rightarrow[0, \infty)$ is a metric, then the metric topology is given by $\tau_{\rho}=\sigma\left(X,\{\rho(x, \cdot)\}_{x \in X}\right)$.
Recall:
Definition 2.4. If $(X, \sigma),(Y, \tau)$ are topological spaces and $f: X \rightarrow Y$, then we say f is continuous if $f^{-1}(V) \in \sigma$ for each $V \in \tau$. A subset $K \subseteq X$ is compact (with respect to σ) if whenever

$$
K \subseteq \bigcup_{i \in I} U_{i}
$$

for $U_{i} \in \sigma$, there are $i_{1}, \ldots, i_{n} \in I$ such that

$$
K \subseteq \bigcup_{k=1}^{n} U_{i_{k}}
$$

Definition 2.5. A topological space (X, τ) is locally compact if for any $x \in X$ there is $U \in \tau$ with $x \in U$ such that \bar{U} is compact. (Recall

$$
\bar{U}=\bigcap\{X \backslash V: V \in \tau, V \cap U=\varnothing\}
$$

is the closure of U.)

Example 2.6.

1. $\left(\mathbb{R}, \tau_{|\cdot|}\right)$ is locally compact.
2. Suppose $X \neq \varnothing$; consider the discrete topology $(X, \mathcal{P}(X))$. This is locally compact.
3. Suppose $\left\{\left(X_{i}, \tau_{i}\right)\right\}_{i \in I}$ is a family of locally compact spaces. Then

$$
\left(\prod_{i \in I} X_{i}, \underset{i \in I}{X} \tau_{i}\right)
$$

is locally compact if and only if all but finitely many $\left(X_{i}, \tau_{i}\right)$ are compact.

Rough.

($\Longleftarrow) ~ U s e ~ T y c h o n o f f ' s ~ t h e o r e m . ~$
(\Longrightarrow) Each basic open set is of the form

$$
U=V_{i_{1}} \times \cdots V_{i_{n}} \times \prod_{i \in I \backslash\left\{i_{1}, \ldots, i_{n}\right\}} X_{i}
$$

If ($X_{i_{0}}, \tau_{i_{0}}$) is not compact for some $i_{0} \in I \backslash\left\{i_{1}, \ldots, i_{n}\right\}$ then $\pi_{i_{0}}(\bar{U})=X_{i_{0}}$ is not compact, so $\overline{U_{i_{0}}}$ is not compact.
4. Suppose \mathcal{X} be an infinite dimensional vector space over \mathbb{R}. Suppose $\|\cdot\|$ is a norm on \mathcal{X}. A lemma of Riesz tells us that if $\mathcal{Y} \subseteq \mathcal{X}$ is a closed subspace, then there is $x \in b_{1}(\mathcal{X})$ (the unit ball) such that $\operatorname{dist}(x, \mathcal{Y})>\frac{1}{2}$. (This is a good exercise; use the Hahn-Banach theorem.) Inductively, we can find a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subseteq b_{1}(\mathcal{X})$ such that $\left\|x_{n}-x_{m}\right\|>\frac{1}{2}$ for $n \neq m$. Hence no ball $x+b_{r}(\mathcal{X})=B(x, r)$ (where $r>0$) is pre-compact; i.e. has compact closure.
5. Suppose $\mathcal{F} \subseteq \mathcal{X}^{\prime}$ (the algebraic dual) be a subspace which separates points; i.e.

$$
\bigcap_{f \in \mathcal{F}} \operatorname{ker}(f)=\{0\}
$$

Then $(\mathcal{X}, \sigma(\mathcal{X}, \mathcal{F}))$ is not locally compact. For example, if V_{1}, \ldots, V_{n} are neighbourhoods of 0 in \mathbb{R}, then

$$
U=\bigcap_{k=1}^{n} f_{k}^{-1}\left(V_{k}\right)
$$

contains a subspace \mathcal{Y} of \mathcal{X}. Using the Hahn-Banach theorem, we can find $f \in \mathcal{F}$ such that $f(\mathcal{Y})=\mathbb{R}$; so $f(U)$ is not compact, so \bar{U} is not compact.

Definition 2.7. Suppose G is a grape. A topology $\tau \subseteq \mathcal{P}(G)$ is called a grape topology if the following maps are continuous:

- $\cdot(G \times G, \tau \times \tau) \rightarrow(G, \tau)$
- $(\cdot)^{-1}:(G, \tau) \rightarrow(G, \tau)$

Remark 2.8. In fact, this is equivalent to requiring that the map $G \times G \rightarrow G$ given by $(x, y) \mapsto x y^{-1}$ be continuous. Indeed, if this holds, then $y \mapsto(e, y) \mapsto e y^{-1}=y^{-1}$ is continuous, so $(x, y) \mapsto\left(x, y^{-1}\right) \mapsto$ $x\left(y^{-1}\right)^{-1}=x y$ is as well.
Proposition 2.9. Suppose (G, τ) is a topological grape.

1. If $U \in \tau$ and $x \in G$ then

$$
x U=\{x y: y \in U\}, U x=\{y x: y \in U\} \in \tau
$$

and if $\varnothing \neq A \subseteq G$ then

$$
A U=\{a y: a \in A, y \in U\}, U A=\{y a: y \in U, a \in A\} \in \tau
$$

2. If $U \in \tau$ with $e \in U$ then there is $V \in \tau$ with $e \in V$ such that $V^{2}=V V \subseteq U$. Furthermore, we can arrange that V be symmetric: i.e. that $V^{-1}=\left\{y^{-1}: y \in V\right\}=V$.
3. If H is a subgrape of G, then so too is \bar{H}.
4. If H is an open subgrape of G, then H is closed.
5. If K, L are compact subsets of G, then so too is $K L$.
6. If K is compact in G and C is closed, then $K C$ is closed.

Proof.

1. If $x \in G$, let $L_{x}: G \rightarrow G$ be $y \mapsto x y$; then L_{x} is continuous as the composition of $y \mapsto(x, y) \mapsto x y$. But $L_{x}^{-1}=L_{x^{-1}}$ is also continuous; so L_{x} is a homeomorphism. Hence $x U=L_{x}(U) \in \tau$. Furthermore

$$
A U=\bigcup_{a \in A} a U \in \tau
$$

Right multiplication is similar.
2. Let $\mu: G \times G \rightarrow G$ be $(x, y) \mapsto x y$. Then $\mu^{-1}(U)$ is an open neighbourhood of (e, e), and hence contains a basic open set $V_{1} \times V_{2}$ with $e \in V_{1}$ and $e \in V_{2}$. Let $V=V_{1} \cap V_{2}$. We can replace V with $V^{-1} \cap V$ to get symmetry; V^{-1} is open, being the image of an open set by the homeomorphism $x \mapsto x^{-1}$.
3. If $x, y \in \bar{H}$, write

$$
\begin{aligned}
& x=\lim _{\alpha} x_{\alpha} \\
& y=\lim _{\beta} y_{\beta}
\end{aligned}
$$

where $\left(x_{\alpha}\right),\left(y_{\beta}\right)$ are nets in H. Then

$$
x y=\lim _{\beta} x y_{\beta}=\lim _{\beta} \lim _{\alpha} \underbrace{x_{\alpha} y_{\beta}}_{\in H} \in \bar{H}
$$

By continuity of $x \mapsto x^{-1}$, we see that for $x \in \bar{H}$ we have $x^{-1} \in \bar{H}$ as well.
4. Note that

$$
H=G \backslash \underbrace{\bigcup_{x \in G \backslash H} \underbrace{x H}_{\text {open }}}_{\text {open }}
$$

So H is closed.
5. Tychonoff's theorem tells us that $K \times L \subseteq G \times G$ is compact; hence $K L=\mu(K \times L)$ is compact.
6. Suppose $x k \in \overline{K C}$. Then $x=\lim _{\alpha} k_{\alpha} y_{\alpha}$ with $k_{\alpha} \in K$ and $y_{\alpha} \in C$. By dropping to subnet, we may assume that $k=\lim _{a} k_{a} \in K$. Then

$$
k^{-1} x=\lim _{\alpha} k_{\alpha}^{-1} k_{\alpha} y_{\alpha}=\lim _{\alpha} y_{\alpha}
$$

So $\lim _{\alpha} y_{\alpha}=k^{-1} x \in C$. Proposition 2.9

Let (G, τ) be a topological grape and H a subgrape of G. The collection of left cosets G / H comes equipped with a quotient topology $\tau_{G / H}=\left\{W \subseteq \mathcal{P}(G / H): q^{-1}(W) \in \tau\right\}$, where $q: G \rightarrow G / H$ is $x \mapsto x H$. (This is the final topology determined by q.)

Notice that if $U \in \tau$ then $q^{-1}(q(U))=U H \in \tau$. Hence $\{q(U): U \in \tau\} \subseteq \tau_{G / H}$; i.e. the map q is open.
Definition 2.10. The space $\left(G / H, \tau_{G / H}\right)$ is called a homogeneous space.

Proposition 2.11. Suppose (G, τ) is a topological grape, H a subgrape of G. Then

1. If H is closed in G then $\left(G / H, \tau_{G / H}\right)$ is Hausdorff.
2. If H is normal in G then $\left(G / H, \tau_{G / H}\right)$ is a topological grape.
3. If there is $x \in G$ such that $\{x\}$ is closed then (G, τ) is Hausdorff.

Proof.

1. If $x, y \in G$ have $q(x) \neq q(y)$ then $e \notin x H y^{-1}$ (indeed if we had $e=x h y^{-1}$ then $y=x h$). Since H is assumed to be closed we have $x H y^{-1}$ is closed. So by Proposition 2.9 there is some $V=V^{-1} \in \tau$ with $e \in V$ such that $V^{2} \subseteq G \backslash\left(x H y^{-1}\right)$. But then $e \notin V x H y^{-} V=(V x H)(V y H)^{-1}$; indeed, if we had $e=v x h y^{-1} v^{\prime}$ for $h \in H$ and $v, v^{\prime} \in V$, then $v^{-1}\left(v^{\prime}\right)^{-1}=x h^{1-} y \in V^{2} \cap x H y^{-1}$, contradicting our choice of V. Hence $V x H \cap V y H=\varnothing$, so $q(V x) \cap q(V y)=\varnothing$ in G / H.
2. If H is normal, then q is a homomorphism:

$$
q(x) q(y)=x H y H=x y H y^{-1} y H=x y H=q(x y)
$$

If $x, y \in G$ and $W \in \tau_{G / H}$ with $q(x) q(y) \in W$ then $x y \in q^{-1}(W) \in \tau$; so, by continuity of multiplication in G, there are $U, V \in \tau$ such that $x \in U, y \in V$, and $U V \subseteq q^{-1}(W)$. So $q(U) q(V)=q(U V) \subseteq W$; this shows continuity of $(x H, y H) \mapsto x y H$ as a map $(G / H) \times(G / H) \rightarrow G / H$. Continuity of $x H \mapsto x^{-1} H$ is similar.
3. We have $\{e\}=L_{x^{-1}}(\{x\})$ is a closed subgrape, as the image of a closed set under a homeomorphism. So $G \cong G /\{e\}$ is Hausdorff by (1).
\square Proposition 2.11
Remark 2.12. If $\{e\}$ is not closed then $\overline{\{e\}}$ is the smallest closed subgrape containing e. (This follows from Proposition 2.9.) Hence

$$
\overline{\{e\}}=\bigcap_{x \in G} x \overline{\{e\}} x^{-1}
$$

since the $x \overline{\{e\}} x^{-1}$ are closed subgrapes containing e; this is then normal. So $G / \overline{\{e\}}$ is a Hausdorff topological grape.

Our convention will then be to replace any topological grape (G, τ) with $\left(G / \overline{\{e\}}, \tau_{G /\{e\}}\right)$ and thus assume (G, τ) is Hausdorff.

Definition 2.13. A locally compact (Hausdorff) grape (abbreviated l.c.g.) is a topological grape (G, τ) which is also a locally compact (Hausdorff) space.

Remark 2.14.

1. If $x \in G$ and $U \in \tau$ has $x \in U$ and \bar{U} is compact (in which case we say U is relatively compact), then for any $y \in G$ we have $y x^{-1} U=\overline{L_{y x^{-1}}(U)} \subseteq L_{y x^{-1}}(\bar{U})$. Hence to check local compactness of a topological grape, it suffices, to exhibit a compact neighbourhood of one point (usually e).
2. If G is a l.c.g. and H is a normal subgrape, then G / N is locally compact. Indeed, if $e \in U \in \tau$ with \bar{U} compact, then $\overline{q(U)} \subseteq q(\bar{U})$ is compact in G / N.
3. If (X, τ) is a locally compact (Hausdorff) space, then any open subset $U \subseteq X$ and any closed subset $C \subseteq X$, each with the relativized topology, is itself locally compact.

Example 2.15.

1. Let G be any grape with $\tau_{d}=\mathcal{P}(G)$ the discrete topology. Then $\left(G, \tau_{d}\right)$ is a l.c.g.
2. Consider $\left((\mathbb{R},+), \tau_{|\cdot|}\right)$ is a l.c.g.
3. If $\left\{\left(G_{i}, \tau_{i}\right)\right\}_{i \in I}$ are l.c.g.'s, then

$$
\left(\prod_{i \in I} G_{i}, \underset{i \in I}{ } \tau_{i}\right)
$$

is a l.c.g. if and only if all but finitely many of the $\left(G_{i}, \tau_{i}\right)$ are compact.
In particular, $\left(\mathbb{R}^{n},+\right)$ with the product topology (equivalently, any norm topology) is a locally compact grape. Also, if $\left\{F_{i}\right\}_{i \in I}$ is a family of finite grapes, then

$$
\prod_{i \in I} F_{i}
$$

(where the F_{i} is endowed with the discrete topology) is a compact grape and hence a l.c.g.
If $F \subseteq I$ is finite then

$$
G_{F}=\left\{\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} F_{i}: x_{i}=e \text { for all } i \in F\right\}
$$

is an open normal subgrape.
4. We give a construction of the p-adic numbers.

Set construction Fix a prime number p. Let

$$
R_{p}=\prod_{n=0}^{\infty} \mathbb{Z} / p^{n+1} \mathbb{Z}
$$

which is a compact ring; i.e. $(x, y) \mapsto x+y$ and $(x, y) \mapsto x y$ are continuous. As a notational convention, we identify $\mathbb{Z} / p^{n} \mathbb{Z}$ with $\left\{0,1, \ldots, p^{n}-1\right\}$. The quotient map $[\cdot] p_{p^{n}}: \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ is a ring homomorphism which factors through $\mathbb{Z} / p^{m} \mathbb{Z}$ for $m \in\{0, \ldots, n\}$. We let

$$
\mathbb{O}_{p}=\left\{\left(x_{n}\right)_{n=0}^{\infty} \in R_{p}:\left[x_{n}\right]_{p^{n}}=x_{n-1} \text { for all } n \in \mathbb{N}\right\}
$$

This is clearly a subring of R_{p}. If $\left(x^{\alpha}\right)_{\alpha \in A} \subseteq \mathbb{O}_{p}$ is a net converging to $x \in R_{p}$, then for each $n \in \mathbb{N}$ there is $\alpha_{n} \in A$ such that for $k \in\{0, \ldots, n\}$ we have $x_{k}^{\alpha}=x_{k}$. Thus for $k \in\{1, \ldots, n\}$ we have $x_{k-1}=x_{k-1}^{\alpha}=\left[x_{k}^{\alpha}\right]_{p^{k}}=\left[x_{k}\right]_{p^{k}}$. Hence $x \in \mathbb{O}_{p}$, so \mathbb{O}_{p} is closed, and is thus a compact subring of R_{p}.
Let $\mathbb{1}=(1,1, \ldots)$, which is the identity in R_{p} and \mathbb{O}_{p}.
Density of $\mathbb{Z} \mathbb{1}$ (and $\mathbb{N}_{0} \mathbb{1}$) in \mathbb{O}_{p} and p-series representations The map $\mathbb{Z} \rightarrow \mathbb{O}_{p}$ given by $m \mapsto$ $m \mathbb{1}=\left([m]_{p},[m]_{p^{2}}, \ldots\right)$ is a ring homomorphism. If $x=\left(x_{n}\right)_{n=0}^{\infty} \in \mathcal{O}_{p}$ (where $x_{n} \in \mathbb{Z} / p^{n+1} \mathbb{Z}=$ $\left.\left\{0, \ldots, p^{n+1}-1\right\}\right)$ then

$$
x_{k} \mathbb{1}=\left(\left[x_{k}\right]_{p}, \ldots,\left[x_{k}\right]_{p^{k}}, x_{k}, x_{k}, \ldots\right) \xrightarrow{k \rightarrow \infty} x
$$

and hence $\overline{\mathbb{N}_{0} \mathbb{1}}=\mathbb{O}_{p}\left(\right.$ where $\left.\mathbb{N}_{0}=\{0\} \cup \mathbb{N}\right)$; hence $\overline{\mathbb{Z} \mathbb{1}}=\mathbb{O}_{p}$. We call \mathbb{O}_{p} the ring of p-adic integers. Notice that if $x=\left(x_{n}\right)_{n=0}^{\infty} \in \mathbb{O}_{p}$ then each

$$
x_{n}=x_{0}+\sum_{k=1}^{n} \frac{x_{k}-\left[x_{k}\right]_{p^{k}}}{p^{k}} p^{k}=\sum_{k=0}^{n} a_{k} p^{k}
$$

where each $a_{k} \in\{0, \ldots, p-1\}$ is uniquely determined. Hence we may think of

$$
x \sim \sum_{k=0}^{\infty} a_{k} p^{k}
$$

One can check that the map $\mathbb{O}_{p} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\mathbb{N}_{0}}$ given by $x \mapsto\left(a_{k}\right)_{k=0}^{\infty}$ is a homeomorphism, though not a homomorphism. (Here the latter is endowed with the product topology.)

Valuation and norm Given $x \in \mathbb{O}_{p}$, we let

$$
v_{p}(x)=\inf \left\{n \in \mathbb{N}_{0}: x_{n} \neq 0\right\}=\sup \left\{k \in \mathbb{N}_{0}: p^{k} \mid x_{n} \text { for all } n \in \mathbb{N}_{0}\right\}
$$

We have $v_{p}(0)=\inf \varnothing=\sup \mathbb{N}_{0}=\infty$. We let $|x|_{p}=p^{-v_{p}(x)}\left(\right.$ where $\left.|0|_{p}=p^{-\infty}=0\right)$.
Proposition 2.16. For $x, y \in \mathbb{O}_{p}$ we have
(a) $v_{p}(x)=\infty$ if and only if $x=0$; i.e. $|x|_{p}=0$ if and only if $x=0$.
(b) $v_{p}(x y)=v_{p}(x)+v_{p}(y)$; i.e. $|x y|_{p}=|x|_{p}|y|_{p}$.
(c) $v_{p}(x+y) \geqslant \min \left\{v_{p}(x), v_{p}(y)\right\}$; i.e. $|x+y|_{p} \leqslant \max \left\{|x|_{p},|y|_{p}\right\}$.
(d) $\mathbb{O}_{p}^{\times}=\left\{u \in \mathbb{O}_{p}: u^{-1}\right.$ exists $\} \subseteq\left\{u \in \mathbb{O}_{p}:|u|_{p}=1\right\}$.

Proof.
(a) Obvious.
(b) Notice that by the series representation we have

$$
x_{n}= \begin{cases}0 & \text { if } n<v_{p}(x) \\ \sum_{k=v_{p}(x)}^{n} a_{k} p^{k} & \text { if } n \geqslant v_{p}(x)\end{cases}
$$

The result then follows.
(c) Also follows from the series representation.
(d) Notice that if $u \in \mathbb{O}_{p}^{\times}$then

$$
0=v_{p}(\mathbb{1})=v_{p}\left(u u^{-1}\right)=v_{p}(u)+v_{p}\left(u^{-1}\right)
$$

where $v_{p}(u), v_{p}\left(u^{-1}\right) \geqslant 0$. Hence $v_{p}(u)=0$.
Proposition 2.16
Corollary 2.17. The map $\rho: \mathbb{O}_{p} \times \mathbb{O}_{p} \rightarrow[0, \infty)$ given by $(x, y) \mapsto|x-y|_{p}$ is a metric on \mathbb{O}_{p} with

$$
\tau_{\rho}=\left(\underset{n \in \mathbb{N}_{0}}{X} \tau_{d}\right) \upharpoonright \mathbb{O}_{p}
$$

(the restriction of the product topology).
Proof. $-\mathbb{1} \in \mathbb{O}_{p}^{\times}$, so if $x, y, z \in \mathbb{O}_{p}$, then

$$
\rho(x, z)=|x-z|_{p}=|x-y+y-z|_{p} \leqslant \max \left\{|x-y|_{p},|y-z|_{p}\right\} \leqslant \rho(x, y)+\rho(y, z)
$$

and $\rho(x, y)=|x-y|_{p}=|(-\mathbb{1})(y-x)|_{p}=\rho(y, x)$. Also $\rho(x, y)=0$ if and only if $x=y$. Finally, note

$$
V_{\rho}\left(x, p^{-n}\right)=\left\{x_{0}\right\} \times \cdots \times\left\{x_{n-1}\right\} \times\left(\prod_{k=n}^{\infty} \mathbb{Z} / p^{k+1} \mathbb{Z} \cap \mathbb{O}_{p}\right)
$$

with the former a base for τ_{ρ} at x and the latter a base for the product topology at x.
Corollary 2.17
Proposition 2.18.
(a) $\mathbb{O}_{p}^{\times}=\left\{u \in \mathbb{O}_{p}:|u|_{p}=\right\}$; note the latter set is $\left\{u \in \mathbb{O}_{p}: u_{0} \neq 0\right\}=\mathbb{O}_{p} \backslash p \mathbb{O}_{p}$.
(b) If $x \in \mathbb{O}_{p} \backslash\{0\}$ then $x=p^{v_{p}(x)} u$ for some $u \in \mathbb{O}_{p}^{\times}$.

Proof.
(a) The containment \subseteq is given above. For the reverse containment, suppose $u \in \mathbb{O}_{p}$ with $u_{0} \neq 0$. There is a unique $v_{0} \in \mathbb{Z} / p \mathbb{Z} \backslash\{0\}$ such that $u_{0} v_{0}=1$. Then, since $\left[u_{1}\right]_{p}=u_{0}$ we have $\operatorname{gcd}\left(u_{1}, p\right)=1$; so u_{1} is a unit in $\mathbb{Z} / p^{2} \mathbb{Z}$. Hence there is v_{1} in $\mathbb{Z} / p^{2} \mathbb{Z}$ such that $v_{1} u_{1}=1$, and we necessarily have that $\left[v_{1}\right]_{p}=v_{0}$ since $\left[v_{1} u_{1}\right]_{p}=1=v_{0} u_{0}$; we proceed inductively. We find for each $n \in \mathbb{N}$ a $v_{n} \in \mathbb{Z} / p^{n+1} \mathbb{Z}$ such that $\operatorname{gcd}\left(v_{n}, p\right)=1$ and $v_{n} u_{n}=1$; so $\left[v_{n}\right]_{p^{n}}=v_{n-1}$. Thus $v=\left(v_{n}\right)_{n=0}^{\infty}=u^{-1}$.
(b) This follows from the first part and our series representation of x_{n}. \square Proposition 2.18

Remark 2.19. If $m \in \mathbb{Z}$ with $\operatorname{gcd}(m, p)=1$, then $m \mathbb{1} \in \mathbb{O}_{p}^{\times}$. Hence $\left\{\frac{n}{m}: n \in \mathbb{Z}, m \in \mathbb{N}, \operatorname{gcd}(m, p)=\right.$ $1\} \subseteq \mathbb{Q}$ is in fact isomorphic to a dense subring of \mathbb{O}_{p}.
Corollary 2.20.
(a) \mathbb{O}_{p}^{\times}is open and closed in \mathbb{O}_{p}, and is a topological grape.
(b) The family of non-trivial ideals, and hence of closed subgrapes of \mathbb{O}_{p}, is $p \mathbb{O}_{p} \supsetneqq p^{2} \supsetneqq \mathbb{O}_{p} \supsetneqq \cdots$.

Proof.
(a) $p \mathbb{O}_{p}$ is the ρ-open ball around 0 of radius p^{-1}, and is a subgrape. Then $\mathbb{O}_{p}^{\times}=\mathbb{O}_{p} \backslash p \mathbb{O}_{p}$. It remains to check that $u \mapsto u^{-1}$ is continuous on \mathbb{O}_{p}^{\times}. If $u, u^{\prime} \in \mathbb{O}_{p}$ with $\left|u-u^{\prime}\right|_{p}=p^{-n}$, then $u_{k}=u_{k}^{\prime}$ for $k \in\{0, \ldots, n-1\}$. Thus $\left|u^{-1}-\left(u^{\prime}\right)^{-1}\right|=p^{-n}=\left|u-u^{\prime}\right|_{p}$.
(b) $p \mathbb{O}_{p}=\mathbb{O}_{p} \backslash \mathbb{O}_{p}^{\times}$is clearly the unique maximal ideal. Using Proposition 2.18 , we see that $p^{n+1} \mathbb{O}_{p}$ is the unique maximal ideal of $p^{n} \mathbb{O}_{p}$. Since $\overline{\mathbb{Z} \mathbb{1}}=\mathbb{O}_{p}$, we see that any closed subgrape is a (closed) ideal.

Corollary 2.20
Remark 2.21. Note that $\mathbb{1}+p^{n} \mathbb{O}_{p}$ is an open subgrape of \mathbb{O}_{p}^{\times}for $n \in \mathbb{N}$.
p-adic numbers Since $|\cdot|_{p}$ is multiplicative on \mathbb{O}_{p} and $|x|_{p}=0$ if and only if $x=0$, we see that \mathbb{O}_{p} is an integral domain. Hence we may consider the field of quotients

$$
\mathbb{Q}_{p}=\left\{\frac{x}{y}: x, y \in \mathbb{O}_{p}, y \neq 0\right\}
$$

with $\frac{x}{y}=\frac{u}{w}$ if and only if $x w=u y$. We have that any $y \in \mathbb{O}_{p} \backslash\{0\}$ admits form $p^{v_{p}(y)} u$ for $u \in \mathbb{O}_{p}^{\times}$; hence

$$
\frac{x}{y}=\frac{x u^{-1}}{p^{v_{p}(y)}}
$$

Thus

$$
\mathbb{Q}_{p}=\left\{\frac{x}{p^{k} \mathbb{1}}: x \in \mathbb{O}_{p} k, k \in \mathbb{N}_{0}\right\}
$$

Recall that

$$
x_{n}=x_{0}+\sum_{k=1}^{n} \frac{x_{k}-\left[x_{k}\right]_{p^{k}}}{p^{k}} p^{k}
$$

So

$$
\frac{x_{n}}{p^{m}}=\frac{x_{0}}{p^{m}}+\sum_{k=1}^{n} \frac{x_{k}-\left[x_{k}\right]_{p^{k}}}{p^{k}} p^{k-m}
$$

As before, we may thus write $r \in \mathbb{Q}_{p}$ as

$$
r=\sum_{k=m}^{\infty} a_{k} p^{k}
$$

for some $m \in \mathbb{Z}$ with each $a_{k} \in\{0, \ldots, p-1\}$. Consider the map

$$
\begin{aligned}
\mathbb{Q}_{p} & \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\oplus(-\mathbb{N})} \times\left(\mathbb{Z} / p \mathbb{Z}^{\mathbb{N}_{0}}\right. \\
r & \mapsto\left(\ldots, 0,0, a_{m}, a_{m+1}, \ldots\right)
\end{aligned}
$$

where
$(\mathbb{Z} / p \mathbb{Z})^{\oplus(-\mathbb{N})}=\bigoplus_{i \in-\mathbb{N}} \mathbb{Z} / p \mathbb{Z}=\left\{\left(\ldots, a_{m}, a_{m+1}, \ldots, a_{-1}: m \in-\mathbb{N}, a_{k}=0\right.\right.$ for all but finitely many $\left.k\right\}$
is endowed with the discrete topology.
TODO 1. Something about this being isomorphic to a dense subring?

Hence $\mathbb{O}_{p} \subseteq \mathbb{Q}_{p}$ is an open subgrape, and determines the topology. We have that \mathbb{Q}_{p} is a topological field; i.e. all reasonable field operations are continuous.
5. Suppose (\mathbb{K}, τ) is a locally compact topological field.

Aside 2.22. If \mathbb{F} is a finite field, then $\mathbb{F}((X))$ (the ring of Laurent series over \mathbb{F}) is a topological field. (Regarded as a subspace of $\mathbb{F}^{\mathbb{Z}}$ with power series operations.)

TODO 2. Does this work?
Then $\mathrm{GL}_{n}(\mathbb{K})=\left\{a \in M_{n}(\mathbb{K}): \operatorname{det}(a) \neq 0\right\}$ is open in $M_{n}(\mathbb{K}) \cong \mathbb{K}^{n^{2}}$ and hence locally compact. Multiplication is given by polynomials, and hence is continuous, and inversion is given by Cramer's rule via rational functions, and is thus continuous. Thus $\mathrm{GL}_{n}(\mathbb{K})$ is a locally compact grape.
6. $\mathrm{SL}_{n}(\mathbb{K})=\left\{a \in M_{n}(\mathbb{K}): \operatorname{det}(a)=1\right\}$ is closed in $M_{n}(\mathbb{K})=\mathbb{K}^{n^{2}}$, and hence is locally compact; it is a locally compact grape. Also $O_{n}(\mathbb{K})=\left\{u \in M_{n}(\mathbb{K}): u u^{T}=e\right\}$ is a closed subgrape. (Note that $u u^{T}=e$ is given by polynomial equations.)
7. $U(n)=\left\{u \in M_{n}(\mathbb{C}): u u^{*}=e\right\}$ is a closed subgrape of $\mathrm{GL}_{n}(\mathbb{C})$. It is bounded, hence compact (by Heine-Borel).

3 Haar integral and Haar measures

Let G be a locally compact grape. If $f: G \rightarrow \mathbb{C}$, let $f \cdot x, x \cdot f: G \rightarrow \mathbb{C}$ be $(f \cdot x)(y)=f(x y)$ and $(x \cdot f)(y)=f(y x)$. (We write $f \cdot x(y)$ to mean $(f \cdot x)(y)$.) Notice if $x, x^{\prime} \in G$ and $y \in G$, then $\left(f \cdot\left(x x^{\prime}\right)\right)(y)=$ $f\left(x x^{\prime} y\right)=(f \cdot x)\left(x^{\prime} y\right)=\left((f \cdot x) \cdot x^{\prime}\right)(y)$; i.e. $f \cdot\left(x x^{\prime}\right)=(f \cdot x) \cdot x^{\prime}$. Likewise we get $\left(x x^{\prime}\right) \cdot f=x \cdot\left(x^{\prime} \cdot f\right)$.

Let $C_{c}(G)=\{f: G \rightarrow \mathbb{C} \mid f$ continuous, $\operatorname{supp}(f)=\{x \in G: f(x) \neq 0\}$ compact $\}$. We call this the linear space of compactly supported functions on G. Thanks to Urysohn's lemma, we get $C_{c}(G) \supsetneqq\{0\}$. By Tietze's extension theorem, given $K, E \subseteq G$ with K compact, E closed, and $K \cap E=\varnothing$, we have that there is $f \in C^{+}(G)=\left\{f \in C_{c}(G) \backslash\{0\}: f(x) \geqslant 0\right.$ for all $\left.x \in G\right\}$ such that $f \upharpoonright K=$ and $f \upharpoonright E=0$. (This is a strong form of "regularity".)
Exercise 3.1. Prove this in a locally compact metric space.
Proposition 3.2. If $f \in C_{c}(G)$ then

$$
\lim _{x \rightarrow e}\|f \cdot x-f\|_{\infty}=0=\lim _{x \rightarrow e}\|x \cdot f-f\|_{\infty}
$$

In this case we say that f is (left and right) uniformly continuous.
Proof. Suppose $\varepsilon>0$. Let $K=\bar{W} \operatorname{supp}(f)$ where $W=W^{-1}$ is a relatively compact neighbourhood of e. For each $y \in K$ we have $|y \cdot f-f(y) 1|: G \rightarrow \mathbb{C}$ (where 1 is the constant function) is continuous with value 0 at e; hence there is a neighbourhood U_{y} of e such that

$$
|f(x y)-f(y)|=|y \cdot f(x)-f(y)|<\varepsilon
$$

for $x \in U_{y}$. Find a neighbourhood $V_{y}=V_{y}^{-1}$ of e such that $V_{y}^{2} \subseteq U_{y}$. Then

$$
K \subseteq \bigcup_{y \in K} V_{y} y
$$

so

$$
K \subseteq \bigcup_{j=1}^{n} V_{y_{j}} y_{j}
$$

Let

$$
V=W \cap \bigcap_{j=1}^{n} V_{y}
$$

so $e \in V$ and $V^{-1}=V$. Suppose now $x \in V$. If $y \in K$ then $y \in V_{y_{j}} y_{j} \subseteq U_{y_{j}} y_{j}$ for some j; in particular, we have $y y_{j}^{-1} \in V_{y}$. Thus

$$
x y=x y y_{j}^{-1} y_{j} \in V V_{y_{j}} y_{j} \subseteq V_{y_{j}}^{2} y_{j} \subseteq U_{y_{j}} y_{j}
$$

Hence by our choice of $U_{y_{j}}$ we have

$$
|f(x y)-f(y)| \leqslant\left|f(x y)-f\left(y_{j}\right)\right|+\left|f\left(y_{j}\right)-f(y)\right|<2 \varepsilon
$$

If $y \notin K$, suppose we had $W_{y} \cap \operatorname{supp}(f) \neq \varnothing$. Then there would be $z \in W_{y} \cap \operatorname{supp}(f)$; so $z=w y$ for some $w \in W$, and hence $y=w^{-1} z \in W \operatorname{supp}(f) \subseteq K$, a contradiction. So $W y \cap \operatorname{supp}(f)=\varnothing$. Hence if $x \in V \subseteq W$ we would have $f(x y)=0=f(y)$, so $|f(x y)-f(y)|<\varepsilon$.

Proposition 3.2
Theorem 3.3 (Existence of the left Haar integral). There exists a (linear) functional $I: C_{c}(G) \rightarrow \mathbb{C}$ satisfying:

1. I $(f)>0$ if $f \in C_{c}^{+}(G)=\left\{g \in C_{c}(G) \backslash\{0\}: g(x) \geqslant 0\right.$ for all $\left.x \in G\right\}$.
2. $I(f \cdot x)=I(f)$ for all $f \in C_{c}(G)$ and $x \in G$.

Proof. We give a construction in stages.

1. Fix φ in $C_{c}^{+}(G)$. Then for f in $C_{c}^{+}(G)$, we let

$$
(f: \varphi)=\inf \left\{\sum_{j=1}^{n} c_{j}: \text { there exist } x_{1}, \ldots, x_{n} \in G, c_{1}, \ldots, c_{n}>0, n \in \mathbb{N} \text { such that } f \leqslant \sum_{j=1}^{n} \varphi \cdot x_{j}\right\}
$$

Notice that if $U=\left\{x \in G: \varphi(x)>\frac{1}{2}\|\varphi\|_{\infty}\right\}$, we see that $\operatorname{supp}(f)$ is covered by finitely many translates $x^{-1} U$; it follows that $(f: \varphi)<\infty$.

Claim 3.4. For $f, g \in C_{c}^{+}(G)$ and $c>0$ we have the following:
(a) $(f \cdot x: \varphi)=(f: \varphi)$.
(b) $(f+g: \varphi) \leqslant(f: \varphi)+(g: \varphi)$.
(c) $(c f: \varphi)=c(f: \varphi)$.
(d) $f \leqslant g \Longrightarrow(f: \varphi) \leqslant(g: \varphi)$.
(e) $(f: \varphi) \leqslant(f: g)(g: \varphi)$.

Proof. The first four are straightforward; we sketch the last. If

$$
\begin{aligned}
& f \leqslant \sum_{j=1}^{n} c_{j} g \cdot x_{j} \\
& g \leqslant \sum_{i=1}^{m} b_{i} \varphi \cdot y_{i}
\end{aligned}
$$

for $c_{j}, b_{i}>0$ and $x_{j}, y_{i} \in G$, then

$$
f \leqslant \sum_{j=1}^{n} \sum_{i=1}^{m} c_{j} b_{i} \varphi \cdot\left(y_{i} x_{j}\right)
$$

and hence

$$
(f: \varphi) \leqslant \sum_{j=1}^{n} c_{j} \sum_{i=1}^{m} b_{i}
$$

and the result follows.

Now, fix another $\psi \in C_{c}^{+}(G)$, and for $f \in C_{c}^{+}(G)$ let

$$
I_{\varphi}(f)=\frac{(f: \varphi)}{(\psi: \varphi)}
$$

Then the first three properties tell us that $I_{\varphi}: C_{c}^{+}(G) \rightarrow[0, \infty)$ is left translation-invariant, subadditive, and $\mathbb{R}^{>0}$-homogeneous. Furthermore, the last property yields that

$$
\begin{aligned}
& (\psi: \varphi) \leqslant(\psi: f)(f: \varphi) \\
& (f: \varphi) \leqslant(f: \psi)(\psi: \varphi)
\end{aligned}
$$

whence it follows that

$$
\begin{equation*}
0<\frac{1}{(\psi: f)} \leqslant I_{\varphi}(f) \leqslant(f: \psi) \tag{1}
\end{equation*}
$$

2. A somewhat technical claim:

Claim 3.5. If $f, g \in C_{c}^{+}(G)$ and $\varepsilon>0$ then there is a neighbourhood V of e such that $I_{\varphi}(f)+I_{\varphi}(g) \leqslant$ $I_{\varphi}(f+g)+\varepsilon$ whenever $\operatorname{supp}(f) \subseteq V$.

Proof. Let $k \in C_{c}^{+}(G)$ satisfy $k \upharpoonright \operatorname{supp}(f+g)=1$; let $\delta>0$, and set $h=f+g+\delta k$. We then let

$$
\begin{aligned}
f^{\prime} & =\frac{f}{h} \\
g^{\prime} & =\frac{g}{h}
\end{aligned}
$$

(with each of them 0 outside of the supports of f, g). Then by Proposition 3.2 applied to f^{\prime}, g^{\prime} we get a neighbourhood V of e such that

$$
\begin{equation*}
\left|f^{\prime}(x)-f^{\prime}(y)\right|<\delta,\left|g^{\prime}(x)-g^{\prime}(y)\right|<\delta \tag{2}
\end{equation*}
$$

whenever $y^{-1} x \in V$. Suppose $\varphi \in C_{c}^{+}(G)$ with $\operatorname{supp}(\varphi) \subseteq V$; suppose $x_{1}, \ldots, x_{n} \in G$ and $c_{1}, \ldots, c_{n}>0$ satisfy

$$
h \leqslant \sum_{j=1}^{n} c_{j} \varphi \cdot x_{j}^{-1}
$$

Then for $x \in G$ we have

$$
f(x)=f^{\prime}(x) h(x) \leqslant \sum_{j=1}^{n} f^{\prime}(x) c_{j} \varphi\left(x_{j}^{-1} x\right) \leqslant \sum_{j=1}^{n}\left(f^{\prime}\left(x_{j}\right)+\delta\right) c_{j} \varphi_{j}\left(x_{j}^{-1} x\right)
$$

where the last inequality follows from the choice of φ and (2). Likewise we see that

$$
g \leqslant \sum_{j=1}^{n}\left(g^{\prime}\left(x_{j}\right)+\delta\right) c_{j} \varphi \cdot x_{j}^{-1}
$$

Now

$$
f^{\prime}+g^{\prime}=\frac{f+g}{h}=\frac{f+g}{f+g+\delta k} \leqslant 1
$$

So

$$
\begin{aligned}
(f \cdot \varphi)+(g: \varphi) & \leqslant \sum_{j=1}^{n}\left(f^{\prime}\left(x_{j}\right)+\delta\right) c_{j}+\sum_{j=1}^{n}\left(g^{\prime}\left(x_{j}\right)+\delta\right) c_{j} \\
& \leqslant \sum_{j=1}^{n}(1+2 \delta) c_{j}
\end{aligned}
$$

Recall that our ψ is fixed. Now, dividing by $(\psi: \varphi)$ and taking infimum in the c_{j} relative to the definition of $(h: \varphi)$, and applying Claim 3.4, we see that

$$
I_{\varphi}(f)+I_{\varphi}(g) \leqslant(1+2 \delta) I_{\varphi}(h) \leqslant(1+2 \delta)\left(I_{\varphi}(f+g)+\delta I_{\varphi}(k)\right)
$$

Now, choose $\delta>0$ (and hence V) small enough so that

$$
2 \delta I_{\varphi}(f+g)+(1+2 \delta) \delta I_{\varphi}(k)<\varepsilon
$$

and the claim follows.
Claim 3.5
3. We are now ready to draw our conclusion. Consider

$$
X=\prod_{f \in C_{c}^{+}(G)}\left[\frac{1}{(\psi: f)},(\varphi: f)\right]
$$

which is compact by Tychonoff's theorem. By Equation (1) we get $\left(I_{\varphi}(f)\right)_{f \in C_{c}^{+}(G)} \in X$ for any $\varphi \in C_{c}^{+}(G)$.
Given a neighbourhood V of e we let

$$
K(V)=\overline{\left\{\left(I_{\varphi}(f)\right)_{f \in C_{c}^{+}(G)}: \operatorname{supp}(\varphi) \subseteq V\right\}} \subseteq X
$$

Then K is a closed set of a compact space, and is thus compact. Then if V_{1}, \ldots, V_{n} are neighbourhoods of e, then

$$
\bigcap_{j=1}^{n} K\left(V_{j}\right) \supseteq K\left(\bigcap_{j=1}^{n} V_{j}\right) \neq \varnothing
$$

Thus $S=\bigcap\{K(V): V$ a neighbourhood of $e\} \neq \varnothing$ by finite intersection property; let $(I(f))_{f \in C_{c}^{+}(G)} \in$ S. Given $f, g \in C_{c}^{+}(G)$ and $\varepsilon>0$ there is a neighbourhood V of e and $\varphi \in C_{c}^{+}(G)$ with $\operatorname{supp}(\varphi) \subseteq V$ such that

$$
\begin{array}{r}
\left|I(f)-I_{\varphi}(f)\right|<\varepsilon \\
\left|I(g)-I_{\varphi}(g)\right|<\varepsilon \\
\left|I(f+g)-I_{\varphi}(f+g)\right|<\varepsilon
\end{array}
$$

and further by Claim 3.5 and Claim 3.4 we can arrange V such that

$$
\left|I_{\varphi}(f)+I_{\varphi}(g)-I_{\varphi}(f+g)\right|<\varepsilon
$$

We then find that

$$
|I(f)+I(g)-I(f+g)|<4 \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, we find that $I: C_{c}^{+}(G) \rightarrow(0, \infty)$ is an additive functional. By Claim 3.4, we get that I is $\mathbb{R}^{>0}$-homogeneous.
We now extend I to all of $C_{c}(G)$. We set $I(0)=0$. Suppose $f \in C_{c}^{\mathbb{R}}(G)$ (i.e. it is real-valued) and we can write $f=f_{1}-f_{2}=g_{1}-g_{2}$ for $f_{1}, f_{2}, g_{1} g_{2} \geqslant 0$. Then $f_{1}+g_{2}=g_{1}+f_{2}$, so $I\left(f_{1}+g_{2}\right)=I\left(g_{+} f_{2}\right)$, and by additivity we get that $I(f)=I\left(f_{1}\right)-I\left(f_{2}\right)=I\left(g_{1}\right)-I\left(g_{2}\right)$ is well-defined. This clearly is \mathbb{R}-homogeneous. Now for arbitrary $f \in C_{c}(G)$, we let

$$
I(f)=I(\operatorname{Re} f)+i I(\operatorname{Im} f)
$$

It is straightforward to check that I is \mathbb{C}-homogeneous. It then follows from Claim 3.4 and the definition of S that $I(f \cdot x)=I(f)$ for $f \in C_{c}^{+}(G)$ and $x \in G$. Hence this left-invariance holds generally. Finally, for $f \in C_{c}^{+}(G)$, we have $I(f)>0$ by definition of $S \subseteq X$.Theorem 3.3

Theorem 3.6 (Existence of left Haar measure). Let $\mathcal{B}(G)=\sigma\langle\tau\rangle$ (the σ-algera on G generated by open sets) be the Borel σ-algebra. Then there is a measure $m: \mathcal{B}(G) \rightarrow[0, \infty]$ satisfying the following:

1. m is a Radon measure: it is outer regular $(m(E)$ is the infimum of the measures of the open sets containing E), inner regular on open sets $(m(E)$ is the supremum of the measures of compact sets contained in E, if E is open), finite on compact sets.
2. m is left-invariant: if $E \in \mathcal{B}(G)$ and $x \in G$ then $m(x E)=m(E)$.
3. $m(U)>0$ for any $U \in \tau \backslash\{\varnothing\}$.

