
Course notes for PMATH 965

Christa Hawthorne

Lectures by Matthew Satriano, Winter 2017

Contents

1 Introduction 1
1.1 Invariant subvarieties of affine toric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Normal toric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Convex geometry 13

3 Fans and toric varieties 17
3.1 An aside on one-parameter subgrapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Polytopes 30
4.1 Resolution of toric surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1 Introduction

My thanks to Anthony McCormick and Nickolas Rollick for the use of their notes when I was absent.
Sources:

• Fulton’s Toric varieties

• Cox, Little, Schenck

Toric varieties:

• Broad class of varieties

• Combinatorics meets algebraic geometry.

In particular, we get a dictionary between combinatorics and geometry, with toric varieties corresponding
to fans. The main focus of the course will be building this dictionary.

• Good testing ground for conjectures; easy to run computations on.

• One cool application: mirror symmetry.

• Possibly in class we’ll discuss toric degeneration. The idea is that you can go from a general variety to
a toric one.

We think of toric varieties as the “geometry of monoids”.

Definition 1.1. A monoid is a set P equipped with a binary operation +: P×P → P which is comnmutative,
associative, and has an identity element.

Definition 1.2. A morphism of monoids is a map f : P → Q between two monoids such that f(p1 + p2) =
f(p1) + f(p2) for all p1, p2 ∈ P and such that f(0) = 0.

Example 1.3.
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• N = { 0, 1, 2, . . . } with the usual addition.

• Nn = N⊕ · · · ⊕ N︸ ︷︷ ︸
n times

.

• Given monoids P,Q we get a new monoid P ⊕Q where (p, q) + (p′, q′) = (p+ p′, q + q′) and 0 = (0, 0).

• P = N3/((1, 0, 0) + (0, 1, 0) = (0, 0, 2)). We can identify P with the lattice (i.e. integer) points on the
plane lying in the cone generated by (1, 2) and (1, 0) by identifying

(1, 0, 0) ≈ (1, 0)

(0, 1, 0) ≈ (1, 2)

(0, 0, 1) ≈ (1, 1)

Then P is generated by (1, 0), (1, 2), and (1, 1) with the relation (1, 0) + (1, 2) = 2(1, 1), as desired.

Monoids get really pathological; for example, if P is finitely generated (meaning it is generated as a
monoid by finitely many elements) and Q ⊆ P is a submonoid, it need not be the case that Q is finitely
generated.

Example 1.4. Take P = N2 and let Q = N2 \ { (0, b) : b ∈ Z+ }. Then any generating set for Q must contain
every point of the form (1, b) for each b ∈ N.

Another bad thing: given a monoid P , we can construct a new monoid P ∪{∞} where + extends addition
on P by declaring p+∞ = ∞+∞ = ∞.

This is an example of a sink.

Definition 1.5. An element q ∈ Q is a sink if q ̸= 0 and q′ + q = q for all q′ ∈ Q.

Our first goal will be to put hypotheses on monoids to avoid pathologies.
Our 0th goal: given a monoid, construct a ring.

Definition 1.6. If P is a monoid and R is a commutative ring, then we define an R-algebra called the
monoid algebra, denoted R[P ]. We define

R[P ] =

∑
p∈P

apx
p : ap ∈ R, all but finitely many ap = 0


(where xp is a formal symbol (i.e. variable)) with the relations xp · xq = xp+q. i.e.

R[P ] = R[xp : p ∈ P ]/(xpxq = xp+q)

More explicitly ∑
p∈P

apx
p +

∑
p∈P

bpx
p =

∑
p∈P

(ap + bp)x
p

and ∑
p∈P

apx
p

 ·

∑
p∈P

bpx
p

 =
∑
p,q∈P

apbpx
p+q =

∑
r∈P

( ∑
p+q=r

apbq

)
xr

Example 1.7. R[N] = R[x0, x1, x2, . . .]/(xn · xm = xn+m). In fact, we don’t need |N|-many variables since
xn = (x1)n; so we just need one variable. (Note that x0 = 1 in R[N].) So R[N] ∼= R[x] is a polynomial ring.

Similarly, we get R[Nn] ∼= R[x1, . . . , xn].

Note that abelian grapes are monoids that happen to have additive inverses. So Z is a monoid under
both + and ×. Note that under multiplication, 0 is a sink.

Example 1.8. Consider Z under addition; consider

R[Z] = R[x1, x−1]/(x1 · x−1 = 1) = R[x, y]/(xy = 1) = R[x±1]

Similarly, R[Zn] = R[x±1
1 , . . . , x±1

n ].
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Exercise 1.9. Compute R[Z/nZ], R[(Z,×)], and R[P ∪ {∞}].
Note that R[P ] is a monoid under both + and ×. We get a morphism of monoids f : P → R[P ] given by

p 7→ xp. (Note that
f(p+ q) = xp+q = xpxq = f(p) · f(q)

and f is indeed a morphism of monoids if we treat R[P ] as a monoid under multiplication.) Sometimes f is
called the exponential map; some authors write f = exp = e, and ep in place of xp.

Aside 1.10. The study of maps f : P → R where P is a monoid, R is a ring, and f is a morphism of monoids
(where R is considered a monoid under ×) is the subject of logarithmic algebraic geometry; it leads to an
alternative look at toric varieties.

Now we can look at the geometry of a monoid P by studying the geometry of the corresponding ring R[P ].
We now turn to the first goal above: put hypotheses on monoids to avoid pathologies.

Definition 1.11. A monoid P is finitely-generated if there are p1, . . . , pn ∈ P such that for all p ∈ P there
are ai ∈ N such that

p =

n∑
i=1

aipi

Equivalently, if there is a surjective morphism of monoids Nn ↠ P .

Example 1.12. Z is a finitely-generated monoid under + since every integer m can be written as a non-negative
linear combination of 1 and −1. By contrast, Z is not finitely generated under ×.

Definition 1.13. A monoid P is integral (or cancellative) if whenever p, q, r ∈ P satisfy p+ r = q + r, we
must have p = q.

Example 1.14. Monoids with sinks are not integral, since ∞+∞ = 0 +∞ but 0 ̸= ∞.

Definition 1.15. If P is a monoid, we define the associated grape (or grape-ification) P gp to be P 2 modulo
the relation (p, q) ∼ (p′, q′) if there is r ∈ P such that p+ q′ + r = p′ + q + r. We use [p, q] to denote the
equivalence class of (p, q). We think of [p, q] as being “p− q”.

Intuitively, we’d like p− q = p′ − q′ if p+ q′ = p′ + q. The r helps for non-integral monoids. (Compare
with localization in rings with zero divisors.)

Why is P gp a grape? The only thing we need to check is that every element has an additive inverse.
Intuitively, p− q has inverse q − p. Formally, we see that

[p, q] + [q, p] = [p+ q, p+ q] = [0, 0]

since p+ q + 0 = p+ q + 0.

Lemma 1.16. P is integral if and only if the canonical map

ι : P → P gp

p 7→ [p, 0]

is injective.

Proof.

( =⇒ ) Suppose P is integral; suppose ι(p) = ι(q). Then [p, 0] = [q, 0], so there is r ∈ P such that
p+ 0 + r = q + 0 + r; since P is integral, we get that p = q. So ι is injective.

( ⇐= ) Suppose ι is injective. Suppose p + r = q + r; we will check that p = q. By definition we get
that [p, 0] = [q, 0], so ι(p) = ι(q); by injectivity, we then get that p = q, as desired. So P is
integral. Lemma 1.16

Example 1.17. A special case: this is how we get Q from Z. Almost. . .Z has a sink, so really it’s how we get
Q× from Z \ 0. More concretely, let P = Z \ 0 considered as a monoid under ×. Note that lots of elements
have no multiplicative inverse. We then set Q× = (Z \ 0)gp; we interpret p

q as [p, q].
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In fact, grape-ification defines a functor from the category of monoids to the category of abelian grapes. In
particular, given a morphism of monoids f : P → Q, we get fgp : P gp → Qgp given by [p1, p2] 7→ [f(p1), f(p2)].

Lemma 1.18. ι : P → P gp is the universal map from P to an abelian grape. i.e. for all g : P → A where
A is an abelian grape there is a unique morphism of grapes f : P gp → A such that the following diagram
commutes:

P P gp

A

ι

g
h

i.e. grape-ification is left adjoint to the forgetful functor from abelian grapes to monoids.

Proof. We let h([p, q]) = g(p)− g(q). Then the diagram commutes:

h(ι(p)) = h([p, 0]) = g(p)− g(0) = g(p)

We now check that h is well-defined. Suppose [p, q] = [p′, q′]; i.e. suppose there is r such that p+q′+r = p′+q+r.
Then g(p) + g(q′) + g(r) = g(p′) + g(q) + g(r). Since A is an abelian grape, we can cancel to get that
g(p)− g(q) = g(p′)− g(q′); so h is well-defined.

Uniqueness is left as an exercise. Lemma 1.18

Corollary 1.19. P is integral if and only if there is an abelian grape A and an injection g : P ↪→ A.

Proof.

( =⇒ ) Suppose P is integral; then we simply let A = P gp.

( ⇐= ) Suppose we have such an A and g. Then by Lemma 1.18 there is a unique morphism of grapes
h : P gp → A such that the following diagram commutes:

P P gp

A

ι

g
h

Since g is injective, we get that so too is ι. So, by Lemma 1.16, we get that P is integral. Corollary 1.19

We now work over k = k an algebraically closed field.

Fact 1.20. If P is finitely generated, the so is P gp.

Let’s assume P gp is free and P is integral. Then ι : P ↪→ P gp induces k[P ] ↪→ k[P gp] ∼= k[x±1 , . . . , x
±
n ].

But k[x±1 , . . . , x
±
n ] is a finitely generated k-algebra; so k[P ] is as well.

Thus:

Fact 1.21. If P is integral, finitely generated, and has P gp a free grape, then k[P ] is a finitely generated
k-algebra.

Hence we get a variety Spec(k[P ]).
We’ll later characterize the integral, finitely generated monoids with a free grape-ification using convex

geometry.

Example 1.22. Consider P = Nn. Then k[Nn] = k[x1, . . . , xn], so Spec(k[Nn]) = An.
Example 1.23. Consider P = Z. Then Spec(k[Z]) = Spec(k[x±]) = Spec(k[x, y]/(xy − 1)); via projection,
we get that this is isomorphic to A \ 0. This is a very important variety, called the 1-dimensional torus,
sometimes written Gm, the “multiplicative grape”. (Keep in mind the points of Gm are just the elements of
k∗.)

Example 1.24. Consider P = Zn. Then Spec(k[Zn]) = (k∗)n = Gnm is the n-dimensional torus.
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Example 1.25. Consider P = N3/((0, 0, 2) = (1, 0, 0) + (0, 1, 0)). A good exercise is to check that k[P ] =
k[x, y, z]/(xy − z2). Then Spec(k[P ]) = V (xy − z2), which looks like some kind of double cone, and in
particular has a singular point at the origin.

Aside 1.26. The last item of Example 1.3 could also be embedded in the plane by identifying

(1, 0, 0) ≈ (2, 0)

(0, 1, 0) ≈ (0, 2)

(0, 0, 1) ≈ (1, 1)

We will eventually see that the monoid that are integral and finitely generated and have free grape-ification
(the “toric varieties”) are exactly those that arise from taking a cone σ ⊆ Rn and looking at σ ∩Zn; i.e. those
that can be described as the lattice points of some cone. The embedding immediately above does not take
this form, so we prefer the original embedding.

We have seen that given P integral and finitely generated with P gp free, we have XP = Spec(k[P ]) is a
variety. What are the points of XP ? They’re exactly surjective k-algebra homomorphisms k[P ] ↠ k.

But recall that (P,+) → (k[P ], ·) is a morphism of monoids. Hence we can compose P → k[P ] ↠ k
to get a monoid map P → k. Conversely, given f : P → k we get k[P ] → k by the universal property;
this is surjective because f is a morphism of monoids, and hence f(0) = 1. So the map k[P ] → k satisfies
1 = x0 7→ 1, and is thus surjective. Putting these together, we see that the (closed) points of Xp correspond
to the monoid morphisms P → k.