Sketch of proof. The Riesz representation theorem provides a Radon measure m for which

$$
I(f)=\int_{G} f \mathrm{~d} m
$$

for all $f \in C_{c}(G)$. We have for $x \in G$ that

$$
\int_{G} f(x y) \mathrm{d} m(y)=I(f \cdot x)=I(f)=\int_{G} f \mathrm{~d} m
$$

In particular, if U is open then for $f \in C_{c}(G)$ we have $\operatorname{supp}(f) \subseteq U$ if and only if $\operatorname{supp}(f \cdot x) \subseteq x^{-1} U$, so

$$
\begin{aligned}
m(U) & =\sup \left\{I(f): f \in C_{c}^{[0,1]}(G), \operatorname{supp}(f) \subseteq U\right\} \\
& =\sup \left\{I(f \cdot x): f \in C_{c}^{[0,1]}(G), \operatorname{supp}(f \cdot x) \subseteq x^{-1} U\right\} \\
& =m\left(x^{-1} U\right)
\end{aligned}
$$

So we see that $m(U)=m(x U)$ for $x \in G$. Then if $E \in \mathcal{B}(G)$ we have

$$
m(E)=\inf \{m(U): E \subseteq U \in \tau\}
$$

and it follows that $m(x E)=m(E)$. That $m(U)>0$ for $U \in \tau \backslash\{\varnothing\}$ follows from

$$
m(U)=\sup \left\{I(f): f \in C_{c}^{[0,1]}(G), \operatorname{supp}(f) \subseteq U\right\}
$$

and that $I(f)>0$ for $f \in C_{c}^{+}(G)$.
Theorem 3.6
Theorem 3.7 ("Uniqueness" of left Haar measure). If $m^{\prime}: \mathcal{B}(G) \rightarrow[0, \infty]$ is a left-invariant measure, then there is $c \geqslant 0$ such that $m^{\prime}=\mathrm{cm}$.

Proof. It suffices to show that the map

$$
f \mapsto \frac{\int_{G} f \mathrm{~d} m^{\prime}}{\int_{G} f \mathrm{~d} m}
$$

is constant for f in $C_{c}^{+}(G)$. This constant $c \geqslant 0$ hence satisfies that

$$
\int_{G} f \mathrm{~d} m^{\prime}=c \int_{G} f \mathrm{~d} m
$$

and it will follow that $m^{\prime}=c m$. To this end, fix $f, g \in C_{c}^{+}(G)$ and $\varepsilon>0$. By uniform continuity of f and g there is a neighbourhood $V=V^{-1}$ of e such that

$$
\begin{aligned}
& |f(x y)-f(y x)|<\varepsilon \\
& |g(x y)-g(y x)|<\varepsilon
\end{aligned}
$$

for $x \in V, y \in G$. Fix $h \in C_{c}^{+}(G)$ satisfying $h\left(x^{-1}\right)=h(x)$ for $x \in G$ and $\operatorname{supp}(h) \subseteq V$. (One could for example pick $h^{\prime} \in C_{c}^{+}(G)$ with $\operatorname{supp}\left(h^{\prime}\right) \subseteq V$ and let $h(x)=h^{\prime}(x)+h^{\prime}\left(x^{-1}\right)$.) We use Tonelli's theorem:

$$
\int h \mathrm{~d} m \int f \mathrm{~d} m^{\prime}=\iint h(x) f(y) \mathrm{d} m(x) \mathrm{d} m^{\prime}(y)=\iint h(x) f(x y) \mathrm{d} m(x) \mathrm{d} m^{\prime}(y)
$$

and

$$
\begin{aligned}
\int h \mathrm{~d} m^{\prime} \int f \mathrm{~d} m & =\iint h(y) f(x) \mathrm{d} m^{\prime}(y) \mathrm{d} m(x) \\
& =\iint h\left(x^{-1} y\right) f(x) \mathrm{d} m^{\prime}(y) \mathrm{d} m(x) \\
& =\iint h\left(x^{-1} y\right) f(x) \mathrm{d} m(x) \mathrm{d} m^{\prime}(y) \\
& =\iint h\left(x^{-1}\right) f(y x) \mathrm{d} m(x) \mathrm{d} m^{\prime}(y) \\
& =\iint h(x) f(y x) \mathrm{d} m(x) \mathrm{d} m^{\prime}(y)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\int h \mathrm{~d} m \int f \mathrm{~d} m^{\prime}-\int h \mathrm{~d} m^{\prime} \int f \mathrm{~d} m\right| & \leqslant \iint h(x) \underbrace{|f(x y)-f(y x)|}_{<\varepsilon} \mathrm{d} m^{\prime}(y) \mathrm{d} m(x) \\
& \leqslant \varepsilon m^{\prime}(\underbrace{V \operatorname{supp}(f) \cup \operatorname{supp}(f) V}_{S_{f, V}}) \int h \mathrm{~d} m
\end{aligned}
$$

So

$$
\left|\frac{\int f \mathrm{~d} m^{\prime}}{\int f \mathrm{~d} m}-\frac{\int h \mathrm{~d} m^{\prime}}{\int h \mathrm{~d} m}\right| \leqslant \varepsilon \frac{m^{\prime}\left(S_{f, V}\right)}{\int f \mathrm{~d} m}
$$

Likewise we get

$$
\left|\frac{\int g \mathrm{~d} m^{\prime}}{\int g \mathrm{~d} m}-\frac{\int h \mathrm{~d} m^{\prime}}{\int h \mathrm{~d} m}\right| \leqslant \varepsilon \frac{m^{\prime}\left(S_{g, V}\right)}{\int g \mathrm{~d} m}
$$

so

$$
\left|\frac{\int f \mathrm{~d} m^{\prime}}{\int f \mathrm{~d} m}-\frac{\int g \mathrm{~d} m^{\prime}}{\int g \mathrm{~d} m}\right| \leqslant \varepsilon\left(\frac{m^{\prime}\left(S_{f, V}\right)}{\int f \mathrm{~d} m}+\frac{m^{\prime}\left(S_{g, V}\right)}{\int g \mathrm{~d} m}\right)
$$

Notice though that if $V^{\prime} \subseteq V$ then $S_{f, V^{\prime}} \subseteq S_{f, V}$; thus if we shrink $\varepsilon>0$ we shrink V.Theorem 3.7

TODO 3. Missing stuff
Last time: introduced $L^{1}(G)=\overline{S^{1}(G)}{ }^{\|\cdot\|_{1}}=\overline{C_{c}(G)}{ }^{\|\cdot\|_{1}}$ the closure of the simple integrable functions. (The latter equality because m is regular on open sets.)

4 The modular function

Given $E \in \mathcal{B}(G)$ we have that $E x \in \mathcal{B}(G)$ for $x \in G$. (Since $R_{x}: G \rightarrow G$ is a homeomorphism and $E x=R_{x^{-1}}^{-1}(E)$.) Define $m_{x}: \mathcal{B}(G) \rightarrow[0, \infty]$ by $m_{x}(E)=m(E x)$. One can check that m_{x} is left-invariant and positive on open sets. Hence by Theorem 3.7 we get $m_{x}=\Delta(x) m$ for some $\Delta(x) \in(0, \infty)$.

Notice that if $y \in G$ then for E with $0<m(E)<\infty$ we get

$$
\Delta(x y) m(E)=m(E x y)=\Delta(y) m(E x)=\Delta(x) \Delta(y) m(E)
$$

so $\Delta: G \rightarrow(0, \infty) \subseteq \mathbb{R}^{\times}$is a homomorphism.
Definition 4.1. We call this the modular function. We say G is unimodular if $\Delta=1$.

Proposition 4.2.

1. For $f \in L^{1}(G)$ (or $\left.f \in C_{c}(G)\right)$ we have for $x \in G$ that

$$
\int_{G} f \mathrm{~d} m=\Delta(x) \int_{G} x \cdot f \mathrm{~d} m
$$

2. $\Delta: G \rightarrow(0, \infty) \subseteq \mathbb{R}^{\times}$is continuous.

Proof.

1. If $E \in \mathcal{B}(G)$ with $m(E)<\infty$ then

$$
\Delta(x) \int_{G} 1_{E} \mathrm{~d} m=\Delta(x) m(E)=m(E x)=\int_{G} 1_{E x} \mathrm{~d} m=\int_{G} x^{-1} \cdot 1_{E} \mathrm{~d} m
$$

So, replacing x by x^{-1}, we see that

$$
\Delta(x) \int_{G} x \cdot 1_{E} \mathrm{~d} m=\int_{G} 1_{E} \mathrm{~d} m
$$

Then, if $\varphi \in S^{1}(G)$, then

$$
\int_{G} \varphi \mathrm{~d} m=\Delta(x) \int_{G} x \cdot \varphi \mathrm{~d} m
$$

Now, if $f \in L_{+}^{1}(G)$ (i.e. $f \geqslant 0 m$-almost-everywhere), then there is $\left(\varphi_{n}\right)_{n=1}^{\infty} \subseteq S_{+}^{1}(G)$ such that $\varphi_{n} \nearrow f$ (increasing pointwise converges) m-almost-everywhere. Then by monotone convergence theorem we get

$$
\int_{G} x \cdot f \mathrm{~d} m=\lim _{n \rightarrow \infty} \int_{G} x \cdot \varphi_{n} \mathrm{~d} m=\lim _{n \rightarrow \infty} \frac{1}{\Delta(x)} \int_{G} \varphi_{n} \mathrm{~d} m=\frac{1}{\Delta(x)} \int_{G} f \mathrm{~d} m
$$

We are now done, since $L^{1}(G)=\operatorname{span}\left(L_{+}^{1}(G)\right)$.
2. Suppose $f \in C_{c}^{+}(G), \varepsilon>0$, and $V=V^{-1}$ is a relatively compact neighbourhood of e such that $\|x \cdot f-f\|_{\infty}<\varepsilon$ for $x \in V$. Then for $x \in V$ we have

$$
|\Delta(x)-1|=\frac{\left|\int_{G} x \cdot f \mathrm{~d} m-\int_{G} f \mathrm{~d} m\right|}{\int_{G} f \mathrm{~d} m} \leqslant \frac{\int_{G}|x \cdot f-f| \mathrm{d} m}{\int_{G} f \mathrm{~d} m} \leqslant \varepsilon \frac{m(\operatorname{supp}(f) V)}{\int_{G} f \mathrm{~d} m}
$$

Picking $\varepsilon^{\prime}<\varepsilon$ necessitates taking $V^{\prime} \subseteq V$, so we see that Δ is continuous at e. Now if $y \in G$ and $x \in V$ then

$$
|\Delta(x y)-\Delta(y)|=|\Delta(x)-1| \Delta(y) \leqslant \varepsilon \Delta(y)
$$

so Δ is continuous at y.
Notation 4.3. For the left integral we write

$$
\int_{G} f(x) \mathrm{d} x
$$

or less commonly

$$
\int_{G} f(x) \mathrm{d} m(x)
$$

to mean

$$
\int_{G} f \mathrm{~d} m
$$

Proposition 4.4.

1. The integral on $C_{c}(G)$ given by

$$
f \mapsto \int_{G} f(x) \frac{1}{\Delta(x)} \mathrm{d} x
$$

is right-invariant.
2. For $f \in L^{1}(G)$ we have

$$
\int_{G} f\left(x^{-1}\right) \frac{1}{\Delta(x)} \mathrm{d} x=\int_{G} f(x) \mathrm{d} x
$$

Proof.

1. If $y \in G$ and $f \in C_{c}(G)$ we have

$$
\int_{G} y \cdot f(x) \frac{1}{\Delta(x)} \mathrm{d} x=\int_{G} f(x y) \frac{1}{\Delta(x y)} \Delta(y) \mathrm{d} x=\frac{\Delta(y)}{\Delta(y)} \int_{G} f(x) \frac{1}{\Delta(x)} \mathrm{d} x=\int_{G} f(x) \frac{1}{\Delta(x)} \mathrm{d} x
$$

2. We have for $f \in C_{c}^{+}(G)$ and $y \in G$ that

$$
0<\int_{G} f \cdot y\left(x^{-1}\right) \frac{1}{\Delta(x)} \mathrm{d} x=\int_{G} f\left(y x^{-1}\right) \frac{1}{\Delta(x)} \mathrm{d} x=\int_{G} f\left(\left(x y^{-1}\right)^{-1}\right) \frac{1}{\Delta(x)} \mathrm{d} x=\int_{G} f\left(x^{-1}\right) \frac{1}{\Delta(x)} \mathrm{d} x
$$

by the first part. (Notice that $\iota: G \rightarrow G$ given by $x \mapsto x^{-1}$ is a homeomorphism, and hence Borel measurable, so $f \circ \iota$ is Borel measurable if f is.) Hence there is $c>0$ such that

$$
\int_{G} f\left(x^{-1}\right) \frac{1}{\Delta(x)} \mathrm{d} x=c \int_{G} f(x) \mathrm{d} x
$$

for $f \in C_{c}(G)$ (and hence $f \in L^{1}(G)$).
Now, if $c \neq 1$ then there is a relatively compact neighbourhood $U=U^{-1}$ of e such that

$$
\left|\frac{1}{\Delta(x)}-1\right|<\frac{1}{2}|c-1|
$$

for $x \in U$. Then

$$
\begin{aligned}
0 & =|\int_{G} \underbrace{1_{U}(x)}_{=1 U(x-1)} \frac{1}{\Delta(x)} \mathrm{d} x-c \int_{G} 1_{U}(x) \mathrm{d} x| \\
& =\left|\int_{U}\left(\frac{1}{\Delta(x)}-c\right) \mathrm{d} x\right| \\
& =\left|\int_{U}\left(1-c+\frac{1}{\Delta(x)}-1\right) \mathrm{d} x\right| \\
& =\left|(1-c) m(U)+\int_{U}\left(\frac{1}{\Delta(x)}-1\right) \mathrm{d} x\right| \\
& \geqslant(1-c) m(U)-\left|\int_{U}\left(\frac{1}{\Delta(x)}-1\right) \mathrm{d} x\right| \\
& >m(U)\left(|1-c|-\frac{1}{2}|c-1|\right) \\
& =\frac{1}{2}|c-1| m(U) \\
& >0
\end{aligned}
$$

a contradiction. So $c=1$.
Notation 4.5. If $x \in G$ and $f \in L^{1}(G)$, we define $x * f, f * x, f^{*} \in L^{1}(G)$ by declaring for m-almost-every y that

$$
\begin{aligned}
x * f(y) & =f\left(x^{-1} y\right) \\
f * x(y) & =f\left(y x^{-1}\right) \frac{1}{\Delta(x)} \\
f^{*}(y) & =\overline{f\left(y^{-1}\right)} \frac{1}{\Delta(y)}
\end{aligned}
$$

The last proposition then tells us that

$$
\|f\|_{1}=\int_{G}|f(x)| \mathrm{d} x=\|x * f\|_{1}=\|f * x\|_{1}=\left\|f^{*}\right\|_{1}
$$

Notice that

$$
\begin{aligned}
x *(y * f) & =(x y) * f \\
(f * x) * y & =f *(x y) \\
(f * x)^{*} & =x^{-1} * f \\
\left(f^{*}\right)^{*} & =f \\
x * f & =f \cdot x^{-1}
\end{aligned}
$$

Proposition 4.6. For $f \in L^{1}(G)$ we have

$$
\lim _{x \rightarrow e}\|x * f-f\|_{1}=0=\lim _{x \rightarrow e}\|f * x-f\|_{1}
$$

Proof. First, consider $g \in C_{c}(G)$. Suppose $\varepsilon>0$; let $V=V^{-1}$ be a relatively compact neighbourhood of e such that

$$
\begin{aligned}
&\|x \cdot g-g\|_{\infty}<\varepsilon \\
&\left|\frac{1}{\Delta(x)}-1\right|<\varepsilon
\end{aligned}
$$

for all $x \in V$. Then

$$
\begin{aligned}
\|g * x-g\|_{1} & \leqslant\|g * x-g\|_{\infty} m(\operatorname{supp}(g) V) \\
& \leqslant\left(\frac{1}{\Delta(x)}\left\|x^{-1} \cdot g-g\right\|_{\infty}+\left|\frac{1}{\Delta(x)}-1\right|\|g\|_{\infty}\right) m(\operatorname{supp}(g) V) \\
& \leqslant\left((1+\varepsilon) \varepsilon+\varepsilon\|g\|_{\infty}\right) m(\operatorname{supp}(g) V)
\end{aligned}
$$

So we're done. Now if $f \in L^{1}(G)$ and $\varepsilon>0$, we can find $g \in C_{c}(G)$ such that $\|f-g\|_{1}<\varepsilon$; it then follows by the usual estimates that

$$
\limsup _{x \rightarrow e}\|f * x-f\|_{1}<3 \varepsilon
$$

and so, as $\varepsilon>0$ is arbitrary, we get the limit, as desired.
Theorem 4.7 (Weil's integral relation). Let N be a closed normal subgrape of G.

1. If $f \in C_{c}(G)$ then the map $x \mapsto \int_{N} f(x n) \mathrm{d} n$ is constant of cosets of N, and hence defines a map $T_{N} f$ on G / N. Furthermore $T_{N} f \in C_{c}(G)$, and the operator $T_{N}: C_{c}(G) \rightarrow C_{c}(G / N)$ satisfies
(a) $T_{N}\left(C_{c}^{+}(G)\right) \subseteq C_{c}^{+}(G / N)$
(b) $T_{N}(f \cdot y)=\left(T_{N} f\right) \cdot(y N)$ for $y \in G$.
2. The functional

$$
f \mapsto \int_{G / N} T_{N} f(x N) \mathrm{d} x N
$$

is a left Haar integral. Hence we may write

$$
\int_{G / N} \int_{N} f(x n) \mathrm{d} n \mathrm{~d} x N
$$

(Notice that the constant on m_{G} is thus dictated by choices of m_{N} and $m_{G / N}$.)
Proof.

1. Notice that if $n^{\prime} \in N$ then

$$
\int_{N} f\left(x n^{\prime} n\right) \mathrm{d} n=\int_{N} f(x n) \mathrm{d} n
$$

Hence we get a function $T_{N} f: G / N \rightarrow \mathbb{C}$.
We check continuity on G / N. Suppose $\varepsilon>0$, fix $V=V^{-1}$ a relatively compact neighbourhood of e; so $\|f \cdot y-f\|_{\infty}<\varepsilon$ for $y \in V$. Then fix $x \in G$ and $h \in C_{c}^{[0,1]}(G)$ with $h \upharpoonright V x^{-1} \operatorname{supp}(f)=1$. Then for $y \in V$ (so $y N \in q_{N}(V)$ where $q_{N}: G \rightarrow G / N$ is the quotient map) we have

$$
|T_{N} f(\underbrace{y x N}_{y N x N})-T_{N} f(x N)|=\left|\int_{N}(f(y x n)-f(x n)) \mathrm{d} n\right| \leqslant \int_{N}|f(y x n)-f(x n)| h(n) \mathrm{d} n \leqslant \varepsilon m_{N}(\operatorname{supp}(h) \cap N)
$$

which shows continuity since if $\varepsilon^{\prime}<\varepsilon$ we can build h with smaller support. So $T_{N} f$ is continuous. Also $\operatorname{supp}\left(T_{N} f\right) \subseteq q_{N}(\operatorname{supp}(f))$ is compact, so $T_{N} f \in C_{c}(G / N)$.
If $f \in C_{c}^{+}(G)$ has $f(x)>0$ for some $x \in G$, we can find an open neighbourhood U of e such that $f(x y)>\frac{1}{2} f(x)$ for $y \in U$. Then

$$
T_{N} f(x N)=\int_{N} f(x n) \mathrm{d} n \geqslant \int_{U \cap N} \frac{1}{2} f(x) \mathrm{d} n=\frac{1}{2} f(x) m_{N}(U \cap N)>0
$$

(Clearly $f(x N) \geqslant 0$ for general x.) Finally

$$
T_{N}(f \cdot y)(x N)=\int_{N} f \cdot y(x n) \mathrm{d} n=\int_{N} f(y x n) \mathrm{d} n=T_{N} f(y x N)=\left(T_{N} f\right) \cdot(y N)(x N)
$$

2. Follows from the first part immediately.

Theorem 4.7
Corollary 4.8. The modular functions on G and N satisfy $\Delta_{N}=\Delta_{G} \upharpoonright N$.
Proof. If $n^{\prime} \in N$ and $f \in C_{c}^{+}(G)$ then

$$
\begin{aligned}
\int_{G} n^{\prime} \cdot f(x) \mathrm{d} x & =\int_{G / N} \int_{N} n^{\prime} \cdot f(x n) \mathrm{d} n \mathrm{~d} x N \\
& =\int_{G / N} \int_{N} f\left(x n n^{\prime}\right) \mathrm{d} n \mathrm{~d} x N \\
& =\int_{G / N} \frac{1}{\Delta_{N}\left(n^{\prime}\right)} \int_{N} f(x n) \mathrm{d} n \mathrm{~d} x N \\
& =\frac{1}{\Delta_{n}\left(n^{\prime}\right)} \int_{G} f(x) \mathrm{d} x
\end{aligned}
$$

so $\Delta_{n}\left(n^{\prime}\right)=\Delta_{G}\left(n^{\prime}\right)$.
Corollary 4.8
Unimodularity makes computing integrals simpler. Indeed,

$$
\int_{G} f(x) \mathrm{d} x=\int_{G} f(y x) \mathrm{d} x=\int_{G} f(x y) \mathrm{d} x=\int_{G} f\left(x^{-1}\right) \mathrm{d} x
$$

Proposition 4.9. G is unimodular in the following cases:

1. G is abelian, compact, or discrete
2. G is perfect: i.e. $G=\overline{[G, G]}$ (the closure of the grape generated by the commutators $[x, y]=x y x^{-1} y^{-1}$).
3. $G / Z(G)$ is unimodular $(Z(G)$ is the centre.
4. G admits a unimodular closed normal subgrape N for which G / N is compact.

Proof.

1. Trivial for G abelian; for G compact, the (left) Haar measure is the counting measure.

Let us fully consider the compact case. Here $\Delta(G)$ is a compact subgrape of $(0, \infty) \subseteq \mathbb{R}^{\times}$. The map $\log :(0, \infty) \rightarrow \mathbb{R}$ is an isomorphism. If $\alpha \in \mathbb{R} \backslash\{0\}$ then $\mathbb{Z} \alpha$ is not compact. Hence $\{0\}$ is the only compact subgrape of \mathbb{R}, and hence $\{1\}$ is the only compact subgrape of $(0, \infty)$.
2. It is clear that $\Delta\left(\left[x_{1}, y_{1}\right] \cdots\left[x_{n}, y_{n}\right]\right)=1$; by continuity, we then get $\Delta(x)=1$ for all $x \in G$.
3. We should note that $Z=Z(G)$ is closed and normal. If $y \in G$ and $f \in C_{c}(G)$ then

$$
\begin{aligned}
\int_{G} y \cdot f(x) \mathrm{d} x & =\int_{G / Z} \int_{Z} y \cdot f(x z) \mathrm{d} z \mathrm{~d} x Z \\
& =\int_{G / Z} \int_{Z} f(x z y) \mathrm{d} z \mathrm{~d} x Z \\
& =\int_{G / Z} \int_{Z} f(x y z) \mathrm{d} z \mathrm{~d} x Z \\
& =\int_{G / Z} T_{Z} f(x Z y Z) \mathrm{d} x Z \\
& =\int_{G / Z} T_{Z} f(x Z) \mathrm{d} x Z \\
& =\int_{G} f(x) \mathrm{d} x
\end{aligned}
$$

Hence $\Delta(y)=1$.
4. Since $\Delta_{G} \upharpoonright N=\Delta_{N}=1$, we get a homomorphism $\bar{\Delta}: G / N \rightarrow(0, \infty)$ (by 1st isomorphism theorem) with $\bar{\Delta} \circ q_{N}=\Delta_{G}$. If $W \subseteq(0, \infty)$ is open, then

$$
\bar{\Delta}^{-1}(W)=\underbrace{q_{N}}_{\text {open map }}(\underbrace{\Delta^{-1}(W)}_{\text {open in } G})
$$

Thus $\bar{\Delta}$ is continuous. By (1), we get that $\bar{\Delta}(G / N)=\{1\}$. \square Proposition 4.9

Example 4.10.

1. Suppose \mathbb{K} is a locally compact field. Let $|\mathbb{K}|>3$. (Aside: we will use capital letters for singular matrices and lower-case for invertible matrices.) Let $\left\{E_{i j}\right\}_{i, j=1}^{n}$ be the matrix unit for $M_{n}(\mathbb{K})$: i.e. $E_{i j} E_{k \ell}=\delta_{j k} E_{i \ell}$. We will show that $\mathrm{SL}_{n}(\mathbb{K})$ is perfect, and hence unimodular.
(a) If $\lambda \in \mathbb{K}$ and i, j, k are distinct (for $n \geqslant 3$) then

$$
\left[e+\lambda E_{i k}, e+E_{k j}\right]=\left(e+\lambda E_{i k}\right)\left(e+E_{k j}\right)\left(e-\lambda E_{i k}\right)\left(e-E_{k j}\right)=e+\lambda E_{i j}
$$

If $n=2$ we have

$$
\left[\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\right]=\left(\begin{array}{cc}
1 & \left(1-\alpha^{2}\right) \beta \\
0 & 1
\end{array}\right)
$$

and the equation $\lambda=\left(1-\alpha^{2}\right) \beta$ always admits solutions for $|\mathbb{K}|>3$.
(b) We claim $S=\left\langle e+\lambda E_{i j}: \lambda \in \mathbb{K}, i, j \in\{1, \ldots, n\}, i \neq j\right\rangle$ is all of $\mathrm{SL}_{n}(\mathbb{K})$. Indeed, using only elementary operations of adding one row to another, for any $a \in \mathrm{SL}_{n}(\mathbb{K})$ there is $s \in S$ for which $s a$ is diagonal:

$$
s a=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(\begin{array}{llll}
\alpha_{1} & & & \\
& \alpha_{2} & & \\
& & \ddots & \\
& & & \alpha_{n}
\end{array}\right)
$$

Then see that

$$
\left(e+E_{12} \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(e+\frac{1-\alpha_{1}}{\alpha_{2}} E_{21}\right)=\left(\begin{array}{ccccc}
1 & \alpha_{2} & & & \\
1-\alpha_{1} & \alpha_{2} & & & \\
& & \alpha_{3} & & \\
& & & \ddots & \\
& & & & \alpha_{n}
\end{array}\right)\right.
$$

and

$$
\left(e+\left(\alpha_{1}-1\right) E_{21}\right)\left(\begin{array}{ccccc}
1 & \alpha_{2} & & & \\
1-\alpha_{1} & \alpha_{2} & & & \\
& & \alpha_{3} & & \\
& & & \ddots & \\
& & & & \alpha_{n}
\end{array}\right)\left(e-\alpha_{2} E_{12}\right)=\left(\begin{array}{lllll}
1 & & & \\
& \alpha_{1} \alpha_{2} & & & \\
& & \alpha_{3} & & \\
& & & \ddots & \\
& & & & \alpha_{n}
\end{array}\right)
$$

An evident induction shows that $a \in S$.
(c) Combining the two statements, we get $\mathrm{SL}_{n}(\mathbb{K})=S \subseteq\left[\mathrm{SL}_{n}(\mathbb{K}), \mathrm{SL}_{n}(\mathbb{K})\right] \subseteq \mathrm{SL}_{n}(\mathbb{K})$.
2. Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and $G=\mathrm{GL}_{n}(\mathbb{K})$. We observe that $Z=Z\left(\mathrm{GL}_{n}(\mathbb{K})\right)=\mathbb{K}^{\times} e$. Also from the first example we have that $\mathrm{SL}_{n}(\mathbb{K})=[G, G]$. Let $H=Z \cdot \mathrm{SL}_{n}(\mathbb{K})$.
If n is odd and $\mathbb{K}=\mathbb{R}$ or n is arbitrary and $\mathbb{K}=\mathbb{C}$ then $H=G$. If n is even and $\mathbb{K}=\mathbb{R}$, then $H=\mathrm{GL}_{n}(\mathbb{R})_{0}=\operatorname{det}^{-1}((0, \infty))$ is open, and thus closed; furthermore, we get $\mathrm{GL}_{n}(\mathbb{R})_{0} \sqcup a \mathrm{GL}_{n}(\mathbb{R})$ where $\operatorname{det}(a)=-1$.
Either way, we get that H is open and normal in G with G / H finite, and hence compact. We have $H / Z \cong \mathrm{SL}_{n}(\mathbb{K}) / Z_{\cap} \mathrm{SL}_{n}(\mathbb{K})$. But $\mathrm{SL}_{n}(\mathbb{K})$ is perfect, and hence the quotient is perfect; so H / Z is unimodular. Thus so is H and hence G.
3. (Euclidean motion.) We let $E(n)=\mathbb{R} \rtimes \mathrm{SO}(n)$. ($\mathrm{SO}(n)$ is the orthogonal real matrices of determinant 1.) Then $N=\mathbb{R} \rtimes\{e\}$ is normal and unimodular, with $E(n) / N \cong \operatorname{SO}(n)$ compact. Hence $E(n)$ is unimodular.
4. (Heisenberg.) Let

$$
\mathbb{H}=\left\{\left(\begin{array}{lll}
1 & x & z \\
& 1 & y \\
& & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\} \subseteq \mathrm{GL}_{3}(\mathbb{R})
$$

a closed subgrape. We have

$$
Z(\mathbb{H})=\left\{\left(\begin{array}{lll}
1 & 0 & z \\
& 1 & 0 \\
& & 1
\end{array}\right): z \in \mathbb{R}\right\}
$$

and $\mathbb{H} / Z(\mathbb{H}) \cong \mathbb{R}^{2}$. Thus \mathbb{H} is unimodular.
5. (Conjugation automorphism.) For $x \in G$, let $\gamma(x) \in \operatorname{Aut}(G)$ be $\gamma(x)(y)=x y x^{-1}$. Notice $\gamma\left(x x^{\prime}\right)=$ $\gamma(x) \gamma\left(x^{\prime}\right)$. Then

$$
\delta(\gamma(x))=\frac{1}{\Delta(x)}
$$

(where δ is as in assignment 1).
Suppose $\alpha \in \operatorname{Aut}(G)$. If G is compact, then $\alpha(G)=G$ implies $\delta(\alpha)=1$. If G is discrete, then $|\alpha(F)|=|F|$ for each finite $F \subseteq G$ implies $\delta(\alpha)=1$.
Suppose G, A are unimodular and A acts continuously on G by automorphisms. Consider $S=G \rtimes A$. Then by assignment 1 we get $\Delta(y, \beta)=\delta(\beta)$.
6. If H is open in G and G is unimodular, then H is unimodular.

However, if H is closed and non-open in G, we may have that G is unimodular and H is not. Consider for example $G=\mathrm{SL}_{2}(\mathbb{R})$ and

$$
H=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right): \alpha \in(0, \infty), b \in \mathbb{R}\right\}
$$

Then $H=\mathbb{R} \rtimes(0, \infty)$ with $a(b)=a b$ (non-unimodular action) so H is not unimodular thanks to the first item.
7. It is possible that N is a unimodular open normal subgrape of G yet G is not unimodular. Indeed, consider $G=\mathbb{R} \rtimes\left\{2^{n}: n \in \mathbb{Z}\right\}$; this is an open subgrape of $\mathbb{R} \rtimes(0, \infty)$.

5 The convolution algebra of measures

Let

$$
\begin{aligned}
M(G) & =\{\mu: \mathcal{B}(G) \rightarrow \mathbb{C} \mid \mu \text { a Radon measure }\} \\
M_{+}(G) & =\{\mu: \mathcal{B}(G) \rightarrow[0, \infty) \mid \mu \text { a (finite) measure }\}
\end{aligned}
$$

Definition 5.1. If $E \in \mathcal{B}(G)$, we define the total variation to be

$$
|\mu|(E)=\sup \left\{\sum_{j=1}^{\infty}\left|\mu\left(E_{j}\right)\right|: E=\bigsqcup_{j=1}^{\infty} E_{j}, \text { each } E_{j} \in \mathcal{B}(G)\right\}
$$

Fact 5.2. If $\mu \in M(G)$ then $|\mu| \in M_{+}(G)$.
Fact 5.3 (Hahn-Jordan decomposition). Each $\mu \in M(G)$ can be written $\mu=\left(\mu_{1}-\mu_{2}\right)+i\left(\mu_{3}-\mu_{4}\right.$ where $\mu_{1}, \ldots, \mu_{4} \in M_{+}(G)$. Furthermore, we can arrange that $\mu_{1} \perp \mu_{2}$ and $\mu_{3} \perp \mu_{4}$ (i.e. $G=E_{1} \sqcup E_{2}$ such that $\mu_{2} \upharpoonright E_{1}=0$ and $\mu_{1} \upharpoonright E_{2}=0$), and in this context the decomposition is unique.

Generally we have

$$
\mu_{1}, \ldots, \mu_{4} \leqslant|\mu| \leqslant\left|\mu_{1}-\mu_{2}\right|+\left|\mu_{3}-\mu_{4}\right|
$$

and $\left|\mu_{1}-\mu_{2}\right| \leqslant \mu_{1}+\mu_{2}$, etc. If $\mu_{1} \perp \mu_{2}$ then $\left|\mu_{1}-\mu_{2}\right|=\mu_{1}+\mu_{2}$, etc.
Theorem 5.4 (Riesz representation theorem). Let $C_{0}(G)=\overline{C_{c}(G)}{ }^{\|\cdot\|_{\infty}}$; this is a Banach space. Then $C_{0}(G)^{*} \cong M(G)$ via the pairing

$$
\langle f, \mu\rangle=\mu(f)=\int_{G} f \mathrm{~d} \mu
$$

Furthermore,

$$
\sup \left\{\left|\int_{G} f \mathrm{~d} \mu\right|: f \in C_{0}(G),\|f\|_{\infty} \leqslant 1\right\}=|\mu|(G)
$$

which we define to be $\|\mu\|_{1}$.
Remark 5.5 (Approximation by "compactly supported" measures). Given $\mu \in M(G)$ and $\varepsilon>0$, the inner regularity of $|\mu|$ provides compact $K \subseteq G$ such that $|\mu|(G)<|\mu|(K)+\varepsilon$; thus $|\mu|(G \backslash K)<\varepsilon$. If we let $\mu_{K}: \mathcal{B}(G) \rightarrow \mathbb{C}$ be $\mu_{K}(E)=\mu(E \cap K)$, then

$$
\left\|\mu \mu_{K}\right\|_{1}=\left\|\mu_{G \backslash K}\right\|_{1}=\left|\mu_{G \backslash K}\right|(G)=|\mu|(G \backslash K)<\varepsilon
$$

Theorem 5.6. Given $\mu, \nu \in M(G)$ there is a unique measure $\mu * \nu$ such that for $f \in C_{0}(G)\left(\right.$ or $\left.f \in C_{c}(G)\right)$ we have

$$
\int_{G} f \mathrm{~d}(\mu * \nu)=\int_{G} \int_{G} f(x y) \mathrm{d} \mu(x) \mathrm{d} \nu(y)
$$

Then $(\mu, \nu) \mapsto \mu * \nu$ is bilinear and associative (i.e. $(\mu * \nu) * \rho=\mu *(\nu * \rho)$ where $\rho \in M(G)$) and satisfies $\|\mu * \nu\|_{1} \leqslant\|\mu\|_{1}\|\nu\|_{1}$. Hence $(M(G), *)$ is a Banach algebra.

This product is called the convolution product.
Before we begin, we give some facts about the Radon product measure.
Our setup: suppose X, Y are locally compact Hausdorff spaces. We define the product of the Borel σ-algebras by

$$
\mathcal{B}(X) \otimes \mathcal{B}(Y)=\sigma\langle E \times F: E \in \mathcal{B}(X), F \in \mathcal{B}(Y)\rangle
$$

Clearly $\mathcal{B}(X) \otimes \mathcal{B}(Y) \subseteq \mathcal{B}(X \times Y)$.
A problem: unless both X and Y are separable, we cannot guarantee equality.
Example 5.7. Let $X=Y=\{0,1\}^{I}$ where $|I|>\aleph_{0}$ or $X=Y=\mathbb{R}_{d}$. Nico suspects that \varsubsetneqq holds in both cases.

Theorem 5.8. Given two Radon measures $\mu: \mathcal{B}(X) \rightarrow[0, \infty]$ and $\nu: \mathcal{B}(Y) \rightarrow[0, \infty]$, there is a unique measure $\mu \times \nu$ on $\mathcal{B}(X \times Y)$ such that

$$
\int_{X \times Y} f \mathrm{~d}(\mu \times \nu)=\int_{Y} \int_{X} f(x, y) \mathrm{d} \mu(x) \mathrm{d} \nu(y)=\int_{X} \int_{Y} f(x, y) \mathrm{d} \nu(y) \mathrm{d} \mu(x)
$$

for $f \in C_{c}(X \times Y)$. (We call this the restricted Fubini property $\left(F_{c}\right)$.) This is the unique measure on $\mathcal{B}(X \times Y)$ such that $(\mu \times \nu)(E \times F)=\mu(E) \nu(F)$ for $E \in \mathcal{B}(X)$ and $F \in \mathcal{B}(Y)$. (We call this the product property (P).)

We call this the Radon product measure.
Corollary 5.9. If $\mu \in M(X), \nu \in M(Y)$ are complex Radon measures, then there is $\mu \times \nu \in M(X \times Y)$ for which $\left(F_{c}\right)$ and (P) hold.

Fact 5.10 (Fubini for Radon products). For $\mu \in M(X), \nu \in M(Y)$, and $f \in \mathcal{B}^{\infty}(X \times Y)$ (i.e. f is uniformly bounded and Borel measurable), we have that

$$
\begin{aligned}
x & \mapsto \int_{Y} f(x, y) \mathrm{d} \nu(y) \\
y & \mapsto \int_{X} f(x, y) \mathrm{d} \mu(x)
\end{aligned}
$$

are Borel measurable on X and Y, respectively, and

$$
\int_{X \times Y} f \mathrm{~d}(\mu \times \nu)=\int_{Y} \int_{X} f(x, y) \mathrm{d} \mu(x) \mathrm{d} \nu(y)=\int_{X} \int_{Y} f(x, y) \mathrm{d} \nu(y) \mathrm{d} \mu(x)
$$

Proof of Theorem 5.6.

1. We define "actions" of $M(G)$ on $C_{c}(G)$. Given $f \in C_{0}(G)$ and $\mu \in M(G)$ we let $f \cdot \mu, \mu \cdot f: G \rightarrow \mathbb{C}$ be

$$
\begin{aligned}
(f \cdot \mu)(x) & =\mu(x \cdot f) \\
& =\int_{G} f(y x) \mathrm{d} \mu(y) \\
(\mu \cdot f)(x) & =\mu(f \cdot x) \\
& =\int_{G} f(x y) \mathrm{d} \mu(y)
\end{aligned}
$$

Let us see that $\mu \cdot f \in C_{0}(G)$. Let V be a neighbourhood of e such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ if $x^{\prime} x^{-1} \in V$. Then for such x, x^{\prime} we have

$$
\begin{aligned}
\left|(\mu \cdot f)(x)-(\mu \cdot f)\left(x^{\prime}\right)\right| & =\left|\int_{G}\left(f(x y)-f\left(x^{\prime} y\right)\right) \mathrm{d} \mu(x)\right| \\
& \leqslant \int_{G} \underbrace{\left|f(x y)-f\left(x^{\prime} y\right)\right|}_{<\varepsilon} \mathrm{d}|\mu|(y) \\
& \leqslant \varepsilon|\mu|(G)
\end{aligned}
$$

(Note that complex measures are by definition finite.) So $\mu \cdot f$ is continuous. Furthermore, we have

$$
|(\mu \cdot f)(x)| \leqslant \int_{G} \underbrace{|f(x y)|}_{\leqslant\|f\|_{\infty}} \mathrm{d}|\mu|(y) \leqslant\|f\|_{\infty}|\mu|(G)=\|f\|_{\infty}\|\mu\|_{1}
$$

Again, for $\varepsilon>0$, let $K \subseteq G$ be compact and $f^{\prime} \in C_{c}(G)$ satisfy $\left\|\mu-\mu_{K}\right\|_{1}<\varepsilon$ and $\left\|f-f^{\prime}\right\|_{\infty}<\varepsilon$. Then

$$
\begin{aligned}
\left\|\mu \cdot f-\mu_{K} \cdot f^{\prime}\right\|_{\infty} & \leqslant\left\|\mu \cdot f-\mu_{K} \cdot f\right\|_{\infty}+\left\|\mu_{K} \cdot f-\mu_{K} \cdot f^{\prime}\right\|_{\infty} \\
& \leqslant\left\|\mu-\mu_{K}\right\|_{1}\|f\|_{\infty}+\underbrace{\left\|\mu_{K}\right\|_{1}}_{\leqslant\|\mu\|_{1}}\left\|f-f^{\prime}\right\|_{\infty} \\
& <\varepsilon\left(\|f\|_{\infty}-\|\mu\|_{1}\right)
\end{aligned}
$$

It is clear that $\operatorname{supp}\left(\mu_{K} \cdot f^{\prime}\right) \subseteq \operatorname{supp}(f) K^{-1}$; hence $\mu \cdot f \in C_{0}(G)$. The case $f \cdot \mu$ is similar.
2. We check an "associativity": that if $\mu, \nu \in M(G)$ and $f \in C_{0}(G)$, then $\mu \cdot(f \cdot \nu)=(\mu \cdot f) \cdot \nu$.

For $x \in G$ we have

$$
\begin{aligned}
(\mu \cdot(f \cdot \nu))(x) & =\int_{G}(f \cdot \nu)(x y) \mathrm{d} \mu(y) \\
& =\int_{G} \int_{G} f(z x y) \mathrm{d} \nu(z) \mathrm{d} \mu(y) \\
& =\int_{G} \int_{G} f(z x y) \mathrm{d} \mu(y) \mathrm{d} \nu(z) \text { (by Fubini) } \\
& =((\mu \cdot f) \cdot \nu)(x)
\end{aligned}
$$

as desired.
3. We now come to the finale. We define for $\mu, \nu \in M(G)$ and $f \in C_{0}$

$$
\int_{G} f \mathrm{~d}(\mu * \nu)=(\mu * \nu)(f)=\mu \cdot(\nu \cdot f)
$$

(By Riesz representation theorem this specifies $\mu * \nu$.) The map $(\mu, \nu) \mapsto \mu * \nu$ is bilinear and also

$$
|(\mu * \nu)(f)|=|\mu \cdot(\nu \cdot f)| \leqslant\|\mu\|_{1}\|\nu \cdot f\|_{\infty} \leqslant\|\mu\|_{1}\|\nu\|_{1}\|f\|_{\infty}
$$

so it follows that $\mu * \nu$ defines a bounded linear functional on $C_{0}(X)$, and hence an element of $M(G)$ with $\|\mu * \nu\|_{1} \leqslant\|\mu\|_{1}\|\nu\|_{1}$.
It remains to check associativity. Let also $\rho \in M(G)$. We have for $f \in C_{0}(G)$ that

$$
\begin{aligned}
(\mu *(\nu * \rho))(f) & =\int_{G} \int_{G} f(x y) \mathrm{d} \mu(x) \mathrm{d}(\nu * \rho)(y) \\
& =(\nu * \rho)(f \cdot \mu) \\
& =\nu \cdot(\rho \cdot(f \cdot \mu)) \\
& =\nu \cdot((\rho \cdot f) \cdot \mu)(\text { by associativity above }) \\
& =(\mu * \nu)(\pi \cdot f) \\
& =((\mu * \nu) * \rho)(f)
\end{aligned}
$$

as desired.
Theorem 5.6
Remark 5.11.

1. Fix $\nu \in M(G)$. Then both $\mu \mapsto \mu * \nu$ and $\mu \mapsto \nu * \mu$ are weak*-weak* continuous on $M(G) \cong C_{0}(G)^{*}$. Indeed, let $\left.R_{\nu}: C_{0}(G) \rightarrow C_{0} G\right)$ be $R_{\nu}(f)=f \cdot \nu$. Then $\nu * \mu=R_{\nu}^{*}(\mu)$.
2. For $x \in G$ let $\delta_{x}: \mathcal{B}(G) \rightarrow\{0,1\} \subseteq \mathbb{C}$ be given by

$$
\delta_{x}(E)= \begin{cases}1 & \text { if } x \in E \\ 0 & \text { else }\end{cases}
$$

(We call this a Dirac measure.) If $f \in C_{0}(G)$ then $f=f(x) 1_{\{x\}} \delta_{x}$-almost-everywhere. So

$$
\int_{G} f \mathrm{~d} \delta_{x}=f(x)
$$

Then if $x, y \in G$ and $f \in C_{0}(G)$, then

$$
\left(\delta_{x} \delta_{y}\right)(f)=\int_{G} \int_{G} f\left(x^{\prime} y^{\prime}\right) \mathrm{d} \delta_{x}\left(x^{\prime}\right) \mathrm{d} \delta_{y}\left(y^{\prime}\right)=f(x y)=\delta_{x y}(f)
$$

i.e. $\delta_{x} * \delta_{y}=\delta_{x y}$. Also $\delta_{x} \cdot f=x \cdot f$ and $f \cdot \delta_{x}=f \cdot x$.
3. Let $B_{1}^{+}(M(G))=\left\{\mu \in M_{+}(G): \mu(G) \leqslant 1\right\}$.

Exercise 5.12. Thisis a convex set with $\operatorname{Ext}\left(B_{1}^{+}(M(G))\right)=\{0\} \cup\left\{\delta_{x}: x \in G\right\}$.
Then by Krein-Milman theorem, we have that convolution is the unique weak*-weak* continuous product on $M(G)$ satisfying Item 2.

6 Atomic/continuous and Lebesgue decompositions

Let $\mu \in M(G)$. Let

$$
A(\mu)=\{x \in G:|\mu|(\{x\})>0\}=\bigcup_{n=1}^{\infty}\left\{x \in G:|\mu|(\{x\})>\frac{1}{n}\right\}
$$

So $A(\mu)$ is countable, and hence Borel. Furthermore, we have

$$
\infty>|\mu|(A(\mu))=\sum_{x \in A(\mu)}|\mu|(\{x\})=\sum_{x \in A(\mu)}|\mu(\{x\})|
$$

It follows that

$$
\mu_{d}=\sum_{x \in A(\mu)} \mu(\{x\}) \delta_{x}
$$

is a measure. We let $\mu_{c}=\mu-\mu_{d}$; so $\mu_{c} \perp \mu_{d}$ (with $G=A(\mu) \sqcup(G \backslash A(\mu))$). Hence $\mu=\mu_{d}+\mu_{c}$ and $|\mu|=\left|\mu_{d}\right|+\left|\mu_{c}\right|$; so

$$
\|\mu\|_{1}=|\mu|(G)=\left\|\mu_{d}\right\|_{1}+\left\|\mu_{c}\right\|_{1}
$$

Let

$$
\begin{aligned}
M_{d}(G) & =\overline{\operatorname{span}}\left\{\delta_{x}: x \in G\right\} \\
& \cong \ell^{1}(G) \\
M_{c}(G) & =\{\mu \in M(G): \mu(\{x\})=0 \text { for any } x \in G\}
\end{aligned}
$$

Then $M_{d}(G)$ is a closed subspace and $M_{c}(G)$ is a subspace, which is closed since the defining formula of convolution yields that $\mu \mapsto \mu_{c}$ is a bounded idempotent map on $M(G)$ with range $M_{c}(G)$. We write $M(G)=M_{d}(G) \oplus_{1} M_{c}(G)$ since all $\mu \in M(G)$ admit a decomposition $\mu=\mu_{d}+\mu_{c}$ with $\|\mu\|_{1}=\left\|\mu_{d}\right\|_{1}+\left\|\mu_{c}\right\|_{1}$.

Theorem 6.1 (Lebesgue decomposition). Let $\mu \in M(G)$. We have $\mu=\mu_{s}+\mu_{a}$ where $\mu_{s} \perp m$, $\mu_{a} \ll m$ with $\frac{\mathrm{d} \mu}{\mathrm{d} m}=\frac{\mathrm{d} \mu_{a}}{\mathrm{~d} m} \in L^{1}(G)$. i.e. for $f \in C_{0}(G)$ we have

$$
\int_{G} f \mathrm{~d} \mu=\int_{G} f \mathrm{~d} \mu_{s}+\int_{G} f \frac{\mathrm{~d} \mu_{a}}{\mathrm{~d} m} \mathrm{~d} m
$$

We have $\mu_{s} \perp \mu_{a}$ so $\|\mu\|_{1}=\left\|\mu_{s}\right\|_{1}+\left\|\mu_{a}\right\|_{1}$. Write

$$
M(G)=\underbrace{M_{s}(G)}_{\text {space of singular }} \oplus_{1} \underbrace{M_{a}(G)}_{\text {space of absolutely continuous }}
$$

Suppose G is discrete; then

$$
\left|\mu_{c}\right|(G)=\sup \{\underbrace{\left|\mu_{c}\right|(K)}_{=0}: K \subseteq G \text { compact (hence finite) }\}=0
$$

So $\mu=\mu_{d}$, and $M(G)=M_{d}(G)=\ell^{1}(G)$. One can check that $\ell^{1}(G)=\overline{\operatorname{span}}\left\{\delta_{x}: x \in G\right\}$ is a Banach algebra.
Suppose G is not discrete. Then $m(\{x\})=m(x\{x\})=m(\{e\})=0$. ($\{e\}$ is a non-open closed set, and hence locally null.) Thus $M_{a}(G) \subseteq M_{c}(G)$. Thus if $\nu \in M_{c}(G)$ we get the Lebesgue decomposition $\nu=\nu_{c s}+\nu_{a}$ with $\nu_{c s} \perp m$ and $\nu_{a} \ll m$.

In summary, if $\mu \in M(G)$, we write

$$
\mu=\mu_{d}+\mu_{c}=\mu_{d}+\mu_{c s}+\mu_{d}
$$

all mutually singular. We then have

$$
M(G)=M_{d}(G) \oplus_{1} \underbrace{M_{c s}(G) \oplus_{1} M_{d}(G)}_{M_{c}(G)} \cong \ell^{1}(G) \oplus_{1} M_{c s}(G) \oplus_{1} L^{1}(G)
$$

Fact 6.2. $M_{d}(G)=\ell^{1}(G)$ is a closed subalgebra.
Question 6.3. What about $M_{c}(G), M_{a}(G) \cong L^{1}(G)$, or $M_{c s}(G)$?

7 More convolutions

What does $\mu * \nu$ look like as a measure?
Theorem 7.1. If $\mu, \nu \in M(G)$ and $E \in \mathcal{B}(G)$, then $(\mu * \nu)(E)=(\mu \times \nu)\left(\pi^{-1}(E)\right)$, where $\pi: G \times G \rightarrow G$ is the product map.
Remark 7.2.

1. π is continuous, and hence Borel measurable; so $\pi^{-1}(E) \in \mathcal{B}(G \times G)$ for $E \in \mathcal{B}(G)$.
2. Fubini's theorem yields that

$$
\begin{aligned}
(\mu \times \nu)\left(\pi^{-1}(E)\right) & =\int_{G \times G} 1_{\pi^{-1}(E)} \mathrm{d}(\mu \times \nu) \\
& =\int_{G \times G} 1_{E} \circ \pi \mathrm{~d}(\mu \times \nu) \\
& =\int_{G \times G} 1_{E}(x y) \mathrm{d}(\mu \times \nu)(x, y) \\
& =\int_{G} \int_{G} 1_{E}(x y) \mathrm{d} \mu(x) \mathrm{d} \nu(y)
\end{aligned}
$$

Proof of Theorem 7.1. We have

$$
\mu=\left(\mu_{0}-\mu_{2}\right)+i\left(\mu_{1}-\mu_{3}\right)=\sum_{k=0}^{3} i^{k} \mu_{k}
$$

where $\mu_{k} \in M_{+}(G)$; likewise for ν. So

$$
\mu * \nu=\sum_{k=0}^{3} \sum_{\ell=0}^{3} i^{k+\ell} \mu_{k} * \nu_{\ell}
$$

We can thus assume that $\mu * \nu \in M_{+}(G)$.

1. Let us first consider compact $K \subseteq G$. Let $\varepsilon>0$; let U be open with $U \supseteq K$ and $(\mu * \nu)(U \backslash K)<\varepsilon$. Let $f \in C_{c}^{[0,1]}(G)$ satisfy $f \upharpoonright K=1$ and $\operatorname{supp}(f) \subseteq U$ (by Urysohn's lemma). Then

$$
\begin{aligned}
(\mu \times \nu)\left(\pi^{-1}(K)\right) & =\int_{G} \int_{G} 1_{K}(x y) \mathrm{d} \mu(x) \mathrm{d} \nu(y) \\
& \leqslant \int_{G} \int_{G} f(x y) \mathrm{d} \mu(x) \mathrm{d} \nu(y) \\
& =\int_{G} f \mathrm{~d}(\mu * \nu) \\
& \leqslant \int_{G} 1_{U} \mathrm{~d}(\mu * \nu) \\
& =(\mu * \nu)(U) \\
& <(\mu * \nu)(K)+\varepsilon
\end{aligned}
$$

Since ε was arbitrary, we get that

$$
(\mu \times \nu)\left(\pi^{-1}(K)\right) \leqslant(\mu * \nu)(K)
$$

2. Now consider a $(\mu * \nu)$-null set $N \in \mathcal{B}(G)$. If $K \subseteq \pi^{-1}(N) \subseteq G \times G$ is compact, then $\pi(K)$ is compact with $\pi(K) \subseteq N$, and is thus $(\mu * \nu)$-null. Then by Item 1 we have

$$
0 \leqslant(\mu \times \nu)(K) \leqslant(\mu \times \nu)\left(\pi^{-1}(\pi(K))\right) \leqslant(\mu * \nu)(\pi(K))=0
$$

Since Radon measures are inner regular, on bounded sets, we get

$$
(\mu \times \nu)\left(\pi^{-1}(N)\right)=\sup \left\{(\mu \times \nu)(K): K \subseteq \pi^{-1}(N), K \text { compact }\right\}=0
$$

So $\pi^{-1}(N)$ is $(\mu \times \nu)$-null.
3. Suppose $U \subseteq G$ is open. For each $n \in \mathbb{N}$ we can find compact $K_{n} \subseteq U$ so $(\mu * \nu)(U)<(\mu \times \nu)\left(K_{n}\right)+n^{-1}$. Then find $f_{n} \in C_{c}^{[0,1]}(G)$ with $\operatorname{supp}\left(f_{n}\right) \subseteq U$ and $f_{n} \upharpoonright K_{n}=1$; let $g_{n}=\max \left\{f_{1}, \ldots, f_{n}\right\}$. Then $(\mu * \nu)$ -almost-everywhere we have $g_{n} \nearrow 1_{U}$ as $n \rightarrow \infty$. (We let

$$
F=\bigcup_{n=1}^{\infty} K_{n}
$$

so $U \backslash F$ is $(\mu * \nu)$-null, and $g_{n} \rightarrow 1_{U}$ on $F \cup(G \backslash U)$.)
Hence by monotone convergence theorem, using the fact that ($\mu \times \nu$)-almost-everywhere we have $g_{n} \circ \pi \nearrow 1_{U} \circ \pi$ (by Item 2), we get that

$$
\begin{aligned}
(\mu \times \nu)\left(\pi^{-1}(U)\right) & =\int_{G \times G} 1_{U} \circ \pi \mathrm{~d}(\mu \times \nu) \\
& =\lim _{n \rightarrow \infty} \int_{G \times G} g_{n} \circ \pi \mathrm{~d}(\mu \times \nu) \\
& =\lim _{n \rightarrow \infty} \int_{G} g_{n} \mathrm{~d}(\mu * \nu) \\
& =\int_{G} 1_{U} \mathrm{~d}(\mu * \nu) \\
& =(\mu * \nu)(U)
\end{aligned}
$$

4. Now let $E \in \mathcal{B}(G)$, and find open $U_{n} v m E$ such that $(\mu * \nu)\left(U_{n} \backslash E\right)<n^{-1}$. Then let

$$
V_{n}=\bigcap_{k=1}^{n} U_{n}
$$

so we have $1_{V_{n}} \rightarrow 1_{E}$ on

$$
\left.G \backslash \bigcap_{n=1}^{\infty} V_{n}\right) \cup E
$$

i.e. $(\mu * \nu)$-almost-everywhere. Hence by Item 2 , we get $(\mu \times \nu)$-almost-everywhere that $1_{V_{n}} \circ \pi \rightarrow 1_{E} \circ \pi$. Thus by Lebesgue dominated convergence theorem we get that

$$
\begin{aligned}
(\mu \times \nu)\left(\pi^{-1}(E)\right) & =\lim _{n \rightarrow \infty} \int_{G \times G} 1_{V_{n}} \circ \pi \mathrm{~d}(\mu * \nu) \\
& =\lim _{n \rightarrow \infty} \int_{G} 1_{V_{n}} \mathrm{~d}(\mu * \nu) \\
& =(\mu * \nu)(E)
\end{aligned}
$$

Remark 7.3. Some consequences:

1. For μ, ν, E as above we have

$$
\begin{aligned}
(\mu * \nu)(E) & =\int_{G} \int_{G} 1_{E}(x y) \mathrm{d} \mu(x) \mathrm{d} \nu(y) \\
& =\int_{G} \int_{G} 1_{E y^{-1}}(x) \mathrm{d} \mu(x) \mathrm{d} \nu(y) \\
& =\int_{G} \mu\left(E y^{-1}\right) \mathrm{d} \nu(y)
\end{aligned}
$$

and similarly

$$
(\mu * \nu)(E)=\int_{G} \nu\left(x^{-1} E\right) \mathrm{d} \mu(x)
$$

2. Let

$$
B^{\infty}(G)=\overline{\operatorname{span}\left\{1_{E}: E \in \mathcal{B}(G)\right\}} \|^{\|\cdot\|_{\infty}}=\{\varphi: G \rightarrow \mathbb{C} \mid \varphi \text { bounded and Borel-measurable }\}
$$

By LDCT we have for $\varphi \in B^{\infty}(G)$ that

$$
\int_{G} \varphi \mathrm{~d}(\mu * \nu)=\int_{G \times G} \varphi \circ \pi \mathrm{~d}(\mu \times \nu)=\int_{G} \int_{G} \varphi(x y) \mathrm{d} \mu(x) \mathrm{d} \nu(y)
$$

3. Let $L^{\infty}(G)=B^{\infty}(G) / \mathcal{N}_{m}$, where

$$
\mathcal{N}_{m}=\left\{f \in \mathcal{B}^{\infty}(G): f=0 m \text {-locally-almost-everywhere }\right\}
$$

i.e. if $K \subseteq f^{-1}(\mathbb{C} \backslash\{0\})$ is compact then $m(K)=0$. Then a version of Riesz representation theorem tells us that $L^{1}(G)^{*} \cong L^{\infty}(G)$ via

$$
\langle f, \varphi\rangle=\int_{G} f \varphi \mathrm{~d} m
$$

Corollary 7.4. $M_{c}(G)$ and $M_{a}(G)$ are ideals in $M(G)$.
Proof. If $N \in \mathcal{B}(G)$ an $\mathrm{d} \mu, \nu \in M(G)$, we have

$$
(\mu * \nu)(N)=\int_{G} \mu\left(N y^{-1} \mathrm{~d} \nu(y)=\int_{G} \nu\left(x^{-1} N\right) \mathrm{d} \mu(x)\right.
$$

Suppose one of μ, ν lies in $M_{c}(G)$ and $N=\left\{x_{0}\right\}$. Then clearly $(\mu * \nu)\left(\left\{x_{0}\right\}\right)=0$. Thus $\mu * \nu \in M_{c}(G)$.
Likewise if N is m-(locally)-null and one of μ, ν lies in $M_{a}(G)$, then for $N^{\prime} \subseteq N$ with $N^{\prime} \in \mathcal{B}(G)$ we have for any $x \in G$ that $x^{-1} N^{\prime}, N^{\prime} x^{-1}$ are also m-(locally)-null. Thus $(\mu * \nu)\left(N^{\prime}\right)=0$. Thus $\mu * \nu \in M_{a}(G)$.

Remark 7.5. $M_{c s}(G)$ need not be a subalgebra of $M(G)$. Consider $G=K \times K$ for K an infinite compact grape, and m_{K} the normalized Haar measure on K. Then one can check that

$$
\left(m_{K} \times \delta_{e}\right) *\left(\delta_{e} \times m_{K}\right)=m_{K} \times m_{K}=m_{G} \ll m_{G}
$$

and $K \times\{e\},\{e\} \times K$ are m_{G}-null. So $m_{K} \times \delta_{e}, \delta_{e} \times m_{K} \in M_{c s}(G)$.
Fact 7.6 (Hard). $M_{c s}(\mathbb{R})$ is not a subalgebra of $M(\mathbb{R}) . M_{c s}(\mathbb{T})$ is not a subalgebra of $M(\mathbb{T})$.
Theorem 7.7 (Bochner integral for bounded continuous functions). Suppose X is a locally compact space and \mathcal{L} a Banach space, and let

$$
C_{b}(X, \mathcal{L})=\left\{F: X \rightarrow \mathcal{L} \mid F \text { continuous, }\|f\|_{\infty}=\sup _{x \in X}\|f(x)\|<\infty\right\}
$$

Then there is a bilinear map (integral)

$$
\begin{aligned}
C_{b}(X, G) \times M(X) & \rightarrow \mathcal{L} \\
(F, \mu) & \mapsto \int_{X} F \mathrm{~d} \mu
\end{aligned}
$$

with

$$
\left\|\int_{X} F \mathrm{~d} \mu\right\| \leqslant\|F\|_{\infty}\|\mu\|_{1}
$$

Furthermore if $T \in \mathcal{B}\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$ (bounded linear operator), then

$$
T\left(\int_{X} F \mathrm{~d} \mu\right)=\int_{X} T \circ F \mathrm{~d} \mu
$$

Proof.

1. Let

$$
\mathcal{S}=\mathcal{S}(X, \mathcal{L})=\operatorname{span}\left\{1_{E}(\cdot) \xi: E \in \mathcal{B}(G), \xi \in \mathcal{L}\right\}
$$

Each $\Phi \in \mathcal{S}$ admits a standard form

$$
\Phi=\sum_{j=1}^{n} q_{E_{j}}(\cdot) \xi_{j}
$$

where $\xi_{1}, \ldots, \xi_{n} \in \mathcal{L}$ and $E_{1}, \ldots, E_{n} \in \mathcal{B}(G)$ satisfy $E_{i} \cap E_{j}=\varnothing$ for $i \neq j$. Then \mathcal{S} is a linear space of \mathcal{L}-valued functions.
For $\mu \in M(X)$ and Φ as above, we let

$$
\int_{X} \Phi \mathrm{~d} \mu=\sum_{j=1}^{n} \mu\left(E_{j}\right) \xi_{j}
$$

One checks that this is well-defined, that the map

$$
\begin{aligned}
\mathcal{S} \times M(X) & \rightarrow \mathcal{L} \\
(\Phi, \mu) & \mapsto \int_{X} \Phi \mathrm{~d} \mu
\end{aligned}
$$

is bilinear, that

$$
\left\|\int_{X} \Phi \mathrm{~d} \mu\right\| \leqslant\|\Phi\|_{\infty}\|\mu\|_{1}
$$

and that if $T \in \mathcal{B}\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$ then

$$
T\left(\int_{X} \Phi \mathrm{~d} \mu\right)=\int_{X} T \circ \Phi \mathrm{~d} \mu
$$

2. Let $\overline{\mathcal{S}}=\overline{\mathcal{S}(X, \mathcal{L})}{ }^{\|\cdot\|_{\infty}}$. Hence if $\Psi \in \bar{S}$ then

$$
\Psi=\lim _{n \rightarrow \infty} \Phi_{n}
$$

for some $\left(\Phi_{n}\right)_{n=1}^{\infty}$ in \mathcal{S}. Then

$$
\left(\int_{X} \Phi_{n} \mathrm{~d} \mu\right)_{n=1}^{\infty}
$$

is Cauchy in \mathcal{L}, and hence has a limit

$$
\int_{X} \Psi \mathrm{~d} \mu
$$

This value is independent of the choice of Φ_{n}; thus the "usual" norm estimate and composition with bounded linear operators holds.
3. Let $K \subseteq X$ be compact. If $F \in C_{b}(X, \mathcal{L})$, then $F(K)$ is compact in \mathcal{L}, and hence is totally bounded. i.e. given $\varepsilon>0$ we have

$$
F(K) \subseteq \bigcup_{j=1}^{n} B\left(\xi_{j}, \varepsilon\right)
$$

where $\xi_{1}, \ldots, \xi_{n} \in \mathcal{L}$. Let $E_{1}=F^{-1}\left(B\left(\xi_{1}, \varepsilon\right)\right) \cap K$, and let

$$
E_{j}=F^{-1}\left(B\left(\xi_{j}, \varepsilon\right) \backslash \bigcup_{i=1}^{j-1} B\left(\xi_{i}, \varepsilon\right)\right) \cap K
$$

for $j \in\{2, \ldots, n\}$. Then

$$
\Phi=\sum_{j=1}^{n} 1_{E_{j}}(\cdot) \xi_{j}
$$

and we have

$$
\max _{x \in K}\|F(x)-\Phi(x)\|-\|(F \upharpoonright K)-\Phi\|_{\infty}<\varepsilon
$$

Hence by Item 2 we have

$$
\int_{K} F \mathrm{~d} \mu
$$

is "good".
4. Given $\mu \in M(X)$, find a sequence of compact sets for which

$$
\lim _{n \rightarrow \infty}|\mu|\left(X \backslash K_{n}\right)=0
$$

Given $F \in C_{b}(X, \mathcal{L})$, let

$$
\xi_{n}=\int_{K_{n}} F \mathrm{~d} \mu=\int_{X} F \mathrm{~d} \mu_{K_{n}}
$$

(recall $\mu_{K}(E)=\mu(E \cap K)$). Then for $n, m \in \mathbb{N}$ we have

$$
\begin{aligned}
\left\|\xi_{n}-\xi_{m}\right\| & =\left\|\int_{X} F \mathrm{~d}\left(\mu_{K_{n}}-\mu_{K_{m}}\right)\right\| \\
& \leqslant\|F\| \infty\left\|_{\infty} \mu_{K_{n}}-\mu_{K_{m}}\right\| \\
& \leqslant\|F\|_{\infty}|\mu|\left(K_{n} \triangle K_{m}\right) \\
& \leqslant\|F\|_{\infty}\left(|\mu|\left(G \backslash K_{m}\right)+|\mu|\left(G \backslash K_{n}\right)\right)
\end{aligned}
$$

So $\left(\xi_{n}\right)_{n=1}^{\infty}$ is Cauchy in \mathcal{L}. We call the limit

$$
\int_{X} F \mathrm{~d} \mu
$$

one checks that this is independent of the sequence $\left(K_{n}\right)_{n=1}^{\infty}$. This integral is "good".Theorem 7.7

Definition 7.8. A Banach space \mathcal{X} is a Banach G-module if there is an action

$$
\begin{aligned}
G \times \mathcal{X} & \rightarrow \mathcal{X} \\
(x, \xi) & \mapsto x \cdot \xi
\end{aligned}
$$

such that

- for a fixed x the map $\xi \mapsto x \cdot \xi$ is linear
- there is $C>0$ such that $\|x \cdot \xi\| \leqslant C\|\xi\|$ for all x, ξ
- for any fixed $\xi \in \mathcal{X}$ the map $x \mapsto x \cdot \xi$ is a continuous map $G \rightarrow \mathcal{X}$. (Strong operator continuity.)

Theorem 7.9. \mathcal{X} is a Banach $M(G)$-module with the action $(\mu, \xi) \mapsto \mu \cdot \xi$ satisfying

- Bilinearity
- $\|\mu \cdot \xi\| \leqslant C\|\mu\|_{1}\|\xi\|$
- $(\mu * \nu) \cdot \xi=\mu \cdot(\nu \cdot \xi)$.

Proof. Let

$$
\mu \cdot \xi=\int_{G} x \cdot \xi \mathrm{~d} \mu(x)
$$

We us properties of the integral to check the last property. Let $\omega \in \mathcal{X}^{*}$ so $s \mapsto\langle\omega, s \cdot \xi\rangle$ is in $C_{b}(G) \subseteq B^{\infty}(G)$ and we have

$$
\begin{aligned}
\langle\omega,(\mu * \nu) \cdot \xi\rangle & =\int_{G} \int_{G}\langle\omega,(x y) \cdot \xi\rangle \mathrm{d} \nu(x) \mathrm{d} \mu(y) \\
& =\int_{G}\langle\omega, x \cdot \underbrace{\int_{G} y \cdot \xi \mathrm{~d} \nu(y)}_{v \cdot \xi}\rangle \mathrm{d} \mu(x) \\
& =\int_{G}\langle\omega, x \cdot(\nu \cdot \xi)\rangle \mathrm{d} \mu(x) \\
& =\langle\omega, \mu \cdot(\nu \cdot \xi)\rangle
\end{aligned}
$$

(One should check the first equality.) So $(\mu * \nu) \cdot \xi=\mu \cdot(\nu \cdot \xi)$. Theorem 7.9

Recall our notation

$$
\begin{aligned}
& (x * f)(y)=f\left(x^{-1} y\right) \\
& (f * x)(y)=f\left(y x^{-1}\right)(\Delta(x))^{-1}
\end{aligned}
$$

for m-almost-every y. These make $L^{1}(G)$ both a left and right contractive G-module; i.e. $\|x * f\|_{1}=\|f\|_{1}=$ $\|f * x\|_{1}$. Thus we have that $L^{1}(G)$ is a contractive Banach $M(G)$-module with

$$
\begin{aligned}
& \mu * f=\int_{G} x * f \mathrm{~d} \mu(x) \\
& f * \mu=\int_{G} f * x \mathrm{~d} \mu(x)
\end{aligned}
$$

with $\|\mu * f\|_{1} \leqslant\|\mu\|_{1}\|f\|_{1}$ and $\|f * \mu\|_{1} \leqslant\|f\|_{1}\|\mu\|_{1}$.
Recall that $M_{a}(G) \cong L^{1}(G)$ by Radon-Nikodym theorem. (Recall $M_{a}(G)$ is the family of complex measures that are absolutely continuous with respect to m; recall further that this is an ideal of $M(G)$.) Thus if $\nu \in M_{a}(G)$ with $\nu \ll m$, say with $\frac{\mathrm{d} \nu}{\mathrm{d} m}=f \in L^{1}(G)$. We write $\nu=f m$; i.e.

$$
(f m)(E)=\int_{E} f \mathrm{~d} m
$$

So for $h \in C_{0}(G)$ we get

$$
\langle f m, h\rangle=\int_{G} h f \mathrm{~d} m
$$

Proposition 7.10.

1. For $\mu \in M(G)$ and $f \in L^{1}(G)$ (so $f m \in M_{a}(G)$), we have

$$
\begin{aligned}
\mu *(f m) & =(\mu * f) m \\
(f m) * \mu & =(f * \mu) m
\end{aligned}
$$

2. For $f, g \in L^{1}(G)$ we define

$$
f * g=(f m) * g=\int_{G} f(x) x * g \mathrm{~d} x
$$

(Bochner integral). Then

$$
f *(g m)=f * g=\int_{G} f * y g(y) \mathrm{d} y
$$

and

$$
(f * g) m=(f m) *(g m)
$$

Proof.

1. If $h \in C_{0}(G)$ we have

$$
\begin{aligned}
\int_{G} h \mathrm{~d}(\mu *(f m)) & =\int_{G} \int_{G} h(x y) \mathrm{d} \mu(x) f(y) \mathrm{d} y \\
& =\int_{G} \int_{G} h(x y) f(y) \mathrm{d} y \mathrm{~d} \mu(y) \text { (Fubini) } \\
& =\int_{G} \int_{G} h(y) f\left(x^{-1} y\right) \mathrm{d} y \mathrm{~d} \mu(y) \\
& =\int_{G} h(y) \int_{G} f\left(x^{-} y\right) \mathrm{d} \mu(x) \mathrm{d} y \text { (Fubini) } \\
& =\int_{G} h \mu * f \mathrm{~d} m
\end{aligned}
$$

and hence $\mu *(f m)=(\mu * f) m$. The rest is similar.
2. Similar.Proposition 7.10

So $\left(L^{1}(G), *\right)$ is a Banach algebra, canonically isomorphic to $M_{a}(G) \triangleleft M(G)$. We call this the (L^{1}-) grape algebra.
Theorem 7.11. Let \mathcal{X} be a non-degenerate Banach $L^{1}(G)$-module; i.e. there is a bilinear map $L^{1}(G) \times \mathcal{X} \rightarrow \mathcal{X}$ written $(f, \xi) \rightarrow f \cdot \xi$ such that

- $\|f \cdot \xi\| \leqslant C\|f\|_{1}\|\xi\|$ (where $C>0$ is independent of f, ξ).
- $(f * g) \cdot \xi=f \cdot(g \cdot \xi)$.
- $\mathcal{X}_{0}=\operatorname{span}\left\{f \cdot \xi: f \in L^{1}(G), \xi \in \mathcal{X}\right\}$ is dense in \mathcal{X}.

Then \mathcal{X} is a Banach G-module.
Proof. Let $\left(f_{\alpha}\right)_{\alpha}$ in $L^{1}(G)$ be a contractive summability kernel. (We'll see these on A2; in particular, we require $\left\|f_{\alpha}\right\|_{1} \leqslant 1$ and

$$
\lim _{\alpha} f_{\alpha} * f=f
$$

for $f \in L^{1}(G)$.) Define an action $G \times \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ by

$$
x \cdot\left(\sum_{j=1}^{n} f_{j} \cdot \xi\right)=\sum_{j=1}^{n}\left(x * f_{j}\right) \cdot \xi_{j}
$$

We first check that this is well-defined. It is sufficient to check that if

$$
\sum_{j=1}^{n} f_{j} \cdot \xi_{j}=0
$$

then

$$
\sum_{j=1}^{n}\left(x * f_{j}\right) \cdot \xi_{j}=0
$$

Note, however, that

$$
\begin{aligned}
0 & =\sum_{j=1}^{n} f_{j} \cdot \xi_{j} \\
& =\underbrace{x * f_{\alpha}}_{\in L^{1}(G)} \cdot\left(\sum_{j=1}^{n} f_{j} \cdot \xi_{j}\right) \\
& =\sum_{j=1}^{n}(x * \underbrace{f_{\alpha} * f_{j}}_{\xrightarrow[\alpha]{ } f_{j}}) \\
& \xrightarrow{\alpha} \sum_{j=1}^{n}\left(x * f_{j}\right) \cdot \xi_{j} \\
& =x \cdot\left(\sum_{j=1}^{n} f_{j} \cdot \xi_{j}\right)
\end{aligned}
$$

i.e. $x \cdot 0=0$. Similarly, this action is linear on \mathcal{X}_{0}, and is thus well-defined.

Now if

$$
\xi_{0}=\sum_{j=1}^{n} f_{j} \cdot \xi_{j} \in \mathcal{X}_{0}
$$

and $x \in G$ we have

$$
\begin{aligned}
\left\|x \cdot \xi_{0}\right\| & =\left\|\lim _{\alpha} \sum_{j=1}^{n}\left(x * f_{\alpha} * f_{j}\right) \cdot \xi_{j}\right\| \\
& =\lim _{\alpha}\left\|x * f_{\alpha} \cdot \xi_{0}\right\| \\
& \leqslant \limsup _{\alpha}^{C} \underbrace{\left\|x * f_{\alpha}\right\|_{1}}_{\leqslant 1}\left\|\xi_{0}\right\| \\
& \leqslant C\left\|\xi_{0}\right\|
\end{aligned}
$$

Hence if we define $\pi_{0}(x) \in \mathcal{B}\left(\mathcal{X}_{0}\right)$ by $\pi_{0}(x) \xi_{0}=x \cdot \xi_{0}$ for $\xi_{0} \in \mathcal{X}_{0}$, then $\left\{\pi_{0}(x): x \in G\right\}$ is a uniformly bounded family of operators, and hence extends to a uniformly bounded family of operators $\{\pi(x): x \in G\} \subseteq \mathcal{B}(\mathcal{X})$.
We let $x \cdot \xi=\pi(x) \xi$ and $\|x \cdot \xi\| \leqslant\|\pi(x)\|\|\xi\| \leqslant C\|\xi\|$.
It remains to check continuity in G. Suppose $\xi \in \mathcal{X}$ and $\varepsilon>0$; pick

$$
\xi_{0}=\sum_{j=1}^{n} f_{j} \cdot \xi_{j} \in \mathcal{X}_{0}
$$

with $\left\|\xi-\xi_{0}\right\|<\varepsilon$. Let V be a neighbourhood of e such that

$$
\left\|x * f_{j}-f_{j}\right\|<\frac{\varepsilon}{n\left(\left\|\xi_{j}\right\|+1\right)}
$$

for $x \in V$. Then for $x \in V$ we have

$$
\begin{aligned}
\|\xi-x \cdot \xi\| & \leqslant\left\|\xi-\xi_{0}\right\|+\left\|\xi_{0}-x \cdot \xi_{0}\right\|+\left\|x \cdot \xi_{0}-x \cdot \xi\right\| \\
& <(1+C) \varepsilon \sum_{j=1}^{n} C\left\|f_{j}-x * f_{j}\right\|_{1}\left\|\xi_{j}\right\| \\
& <(1+2 C) \varepsilon
\end{aligned}
$$

as desired.
Theorem 7.11
Our conclusion: there is a bijective correspondence between Banach G-modules and Banach $L^{1}(G)$ modules: given a Banach G-module, Theorem 7.9 gives rise to a Banach $M(G)$-module (non-degenerate for $L^{1}(G)$), which restricts to a Banach $L^{1}(G) \cong M_{a}(G)$-module, which by the last theorem gives rise to a G-module. (We will see on A2 that if \mathcal{X} is a G-module then $f_{\alpha} \cdot \xi \xrightarrow{\alpha} \xi$ for $\xi \in \mathcal{X}$, which gives non-degeneracy.) Example 7.12. Consider $M_{c}(G) \triangleleft M(G)$ a closed ideal, with

$$
M(G)=\underbrace{M_{d}(G)}_{\cong \ell^{1}(G)} \oplus_{\ell^{1}} M_{c}(G)
$$

Then $\ell^{1}(G) \cong M(G) / M_{c}(G)$ is a quotient algebra, and hence a Banach $M(G)$-module. Note that

$$
\mu \cdot \delta_{x}=\sum_{y \in A(\mu)} \mu(\{y\}) \delta_{y x}
$$

Since $\left\|\delta_{x}-\delta_{x^{\prime}}\right\|_{1}=1$ for $x \neq x^{\prime}$, this is not a continuous G-module.
Theorem 7.13 (Wendel). Suppose G and H are locally compact grapes. If there is an isometric isomorphism $\Phi: L^{1}(G) \rightarrow L^{1}(H)$, then there is a continuous isomorphism $\varphi: G \rightarrow H$ with continuous inverse.

The requirement that Φ be isometric is important:
Example 7.14. Consider \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. It transpires that $\ell^{1}\left(\mathbb{Z}_{4}\right) \cong \ell^{1}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \cong C(\{1, \ldots, 4\})$ via a non-isometric isomorphism.