Recall we defined the n-dimensional torus over k to be Gnm = (k∗)n = Spec(k[Zn]) = Spec(k[x±1
1 , . . . , x±1

n ]).
In fact, T = Gnm is a grape variety ; there is a map µ : T ×T → T satisfying the grape multiplication properties.
What is the map? It is

(k∗)n × (k∗)n → (k∗)n

((xi : i < n), (yi : i < n)) 7→ (xiyi : i < n)

What is the map in terms of rings? Well, T = Spec(k[x±1
1 , . . . , x±1

n ]). The corresponding map is then

k[x±1
1 , . . . , x±1

n ] → k[y±1
1 , . . . , y±1

n ]⊗k k[z±1
1 , . . . , z±1

n ]

xi 7→ yi ⊗k zi

(Recall that the coproduct in the category of k-algebras is the tensor product.) This corresponds to
multiplication T × T → T , but on the ring side it’s a comultiplication map k[Zn] → k[Zn]⊗k k[Zn].
Editor’s note 1.27. I think this corresponds on the monoid side to

Zn → Zn ⊕ Zn

p 7→ (p, p)

(Note that taking the monoid algebra preserves colimits, and in particular coproducts, since it is a left adjoint;
hence this does indeed induce a map k[Zn] → k[Zn]⊗k k[Zn].)
Aside 1.28. G = Spec(R) is a grape variety if and only if R is a commutative Hopf algebra.

We now return to X = Spec(k[P ]). Now, P gp is a free abelian grape, so P gp ∼= Zn, and Spec(k[P gp]) ∼= Gnm.

Fact 1.29. There is an action of T = Gnm on X, that is, a map τ : T ×X → X satisfying the properties of a
grape action.

Explicitly, we’re looking for a map k[P ] → k[P gp] ⊗k k[P ]; a natural choice is xp 7→ xp ⊗k xp. i.e. the
map on rings induced by the monoid map

P → P gp ⊕ P

p 7→ (p, p) = ([p, 0], p)

Editor’s note 1.30. When writing commutative diagrams, I will generally use τ , µ, and ι to refer to grape
action, grape multiplication, and inclusion, respectively, on the levels of varieties, k-algebras, and monoids;
the ambient category will dictate which level is meant.
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Notice we also have ι : P ↪→ P gp which yields a map T → X. These two things, a map T → X and a
T -action, are what we’ll call a toric variety.

Let’s check that our map T×X → X is a T -action; we need to show that the following diagram commutes:

T × T ×X T ×X

T ×X X

id×τ

µ×id τ

τ

i.e. given g, h ∈ T and x ∈ X we need (g · h)x = g · (h · x). On the level of monoids, we require the following
diagram commutes:

P gp ⊕ P gp ⊕ P P gp ⊕ P

P gp ⊕ P P

id×τ
µ×id τ

τ

But this does commute: going down and right, we find

p 7→ (p, p) 7→ (p, p, p)

and going right and down, we find
p 7→ (p, p) 7→ (p, p, p)

This commutes on the level of monoids, and hence commutes on the monoid algebras.
Recall that P ↪→ P gp yields a map T → X.

Proposition 1.31. T → X is an open (dense) immersion. In fact, T ⊆ X is a principal affine open; i.e.
k[P gp] is the localization at an element of k[P ].

Proof. Let p1, . . . , pn be generators of P ; then the pi also generate P gp as an abelian grape, and P gp is
generated as a monoid by p1, . . . , pn and −

∑n
i=1 pi.

So k[P gp] is “the same as” k[P ] after allowing the new elemen x−
∑
pi ; i.e. it’s k[P ] with denominators

obtained by inverting x−
∑
pi . So we just inverted the single element

x
∑
pi =

∏
xpi

So k[P gp] = k[P ]∏ xp is the localization at a single element of k[P ].
The statement then follows from the fact that the spectrum of a ring is open in the spectrum of its

localization at an element. Proposition 1.31

Corollary 1.32. dim(X) = rank(P gp).

Proof. Since dim(X) = dim(T ) = rank(P gp). Corollary 1.32

Notice we have the following diagram:

T × T T

T ×X X

µ

id×ι ι

τ

This commutes because the following diagram commutes:

P gp ⊕ P gp P gp

P gp ⊕ P P

commutes; this is because going up and left we find

p 7→ p 7→ (p, p)

and going left and up we find p 7→ (p, p) 7→ (p, p).
In summary, we have found:
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Theorem 1.33. If P is integral and finitely generated and P gp is free, then X = Spec(k[P ]) is a variety, T =
Spec(k[P gp]) is a torus, T ⊆ X is open principal affine, and the T -action on itself (via grape multiplication)
extends to a T -action on X.

Definition 1.34. A (not necessarily normal) toric variety is a variety X together with a torus T ⊆ X that
is open and dense in X such that the action T × T → T extends to T × X → X in such a way that the
following diagram commutes:

T × T T

T ×X X

µ

τ

Exercise 1.35. The T -action on X in the definition of a variety is unique if it exists. (Uses basic algebraic
geometry.)

Example 1.36. Consider A1 ⊇ Gm. The torus multiplication is Gm × Gm → Gm given by (s, t) 7→ st;
this extends to the Gm × A1 → A1 via (s, x) 7→ sx. (Note that the action does indeed restrict to grape
multiplication on Gm.)

Note that the action of Gm on itself has no fixed points; i.e. there’s a single orbit. But the action of Gm

on A1 has a fixed point, namely 0: s · 0 = 0 for all s ∈ Gm.

Example 1.37. P1 is also a toric variety, by noting that Gm ⊆ A1 ⊆ P1 (and all inclusions are open and dense).
The action of Gm on P1 is given by s · [a : b] = [sa : b].

Definition 1.38. Suppose (T,X) and (T ′, X ′) are toric varieties. A toric morphism (T,X) → (T ′, X ′) is a
morpism of varieties f : X → X ′ such that f ↾ T : T → T ′ is a grape homomorphism and f respects the T -
and T ′-actions.

Example 1.39. Consider P = N \ 1; this is generated by 2 and 3. Then k[P ] = k[x2, x3] = k[x, y]/(x3 − y2);
its geometry X = Spec(k[P ]) is the cuspidal cubic. Then Gm sits inside X as X without the origin. The
action of T on X is given by t · (x, y) = (t2x, t3y).

Theorem 1.40. The functor F from the category of integral and finitely generated monoids with free grape-
ifications to the category of affine (not necessarily normal) toric varieties given by P 7→ Spec(k[P ]) is an
equivalence of categories.

Proof. To prove an equivalence of categories, we need to check

Essential surjectivity We must show that every affine not necessarily normal toric variety comes from a
monoid.

Suppose X is a toric variety; then we have a torus T ⊆ X, say T = Spec(k[M ]). Suppose X = Spec(R);
then since T ⊆ X we get R ↪→ k[M ] from elementary algebraic geometry. Now, we are given that the
following diagram commutes:

T × T T

T ×X X

µ

τ

On the level of rings, the co-action is R→ R⊗k k[M ] = R[M ]; we further know that this is computed
by following the embedding R ↪→ k[M ] and then using the map k[M ] → k[M ]⊗k k[M ] given by the
grape multiplication T × T → T . But this last is just k[M ] → k[M ]⊗k k[M ] given by xu 7→ xu ⊗k xu
on the level of rings; this then determines the co-action map R→ R⊗k k[M ].

If ∑
u∈M

αux
u ∈ R

then apply the co-action map, and we get∑
u∈M

αux
u ⊗k xu ∈ R[M ]
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But if ∑
u∈M

rux
u ∈ R[M ]

then ru ∈ R. For us, the ru = αux
u; hence αux

u ∈ R.

If αu ̸= 0, then scale, so xu ∈ R; we’ve thus produced a subset P ⊆M such that

R =
⊕
u∈P

k · xu

But R ⊆ k[M ] is a subring; so, if u, v ∈ P , then xu, xv ∈ R, so xu+v = xuxv ∈ R, and u+ v ∈ P . So
P ⊆M is a submonoid. So R = k[P ] where P ⊆M is a monoid.

Now, P is a submonoid of an abelian grape, so P is integral. Also, R is a finitely generated k-algebra,
since X is a variety and

R =
⊕
u∈P

k · xu

So P is a finitely generated monoid. Furthermore, P gp is free since P gp ⊆M and M is a free abelian
grape.

It remains to show that P gp ∼= M , so that X = F (P ). Well, T ⊆ X with rank(P gp) = dim(X) =
dim(T ) = rank(M). If P gp ̸∼=M , then we have P gp ↪→M with finite cokernel; we thus get a finite map
T = Spec(k[M ]) → Spec(k[P gp]) of degree |M/P gp|. But T ⊆ X is an open immersion; so the degree
is 1. So P gp ∼=M .

Full faithfulness We must show that the map hom(P, P ′) → hom(X ′, X) is bijective.

Say

X = Spec(k[P ])

X ′ = Spec(k[P ′])

Suppose f : X → X ′ is a toric morphism; we need to show that there is a unique morphism of monoids
φ : P ′ → P inducing f .

Let M = P gp and M ′ = (P ′)gp. Let g = f ↾ T : T → T ′; then g is a morphism of grapes and the
following diagram commutes:

k[M ′] k[M ′]⊗k k[M ′]

k[M ] k[M ]⊗k k[M ]

g∗

µ′

g∗⊗kg
∗

µ

If u′ ∈M ′ and
g∗(xu

′
) =

∑
u∈M

αux
u

then the diagram yields ∑
u∈M

xu ⊗k xu = g∗(xu
′
)⊗k g∗(xu

′
)

=

(∑
u∈M

αux
u

)
⊗k

(∑
v∈M

αvx
v

)
=

∑
u,v∈M

αuαvx
u ⊗k xv

Comparing, we find that αuαv = 0 if u ̸= v and α2
u = αu; hence all αu ∈ { 0, 1 }, and if αu = 1, then

αv = 0 for all v ̸= u. Hence either g∗(xu
′
) = 0 or g∗(xu

′
) = xu for some u ∈M .
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Let φ : M ′ →M be

u′ 7→

{
0 if g∗(xu

′
) = 0

u if g∗(xu
′
) = xu

This is a morphism of monoids because g∗ is.

We have now shown:

Claim 1.41. If M and M ′ are free abelian grapes of finite rank then homZ(M,M ′) ∼= hom(T ′, T ).

This is called Cartier duality.

Then g is induced by the monoid morphism φ. But since f is a toric morphism, we have the following
diagram commutes:

T ×X X

T ′ ×X ′ X ′

τ

f↾T×f f

τ

So the following diagram commutes:

k[P ′] k[P ′]⊗k k[M ′]

k[P ] k[P ]⊗k k[M ]

f∗×k(f↾T )∗

A similar argument yields that this diagram is induced by the following diagram commutes:

P ′ P ′ ⊕M ′

P P ⊕M

Theorem 1.40

Definition 1.42. If R is an integral domain, we say Spec(R) is normal if R is integrally closed (in its field
of fractions).

Definition 1.43. If T is a torus, we define a character to be a grape homomorphism T → Gm; we define a
1-parameter subgrape to be a grape homomorphism Gm → T .

Remark 1.44. If T = Spec(k[M ]), then the characters are in bijection with homZ(Z,M) ∼=M , and the one
parameter subgrapes are in bijection with hom(M,Z) =M∗ (frequently called N) the dual free abelian grape.