Proof of Theorem 7.13. 1. Let

$$
\mathcal{M} L^{1}(G)=\left\{T \in \mathcal{B}\left(L^{1}(G)\right): T(f * g)=T(f) * g \text { for } f, g \in L^{1}(G)\right\}
$$

(Here $\mathcal{B}\left(L^{1}(G)\right)$ refers to bounded linear operators, not Borel sets.)
Claim 7.15. Then $\mathcal{M} L^{1}(G)=\left\{T_{\mu}: \mu \in M(G)\right\}$ where $T_{\mu}(f)=\mu * f$ and $\left\|T_{\mu}\right\|=\|\mu\|_{1}$.
Proof. Suppose $T \in \mathcal{M} L^{1}(G)$, and let $\left(f_{\alpha}\right)_{\alpha}$ be a contractive summability kernel in $L^{1}(G)$. Then $\left(T\left(f_{\alpha}\right)\right)_{\alpha}$ is a bounded net in $L^{1}(G) \hookrightarrow M(G)$, and hence admits a weak*-cluster-point by Banach-Alaoglu. By taking a subnet, we may assume that in the weak*topology we have

$$
\mu=\lim _{\alpha} T\left(f_{\alpha}\right)
$$

Hence in $M(G)$ we have

$$
\begin{aligned}
(\mu * f) m & =\mu *(f m) \\
& =\mathrm{w}^{*}-\lim _{\alpha} T\left(f_{\alpha}\right) *(f m) \\
& =\mathrm{w}^{*}-\lim _{\alpha}\left(T\left(f_{\alpha}\right) * f\right) m \\
& =\mathrm{w}^{*}-\lim _{\alpha} T\left(f_{\alpha} * f\right) m
\end{aligned}
$$

But since $f_{\alpha} * f \xrightarrow{\alpha} f$ in $L^{1}(G)$ and T is bounded (and hence continuous), we have that $T\left(f_{\alpha} * f\right)=T(f)$ in $L^{1}(G)$, so

$$
\lim _{\alpha} T\left(f_{\alpha} * f\right) m=T(f) m
$$

in norm, and in particular in the weak* topology.

TODO 4. Typography
so $\mu * f=T(f)$; i.e. $T=T_{\mu}$.
We have $\left\|T_{\mu}\right\| \leqslant\|\mu\|_{1}$ already. Conversely, we have

$$
\begin{aligned}
\left\|T_{\mu}\right\| & \geqslant \sup _{\alpha}\left\|T_{\mu}\left(f_{\alpha}\right)\right\|_{1} \\
& =\sup _{\alpha}\left\|\mu * f_{\alpha}\right\|_{1} \\
& =\sup _{\alpha} \sup _{h \in C_{0}(G)}\left|\left\langle\mu * f_{\alpha}, h\right\rangle\right| \\
& \geqslant \sup _{\|h\|_{\infty} \leqslant 1} \limsup _{\alpha}|\langle\mu, \underbrace{\left.\lim _{\alpha}\right)}_{\substack{\rightarrow \\
f_{\alpha} \cdot h}}\rangle| \\
& =\sup _{\|h\|_{\infty}}|\langle\mu, h\rangle| \\
& =\|\mu\|_{1}
\end{aligned}
$$

as desired.
2. We define $\widetilde{\Phi}: M(G) \rightarrow M(H)$ by letting $T_{\widetilde{\Phi}(\mu)}=\Phi \circ T_{\mu} \circ \Phi^{-1}$. (Exercise, using Item 1.) Then $\widetilde{\Phi}$ is an isometric isomorphism which is strictly continuous: if $\left(\mu_{\alpha}\right)_{\alpha}$ is a net in $M(G)$ and $\mu \in M(G)$ has

$$
\lim _{\alpha} \mu_{\alpha} * f=\mu * f
$$

for any $f \in L^{1}(G)$, then

$$
\lim _{\alpha} \widetilde{\Phi}\left(\mu_{\alpha}\right) * g=\widetilde{\Phi}(\mu) * g
$$

for any $g \in L^{1}(H)$. Notice that $x_{i} \xrightarrow{i} x$ in G if and only if $\delta_{x_{i}} \xrightarrow{i \text { strict }} \xi_{x}$ in $M(G)$. (Forward direction obvious, reverse an easy exercise.)
3. Let

$$
\widetilde{G}=\operatorname{Ext} \underbrace{B(M(G))}_{\text {closed unit }}=\left\{z \delta_{x}: z \in \mathbb{T}, x \in G\right\}
$$

Then $\widetilde{G}=\mathbb{T} \times G$ (as sets, and by a weak*-homeomorphism). Then $\widetilde{\Phi}$, being a surjective isometry, has

$$
\widetilde{\Phi}(\widetilde{G})=\widetilde{H}=\operatorname{Ext} B(M(H))
$$

(Note that this together with linearity imply that φ is surjective.) We define $\zeta: G \rightarrow \mathbb{T}$ and $\varphi: G \rightarrow H$ by

$$
\widetilde{\Phi}\left(\delta_{x}\right)=\zeta(x) \delta_{\varphi(x)}
$$

Then

$$
\zeta(x y) \delta_{\varphi(x y)}=\widetilde{\Phi}\left(\delta_{x y}\right)=\widetilde{\Phi}\left(\delta_{x}\right) \widetilde{\Phi}\left(\delta_{y}\right)=\zeta(x) \zeta(y) \delta_{\varphi(x) \varphi(y)}
$$

So $\zeta(x y) \overline{\zeta(x) \zeta(y)} \delta_{e_{H}}=\delta_{\varphi(x y)^{-1} \varphi(x) \varphi(y)}$. But $\delta_{e_{H}}$ is supported on $\left\{e_{H}\right\}$, and $\delta_{\varphi(x y)^{-1} \varphi(x) \varphi(y)}$ is a probability measure. So φ and ζ are homomorphisms.
Now suppose $x_{i} \xrightarrow{i} x$ in G. So $\delta_{x_{i}} \xrightarrow{i, \text { strict }} \delta_{x}$ in $M(G)$. Then

$$
\zeta\left(x_{i}\right) \delta_{\varphi(x)}=\widetilde{\Phi}\left(\delta_{x_{i}}\right) \xrightarrow{i, \text { strict }} \widetilde{\Phi}\left(\delta_{x}\right)=\zeta(x) \delta_{\varphi(x)}
$$

So $\zeta\left(x_{i} x^{-1}\right) \delta_{\varphi\left(x_{i} x^{-1}\right)} \xrightarrow{i, \text { strict }} \delta_{e_{H}}$. We see by taking subsets if we must that 1 is the only cluster point of $\zeta\left(x_{i} x^{-1}\right)$ in \mathbb{T}. It follows that ζ and φ are continuous.
4. We check that $\varphi^{-1}: H \rightarrow G$ is continuous. Note that $\Phi^{-1}: L^{1}(H) \rightarrow L^{1}(G)$ gives rise to a continuous homomorphism $\chi: H \rightarrow \mathbb{T}$ and a continuous isomorphism $\varphi: H \rightarrow G$. If $x \in G$ then

$$
\begin{aligned}
\delta_{x} & =\underbrace{\widetilde{\Phi^{-1}}}_{\widetilde{\Phi}^{-1}(\mathrm{check})} \circ \widetilde{\Phi}\left(\delta_{x}\right) \\
& =\widetilde{\Phi}^{-1}\left(\zeta(x) \delta_{\varphi(x)}\right) \\
& =\zeta(x) \widetilde{\Phi}^{-1}\left(\delta_{\varphi(x)}\right) \\
& =\zeta(x) \chi(\varphi(x)) \delta_{\psi(\varphi(x))}
\end{aligned}
$$

We deduce that $(\psi \circ \varphi)(x)=x$. So $\psi \circ \varphi=\mathrm{id}$, and $\psi=\varphi^{-1}$. Theorem 7.13

8 Unitary representations

Let \mathcal{H} be a Hilbert space and $U(\mathcal{H})=\left\{U \in \mathcal{B}(\mathcal{H}): U^{*} U=I=U U^{*}\right\}$.
Warning 8.1. In the infinite-dimensional setting, we must check both equalities $U^{*} U=I=U U^{*}$; it's possible for one to be satisfied but not the other.

Notation 8.2. For dual pairings, we will use $\langle\cdot, \cdot\rangle$. For sesquilinear forms, we will use $\langle\cdot \mid \cdot\rangle$. In this class we will use the physics convention: conjugate-linearity in the first argument, and linearity in the second argument.

On $\mathcal{B}(\mathcal{H})$ we consider, in addition to the norm topology, the weak operator topology and the strong operator topology:

$$
\begin{aligned}
\tau_{\mathrm{WO}} & =\sigma(\mathcal{B}(\mathcal{H}),\{T \mapsto\langle\xi, T \eta\rangle: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}, \xi, \eta \in \mathcal{H}\}) \\
\tau_{\mathrm{SO}} & =\sigma(\mathcal{B}(\mathcal{H}),\{T \mapsto T \xi: \mathcal{B}(\mathcal{H}) \rightarrow(H,\|\cdot\|), \xi \in \mathcal{H}\})
\end{aligned}
$$

We have $\tau_{\mathrm{WO}} \subseteq \tau_{\mathrm{SO}}$; i.e. $T_{\alpha} \xrightarrow{\mathrm{SO}, \alpha} T$ implies $T_{\alpha} \xrightarrow{\mathrm{WO}, \alpha} T$.

Proposition 8.3.

1. The map $B(\mathcal{B}(\mathcal{H})) \times B(\mathcal{B}(\mathcal{H})) \rightarrow B(\mathcal{B}(H))$ (closed unit balls) given by $(S, T) \mapsto S T$ is $\tau_{\mathrm{SO}} \times \tau_{\mathrm{SO}}-\tau_{\mathrm{SO}}$ continuous.
2. On $\mathcal{U}(\mathcal{H})$, the relativized topologies $\tau_{\mathrm{SO}} \upharpoonright \mathcal{U}(\mathcal{H})=\tau_{\mathrm{WO}} \upharpoonright \mathcal{U}(\mathcal{H})$.

Hence $\left(\mathcal{U}(\mathcal{H}), \tau_{\mathrm{WO}}\right)$ is a topological grape.
Proof.

1. Suppose $S_{\alpha} \xrightarrow{\text { SO, } \alpha} S$ and $T_{\alpha} \xrightarrow{\mathrm{SO}, \alpha} T$ in $B(\mathcal{B}(\mathcal{H}))$. Then for $\xi \in \mathcal{H}$ we have

$$
\begin{aligned}
\left\|S_{\alpha} T_{\alpha} \xi-S T \xi\right\| & \leqslant\left\|S_{\alpha} T_{\alpha} \xi-S_{\alpha} T \xi\right\|+\left\|S_{\alpha} T \xi-S T \xi\right\| \\
& \leqslant\left\|T_{\alpha} \xi-T \xi\right\|+\left\|S_{\alpha} T \xi-S T \xi\right\| \\
& \stackrel{\alpha}{\rightarrow} 0
\end{aligned}
$$

2. Suppose $U_{\alpha} \xrightarrow{\text { wo, } \alpha} U$ in $\mathcal{U}(\mathcal{H})$. Then for $\xi \in \mathcal{H}$ we have

$$
\begin{aligned}
\left\|U_{\alpha} \xi-U \xi\right\|^{2} & =\left\langle U_{\alpha} \xi-U \xi \mid U_{\alpha} \xi-U \xi\right\rangle \\
& =2\|\xi\|^{2}-2 \operatorname{Re}\left\langle U_{\alpha} \xi \mid U_{\xi}\right\rangle \\
& \xrightarrow{\alpha} 2\|\xi\|^{2}-2 \operatorname{Re}\langle U \xi \mid U \xi\rangle \\
& =0
\end{aligned}
$$

as desired.

Remark 8.4.

1. The second item fails in $B\left(\mathcal{B}(\mathcal{H})\right.$. Indeed, let $U: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ be the bilateral shift $U \delta_{n}=\delta_{n+1}$; so $U \in \mathcal{U}(\mathcal{H}) \subseteq B(\mathcal{B}(\mathcal{H}))$. One can check that $U^{n} \xrightarrow{\text { WO, } n} 0$ while $\left\|U^{n} \xi\right\|=\|\xi\|$ for $\xi \in \ell^{2}(\mathbb{Z})$.
2. The map $(S, T) \mapsto S T$ is not $\left(\tau_{\mathrm{WO}} \times \tau_{\mathrm{WO}}\right)-\tau_{\text {WO }}$ continuous. Let U be as above. So $U^{n}, U^{-n} \xrightarrow{\text { WO, } n} 0$ but $U^{n} U^{-n}=I \xrightarrow{\mathrm{WO}, n} 0$.
3. For a fixed S the maps $T \mapsto T S, T \mapsto S T$, and $T \mapsto T^{*}$ are $\tau_{\text {WO }}-\tau_{\text {WO }}$ continuous. (Check this.)
4. $T \mapsto T^{*}$ is not $\tau_{\text {SO }} \tau_{\text {SO }}$ continuous. (Consider the unilateral shift $S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ so $S \delta_{n}=S \delta_{n+1}$ Then $\left(S^{*}\right)^{n} \rightarrow 0$ but S^{n} is always an isometry.
Proposition 8.5. $\mathcal{U}(\mathcal{H})$ is the only subgrape of $B(\mathcal{B}(\mathcal{H}))$.
Proof. If $U, U^{-1} \in B(\mathcal{B}(\mathcal{H}))$ then for $\xi \in \mathcal{H}$ we have

$$
\|\xi\|=\left\|U^{-1} U \xi\right\| \leqslant\|U \xi\| \leqslant\|\xi\|
$$

so $\|U \xi\|=\|\xi\|$. hence

$$
\langle\xi \mid \xi\rangle=\|\xi\|^{2}=\|U \xi\|^{2}=\left\langle\xi \mid U^{*} U \xi\right\rangle
$$

where $\left(U^{*} U\right)^{*}=U^{*} U$, so we can use the polarization identity: on any $\xi, \eta \in \mathcal{H}$ we have

$$
4\langle\xi, \eta\rangle=\sum_{k=0}^{3} i^{k}\left\langle\xi+i^{k} \eta \mid \xi+i^{k} \eta\right\rangle=\sum_{k=0}^{3} i^{k}\left\langle\xi+i^{k} \eta \mid U^{*} U\left(\xi+i^{k} \eta\right)\right\rangle=4\left\langle\xi \mid U^{*} U \eta\right\rangle
$$

So $U^{*} U=I$, and $U^{*}=U^{*} U U^{-1}=U^{-1}$. Proposition 8.5

Definition 8.6. A unitary representation is a homomorphism π : $G \rightarrow \mathcal{U}(\mathcal{H})$, with \mathcal{H} a Hilbert space, which is $\tau_{G}-\tau_{\text {SO }}$ continuous. (If $x \cdot \xi=\pi(x) \xi$, we get a "unitary" Banach G-module.
Theorem 8.7. There is a bijective correspondence between
(i) Unitary representations $\pi: G \rightarrow \mathcal{U}(\mathcal{H})$ with \mathcal{H} a Hilbert space.
(i^{\prime}) Contractive (i.e. $C=1$) Banach G-modules on a Hilbert space.
(ii) Non-degenerate $*$-representations $\pi_{1}: L^{1}(G) \rightarrow \mathcal{B}(\mathcal{H})$ with \mathcal{H} a Hilbert space.
(ii') Contractive representations $\pi_{1}: L^{1}(G) \rightarrow \mathcal{B}(\mathcal{H})$ with \mathcal{H} a Hilbert space.
TODO 5. typography
Proof. For $(i) \Longleftrightarrow\left(i^{\prime}\right)$ and $(i i) \Longleftrightarrow\left(i i^{\prime}\right)$, we collect prior propositions on unitaries and the G-module to $L^{1}(G)$-module correspondence. It remains to check that $(i) \Longleftrightarrow(i i)$.

If $\pi: G \rightarrow \mathcal{U}(\mathcal{H})$ is a unitary representation, then for $f \in L^{1}(G)$ we let $\pi_{1}(f) \in \mathcal{B}(\mathcal{H})$ be

$$
\pi_{1}(f) \xi=\int_{G} f(x) \pi(x) \xi
$$

(Bochner integral) for $\xi \in \mathcal{H}$. Then for $\xi, \eta \in \mathcal{H}$ we have

$$
\begin{aligned}
\left\langle\pi_{1}(f)^{*} \xi \mid \eta\right\rangle & =\left\langle\xi \mid \pi_{1}(f) \eta\right\rangle \\
& =\int_{G} f(x)\langle\xi \mid \pi(x) \eta\rangle \mathrm{d} x \\
& =\int_{G} f(x)\left\langle\pi \left(x^{-1} \xi|\eta\rangle \mathrm{d} x\right.\right. \\
& =\int_{G} \underbrace{f\left(x^{-1}\right)(\Delta(x))^{-1}}_{\overparen{f^{*}(x)}}\langle\pi(x) \xi \mid \eta\rangle \mathrm{d} x\left(\text { using } \pi\left(x^{-1}\right)=\pi(x)^{*}\right) \\
& =\int_{G}\left\langle f^{*}(x) \pi(x) \xi \mid \eta\right\rangle \mathrm{d} x \\
& =\left\langle\pi_{1}\left(f^{*}\right) \xi \mid \eta\right\rangle
\end{aligned}
$$

So $\pi_{1}(f)^{*}=\pi_{1}\left(f^{*}\right)$. Conversely, if $\pi_{1}: L^{1}(G) \rightarrow \mathcal{U}(\mathcal{H})$ is a $*$-homomorphism and $\left(f_{\alpha}\right)_{\alpha}$ is a summability kernel for $L^{1}(G)$, then $\left(f_{\alpha}^{*}\right)_{\alpha}$ is a summability kernel (check, might be useful on assignment), and we define

$$
\pi(x)^{*}=\text { WO- } \lim _{\alpha} \pi_{1}\left(x * f_{\alpha}\right)^{*}=\text { WO- } \lim _{\alpha} \pi_{1}\left(f_{\alpha}^{*} * x^{-1}\right)=\pi\left(x^{-1}\right)
$$

One should check the first equality.
TODO 6. What?

9 Gelfand theory for commutative Banach algebras

Let \mathcal{A} be a commutative Banach algebra: so $\|a b\| \leqslant\|a\|\|b\|$ and $a b=b a$, etc.
Example 9.1.

1. Consider $C_{0}(X)$ where X is a locally compact Hausdorff space. This is unital if and only if X is compact.
2. Consider $\left(L^{1}(G), *\right)$ with G abelian. This is unital if and only if G is discrete (so $L^{1}(G)=\ell^{1}(G)$). (For the left-to-right implication, consider the multiplier $T_{f m-\delta_{e}}$ if f is the identity for $L^{1}(G)$. Then $\left\|T_{f m-\delta_{e}}\right\|=\left\|f m-\delta_{e}\right\|_{1}$, and the latter is $\geqslant 1=\left\|\delta_{e}\right\|$ if G is non-discrete, while $T_{f m-\delta_{e}}=0$ if $L^{1}(G)$ is unital.)
3. If S is an abelian semigrape, consider $\left(\ell^{1}(S), *\right)$ with

$$
\sum_{s \in S} a(s) \delta_{s} * \sum_{t \in S} b(t) \delta_{t}=\sum_{u \in S}\left(\sum_{\substack{s, t \in S \times \\ s t=u}} a(s) b(t)\right) \delta_{u}
$$

It is possible for $\ell^{1}(S)$ to be unital, with S being unital.
4. Consider $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and

$$
\mathcal{A}(\mathbb{D})=\{f \in C(\overline{\mathbb{D}}): f \upharpoonright \mathbb{D} \text { is holomorphic }\}
$$

Definition 9.2. We let the (Gelfand) spectrum of \mathcal{A} be

$$
\widehat{\mathcal{A}}=\{\chi: \mathcal{A} \rightarrow \mathbb{C} \mid \chi \neq 0, \chi \text { linear, } \mathbb{C} \text {-multiplicative }\}
$$

We refer to the elements of $\hat{\mathcal{A}}$ as characters.
We from now on assume that \mathcal{A} is unital.
Proposition 9.3. Let \mathcal{A} be as above and $\chi \in \hat{\mathcal{A}}$. Then

1. $\chi\left(1_{\mathcal{A}}\right)=1$.
2. If $a \in \mathcal{A}^{\times}$(i.e. a is invertible) then $\chi(a) \neq 0$.
3. $|\chi(a)| \leqslant\|a\|$ for $a \in \mathcal{A}$.

Proof.

1. Since $\chi \neq 0$ we have a so $\chi(a) \neq 0$, and $\chi\left(1_{A}\right) \chi(a)=\chi(a)$.
2. We have $1=\chi\left(1_{A}\right)=\chi\left(a a^{-1}\right)=\xi(a) \xi\left(a^{-1}\right)$.
3. If $\lambda \in \mathbb{C}$ with $|\lambda|>\|a\|$ then $\left\|\lambda^{-1} a\right\|<1$, and

$$
\left(\lambda 1_{\mathcal{A}}-a\right)^{-1}=\lambda^{-1}\left(1_{\mathcal{A}}-\lambda^{-1} a\right)^{-1}=\lambda^{-1} \sum_{n=0}^{\infty} \lambda^{-n} a^{n}
$$

(convergence in the Banach space $\mathcal{A})$, so $\chi\left(\lambda 1_{\mathcal{A}}-a\right) \neq 0$. i.e. $\lambda \neq \chi(a)$ if $|\lambda|>\|a\|$. The result follows.

Corollary 9.4. With \mathcal{A} as above we have that $\hat{\mathcal{A}} \subseteq \mathcal{A}^{*}$ is w^{*}--compact.
Proof. Since $\hat{\mathcal{A}} \subseteq B\left(\mathcal{A}^{*}\right)$, it suffices to show that \hat{A} is w*--closed (by Banach-Alaoglu). If $\left(\chi_{\alpha}\right)_{\alpha}$ is a net in $\hat{\mathcal{A}}$ with $\chi_{\alpha} \xrightarrow{\mathrm{w}^{*}, \alpha} \chi$, then for $a, b \in \mathcal{A}$ we have

$$
\chi(a b)=\lim _{\alpha} \chi(a b)=\lim _{\alpha} \chi_{\alpha}(a) \chi_{\alpha}(b)=\chi(a) \chi(b)
$$

and

$$
1=\lim _{\alpha} \chi_{\alpha}\left(1_{\mathcal{A}}\right)=\chi\left(1_{\mathcal{A}}\right)
$$

so $\chi \neq 0$.Corollary 9.4

Lemma 9.5. Suppose \mathcal{A} is as above and $\mathcal{I} \varsubsetneqq \mathcal{A}$ is an ideal. Then

1. $\mathcal{I} \cap \mathcal{A}^{\times}=\varnothing$.
2. $\overline{\mathcal{I}} \varsubsetneqq \mathcal{A}$ and is also an ideal.
3. \mathcal{I} is contained in a maximal ideal $\mathcal{I} \subseteq \mathcal{M} \varsubsetneqq \mathcal{A}$.
4. If \mathcal{I} is maximal then it is closed.

Proof.

1. If $a \in \mathcal{A}^{\times}$then $1_{\mathcal{A}} \in a \mathcal{A}$, so $a \notin \mathcal{I}$.
2. If $\|b\|<1$ in \mathcal{A} then $1-b \in \mathcal{A}^{*}$. Indeed,

$$
(1-b)^{-1}=\sum_{n=0}^{\infty} b^{n}
$$

so the open set $U=\left\{a \in \mathcal{A}:\left\|a-1_{\mathcal{A}}\right\|<1\right\} \subseteq \mathcal{A}^{\times}$. Then $\mathcal{I} \cap U=\varnothing$, hence $\bar{I} \cap U=\varnothing$, and $\overline{\mathcal{I}} \varsubsetneqq \mathcal{A}$. Also if

$$
a=\lim _{n \rightarrow \infty} a_{n}
$$

for $a_{n} \in \mathcal{I}$ and $b \in \mathcal{A}$ then

$$
b a=\lim _{n \rightarrow \infty} b a_{n} \in \overline{\mathcal{I}}
$$

So \mathcal{I} is an ideal.
3. Let $\Xi=\{\mathcal{J} \varsubsetneqq \mathcal{A}: \mathcal{J}$ an ideal, $\mathcal{I} \subseteq \mathcal{J}\}$. Then Ξ is partially ordered by inclusion. If $\Gamma \subseteq \Xi$ is a chain then

$$
\mathcal{K}=\bigcup_{\mathcal{J} \in \Gamma} \mathcal{J} \in \Xi
$$

(using (1.)), and \mathcal{K} is an upper bound for Γ. By Zorn's lemma we are done.
4. We use (2.) and maximality.

Theorem 9.6.

1. If $a \in \mathcal{A}$ then $\sigma(a)=\left\{\lambda \in \mathbb{C}: \lambda 1-a \notin \mathcal{A}^{\times}\right\} \neq \varnothing$.
2. (Gelfand-Mazur) If a (commutative, unital) Banach algebra is a division ring, then $\mathcal{A}=\mathbb{C} 1_{\mathcal{A}}$.

Proof.

1. This is done exactly as in the case $\mathcal{B}(\mathcal{X})$ (bounded operators on \mathcal{X}).
2. If there were $a \in \mathcal{A} \backslash \mathbb{C} 1_{\mathcal{A}}$, then $\lambda 1-a \notin \mathcal{A}^{\times}$for all $\lambda \in \mathbb{C}$, contradicting the first point.Theorem 9.6

Theorem 9.7. If \mathcal{A} is a unital commutative Banach algebra, then its set of distinct maximal ideals is $\{\operatorname{ker}(\chi): \chi \in \hat{\mathcal{A}}\}$. (i.e. if $\chi_{1} \neq \chi_{2}$ then $\operatorname{ker}\left(\chi_{1}\right) \neq \operatorname{ker}\left(\chi_{2}\right)$.)
Proof. Since $\mathcal{A} / \operatorname{ker}(\chi) \cong \mathbb{C}$ is a field, each $\operatorname{ker}\left(\chi\right.$ is a maximal ideal. If $\operatorname{ker}(\chi)=\operatorname{ker}\left(\chi^{\prime}\right)$ then for any $a \in \mathcal{A}$ we have

$$
\chi(a) 1_{\mathcal{A}}-a \in \operatorname{ker}(\chi)=\operatorname{ker}\left(\chi^{\prime}\right)
$$

so

$$
\chi^{\prime}(a)=\chi^{\prime}\left(\chi(a) 1_{\mathcal{A}}-\left(\chi(a)_{\mathcal{A}}-a\right)\right)=\chi(a)
$$

so $\chi=\chi^{\prime}$.
If \mathcal{M} is a maximal ideal of \mathcal{A} then $\mathcal{A} / \mathcal{M}$ (with quotient norm

$$
\|a+\mathcal{M}\|=\inf _{b \in \mathcal{M}}\|a-b\|
$$

which one should check forms a Banach algebra) admits no proper ideals. Indeed, if $\mathcal{J} \varsubsetneqq \mathcal{A} / \mathcal{M}$ is an ideal, then $\mathcal{M} \subseteq q^{-1}(\mathcal{J}) \varsubsetneqq \mathcal{A}$ (where $q: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{M}$ is the quotient map) and $q^{-1}(\mathcal{J})$ is an ideal, so $q^{-1}(\mathcal{J})=\mathcal{M}$, and $\mathcal{J}=\{0+\mathcal{M}\}$. Thus for $a \in \mathcal{A} \backslash \mathcal{M}$ we have

$$
1_{\mathcal{A}}+\mathcal{M} \in \underbrace{(a+\mathcal{M}) \cdot(\mathcal{A} / \mathcal{M})}_{\text {principal ideal }}
$$

and $a+\mathcal{M} \in(\mathcal{A} / \mathcal{M})^{\times}$. By the Gelfand-Mazur theorem, we have $\mathcal{A} / \mathcal{M}=\mathbb{C}\left(1_{\mathcal{A}}+\mathcal{M}\right)$. Let $\chi: \mathcal{A} \rightarrow \mathbb{C}$ be given by $\chi(a)\left(1_{\mathcal{A}}+\mathcal{M}\right)=a+\mathcal{M}$. Then $\chi \in \widehat{\mathcal{A}}$ and $\mathcal{M}=\operatorname{ker}(\chi)$.

Corollary 9.8.

1. We have

$$
\mathcal{A} \backslash \mathcal{A}^{\times}=\bigcup_{x \in \hat{\mathcal{A}}} \operatorname{ker} \chi
$$

2. If $a \in \mathcal{A}$ then

$$
\sup _{\chi \in \widehat{\mathcal{A}}}|\chi(a)|=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}
$$

Proof.

1. If $a \in \mathcal{A}^{\times}$, we already saw that

$$
a \in \mathcal{A} \backslash \bigcup_{x \in \widehat{\mathcal{A}}} \operatorname{ker}(\chi)
$$

If $a \in \mathcal{A} \backslash \mathcal{A}^{\times}$then $a \mathcal{A}$ is a proper ideal, and hence is contained in a maximal ideal $\operatorname{ker}(\chi)$.
2. Let $\lambda \in \mathbb{C}$ and $a \in \mathcal{A}$. Then

$$
\begin{aligned}
\lambda \in \sigma(a) & \Longleftrightarrow \lambda 1_{\mathcal{A}}-a \in \mathcal{A} \backslash \mathcal{A}^{\times} \\
& \Longleftrightarrow \lambda_{\mathcal{A}}-a \in \operatorname{ker}(\chi) \text { for some } \chi \in \hat{\mathcal{A}} \\
& \Longleftrightarrow \lambda=\chi(a)
\end{aligned}
$$

Hence

$$
\sup _{\chi \in \hat{\mathcal{A}}}|\chi(a)|=\max _{\lambda \in \sigma(a)}|\lambda|=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}
$$

by Beurling's spectral radius formula.
Corollary 9.8

10 Abelian harmonic analysis

Let G be a locally compact abelian grape.
Remark 10.1. Both $L^{1}(G)$ and $M(G)$ are abelian Banach algebras. (Indeed we have

$$
\int_{G} h \mathrm{~d}(\mu * \nu)=\int_{G} \int_{G} h(x y) \mathrm{d} \mu(x) \mathrm{d} \nu(y)
$$

at which point we can apply Fubini-Tonelli.)
Proposition 10.2. Suppose $\tau: G \rightarrow \mathbb{C}^{\times}$is a continuous homomorphism. Then

1. $\tau=|\tau| \sigma$ where $\sigma: G \rightarrow \mathbb{T}$ is a continuous homomorphism.
2. τ is bounded if and only if $\tau(G) \subseteq \mathbb{T}$.
3. The set $\widehat{G}=\{\sigma: G \rightarrow \mathbb{T} \mid \sigma$ a continuous homomorphism $\}$ is a grape under pointwise operations.

Proof.

1. We let

$$
\sigma(x)=\frac{\tau(x)}{|\tau(x)|}
$$

for $x \in G$.
2. We have $|\tau|(G) \subseteq(0, \infty)$. Then τ is bounded if and only if $|\tau|(G)=\{1\}$.
3. Obvious. Notice that $\sigma^{-1}=\bar{\sigma}$ (pointwise conjugation).
\square Proposition 10.2
Definition 10.3. We call \hat{G} the dual grape of G.
Theorem 10.4. We have

1. $\widehat{L^{1}(G)}=\left\{\chi_{\sigma}: \sigma \in \widehat{G}\right\}$ where

$$
\chi_{\sigma}(f)=\int_{G} f \sigma \mathrm{~d} m
$$

(Recall $\widehat{L^{1}(G)}$ is the Gelfand spectrum.) Note that $\widehat{G} \subseteq C_{b}(G) \subseteq L^{\infty}(G)$.
2. $\hat{G} \cup\{0\}$ is $a \mathrm{w}^{*}$ - compact set in $L^{\infty}(G)$, and hence \hat{G} is w^{*} - locally compact.
3. $\left(\widehat{G}, \mathrm{w}^{*}\right)$ is a locally compact grape.

Proof.

1. Let

$$
\mathcal{A}= \begin{cases}L^{1}(G)=\ell^{1}(G) & \text { if } G \text { discrete } \\ L^{1}(G) \oplus \ell^{1} \mathbb{C} \delta_{e} \hookrightarrow \mathcal{M}(G) & \text { else }\end{cases}
$$

If $\chi \in \widehat{L^{1}(G)}$, define $\tilde{\chi}: \mathcal{A} \rightarrow \mathbb{C}$ by $\tilde{\chi}\left(f+\lambda \delta_{e}\right)=\chi(f)+\lambda$ and $\tilde{\chi} \in \widehat{\mathcal{A}}$. Hence $\|\tilde{\chi}\| \leqslant 1$, so $\|\chi\|=$ $\left\|\tilde{\chi} \mid L^{1}(G)\right\| \leqslant 1$, and in particular χ is bounded.
We fix $\chi \in \widehat{L^{(G)}}$ and let $f, g \in L^{1}(G)$ with $\chi(f), \chi(g) \neq 0$. Then for $x \in G$ we have

$$
\chi(x * f) \chi(g)=\chi(x * f * g)=\chi(x * g * f)=\chi(x * g) \chi(f)
$$

Hence

$$
\sigma(x)=\frac{\chi(x * f)}{\chi(f)}
$$

is independent of $f \in L^{1}(G) \backslash \operatorname{ker}(\chi)$. Notice that σ is bounded in x :

$$
|\sigma(x)|=\frac{|\chi(x * f)|}{|\chi(f)|} \leqslant \frac{\|x * f\|_{1}}{|\chi(f)|}=\frac{\|f\|_{1}}{|\chi(f)|}
$$

and σ is continuous as the map $G \rightarrow L^{1}(G)$ given by $x \mapsto x * f$ is continuous.
If $x, y \in G$ and $f \in L^{1}(G) \backslash \operatorname{ker}(\chi)$ then $\chi(f * f)=\chi(f)^{2} \neq 0$, so

$$
\sigma(x y)=\frac{\chi(x * y * f * f)}{\chi(f * f)}=\frac{\chi(x * f * y * f)}{\chi(f)^{2}}=\sigma(x) \sigma(y)
$$

so $\sigma: G \rightarrow \mathbb{C}^{\times}$is a bounded homomorphism, and $\sigma \in \widehat{G}$.
Notice that if $\sigma \neq \tau$ in \widehat{G} then $\{x \in G: \sigma(x) \neq \tau(x)\}$ is open in G, and hence not locally m-null, and $\chi_{\sigma} \neq \chi_{\tau}$.
Finally, notice that for $g \in L^{1}(G)$ we have

$$
\chi_{\sigma}(g)=\int_{G} g \sigma \mathrm{~d} m=\int_{G} g(x) \frac{\chi(x * f)}{\chi(f)} \mathrm{d} x=\frac{1}{\chi(f)} \chi(\underbrace{\int_{G} g(x) x * f \mathrm{~d} y}_{g * f})=\chi(g)
$$

2. By Banach-Alaoglu it suffices to show that $\widehat{G} \cup\{0\} \subseteq B\left(L^{\infty}(G)\right)$ is w^{*}-closed. If $\left(\sigma_{\alpha}\right)_{\alpha}$ is a net in $\widehat{G} \cup\{0\}$ converging to $\sigma \in B\left(L^{\infty}(G)\right)$, we can see for $f, g \in L^{1}(G)$ that

$$
\langle f * g, \sigma\rangle=\lim _{\alpha}\left\langle f * g, \sigma_{\alpha}\right\rangle=\lim _{\alpha}\left\langle f, \sigma_{\alpha}\right\rangle\left\langle g, \sigma_{\alpha}\right\rangle=\langle f, \sigma\rangle\langle g, \sigma\rangle
$$

so $\sigma \in \widehat{G} \cup\{0\}$. (Note that if $\tau \in \widehat{G}$ then

$$
\langle f * g, \tau\rangle=\int_{G} \int_{G} f(x) g\left(x^{-1} y\right) \tau(y) \mathrm{d} x \mathrm{~d} y=\int_{g} \int_{G} f(x) g(y) \tau(x y) \mathrm{d} x \mathrm{~d} y=\langle f, \tau\rangle\langle g, \tau\rangle
$$

which yields the desired result.)
If $\sigma \in \widehat{G}$ then since the weak*-topology is Hausdorff, there is a ${ }^{*}$-openset W containing σ such that $0 \notin \bar{W}$. But $\bar{W} \cap \widehat{G}=\bar{W} \cap(\widehat{G} \cup\{0\})$ is compact.
3. Let $M: L^{\infty}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ (bounded linear operators) be given by $M(\varphi) \xi=\varphi \cdot \xi$ (m-almost-everywhere pointwise multiplication). Then for $\xi, \eta \in L^{2}(G)$ we have

$$
\langle\xi \mid M(\varphi) \eta\rangle=\int_{G} \varphi \underbrace{\bar{\xi} \eta}_{\substack{\in L^{1}(G), \\ \text { Cauchy-Schwarz }}} \mathrm{d} m
$$

Also, if $f \in L^{1}(G)$, then

$$
\left.\langle\varphi, f\rangle=\int_{G} \varphi f \mathrm{~d} m=\left.\left.\langle\overline{\operatorname{sgn}} f \cdot| f\right|^{\frac{1}{2}}|M(\varphi)| f\right|^{\frac{1}{2}}\right\rangle
$$

Hence M is a w*-WO homeomorphism onto its range; i.e. $\varphi_{\alpha} \xrightarrow{\mathrm{w}^{*}, \alpha}$ in $L^{\infty}(G)$ if and only if $M\left(\varphi_{\alpha}\right) \xrightarrow{\text { wo, } \alpha}$ $M(\varphi)$ in $M\left(L^{\infty}(G)\right)$. Now, since for $\sigma \in \widehat{G}$ we have $\sigma(G) \subseteq \mathbb{T}$ we see that $M(\sigma) \in U\left(L^{2}(G)\right)$. (One checks that $M(\bar{\varphi})=M(\varphi)^{*}$. Hence $M \upharpoonright \widehat{G}: \widehat{G} \rightarrow M(\widehat{G}) \subseteq U\left(L^{2}(G)\right)$ is a w^{*}-WO homeomorphism. The result then follows.

Proposition 10.5.

1. If G is discrete, then \hat{G} is compact.
2. If G is compact, then \widehat{G} is discrete.

Proof.

1. $L^{1}(G)=\ell^{1}(G)$ is unital, so $\widehat{G} \cong \widehat{\ell^{1}(G)}$ is compact.
2. We normalize m so $m(G)=1$. if $\sigma \in \widehat{G} \backslash\{1\}$, then there is $y \in G$ with $\sigma(y) \neq 1$. hence

$$
\int_{G} \sigma(x) \mathrm{d} x=\int_{G} \sigma(y x) \mathrm{d} x=\sigma(y) \int_{G} \sigma(x) \mathrm{d} x
$$

and hence

$$
\int_{G} \sigma(x) \mathrm{d} x=0
$$

Clearly

$$
\int_{G} 1(x) \mathrm{d} x=1
$$

Hence

$$
\{\tau \in \widehat{G}:|\langle\tau, 1\rangle-\underbrace{\langle 1,1\rangle}_{1}|<\frac{1}{2}\}
$$

is a w^{*}-open neighbourhood of 1 and equals 1 . Thus \widehat{G} is discrete.
\square Proposition 10.5
Example 10.6.

1. Consider $G=\mathbb{Z}$; we use additive notation. if $\sigma \in \widehat{\mathbb{Z}}$, let $z=\sigma(1)$ (where 1 is the generator of \mathbb{Z}, not its identity). Then for $n \in \mathbb{Z}$ we have $\sigma(n)=z^{n}$. Write $\sigma=\sigma_{z}$. Clearly for any $z \in \mathbb{T}$ we have σ_{z} defines an element of $\widehat{\mathbb{Z}}$. Thus $\widehat{\mathbb{Z}}=\left\{\sigma_{z}: z \in \mathbb{T}\right\}$, and if $z \neq z^{\prime}$ then $\sigma_{z} \neq \sigma_{z^{\prime}}$.
Let us consider a w^{*}-open neighbourhood of $1=\sigma_{1} \in \widehat{\mathbb{Z}}$

$$
U=\bigcap_{k=-n}^{n}\left\{\sigma_{z} \in \widehat{\mathbb{Z}}:\left|\left\langle\sigma_{z}, \delta_{k}\right\rangle-\left\langle\sigma_{z}, \delta_{0}\right\rangle\right|<1\right\}=\bigcap_{k=-n}^{n}\left\{\sigma \in \widehat{\mathbb{Z}}:\left|z^{k}-1\right|<1\right\}
$$

Write $z=\exp (i t)$ for $-\pi<t \leqslant \pi$. For $k \in\{-n, \ldots, n\}$ we have

$$
1>\left|z^{k}-1\right|^{2}=|\exp (i k t)-1|^{2}=2-2 \cos (k t)
$$

So $\cos (k t)>\frac{1}{2}$ and $k t \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ (modulo 2π). Hence $U=\left\{\exp (i t): t \in\left(-\frac{\pi}{3 n}, \frac{\pi}{3 n}\right)\right\}$. Hence a w^{*}-neighbourhood of σ_{1} in $\widehat{\mathbb{Z}}$ is a neighbourhood base of 1 in \mathbb{T}. Thus $\mathbb{T} \cong\left\{\sigma_{z}: z \in \mathbb{T}\right\}$ has an induced w^{*}-topology finer than the ambient topology. On sets, comparable compact Hausdorff topologies coincide.
2. Consider $G=\mathbb{R}$. Suppose $\sigma \in \widehat{\mathbb{R}}$. Then σ is continuous with $\sigma(0)=1$, so there is $\alpha>0$ so

$$
\int_{0}^{\alpha} \sigma(x) \mathrm{d} x \neq 0
$$

Now if $y \in \mathbb{R}$ then

$$
\sigma(y) \int_{0}^{\alpha} \sigma(x) \mathrm{d} x=\int_{0}^{\alpha} \sigma(y+x) \mathrm{d} x=\int_{-y}^{\alpha-y} \sigma(x) \mathrm{d} x
$$

The fundamental theorem of calculus then tells us that σ is differentiable. Now, for $x \in \mathbb{R}$ we have

$$
\sigma^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sigma(x+h)-\sigma(x)}{h}=\sigma(x) \lim _{h \rightarrow 0} \frac{\sigma(h)-\sigma(0)}{h}=\sigma(x) \sigma^{\prime}(0)
$$

Let $f(x)=\exp \left(-\sigma^{\prime}(0) x\right) \sigma(x)$. Then $f(0)=1$ and $f^{\prime}(x)=0$ (product rule) so by the mean value theorem we have $f(x)=1$ for all x; i.e. $\sigma(x)=\exp (z x)$ (where $z \in \mathbb{C}$). Moreover $\sigma(\mathbb{R}) \subseteq \mathbb{T}$, so $a=i s$ for $s \in \mathbb{R}$. Let $\sigma=\sigma_{s}$, where $\sigma_{s}(x)=\exp (i s x)$. Clearly $s \neq t$ in \mathbb{R}, so $\sigma_{s} \neq \sigma_{t}$, and $\sigma_{s} \in \widehat{\mathbb{R}}$.
Consider a w^{*}-open neighbourhood of σ_{0} :

$$
\begin{aligned}
U_{a, \varepsilon} & =\left\{\sigma_{\epsilon} \widehat{\mathbb{R}}:\left|\left\langle\sigma_{s}, 1_{[-a, a]}\right\rangle-\left\langle\sigma_{0}, 1_{[-a, a]}\right\rangle\right|<\varepsilon\right\} \\
& =\left\{\sigma_{s} \in \widehat{\mathbb{R}}:\left|\int_{-a}^{a}(\exp (i s x)-1) \mathrm{d} x\right|<\varepsilon\right\} \\
& =\{\sigma_{s} \in \widehat{\mathbb{R}}: 2|\underbrace{\frac{\sin (a s)}{s}-a}_{\psi_{a}(s)}|^{<\varepsilon}\}
\end{aligned}
$$

where ψ_{a} is an analytic and hence continuous function. Also

$$
\lim _{s \rightarrow \pm \infty}\left|\psi_{a}(s)\right|=|a|
$$

and

$$
\lim _{a \rightarrow \infty} \psi_{a}(s)=\infty
$$

We conclude that $\left\{U_{a, \varepsilon}: a>0, \varepsilon>0\right\}$ is a usual neighbourhood basis of 0 in \mathbb{R}. Hence the weak* topology is finer than the ambient topology. But

$$
\mathrm{w}^{*}-\lim _{s \rightarrow t} \sigma_{s}=\sigma_{t}
$$

(easy exercise). So the weak* topology is coarser than the ambient topology. So

$$
\widehat{\mathbb{R}}=\left\{\sigma_{s}: s \in \mathbb{R}\right\} \cong \mathbb{R}
$$

as locally compact grapes.
3. Consdier $G=\mathbb{T}$. Consider $\sigma_{1}: \mathbb{R} \rightarrow \mathbb{T}$ with $\sigma_{1}(t)=\exp (i t)$; so $\operatorname{ker}\left(\sigma_{1}\right)=2 \pi \mathbb{Z}$. If $\tau \in \widehat{\mathbb{T}}$ then $\tau \circ \sigma_{1} \in \widehat{\mathbb{R}}$ so $\tau \circ \sigma_{1}(x)=\exp (i s x)$ for some $s \in \mathbb{R}$, with $1=\tau \circ \sigma_{1}(2 \pi)=\exp (i 2 \pi s)$, so $s=n \in \mathbb{Z}$. Hence $\tau \circ \sigma_{1}(x)=\exp ($ ixn $)=\sigma_{1}(x)^{n}$ for $x \in \mathbb{R}$. Hence $\widehat{\mathbb{T}}=\left\{z \mapsto z^{n}: n \in \mathbb{Z}\right\}$. The topology is discrete.

Suppose \mathcal{A} is a commutative unital Banach algebra; e.g. $\mathcal{A}=L^{1}(G)+\mathbb{C} \delta_{e} \subseteq M(G)$. Recall Beurling's spectral radius formula:

$$
\sup _{\chi \in \hat{\mathcal{A}}}\|\chi(a)\|=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}} \leqslant\|a\|
$$

Definition 10.7. For $f \in L^{1}(G)$ we define the Fourier transform of f to be $\widehat{f}: \widehat{G} \rightarrow \mathbb{C}$ given by

$$
\widehat{f}(\sigma)=\int_{G} f \bar{\sigma} \mathrm{~d} m
$$

Theorem 10.8 (Riemann-Lebesgue, Gelfand). The map $L^{1}(G) \rightarrow C_{0}(\widehat{G})$ given by $f \mapsto \widehat{f}$ is a homomorphism with

1. $\|\widehat{f}\|_{\infty}=\lim _{n \rightarrow \infty}\left\|f^{* n}\right\|_{1}^{\frac{1}{n}} \leqslant\|f\|_{1}$.
2. $A(\widehat{G})=\left\{\widehat{f}: f \in L^{1}(G)\right\}$ is dense in $C_{0}(\widehat{G})$.

Proof. We recall that $\widehat{G} \cup\{0\}$ is compact. We have that $\widehat{f}(\sigma)=\chi_{\bar{\sigma}}(f)$ is continuous in σ as \widehat{G} has the weak* topology. If we let $\widehat{f}(0)=0$, then \widehat{f} is continuous on $\widehat{G} \cup\{0\}$ (from the proof of a previous theorem)
TODO 7. which
Hence $\hat{f} \in C_{0}(\hat{G})$. We now verify the required conditions.

1. This is simply Beurling's spectral radius formula.
2. We notice that $A(\widehat{G})$ is point-separating on \widehat{G}. (If $\sigma \neq \tau$ in \widehat{G} then $\chi_{\bar{\sigma}} \neq \chi_{\bar{\tau}}$, so there is $f \in L^{1}(G)$ with

$$
\widehat{f}(\sigma)=\chi_{\bar{\sigma}}(f) \neq \chi_{\bar{\tau}}(f)=\widehat{f}(\tau)
$$

Since $f \mapsto \hat{f}$ is (almost) the Gelfand transform, we get that $f \mapsto \hat{f}$ is multiplicative, so $A(\hat{G})$ is a subalgebra. We also have for $f \in L^{1}(G)$ and $\sigma \in \widehat{G}$ that

$$
\widehat{f^{*}}(\sigma)=\int_{G} f^{*}(x) \overline{\sigma(x)} \mathrm{d} x=\int_{G} \overline{f\left(x^{-1}\right) \sigma(x)} \mathrm{d} x=\int_{G} \overline{f(x)} \sigma(x) \mathrm{d} x=\overline{\hat{f}(\sigma)}
$$

So $\widehat{f^{*}}=\overline{\hat{f}}$ (pointwise conjugate). So by Stone-Weierstrass theorem, we're done. \square Theorem 10.8
Lemma 10.9. The map $G \times \widehat{G} \rightarrow \mathbb{T}$ given by $(x, \sigma) \mapsto \sigma(x)$ is continuous.
Proof. Fix $\sigma \in \widehat{G}$ and $x \in G$. Let $f \in L^{1}(G)$ have $\hat{f}(\sigma) \neq 0$. Then

$$
\widehat{f}(\sigma) \sigma(x)=\int_{G} f(x) \overline{\sigma\left(y x^{-1}\right)} \mathrm{d} y=\int_{G} f(x y) \overline{\sigma(y)} \mathrm{d} y=\widehat{f \cdot x}(\sigma)
$$

Now if also $\tau \in \widehat{G}$ and $y \in G$ then

$$
\begin{aligned}
&|\widehat{f}(\sigma) \sigma(x)-\widehat{f}(\tau) \tau(y)|=|\widehat{f \cdot x}(\sigma)-\widehat{f \cdot y}(\tau)| \\
& \leqslant|\widehat{f \cdot x}(\sigma)-\widehat{f \cdot x}(\tau)|+|\widehat{f \cdot x}(\tau)-\widehat{f \cdot y}(\tau)| \\
& \leqslant|\widehat{f \cdot y}(\sigma)-\widehat{f \cdot y}(\tau)|+\|f \cdot x-f \cdot y\|_{1} \\
& \xrightarrow{y \rightarrow x, \tau \rightarrow \sigma} 0
\end{aligned}
$$

Since \hat{f} is continuous, this shows that $\tau(y) \xrightarrow{y \rightarrow x, \tau \rightarrow \sigma} \sigma(x)$. Lemma 10.9

Definition 10.10. A function $u: G \rightarrow \mathbb{C}$ is called positive-definite if for each $x_{1}, \ldots, x_{n} \in G$ and $n \in \mathbb{N}$ the matrix $\left[u\left(x_{j}^{-1} x_{i}\right)\right]$ is positive semidefinite; i.e. if for $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \overline{\lambda_{j}} u\left(x_{j}^{-1} x_{i}\right)=\left\langle\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right) \left\lvert\,\left[u\left(x_{j}^{-1} x_{i}\right)\right]\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right)\right.\right\rangle \geqslant 0
$$

Proposition 10.11. A positive-definite function $u: G \rightarrow \mathbb{C}$ satisfies

1. $u\left(x^{-1}\right)=\overline{u(x)}$ for $x \in G$
2. $|u(x)| \leqslant u(e)$ for $x \in G$.

Proof. Let $u=2, x_{1}=e$, and $x_{2}=x$. Then

$$
\left(\begin{array}{cc}
u(e) & u\left(x^{-1}\right) \\
u(x) & u(e)
\end{array}\right)
$$

is positive semidefinite. Then the claims are just exercises in linear algebra.
Notation 10.12. We let $B^{+}(G)$ denote the space of continuous positive definite functions on G.
So $B^{+}(G) \subseteq C_{b}(G)$.
Example 10.13.

1. Note that $\hat{G} \subseteq B^{+}(G)$. Indeed, if $x_{1}, \ldots, x_{n} \in G$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ then

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \overline{\lambda_{j}} \underbrace{\sigma\left(x_{j}^{-1} x_{i}\right)}_{\overline{\sigma\left(x_{j}\right)} \sigma\left(x_{i}\right)}=\left|\sum_{j=1}^{n} \lambda_{j} \sigma\left(x_{j}\right)\right|^{2} \geqslant 0
$$

2. (Reverse Fourier-Stieltjes transform) If $\mu \in M(\widehat{G})$, we let $\check{\mu}: G \rightarrow \mathbb{C}$ be

$$
\breve{\mu}(x)=\int_{\widehat{G}} \sigma(x) \mathrm{d} \mu(\sigma)
$$

If $\mu \in M_{+}(G)$ then $\check{\mu}$ is positive definite. Indeed, suppose $x_{1}, \ldots, x_{n} \in G$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Then

Proposition 10.14. If $\mu \in M(\widehat{G})$ then $\breve{\mu}$ is uniformly continuous.
Proof. First, suppose $K=\operatorname{supp}(\mu)$ is compact in \widehat{G}. Suppose $\varepsilon>0$, and for each $\sigma \in K$ let

- U_{σ} be a neighbourhood of e in G such that $x \in U_{\sigma}$ implies $|\sigma(x)-1|<\varepsilon$
- W_{σ} be a neighbourhood of σ in $\widehat{G}, V_{\sigma} \subseteq U_{\sigma}$ be such that

$$
\tau \in W_{\sigma}, x \in V_{\sigma} \Longrightarrow|\tau(x)-1|<\varepsilon
$$

(by joint continuity of $G \times \widehat{G} \rightarrow \mathbb{T}$). We have that

$$
K \subseteq \bigcup_{i=1}^{n} W_{\sigma_{i}}
$$

for some $\sigma_{1}, \ldots, \sigma_{n} \in K$, and we let

$$
V=\bigcap_{i=1}^{n} V_{\sigma_{i}} \subseteq G
$$

Hence if $x \in V$ and $\tau \in K$ then $|\tau(x)-1|<\varepsilon$. Now, if $x, y \in G$ with $x y^{-1} \in V$ then

$$
|\check{\mu}(x)-\check{\mu}(y)| \leqslant \int_{\widehat{G}}|\sigma(x)-\sigma(y)| \mathrm{d}|\mu|(\sigma)=\int_{\widehat{G}} \underbrace{\left|\sigma\left(x y^{-1}\right)-1\right|}_{<\varepsilon} \mathrm{d}|\mu|(G) \leqslant \varepsilon|\mu|(G)
$$

Now if $\mu \in M(\widehat{G})$, we can find compact $K \subseteq \widehat{G}$ so $\left\|\mu-\mu_{K}\right\|_{1}<\varepsilon$. The usual approximation of $\check{\mu}$ by $\widetilde{\mu_{K}}$ applies

Corollary 10.15. If $\mu \in M_{+}(\widehat{G})$, then $\breve{\mu} \in B^{+}(G)$.
A problem: we don't yet know that $f \neq 0$ in $L^{1}(G)$ implies $\widehat{f} \neq 0$ in $C_{0}(\widehat{G})$.
Proposition 10.16 (Injectivity of the reverse Fourier-Stieltjes transform). If $\mu \neq \nu$ in $M(\widehat{G})$ then $\breve{\mu} \neq \check{\nu}$ in $C_{b}(G)$.

Proof. If $f \in L^{1}(G)$, we have for $\mu \in M(G)$ that

$$
\begin{equation*}
\int_{\widehat{G}} \widehat{f} \mathrm{~d} \mu=\int_{\widehat{G}} \int_{G} f(x) \overline{\sigma(x)} \mathrm{d} x \mathrm{~d} \mu(\sigma)=\int_{G} f(x) \int_{\widehat{G}} \sigma\left(x^{-1}\right) \mathrm{d} \mu(\sigma) \mathrm{d} x=\int_{G} f(x) \breve{\mu}\left(x^{-1}\right) \mathrm{d} x \tag{3}
\end{equation*}
$$

Let $\nu(E)=\mu\left(E^{-1}\right)$ for $E \in \mathcal{B}(G)$. One can check that $\check{\nu}(x)=\breve{\mu}\left(x^{-1}\right)$. Hence if $\breve{\mu}=0$, then since $A(\widehat{G})$ is dense in $C_{0}(\widehat{G})$, we see that for $h \in C_{0}(\widehat{G})$ we have

$$
\int_{\widehat{G}} h \mathrm{~d} \mu=0
$$

and thus $\mu=0$. It is evident that $\mu \mapsto \check{\mu}$ is linear.
Proposition 10.16
Theorem 10.17 (Bochner's theorem). $B^{+}(G)=\left\{\check{\mu}: \mu \in M_{+}(G)\right\}$. Hence the map $M_{+}(G) \rightarrow B^{+}(G)$ given by $\mu \mapsto \breve{\mu}$ is a bijection.

Proof. Suppose $u \in B^{+}(G) \backslash\{0\}$. We normalize so $u(e)=\|u\|_{\infty}=1$. Define a sesquilinear form on $L^{1}(G) \times L^{1}(G)$ by

$$
[f \mid g]=\int_{G} f^{*} * g u \mathrm{~d} m
$$

Notice that

$$
|[f \mid g]| \leqslant\left\|f^{*} * g\right\|_{1}\|u\|_{\infty} \leqslant\|f\|_{1}\|g\|_{1}
$$

so $[\cdot \mid \cdot]$ is continuous on $L^{1}(G) \times L^{1}(G)$. Now

$$
\begin{aligned}
{[f \mid g] } & =\int_{G} \int_{G} \overline{f\left(x^{-1}\right)} g\left(x^{-1} y\right) u(y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{G} \int_{G} \overline{f\left(x^{-1}\right)} g(y) u(x y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{G} \int_{G} \overline{f(x)} g(y) u\left(x^{-1} y\right) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

(since G is unimodular). Suppose

$$
\varphi=\sum_{i=1}^{n} a_{i} 1_{E_{i}} \in S^{1}(G)
$$

(i.e. simple, integrable, $E_{i} \in \mathcal{B}(G), m\left(E_{i}\right)<\infty$, and $E_{i} \cap E_{j}=\varnothing$ for $i \neq j$). (Assume also that $\operatorname{supp}(\varphi)$ is compact.)

Suppose $\varepsilon>0$. We can assume by taking Borel decompositions of each E_{i} that there are $x_{i} \in E_{i}$ for each i such that

$$
\left|u\left(x^{-1} y\right)-u\left(x_{j}^{-1} x_{i}\right)\right| m\left(E_{j}\right) m\left(E_{i}\right)<\frac{\varepsilon}{\sum_{i, j=1}^{n}\left|a_{i}\right|\left|a_{j}\right|+1}
$$

by continuity of u. Then

$$
S=\sum_{i=1}^{n} \sum_{j=1}^{n} \overline{a_{j}} a_{i} u\left(x_{j}^{-1} x_{i}\right) m\left(E_{j}\right) m\left(E_{j}\right) \geqslant 0
$$

and

$$
\begin{aligned}
|[\varphi \mid \varphi]-S| & =\left|\sum_{i=1}^{n} \sum_{j=1}^{n} \overline{a_{j}} a_{i} \int_{E_{i}} \int_{E_{j}}\left(u\left(x^{-1} y\right)-u\left(x_{j}^{-1} x_{i}\right)\right) \mathrm{d} x \mathrm{~d} y\right| \\
& \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{j}\right|\left|a_{i}\right| \sup _{(x, y) \in E_{j} \times E_{i}}\left|u\left(x^{-1} y\right)-u\left(x_{j}^{-1} x_{i}\right)\right| m\left(E_{j}\right) m\left(E_{i}\right) \\
& <\varepsilon
\end{aligned}
$$

Hence $[\varphi \mid \varphi]>-\varepsilon$. The decomposition above can be done for any $\varepsilon>0$; hence $[\varphi \mid \varphi] \geqslant 0$. Approximating f in $L^{1}(G)$ by elements φ as above, and using continuity of $[\cdot \mid \cdot]$ we get that $[f \mid f] \geqslant 0$.

We may apply Cauchy-Schwarz inequality to see that

$$
|[f \mid g]|^{2} \leqslant[f \mid f][g \mid g]
$$

We let \mathcal{V} denote a base at e in relatively compact symmetric neighbourhoods. If $V \in \mathcal{V}$, we let $k_{V}=$ $(m(V))^{-1} 1_{V}$. Notice that $k_{V}^{*}=k_{V}$ by unimodularity. Also $\left(k_{V} *_{V}\right)_{V \in \mathcal{V}}$ is a summability kernel; i.e. $\left\|k_{V} * k_{V}\right\|_{1} \leqslant, \operatorname{supp}\left(k_{V} * k_{V}\right) \subseteq V^{2}$, and

$$
\int_{G} k_{V} * k_{V} \mathrm{~d} m=\chi_{1}\left(k_{V} * k_{V}\right)=1
$$

In particular, we have

$$
\lim _{V}\left[k_{V} \mid k_{V}\right]=\lim _{V} \int_{G} k_{V} * k_{V} u \mathrm{~d} m=u(e)=1
$$

and

$$
\left[k_{V} \mid f\right]=\int_{G} k_{V} * f u \mathrm{~d} m \xrightarrow{V \backslash\{e\}} \int_{G} f u \mathrm{~d} m
$$

Hence

$$
\left|\int_{G} f u \mathrm{~d} m\right|^{2}=\lim _{V}\left|\left[k_{v} \mid f\right]\right|^{2} \leqslant \underset{V}{\lim \sup }\left[k_{V} \mid k_{V}\right][f \mid f]=[f \mid f]
$$

Let $h=f^{*} * f$, so $h^{*}=h$. (One should check this.) Let $h^{* 2}=h * h, h^{* 4}=h^{* 2} * h^{* 2}$, etc. Then

$$
\begin{aligned}
\left|\int_{G} f u \mathrm{~d} m\right|^{2} \leqslant[f \mid f] & =\int_{G} h u \mathrm{~d} m \\
& \leqslant[h \mid h]^{\frac{1}{2}} \\
& =\left(\int_{G} h^{* 2} u \mathrm{~d} m\right)^{\frac{1}{2}} \\
& \leqslant\left[h^{* 2} \mid h^{* 2}\right]^{\frac{1}{4}} \\
& \leqslant\left[h^{* 4} \mid h^{* 4}\right]^{\frac{1}{8}} \\
& \leqslant \cdots \\
& \leqslant\left[h^{* 2^{n}} \mid h^{* 2^{n}}\right]^{2^{-(n+1)}} \\
& =\left(\int_{G} h^{* 2^{n+1}} u \mathrm{~d} m\right)^{2^{-(n+1)}} \\
& \leqslant\left\|h^{* 2^{n+1}}\right\|_{1}^{\frac{1}{2^{n+1}}} \\
& \xrightarrow{n \rightarrow \infty}\|\hat{h}\|_{\infty}
\end{aligned}
$$

Thus

$$
\left|\int f u \mathrm{~d} m\right|^{2} \leqslant\|\hat{h}\|_{\infty}=\left\|\widehat{f^{*}} \hat{f}\right\|_{\infty}=\left\||\hat{f}|^{2}\right\|_{\infty}=\|\hat{f}\|_{\infty}
$$

Since $A(\widehat{G})$ is dense in $C_{0}(\widehat{G})$ we have that

$$
\hat{f} \mapsto \int_{G} f u \mathrm{~d} m
$$

extends to a continuous linear functional on $C_{0}(\hat{G})$. So, by the Riesz representation theorem, there is $\mu \in M(\widehat{G})$ with

$$
\int_{G} f u \mathrm{~d} m=\int_{\widehat{G}} \widehat{f} \mathrm{~d} \mu
$$

By Equation (3), we have

$$
\int_{\hat{G}} \widehat{f} \mathrm{~d} \mu=\int_{G} f(x) \check{\mu}\left(x^{-1}\right) \mathrm{d} x=\int_{G} f(x) \check{\nu}(x) \mathrm{d} x
$$

for some ν. Hence $u=\check{\nu}$. If $\varphi \in C_{0}(\widehat{G})$ then we may write

$$
\varphi=\lim _{n \rightarrow \infty} \widehat{f_{n}}
$$

by density of $A(\widehat{G})$. Then

$$
\int_{\widehat{G}}|\varphi|^{2} \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int_{\widehat{G}} \widehat{\widehat{f_{n}}} \widehat{f_{n}} \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int_{G} f_{n}^{*} * f_{n} u \mathrm{~d} m \geqslant 0
$$

so $\mu \in M_{+}(G)$.
Theorem 10.17
Proposition 10.18 (Another class of positive definite functions). Suppose $f \in L^{1} \cap L^{2}(G)$. Then $f^{*} * f \in$ $B^{+} \cap L^{1}(G)$.

Proof. That $f^{*} * f \in L^{1}(G)$ follows from the closure of $L^{1}(G)$ under convolution. We compute, for almost every $x \in G$,

$$
\begin{aligned}
\left(f^{*} * f\right)(x) & =\int_{G} \overline{f\left(y^{-1}\right)} f\left(y^{-1} x\right) \mathrm{d} x \\
& =\int_{G} \widetilde{f}(y) \tilde{f}\left(x^{-1} y\right) \mathrm{d} y \\
& =\langle\tilde{f} \mid x * \tilde{f}\rangle \\
& =\left\langle x^{-1} * \tilde{f} \mid \tilde{f}\right\rangle\left(\text { inner product on } L^{2}(G)\right)
\end{aligned}
$$

where $\tilde{f}(y)=f\left(y^{-1}\right)$ for almost every y; note that $\tilde{f} \in L^{1} \cap L^{2}(G)$ by unimodularity. Since $C_{c}(G)$ is dense in $L^{2}(G)$, we get that $L^{2}(G)$ has continuity of translation (same proof as for $L^{1}(G)$). Hence $x \mapsto\langle\tilde{f}, x * \widetilde{f}\rangle$ is continuous, so $f^{*} * f$ may be taken to be continuous. Now let $x_{1}, \ldots, x_{n} \in G$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Then

$$
\begin{aligned}
& \sum_{j=1}^{n} \sum_{i=1}^{n} \overline{\lambda_{j}} \lambda_{i} f^{*} * f\left(x_{j}^{-1} x_{i}\right) \\
= & \sum_{j=1}^{n} \sum_{i=1}^{n} \overline{\lambda_{j}} \lambda_{i}\left\langle x_{j} * \tilde{f} \mid x_{i} * \tilde{f}\right\rangle \\
= & \left\|\sum_{i=1}^{n} \lambda_{i} x_{i} * \tilde{f}\right\|_{2}^{2} \\
\geqslant & 0
\end{aligned}
$$

as desired.
\square Proposition 10.18
Corollary 10.19. If $f \in C_{c}(G)$ then $f^{*} * f \in B^{+} \cap L^{1}(G)$.
We let $B(G)=\{\check{\mu}: \mu \in M(\widehat{G})\}$. Since the map $M(\widehat{G}) \rightarrow V(G) \subseteq C_{u b}(G)$ (where the latter is the collection of uniformly continuous bounded functions on G) given by $\mu \mapsto \check{\mu}$ is linear (easily seen). The Hahn-Jordan decomposition of measures then shows that $B(G)=\operatorname{span} B^{+}(G)$.
Exercise 10.20 (Probably on A3). Show that the map $G \rightarrow B^{1}(G)$ given by $x \mapsto x * f$ is continuous in G and isometric in the norm on $B^{1}(G)$ given by $\|f\|_{B^{1}(G)}=\|f\|_{1}+\|\mu\|_{1}$ where $f=\breve{\mu}$ by Bochner's theorem.
Theorem 10.21 (Inversion theorem). Let $B^{1}(G)=B \cap L^{1}(G)$.

1. If $f \in B^{1}(G)$ then $\hat{f} \in L^{1}(\hat{G})$.
2. For a suitable normalization of the Haar measures m_{G} and $m_{\widehat{G}}$ we have for $f \in V^{1}(G)$ that

$$
f(x)=\int_{\widehat{G}} \widehat{f}(\sigma) \sigma(x) \mathrm{d} \sigma
$$

i.e. $f=\check{\widehat{f}}$.

Proof. We proceed in stages.
(I) If $h \in L^{1}(G)$ and $f=\breve{\mu} \in B^{1}(G)$, then

$$
(h * \breve{\mu})(e)=\int_{G} h(x) \breve{\mu}\left(x^{1-} e\right) \mathrm{d} x=\int_{G} \int_{\widehat{H}} h(x) \overline{\sigma(x)} \mathrm{d} \mu(\sigma) \mathrm{d} x=\int_{\widehat{G}} \widehat{h} \mathrm{~d} \mu
$$

If also $g=\check{\nu} \in B(G)$ then

$$
\int_{\widehat{G}} \widehat{h} \widehat{\check{\nu}} \mathrm{~d} \mu=\int_{\widehat{G}} \widehat{h * \check{\nu}} \mathrm{~d} \mu=(h * \check{\nu} * \breve{\mu})(e)=(h * \breve{\mu} * \check{\nu})=\int_{\widehat{G}} \widehat{h} \widehat{\breve{\mu}} \mathrm{~d} \nu
$$

Since $A(\hat{G})=\left\{\hat{f}: f \in L^{1}(G)\right\}$ is dense in $C_{0}(G)$, we have

$$
\begin{equation*}
\widehat{\tilde{\nu}} \mathrm{d} \mu=\widehat{\tilde{\mu}} \mathrm{d} \nu \tag{4}
\end{equation*}
$$

i.e.

$$
" \frac{\mathrm{~d} \mu}{\mathrm{~d} \nu}=\frac{\widehat{\tilde{\mu}}}{\widehat{\tilde{\nu}}} "
$$

almost everywhere on \widehat{G}.
(II) We will define a functional J on $C_{c}(\widehat{G})$, which will give (1). Fix $\psi \in C_{c}(\widehat{G})$. For each $\sigma \in \operatorname{supp}(\psi)$ there is $u \in C_{c}(G)$ with $\widehat{u}(\sigma) \neq 0$ (since $C_{c}(G)$ is dense in $L^{1}(G)$). Then

$$
\widehat{u^{*} * u}(\sigma)=\overline{\widehat{u}(\sigma)} \widehat{u}(\sigma)>0
$$

and hence, by compactness, we may find $u_{1}, \ldots, u_{n} \in C_{c}(G)$ such that

$$
g=\sum_{i=1}^{n} u_{i}^{*} * u_{i}
$$

- $\operatorname{supp}(\psi) \subseteq \operatorname{supp}^{\circ}(\widehat{g})=\{\sigma \in \widehat{G}: \widehat{g}(\sigma) \neq 0\}$
- $g \in B^{+} \cap L^{1}(G) \subseteq B^{1}(G)$ (by the previous corollary), and hence $g=\breve{\nu_{0}}$ for some $\nu_{0} \in M_{+}(\widehat{G})$ (by Bochner's theorem).

We let

$$
J(\psi)=\int_{\widehat{G}} \frac{\psi}{\widehat{\nu_{0}}} \mathrm{~d} \nu_{0}
$$

If $f=\breve{\mu} \in B^{1}(G)$ then we use Equation (4):

$$
\begin{aligned}
& J(\psi)=\int_{\widehat{G}} \frac{\psi}{\widehat{\widehat{\nu_{0}}} \stackrel{\tilde{\mu}}{\tilde{\mu}}} \hat{\tilde{\mu}} \mathrm{~d} \nu_{0} \\
& =\int_{\widehat{G}} \frac{\psi}{\widehat{\widehat{\nu_{0}}} \widehat{\hat{\mu}}} \widehat{\hat{\nu}_{0}} \mathrm{~d} \mu \\
& =\int_{\widehat{G}} \frac{\psi}{\widehat{\jmath}} \mathrm{~d} \mu
\end{aligned}
$$

where

$$
\psi \frac{\widehat{f}}{\widehat{f}}=\psi 1_{\operatorname{supp}^{\circ}(\hat{f})}
$$

Again, Equation (4) tells us that this is independent of the choice of $\mu \in M(\widehat{G})$ with $\breve{\mu} \in B^{1}(G)$. Notice that since $\widehat{g}=\widehat{\nu_{0}} \geqslant 0$, we see that $J(\psi)>0$ if $\psi \in C_{c}^{+}(G)$. Also

$$
\begin{equation*}
J(\psi \widehat{\widehat{\mu}})=\int_{\widehat{G}} \psi \mathrm{~d} \mu \tag{5}
\end{equation*}
$$

for appropriate μ. Now let $\psi \in C_{c}(G)$ and $\tau \in \widehat{G}$; then for suitable $\nu \in M(\widehat{G})$ we have

$$
J(\psi \cdot \tau)=\int_{\hat{G}} \frac{\psi(\tau \sigma)}{\widehat{\breve{\nu}}(\sigma)} \mathrm{d} \nu(\sigma)=\int_{\hat{G}} \frac{\psi(\sigma)}{\hat{\widehat{\nu}}(\bar{\tau} \sigma)} \mathrm{d} \nu(\bar{\tau} \sigma)
$$

(Recall the change-of-variables formula

$$
\int_{X} f \circ T \mathrm{~d} \nu=\int_{X} f \mathrm{~d}\left(\nu \circ T^{-1}\right)
$$

for integration with respect to pushforward measures.)
Exercise 10.22 (Probably A3). Show that

$$
\begin{aligned}
& \breve{\mu}(x)=\tau(x) \check{\mu}(x) \\
& \widehat{\breve{\mu}}(\sigma)=\widehat{\breve{\nu}}(\bar{\tau} \sigma)
\end{aligned}
$$

In particular, the first equation shows that $\breve{\mu} \in B^{1}(G)$.
We hence see, using Equation (4), that

$$
J(\psi \cdot \tau)=\int_{\widehat{G}} \frac{\psi(\sigma)}{\widehat{\mu}(\sigma)} \mathrm{d} \mu(\sigma)=J(\psi)
$$

So J is the Haar integral. Furthermore, Equation (5) yields for suitable μ and $\psi \in C_{c}(G)$ that

$$
\begin{equation*}
\int_{\widehat{G}} \psi \mathrm{~d} \mu=J(\psi \widehat{\widetilde{\mu}}) \tag{6}
\end{equation*}
$$

i.e. $\mathrm{d} \mu(\sigma)=\widehat{\tilde{\mu}}(\sigma) \mathrm{d} \sigma$. Hence $\mu \in M_{a}(\widehat{G})$; i.e. $\mathrm{d} \mu=\widehat{\tilde{\mu}} \mathrm{d} m_{\widehat{G}}$ with $\widehat{\tilde{\mu}} \in L^{1}(G)$ (by Radon-Nikodym). This proves (1).
To see (2), note that Equation (6) yields for $x \in G$ and suitable μ that

$$
\breve{\mu}(x)=\int_{\widehat{G}} \sigma(x) \mathrm{d} \mu(\sigma)=\int_{\widehat{G}} \sigma(x) \hat{\tilde{\mu}}(\sigma) \mathrm{d} \sigma
$$

Writing $f=\breve{\mu}$, we are done.
Theorem 10.21
We consider what constitutes "suitable" normalizations of m_{G} and $m_{\widehat{G}}$, as in the statement of the previous theorem.

1. Suppose G is compact and $m_{G}(G)=1$. Then for $\sigma \in \widehat{G}$ we have, as in the proof of discreteness of \widehat{G}, that

$$
\widehat{1}(\sigma)= \begin{cases}1 & \text { if } \sigma=1 \\ 0 & \text { else }\end{cases}
$$

Since $1 \in B^{+} \cap L^{1}(G) \subseteq B^{1}(G)$. Hence by the inversion theorem we have

$$
1=1(e)=\int_{\hat{G}} \hat{1}(\sigma) \underbrace{\sigma(e)}_{=1} \mathrm{~d} \sigma=m_{\hat{G}}(\{1\})
$$

So $m_{\widehat{G}}$ is the counting measure.
2. Suppose G is discrete. Let $m_{G}(\{e\})=1$; i.e. that m_{G} is the counting measure. Let $f=1_{\{e\}}=$ $1_{\{e\}}^{*} * 1_{\{e\}} \in B^{+} \cap L^{1}(G) \subseteq B^{1}(G)$. Then

$$
\widehat{f}(\sigma)=\sum_{x \in G} \overline{\sigma(x)} 1_{\{e\}}(x)=1
$$

and the inversion theorem yields that

$$
m_{\widehat{G}}(\widehat{G})=\int_{\widehat{G}} 1 \mathrm{~d} m_{\widehat{G}}=\int_{G} \widehat{f}(\sigma) \mathrm{d} \sigma=f(e)=1
$$

3. Let $G=\mathbb{R}$. Let $m_{\mathbb{R}}$ satisfy $m_{\mathbb{R}}([0,1])=1$. We shall choose $\alpha, \beta>0$ such that $\alpha m_{\mathbb{R}}$ and $\beta m_{\mathbb{R}}$ (also normalized as above) satisfy the inversion theorem. Since $\exp (-|x|) \geqslant 0$ for $x \in \mathbb{R}$, we get on $\mathbb{R} \cong \widehat{\mathbb{R}}$ that

$$
s \mapsto \alpha \int_{\mathbb{R}} \exp (-i s x) \exp (-|x|) \mathrm{d} x=2 \alpha \int_{0}^{\infty}=\frac{2 \alpha}{1+s^{2}}
$$

is positive-definite. Hence by the inversion theorem we have that

$$
\exp (-|x|)=2 \alpha \int_{\mathbb{R}} \frac{\exp (i s x)}{1+s^{2}} \beta \mathrm{~d} s
$$

for $x \in \mathbb{R}$. In particular, letting $x=0$, we get that

$$
1=2 \alpha \beta \int_{\mathbb{R}} \frac{1}{1+s^{2}} \mathrm{~d} s=2 \alpha \beta \pi
$$

i.e. $\alpha \beta=\frac{1}{2 \pi}$. Typical choices are $\alpha=1$ and $\beta=\frac{1}{2 \pi}$ or $\alpha=\beta=\frac{1}{\sqrt{2 \pi}}$.

Remark 10.23.

1. If $\mu, \nu \in M(\widehat{G})$, then $\widehat{\mu * \nu}=\widehat{\mu} \widehat{\nu}$ (pointwise product), so $B(G)=\{\breve{\mu}: \mu \in M(\widehat{G})\}$ is a subalgebra of $C_{b}(G)$.
2. Let $B^{2}(G)=B \cap L^{2}(G)$. If $f \in B^{1}(G)$, then

$$
\int_{G}|f|^{2} \mathrm{~d} m \leqslant\|f\|_{1}\|f\|_{\infty}<\infty
$$

so $B^{1}(G) \subseteq B^{2}(G)$.
Theorem 10.24 (Plancherel theorem). If $f \in L^{1} \cap L^{2}(G)$, then $\|\hat{f}\|_{L^{2}(\hat{G})}=\|f\|_{L^{2}(G)}$ (provided the measures are normalized as in the inversion theorem). Furthermore, there is a unitary $U: L^{2}(G) \rightarrow L^{2}(\widehat{G})$ such that $U f=\widehat{f}$ for $f \in L^{1} \cap L^{2}(G)$.
Proof. We have by a previous proposition
TODO 8. ref
that $f^{*} * f \in B^{+} \cap L^{1}(G) \subseteq B^{1}(G)$, so the inversion theorem applies. Thus, using unimodularity of G and the inversion theorem, we have

$$
\begin{aligned}
\int_{G}|\widehat{f}|^{2} \mathrm{~d} m_{G} & =\int_{G} f^{*}\left(x^{-1} f(x) \mathrm{d} x\right. \\
& =\int_{G} f^{*}(x) f\left(x^{-1} e\right) \mathrm{d} x \\
& =\left(f^{*} * f\right)(e) \\
& =\int_{\widehat{G}} \widehat{f^{*} * f}(\sigma) \underbrace{\sigma(e)}_{=1} \mathrm{~d} \sigma \\
& =\int_{\widehat{G}} \overline{\hat{f}(\sigma)} \widehat{f}(\sigma) \mathrm{d} \sigma \\
& =\int_{\widehat{G}} \mid \hat{f}^{2} \mathrm{~d} m_{\widehat{G}}
\end{aligned}
$$

so we get the first statement.
We have that $L^{1} \cap L^{2}(G)$ is dense in $L^{2}(G)$. Let $\mathcal{K}=\left\{\widehat{f}: f \in L^{1} \cap L^{2}(G)\right\} \subseteq L^{2}(\widehat{G})$. It remains to show that \mathcal{K} is dense in $L^{2}(\widehat{G})$.

Note that \mathcal{K} is invariant under translation: we have $\sigma * \widehat{f}=\widehat{\sigma \cdot f}$ for $\sigma \in \widehat{G}$ and $f \in L^{1} \cap L^{2}(G)$. Furthermore, \mathcal{K} is invariant under multiplication by $\{\hat{x}: x \in G\}$: we have $\widehat{x} \hat{f}=\widehat{x * f}$ for $x \in G$ and $f \in L^{1} \cap L^{2}(G)$. We shall use this to show that $\mathcal{K}^{\perp}=\{0\}$, which in a Hilbert space suffices to show density.

Suppose then that $\psi \in \mathcal{K}^{\perp}$. Then for $\varphi \in \mathcal{K}$ we have

$$
0=\langle\psi \mid \widehat{x} \varphi\rangle=\int_{\widehat{G}} \overline{\psi(\sigma)} \varphi(\sigma) \sigma(x) \mathrm{d} \sigma
$$

So $\bar{\psi} \varphi=0$ by the uniqueness proposition for inverse transform.
TODO 9. ref
Fix $f \in C_{c}^{+}(G)$ with

$$
\int_{G} f \mathrm{~d} m=1
$$

Then $\varphi_{0}=\widehat{f} \in \mathcal{K}$ has

$$
\varphi_{0}(1)=\int_{G} f \mathrm{~d} m_{G}=1
$$

so there is a neighbourhood U of 1 with $\varphi_{0}(\tau)>0$ for $\tau \in U$. In particular, for ψ as above we have

$$
0=\bar{\psi}\left(\bar{\sigma} * \varphi_{0}\right)=\sigma *\left(\bar{\psi}\left(\bar{\sigma} * \varphi_{0}\right)=\sigma * \bar{\psi} \varphi_{0}\right.
$$

(One should check this.) Hene $\sigma * \bar{\psi}(\tau)=0$ for almost every $\tau \in U$; i.e. $\bar{\psi}(\bar{\sigma} \tau)=0$ for such τ. Thus $m_{\hat{G}}$-almost-everywhere we have $\bar{\psi}=0$.Theorem 10.24
Remark 10.25. If $f \in L^{1} \cap L^{2}(\widehat{G})$ (with \mathcal{K} as above), then $U^{*} f=\check{f}$,

$$
\check{f}(x)=\int_{G} f(\sigma) \sigma(x) \mathrm{d} \sigma
$$

TODO 10. Conjunction?
We do this using the first computation in the proof of the Plancherel theorem.

Lemma 10.26.

1. If $\varphi, \psi \in C_{c}(\widehat{G})$, then $\varphi * \psi=\widehat{h}$ for some $h \in B^{1}(G)$.
2. Let $A^{p}(\widehat{G})=\left\{\widehat{f}: f \in B^{p}(G)\right\}$ for $p \in\{1,2\}$. Then $A^{p}(\widehat{G})$ is dense in $L^{p}(\widehat{G})$.

Proof.