We have a map

M ×N → Z
(m,n) 7→ n(m) = ⟨m,n⟩

In terms of characters and 1-parameter subgrapes, we take the composition

Gm
n−→ T

m−→ Gm

But every grape homomorphism Gm → Gm is t 7→ ta for some a ∈ Z; the composition is then

t 7→ t⟨m,n⟩

This yields a geometric description of M ×N → Z.
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1.1 Invariant subvarieties of affine toric varieties

Example 1.45. Consider the action of G2
m = T on A2. Given (λ, µ) ∈ T = k∗ × k∗ and (x, y) ∈ A2 = k × k,

we have (λ, µ) · (x, y) = (λx, µy).
Figure out the orbits: consider 1 ∈ T (i.e. (1, 1) ∈ A2) the identity element. The (λ, µ) · (1, 1) = (λ, µ); so

the orbit of (1, 1) is T .
Consider the orbit of (0, 1); we have (λ, µ) · (0, 1) = (0, µ), with the condition µ ̸= 0.
We in fact find that the orbits are T , { (0, µ) : µ ̸= 0 }, { (λ, 0) : λ ≠ 0 }, and the origin. The invariant

subvarieties are the the closures of the orbits: A2, the vertical and horizontal axes, and the origin.

Example 1.46. Consider P = N3/((1, 0, 0)+(0, 1, 0) = (0, 0, 2)); see Example 1.3. Then the invariant subspaces
of X = Spec(k[P ]) are X, the origin, and the two lines bounding the profile of the double cone.

Let’s characterize the closed T -invariant subvarieties; i.e. closed Y ⊆ X = Spec(k[P ]) with T acting on Y .
Then Y corresponds to an ideal I ⊆ k[P ] with Spec(k[P ]/I) = Y . Now, the following diagram commutes:

T × Y Y

T ×X X

So on the level of rings we have the following diagram commutes:

k[P ] k[P ]⊗k k[M ]

k[P ]/I k[P ]/I ⊗k k[M ]

τ

Recall we saw this diagram when showing essential surjectivity:

k[M ] k[M ]⊗k k[M ]

R R⊗k k[M ]

We showed that
I =

⊕
u∈P ′

k · xu

and P ′ ⊆ P is a subset. We now use I to deduce properties about P ′ ⊆ P . Suppose u ∈ P ′ and v ∈ P ; then
xu ∈ I and xv ∈ k[P ]. But I is an ideal of k[P ]; so xu+v = xu · xv ∈ I, and u + v ∈ P ′. Furthermore, if
I is prime, then if u, v ∈ P have xuxv ∈ I, then one of xu and xv is in I. In terms of P ′, if u, v ∈ P and
u+ v ∈ P ′, then u ∈ P ′ or v ∈ P ′.

Definition 1.47. We say a subset P ′ ⊆ P (where P is a monoid) is an ideal if for all u ∈ P ′ and v ∈ P we
have u+ v ∈ P ′.

Example 1.48. Consider P = N2; let P ′ = { (a, b) ∈ N2 : b > 0 } ⊆ N2. Then P ′ is an ideal. Consider also
(y) ⊆ k[x, y].

TODO 1. Correspondence?

Example 1.49. (xayb, xcyd) ⊆ k[x, y].

Now, since Y = Spec(k[P ]/I), recall that Y is irreducible if and only if I is prime. In terms of P ′, if and
only if whenever u, v ∈ P have u+ v ∈ P ′, we must also have u ∈ P ′ or v ∈ P ′.

Definition 1.50. An ideal P ′ ⊆ P is prime if 0 /∈ P ′ and for all u, v ∈ P with u+ v ∈ P ′ we have u ∈ P ′ or
v ∈ P ′.
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A further remark: recall that Y = Spec(k[P ]/I) and

I =
⊕
u∈P ′

k · xu

and in particular

k[P ]/I =
⊕

u∈P\P ′

k · xu

Hence

Y = Spec

 ⊕
u∈P\P ′

k · xu


Definition 1.51. A submonoid F ⊆ P is a face if whenever u, v ∈ P and u+ v ∈ F then u ∈ F and v ∈ F .

Lemma 1.52. Suppose F ⊆ P is a subset of a monoid P . Then F is a face if and only if P \ F is a prime
ideal.

Proof.

( =⇒ ) Suppose F is a face; we first check that P \ F is an ideal. Suppose v ∈ P ; supppose u /∈ F . Then if
u+ v ∈ F , we would have u, v ∈ F , contradicting our assumption that u /∈ F ; so u+ v /∈ F .

We now check that P \ F is prime; suppose v, u ∈ P with v + u /∈ F . If v, u ∈ F , then since F is a
submonoid, we would have u+ v ∈ F , a contradiction.

( ⇐= ) Dual to the above.

Lemma 1.52

Example 1.53. Consider A2 ⊇ A1 (identified with the horizontal axis). What are the faces of N2? We have

• N2

• { 0 }

• N⊕ 0

• 0⊕ N

Example 1.54. Consider a triangular cone emanating from a point. The interesting kinds of faces are

1. A ray.

2. A “face” of the cone in the classical sense.

Proposition 1.55. If P is a finitely generated monoid then it has finitely many faces.

Proof. Let u1, . . . , un be generators of P . If F ⊆ P is a face and F ̸= 0 then there is some non-zero∑
aiui ∈ F . But then for all i with ai ̸= 0 we have ui ∈ F . So F is generated by a subset of {u1, . . . , un },

of which there are finitely many. Proposition 1.55

1.2 Normal toric varieties

We know the finitely generated integral monoids with free grape-ifications are equivalent to the affine toric
varieties; what corresponds to the normal affine toric varieties?

Definition 1.56. Suppose R is an integral domain. We say R is normal if it it integrally closed in
K = Frac(R); i.e. if α ∈ K and p(t) ∈ R[t] is monic with p(α) = 0, then α ∈ R.

11



Example 1.57. Consider R = k[x, y]/(x3 − y2); let α = y
x ∈ Frac(R). Then α2 − x = 0, so α is a root of a

monic polynomial in R[t]. But α /∈ R (exercise); so R is not normal.

In picture, Spec(R) is the cuspidal cubic. Note that R = k[N \ 1], and R ∼= k[t2, t3] with α ≈ t3

t2 = t ≈ 1.
The reason R is not normal is that there’s a “hole”.

Remark 1.58. A curve C over k is normal if and only if C is smooth.

Definition 1.59. An integral monoid P is saturated if for all u ∈ P gp and all n ∈ Z+ with nu ∈ P we have
u ∈ P .

Example 1.60. P = N \ 1 is not saturated since 1 = 3− 2 ∈ P gp and 2 · 1 ∈ P but 1 /∈ P .

Proposition 1.61. An affine toric variety X = Spec(k[P ]) is normal if and only if P is saturated.

Proof. We have T = Spec(k[P gp]) ⊆ X open an dense. Then k[P ] ⊆ k[P gp] ⊆ K where K = Frac(k[P ]) =
Frac(k[P gp]). Now, T is normal because it is smooth, so k[P gp] is integrally closed in K. So X is normal
if and only if k[P ] is integrally closed in k[P gp]. So, to show that X is normal, we may assume α ∈ k[P gp]
satisfies a monic polynomial over k[P ].

( =⇒ ) Suppose X is normal. Suppose u ∈ P gp and n ∈ Z+ with nu ∈ P . We know that k[P ] ⊆ k[P gp] ⊆
K = Frac(K[P gp]) and k[P gp] is integrally closed. Now, (xu)n ∈ K[P ], so xu satisfies the monic
polynomial tn − xnu ∈ k[P ][t]. Since X is normal (i.e. k[P ] is integrally closed) and xu ∈ K it follows
that xu ∈ k[P ]; i..e that u ∈ P .

( ⇐= ) Suppose P is saturated. Let X̃ = Spec(R) be the normalization of X; i.e. R is the integral closure

of k[P ]. Then by functoriality of normalization, if π : X̃ → X is the projection, then π−1(T ) is the
normalization of T . But T is normal; so π−1(T ) ∼= T . Also by functoriality, the grape action T on X

then extends to a grape action T on X̃.

So X̃ is a toric variety. So by Theorem 1.40 we have X̃ = Spec(k[S]) for some monoid S. Then

P ⊆ S ⊆ Sgp = P gp. But X̃ is normal; so, assuming the easy direction, we know that S is saturated.
To show that X is normal, we will show X = X̃; i.e. that P = S.

If u ∈ S then xu ∈ R = k[S]. Now, R is finite over k[P ], so there is f ∈ k[P ][t] such that f(xu) = 0.
Then the coefficients of f are in

k[P ] =
⊕
v∈P

k · xv

decomposing, we may assume f has the form

tm + α1x
v1tm−1 + · · ·+ αmx

vm

with each αi ∈ k. Same direct sum decomposition trick but in k[S]. We need that if αi ̸= 0 then
xvi(xu)m−i = xum; i.e. um = vi + u(m− i), i.e. iu = vi. Now, u ∈ S and the vi ∈ P ; since we assumed
P is saturated, we then get that u ∈ P , which means S = P and R = k[P ].

Proposition 1.61

Note: the proof actually showed that the normalization of X = Spec(k[P ]) is X̃ = Spec(k[P sat]) where

P sat = {u ∈ P gp : ∃n ∈ Z+ such that nu ∈ P }

is the saturation of P .
Pictorially, look at A2, which corresponds to P = N2. To obtain a non-normal toric variety whose

normalization is N2, we just remove finitely many points from N2 (while making sure the result is closed
under addition).

Definition 1.62. Suppose P is a monoid. The units of P are the elements of P ∗ = { p ∈ P : ∃q ∈
P such that p+ q = 0 }. We say P is sharp if P ∗ = 0.
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Lemma 1.63. Suppose P is integral, finitely generated, and saturated with free grape-ification. Then P has
a decomposition of the form

P ∼= Z⊕r ⊕ P ′

where P ′ has no units.

Proof. We sketch the proof.
Begin with P ∗ ⊆ P and form the quotient P = P/P ∗. We thus have a short exact sequence 0 → P ∗ →

P gp → P
gp → 0; one can show that P

gp
is free. Hence the sequence splits; one can show that this yields our

desired direct sum decomposition.
The key property for this proof to work is saturation. Lemma 1.63

Corollary 1.64. If X is an affine normal toric variety then X can be written (non-canonically) as X ∼= T×X ′

for some torus T and X ′ = Spec(k[P ′]) where P ′ is sharp.

Definition 1.65. If X = Spec(k[P ]) with P sharp, we say X is pointed.

2 Convex geometry

Fix a finite-dimensional vector space V over R.

Definition 2.1. We say a subset Z ⊆ V is convex if whenever x, y ∈ Z and t ∈ [0, 1] we have tx+(1−t)y ∈ Z.
We say Z is a cone if for all z ∈ Z and λ ∈ R≥0 we have λz ∈ Z.

Exercise 2.2. Z ⊆ V is a convex cone if and only if it is a cone and for all z, z′ ∈ Z we have z + z′ ∈ Z.

Definition 2.3. Given a subset Z ⊆ V we define the convex hull of Z to be

Conv(Z) =
⋂
Z⊆Y

Y convex

Y

Lemma 2.4. If Z ⊆ V then

Conv(Z) =

{
r∑
i=1

λivi : λi ≥ 0, vi ∈ Z,

r∑
i=1

λi = 1, r ∈ N

}
Proof. The right-hand side is clearly convex. If Y ⊇ Z and Y is convex then by induction on r we have
Y ⊇ Conv(Z), as required. Lemma 2.4

Definition 2.5. The convex cone generated by a subset Z ⊆ V is

Cone(Z) =
⋂
Y⊇Z

Y a convex cone

Y

Lemma 2.6. If Z ⊆ V then

Cone(Z) =

{
r∑
i=1

λivi : λi ≥ 0, vi ∈ Z, r ∈ N

}
Definition 2.7. A polytope is the convex hull of a finite set. A polyhedral convex cone is the convex cone
generated by some finite set.

Lemma 2.8. Polyhedral convex cones and polytopes are closed. Polytopes are also compact.

Proof. If P is a polytope then P = Conv({ v1, . . . , vn }). Then the map

[0, 1]n → V

(λi : i < n) 7→
n∑
i=1

λivi

is continuous and has image P ; so P is compact (and thus closed).

13



Claim 2.9. If σ is a polyhedral convex cone then σ admits a decomposition σ ∼=W × τ where W ⊆ V is a
subspace and τ is a polyhedral convex cone containing no lines.

Proof. Let W = σ ∩ −σ = { v ∈ σ : −v ∈ σ }; this is the largest vector subspace contained in σ. Let
π : V ↠ V/W be the quotient. Then π(σ) is a convex cone in V/Q. Choose a splitting; then V ∼=W × V/Q,
so σ ∼=W × π(σ). Why is π(σ) pointed? This is because if v and −v are in π(σ) then v,−v ∈ σ +W ⊆ σ, so
v ∈W , and π(v) = 0. Claim 2.9

Note that W is canonical, but the splitting is not.
Hence, since W is closed, we may assume σ = τ ; i.e. that σ contains no lines. i.e. If 0 ̸= v ∈ σ then

−v /∈ σ.
We know that σ = Cone(v1, . . . , vn), so we can let P = Conv(v1, . . . , vn). Now σ = {λv : v ∈ P, λ ≥ 0 }.

Given a sequence (um : m ∈ N) in σ with (um : m ∈ N) → u, we wish to show u ∈ σ. Writing um = λmvm
with λm ≥ 0 and vm ∈ P for all m, it follows from compactness of P that a subsequence of the vm converges
to some v ∈ P . Without loss of generality we may assume 0 /∈ P , so v ̸= 0. Also (λm : m ∈ N) is bounded
since v ̸= 0; it thus has a convergent subsequence, converging to some λ ≥ 0. Then λmum → λv ∈ σ, as
desired. Lemma 2.8

Definition 2.10. An affine hyperplane is some subset H ⊆ V with H =W + v for some v ∈ V and some
subspace W ⊆ V of codimension 1.

Definition 2.11. Suppose K ⊆ V is a closed and convex subset. We say an affine hyperplane H is a
supporting hyperplane of K if H ∩K ̸= ∅ and K is contained in one of H≤ and H≥. A supporting half-space
of K is a closed half-space containing K that is determined by a supporting hyperplane of K.

Proposition 2.12. If K is closed and convex, then it is the intersection of its supporting half-spaces.

Proof. Fix an inner product ⟨·, ·⟩ on V ; this yields a metric. We need to show that if x ∈ V but x /∈ K then
there is a supporting half-space H≥ of K such that x /∈ K; i.e. x is on the wrong side of the hyperplane from
K.

Since K is closed, there is x′ ∈ K such that

d(x, x′) = min
y∈K

d(x, y)

Note that x′ ̸= x because x /∈ K. Let H be a hyperplane perpendicular to the line from x to x′. Then
H = { v ∈ V : ⟨v, x − x′⟩ = 0 }. By translating, we may assume x′ = 0. Note that ⟨x, x − 0⟩ > 0, so the
half-space we’re interested in is H≤ = { v : ⟨v, x⟩ ≤ 0 }. We wish to show that K ⊆ H≤.

Suppose y ∈ K; we wish to show that ⟨x, y⟩ ≤ 0. If y = 0, then ⟨y, 0⟩ = 0; assume then that y ̸= 0. Since
K is convex, it follows that for all t ∈ [0, 1] we have

ty + (1− t)x′︸ ︷︷ ︸
0

∈ K

By definition of x′ = 0, we have d(x, 0) ≤ d(x, ty). Expanding, we find

⟨x, x⟩ ≤ ⟨x− ty, x− ty⟩ = ⟨x, x⟩ − 2t⟨x, y⟩+ t2⟨y, y⟩

and hence that 2⟨x, y⟩ ≤ t⟨y, y⟩. As t→ 0, we find ⟨x, y⟩ ≤ 0, and y ∈ H≤. Proposition 2.12

Definition 2.13. A subset F ⊆ K is a face if F = K ∩H where H is a supporting hyperplane.

Definition 2.14. We define dim(K) to be the dimension of the affine subspace generated by K.

Definition 2.15. A vertex of K is a 0-dimensional face, and a facet is a face of codimension 1.

Remark 2.16. If K is not polyhedral, then a face of a face need not be a face. Consider

• •v

•

F

Note that F is a face of K and v is a face of F , but v is not a face of K.
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Lemma 2.17. If K is convex and closed and F1, . . . , Fn ⊆ K are faces then F =
⋂
i Fi is a face or is empty.

Proof. Suppose F ̸= ∅. Let ui ∈ V ∗ and ai ∈ R be such that if Hi = { v ∈ V : ⟨ui, v⟩ = ai } then Fi = Hi ∩K
and K ⊆ { v : ⟨ui, v⟩ ≥ ai }. Let u =

∑
ui. If u = 0, replace u1 by 2u1 and a1 by 2a1; we may thus assume

that u ̸= 0.
Then ⟨u, v⟩ ≥

∑
ai for all v ∈ K. Moreover, we have equality if and only if ⟨ui, v⟩ = ai for all i. So

{ v ∈ V : ⟨u, v⟩ ≥
∑
ai } ⊇ K and { v ∈ V : ⟨u, v⟩ =

∑
ai } ∩K =

⋂
i Fi. Lemma 2.17

Suppose σ is a closed convex cone and H is a supporting hyperplane of σ; suppose σ ⊆ H≥ = { v ∈ V :
⟨v, u⟩ ≥ a } where u ∈ V ∗ and a ∈ R. Then H ∩ σ ≠ ∅, so there is v ∈ σ such that ⟨v, u⟩ = a. But σ is a
cone; so tv ∈ σ ⊆ H≥ for all t ≥ 0. So ta = ⟨tv, u⟩ ≥ a for all t ≥ 0; so a = 0.

Hence all supporting hyperplanes are in correspondence with certain u ∈ V ∗; i.e. we can ignore a (since
a = 0).

Definition 2.18. Given a cone σ we define the dual cone of σ to be σ∨ = {u ∈ V ∗ : ⟨v, u⟩ ≥ 0 for all v ∈ σ };
i.e. the set of u ∈ V ∗ such that Hu is a supporting hyperplane of σ.

Remark 2.19. σ∨ is in fact a convex cone. One checks for all u, u′ ∈ σ∨ that u+ u′ ∈ σ∨ and for all u ∈ σ∨

and t ≥ 0 that tu ∈ σ∨. For illustration, for the second property, note that for all all v ∈ σ we have
⟨v, tu⟩ = t⟨v, u⟩ ≥ 0, and hence that tu ∈ σ∨.

Example 2.20. σ = Cone((1, 0), (1, 2)) ⊆ R2 = V . Then

σ∨ = {u ∈ V ∗ ∼= R2 : ⟨u, v⟩ ≥ 0 for all v ∈ σ }

Now, v ∈ σ implies v = a(1, 0)+b(1, 2) with a, b ≥ 0; then ⟨u, v⟩ ≥ 0 for all a, b ≥ 0 if and only if ⟨u, (1, 0)⟩ ≥ 0
and ⟨u, (1, 2)⟩ ≥ 0. Hence if u = (c) then 0 ≤ c and 0 ≤ c+ 2d; solving, we find σ∨ = Cone((0, 1), (2,−1)).

Proposition 2.21. If σ is a closed convex cone then (σ∨)∨ = σ.

Proof. v ∈ (σ∨)∨ if for all u ∈ σ∨ we have ⟨v, u⟩ ≥ 0; i.e. if v ∈ (Hu)≥. Hence v ∈ (σ∨)∨ if

v ∈
⋂
u∈σ∨

(Hu)≥

But the latter is the intersection of the supporting hyperplanes of σ, which by last time is just σ. Hence
(σ∨)∨ = σ. Proposition 2.21

From now on “cone” will always mean a convex polyhedral cone.

Exercise 2.22. If σ is a cone and τ ⊆ σ is a face and σ = Cone(v1, . . . , vn) then τ = Cone(vj : vj ∈ τ).

Corollary 2.23. Every cone has finitely many faces.

Recall from last time that in general faces of faces aren’t faces.

Lemma 2.24. If σ is a cone and τ ⊆ σ is a face and ε ⊆ τ is a face, then ε ⊆ σ is a face.

Proof. Since τ is a face of σ we get that τ = σ ∩ u⊥ for some supporting hyperplane u⊥; likewise we get
ε = τ ∩ w⊥. Then u ∈ σ∨ and w ∈ τ∨. Write σ = Cone(v1, . . . , vn) and τ = Cone(v1, . . . , vs) (with vi /∈ τ
for i > s); hence ⟨u, vi⟩ > 0 for i > s. Then ⟨w + tu, vi⟩ > 0 for t sufficiently large and i > s; hence
σ ∩ (w + tu)⊥ = τ ∩ (w + tu)⊥ = τ ∩ w⊥ = ε (since u⊥ ⊇ τ). Lemma 2.24

Exercise 2.25. Every face of σ is an intersection of facets.

Corollary 2.26. σ∨ is a polyhedral cone.

So far, we’ve only talked about cones in a real vector space. We now give them rational structure.

Definition 2.27. If N is a lattice (i.e. finite rank free abelian grape), let NR = N ⊗Z R (considered as a real
vector space). We say a cone σ ⊆ NR is rational if it is generated by elements of NQ (or equivalently if it’s
generated by elements of N).
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Example 2.28. Consider N = Z2; then NR = R2. Let σ = Cone((1, 0), (1, π)). Then σ is not rational.

We dislike non-rational σ since σ ∩N will not be a finitely generated monoid.
The point of convex geometry:

Proposition 2.29. If σ is a rational (polyhedral) cone over some lattice N , then σ∩N is a finitely generated,
integral, saturated monoid.

Proof. Let P = σ ∩N .

(P a monoid) Suppose p, q ∈ P . Then since p, q ∈ N we get p+ q ∈ N ; since σ is a cone, we get p+ q ∈ σ.
So p+ q ∈ P . It’s also clear that 0 ∈ P .

(P integral) Simply because P ⊆ N is a submonoid and N is an abelian grape.

(P saturated) Suppose v ∈ P gp ⊆ N and nv ∈ P where n ∈ Z+; we wish to show that v ∈ P . Then nv ∈ σ
and σ is a cone; so v = 1

n (nv) ∈ σ. So v ∈ P .

(P finitely generated) Let σ = Cone(v1, . . . , vn); let

K =
{∑

λivi : λi ∈ [0, 1]
}

so K is compact. Then K ∩N is finite, since N is discrete. Let w1, . . . , wℓ be the lattice points; we will
show that the wj generate P . (Note that the wj contain the vi.)

Suppose p ∈ P ; so

p =
∑

λivi

for λi ≥ 0. Then

v −
∑

⌊λi⌋vi ∈ K ∩N

So
v =

∑
⌊λi⌋vi + wj

for some wj . Hence v is in the monoid generated by the wj (which include the vi). Proposition 2.29

Fact 2.30. In fact, if dim(σ) = dim(NR) then (σ ∩N)gp = N .

If σ not full-dimensional, then (σ ∩N)gp

TODO 2. Missing some words?

Notation 2.31. From now on a “cone” will mean a rational, polyhedral, convex cone.

From the above work we get:

Theorem 2.32. We have an inclusion-preserving bijection between finitely generated, integral, saturated
submonoids of N and rational polyhedral cones on N given by P 7→ Cone(P ) and σ 7→ σ ∩N .

We thus get a correspondence between cones on N and normal affine toric varieties with T = Spec(k[N ]).

Notation 2.33. In the future we will sometimes drop “normal” from “affine normal toric variety”.

Definition 2.34. If P ∋ 0 is a polytope, then its polar dual is P 0 = {u ∈ V ∗ : ⟨u, v⟩ ≥ −1 for all v ∈ P }.

Lemma 2.35. If P is a polytope and σ = Cone(P × { 1 }) in V × R then σ∨ = Cone(P 0 × { 1 }).

Proof. Well,

σ∨ = { (u, s) ∈ V ∗ × R : ⟨(u, x), (v, t)⟩ ≥ 0 for all (v, t) ∈ σ }
= { (u, s) : ⟨(u, x), (v, 1)⟩ ≥ 0 for all v ∈ P }
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. Note, however, that ⟨(u, s), (v, 1)⟩ = s+ ⟨u, v⟩; furthermore, since 0 ∈ P , taking v = 0 we find s ≥ 0. On
the other hand,

P 0 = {u ∈ V ∗ : kangsu, v ≥ −1 for all v ∈ P }

and
Cone(P 0 × { 1 }) =

{
(u, s) ∈ V ∗ × R : s ≥ 0,

u

s
∈ P 0

}
i.e. we require that

〈
u
s , v
〉
≥ −1 for all v ∈ P ; i.e. that for all v ∈ P we have ⟨u, v⟩ ≥ −s, which is the same

condition as (u, s) ∈ σ∨. Lemma 2.35

Corollary 2.36. (P 0)0 = P .