1. $C_{c}(\widehat{G}) \subseteq L^{2}(\widehat{G})$, so $\check{\varphi}=U^{*} \varphi, \check{\psi}=U^{*} \psi \in L^{2}(G)$, and $\overline{\varphi * \psi}=\breve{\varphi} \breve{\psi} \in L^{1}(G)$. But $\check{\omega} \in B(G)$ for any $\omega \in L^{1}(\widehat{G})$; so $\varphi * \psi \in B^{1}(G)$. Let $h=\varphi * \psi$, and apply the inversion theorem.
2. Suppose $f \in L^{p}(\widehat{G})$ and $\varepsilon>0$. Let $\left(k_{i}\right)_{i}$ be a contractive summability kernel for $L^{1}(\widehat{G})$. Then for some i we have $\left\|f-k_{i} * f\right\|_{p}<\varepsilon$ (A2Q1). Let $\varphi, \psi \in C_{c}(\widehat{G})$ satisfy

$$
\begin{array}{r}
\left\|k_{i}-\varphi\right\|_{1}<\varepsilon \\
\|\psi-f\|_{p}<\varepsilon
\end{array}
$$

Then

$$
\begin{aligned}
\|f-\varphi * \psi\|_{p} & \leqslant\left\|f-k_{i} * f\right\|_{p}+\left\|k_{i} * f-k_{i} * \psi\right\|_{p}+\left\|k_{i} * \psi-\varphi * \psi\right\|_{p} \\
& <\varepsilon+\varepsilon+\varepsilon \underbrace{\|\psi\|_{p}}_{\leqslant \varepsilon+\|f\|_{p}}
\end{aligned}
$$

Thus by the first item, we have $\varphi * \psi \in A^{1}(\widehat{G}) \subseteq A^{2}(\widehat{G})$, so we are done. Lemma 10.26
Our goal now is Pontryagin duality. If $x \in G$, we let $\hat{x} \in \hat{\hat{G}}$ be $\hat{x}(\sigma)=\sigma(x)$. We wish to show that the map $G \rightarrow \widehat{\hat{G}}$ given by $x \mapsto \hat{x}$ is a surjective homeomorphism.

Remark 10.27. It is evident that $x \mapsto \hat{x}$ is a homomorphism.
Given a symmetric relatively compact neighbourhood $V \subseteq G$ of e, we let $h_{V}=\frac{1}{m(V)} 1_{V} * 1_{V}$. Then

1. Since $1_{V}^{*}=1_{V}$ (using unimodularity), we have that $h_{V} \in B^{+} \cap L^{1}(G) \subseteq B^{1}(G)$.
2. $\operatorname{supp}\left(h_{V}\right) \subseteq V^{2}$.
3. The value at e is given by

$$
h_{V}(e)=\frac{1}{m(V)} \int_{V} 1_{V}(x) 1_{V}\left(x^{-1} e\right) \mathrm{d} x=1
$$

Warning 10.28. $\left(h_{V}\right)_{V \in \mathcal{V}}$ (where \mathcal{V} is the class of symmetric neighbourhoods of e) is not a summability kernel.
Proposition 10.29. The map $G \rightarrow \widehat{\hat{G}}$ given by $x \mapsto \hat{x}$ is injective.
Proof. For h_{V} as above, the inversion theorem yields that

$$
h_{V}(x)=\int_{\widehat{G}} \widehat{h_{V}}(\sigma) \sigma(x) \mathrm{d} \sigma=\int_{G} \widehat{h_{V}} \widehat{x} \mathrm{~d} m_{\widehat{G}}
$$

If $x \neq e$, find V so $x \notin V^{2}$; then

$$
\int_{G} \widehat{h} \widehat{x} \mathrm{~d} m_{\widehat{G}}=h_{V}(x)=0 \neq 1=h_{V}(1)=\int_{G} \widehat{h} \underbrace{\hat{e}}_{1} \mathrm{~d} m_{\widehat{G}}
$$

So $\widehat{x} \neq 1=\widehat{e}$.
Proposition 10.29
Theorem 10.30 (Pontryagin duality theorem). The map $G \rightarrow \hat{\hat{G}}$ given by $x \mapsto \hat{x}$ is a surjective homeomorphism.

Proof. Let $\Gamma=\{\widehat{x}: x \in G\} \subseteq \widehat{\hat{G}}$.
(I) We show that the map $G \rightarrow \Gamma$ given by $x \mapsto \hat{x}$ is a homeomorphism onto its image. Suppose $\left(x_{\alpha}\right)_{\alpha}$ is a net in G and $x_{0} \in G$. Consider the following convergences:

1. $x_{\alpha} \xrightarrow{\alpha} x_{0}$ in G.
2. $f\left(x_{\alpha}\right) \xrightarrow{\alpha} f\left(x_{0}\right)$ for all $f \in B^{1}(G)$. (This is $\sigma\left(G, B^{1}(G)\right)$-convergence.)
3. $\widehat{x_{\alpha}} \xrightarrow{\alpha} \widehat{x_{0}}$ in $\widehat{\hat{G}}$.

We will show that these are equivalent.
Since $B^{1}(G) \subseteq C_{b}(G)$, we get (1) implies (2). For h_{V} as above we have $x_{0} * h_{V} \in B^{1}(G)$. If (2) holds, then

$$
h_{V}\left(x_{0}^{-1} x_{\alpha}\right)=\left(x_{0} * h_{V}\right)\left(x_{\alpha}\right) \xrightarrow{\alpha}\left(x_{0} * h_{V}\right)\left(x_{0}\right)=h_{V}(e)=1
$$

Hence by construction of h_{V} we see that $x_{0}^{-1} x_{\alpha}$ is eventually inside V^{2}. Thus (2) implies (1).
On $\widehat{\hat{G}}$ the topology $w^{*}=\sigma\left(L^{\infty}(\widehat{G}), L^{1}(\widehat{G})\right)$ coincides with $\tau=\sigma\left(L^{\infty}(\widehat{G}), A^{1}(\widehat{G})\right)$. Indeed, $\tau \subseteq w^{*}$, and since $A^{1}(\widehat{G})$ is dense in $L^{1}(\widehat{G})$, we get that $\tau \upharpoonright \operatorname{ball}\left(L^{\infty}(\widehat{G})\right)$ (closed unit ball) is Hausdorff. Two comparable compact Hausdorff topologies on $\operatorname{ball}\left(L^{\infty}(\widehat{G})\right)$ must coincide. Now we use the inversion theorem: if $f \in B^{1}(G)$ and $x \in G$ then

$$
f(x)=\int_{G} \hat{f}(\sigma) \sigma(x) \mathrm{d} \sigma=\int_{G} \hat{f} \hat{x} \mathrm{~d} m_{\hat{G}}
$$

It is then immediate that (2) and (3) are equivalent.
(II) Γ is closed in $\hat{\hat{G}}$. By A1Q1, since Γ is homeomorphic to G, we get that Γ is complete, and thus closed.
(III) We show that $\Gamma=\hat{\hat{G}}$. If $\Gamma \varsubsetneqq \hat{\widehat{G}}$, then there is $\chi \in \hat{\hat{G}}$ and a neighbourhood U of $1_{\hat{G}}$ such that $U^{2} \chi \cap \Gamma=\varnothing$. Hence if $\varphi, \psi \in C_{c}^{+}(\hat{\hat{G}})$ with $\operatorname{supp} \varphi \subseteq U$ and $\operatorname{supp} \psi \subseteq U \chi$, then $\varphi * \psi \neq 0$ but $(\varphi * \psi)(\hat{x})=0$ for each $\widehat{x} \in \Gamma$. By lemma

TODO 11. ref
there is $h \in B^{1}(\widehat{G})$ such that $\hat{h}=\varphi * \psi$; so, by inversion theorem, we have

$$
0=\widehat{h}(\widehat{x})=\int_{\widehat{G}} h(\sigma) \overline{\widehat{x}(\sigma)} \mathrm{d} \sigma=\int_{\widehat{G}} h(\sigma) \sigma\left(x^{-1}\right) \mathrm{d} \sigma=\check{h}\left(x^{-1}\right)
$$

(Recall if $h \in L^{1}(\widehat{G})$ then $\hat{h} \in A(\hat{\widehat{G}})$.) Hence $h=0$ on \widehat{G} by uniqueness proposition
TODO 12. ref
This contradicts our construction, so $\Gamma=\widehat{\widehat{G}}$. Theorem 10.30

Definition 10.31. If $\mu \in M(G)$, we let the Fourier-Stieltjes transform of μ be

$$
\widehat{\mu}(\sigma)=\int_{G} \overline{\sigma(x)} \mathrm{d} \mu(x)
$$

for $\sigma \in \widehat{G}$. We let $B(\widehat{G})=\{\widehat{\mu}: \mu \in M(G)\} \subseteq C_{b}(\widehat{G})$.
Theorem 10.32 (Uniqueness theorem). The Fourier-Stieltjes transform $M(G) \rightarrow B(\widehat{G})$ is injective. Hence the Fourier transform $L^{1}(G) \rightarrow A(\widehat{G})$ given by $f \mapsto \widehat{f}$ is injective.

Proof. Let $\iota: G \rightarrow \hat{\hat{G}}$ be $\iota(x)=\hat{x}$. Given $\mu \in M(G)$, we have $\mu \circ \iota^{-1} \in M(\hat{\hat{G}})$. Then for $\sigma \in \hat{G}$ we have

$$
\widehat{\mu}(\sigma)=\int_{G} \underbrace{\overline{\sigma(x)}}_{\widehat{x}(\bar{\sigma})} \mathrm{d} \mu(x)=\int_{\widehat{G}} \widehat{x}(\bar{\sigma}) \mathrm{d}\left(\mu \circ \iota^{-1}\right)(x)=\widehat{\mu \circ \iota^{-1}}(\bar{\sigma})
$$

Hence if $\mu \neq 0$ then $\mu \circ \iota^{-1} \neq 0$; by the uniqueness proposition
TODO 13. ref
we then have that $\widehat{\mu \circ \iota^{-1}} \neq 0$, and $\widehat{\mu} \neq 0$. (It is clear that $\mu \mapsto \widehat{\mu}$ is linear.)
Theorem 10.32

11 Harmonic analysis on compact grapes

Let G be a compact grape. We always assume $m(G)=1$.

Fact 11.1.

1. If $\pi: G \rightarrow \mathcal{B}(\mathcal{H})^{\times}$is a representation, then there is $S \in \mathcal{B}(\mathcal{H})^{\times}$such that $S \pi(G) S^{-1} \subseteq U(\mathcal{H})$.
2. If $\pi: G \rightarrow \mathcal{B}(\mathcal{X})^{\times}$where \mathcal{X} is a finite-dimensional Banach space, then there is invertible $S: \mathcal{X} \rightarrow \mathcal{H}$ such that $S \pi(G) S^{-1} \subseteq U(\mathcal{H})$. (For us \mathcal{H} always means a Hilbert space.)

The moral is that for us it suffices to consider unitary representations of G.
Fact 11.2 (Projections on Hilbert spaces).
(i) If $\mathcal{L} \subseteq \mathcal{H}$ is a closed subspace, then there is a unique orthogonal projection $P_{\mathcal{L}} \in \mathcal{B}(\mathcal{H})$ with $P_{\mathcal{L}}^{2}=P_{\mathcal{L}}^{*}=P_{\mathcal{L}}$ and $\operatorname{Ran} P_{\mathcal{L}}=\mathcal{L}$.
(ii) If $P=P^{2}=P^{*}$ in $\mathcal{B}(\mathcal{H})$, then $P=P_{\mathcal{L}}$ with $\mathcal{L}=\operatorname{Ran}(P)$ (automatically closed).
(iii) If $\xi \in \mathcal{H}$ has $\|\xi\|=1$ then $P_{\xi}=P_{\mathbb{C} \xi}=\xi\langle\xi \mid \cdot\rangle$. (i.e. $P_{\xi}(\eta)=\xi\langle\xi \mid \eta\rangle=\langle\xi \mid \eta\rangle \xi$.)
(iii') If $\xi, \eta \in \mathcal{H}$ with $\|\xi\|=\|\eta\|$, then

$$
\left\|P_{\xi}-P_{\eta}\right\| \leqslant\|\xi\langle\xi \mid \cdot\rangle-\xi\langle\eta \mid \cdot\rangle\|+\|\xi\langle\eta \mid \cdot\rangle-\eta\langle\eta \mid \cdot\rangle\| \leqslant 2\|\xi-\eta\|
$$

Hence the map $\xi \mapsto P_{\xi}$ is continuous.
Definition 11.3. Suppose $\pi: G \rightarrow U(\mathcal{H})$ be a unitary.

- A closed subspace \mathcal{L} of \mathcal{H} is π-invariant if $\pi(x) \mathcal{L} \subseteq \mathcal{L}$ for each $x \in G$.
- We say π is irreducible if the only non-zero closed π-invariant subspace is \mathcal{H}.

Lemma 11.4.

1. A closed subspace $\mathcal{L} \subseteq \mathcal{H}$ is π-invariant if and only if $\pi(x) P_{\mathcal{L}}=P_{\mathcal{L}} \pi(x)$ for each $x \in G$.
2. A closed subspace $\mathcal{L} \subseteq \mathcal{H}$ is π-invariant if and only if \mathcal{L}^{\perp} is π-invariant.

Proof.

1. (\Longrightarrow) For $x \in G$ we have $\pi(x) P_{\mathcal{L}}=P_{\mathcal{L}} \pi(x) P_{\mathcal{L}}$. Hence

$$
P_{\mathcal{L}} \pi(x)=\left(\pi\left(x^{-1}\right) P_{\mathcal{L}}\right)^{*}=\left(P_{\mathcal{L}} \pi\left(x^{-1}\right) P_{\mathcal{L}}\right)^{*}=P_{\mathcal{L}} \pi(x) P_{\mathcal{L}}=\pi(x) P_{\mathcal{L}}
$$

$\left(\right.$ since $\left.\pi\left(x^{-1}\right)=(\pi(x))^{-1}=(\pi(x))^{*}\right)$.
(\Longleftarrow) Obvious.
2. We have $P_{\mathcal{L}^{\perp}}=I-P_{\mathcal{L}}$ commutes with each $\pi(x)$ exactly when $P_{\mathcal{L}}$ does.

Proposition 11.5. If \mathcal{H} is finite-dimensional then it admits an irreducible π-invariant subspace.
Proof. Let $\mathcal{L} \neq\{0\}$ be a π-invariant subspace of minimal dimension.
Proposition 11.5
Theorem 11.6. Suppose G is a compact grape and $\pi: G \rightarrow U(\mathcal{H})$ a unitary representation. Then

1. π admits a non-zero, finite-dimensional π-invariant subspace.
2. If π is irreducible, then it is finite-dimensional.
3. Generally (without assuming irreducibility), π is completely reducible: there is a family $\left\{\mathcal{L}_{\alpha}\right\}_{\alpha \in A}$ of closed subspaces such that
(a) Each \mathcal{L}_{α} is π-invariant.
(b) Each \mathcal{L}_{α} is irreducible for π.
(c) $\mathcal{L}_{\alpha} \perp \mathcal{L}_{\beta}$ for $\alpha \neq \beta$ in A.
(d) The internal direct sum

$$
\bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}=\left\{\sum_{i=1}^{n} \xi_{\alpha_{i}}: n \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \text { distinct in } A, \xi_{\alpha_{i}} \in \mathcal{L}_{\alpha_{i}}\right\}
$$

is dense in \mathcal{H}.
(Note that these conditions together with the assumption that the \mathcal{L}_{α} are closed will imply that the \mathcal{L}_{α} are finite-dimensional.) We write

$$
\pi=\bigoplus_{\alpha \in A} \pi(\cdot) \upharpoonright \mathcal{L}_{\alpha}
$$

on

$$
\mathcal{H}=\ell-\bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}
$$

Note that by Pythagoras' theorem every $\xi \in \mathcal{H}$ can be written uniquely in the form

$$
\xi=\sum_{\alpha \in A} \xi_{\alpha}
$$

with each $\xi_{\alpha} \in \mathcal{L}_{\alpha}$ and

$$
\|\xi\|^{2}=\sum_{\alpha \in A}\left\|\xi_{\alpha}\right\|^{2}
$$

Proof.

1. Fix $\xi \in \mathcal{H}$ with $\|\xi\|=1$. Consider the operator

$$
K_{\xi}=\int_{G} P_{\pi(x) \xi} \mathrm{d} x
$$

(Bochner integral, since $x \mapsto P_{\pi(x) \xi}$ is continuous). Each of these is rank 1 and thus a compact operator; so $K_{\xi} \in \mathcal{K}(\mathcal{H})$ (the Banach space of compact operators on \mathcal{H}). Also if $\eta, \zeta \in \mathcal{H}$ then

$$
\begin{aligned}
\left\langle K_{\xi} \eta \mid \zeta\right\rangle & =\int_{G}\langle\pi(x) \xi\langle\pi(x) \xi \mid \eta\rangle \mid \zeta\rangle \mathrm{d} x \\
& =\int_{G}\langle\pi(x) \xi \mid \zeta\rangle\langle\eta \mid \pi(x) \xi\rangle \mathrm{d} x \\
& =\int_{G}\langle\eta \mid \pi(x) \xi\langle\pi(x) \xi \mid \zeta\rangle\rangle \mathrm{d} x \\
& =\left\langle\eta \mid K_{\xi} \zeta\right\rangle
\end{aligned}
$$

so $K_{\xi}^{*}=K_{\xi}$. If we let $\eta=\xi=\zeta$, then we get

$$
\left\langle\xi \mid K_{\xi} \xi\right\rangle=\int_{G}|\langle\xi \mid \pi(x) \xi\rangle|^{2} \mathrm{~d} x
$$

where $\langle\xi \mid \pi(e) \xi\rangle=1>0$; hence $\left\langle\xi \mid K_{\xi} \xi\right\rangle>0$, and $K_{\xi} \neq 0$. Also, if $y \in G$ and $\eta \in \mathcal{H}$ then

$$
\begin{aligned}
\pi(y) K_{\xi} \eta & =\int_{G} \pi(y x)\langle\pi(x) \xi \mid \eta\rangle \mathrm{d} x \\
& =\int_{G} \pi(x)\langle\pi(x) \xi \mid \pi(y) \eta\rangle \mathrm{d} x \\
& =K_{\xi} \pi(y) \eta
\end{aligned}
$$

Thus $\pi(y) K_{\xi}=K_{\xi} \pi(y)$. We now apply the spectral theorem to K_{ξ} to get a sequence of orthogonal projections $\left\{P_{1}, P_{2}, \ldots\right\}$ (perhaps finite) and $\lambda_{1}, \lambda_{2}, \ldots \in \mathbb{R} \backslash\{0\}$ such that

$$
\lim _{n \rightarrow \infty} \lambda_{n}=0
$$

and

- $K_{\xi}=\sum_{n=1,2, \ldots} \lambda_{n} P_{n}$ (converges in norm, if the sequence is infinite).
- Each $1 \leqslant \operatorname{dim}\left(P_{n}(\mathcal{H})\right)<\infty$.
- $P_{n} P_{m}=0$ if $n \neq m$.
- For $T \in \mathcal{B}(\mathcal{H})$ we have $T K_{\xi}=K_{\xi} T$ if and only if $T P_{n}=P_{n} T$ for each n.

We thus have $\pi(x) P_{n}=P_{n} \pi(x)$ for each $x \in G$; so $\mathcal{L}_{n}=\operatorname{Ran} P_{n}$ is π-invariant.
2. By (1) and the last proposition, if π is infinite dimensional, then it admits an (irreducible) π-invariant subspace.
3. We let

$$
\Lambda=\left\{\lambda=\left\{\mathcal{L}_{\alpha}\right\}_{\alpha \in A_{\lambda}}: \lambda \text { satisfies (a)-(c) above }\right\}
$$

By (1) and the last proposition we get $\Lambda \neq \varnothing$ and Λ is partially ordered by \subseteq. Let $\Gamma \subseteq \Lambda$ be a chain; so $\left\{\mathcal{L}: \mathcal{L}=\mathcal{L}_{\alpha}\right.$ for some $\left.\alpha \in A_{\lambda}, \lambda \in \Gamma\right\} \in \Lambda$ is an upper bound for Λ. By Zorn's lemma, there is a maximal element $\mu=\left\{\mathcal{L}_{\alpha}\right\}_{\alpha \in A_{\mu}} \in \Lambda$. Let

$$
\mathcal{M}=\overline{\bigoplus_{\alpha \in A_{\mu}} \mathcal{L}_{\alpha}}
$$

Then \mathcal{M} is π-invariant by continuity of each $\pi(x)$. If $\mathcal{M}^{\perp} \neq\{0\}$, then (1) and the last proposition yield an irreducible π-invariant subspace $\mathcal{L} \subseteq \mathcal{M}^{\perp}$. Then $\mu \cup\{\mathcal{L}\} \in \Lambda$ violates maximality of μ, a contradiction. Theorem 11.6

Lemma 11.7 (Schur's lemma). Suppose $\pi: G \rightarrow U(\mathcal{H})$ is a finite-dimensional unitary representation. Then

1. π is irreducible if and only if $(\pi(G))^{\prime}=\{T \in \mathcal{B}(\mathcal{H}): T \pi(x)=\pi(x) T$ for all $x \in G\}$ is $\mathbb{C} I$.
2. If $\pi^{\prime}: G \rightarrow U\left(\mathcal{H}^{\prime}\right)$ is another unitary representation and π and π^{\prime} are irreducible, then if $A \in \mathcal{B}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ satisfies $A \pi(x)=\pi^{\prime}(x)(A)$ for each $x \in G$, then $A=c U$ for some $c \in \mathbb{C}$ and unitary U. (In particular, if $c \neq 0$ we $\operatorname{get} \operatorname{dim}(\mathcal{H})=\operatorname{dim}\left(\mathcal{H}^{\prime}\right)$.

We sometimes call elements of $(\pi(G))^{\prime}$ intertwiners. The finite dimensional assumption is actually superfluous, once we know the spectral theorem for von Neumann algebras.

Proof.

1. If $T \in(\pi(G))^{\prime}$ then so too is T^{*}. Indeed, for $x \in G$ we have

$$
T^{*} \pi(x)=\left(\pi\left(x^{-1} T\right)^{*}=\left(T \pi\left(x^{-1}\right)\right)^{*}=\pi(x) T^{*}\right.
$$

Hence each $\operatorname{Re}(T)=\frac{1}{2}\left(T+T^{*}\right), \operatorname{Im}(T)=\frac{1}{2 i}\left(T-T^{*}\right) \in(\pi(G))^{\prime}$. If $A=A^{*} \in(\pi(G))^{\prime}$, we can use spectral theorem to write

$$
A=\sum_{k=1}^{n} \lambda_{k} P_{k}
$$

Then each P_{k} has $P_{k} \pi(x)=\pi(x) P_{k}$ for all $x \in G$; so $\operatorname{Ran}\left(P_{k}\right)$ is π-invariant.
(\Longrightarrow) If π is irreducible, then $A=A^{*} \in(\pi(G))^{\prime}$ implies $A=c I$ for $c \in \mathbb{R}$.
(\Longleftarrow) The only orthogonal projections in $(\pi(G))^{\prime}$ are 0 and I; we then use the previous lemma.
TODO 14. Ref?
2. If $A \pi(x)=\pi^{\prime}(x) A$ then

- $\operatorname{ker}(A)$ is π-invariant, and hence either $\{0\}$ or \mathcal{H}.
- $\operatorname{Ran}(A)$ is π^{\prime}-invariant, and hence respectively either \mathcal{H} or $\{0\}$.

So A is either 0 or invertible. In the latter case we hvave

$$
A^{*} A \pi(x)=A^{*} \pi^{\prime}(x) A=\pi(x) A^{*} A
$$

(where the last equality follows as in (1)). So $A^{*} A=c I$ for some $c>0$. Let $U=\frac{1}{\sqrt{c}} A$.Lemma 11.7

Corollary 11.8. If G is a compact abelian grape, then each irreducible representation is multiplication by a character $\sigma \in \widehat{G}$ on \mathbb{C}.

Again, had we more spectral theory, we could dispense with the compactness hypothesis.

Proof. If $\pi: G \rightarrow U(\mathcal{H})$ is an irreducible representation, then for $x \in G$ we have $\pi(x) \in(\pi(G))^{\prime}=\mathbb{C} I$. Hence we can write $\pi(x)=\sigma(x) I$ for $\sigma(x) \in \mathbb{T}$ (since π is unitary). Moreover we have

$$
\sigma(x y) I=\pi(x y)=\pi(x) \pi(y)=(\sigma(x) I)(\sigma(y) I)=\sigma(x) \sigma(y) I
$$

Clearly $x \mapsto \sigma(x)$ is continuous, as π is. By irreducibility, we get $\operatorname{dim}\left(\mathcal{H}_{\pi}\right)=1$.
Corollary 11.8
Definition 11.9. If $\pi: G \rightarrow U(\mathcal{H})$ and $\pi^{\prime}: G \rightarrow U\left(\mathcal{H}^{\prime}\right)$ are unitary representations (not necessarily irreducible or finite dimensional), then we say π is unitarily equivalent to π^{\prime} if there is a unitary $U \in \mathcal{B}\left(\mathcal{H}^{\prime}, \mathcal{H}\right)$ such that $U \pi^{\prime}(x)=\pi(x) U$ for $x \in G$; i.e. $\pi^{\prime}(x)=U^{*} \pi(x) U$. We then set

$$
\operatorname{Irr}(G)=\left\{\pi: G \rightarrow U(d): \pi \text { a continuous homomorphism, }(\pi(G))^{\prime}=\mathbb{C} I_{d}\left(\text { in } M_{d}(\mathbb{C})\right)\right\}
$$

where $U(d)$ is the $d \times d$ unitary grape. We let $\widehat{G}=\operatorname{Irr}(G) / \approx$ where $\pi \approx \pi^{\prime}$ if π and π^{\prime} are unitarily equivalent. "Properly" speaking, we have

$$
\widehat{G}=\left\{[\pi] \mid \pi: G \rightarrow U\left(\mathcal{H}_{\pi}\right) \text { (finite dimensional irreducible unitary representation) }\right\}
$$

We have a "standard abuse of notation": we consider \widehat{G} as a full set of representation of its equivalence classes; i.e. we write " $\pi \in \widehat{G}$ " rather than $[\pi] \in \widehat{G}$. We have the convention that $\pi \neq \pi^{\prime}$ in \widehat{G} means that $\pi \not \approx \pi^{\prime}$.

11.1 Matrix coefficient functions

Given $\pi \in \widehat{G}$, we let

$$
\mathcal{T}_{\pi}=\operatorname{span}\left\{\langle\xi \mid \pi(\cdot) \eta\rangle: \xi, \eta \in \mathcal{H}_{\pi}\right\} \subseteq C(G) \subseteq L^{2}(G)
$$

since $m(G)=1$. (Note that if $U \in U\left(H_{\pi}\right)$ then $\langle U \xi \mid \pi(\cdot) U \eta\rangle=\left\langle\xi \mid U^{*} \pi(\cdot) U \eta\right\rangle$; so $\pi \mapsto \mathcal{T}_{\pi}$ is independent of equivalence class.)

Let $d_{\pi}=\operatorname{dim}\left(\mathcal{H}_{\pi}\right)$ and $\left\{e_{1}, \ldots, e_{d}\right\}$ be an orthonormal basis for \mathcal{H}_{π}. Then for $\xi, \eta \in H_{\pi}$ we have

$$
\langle\xi \mid \pi(\cdot) \eta\rangle=\left\langle\sum_{j=1}^{d_{\pi}}\left\langle e_{j} \mid \xi\right\rangle e_{j} \mid \pi(\cdot) \sum_{i=1}^{d_{\pi}}\left\langle e_{i} \mid \eta\right\rangle e_{i}\right\rangle=\sum_{j=1}^{d_{\pi}} \sum_{i=1}^{d_{\pi}}\left\langle\xi \mid e_{j}\right\rangle\left\langle e_{i} \mid \eta\right\rangle \underbrace{\left\langle e_{j} \mid \pi(\cdot) e_{i}\right\rangle}_{\pi_{i j}}
$$

Then with respect to the basis $\left\{e_{1}, \ldots, e_{d_{\pi}}\right\}$ we have that $\pi(x)=\left[\pi_{i j}(x)\right]$, and $\mathcal{T}_{\pi}=\operatorname{span}\left\{\pi_{i j}: i, j \in\right.$ $\left.\left\{1, \ldots, d_{\pi}\right\}\right\}$. This leads to:

Theorem 11.10 (Schur's orthogonality relations). Suppose $\pi, \pi^{\prime} \in \widehat{G}$. Then

1. If $\pi \neq \pi^{\prime}$ (i.e. they aren't unitarily equivalent) then $\mathcal{T}_{\pi} \perp \mathcal{T}_{\pi^{\prime}}$ in $L^{2}(G)$.
2. If $\xi, \eta, \zeta, \omega \in \mathcal{H}_{\pi}$, then

$$
\int_{G} \overline{\langle\xi \mid \pi(x) \eta\rangle}\langle\zeta \mid \pi(x) \omega\rangle \mathrm{d} x=\frac{1}{d_{\pi}}\langle\zeta \mid \xi\rangle\langle\eta \mid \omega\rangle
$$

In particular, with the notation as above, we get that $\left\{\sqrt{d_{\pi}} \pi_{i j}: i, j \in\left\{1, \ldots, d_{\pi}\right\}\right\}$ is an orthonormal basis for \mathcal{T}_{π}.

Proof. Suppose $A \in \mathcal{B}\left(\mathcal{H}_{\pi^{\prime}}, \mathcal{H}_{\pi}\right)$, and let

$$
\tilde{A}=\int_{G} \pi(x) A \pi^{\prime}\left(x^{-1}\right) \mathrm{d} x
$$

(Bochner integral in a finite-dimensional Banach space). Then for $y \in G$ we have

$$
\tilde{A} \pi^{\prime}(y)=\int_{G} \pi(x) A \pi^{\prime}(\underbrace{x^{-1} y}_{\left(y^{-1} x\right)^{-1}}) \mathrm{d} x=\int_{G} \pi(y x) A \pi^{\prime}\left(x^{-1} \mathrm{~d} x=\pi(x) \widetilde{A}\right.
$$

Hence, by Schur's lemma, we have

$$
\tilde{A}= \begin{cases}0 & \text { if } \pi \neq \pi^{\prime} \\ c I & \text { else }\end{cases}
$$

where $c \neq 0$. Now suppose $\xi, \eta \in \mathcal{H}_{\pi^{\prime}}, \zeta, \omega \in \mathcal{H}_{\pi}$, and $A=\omega\langle\eta \mid \cdot\rangle \in \mathcal{B}\left(\mathcal{H}_{\pi^{\prime}}, \mathcal{H}_{\pi}\right)$. Then

$$
\begin{aligned}
\widetilde{A} & =\int_{G} \pi(x) \omega\left\langle\pi^{\prime}(x) \eta \mid \cdot\right\rangle \mathrm{d} x \\
\langle\zeta \mid \widetilde{A} \xi\rangle & =\int_{G}\langle\zeta \mid \pi(x) \omega\rangle\left\langle\pi^{\prime}(x) \eta \mid \xi\right\rangle \mathrm{d} x \\
& =\int_{G} \overline{\left\langle\xi \mid \pi^{\prime}(x) \eta\right\rangle}\langle\zeta \mid \pi(x) \omega\rangle \mathrm{d} x
\end{aligned}
$$

Hence if $\pi \neq \pi^{\prime}$, we get the first result. If $\pi=\pi^{\prime}$, then $\widetilde{A}=c I$ for some $c \in \mathbb{C}$; we compute

$$
\begin{aligned}
c & =\frac{1}{d_{\pi}} \operatorname{Tr}(\widetilde{A}) \\
& =\frac{1}{d_{\pi}} \int_{G} \operatorname{Tr}\left(\pi(x) A \pi\left(x^{-1}\right)\right) \mathrm{d} x \\
& =\frac{1}{d_{\pi}} \int_{G} \operatorname{Tr}(A) \mathrm{d} x \\
& =\frac{1}{d_{\pi}} \operatorname{Tr}(A) \\
& =\frac{1}{d_{\pi}} \sum_{i=1}^{d_{\pi}}\left\langle e_{i} \mid A e_{i}\right\rangle \\
& =\frac{1}{d_{\pi}} \sum_{i=1}^{d_{\pi}}\left\langle e_{i} \mid \omega\right\rangle\left\langle\eta \mid e_{i}\right\rangle \\
& =\frac{1}{d_{\pi}}\langle\eta \mid \omega\rangle
\end{aligned}
$$

(where the last equality follows from Parseval).
Theorem 11.10
Definition 11.11. We set

$$
\mathcal{T}(G)=\bigoplus_{\pi \in \widehat{G}} \mathcal{T}_{\pi} \subseteq C(G) \subseteq L^{2}(G)
$$

We look to defining the tensor product of representations. If $\mathcal{H}, \mathcal{H}^{\prime}$ are finite dimensional Hilbert spaces, then on $\mathcal{H} \otimes \mathcal{H}^{\prime}$, the quantity

$$
\left\langle\sum_{i=1}^{n} \xi_{i} \otimes \xi_{i}^{\prime} \mid \sum_{j=1}^{n^{\prime}} \eta_{j} \otimes \eta_{j}^{\prime}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n^{\prime}}\left\langle\xi_{i} \mid \eta_{j}\right\rangle_{\mathcal{H}}\left\langle\xi_{i}^{\prime} \mid \eta_{j}^{\prime}\right\rangle_{\mathcal{H}^{\prime}}
$$

is well-defined and sesquilinear. (To check this, one fixes $\eta \otimes \eta^{\prime}$ and checks that $\left(\xi, \xi^{\prime}\right) \mapsto\left\langle\xi \otimes \xi^{\prime} \mid \eta \otimes \eta^{\prime}\right\rangle$ is bilinear on $\overline{\mathcal{H}} \times \overline{\mathcal{H}^{\prime}}$ (where $\overline{\mathcal{H}}$ has the same addition and conjugated scalar multiplication; i.e. $a \cdot \xi=\bar{a} \xi$). One then does the same on the right.) If $\mathcal{H}, \mathcal{H}^{\prime}$ have orthonormal bases $\left\{e_{1}, \ldots, e_{d}\right\}$ and $\left\{e_{1}^{\prime}, \ldots, e_{d^{\prime}}^{\prime}\right\}$, then $\left\{e_{i} \otimes e_{j}^{\prime}: i \in\{1, \ldots, d\}, j \in\left\{1, \ldots, d^{\prime}\right\}\right\}$ is a basis for $\mathcal{H} \otimes \mathcal{H}^{\prime}$ with $\left\langle e_{i} \otimes e_{j}^{\prime} \mid e_{k} \otimes e_{\ell}^{\prime}\right\rangle=\delta_{i j} \delta_{j \ell}$ (Kronecker δ). So $\left\{e_{i} \otimes e_{j}^{\prime}: i \in\{1, \ldots, d\}, j \in\left\{1, \ldots, d^{\prime}\right\}\right\}$ is an orthonormal basis for $\mathcal{H} \otimes \mathcal{H}{ }^{\prime}$. If $\omega \in \mathcal{H} \otimes \mathcal{H}^{\prime}$, we write

$$
\omega=\sum_{i=1}^{d} \sum_{j=1}^{d^{\prime}} \omega_{i j} e_{i} \otimes e_{j}^{\prime}
$$

and

$$
\langle\omega \mid \omega\rangle=\sum_{i=1}^{d} \sum_{j=1}^{d^{\prime}}\left|\omega_{i j}\right|^{2} \geqslant 0
$$

is non-zero if $\omega \neq 0$. So $\langle\cdot \mid \cdot\rangle$ is an inner product on $\mathcal{H} \otimes \mathcal{H}^{\prime}$.
If $U \in U(\mathcal{H})$ and $U^{\prime} \in U\left(\mathcal{H}^{\prime}\right)$, then

$$
\left(U \otimes U^{\prime}\right) \sum_{i=1}^{n} \xi_{i} \otimes \xi_{i}^{\prime}=\sum_{i=1}^{n} U \xi_{i} \otimes U^{\prime} \xi_{i}^{\prime}
$$

is a well-defined unitary operator. Given $\pi, \pi^{\prime} \in \widehat{G}$, the map

$$
\begin{aligned}
\pi \otimes \pi^{\prime}: G & \rightarrow U\left(\mathcal{H}_{\pi} \otimes \mathcal{H}_{\pi^{\prime}}\right) \\
x & \mapsto \pi(x) \otimes \pi^{\prime}(x)
\end{aligned}
$$

defines a unitary representation of G that is independent of unitary equivalence class up to unitary equivalence. Warning 11.12. There is no reason to expect that $\pi \otimes \pi^{\prime}$ be irreducible.

By complete reducibility, we have

$$
\pi \otimes \pi^{\prime}=\bigoplus_{i=1}^{n} \pi_{i}^{\left(m_{i}\right)}
$$

for $\pi_{1}, \ldots, \pi_{n} \in \widehat{G}$ and $m_{i} \in \mathbb{N}$ the "multiplicity". So $\mathcal{T}(G)$ is an algebra of functions. Indeed, given $\pi, \pi^{\prime} \in \widehat{G}$ and $\xi, \eta \in \mathcal{H}_{\pi}, \zeta, \omega \in \mathcal{H}_{\pi^{\prime}}$, we have

$$
\begin{aligned}
\langle\xi \mid \pi(\cdot) \eta\rangle\langle\zeta \mid \pi(\cdot) \omega\rangle & =\left\langle\xi \otimes \zeta \mid \pi \otimes \pi^{\prime}(\cdot) \eta \otimes \omega\right\rangle \\
& =\left\langle\xi \otimes \zeta \mid\left(\bigoplus_{i=1}^{n} \pi_{i}^{\left(m_{i}\right)}\right) \eta \otimes \omega\right\rangle \\
& =\left\langle\xi \otimes \zeta \mid \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} P_{i j} \pi_{i}(\cdot) P_{i j} \eta \otimes \omega\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m_{i}}\left\langle P_{i j}(\xi \otimes \zeta) \mid \pi_{i}(\cdot) P_{i j}(\eta \otimes \omega)\right\rangle \\
& \in \mathcal{T}(G)
\end{aligned}
$$

where $P_{i j}$ are orthogonal projections.
Definition 11.13 (Conjugate representation). Suppose $\pi \in \widehat{G}$ and $\left\{e_{1}, \ldots, e_{d_{\pi}}\right\}$ an orthonormal basis for \mathcal{H}_{π} with $\pi_{i j}(\cdot)=\left\langle e_{j} \mid \pi(\cdot) e_{i}\right\rangle$. We define $\bar{\pi}: G \rightarrow U\left(\mathcal{H}_{\pi}\right)$ by $\bar{\pi}(x)=\left[\pi_{i j}(x)\right]$ (with respect to the chosen orthonormal basis).

Suppose $\pi=U^{*} \pi^{\prime}(\cdot) U$ for unitary U. Then $\left(U^{*}\right)_{i k}=\overline{U_{k i}}$. Then

$$
\pi=U^{*} \pi^{\prime}(\cdot) U=\left[\sum_{k, \ell=1}^{d_{\pi}} \overline{U_{i k}} \pi_{k \ell}^{\prime}(\cdot) U_{\ell j}\right]
$$

So

$$
\bar{\pi}=\left[\sum_{k, \ell=1}^{d_{\pi}} U_{i k} \overline{\pi_{k \ell}^{\prime}(\cdot)} \overline{U_{\ell j}}\right]=(\bar{U})^{*} \overline{\pi^{\prime}}(\cdot) \bar{U}
$$

(where $\bar{U}=\left[\overline{U_{i j}}\right]$). Thus $\pi \approx \pi^{\prime}$ implies $\bar{\pi} \approx \overline{\pi^{\prime}}$.
Note also that $\mathcal{T}(G)$ is conjugate-closed: we have $\overline{\langle\xi \mid \pi(\cdot) \eta\rangle}=\langle\bar{\xi} \mid \bar{\pi}(\cdot) \bar{\eta}\rangle$ where $\bar{\xi}$ and $\bar{\eta}$ are pointwise conjugated with respect to some orthonormal basis.
Remark 11.14. If G is abelian then for $\sigma, \sigma^{\prime} \in \widehat{G}$ we have $\sigma \otimes \sigma^{\prime} \cong \sigma \sigma^{\prime}$ as $\mathbb{C} \otimes \mathbb{C} \cong \mathbb{C}$; hence $\bar{\sigma}=\sigma^{-1}$.
Notation 11.15. We let $\lambda: G \rightarrow U\left(L^{2}(G)\right)$ be the left regular representation, so $\lambda(x) f(y)=f\left(x^{-1} y\right)$ for almost every y. Note that $C(G) \subseteq L^{2}(G)$ is a dense (hence not closed) λ-invariant subspace.

Theorem 11.16 (Peter-Weyl).

1. For $\pi \in \widehat{G}$ let $\left\{e_{1}^{\pi}, \ldots, e_{d_{\pi}}^{\pi}\right\}$ be an orthonormal basis for \mathcal{H}_{π}, and let

$$
\mathcal{T}_{\pi, j}=\operatorname{span}\left\{\pi_{i j}: i \in\left\{1, \ldots, d_{\pi}\right\}\right\} \subseteq \mathcal{T}_{\pi} \subseteq C(G) \subseteq L^{2}(G)
$$

Then $\mathcal{T}_{\pi, j}$ is λ-invariant, and $\lambda_{\pi, j}=P_{\pi, j} \lambda(\cdot) \upharpoonright \mathcal{T}_{\pi, j} \approx \bar{\pi}$ (where $P_{\pi, j}$ is the orthogonal projection onto $\left.\mathcal{T}_{\pi, j}\right)$.
2. We have

$$
\mathcal{T}(G)=\bigoplus_{\pi \in \widehat{G}} \mathcal{T}_{\pi}
$$

is uniformly dense in $C(G)$, and hence L^{2}-dense in $L^{2}(G)$.
3. We have

$$
\lambda=\bigoplus_{\pi \in \widehat{G}} \pi^{\left(d_{\pi}\right)}
$$

on

$$
L^{2}(G)=\ell^{2}-\bigoplus_{\pi \in \widehat{G}} \bigoplus_{j=1}^{d_{\pi}} \mathcal{T}_{\bar{\pi}, j} \cong \ell^{2}-\bigoplus_{\pi \in \widehat{G}} \mathcal{H}_{\pi}^{\left(d_{\pi}\right)}
$$

and in particular $\left\{\sqrt{d_{\pi}} \pi_{i j}: i, j \in\left\{1, \ldots, d_{\pi}\right\}, \pi \in \widehat{G}\right\}$ is an orthonormal basis for $L^{2}(G)$.
Proof.