3 Fans and toric varieties

Definition 3.1. A fan Σ on a lattice N is a finite set of pointed rational cones on N such that

TODO 3. Pointed is not containing a line?

1. For all σ ∈ Σ and all faces τ of σ we have τ ∈ Σ.

2. For all σ, σ′ ∈ Σ we have σ ∩ σ′ is a face of σ and a face of σ′.

Example 3.2. In N = Z2, let σ = Cone((1, 0), (1, 1)) and σ′ = Cone((1, 1), (0, 1)).

σ = Cone((1, 0), (1, 1))

σ′ = Cone((1, 1), (0, 1))

ρ1 = Cone((1, 0))

ρ2 = Cone((1, 1))

ρ3 = Cone((0, 1))

Then Σ = { { 0 }, ρ1, ρ2, ρ3, σ, σ′ } is a fan.

Editor’s note 3.3. I had to transcribe the above example from a diagram, so transcription errors may have
occurred.

Definition 3.4. The support of a fan Σ is

|Σ| =
⋃
σ∈Σ

σ

Remark 3.5. If Σ is a fan then each σ ∈ Σ yields an affine toric variety via Uσ = Spec(k[σ∨ ∩M ]) where
M = N∗ = homZ(N,Z).

We could look at Spec(K[σ ∩N ]) but we don’t; one reason is that σ∨ is full-dimensional in M even if σ
isn’t.

Editor’s note 3.6. I think this requires that σ be pointed, which is indeed true for all σ in a fan Σ.

Example 3.7. Consider σ = Cone((1, 0)) in Z2. Then σ is not full-dimensional, but σ∨ is the right half of the
plane, and is full-dimensional.

Since σ∨ is full-dimensional, we have (σ∨ ∩M)gp = M , so the torus of the affine toric variety Uσ is
T = Spec(k[M ]). Hence all Uσ for σ ∈ Σ have the same torus.

Notice if τ < σ is a face then τ∨ ⊇ σ∨; so τ∨ ∩M ⊇ σ∨ ∩M , and we get a map Uτ → Uσ. As it turns
out, Uτ sits in Uσ as a principal affine open subset. If τ = σ ∩ u⊥ for u ∈ σ∨ ∩M , then Uτ is affine open in
Uσ where we’ve inverted xu.

TODO 4. What?

Property 2 tells us that if σ1, σ2 ∈ Σ then we have embeddings of Uσ1∩σ2 into Uσ1 and Uσ2 . Gluing
together all of the Uσ, we get a variety which we denote X(Σ) or XΣ; it turns out this is a toric variety. (In
fact it’s a normal toric variety; one can check normality on an affine cover and each Uσ is normal.)
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Example 3.8. In Z, let

σ = Cone(1)

σ′ = Cone(−1)

Σ = { { 0 }, σ, σ′ }

Then

σ∨ ∩M = N
(σ′)∨ ∩M = −N

0∨ ∩M = Z

We thus get a diagram:

P1 = X(Σ)

Spec(k[x−1]) = Uσ′ Spec(k[x]) = Uσ

Spec(k[x±]) = U0

Example 3.9. In Z2, let

τ = Cone((1, 0))

τ ′ = Cone((0, 1))

Σ = { { 0 }, τ, τ ′ }

Then

τ∨ = N× Z
(τ ′)∨ = Z× N

0∨ = Z2

We then get another diagram:

X(Σ) = Z2 \ { 0 }

A1 ×Gm = Uτ ′ A1 ×Gm = Uτ

T = U0 = Gm ×Gm

Definition 3.10. A morphism of fans (Σ′N ′) → (Σ, N) is a morphism of lattices φ : N ′ → N such that for
all σ′ ∈ Σ′ there is σ ∈ Σ such that φ(σ′) ⊆ σ.

Example 3.11. Let N = N ′ = Z2. Let

σ1 = Cone((0, 1), (1, 0))

ρ1 = Cone((0, 1))

ρ′1 = Cone((1, 0))

Σ = { 0, ρ1, ρ′1, σ1 }
σ2 = Cone((1, 0), (1, 2))

ρ2 = Cone((0, 1))

ρ′2 = Cone((1, 2))

Σ′ = { 0, ρ2, ρ′2, σ2 }

18



Consider φ : Z2 → Z2 given by

φ =

(
1 1
0 2

)
Then every cone of Σ is sent to a cone of Σ′.

If φ : (Σ′, N ′) → (Σ, N) satisfies φ(σ′) ⊆ σ for σ′ ∈ Σ′ and σ ∈ Σ, then this yields maps Uσ′ → Uσ; hence
we get a morphism of toric varieties X(Σ′) → X(Σ).

Recall if Uσ is an affine toric variety then the T -orbits correspond to faces of σ: τ is a face of σ if and
only if Oτ = Spec(k[τ⊥ ∩M ]). The corresponding irreducible T -invariant closed subvariety V (τ) = Oτ is
Spec(k[σ∨ ∩M ∩ τ⊥]), and

Uσ =
∐
τ<σ

Oτ

TODO 5. τ < σ means τ a face of σ.

Then Oτ1 ⊆ Oτ2 = V (τ2) if and only if V (τ1) ⊆ V (τ2), which occurs by a bijection done previously if and
only if τ1 ⊆ τ2.

Remark 3.12. Oσ is closed if and only if

Oσ = V (σ) =
∐
σ<τ

Oτ

which occurs if and only if σ is not a face of any τ ; i.e. σ is maximal.

Proposition 3.13. Suppose φ : (Σ′, N ′) → (Σ, N) is a morphism of fans; let φ∗ : X(Σ′) → X(Σ) be the
induced morphism of toric varieties. Suppose τ ′ ∈ Σ′; let τ ∈ Σ be the smallest cone such that φ(τ ′) ⊆ τ .
Then φ∗(Oτ ′) ⊆ Oτ and φ∗(V (τ ′)) ⊆ V (τ).

Proof. That φ∗(V (τ ′)) ⊆ V (τ) follows from φ∗(Oτ ′) ⊆ Oτ by taking closures. To show φ∗(Oτ ′) ⊆ Oτ , we’ll
show the following: that in general Oτ has an identity element and it looks like xτ : M → k given by

u 7→

{
0 if u /∈ τ⊥

1 if u ∈ τ⊥

We’ll show that φ∗(xτ ′) = xτ ; this implies the desired statement since Oτ = T · xτ . i.e. we need to show that
the following diagram commutes:

M M ′

k

φ∗

xτ xτ′

We thus need to show that u ∈M satisfies u ∈ τ⊥ if and only if φ∗(u) ∈ (τ ′)⊥.
If u ∈ τ⊥, then φ∗(u) ∈ (τ ′)⊥ since for all v ∈ τ ′ we have ⟨φ∗u, v⟩ = ⟨u, φ∗v⟩ = 0 (since φ∗v ∈ φ∗τ

′ ⊆ τ).
Conversely, if φ∗u ∈ (τ ′)⊥, then for all v ∈ τ ′ we have 0 = ⟨φ∗u, v⟩ = ⟨u, φ∗v⟩; hence φ∗τ

′) ⊆ u⊥. But
φ∗(τ

′) ⊆ τ ; so φ∗(τ
′) ⊆ τ ∩ u⊥. But τ is the smallest cone containing φ∗(τ

′); so τ ∩ u⊥ is not a proper face;
i.e. τ ∩ u⊥ = τ . So u ∈ τ⊥, as desired. Proposition 3.13

Exercise 3.14 (For the bored). Show that the fan generated by (−1, a), (0, 1), (1, 0), and (0,−1) corresponds
to the ath Hirzebruch surface.

Proposition 3.15. Suppose φ : N ′ → N is a morphism of lattices; let TN ′ → TN be the corresponding
morphism of tori. Let T ′ = TN ′ and T = TN .

1. If φ is surjective then there is T ′′ such that the following diagram commutes:

T ′ T × T ′′

T

∼=

f

In particular, we get that f is smooth, surjective, and has connected fibres.
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2. If φ is injective and |cokerφ| <∞ then f is finite and surjective with deg(f) = |cokerφ|.

3. If φ is injective and cokerφ is free then f is a closed immersion.

4. f always admits a decomposition:
T ′ ↠ T1 ↠ T2 ↪→ T

where the first map is smooth, surjective, and has connected fibres, the second map is a finite surjection,
and the third is a closed immersion.

Proof.

1. Suppose φ is surjective. We get a short exact sequence

0 → N ′′ → N ′ φ−→ N → 0

But N ′ is free, and N ′′ ⊆ N ′′; so N ′′ is free. The exact sequence splits because N is free; so the
following diagram commutes:

N ′ N ×N ′′

N

∼=

φ

This is true at the level of lattices, and hence is also true of tori: so the following diagram commutes:

T ′ T × T ′′

T

∼=

f

Since f is a projection map, we get that it is smooth with connected fibres that are isomorphic to T ′.

2. We have a short exact sequence

0 → N ′ φ−→ N → N/N ′ → 0

with N/N ′ finite. Dualize: apply homZ(−,Z) = (−)∗. We get

(N/N ′) = 0 →M
φ∗

−−→M ′ → Ext′Z(N/N
′,Z)︸ ︷︷ ︸

finite order R=|cokerφ|

→ Ext1(N,Z = 0

(with the last equality because N is free). Choose a basis e1, . . . , en for M ′ such that M has basis
a1e1, . . . , anen. Then f : T ′ → T given by (ti) 7→ (taii ) is finite and surjective with degree

∏
ai =

|cokerφ|.

3. As before we get short exact sequences

0 → N ′ φ−→ N → N/N ′ → 0

and

0 → (N/N ′)∗ →M
φ∗

−−→M ′ → 0

So the map k[M ] → k[M ′] is surjective; so T ′ ↪→ T is a closed immersion.

4. We can factor φ as follows:

N ′ N

N1

φ
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where N1 = im(φ). Choose N2 such that N2/N1 = (N/N1)torsion. We thus get that the following
diagram commutes:

N ′ N

N1 N2

φ

where the map N ′ ↠ N1 is surjective, the map N1 ↪→ N2 is injective with finite cokernel, and the map
N2 ↪→ N is inective with free cokernel. The result then follows from the previous parts.

TODO 6. Right?

Proposition 3.15

Corollary 3.16. Suppose φ : N ′ → N ; let f : T ′ → T be the corresponding morphism of tori. Then:

1. f is a closed immersion if and only if φ is a split injection.

2. f is surjective if and only if f is dominant (i.e. has dense image), which occurs if and only if
|coker(φ)| <∞.

Proof. We do the first claim.
Suppose φ is a split injection. The

0 → N ′ φ−→ N → N ′/N → 0

splits, and N ′/N ⊆ N . But N is free; so N/N ′ is free. So, since φ is injective, we get that coker(φ) is free.
Hence φ is a split injection if and only if φ is injective and has free cokernel, which occurs if and only if f

is a closed immersion. Corollary 3.16

In understanding maps between toric varieties, our first step is to understand maps between tori;
analogously, in understanding fan maps, our first step is to understand maps between lattices. (Hence the
above.)

If τ ∈ Σ then Oτ = V (τ) is a toric variety, and Oτ = Spec(k[τ⊥ ∩M ]. What is the lattice for V (τ)? Well,
N(τ) = (τ⊥ ∩M)∗ = N/Nτ where Nτ = τ ∩N .