1. If $x, y \in G$ then using the matrix product we have

$$
\lambda(x) \pi_{i j}(y)=\pi_{i j}\left(x^{-1} y\right)=\sum_{k=1}^{d_{\pi}} \underbrace{\pi_{i k}\left(x^{-1}\right)}_{\widehat{\pi_{k i}}(x)} \pi_{k j}(y)
$$

i.e.

$$
\lambda(x) \pi_{i j}=\sum_{k=1}^{d_{\pi}} \overline{\pi_{k i}}(x) \pi_{k j}
$$

Let $U_{j}: \mathcal{H}_{\pi} \rightarrow \mathcal{T}_{\pi, j}$ be given by $U_{j} e_{i}^{\pi}=\sqrt{d_{\pi}} \pi_{i j}$. Then for $x \in G$ we have

$$
\begin{aligned}
U_{j}^{*} \lambda_{\pi, j}(x) U_{j} e_{i}^{\pi} & =U_{j}^{*} \lambda_{\pi, j}(x) \sqrt{d_{\pi}} \pi_{i j} \\
& =U_{j}^{*} \sqrt{d_{\pi}} \sum_{k=1}^{d_{\pi}} \overline{\pi_{k i}}(x) \pi_{k j} \\
& =\sum_{k=1}^{d_{\pi}} \overline{\pi_{k i}(x)} e_{k}^{\pi} \\
& =\bar{\pi}(x) e_{i}^{\pi}
\end{aligned}
$$

so $U_{j}^{*} \lambda_{\pi, j}(\cdot) U_{j}=\bar{\pi}$.
2. Let us see that $\mathcal{T}(G)$ is point separating. Notice that if $x \neq e$ in G and V is a symmetric relatively compact neighbourhood of e with $x \in V^{2}$ then $\lambda(x) 1_{V}=1_{x V}$ and $1_{x V} \neq 1_{V}=\lambda(e) 1_{V}$ so $\lambda(x) \neq \lambda(e)$. Hence if $x \neq y$ in G then $\lambda(x) \neq \lambda(y)\left(\right.$ as $\left.\lambda\left(x^{-1} y\right)=\lambda(e)\right)$. By complete reducibility there is a finite-dimensional λ-invariant λ-irreducible subspace $\mathcal{L} \subseteq L^{2}(G)$ such that $\lambda(x) \upharpoonright \mathcal{L} \neq \lambda(y) \upharpoonright \mathcal{L}$. Then there are $\xi, \eta \in \mathcal{L}$ such that $\pi=\lambda(\cdot) \upharpoonright \mathcal{L}$ satisfies $\langle\xi \mid \pi(x) \eta\rangle \neq\langle\xi \mid \pi(y) \eta\rangle$. Hence, by Stone-Weierstrass we have $\mathcal{T}(G)$ is uniformly dense in $C(G)$.
3. We simply use (1), and use (2) to see that $\left\{\sqrt{d_{\pi}} \pi_{i j}(\cdot): i, j \in\left\{1, \ldots, d_{\pi}\right\}, \pi \in \widehat{G}\right\}$ is a maximal orthonormal set in $L^{2}(G)$.

11.2 Fourier analysis on compact grapes

Definition 11.17 (Fourier transform). If $f \in L^{1}(G)$ and $\pi \in \widehat{G}$ we let

$$
\widehat{f}(\pi)=\int_{G} f(x) \pi\left(x^{-1} \mathrm{~d} x \in \mathcal{B}\left(H_{\pi}\right)\right.
$$

(Bochner integral). This is also

$$
[\int_{G} f(x) \underbrace{\pi_{i j}\left(x^{-1}\right)}_{\overline{\pi_{j i}(x)}} \mathrm{d} x]
$$

where we've chosen an orthonormal basis for H_{π}.
If $f \in L^{2}(G) \subseteq L^{1}(G)$ (by the last result of Hölder/Cauchy-Schwarz inequality), then by the results on orthonormal bases in Hilbert spaces we get L^{2}-convergence

$$
\begin{aligned}
f & =\sum_{\pi \in \hat{G}} \sum_{i, j=1}^{d_{\pi}}\left\langle\sqrt{d_{\pi}} \pi_{i j} \mid f\right\rangle \sqrt{d_{\pi}} \pi_{i j} \\
& =\sum_{\pi \in \hat{G}} d_{\pi} \sum_{i, j=1}^{d_{\pi}} \underbrace{\left(\int_{G} f(x) \overline{\pi_{i j}}(x) \mathrm{d} x\right)}_{\int_{G} f(x) \pi_{j i}\left(x^{-1}\right)} \mathrm{d} x \pi_{i j} \\
& =\vdots \\
& =\sum_{\pi \in \hat{G}} d_{\pi} \operatorname{Tr}((\hat{f}(\pi)) \pi(\cdot))
\end{aligned}
$$

where there may be an arithmetic error in the last formula. This leads to:
Theorem 11.18 (Inversion theorem). If $f \in \mathcal{T}(G)$ then for $x \in G$ we have

$$
f(x)=\sum_{\pi \in \hat{G}} d_{\pi} \operatorname{Tr}(\hat{f}(\pi) \pi(x))
$$

Proof. The right hand side (call it \tilde{f}) is in $\mathcal{T}(G)$, and $\|f-\tilde{f}\|_{2}=0$, so $f=\tilde{f}$ on G as each is continuous. Theorem 11.18

Theorem 11.19 (Plancherel/Riesz-Fischer). If $f \in L^{1}(G)$ then

$$
f \in L^{2}(G) \Longleftrightarrow \sum_{\pi \in \hat{G}} d_{\pi}\|\hat{f}(\pi)\|_{\mathrm{HS}\left(H_{\pi}\right)}^{2}
$$

where

$$
\|A\|_{\mathrm{HS}\left(H_{\pi}\right)}^{2}=\sum_{i, j=1}^{d_{\pi}}\left|\left\langle e_{j}^{\pi} \mid A e_{i}^{\pi}\right\rangle\right|^{2}
$$

is the Hilbert-Schmidt norm. Furthermore we have

$$
\|f\|_{2}=\left(\sum_{\pi \in \hat{G}} d_{\pi}\|\widehat{f}(\pi)\|_{\mathrm{HS}\left(H_{\pi}\right)}^{2}\right)^{\frac{1}{2}}
$$

i.e.

$$
L^{2}(G)=\ell^{2}-\bigoplus_{\pi \in \hat{G}} \sqrt{d_{\pi}} \operatorname{HS}\left(H_{\pi}\right)
$$

Proof. Riesz-Fischer theorem.
Theorem 11.20 (Parseval's formula). If $f, g \in L^{2}(G)$ then

$$
\int_{G} \bar{f} g \mathrm{~d} m=\sum_{\pi \in \widehat{G}} d_{\pi} \operatorname{Tr}\left((\widehat{f}(\pi))^{*} \widehat{g}(\pi)\right)
$$

Proposition 11.21 (Uniqueness). If $\mu \in M(G)$ then the Fourier-Stieltjes transform is given on π in \hat{G} by

$$
\widehat{\mu}(\pi)=\int_{G} \pi\left(x^{-1}\right) \mathrm{d} \mu(x)
$$

Then if $\widehat{\mu}(\pi)=0$ for every $\pi \in \widehat{G}$ we must have $\mu=0$.
Proof. If $\widehat{\mu}(\pi)=0$ for all π then

$$
\int_{G} f \mathrm{~d} \mu=0
$$

for all $f \in \mathcal{T}(G)$. So

$$
\int_{G} f \mathrm{~d} \mu=0
$$

for all $f \in C(G)$, since $\overline{\mathcal{T}(G)}{ }^{\|\cdot\|_{\infty}}=C(G)$ by Peter-Weyl. Hence $\mu=0$ (by Riesz representation theorem).Proposition 11.21

11.3 Character theory

If $\rho: G \rightarrow U(\mathcal{H})$ is a finite-dimensional unitary representation, we define its character to be $\chi_{\rho}=\operatorname{Tr} \circ \rho: G \rightarrow \mathbb{C}$.
Proposition 11.22. Suppose $\pi, \pi^{\prime} \in \widehat{G}$ and $\rho: G \rightarrow U(\mathcal{H})$ is a finite dimensional representation. Then

1. $\chi_{\pi} \chi_{\pi^{\prime}}=\chi_{\pi \otimes \pi^{\prime}}=\sum_{i=1}^{n} m_{i} \chi_{\pi_{i}}$, where

$$
\pi \otimes \pi^{\prime}=\bigoplus_{i=1}^{n} \pi_{i}^{\left(m_{i}\right)}
$$

with $\pi_{i} \in \widehat{G}$.
2. $\int_{G} \overline{\chi_{\pi}} \chi_{\rho} \mathrm{d} m=m(\pi, \rho):=\max \left\{m \in\{0\} \cup \mathbb{N}: \pi^{(m)}\right.$ is equivalent to a subring of $\left.\rho\right\}$.
3. $\rho \in \widehat{G} \Longleftrightarrow \int_{G}\left|\chi_{\rho}\right|^{2} \mathrm{~d} m=1$
4. If we let 1 be the trivial representation then

$$
m\left(1, \pi \otimes \pi^{\prime}\right)= \begin{cases}1 & \text { if } \pi^{\prime}=\pi \\ 0 & \text { else }\end{cases}
$$

Proof.

1. Suppose $x \in G$. Then

$$
\begin{aligned}
\chi_{\pi}(x) \chi_{\pi^{\prime}}(x) & =\operatorname{Tr}(\pi(x)) \operatorname{Tr}\left(\pi^{\prime}(x)\right) \\
& =\operatorname{Tr}\left(\pi(x) \otimes \pi^{\prime}(x)\right) \text { (check, linear algebra) } \\
& =\operatorname{Tr}\left(\bigoplus_{i=1}^{n} \pi_{i}^{\left(m_{i}\right)}(x)\right) \\
& =\sum_{i=1}^{n} m_{i} \operatorname{Tr}\left(\pi_{i}(x)\right) \\
& =\sum_{i=1}^{n} m_{i} \chi_{\pi_{i}}
\end{aligned}
$$

2. Suppose

$$
\rho=\bigoplus_{i=1}^{n} \pi_{i}^{\prime\left(m_{i}\right)}
$$

then

$$
\pi \otimes \rho=\bigoplus_{i=1}^{n}\left(\pi \otimes \pi_{i}^{\prime}\right)^{\left(m_{i}\right)}
$$

We then use the first item and the Schur orthogonality relations.
3. If

$$
\rho=\bigoplus_{i=1}^{n} \pi_{i}^{\left(m_{i}\right)}
$$

then as above we have

$$
\chi_{\rho}=\sum_{i=1}^{n} m_{i} \chi_{\pi_{i}}
$$

So

$$
\overline{\chi_{\rho}} \chi_{\rho}=\sum_{i, j=1}^{n} m_{i} m_{j} \overline{\chi_{j}} \chi_{\pi_{i}}
$$

So

$$
\int_{G}\left|\chi_{\rho}\right|^{2} \mathrm{~d} m=\sum_{i, j=1}^{n} m_{i} m_{j} \underbrace{\int_{G} \chi_{\overline{\pi_{j}}} \chi_{\pi_{i}} \mathrm{~d} m}_{\delta_{i j}} \mathrm{~d} m=\sum_{k=1}^{n} m_{k}^{2}
$$

This is >1 unless ρ is irreducible.
4. Combine the second and third items.Proposition 11.22
Definition 11.23 (Normalized characters). If $\pi \in \widehat{G}$ we let $\psi_{\pi}=\frac{1}{d_{\pi}} \chi_{\pi}$.
Then if

$$
\pi \otimes \pi^{\prime}=\bigoplus_{i=1}^{n} \pi_{i}^{\left(m_{i}\right)}
$$

for distinct $\pi_{1}, \ldots, \pi_{n} \in \widehat{G}$, then

$$
\psi_{\pi} \psi_{\pi^{\prime}}=\sum_{i=1}^{n} \frac{m_{i}}{d_{\pi} d_{\pi^{\prime}}} \chi_{\pi_{i}}=\underbrace{\sum_{i=1}^{n} \frac{m_{i} d_{\pi_{i}}}{d_{\pi} d_{\pi^{\prime}}} \psi \psi_{\pi_{i}}}_{\text {convex combination }}
$$

This motivates the following:
Definition 11.24. A discrete hypergrape is a set Γ such that $\ell^{1}(\Gamma)$ admits a product which satisfies

1. $\delta_{\gamma} \cdot \delta_{\gamma^{\prime}} \in \operatorname{Prob}(\Gamma)=\left\{\left(p_{\gamma}\right)_{\gamma \in \Gamma}: \sum_{\gamma \in \Gamma} p_{\gamma}=1, p_{\gamma} \geqslant 0\right\}$.
2. There is an identity for \cdot, call it δ_{1}
3. There is an involution $\gamma \mapsto \bar{\gamma}$ (i.e. with $\gamma=\overline{\bar{\gamma}})$ such that $\delta_{1} \in \operatorname{supp}\left(\delta_{\gamma} \cdot \delta_{\gamma^{\prime}}\right)$ if and only if $\gamma^{\prime}=\bar{\gamma}$.

12 Amenability

Definition 12.1 (von Neumann). A discrete grape G is called amenable (Day) provided there is a finitely additive probability measure $\mu: \mathcal{P}(G) \rightarrow[0,1]$ satisfying

- $\mu(\varnothing)=0$
- $\mu(A \cup B)=\mu(A)+\mu(B)$ when $A \cap B=\varnothing$.
- $\mu(G)=1$.
- $\mu(x E)=\mu(E)$ for $x \in G$ and $E \in \mathcal{P}(G)$.

Proposition 12.2. There is a bijective correspondence between finitely additive probability measures on a set X and

$$
\mathcal{M} \ell^{\infty}(X)=\left\{M \in \ell^{\infty}(X)^{*}: M(\varphi) \geqslant 0 \text { if } \varphi \geqslant 0 \text { in } \ell^{\infty}(X), M(1)=1\right\}
$$

(These are called means.)
Proof. Given $M \in \mathcal{M} \ell^{\infty}(X)$, let $\mu(E)=M\left(1_{E}\right)$. Conversely, given a finitely additive probability measure μ consider $S(X)=\operatorname{span}\left\{1_{E}: E \in \mathcal{P}(X)\right\}$. Then check that

- $S(X)$ is dense in $\ell^{\infty}(X)$.
- Each $\psi \in S(X)$ can be uniquely represented in the form

$$
\psi=\sum_{i=1}^{n} a_{i} 1_{E_{i}}
$$

with the a_{i} distinct elements of \mathbb{C} and $E_{i} \cap E_{j}=\varnothing$ for $i \neq j$.
Define $M_{0}: S(X) \rightarrow \mathbb{C}$ by

$$
M_{0}(\psi)=\sum_{i=1}^{n} a_{i} \mu\left(E_{i}\right)
$$

Then this is a bounded linear functional on $S(X)$, and hence extends uniquely to $\ell^{\infty}(X)$.
Example 12.3 (Ultrafilter limits). Let \mathcal{U} be an ultrafilter on X; i.e. $\mathcal{U} \subseteq \mathcal{P}(X) \backslash\{\varnothing\}$ with $A, B \in \mathcal{U} \Longrightarrow$ $A \cap B \in \mathcal{U}$, and if $E \in \mathcal{P}(X)$ then exactly one of E and $X \backslash E$ lies in \mathcal{U}.

Define $\delta_{\mathcal{U}}: \mathcal{P}(X) \rightarrow[0,1]$ by

$$
\delta_{\mathcal{U}}(E)= \begin{cases}1 & \text { if } E \in \mathcal{U} \\ 0 & \text { else }\end{cases}
$$

The associated mean on $\ell^{\infty}(X)$ will be denoted $L_{\mathcal{U}}$ (ultrafilter limit).
Definition 12.4. We say a discrete grape is amenable if there is $M \in \mathcal{M} \ell^{\infty}(G)$ such that $M(\varphi \cdot x)=M(\varphi)$ for $\varphi \in \ell^{\infty}(G)$ and $x \in G$.

Question 12.5. Now let G be a (not necessarily discrete) locally compact grape. What space replaces $\ell^{\infty}(G)$? $L^{\infty}(G) ? C_{b}(G) ? C_{\mathrm{lu}}(G)=\left\{\varphi \in C_{b}(G): x \mapsto \varphi \cdot x: G \rightarrow C_{b}(G)\right.$ is continuous \}? (One should check that $C_{\mathrm{lu}}(G)$ is closed in $C_{b}(G)$.)

Definition 12.6. Let \mathcal{E} be any of $L^{\infty}(G), C_{b}(G), C_{\mathrm{lu}}(G)$. We let $\mathcal{M E}=\left\{M \in \mathcal{E}^{*}: M(\varphi) \geqslant 0\right.$ if $\varphi \geqslant$ $0, M(1)=1\}$ denote the means on \mathcal{E}. We call $M \in \mathcal{M} \mathcal{E}$ left-invariant if $M(\varphi \cdot x)=M(\varphi)$ for $\varphi \in \mathcal{E}$ and $x \in G$.

We will tend to prefer $L^{\infty}(G)$ and $C_{\mathrm{lu}}(G)$.

Remark 12.7. Since the map $C_{\mathrm{lu}}(G) \times G \rightarrow C_{\mathrm{lu}}(G)$ given by $(\varphi, x) \mapsto \varphi \cdot x$ is continuous, we may define an action of $L^{1}(G)$ on $C_{\mathrm{lu}}(G)$

$$
\varphi \cdot f=\int_{G}(\varphi \cdot x) f(x) \mathrm{d} x
$$

(Bochner integral) for $\varphi \in L^{1}(G)$ and $f \in C_{\mathrm{lu}}(G)$.
Notation 12.8. Let

$$
P^{1}(G)=\left\{f \in L^{1}(G): f \geqslant 0 \text { almost everywhere, } \int_{G} f \mathrm{~d} m=1\right\}
$$

Proposition 12.9. Suppose $M \in \mathcal{M} C_{\mathrm{lu}}(G)$. Then M is left-invariant if and only if $M(\varphi \cdot f)=M(\varphi)$ for all $\varphi \in C_{\mathrm{lu}}(G)$ and $f \in P^{1}(G)$.

Proof.
(\Longrightarrow) Note that

$$
M(\varphi \cdot f)=\int_{G} \underbrace{M(\varphi \cdot x)}_{=M(\varphi)} f(x) \mathrm{d} x=M(\varphi)
$$

(\Longleftarrow) If $x \in G$ and $f \in P^{1}(G)$, then $x * f \in P^{1}(G)$. Then for $\varphi \in C_{\mathrm{lu}}(G), x \in G$, and $f \in P^{1}(G)$ we have

$$
M(\varphi \cdot x)=M((\varphi \cdot x) \cdot f)=M(\varphi \cdot(x * f))=M(\varphi)
$$

(One should check the second equality.)
Proposition 12.9
Notation 12.10. We run into a problem: for $\varphi \in L^{\infty}(G)$ the map $x \mapsto \varphi \cdot x$ may not be norm continuous. For $f \in L^{1}(G)$ and $\varphi \in L^{\infty}(G)$, we define $\varphi \cdot f$ by

$$
\langle\varphi \cdot f, g\rangle=\int_{G} \varphi \cdot f=\int_{G} \varphi f * g \mathrm{~d} m
$$

i.e. if $L_{f}: L^{1}(G) \rightarrow L^{1}(G)$ is convolution on the left by f, then we set $\varphi \cdot f=L_{f}^{*} \varphi$ (adjoint operator).

Remark 12.11. Notice that if $f, f^{\prime} \in L^{1}(G)$ and $\varphi \in L^{\infty}(G)$, then

$$
\varphi \cdot\left(f * f^{\prime}\right)=L_{f * f^{\prime}}^{*}(\varphi)=\left(L_{f} L_{f^{\prime}}\right)^{*} \varphi=L_{f^{\prime}}^{*} L_{f}^{*} \varphi=(\varphi \cdot f) \cdot f^{\prime}
$$

Likewise we have $(\varphi \cdot f) \cdot x=\varphi \cdot(f * x)$ for $x \in G$. (One should check this.) Finally, note that

$$
\|\varphi \cdot f\|_{\infty}=\left\|L_{f}^{*} \varphi\right\|_{\infty} \leqslant\left\|L_{f}\right\|\|\varphi\|_{\infty} \leqslant\|f\|_{1}\|\varphi\|_{\infty}
$$

Proposition 12.12. If $\varphi \in L^{\infty}(G)$ and $f \in L^{1}(G)$, then $\varphi \cdot f \in C_{\mathrm{lu}}(G)$.
Proof. First note that for $x, y \in G$ we have

$$
\|(\varphi \cdot f) \cdot x)-(\varphi \cdot f) \cdot y\left\|_{\infty} \leqslant\right\| \varphi\left\|_{\infty}\right\| f * x-f * y \|_{1} \xrightarrow{x \rightarrow y} 0
$$

One checks that this implies that $\varphi \cdot f$ is equal almost everywhere to an element of $C_{\mathrm{lu}}(G)$.
Theorem 12.13. The following are equivalent:

1. $L^{\infty}(G)$ admits a left-invariant mean.
2. $C_{c}(G)$ admits a left-invariant mean.
3. $C_{\mathrm{lu}}(G)$ admits a left-invariant mean.

Proof.
$\xrightarrow{(1) \Longrightarrow(2)}$ Restriction.
$\xrightarrow{(2)} \Longrightarrow(3)$ Restriction.
$\mathbf{(3) \Longrightarrow (1)}$ Let $\left(k_{\alpha}\right)_{\alpha \in A} \subseteq P^{1}(G)$ be a summability kernel. If $\varphi \in L^{\infty}(G)$ then $\varphi \cdot k_{\alpha} \in C_{\mathrm{lu}}(G)$ for each α by previous lemma. Let \mathcal{U} be an ultrafilter on A containing all cofinal subsets. If $a, b \in \ell^{\infty}(A)$ with $\lim _{\alpha \in A}\left(a_{\alpha}-b_{\alpha}\right)=0$, then $L_{\mathcal{U}}(a)=L_{\mathcal{U}}(b)$. (Recall that $L_{\mathcal{U}}$ denotes the ultrafilter limit mean.) Given left-invariant $M \in \mathcal{M} C_{\text {lu }}(G)$, we let

$$
\begin{aligned}
M_{\mathcal{U}}: L^{\infty}(G) & \rightarrow \mathbb{C} \\
\varphi & \mapsto L_{\mathcal{U}}\left(\left(M\left(\varphi \cdot k_{\alpha}\right)\right)_{\alpha \in A}\right)
\end{aligned}
$$

It is now straightforward to check that

- $M_{\mathcal{U}}$ is linear and bounded with $\left\|M_{\mathcal{U}}\right\| \leqslant\|M\|$.
- $M_{\mathcal{U}}(\varphi) \geqslant 0$ if $\varphi \geqslant 0$ in $L^{\infty}(G)$.
- $M_{\mathcal{U}}(1)=1$.

So $M \in \mathcal{M} L^{\infty}(G)$. Now if $f \in P^{1}(G)$ then

$$
\lim _{\alpha \in A} k_{\alpha} * f=f=\lim _{\alpha \in A} f * k_{\alpha}
$$

(by A2). Hence for $\varphi \in L^{\infty}(G)$ we have

$$
\begin{aligned}
M_{\mathcal{U}}(\varphi \cdot f) & =L_{\mathcal{U}}\left(\left(M\left(\varphi \cdot\left(f * k_{\alpha}\right)\right)\right)_{\alpha \in A}\right) \\
& =L_{\mathcal{U}}((M(\underbrace{\varphi \cdot\left(k_{\alpha} * f\right)}_{\left(\varphi \cdot k_{\alpha}\right) \cdot f}))_{\alpha \in A}) \\
& =L_{\mathcal{U}}\left(\left(M\left(\varphi \cdot k_{\alpha}\right)\right)_{\alpha \in A}\right) \\
& =M_{\mathcal{U}}(\varphi)
\end{aligned}
$$

Corollary 12.14. G is amenable if and only if there is $M \in \mathcal{M} L^{\infty}(G)$ such that $M(\varphi \cdot f)=M(\varphi)$ for $\varphi \in L^{\infty}(G)$ and $f \in P^{1}(G)$.

Proof. Built into the proof of the previous theorem.
Corollary 12.14
Notation 12.15. Since $\left(L^{1}(G)\right)^{*}=L^{\infty}(G)$, we regard $L^{1}(G) \subseteq\left(L^{\infty}(G)\right)^{*}$.

Lemma 12.16.

1. $\mathcal{M} L^{\infty}(G)$ is w^{*}-compact and convex.
2. ${\overline{P^{1}(G)}}^{\mathrm{w}}=\mathcal{M} L^{\infty}(G)$.

Proof.

1. It is straightforward that $\mathcal{M} L^{\infty}(G)$ is convex and w^{*}-closed. Moreover, $\mathcal{M} L^{\infty}(G) \subseteq \operatorname{ball}\left(\left(L^{\infty}(G)\right)^{*}\right)$ (closed unit ball); hence by Banach-Alaoglu it follows that $\mathcal{M} L^{\infty}(G)$ is w^{*}-compact. Indeed, note that since $\|\varphi\|_{\infty} 1-|\varphi| \geqslant 0$, we have $M(|\varphi|) \leqslant\|\varphi\|_{\infty}$. Next, by Cauchy-Schwarz inequality, we have

$$
|M(\bar{\varphi} \psi)| \leqslant(M(\bar{\varphi} \varphi))^{\frac{1}{2}}(M(\psi \bar{\psi}))^{\frac{1}{2}} \leqslant\left\||\varphi|^{2}\right\|_{\infty}^{\frac{1}{2}}\left\||\psi|^{2}\right\|_{\infty}^{\frac{1}{2}}=\|\varphi\|_{\infty}\|\psi\|_{\infty}
$$

(note that Cauchy-Schwarz applies since $M(\bar{\varphi} \psi)$ is a Hermitian bilinear form). So

$$
|M(\varphi)|=|M(1 \varphi)| \leqslant\|1\|_{\infty}\|\varphi\|_{\infty}=\|\varphi\|_{\infty}
$$

2. Since $P^{1}(G) \subseteq \mathcal{M} L^{\infty}(G)$, we get ${\overline{P^{1}(G)}}^{w^{*}} \subseteq \mathcal{M} L^{\infty}(G)$ by (1). Let $M \in \mathcal{M} L^{\infty}(G) \subseteq \operatorname{ball}\left(\left(L^{\infty}(G)\right)^{*}\right)$ (by proof of (1)). Then by Goldstine's theorem we have a net $\left(f_{\alpha}\right)_{\alpha}$ in ball $\left(L^{1}(G)\right.$ such that

$$
M=\mathrm{w}^{*}-\lim _{\alpha} f_{\alpha}
$$

Write each

$$
f_{\alpha}=\sum_{k=0}^{3} i^{k} f_{\alpha, k}
$$

with each $f_{\alpha, k} \geqslant 0$ and $f_{\alpha, k} \leqslant\left|f_{\alpha}\right|$; so $\left\|f_{\alpha, k}\right\|_{1} \leqslant\|f\|_{1}$. If $\varphi \geqslant 0$ in $L^{\infty}(G)$ then

$$
0 \leqslant M(\varphi)=\lim _{\alpha} i^{k} \underbrace{\int_{G} f_{\alpha, k} \varphi}_{\geqslant 0} \mathrm{~d} m
$$

So since positives span $L^{\infty}(G)$ we see that

$$
\begin{aligned}
M & =\mathrm{w}^{*}-\lim _{\alpha}\left(f_{\alpha, 0}-f_{\alpha, 2}\right) \\
0 & =\mathrm{w}^{*}-\lim _{\alpha}\left(f_{\alpha, 1}-f_{\alpha, 3}\right)
\end{aligned}
$$

But also

$$
1=M(1)=\lim _{\alpha} \int_{G}\left(f_{\alpha, 0}-f_{\alpha, 2}\right) \mathrm{d} m=\lim _{\alpha}\left(\left\|f_{\alpha, 0}\right\|_{1}-\left\|f_{\alpha, 2}\right\|_{1}\right)
$$

But each of $\left\|f_{\alpha, 0}\right\|_{1},\left\|f_{\alpha, 2}\right\|_{1}$ lies in $[0,1]$. So

$$
\begin{aligned}
\lim _{\alpha}\left\|f_{\alpha, 0}\right\|_{1} & =1 \\
\lim _{\alpha}\left\|f_{\alpha, 2}\right\|_{1} & =0
\end{aligned}
$$

We conclude that

$$
M=\mathrm{w}^{*}-\lim _{\alpha} \frac{1}{\left\|f_{\alpha, 0}\right\|_{1}} f_{\alpha, 0} \in{\overline{P^{1}(G)}}^{w^{*}}
$$

as desired.
Theorem 12.17 (Reiter). The following are equivalent:

1. G is amenable.
2. There is a net $\left(f_{\alpha}\right)_{\alpha}$ in $P^{1}(G)$ such that

$$
\lim _{\alpha}\left\|f * f_{\alpha}-f_{\alpha}\right\|_{1}=0
$$

for $f \in P^{1}(G)$.
3. Given $\varepsilon>0$ and $K \subseteq G$ compact there is $r \in P^{1}(G)$ such that $\|x * r-r\|_{1}<\varepsilon$ for $x \in K$.
4. There is a net $\left(r_{\alpha}\right)$ in $P^{1}(G)$ such that for $K \subseteq G$ compact we have

$$
\limsup _{\alpha} \sup _{x \in K}\left\|x * r_{\alpha}-r_{\alpha}\right\|_{1}=0
$$

(We call such a net a Reiter net.)
5. There is a net $\left(r_{\alpha}\right)$ in $P^{1}(G)$ such that

$$
\lim _{\alpha}\left\|x * r_{\alpha}-r_{\alpha}\right\|=0
$$

for $x \in G$. (We call such a net an asymptotically invariant net.)

Proof.
$(1) \Longrightarrow(2)$ Let $M \in \mathcal{M} L^{\infty}(G)$ satisfy that $M(\varphi \cdot f)=M(\varphi)$ for $\varphi \in L^{\infty}(G)$ and $f \in P^{1}(G)$ (by last corollary).
TODO 15. ref
Let $\left(g_{\alpha}\right)_{\alpha \in A}$ in $P^{1}(G)$ satisfy

$$
M=w^{*} \lim _{\alpha \in A} g_{\alpha}
$$

(by lemma). Then for $\varphi \in L^{\infty}(G)$ and $f \in P^{1}(G)$ we have

$$
0=M(\varphi-\varphi \cdot f)=\lim _{\alpha \in A} \int_{G} g_{\alpha}(\varphi-\varphi \cdot f) \mathrm{d} m=\lim _{\alpha \in A} \int_{G}\left(f * g_{\alpha}-g_{\alpha}\right) \varphi \mathrm{d} m
$$

So

$$
\mathrm{w}-\lim _{\alpha \in A}\left(f * g_{\alpha}-g_{\alpha}\right)=0
$$

(weak limit). If $F \subseteq P^{1}(G)$ is finite, we let

$$
C_{F}=\operatorname{conv}\left\{\left(f * g_{\alpha}-g_{\alpha}\right)_{f \in F}: \alpha \in A\right\} \subseteq\left(L^{1}(G)\right)^{F}
$$

(finite product of Banach spaces). By the Hahn-Banach theorem we have ${\overline{C_{F}}}^{\text {w }}={\overline{C_{F}}}^{\|\cdot\|}$ (where $\|\cdot\|$ is any "natural" norm on $\left.\left(L^{1}(G)\right)^{F}\right)$. So $0 \in{\overline{C_{F}}}^{\mathrm{w}}=\overline{C_{F}}\|\cdot\|$. Now let

$$
C_{P^{1}(G)}=\operatorname{conv}\left\{\left(f * g_{\alpha}-g_{\alpha}\right)_{f \in P^{1}(G)}: \alpha \in A\right\} \subseteq\left(L^{1}(G),\|\cdot\|_{1}\right)^{P^{1}(G)}
$$

Since $0 \in{\overline{C_{F}}}^{\|} \cdot \|$ for each F, we have that $0 \in{\overline{C_{P^{1}(G)}}}^{\text {prod }}$. Hence there is a net $\left(f_{\beta}\right) \operatorname{in} \operatorname{conv}\left\{g_{\alpha}: \alpha \in A\right\}$ such that

$$
0=\operatorname{prod}-\lim _{\beta}\left(f * f_{\beta}-f_{\beta}\right)
$$

for $f \in P^{1}(G)$. So

$$
0=\lim _{\beta}\left\|f * f_{\beta}-f_{\beta}\right\|_{1}
$$

for each $f \in P^{1}(G)$.
$(2) \Longrightarrow(3)$ Fix $\varepsilon>0, f \in P^{1}(G)$, and $K \subseteq G$ compact. Let U be a relatively compact neighbourhood of e such that $\|x * f-f\|_{1}<\varepsilon$ for $x \in U$. Then

$$
\left\|\frac{1}{m(U)} 1_{U} * f-f\right\|_{1} \leqslant \frac{1}{m(U)} \int_{U}\|x * f-f\|_{1} \mathrm{~d} x \leqslant \varepsilon
$$

Let $x_{1}, \ldots, x_{n} \in G$ be such that

$$
K \subseteq \bigcup_{k=1}^{n} x_{k} U
$$

Use the hypothesis to find α_{0} such that

$$
\|\underbrace{\frac{1}{m(U)} 1_{x_{k} U}}_{\in P^{1}(G)} * f * f_{\alpha_{0}}-f_{\alpha_{0}}\|_{1}<\varepsilon
$$

for $k \in\{1, \ldots, n\}$. So $\left\|f * f_{\alpha_{0}}-f_{\alpha_{0}}\right\|_{1}<\varepsilon$. We let $r=f * f_{\alpha_{0}}$. Then for $x \in U$ and $k \in\{1, \ldots, n\}$ we have

$$
\begin{aligned}
\left\|\left(x_{k} x\right) * r-r\right\|_{1} & \leqslant\left\|\left(x_{k} x\right) * r-\frac{1}{m(U)} 1_{x_{k} U} * r\right\|_{1}+\left\|\frac{1}{m(U)} 1_{x_{k} U} * r-f_{\alpha_{0}}\right\|_{1}+\left\|f_{\alpha_{0}}-r\right\|_{1} \\
& \leqslant\left\|x_{k} *\left(x * f x * f-\frac{1}{m(U)} 1_{U} * f\right) * f_{\alpha_{0}}\right\|_{1}+2 \varepsilon \\
& \leqslant\|x * f-f\|_{1}+\left\|f-\frac{1}{m(U)} 1_{U} * f\right\|_{1}+2 \varepsilon \\
& <4 \varepsilon
\end{aligned}
$$

Thus

$$
\sup _{x \in K}\|x * r-r\|_{1} \leqslant 4 \varepsilon
$$

$\underline{(3) \Longrightarrow(4)}$ Let $A=\{(K, \varepsilon): K \subseteq G$ compact, $\varepsilon>0\}$, preordered by $(K, \varepsilon) \leqslant\left(K^{\prime}, \varepsilon^{\prime}\right)$ if $K \subseteq K^{\prime}$ and $\varepsilon>\varepsilon^{\prime}$. For each $\alpha=(K, \varepsilon) \in A$ we let r_{α} satisfy (3).
$(4) \Longrightarrow(5)$ Clear.
$(5) \Longrightarrow(1)$ Any w*-cluster point of an asymptotically invariant net is left-invariant.
Corollary 12.18. The following are equivalent:

1. G is amenable.
2. $L^{\infty}(G)$ admits a right-invariant mean.
3. $L^{\infty}(G)$ admits a two-sided invariant mean.

Note: we are not suggesting that any left-invariant mean is also right-invariant; just that such means exist.

Proof.
$\mathbf{(1) \Longrightarrow (2)}$ Let $M \in \mathcal{M} C_{b}(G)$ be a left-invariant mean. Consider the map $\varphi \mapsto \breve{\varphi}$ for $\varphi \in C_{b}(G)$ give by $\check{\varphi}(x)=\varphi\left(x^{-1}\right)$. This is an isomorphism of the algebra $C_{b}(G)$ with $\check{1}=1$ and $\breve{\varphi} \geqslant 0$ if $\varphi \geqslant 0$. Let \widetilde{M} be given by $\widetilde{M}(\varphi)=M(\breve{\varphi})$. Then \widetilde{M} is right-invariant. Hence there is a right-invariant mean on C_{ru}, and hence on $L^{\infty}(G)$.
$\mathbf{(1)} \Longrightarrow \mathbf{(3)}$ Let $\left(f_{\alpha}\right)$ be an asymptotically left-invariant net in $P^{1}(G)$. Then $\left(f_{\alpha}^{*}\right)$ is an asymptotically right invariant net. Consider the net $\left(f_{\alpha} * f_{\alpha}^{*}\right)$ in $P^{1}(G)$. (Recall that $P^{1}(G)$ is closed under convolution.) Now if $x, y \in G$ we have

$$
\begin{aligned}
\left\|x * f_{\alpha} * f_{\alpha}^{*} * y-f_{\alpha} * f^{*}\right\|_{1} & \leqslant\left\|x * f_{\alpha} * f_{\alpha}^{*} * y-x * f_{\alpha} * f_{\alpha}^{*}\right\|_{1}+\left\|x * f_{\alpha} * f_{\alpha}^{*}-f_{\alpha} * f_{\alpha}^{*}\right\|_{1} \\
& \leqslant\left\|f_{\alpha}^{*} * y-f_{\alpha}^{*}\right\|_{1}+\left\|x * f_{\alpha}-f_{\alpha}\right\|_{1} \\
& \xrightarrow{\alpha} 0
\end{aligned}
$$

Anny w*-cluster point of this last net in $\mathcal{M} L^{\infty}(G)$ is thus a two-sided invariant mean.Corollary 12.18

13 Extent of amenable grapes

Remark 13.1. If G is compact then G is amenable.
Proposition 13.2. If G is abelian then G is amenable.
Proof. For $x \in G$ we let $L_{x} \in \mathcal{B}\left(L^{1}(G)\right)$ be $L_{x}(f)=x * f$. Then $L_{x}^{*}(\varphi)=\varphi \cdot x$ for $\varphi \in L^{\infty}(G)$. We recall that $\mathcal{M} L^{\infty}(G)$ is w^{*}-compact and convex, and each $L_{x}^{*}\left(\mathcal{M} L^{\infty}(G)\right) \subseteq \mathcal{M} L^{\infty}(G)$. Since G is abelian we get that $\left\{L_{x}^{*}: x \in G\right\}$ is a commuting (semi)grape of affine maps in $\mathcal{M} L^{\infty}(G)$. We then apply Markov-Kakutani; any fixed point is then a left-invariant mean. Proposition 13.2

Remark 13.3. Suppose $\beta: G \rightarrow H$ is a continuous homomorphism with dense range. Then the map $C_{\mathrm{lu}}(H) \rightarrow C_{\mathrm{lu}}(G)$ given by $\varphi \mapsto \varphi \circ \beta$ satisfies:

- It is a linear isometry (dense range)

TODO 16. conjunction?

- $1_{H} \circ \beta=1_{G}$
- $\varphi \circ \beta \geqslant 0$ if $\varphi \geqslant 0$.

Note that $(\varphi \circ \beta) \cdot x=(\varphi \cdot \beta(x)) \circ \beta$, which is why each $\varphi \circ \beta \in C_{\mathrm{lu}}(G)$.
Proposition 13.4. If $\beta: G \rightarrow H$ is a continuous homomorphism with dense range and G is amenable, then H is amenable.

Proof. Let M_{G} be a left-invariant mean on $C_{\mathrm{lu}}(G)$. Define M_{H} on $C_{\mathrm{lu}}(H)$ by $M_{H}(\varphi)=M_{G}(\varphi \circ \beta)$. Then M_{H} is a left-invariant mean on $C_{\mathrm{lu}}(H)$. Proposition 13.4

Remark 13.5. Some consequences:

1. Let G_{d} be G with the discrete topology. If G_{d} is amenable, then so is G. Indeed, we just consider the identity $\operatorname{map} \beta: G_{d} \rightarrow G$. (In this case we say that G is discretely amenable.)
2. If N is a closed normal subgrape of G and G is amenable then so too is G / N. Indeed, we just consider the quotient $\operatorname{map} \beta: G \rightarrow G / N$.

Proposition 13.6. Suppose G admits an amenable closed normal subgrape N for which G / N is amenable. Then G is amenable.

Proof. (The philosophy is to use Weil's "integral" formula.) Let $q: G \rightarrow G / N$ denote the quotient map. Then $\varphi \mapsto \varphi \circ q$ is a map

$$
C_{\mathrm{lu}}(G / N) \rightarrow C_{\mathrm{lu}}(G: N)=\left\{\varphi \in C_{\mathrm{lu}}(G): \varphi=n \cdot \varphi \text { for } n \in N\right\}
$$

that is surjective. Indeed, if $\varphi \in C_{\mathrm{lu}}(G: N)$, we let $\widetilde{\varphi}(x N)=\varphi(x)$. Since q is an open map it follows that $\widetilde{\varphi} \in C_{\mathrm{lu}}(G / N)$, and $\widetilde{\varphi} \circ q=\varphi$.