Example 3.17. Consider the fan generated by Cone((0, 1), (1, 1)) and Cone((1, 0), (1, 1)). Let τ = Cone((1, 0), (1, 1)).
Then τ∨ ∩M ∼= Z× N, and Spec(k[τ∨ ∩M ] = A1 ×Gm. Further computation yields

Oτ = Spec(k[τ⊥ ∩M︸ ︷︷ ︸
Z⟨(1,−1)⟩

])

∼= Gm

Nτ = τ ∩N = Z⟨(1, 1)⟩
N(τ) = Z2/Z⟨(1, 1)⟩

and V (τ) ∼= P1.

Corollary 3.18. Suppose φ : N ′ → N is a morphism of lattices. Suppose coker(φ) is finite and τ ′ ∈ Σ′; let
τ ∈ Σ be the smallest cone with φ(τ ′) ⊆ τ . Then φ∗(Oτ ′) = Oτ . So φ∗(V (τ ′)) = V (τ).

In particular, if φ∗ is a proper map (essentially, φ∗ is a closed map), then φ∗(V (τ ′)) = V (τ).

Proof. We already know φ∗(Oτ ′) ⊆ Oτ ; i.e. we have a map of tori Oτ ′
φ∗−−→ Oτ . This must then come from a

map of lattices N ′(τ ′) → N(τ) such that the following diagram commutes:

N ′ N

N ′(τ ′) = N ′/N ′
τ ′ N(τ)

φ

ψ

Since |coker(φ)| < ∞, we then get that |coker(ψ)| < ∞. Hence the map TN ′(τ ′) → TN(τ) is surjective.
Corollary 3.18
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Corollary 3.19. Suppose φ : (Σ′, N ′) → (Σ, N) is a map of fans; let f : X(Σ′) → X(Σ) be the corresponding
map of toric varieties.

1. If f is proper and |coker(φ)| <∞ then f is surjective.

2. If φ is surjective, then f−1(T ) ∼= T ×X(Σ′′) where Σ′′ is a fan on ker(φ).

3. If φ is surjective and f is proper then f∗OX(Σ′) = OX(Σ).

Proof. 1. Let τ ′ = 0 ∈ Σ′. Let τ ∈ Σ be the smallest cone with τ ⊇ φ(τ ′); so τ = 0. By the previous
corollary, we then get that f(O0) = O0 and f(T ′) = T ). But ′X ′ = T ′ and X = T ; so f(X) = X.

2. If φ is surjective then f−1(T ) consits of X(Σ′′) where Σ′′ = {σ ∈ Σ : σ ⊆ ker(φ) }. Now, we have the
following picture on the level of lattices:

N ′ N × ker(φ)

N

∼=

Hence f−1(T ) ∼= T ×X(Σ′′).

3. f : X ′ → X factors

X ′ X

SpecX(f∗(OX))

g

f

h

That f is proper will imply that h is finite. (We call h the universal affine map.)

Editor’s note 3.20. I think this is called “Stein factorization”.

Fact 3.21 (Zariski’s main theorem). g has connected fibres.

To be continued? Corollary 3.19

3.1 An aside on one-parameter subgrapes

Recall:

Definition 3.22. A 1-parameter subgrape of a torus T is a grape homomorphism Gm → T .

Say T = TN where N is the corresponding lattice. Then Gm → T = Spec(k[M ]) are maps M → Z, which
are just elements of M∗ = N .

We say v ∈ N corresponds to the 1-parameter subgrape λv : Gm → T .

Proposition 3.23. Suppose Σ is a fan on N . A 1-parameter subgrape λv : Gm → T = TN extends to a map

A1 → X(Σ) if and only if v ∈ |Σ| (the support of Σ). Moreover, if λv extends to λ̃v : A1 → X(Σ) and σ is

the smallest cone containing v, then λ̃v(0) = xσ.

Proof. We know

X(Σ) =
⋃
σ

Uσ

Hence λv extends if and only if there is σ ∈ Σ with A1 λ̃v−→ Uσ; i.e. if and only if there is a k-algebra map β
such that the following diagram commutes:

k[σ∨ ∩M ] k[N] = k[t]

k[M ] k[Z] = k[t±]

β

α≡λv
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where the map k[M ] → k[Z] is given by u 7→ ⟨u, v⟩, i.e. xu 7→ t⟨u,v⟩. But this occurs if and only if
α(k[σ∨ ∩M ]) ⊆ k[t]; i.e. for all xu ∈ k[σ∨ ∩M ] we have that t⟨u,v⟩ must be a positive power of t. i.e. for all
u ∈ σ∨ we have ⟨u, v⟩ ≥ 0, i.e. v ∈ (σ∨)∨ = σ. Hence λv extends if and only if σ ∈ Σ with v ∈ σ.

If σ is the smallest cone in Σ containing v, then v ∈ rel int(σ). Let I be the ideal defined by λ̃v(0). If
u ∈ σ∨ \ σ⊥ then ⟨u, v⟩ > 0 since v ∈ rel int(σ); hence xu ∈ K. If on the other hand u ∈ σ⊥ then ⟨u, v⟩ = 0;
so xu − 1 = xu − t⟨u,v⟩ ∈ I. So I is generated by xu for u ∈ σ∨ \ σ⊥ and xu − 1 for u ∈ σ⊥. This is the
definition of the point xσ. Proposition 3.23

Example 3.24. Let N = Z and consider Σ generated by the cone of non-negative reals; so X(Σ) = A1.
Consider v = −1. The induced map is then λv : Gm ↠ Gm = Spec(k[t, t−1]) given by 1 7→ t−1. This does not

extend to A1 since if it extended to λ̃v : A1 → A1 then

λ̃v(0) = lim
t→0

λ(t) = lim
t→0

t−1 = ∞ /∈ A1

The reason we care: the proposition lets us recover the fan Σ just by knowing X(Σ).

Example 3.25. Consider P2 ⊇ G2
m = { (x : y : 1) : x, y ∈ k∗ }. We then have (x, y)·(x′ : y′ : z′) = (xx′ : yy′ : z′)

for (x, y) ∈ G2
m. What are the one-parameter subgrapes? They are λ(a,b) : Gm → G2

m ⊆ P2 given by

t 7→ (ta : tb : 1). Does this extend to λ̃(a,b) : A1 → P2? It always does, since P2 is projective (and thus has all
limit points). What’s thae limit? It is

λ̃(a,b)(0) = lim
t→0

λ(a,b)(t)

This depends on (a, b); for example, (a, b) = (0, 0) has limit (1 : 1 : 1). If a, b > 0 then (ta : tb : 1) 7→ (0 : 0 : 1).
If b < 0 and a > b then (ta : tb : 1) = (ta−b : 1 : t−b) 7→ (0 : 1 : 0). These form the cones of the original fan.

Proposition 3.26. Suppose φ : (Σ′, N ′) → (Σ, N) is a map of fans inducing f : X(Σ′) → X(Σ). Then f is
finite and surjective if and only if φ : N ′ ↪→ N and |cokerφ| <∞ (so φ induces an isomorphism N ′

R → NR)
and Σ′ = Σ.

Example 3.27. Consider (
1 1
0 2

)
: Z2 ↪→ Z2

Consider Σ′ a fan of A2 generated by Cone((0, 1), (1, 0)); consider Σ a fan of A2 generated by Cone((1, 0), (1, 2)).
(Note that we can think of the lattice of integer points of Σ as a sublattice of the lattice of integer points of Σ′.)
On tori, we have a map G2

m → G2
m of degree 2 = |coker(φ)|. It turns out this map is A2 → X(Σ) = V (xy−z2).

The proposition tells us that this is fiinite and surjective; it turns out to be a grape quotient.

When is a toric variety smooth? It’s enough to check when its affine pieces are smooth.

Theorem 3.28. Let Σ be a full-dimensional fan in a lattice N . Then X(Σ) is smooth if and only if for all
maximal cones σ ∈ Σ we have that the first lattice points on the rays of σ are a basis for N .

Proof. We may assume X is affine; say X = Spec(k[P ]). If X is not normal, then X is not smooth and P
does not satisfy our criterion for smoothness.

Assume then that P is integral, finitely generated, and saturated.

Claim 3.29. X is smooth if and only if P is isomorphic to Zr ⊕ Nt.

Proof. By homework we have P ∼= P ∗ ⊕ P where P ∗ is the units of P and P = P/P ∗. Hence X ∼=
X(P ∗)×X(P ) ∼= Grm×X(P ). Thus X is smooth if and only if X(P ) is smooth; so we can assume P is sharp.
So (0) is a face of P , which corresponds to a point of X, fixed by the torus action and defined by k[P ] 7→ k
with x0 7→ 1 and xu 7→ 0 for all other u ∈ P . The maximal ideal M associated to this point is the one that’s
generated by xu1 , . . . , xun for u1, . . . , un a generating set of P . Now, M/M2 = (xui+uj : i, j ∈ { 1, . . . , n }).
Hence M/M2 has basis xu1 , . . . , xun . So dim(M/M2) = n, and so the point is smooth if and only if
n = dim(X) = rank(N) = t, which occurs if and only if {u1, . . . , un } is a basis for N . So X is smooth if and
only if P ∼= Nt. Claim 3.29
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The desired result folows from the claim because P is sharp. (Using the reduction noted in the proof of
the claim.) Indeed, since P is saturated, the criterion in the theorem is equivalent to requiring that P ∼= Nt.

Theorem 3.28

(One can check that a set is a basis for Zn if and only if its determinant is ±1.)

Example 3.30. Consider P2 with the fan generated by cones between (1, 0), (0, 1), and (−1,−1). One can use
the above criteria to check that P2 is smooth.

Example 3.31. An is smooth because its associated fan is a single cone spanned by the standard unit basis
vectors; this too is smooth.

Example 3.32. Fan generated by cones between (1, 0), (1, 1), (0, 1), and (−1,−1). The associated variety is
P2 blown up at a point; it is smooth.

Example 3.33. Fan generated by cones between (1, 0) and (1, 2). The associated toric variety is the cone over
a smooth quadric in P2; it is not smooth.

Example 3.34 (Weighted projective spaces). Let X = P(d0, . . . , dn) for dj ∈ Z≥1 = Pn/µd0 × · · · × µdn ,
where the µj are the roots of xj = 1. The action is given by (g0, . . . , gn) · [z0 : · · · : zn] = [g0z0 : · · · : gnzn].
P(d0, . . .n) is a toric variety associated to the fan { 1

di

−→ei } where −→ei is the ith standard unit basis vector.

We now introduce some analogues of classical topological concepts: separated will be the analogue of
Hausdorff, and proper will be the analogue of compact.

In algebraic geometry, the Zariski topology is not nice (i.e. not Hausdorff). Under some conditions in
point-set topology, we get that X is Hausdorff if and only if ∆: X → X ×X given by ∆(x) = (x, x) has
∆(X) ⊆ X ×X is closed. Given (x, y) ∈ X with x ̸= y we want a neighbourhood separating them; that is
the same as giving a neighbourhood of (x, y) separating it from ∆(X).

Definition 3.35. We say a scheme X is separated if ∆x : X → X ×X is a closed immersion.

Fact 3.36. ∆X is always an immersion.

One reason we care is that if X is a separated scheme, then for all open affine U, V we have U ∩ V ⊆ X is
also affine.

Example 3.37. Consider A1 glued to A1 along Gm; then X looks like the affine line with two points at the
origin. This is called the non-separated line.

Example 3.38. We have a similar definition of the non-separated plane. Now A2 ∪ A2 is a covering, but
A2 ∩ A2 = A2 \ { 0 } is not affine.

Another way of thinking about separatedness is that any limit that exists is unique.

Example 3.39. In the non-separated line,
lim
t→0

t

has two possible values.

Properness can be viewed as “all limits exist and are unique”. (A combination of complete and separated.)

Definition 3.40. A morphism f : X → Y is proper if f is separated, of finite type, and universally closed.
Universally closed means f : X → Y is closed and for any morphism Z → Y

X X ×Y Z

Y Z

f

Now f is of finite type if for all U = Spec(A) ⊆ Y we have

f−1(U) =
⋃
i

Vi

where Vi = Spec(Bi) and Bi is a finitely generated A-algebra.
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A criterion for being proper is the valuative criterion. Essentially, given a small punctured curve
C \ { c } ⊆ X, we want there to be only one way to fill in the hole. What’s a small curve in algebraic geometry
(over some field k)? We take a look at Spec(k[[t]]) around the origin. As a space, this has two points: (0) and
(t). (k[[t]] is a local ring.)

The closed point (t) corresponds to Spec(k), mapping k[[t]] ↠ k by t 7→ 0. The generic point corresponds
to the inclusion k[[t]] ⊆ k((t)). The analogue of a small curve is the spectrum of a discrete valuation ring.

Definition 3.41. A valuation ring is a ring R ⊆ k (a field) such that for all α ̸= 0 ∈ k we have α ∈ k or
α−1 ∈ k. A discrete valuation ring is an integral domain R plus a function v : R↠ Z ∪ {∞} such that

1. v(x) = ∞ if and only if x = 0.

2. v(fg) = v(f) + v(g).

3. v(f + g) ≥ min(v(f), v(g)).

i.e. a valued field with value grape isomorphic to Z.

Given a small curve Spec(R) and a small punctured curve Spec(k) ↪→ Spec(R) and a commuting diagram

Spec(R) X

Spec(k)

f

g

we can ask whether f = g; if this always holds, then X is separated. This corresponds to our intuition of “if
the limit exists, then it is unique”.

Theorem 3.42 (Valuative criterion for morphisms).

1. A morphism f : X → Y is separated if and only if for all discrete valuation rings R with k = Frac(R)
and all commutative diagrams

Spec(k) X

Spec(R) Y

f
g

h

we have g = h.

2. A morphism f : X → Y is proper if and only if the above holds and there is a unique arrow

Spec(k) X

Spec(R) Y

f

We’ll show that if X = X(Σ), then X is proper if and only |Σ| = NR.

Aside 3.43. Consider moduli of genus 1 curves plus a point (elliptic curves). Elliptic curves are classified by
the j-invariant, so the space of elliptic curves is A1, given by the j-invariant. This is not proper (non-compact),
so we have A1 → P1 producing non-smooth genus 1 curves. (Not elliptic anymore.)

The point of last time: f : X → Y is proper if and only if given a discrete valuation ring R with
K = Frac(R) we have a unique map with the following diagram commutes:

Spec(K) X

Spec(R) Y

f

This is the valuative criterion.

25



Proposition 3.44. Suppose φ : (Σ′, N ′) → (Σ, N) is a morphism of fans. Then φ∗ : X(Σ′) → X(Σ) is proper
if and only if φ−1(|Σ|) = |Σ′|.

Corollary 3.45. X(Σ) is proper if and only if |Σ| = NR.

Proof. We have a map from X(Σ) to a point; this is induced from the fan map (Σ, N) → ({ 0 }, 0). Then
X(Σ) is proper if and only if NR = φ−1(0) = |Σ|. Corollary 3.45

Example 3.46. If Σ is the P2 fan as previously

TODO 7. where

but with one of the maximal cones missing, then |Σ| ≠ R2, and indeed X(Σ) is P2 minus a point, which is
not proper.

Recall:

Proposition 3.47. Given a 1-parameter subgrape v ∈ N we have that λv : Gm → T ⊆ X(Σ) extends to
A1 → X(Σ) if and only if v ∈ |Σ|.

Proof of Proposition 3.44.

( =⇒ ) Suppose φ∗ is proper. We need to show that φ−1(|Σ|) = |Σ′|. Pick v′ ∈ N ′ such that φ(v′) ∈ |Σ|;
let v = φ(v′). So v ∈ σ for some σ ∈ Σ. Now, since v ∈ σ we have λ̃v : A1 → X(Σ) extending
λv : Gm → T ⊆ X(Σ). Then since φ∗ is proper, the valuative criterion yields:

Gm X(Σ′)

A1 X(Σ)

λv′

φ∗

λ̃v

So A1 → X(Σ′) extends λv′ : Gm → X(Σ′). So, again by the 1-parameter subgrape proposition, we
know that v′ ∈ |Σ′|. Hence φ−1(|Σ|) ⊆ |Σ′|.
The other containment holds because φ is a map of fans.

( ⇐= ) Suppose φ−1(|Σ|) = |Σ′|; we wish to show that φ∗ is proper. We use the valuative criterion: suppose
we have a commuting diagram

Spec(K) X(Σ′)

Spec(R) X(Σ)

α

φ∗

β

It turns out it’s enough to check the valuative criterion when α : Spec(K) → T ′ ⊆ X(Σ′). Say
β(Spec(R)) ⊆ Uσ for some σ ∈ Σ. Our diagram is thus

Spec(K) T

Spec(R) Uσ

α

φ∗

β

We want a map Spec(R) → X(Σ′). On the level of rings, we have

K M ′

R σ∨ ∩M

ν

φ∗

Now, R is a discrete valuation ring, so there is a valuation ord: K → Z ∪ {∞} with

R = { γ ∈ K : ord(γ) ≥ 0 }
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Now, v = ord ◦ν ∈ (M ′)∗ = N ′. Since the above diagram commutes, we get that ord ◦v ◦ φ∗ factors
through R, so it’s non-negative on σ∨ ∩M ; i.e. φ(v) ∈ σ, and v ∈ φ−1(σ). Now, by hypothesis we have
φ−1(|Σ|) = |Σ′|. We know that there is σ′ ∈ Σ′ with v ∈ σ′. So ν((σ′)∨ ∩M ′) ⊆ R; so we have our
arrow

K M ′ (σ′)∨ ∩M ′

R σ∨ ∩M

v ⊇

To show uniqueness, one shows that every toric variety X(Σ) is separated, and that X(Σ′) → X(Σ) is
separated. Proposition 3.44

An objection to the forward direction of the above proof: the valuative criterion is stated for discrete
valuation rings, not A1. To get around this, look at R = OA1,0 = k[x](x), which is a discrete valuation ring;
let k = Frac(R) = k(x), the generic point of Gm. We now have the following diagram:

Spec(k) Gm X(Σ′)

Spec(R) A1 X(Σ)

φ

But then φ : Spec(R) → X(Σ′) extends to a map U → X(Σ′) for some open 0 ∈ U ⊆ A1. Now we have
Gm → X(Σ′) and 0 ∈ U → X(Σ′); we can glue these morphisms together to get A1 → X(Σ′).

Our basic example of a proper map is a blow-up. The topogical picture: Bl(0,0) A2 is obtained by replacing
the origin with a projective space P1 such that different lines through the origin no longer cross.

Let X = X(Σ) be a smooth toric variety; let X ′ = BlY X where Y ⊆ X is a closed T -invariant subvariety.
It turns out that X ′ is again a toric variety. What is its fan? Let Y = V (τ) where τ ∈ Σ. Now, X is smooth,
so we can choose a basis v1, . . . , vn of N so that τ = Cone(v1, . . . , vr). Let

v =

r∑
i=1

vi

If σ ∈ Σ has v ∈ σ then replace σ with new cones σ1, . . . , σr where σi is generated by the same rays as σ but
replace vi by v. This yields a new fan Σ′; we set X ′ = X(Σ′).

Example 3.48. Bl0 A2. Well, 0 corresponds to τ the maximal 2-dimensional cone (in the fan in R2 generated
by Cone((0, 1), (1, 0))). Running through the above, we find

v1 = e1

v2 = e2

v = e1 + e2

Going through all σ ⊇ τ , which in this case is just σ = τ , we replace τ by τ1 and τ2 where

τ1 = Cone(v, v2)

τ2 = Cone(v1, v)

Example 3.49. Consider blowing up a line in A3. Choose the natural basis v1, v2, v3; consider τ = Cone(v1, v2).
Let v = v1 + v2. If σ is the maximal cone then we end up with

σ1 = Cone(e2, e1 + e2, e3)

σ2 = Cone(e1, e1 + e2, e3)

Why is X ′ = X(Σ′)? Well, BlY X = X on X \ Y . So far, our fan is correct, meaning the only change
comes from σ ⊇ τ .
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Let’s just look at maximal cones σ ⊇ τ . Since σ is smooth, we get that its rays form a basis for N ; so
Uσ ∼= An = Spec(k[t1, . . . , tn]). Write τ = Cone(v1, . . . , vr); then

σ∨
i = { (u1, . . . , un) : uj ≥ 0 for all j ̸= i, u1 + · · ·+ ur ≥ 0 }

We’ve replaced the condition u≥0 in σ∨ by
r∑
ℓ=1

uℓ ≥ 0

in σ∨
i .

Example 3.50. Consider again the blowup of the origin in A2. Then σ1 = Cone((1, 0), (−1, 1)). On coordinate

rings, we see k[σ∨
1 ∩ Z2] = k

[
t, t2t1

]
.

In general:

k[σ∨
i ∩ Zn] = k

[
t1
ti
, . . . ,

tr
ti
, ti, tr+1, . . . , tn

]
This is the usual affine patch of the blowup. (Recall that

Bl(t1,...,tr) A
n = Proj

k[t1, . . . , tn][Y1, . . . , Yr]

(tiYj − tjYi : 1 ≤, i, j ≤ r

which are covered by the affine patches Yi ̸= 0. On the patch when Yi ̸= 0, we note that tiYj = tjYi implies

ti
Yj

Yi
= tj for 1 ≤ j ≤ r; hence the t1, . . . , ti−1, ti+1, . . . , tr are irrelevant variables.)

If X is singular, what’s the fan Σ′ of BlY X? It’s not always just inserting a ray.

Lemma 3.51. If φ−1(|Σ|) = |Σ| (i.e. φ∗ is proper) then for all σ ∈ Σ we have

φ−1(σ) =
⋃
τi

where the τi are some subset of Σ′.

Proof. Suppose v ∈ φ−1(σ). Then v ∈ |Σ′|, so there is τ ′ ∈ Σ′ such that v ∈ τ ′. We need τ ′ ∈ Σ′ with v ∈ τ ′

and τ ′ ⊆ φ−1(σ); let τ ′ be the smallest τ ′ ∈ Σ′ such that v ∈ τ ′. Now let τ be the smallest cone in σ such that
φ(τ ′) ⊆ τ ; then φ(v) ∈ rel int(τ). But v ∈ σ. So τ ⊆ σ. Hence τ ′ ⊆ φ−1(τ) ⊆ φ−1(σ). Lemma 3.51

Definition 3.52. We say f : X → Y is birational if there is U ⊆ X and V ⊆ Y open such that f ↾ U : U → V
is an isomorphism.

Blow-ups are examples of these.
The lemma implies that φ∗ is proper and birational if and only if φ : N ′ → N is an isomorphism and

all Σ-cones are unions of Σ′ cones. (For this we need that every birational map of toric varieties is an
isomorphism on the tori.) In this case we say that Σ′ is a refinement of Σ; i.e. same lattice and replace some
cones σ by new ones.

Definition 3.53. We say a cone σ is simplicial if the rays of σ form a basis for (Nσ)R. We say Σ or X(Σ) is
simplicial if all σ ∈ Σ are simplicial.

Example 3.54. A cone over a non-triangular polygon is not simplicial.

We have seen that X(Σ) is smooth if and only if for all maximal σ ∈ Σ we have that the rays of σ are a
basis for N . So simplicial is “rationally smooth”.

We’ll later see that every toric variety is a global quotient X(Σ) = U/G where U ⊆ An is open and
G = T ×A for some finite abelian grape A. The simplicial X(Σ) are those where each affine piece Uσ is a
quotient An/G where G is a finite grape.

Recall that X is a toric variety if X is a separated normal scheme with a dense open torus T ⊆ X such
that the action of T on T extends to an action on X.
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Theorem 3.55 (Characterization of toric varieties). There is an equivalence of categories between fans and
toric varieties given by Σ 7→ X(Σ).

Proof.

Essential surjectivity Suppose X is a toric variety; we must show there is Σ such that X = X(Σ).

Fact 3.56 (Sumihiro’s theorem). If X is a normal variety and we have an action of T on X (where T
is a torus), then we can write X =

⋃
Ui with the Ui affine, open, and T -invariant.