Let $M_{N} \in \mathcal{M} C_{b}(N)$ be left-invariant. Let $T_{M_{N}}: C_{\mathrm{lu}}(G) \rightarrow C_{\mathrm{lu}}(G: N)$ be given by

$$
T_{M_{N}} \varphi(x)=M_{N}(\varphi \cdot x \upharpoonright N)=M_{N}(n \mapsto \varphi(x n))
$$

Then

- $\left|T_{M_{N}} \varphi(x)\right| \leqslant\|\varphi \cdot x\|_{\infty}=\|\varphi\|_{\infty}$, and $T_{M_{N}}$ is linear.
- $\left|T_{M_{N}} \varphi(x)-T_{M_{N}} \varphi(x)\right| \leqslant\|\varphi \cdot x-\varphi \cdot y\|_{\infty}$; so $T_{M_{N}} \varphi$ is continuous and $\left(T_{M_{N}} \varphi\right) \cdot z=T_{M_{N}}(\varphi \cdot z)$, so $T_{M_{N}} \varphi \in C_{\mathrm{lu}}(G)$.
- $T_{M_{N}}\left(C_{\mathrm{lu}}(G)\right) \subseteq C_{\mathrm{lu}}(G: N)$ since for $x \in G$ and $n \in N$ we have

$$
T_{M_{N}} \varphi(x n)=M_{N}(\varphi \cdot(x n) \upharpoonright N)=M_{N}\left(n^{\prime} \mapsto \varphi\left(x n n^{\prime}\right)\right)=M_{N}(\varphi \cdot x \upharpoonright N)=T_{M_{N}} \varphi(x)
$$

Let $\widetilde{T_{M_{N}}} \varphi \in C_{\mathrm{lu}}(G / N)$ be the associated element, as above. We have left-invariant $M_{G / N} \in \mathcal{M} C_{\mathrm{lu}}(G / N)$. Let $M_{G}: C_{\mathrm{lu}}(G) \rightarrow \mathbb{C}$ be given by $M_{G}(\varphi)=M_{G / N}\left(\widetilde{T_{M_{N}}} \varphi\right)$. One checks that $\widetilde{T_{M_{N}}}(\varphi \cdot x)=\widetilde{T_{M_{N}} \varphi} \varphi \cdot x N$; it then follows that M_{G} is a left-invariant mean.

Proposition 13.6
Corollary 13.7. Solvable grapes are amenable.
Proof. Evident induction. (Recall here that $G^{(n)}=\overline{\left[G^{(n-1)}, G^{(n-1)}\right]}$ (closure) with $G^{(0)}=G$.)
Corollary 13.7
Example 13.8. Euclidean motion $\mathbb{R}^{n} \rtimes \mathrm{SO}(n)$.
Remark 13.9 (Tits). If \mathbb{K} is a field and $G \leqslant \mathrm{GL}_{n}(\mathbb{K})$ (discrete) then either

- $G \supseteq F$ with $F \cong F_{2}$ (free grape on two generators)
- $G \supseteq G_{1}$ with $\left[G: G_{1}\right]<\infty$ and G_{1} is solvable.

Proposition 13.10. If G is amenable and H is an open subgrape, then H is amenable.

Proof. Let T be a transversal for right cosets of H in G. We define $S_{T}: C_{b}(H) \rightarrow C_{b}(G)$ by $S_{T} \varphi(h t)=$ $\varphi(h)$ with $h \in H$ and $t \in T$. Then S_{T} is a linear isometry with $S_{T} 1_{H}=1_{G}$ and $S_{T} \varphi \geqslant 0$ if $\varphi \geqslant 0$. Let $M_{H} \in \mathcal{M} C_{b}(H)$ be given by $M_{H}(\varphi)=M_{G}\left(S_{T} \varphi\right)$ (where M_{G} is a left-invariant mean in $\mathcal{M} C_{B}(G)$).

Proposition 13.10
Proposition 13.11. Suppose there is a family $\left(G_{\alpha}\right)_{\alpha \in A}$ of open subgrapes indexed over a directed set A with $G_{\alpha} \subseteq G_{\alpha^{\prime}}$ if $\alpha \leqslant \alpha^{\prime}$; suppose each G_{α} is amenable, and that

$$
G=\bigcup_{\alpha \in A} G_{\alpha}
$$

Then G is amenable.
Proof. For each α let M_{α} be a left-invariant mean in $\mathcal{M} C_{B}\left(G_{\alpha}\right)$. Let $\widetilde{M_{\alpha}} \in \mathcal{M} C_{b}(G)$ be given by $\widetilde{M_{\alpha}}(\varphi)=$ $M_{\alpha}\left(\varphi 1_{G_{\alpha}}\right)$. Then $\left(\widetilde{M_{\alpha}}\right)_{\alpha \in A}$ lies in $\mathcal{M} C_{b}(G)$, and hence has a cluster point M. If $x \in G$, say $x \in G_{\alpha_{0}}$, and $\varphi \in C_{b}(G)$, then for $\alpha \geqslant \alpha_{0}$, we have

$$
\widetilde{M_{\alpha}}(\varphi \cdot x)=M_{\alpha}\left(\left(\varphi 1_{G_{\alpha}}\right) \cdot x\right)=M_{\alpha}\left(\varphi 1_{G_{\alpha}}\right)=\widetilde{M_{\alpha}}(\varphi)
$$

It follows that M is left-invariant.
Proposition 13.11
Remark 13.12. If we do not have an increasing family of open amenable subgrapes, then we can't conclude that G is amenable. Consider for example

$$
F_{2}=\bigcup_{x \in F_{2}}\langle x\rangle
$$

Theorem 13.13 (Følner). The following are equivalent:

1. G is amenable.
2. Given $\varepsilon, \delta>0$ and $K \subseteq G$ compact, there are $E \subseteq G$ compact and Borel $N \subseteq K$ such that $m(N)<\delta$ and

$$
\frac{m(x E \triangle E)}{m(E)}<\varepsilon
$$

for $x \in K \backslash N$. (Here \triangle denotes the symmetric difference.)
3. Given $\varepsilon>0$ and $K \subseteq G$ compact, there is compact $F \subseteq G$ such that

$$
\frac{m(x F \triangle F)}{m(F)}<\varepsilon
$$

for $x \in K$. (This is the Følner condition.)
4. There is a net $\left(F_{\alpha}\right)$ of compact subsets of G such that for any compact $K \subseteq G$ we have

$$
\lim _{\alpha} \sup _{x \in K} \frac{m\left(x F_{\alpha} \triangle F_{\alpha}\right)}{m\left(F_{\alpha}\right)}=0
$$

(We call this a Følner net.)
Before the proof, some consequences:
Example 13.14 (Discrete abelian grapes are amenable). Suppose G is an abelian grape; then

$$
G=\bigcup_{F \subseteq G \text { finite }}\langle F\rangle
$$

By the previous proposition
TODO 17. ref
it suffices to consider a finitely generated grape. There is an obvious quotient map $q_{F}: \mathbb{Z}^{F} \rightarrow\langle F\rangle$. Hence it suffices to see that any \mathbb{Z}^{k} (for $k \in \mathbb{N}$) is amenable. Consider the sequence $F_{n}=\{-n,-(n-1), \ldots, n-1, n\}^{k}$. One checks that this is a Følner sequence. In fact $\frac{1}{(2 n+1)^{k}} 1_{F_{n}}$ is a Reiter sequence.
Example 13.15. Consider $F_{2}=\langle a, b\rangle$. If $K \subseteq F_{2}$ is finite, we let

$$
\partial K=\left\{x \in K:\left\{a x, b x, a^{-1} x, b^{-1} x\right\} \nsubseteq K\right\}
$$

Then an inequality something like $|K| \leqslant 2|\partial K|$ holds (see Cayley graph), which implies that the Følner condition must fail.

Proof of Theorem 13.13.
$(1) \Longrightarrow(2)$
(I) Given $\varepsilon^{\prime}>0$, let us find

- compact $E_{1} \supseteq E_{2} \supseteq \cdots \supseteq E_{n}$ with $m\left(E_{n}\right)>0$ and
- $\lambda 1, \ldots, \lambda_{n}>0$ such that

$$
\sum_{j=1}^{n} \lambda_{j}=1
$$

such that

$$
\psi=\sum_{j=1}^{n} \frac{\lambda_{j}}{m\left(E_{j}\right)} 1_{E_{j}}
$$

satisfies

$$
\begin{equation*}
\|x * \psi-\psi\|_{1}<\varepsilon^{\prime} \text { for } x \in K \tag{7}
\end{equation*}
$$

First, Retier's, theorem gives $r \in P^{1}(G)$ such that $\|x * r-r\|_{1}<\varepsilon^{\prime}$ for $x \in K$. There is a sequence $\left(f_{n}^{\prime}\right)_{n=1}^{\infty}$ in $C_{c}(G)$ such that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}^{\prime}-r\right\|_{1}=0
$$

Then let

$$
f_{n}=\frac{1}{\left\|f_{n}^{\prime}\right\|_{1}}\left|f_{n}^{\prime}\right| \in P^{1}(G)
$$

and check that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-r\right\|_{1}=0
$$

Hence there is $f \in C_{c}(G)$ such that $\|x * f-f\|_{1}<\varepsilon^{\prime}$.
Now we perform a "layer cake" construction. Fix $n \in \mathbb{N}$. For $j \in\{1, \ldots, n\}$, let

$$
E_{j}=f^{-1}\left(\left[\frac{j}{n+1}\|f\|_{\infty}, \infty\right)\right)
$$

So $\operatorname{supp}(f) \supseteq E_{1} \supseteq \cdots \supseteq E_{n}$ with $m\left(E_{n}\right)$. We then define

$$
\psi_{n}^{\prime}=\sum_{j=1}^{n} \frac{\|f\|_{\infty}}{n+1} 1_{E_{j}}
$$

This then satisfies

$$
\psi_{n}^{\prime} \leqslant f \leqslant \psi_{n}^{\prime}+\frac{1}{n+1} 1_{\operatorname{supp}(f)}
$$

It follows that

$$
0<\int_{G} \psi_{n}^{\prime} \mathrm{d} m=\underbrace{\sum_{j=1}^{n} \frac{\|f\|_{\infty} m\left(E_{j}\right)}{n+1}}_{\left\|\psi_{n}^{\prime}\right\|_{1}} \leqslant \int_{G} f \mathrm{~d} m=1 \leqslant \int_{G} \psi_{n}^{\prime} \mathrm{d} m+\frac{m(\operatorname{supp}(f))}{n+1}
$$

Let

$$
\psi_{n}=\frac{1}{\left\|\psi_{n}^{\prime}\right\|_{1}} \psi_{n}^{\prime}=\sum_{j=1}^{n} \underbrace{\frac{\|f\|_{\infty} m\left(E_{j}\right)}{(n+1)\left\|\psi_{n}^{\prime}\right\|_{1}}}_{\lambda_{j}>0} \frac{1}{m\left(E_{j}\right)} 1_{E_{j}}
$$

and observe that $\psi_{n}=\sum_{j=1}^{n} \frac{\lambda_{j}}{m\left(E_{j}\right)} 1_{E_{j}}$ and $\sum_{j=1}^{n} \lambda_{j}=1$. Furthermore, it is a routine computation that

$$
\left\|\psi_{n}-f\right\|_{1} \leqslant \frac{1}{2} n+1 m(\operatorname{supp}(f))
$$

and hence for large enough n, say $\frac{2}{n+1} \operatorname{supp}(f)<\frac{\varepsilon^{\prime}}{2}$, we are done.
(II) We let ψ satisfy Equation (7), with $\varepsilon^{\prime}=\frac{\varepsilon \delta}{m(K)}$, provided $m(K)>0$ (otherwise we let $N=K$ and we are done). Note that if $E, F \subseteq G$ with $E \cap F=\varnothing$ and $x \in G$ then

$$
x E \triangle E) \cap(x F \triangle F)=\varnothing
$$

so

$$
(x E \triangle E) \cup(x F \triangle F)=(x(E \cup F)) \triangle(E \cup F)
$$

Write

$$
\psi=\sum_{j=1}^{n} \frac{\lambda_{j}}{m\left(E_{j}\right)} \sum_{i=1}^{j} 1_{E_{i} \backslash E_{i+1}}
$$

(with $E_{n+1}=\varnothing$). We thus have that

$$
\begin{aligned}
|x * \psi-\psi| & =\left|\sum_{j=1}^{n} \frac{\lambda_{j}}{m\left(E_{j}\right)} \sum_{i=1}^{j}\left(1_{x\left(E_{i} \backslash E_{i+1}\right)}-1_{E_{i} \backslash E_{i+1}}\right)\right| \\
& =\left|\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\lambda_{j}}{m\left(E_{j}\right)}\left(1_{x\left(E_{i} \backslash E_{i+1}\right)}-1_{E_{i} \backslash E_{i+1}}\right)\right| \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\lambda_{i}}{m\left(E_{j}\right)}\left|1_{x\left(E_{i} \backslash E_{i+1}\right)}-1_{E_{i} \backslash E_{i+1}}\right| \text { (pairwise disjoint supports) } \\
& =\sum_{j=1}^{n} \frac{\lambda_{j}}{m\left(E_{j}\right)} \sum_{i=1}^{j} 1_{x\left(E_{i} \backslash E_{i+1}\right) \Delta\left(E_{i} \backslash E_{i+1}\right)} \\
& =\sum_{j=1}^{n} \frac{\lambda_{j}}{m\left(E_{j}\right)} 1_{x E_{j} \Delta E_{j}}
\end{aligned}
$$

Thus

$$
\frac{\delta \varepsilon}{m(K)}>\|x * \psi-\psi\|_{1}=\sum_{j=1}^{n} \lambda_{j} \frac{m\left(x E_{j} \triangle E_{j}\right)}{m\left(E_{j}\right)}
$$

Then we have

$$
\delta \varepsilon>\int_{K}\|x * \psi-\psi\|_{1} \mathrm{~d} x=\sum_{j=1}^{n} \lambda_{j} \int_{K} \frac{m\left(x E_{j} \triangle E_{j}\right)}{m\left(E_{j}\right)} \mathrm{d} x
$$

so at least one $\delta \varepsilon>\int_{K} \frac{m\left(x E_{j} \triangle E_{j}\right)}{m\left(E_{j}\right)} \mathrm{d} x$; we let $E=E_{j}$ for this j. Let

$$
N=\left\{x \in K: \frac{m(x E \triangle E)}{m(E)} \geqslant \varepsilon\right\}
$$

which is closed, and thus Borel. Then N satisfies $\varepsilon 1_{N}(x) \leqslant \frac{m(x E \triangle E)}{m(E)}$, so

$$
m(N) \leqslant \frac{1}{\varepsilon} \int_{K} \frac{m(x E \triangle E)}{m(E)} \mathrm{d} x<\delta
$$

$\underline{(2) \Longrightarrow(3)}$ First note that if G is discrete and m is the counting measure, we could just let $\delta<1$ and be done. The hard part of the proof, then, is when G is not discrete.
Let $K \subseteq G$ be compact; let $A=K \cup K^{2}$. Hence if $x \in K$ then $m(x A \cap A) \geqslant m(x K)=m(K)$. Let $0<\delta<\frac{m(K)}{2}$. If $B \subseteq A$ is Borel with $m(A \backslash B)<\delta$ then for $x \in K$ we have

$$
x A \cap A \subseteq(x B \cap B) \cup(x(A \backslash B)) \cup(A \backslash B)
$$

so

$$
2 \delta<m(K) \leqslant m(x A \cap A) \leqslant m(x B \cap B)+2 \underbrace{m(A \backslash B)}_{<\delta}
$$

Hence $0<m(x B \cap B)$. So $x B \cap B \neq \varnothing$, and $x \in B B^{-1}$. Thus $K \subseteq B B^{-1}$. Now for $\varepsilon>0$ the hypothesis gives a compact $F \subseteq G$ such that $\frac{m(x F \triangle F)}{m(F)}<\frac{\varepsilon}{2}$ for $x \in A \backslash N$ and $m(N)<\delta$. Let $B=A \backslash N$. Notice for $C, D \subseteq G$ we have $C \backslash D \subseteq(C \backslash F) \cup(F \backslash D)$; so $C \triangle D \subseteq(C \triangle F) \cup(F \triangle D)$. Thus if $x, y \in B^{-1}$ we have

$$
\begin{aligned}
m\left(x^{-1} y F \triangle F\right) & =m(x F \triangle y F) \\
& =m(x F \triangle F)+m(F \triangle y F) \\
& =m\left(F \triangle x^{-1} F\right)+m\left(y^{-1} F \triangle F\right) \\
& <\varepsilon m(F)
\end{aligned}
$$

by Equation (7). Hence for $z \in K \subseteq B B^{-1}$ we are done.
$\underline{(3) \Longrightarrow(4)}$ Straightforward. (Just like Reiter's theorem.)
$\underline{\mathbf{(4)} \Longrightarrow \mathbf{(1)}}$ If $\left(F_{\alpha}\right)$ is a Følner net, then $\left(\frac{1}{m\left(F_{\alpha}\right)} 1_{F_{\alpha}}\right)$ in $P^{1}(G)$ is a Reiter net.
Theorem 13.13
Remark 13.16. The construction of a F \varnothing lner net above does not provide $F_{\alpha} \subseteq F_{\alpha^{\prime}}$ for $\alpha \leqslant \alpha^{\prime}$. This can be arranged, generally, but is technical. However, in practice, most Følner nets one encounters do satisfy this.

Fact 13.17. If G is separable and amenable, then $L^{1}(G)$ is separable. If $L^{1}(G)$ is separable, then we can extract a Reiter sequence from a Reiter net. If this last holds, then Følner sequences can be found.

13.1 Hulanicki's theorem

Let $\lambda: G \rightarrow U\left(L^{2}(G)\right)$ be the left regular representation: $\lambda(x) h(y)=h\left(x^{-1} y\right)$ for almost every $y \in G$. Let

$$
A^{+}(G)=\left\{\left\langle h \mid \lambda^{(\mathbb{N})}(\cdot) h\right\rangle=\sum_{j=1}^{\infty}\left\langle h_{j} \mid \lambda(\cdot) h_{j}\right\rangle: h=\left(h_{j}\right)_{j=1}^{\infty} \in L^{2}(G)^{(\mathbb{N})}\right\}
$$

Note that

$$
L^{2}(G)^{(\mathbb{N})}=\left\{h=\left(h_{j}\right)_{j=1}^{\infty}: \text { each } h_{j} \in L^{2}(G), \sum_{j=1}^{\infty}\left\|h_{j}\right\|_{2}^{2}<\infty\right\}
$$

Fact 13.18. $A^{+}(G) \subseteq B^{+}(G)=\{u: G \rightarrow \mathbb{C} \mid u$ continuous, positive definite $\}$.
Notice that forh $=\left(h_{j}\right)_{j=1}^{\infty} \subseteq L^{2}(G)^{(\mathbb{N})}$ we have

$$
\left\|\left\langle h \mid \lambda^{(\mathbb{N})}(\cdot) h\right\rangle-\sum_{j=1}^{n}\left\langle h_{j} \mid \lambda(\cdot) h_{j}\right\rangle\right\|_{\infty}=\sum_{j=n+1}^{\infty}\left\|\left\langle h_{j} \mid \lambda(\cdot) h_{j}\right\rangle\right\|_{\infty}
$$

Remark 13.19.

1. If $|J|>|\mathbb{N}|$ and $h=\left(h_{j}\right)_{j \in J} \in L^{2}(G)^{(J)}$, so $\sum_{j \in J}\left\|h_{j}\right\|_{2}^{2}<\infty$, then $h_{j} \neq 0$ for at most countably many $j \in J$. Hence $\left\langle h \mid \lambda^{(J)}(\cdot) h\right\rangle \in A^{+}(G)$. (Easy check.)
2. (Eymard, 64) Each $u \in A^{+}(G)$ can be written in the form $u=\langle h \mid \lambda(\cdot) h\rangle$ for some $h \in L^{2}(G)$. (This is the standard form of von Neumann algebras.)

Theorem 13.20 (Hulanicki's theorem I). G is amenable if and only if there is a net $\left(u_{\alpha}\right)$ in $A^{+}(G)$ such that $\lim u_{\alpha}=1$ uniformly on compact sets.

Proof.
(\Longrightarrow) Let $\left(r_{\alpha}\right)$ in $P^{1}(G)$ be a Reiter net. Let $h_{\alpha}=r_{\alpha}^{\frac{1}{2}}$; so

$$
\|h\|_{2}=\left(\int_{G}\left|h_{\alpha}\right|^{2} \mathrm{~d} m\right)^{\frac{1}{2}}=\left(\int_{G} r_{\alpha} \mathrm{d} m\right)^{\frac{1}{2}}=1
$$

Note for $a, b \geqslant 0$ we have $|a-b|^{2} \leqslant|a-b|(a+b)=\left|a^{2}-b^{2}\right|$; so for $x \in G$ we have

$$
\begin{aligned}
\left\|\lambda(x) h_{\alpha}-h_{\alpha}\right\|_{2}^{2} & =\int_{G}\left|h_{\alpha}\left(x^{-1} y\right)-h_{\alpha}(y)\right|^{2} \mathrm{~d} y \\
& \leqslant \int_{G}\left|r_{\alpha}\left(x^{-1} y\right)-r_{\alpha}(y)\right| \mathrm{d} y \\
& =\left\|x * r_{\alpha}-r_{\alpha}\right\|_{1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|1-\left\langle h_{\alpha} \mid \lambda(x) h_{\alpha}\right\rangle\right| & =\left|\left\langle h_{\alpha} \mid h_{\alpha}\right\rangle-\left\langle h_{\alpha} \mid \lambda(x) h_{\alpha}\right\rangle\right| \\
& \leqslant \underbrace{\left\|h_{\alpha}\right\|_{2}}_{=1}\left\|h_{\alpha}-\lambda(x) h_{\alpha}\right\|_{2} \text { (by Cauchy-Schwarz) } \\
& =\left\|x * r_{\alpha}-r_{\alpha}\right\|_{1}^{\frac{1}{2}}
\end{aligned}
$$

and it follows that $u_{\alpha}=\left\langle h_{\alpha} \mid \lambda(\cdot) h_{\alpha}\right\rangle$ converges uniformly on compact sets to 1 .

TODO 18. Missing stuff
Corollary 13.21 (To Fell's absorption). If $u \in A^{+}(G)$ then $\langle\xi \mid \pi(\cdot) \xi\rangle u \in A^{+}(G)$. If $\pi: G \rightarrow U(\mathcal{H})$ a unitary representation then

$$
\begin{aligned}
& \mu \in M(G), \pi(\mu)=\int_{G} \pi(x) \mathrm{d} \mu(x) \\
& f \in L^{1}(G), \pi(f)=\int_{G} f(x) \pi(x) \mathrm{d} x
\end{aligned}
$$

both in the strong operator sense.
Proposition 13.22 (Choi's multiplicative domain). If $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ a unital C^{*}-algebra and $\tau \in \mathcal{B}(\mathcal{H})^{*} a$ state such that $\tau\left(A^{*} A\right)=|\tau(A)|^{2}$ for $A \in \mathcal{M}$, then

$$
\tau(A B)=\tau(A) \tau(B)=\tau(B A)
$$

for $A \in \mathcal{M}$ and $B \in \mathcal{B}(\mathcal{H})$.
Theorem 13.23 (Hulanicki's theorem II). G is amenable if and only if for any unitary representation $\pi: G \rightarrow U(\mathcal{H})$ we have $\|\pi(f)\| \leqslant\|\lambda(f)\|$ for all $f \in L^{1}(G)$. In diagram:

(where $\left.C_{\pi}^{*}=\overline{\pi\left(L^{1}(G)\right)}{ }^{\|\cdot\|} \subseteq \mathcal{B}(\mathcal{H})\right)$. We call C_{λ}^{*} the reduced C^{*}-algebra, sometimes denoted $C_{r}^{*}(G)$.

Proof. (\Longrightarrow) Let $\left(u_{\alpha}\right)$ in $A^{+}(G)$ satisfy

$$
1=\lim _{\alpha} u_{\alpha}
$$

uniformly on compact sets. Since $\lambda: L^{1}(G) \rightarrow C_{\lambda}^{*}$ is injective (just as shown in the proof of Peter-Weyl) TODO 19. ref
the $\operatorname{map} \lambda(f) \mapsto \pi(f)$ is well-defined on $\lambda\left(L^{1}(G)\right.$ (non-closed subspace of $\mathcal{B}\left(L^{2}(G)\right)$).
Fix $f \in L^{1}(G)$ and $\varepsilon>0$; find $\xi \in \mathcal{H}$ with $\|\xi\|=1$ such that

$$
\|\pi(f)\|^{2}<\|\pi(f) \xi\|^{2}+\varepsilon
$$

For each α we have $v_{\alpha}=u_{\alpha}\langle\xi \mid \pi(\cdot) \xi\rangle \in A^{+}(G)$ (by Corollary 13.21), and write

$$
v_{\alpha}=\sum_{j=1}^{\infty}\left\langle h_{\alpha_{i j}} \mid \lambda(\cdot) h_{\alpha_{i j}}\right\rangle
$$

where

$$
\sum_{j=1}^{\infty}\left\|h_{\alpha_{i j}}\right\|_{2}^{2}=v_{\alpha}(e)=u_{\alpha}(e) \underbrace{\langle\xi \mid \pi(e) \xi\rangle}_{=\|\xi\|^{2}=1} \xrightarrow{\alpha} 1
$$

Then

$$
\begin{aligned}
\|\pi(f)\|^{2} & \leqslant\langle\pi(f) \xi \mid \pi(f) \xi\rangle+\varepsilon \\
& =\left\langle\xi \mid \pi\left(f^{*} * f\right) \xi\right\rangle+\varepsilon \\
& =\int_{G}\left(f^{*} * f\right)(x)\langle\xi \mid \pi(x) \xi\rangle \mathrm{d} x+\varepsilon \\
& =\lim _{\alpha} \int_{G}\left(f^{*} * f\right)(x) \underbrace{u_{\alpha}(x)\langle\xi \mid \pi(x) \xi\rangle}_{v_{\alpha}(x)} \mathrm{d} x+\varepsilon \\
& =\lim _{\alpha} \sum_{j=1}^{\infty} \int_{G}\left(f^{*} * f\right)(x)\left\langle h_{\alpha_{i j}} \mid \lambda(x) h_{\alpha_{i j}}\right\rangle \mathrm{d} x+\varepsilon(\text { LDCT }) \\
& =\lim _{\alpha} \sum_{j=1}^{\infty}\left\langle h_{\alpha_{i j}} \mid \lambda\left(f^{*} * f\right) h_{\alpha_{i j}}\right\rangle+\varepsilon \\
& =\lim _{\alpha} \sum_{j=1}^{\infty}\left\|\lambda(f) h_{\alpha_{i j}}\right\|_{2}^{2}+\varepsilon \\
& \leqslant \lim _{\alpha}\|\lambda(f)\|^{2} \sum_{j=1}^{\infty}\left\|h_{\alpha_{i j}}\right\|_{2}^{2}+\varepsilon \\
& =\|\lambda(f)\|^{2}+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, we get that $\|\pi(f)\| \leqslant\|\lambda(f)\|$.
(\Longleftarrow) (Adapted from Brown and Ozawa). Let $\sigma: G \rightarrow \mathbb{T}=U(\mathbb{C})$ be the trivial character. Then the integrated forms are as follows:

- $\sigma: M(G) \rightarrow \mathcal{B}(\mathbb{C})=\mathbb{C}$ given by

$$
\sigma(\mu)=\int_{G} 1 \mathrm{~d} \mu(x)=\mu(G)
$$

- $\sigma: L^{1}(G) \rightarrow \mathcal{B}(\mathbb{C})=\mathbb{C}$ given by

$$
\sigma(f)=\int_{G} f(x) \mathrm{d} x
$$

(sometimes called the augmentation character).

Notice that $\sigma\left(\mu^{*}\right)=\overline{\mu\left(G^{-1}\right)}=\overline{\sigma(\mu)}$, so $\sigma\left(f^{*}\right)=\overline{\sigma(f)}$ for $f \in L^{1}(G)$; so σ is a *-homomorphism. By assumption we have $|\sigma(f)| \leqslant\|\lambda(f)\|$ for $f \in L^{1}(G)$.
If $\mu \in M(G)$ and $f \in P^{1}(G)$ satisfies $\sigma(f)=1$, we have $\sigma(\mu * f)=\sigma(\mu) \sigma(f)=\sigma(\mu)$. So

$$
|\sigma(\mu)|=|\sigma(\mu * f)| \leqslant\|\lambda(\mu * f)\| \leqslant\|\lambda(\mu)\| \underbrace{\|\lambda(f)\|}_{\leqslant\|f\|_{1}=1} \leqslant\|\lambda(\mu)\|
$$

i.e. $|\sigma(\mu)| \leqslant\|\lambda(\mu)\|$. Hence it follows that σ extends to a functional, again called σ, on $M_{\lambda}^{*}=\overline{\lambda(M(G))}\|\cdot\|$. Then $\sigma(I))=\sigma\left(\delta_{e}\right)=1$, and

$$
\sigma\left(\lambda(\mu)^{*} \lambda(\mu)\right)=\sigma\left(\lambda\left(\mu^{*} * \mu\right)\right)=\sigma\left(\mu^{*} * \mu\right)=\overline{\sigma(\mu)} \sigma(\mu) \geqslant 0
$$

and it follows that σ is a state on M_{λ}^{*}. (Note that this also implies that $\sigma\left(A^{*} A\right)=(\sigma(A))^{2}$ for $A \in M_{\lambda}^{*}$.) Let $\tau \in \mathcal{B}\left(L^{2}(G)\right)^{*}$ be any norm-preserving extension of σ; i.e. $\tau \upharpoonright M_{\lambda}^{*}=\sigma$. We have (by the black box) that τ is a state on $\mathcal{B}\left(L^{2}(G)\right)$.
Let $M: L^{\infty}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be $M(\varphi) f=\varphi f m$-almost-everywhere (representation of $L^{\infty}(G)$ as multiplication operators). Then $M(\bar{\varphi})=M(\varphi)^{*}$ and $M(\varphi \psi)=M(\varphi) M(\psi)$. We compute for $x \in G$, almost every $y \in G$, and $h \in L^{2}(G)$

$$
\lambda(x) M(\varphi) \lambda(x)^{*} h(y)=\lambda(x) M(\varphi)(y \mapsto h(x y))=\lambda(x)(y \mapsto \varphi(y) h(x y))=\varphi\left(x^{-1} y\right) h(y)
$$

Hence $\lambda(x) M(\varphi) \lambda(x)^{*}=M\left(\varphi \cdot x^{-1}\right)$. By Choi's multiplicative domain technique, we see that (since $\tau\left(A^{*} A\right)=\sigma\left(A^{*} A\right)=|\sigma(A)|^{2}=|\tau(A)|^{2}$, for $\left.A \in M_{\lambda}^{*}\right)$

$$
(\tau \circ M)(\varphi \cdot x)=\tau\left(\lambda\left(\delta_{x^{-1}}\right) M(\varphi) \lambda\left(\delta_{x}\right)\right)=\tau\left(\lambda\left(\delta_{x^{-1}}\right)\right)(\tau \circ M)(\varphi) \tau\left(\lambda\left(\delta_{x}\right)\right)=(\tau \circ M)(\varphi)
$$

since

$$
\tau\left(\lambda\left(\delta_{x}\right)\right)=\sigma\left(\delta_{x}\right)=\int_{G} 1 \mathrm{~d} \delta_{x}=1
$$

Also if $\varphi \geqslant 0$ then

$$
(\tau \circ M)(\varphi)=(\tau \circ M)\left(\overline{\varphi^{\frac{1}{2}}} \varphi^{\frac{1}{2}}\right)=\tau\left(M\left(\varphi^{\frac{1}{2}}\right)^{*} M\left(\varphi^{\frac{1}{2}}\right)\right) \geqslant 0
$$

and $(\tau \circ M)(1)=1$. So $\tau \circ M \in \mathcal{M} L^{\infty}(G)$ is left-invariant.

13.2 A final fact about amenability: closed subgrapes

Consider the grape ring

$$
\mathbb{C}[G]=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}, x_{1}, \ldots, x_{n} \in G\right\}
$$

Suppose

$$
\begin{aligned}
S & =\sum_{i=1}^{n} \alpha_{i} x_{i} \\
T & =\sum_{j=1}^{m} \beta_{j} y_{j}
\end{aligned}
$$

are elements of $\mathbb{C}[G]$. We define the multiplication

$$
S T=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} x_{i} y_{j}
$$

and the involution

$$
S^{*}=\sum_{i=1}^{n} \overline{\alpha_{i}} x_{i}^{-1}
$$

$$
S^{*} S=\sum_{i=1}^{n} \sum_{j=1}^{n} \overline{\alpha_{i}} \alpha_{j} x_{i}^{-1} x_{j}
$$

We define a pairing: for $u \in C_{b}(G)$ and $S \in \mathbb{C}[G]$ we set

$$
\langle u, S\rangle=\sum_{i=1}^{n} \alpha_{i} u\left(x_{i}\right)
$$

Fact 13.24. For $u \in C_{b}(G)$ we have $u \in B^{+}(G)$ if and only if $\left\langle u, S^{*} S\right\rangle \geqslant 0$ for any $S \in \mathbb{C}[G]$.
We define a partial order on $B^{+}(G)$: for $u, v \in B^{+}(G)$ we say $u \leq v$ if and only if $\left\langle u, S^{*} S\right\rangle \leqslant\left\langle v, S^{*} S\right\rangle$ for all $S \in \mathbb{C}[G]$; i.e. if and only if $v-u \in B^{+}(G)$.

Lemma 13.25. Suppose $\pi: G \rightarrow U(\mathcal{H})$ is a unitary representation.

1. If $u \in B^{+}(G)$ and $u \leq\langle\xi \mid \pi(\cdot) \xi\rangle$ for some $\xi \in \mathcal{H}$ then there is $\eta \in \mathcal{H}$ such that $u=\langle\eta \mid \pi(\cdot) \eta\rangle$.
2. If $u=\langle\eta \mid \pi(\cdot) \eta\rangle \in B^{+}(G)$ for some $\xi, \eta \in \mathcal{H}$, then there is $\zeta \in \mathcal{H}$ such that $u=\langle\zeta \mid \pi(\cdot) \zeta\rangle$.

Proof.

1. We observe that

- π extends to a $*$-homomorphism $\pi: \mathbb{C}[G] \rightarrow \mathcal{B}(\mathcal{H})$ by

$$
\pi\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\sum_{i=1}^{n} \alpha_{i} \pi\left(x_{i}\right)
$$

and $\pi\left(S^{*}\right)=\pi(S)^{*}$.

- The map $\mathbb{C}[G] \rightarrow \mathcal{H}$ given by $S \mapsto \pi(S) \xi$ is linear.

We let $\mathcal{L}_{0}=\pi(\mathbb{C}[G]) \xi$ (the image of this second map); we let $\mathcal{L}=\overline{\mathcal{L}_{0}}$ (norm closure). For $(S, T) \in$ $\mathbb{C}[G] \times \mathbb{C}[G]$ we let

$$
[S \mid T]_{u}=\left\langle u, S^{*} T\right\rangle
$$

Then $[\cdot \mid \cdot]_{u}: \mathbb{C}[G] \times \mathbb{C}[G] \rightarrow \mathbb{C}$ is sesquilinear and positive $[S \mid S]_{u}=\left\langle u, S^{*} S\right\rangle \geqslant 0$ for $S \in \mathbb{C}[G]$. Hence Cauchy-Schwarz inequality applies, and we have

$$
\begin{aligned}
\left|[S \mid T]_{u}\right| & \leqslant[S \mid S]_{u}^{\frac{1}{2}}[T \mid T]_{u}^{\frac{1}{2}} \\
& \leqslant\left\langle u, S^{*} S\right\rangle^{\frac{1}{2}}\left\langle u, T^{*} T\right\rangle^{\frac{1}{2}} \\
& \leqslant\left\langle\xi \mid \pi\left(S^{*} S\right)\right\rangle^{\frac{1}{2}}\left\langle\xi \mid \pi\left(T^{*} T\right)\right\rangle^{\frac{1}{2}} \text { (by assumption) } \\
& =\|\pi(S) \xi\|\|\pi(T) \xi\|
\end{aligned}
$$

Hence $[\cdot \mid \cdot]_{u}$ extends to a bounded sesquilinear form $[\cdot \mid \cdot]_{u}$ on $\mathcal{L} \times \mathcal{L}$. Notice on $\mathcal{L}_{0} \times \mathcal{L}_{0}$ we have $[\pi(S) \xi \mid \pi(T) \xi]_{u}=\left\langle u, S^{*} T\right\rangle$ and $[\pi(S) \xi \mid \pi(S) \xi]_{u}=\left\langle u, S^{*} S\right\rangle \geqslant 0$, so this is a positive form. So the Riesz representation theorem for Hilbert spaces provides $A \in \mathcal{B}(\mathcal{L})$ such that

$$
[S \mid T]_{u}=[\pi(S) \xi \mid \pi(T) \xi]_{u}=\langle\pi(S) \xi \mid A \pi(T) \xi\rangle
$$

Notice also that $\langle\pi(S) \xi \mid A \pi(S) \xi\rangle \geqslant 0$; so A is positive on \mathcal{L}. Also for $x \in G$ we have

$$
[x S \mid x T]_{u}=\left\langle u, S^{*} x^{-1} x T\right\rangle=\left\langle u, S^{*} T\right\rangle=[S \mid T]_{u}
$$

so $\langle\pi(x) \pi(S) \xi \mid A \pi(x) \pi(T) \xi\rangle=\langle\pi(S) \xi \mid A \pi(T) \xi\rangle$, and hence $\pi(x)^{*} A \pi(x)=A$ on \mathcal{L}_{0}, and hence on \mathcal{L}. So $A \pi(x)=\pi(x) A$. We use black box the second to get $A^{\frac{1}{2}}$ which satisfies $\pi(x) A^{\frac{1}{2}}=A^{\frac{1}{2}} \pi(x)$ for $x \in G$. We then let $\eta=A^{\frac{1}{2}} \xi$.
2. We use polar decomposition: for $S \in \mathbb{C}[G]$ we have

$$
\begin{aligned}
0 & \leqslant\left\langle\xi \mid \pi\left(S^{*} S\right) \eta\right\rangle \\
& =\frac{1}{4} \sum_{k=0}^{3} i^{k} \underbrace{\left\langle\xi+i^{k} \eta \mid \pi\left(S^{*} S\right)\left(\xi+i^{k} \eta\right)\right\rangle}_{\geqslant 0} \\
& =\frac{1}{4}\left(\left\langle\xi+\eta \mid \pi\left(S^{*} S\right)(\xi+\eta)\right\rangle-\left\langle\xi-\eta \mid \pi\left(S^{*} S\right)(\xi-\eta)\right\rangle\right. \\
& \leqslant\left\langle\frac{1}{2}(\xi+\eta) \left\lvert\, \pi\left(S^{*} S\right) \frac{1}{2}(\xi+\eta)\right.\right\rangle
\end{aligned}
$$

so $\langle\xi \mid \pi(\cdot) \eta\rangle \leq\left\langle\left.\frac{1}{2}(\xi+\eta) \right\rvert\, \pi(\cdot)(\xi+\eta)\right\rangle$. We then appeal to the first item to get our ζ. \square Lemma 13.25
Corollary 13.26. $B^{+} \cap C_{c}(G)$ is contained in $A^{2}(G)$ and is a dense subset.
Proof. Suppose $u \in B^{+} \cap C_{c}(G)$. Let $K=\operatorname{supp}(u)$. Let U be a relatively compact neighbourhood of e, and let

$$
v=\frac{1}{m(U)}\left\langle 1_{K U} \mid \lambda(\cdot) 1_{U}\right\rangle
$$

(matrix coefficient of λ). So

$$
v(x)=\frac{1}{m(U)} \int_{G} 1_{K U}(y) 1_{x U}(y) \mathrm{d} y=\frac{m(K U \cap x U)}{m(U)}
$$

so $v \upharpoonright K=1$. Hence we write $u=\langle\xi \mid \pi(\cdot) \xi\rangle$ (appealing to Adam's talk) and

$$
u=u v=\frac{1}{m(U)}\left\langle\xi \otimes 1_{K U} \mid(\pi \otimes \lambda)(\cdot) \xi \otimes 1_{U}\right\rangle=\left\langle\omega^{\prime} \mid \lambda^{(J)}(\cdot) \omega\right\rangle
$$

for some $\omega^{\prime}, \omega \in L^{2}(G)^{(J)}$ (and we have used Fell's absorption principle). By the lemma
TODO 20. ref
we write $u=\left\langle\zeta \mid \lambda^{(J)}(\cdot) \zeta\right\rangle \in A^{+}(G)$. Furthermore, if

$$
u=\sum_{j=1}^{\infty}\left\langle h_{j} \mid \lambda(\cdot) h_{j}\right\rangle
$$

we can approximate by

$$
u_{n}=\sum_{j=1}^{n}\left\langle h_{j} \mid \lambda(\cdot) h_{j}\right\rangle
$$

and each h_{1}, \ldots, h_{n} can be L^{2}-approximated by $f_{1}, \ldots, f_{n} \in_{c}(G)$. One checks that u can be uniformly approximated by

$$
\sum_{j=1}^{n}\left\langle f_{j} \mid \lambda(\cdot) f_{j}\right\rangle \in B^{+} \cap C_{c}(G)
$$

Corollary 13.26
Corollary 13.27 (Hulanicki I'). G is amenable if and only if there is a net $\left(u_{\alpha}\right)$ in $B^{+} \cap C_{c}(G)$ such that

$$
1=\lim _{\alpha} u_{\alpha}
$$

uniformly on compact sets.
Corollary 13.28. If G is amenable and H is a closed subgrape then H is amenable.
Proof. Let $\left(u_{\alpha}\right)$ in $B^{+} \cap C_{c}(G)$ be as in Hulanicki I' above. Then each $u_{\alpha} \upharpoonright H \in B^{+} \cap C_{c}(H)$ (as H is closed), and the net $\left(u_{\alpha} \upharpoonright H\right)$ in $B^{+} \cap C_{c}(H)$ shows that H is amenable. Corollary 13.28