Apply this to X to get Ui as above. Now, since X is irreducible, the Ui are open, and T ⊆ X is dense,
we then get that T ∩ Ui ̸= ∅. We also know that Ui is T -invariant; hence T ⊆ Ui.

Let N be the lattice of 1-parameter subgrapes of T ; let M = N∗. By our characterization theorem for
affine toric varieties, we get that Ui = Spec(k[σmi v∩M ]) where the σi are rational polyhedral cones on N .
But X is separated; so Ui∩Uj is also affine and T -invariant, and we may write Ui∩Uj = Spec(k[τ∨ij∩M ]).
Since Ui∩Uj is contained in both Ui and Uj , we get that τij ⊆ σi∩σj . For v ∈ σi∩σj , let λv : Gm → T
be the corresponding 1-parameter subgrape. We know it extends to λ : A1 → Ui ⊆ X since v ∈ σi;
likewise it extends to λ′ : A1 → Uj ⊆ X. By the valuative criterion, these two extensions must be equal
on A1; ones uses the following diagram:

Gm X

A1 point

λv

λ

λ′

Now Ui ⊇ λ(A1) = λ′(A1) ⊆ Uj ; so λ = λ′ : A1 → Ui ∩ Uj is an extension of λv : Gm → T . So v ∈ τij ,
and σi ∩ σj ⊆ τij ; so σi ∩ σj ⊆ τij .

Finally, we must check that τij is a face of σi and σj . We then take Σ to be the set of σ corresponding
to affine open T -invariant U ⊆ X, which is then a fan.

Full faithfulness If f : X(Σ′) → X(Σ) then there is a unique φ : Σ′ → Σ inducing f ; since f ↾ T ′ : T ′ → T
is a grape homomorphism we get that φ : N ′ → N . This is our unique morphism provided φ sends
cones into cones. Let σ′ ∈ Σ′; then there is σ ∈ Σ such that f(Oσ′) ⊆ Oσ since we can choose the
identity of Oσ′ , and then f is equivariant, so Oσ = T · f(1Oσ′ ). We wish to show that φ(σ′) ⊆ σ.

Suppose v′ ∈ σ′. We get that the following diagram commutes:

A1 Uσ′

Gm T ′ X(Σ′)

T X(Σ)

⊆
λv′

λφ(v′)
f↾T ′

⊆

f

⊆

This diagram shows that λφ(v′) does enxtend to A1 → X(Σ). So there is some σv′ ∈ Σ such that
φ(v′) ∈ σv′ .

We need to show that σv′ is independent of v
′, and in fact is just σ; we will then have φ(σ′) ⊆ σ. But

the following diagram commutes:

A1 X ′

X

f

Following 0 ∈ A1, we find that f(xσ′) = xσ′
v
; so σv′ = σ. Theorem 3.55

We will see that whereas fans correspond to toric varieties, polytopes correspond to projective toric
varieties.

29



4 Polytopes

Let P be a rational polytope on M ; so P is the convex hull of some u1, . . . , un ∈M , with dim(P ) = rank(M).
If Q ⊆ P is a face, we let σQ = { v ∈ NR : ⟨q, v⟩ ≤ ⟨p, v⟩ for all q ∈ Q, p ∈ P }.
Example 4.1. Let P be the convex hull of { 0, (0, 1), (1, 0) }; let Q = { (0, 1) }. Then σQ = { v ∈ NR :
⟨(1, 0), v⟩ ≤ ⟨p, v⟩ for all p ∈ P }. Squinting a bit, we find that this is just the dual cone of P − (1, 0); i.e. we
have recentred the polytope so that (1, 0) is the origin.

Hence σ(1,0) = Cone((0, 0)− (1, 0), (0, 1)− (1, 0))∨. Piecing together σ(1,0), σ(0,1), and σ(0,0), we get the
maximal cones of the fan associated with P2.

What of Q = Conv((0, 1), (1, 0))? Well, v ∈ σQ if and only if ⟨q, v⟩ ≤ ⟨p, v⟩ for all q ∈ Q and p ∈ P . But
q ∈ Q takes the form q = λe1 + (1− λ)e2; if we stare at this for a bit, we see that σQ = σ(1,0) ∩ σ(0,1). Filling
in the rest of the σQ, we get the rest of the fan associated with P2.

Proposition 4.2. If we let
ΣP = {σQ : Q ≤ P is a face }

then ΣP is a fan, called the normal fan of P . Furthermore, dim(σQ) = codim(Q) and |ΣP | = NR.

In particular, X(ΣP ) is proper. (We’ll later show that X(Σ) is projective if and only if Σ = ΣP for some
P .)

Proof. We can translate to assume 0 ∈ int(P ). If Q = P then v ∈ σQ implies ⟨q, v⟩ ≤ ⟨p, v⟩ for all q ∈ P and
p ∈ P . Choose p = 0: so ⟨q, v⟩ ≤ 0 for all q ∈ P , and v = 0.

Now suppose Q ⫋ P is a face. Recall that P ◦ = { v : ⟨uv⟩ ≥ −1 for all u ∈ P }. Let Q∗ = { v ∈ P ◦ :
⟨u, v⟩ = −1 for all u ∈ Q }. Then Q⊆σQ since for all p ∈ P and q ∈ Q and for all v ∈ Q∗ we have ⟨q, v⟩ = −1.
Now, ⟨p, v⟩ ≥ −1 by definition of P ◦; so ⟨p, v⟩ ≥ ⟨q, v⟩, and v ∈ σQ.

Let’s show that σQ = Cone(Q∗). Suppose v ∈ σQ \ { 0 }, so ⟨q, v⟩ ≤ ⟨p, v⟩ for all q ∈ Q and p ∈ P . But
now the map q 7→ ⟨q, v⟩ is constant, since if q, q′ ∈ Q have ⟨q, v⟩ > ⟨q′, v⟩ then we can let p = q′ ∈ Q ≤ P ; this
then violates ⟨q, v⟩ ≤ ⟨p, v⟩. Say ⟨q, v⟩ = c for all q ∈ Q. Then 0 ∈ P , so c = ⟨q, v⟩ ≤ ⟨0, v⟩ = 0. So − 1

cv ∈ Q∗

since c = ⟨q, v⟩ implies ⟨q, c−1v⟩ = −1. We also know that ⟨q, v⟩ ≤ ⟨p, v⟩; so −1 = ⟨q, c−1v⟩ ≤ ⟨p, c−1v⟩ (since
−c−1 > 0), and − 1

cv ∈ Q∗.
The point is that if 0 ̸= v ∈ σQ, we found a positive −c−1 such that −c−1v ∈ Q∗; so σQ = Cone(Q∗). At

this point the result is clear. Proposition 4.2

Definition 4.3. Suppose Z ⊆ X is a subvariety. Let I be the ideal of Z; so

∞⊕
i=0

Ii

is a graded k[σ∨ ∩M ]-algebra; we then set

BlZ X = Proj

∞⊕
i=0

Ii

A construction: take a cone σ on N , dualize to get the dual cone in M for coordinates on the toric variety,
compute the blow-up by hand to get a new variety, and dualize again to get a Σ for the new variety.

We can generalize this: suppose σ is a pointed cone in N ; suppose Z ⊆ Uσ is closed, irreducible,
and T -invariant. Let I ⊆ k[σ∨ ∩ M ] be the corresponding ideal; say I = (xu1 , . . . , xur). Let P =
Conv(u1, . . . , ur) + σ∨; this is called the Newton polyhedron of I. Let ΣP be the normal fan.

Proposition 4.4. X(ΣP ) → Uσ is the normalization of the blowup ˜BlZ(Uσ).

Proof. Since P ⊆ σ∨, it’s not hard to see that Σp is a refinement of σ. We thus get a proper birational map

X(ΣP ) → X. Let Y = B̃lZ(X) be the normalization of the blowup; so we have a proper birational map
Y → X.
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From th definition, we have an action of T on BlZ X. We also have an action of T on Y k since normalization
is functorial. Also, BlZ X → X is an isomorphism over T ; so Y → X is a map of toric varieties. If Y = X(Σ′),
then we have proper birational maps

X(Σp) X(Σ′)

X

So Σ′ is a refinement of σ.
Now, blow-ups are universal with respect to Y

g−→ X proper, birational, and g−1(I) locally principal. The
maximal cones of X(ΣP ) correspond to the vertices of P . Look at the patch corresponding to the vertex
ui ∈ P . Let τ be the corresponding cone; so u− ui ∈ τ∨ for all xu ∈ I (since τ is the dual cone of P − ui).
So xu ∈ I if and only if u ∈ P . So u− ui ∈ P − ui. So u− ui ∈ τ∨.

As a result, we get that xu−ui ∈ k[τ∨ ∩M ]; i.e. xu

xui
is a regular function on the patch corresponding to

vertex ui. So I = (xui).
We’ve thus covered X by Ui such that I ↾ Ui is principal; so, by the universal property, we get a map

X(ΣP ) Y = X(Σ′)

X

g

We lastly need that the map X(ΣP ) → Y is an isomorphism. But g−1(I) is locally principal; so for all τ ∈ Σ′

maximal we have g−1(I) ↾ Uτ principal. Hence one of the ui generates g
−1(I) ↾ Uτ/ Sp, for all xu ∈ I, we

have that xu is some multiple of xui . In fact we must have xu = xu−uixui ; i.e. xu−ui is a regular function,
and u− ui ∈ k[τ∨ ∩M ] for all u ∈ P . So P − ui ⊆ τ∨, and P − ui = τ∨. So our two refinements ΣP and Σ′

are the same. Proposition 4.4

Example 4.5. Let σ = Cone((0, 1), (1, 0)), and consider Bl0 A2 with I = (x, y) ⊆ k[x, y]. So P = Conv(e1, e2)+
σ∨.

Example 4.6. Let σ∨ = Cone((1, 0), (1, 3)) inM ; we call this the A3-singularity. Then σ = Cone((0, 1), (3,−1))
in N . The ideal of the singular point is given by (1, 0), (1, 1), (1, 2), and (1, 3). Taking the convex hull and
adding σ∨ we get Σp, and then the blowup at the singular point of X.

4.1 Resolution of toric surfaces

Suppose X is an affine toric surface.

Fact 4.7 (Proven later). σ can be written as Cone((0, 1), (m,−ℓ)) where m ≥ 0 and 0 ≤ ℓ < m. (This comes
from writing X = A2/(Z/nZ).) In fact σ is smooth if and only if ℓ = 0 and m = 1; this is because∣∣∣∣0 m

1 −ℓ

∣∣∣∣ = m

The first step in our resolution is to add the ray e1. We get a smooth cone and σ′ = Cone(e1, (m,−ℓ)).
Let’s put σ′ in “standard form” by change of basis. We want e1 7→ e2 and we want(

0 a
1 b

)
∈ GL2(Z)

so a = ±1. Also (
0 a
1 b

)(
m
−ℓ

)
=

(
−aℓ
m− bℓ

)
We require that m′ = −aℓ ≥ 0; so a = −1 and m = ℓ. We also require that 0 ≤ ℓ′ = bℓ − m < m′; so
0 ≤ bℓ−m < ℓ, and

m

ℓ
≤ b < 1 +

m

ℓ
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and
b =

⌈m
ℓ

⌉
is uniquely determined. Now

m

ℓ
− b =

m− bℓ

ℓ

= −bℓ−m

ℓ

= − 1
ℓ

bℓ−m

= − 1
m′

ℓ′

Hence
m

ℓ
= b− 1

m′

ℓ′

This is continued fractions using ceilings instead of floors; this is called Hirzebruch-Jung continued fractions.
Given a toric surface singularity, we can put it in standard form, take the Hirzebruch-Jung continued

fraction; the bi we get will be exactly the new rays we need to insert. If the Hirzebruch-Jung continued
fraction has r steps, then the toric surface is resolved after r steps.

How to find m and ℓ? Express X = A2/(Z/mZ). Given an action Z/mZ on A2, it must be

ζm(x, y) = (ζamx, ζ
b
my)

where Z/mZ = ⟨ζm⟩. We may assume a = 1. The action is then completely described by b; so ℓ = b.
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