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1 Introduction

We will roughly follow Automatic sequences by Allouche and Shallit.
Terminology: we use “finite sequence”, “word”, and “string” interchangeably; we use “infinite sequence”

and “infinite word” interchangeably.
Σ and ∆ will typically be alphabets; i.e. a non-empty set of symbols (usually finite).

Example 1.1. 010101 · · · is a periodic sequence. 123454545 · · · is an ultimately periodic sequence.

We have an intuitive notion of a random sequence; for example, every string of length k should occur in
a random sequence. (Note that in a periodic or ultimately periodic sequence, the number of substrings of
length n is O(1).)

Somewhere in the middle lie automatic sequences; the number of substrings of length n is O(n) (and in
fact is Θ(n) if the sequence is not ultimately periodic).

Example 1.2 (The characteristic sequence of the square-free numbers). A positive integer n is square-free if it
is not divisible by t2 for any integer t > 1. e.g. 30 is square-free, whereas 45 = 32 · 5 is not. The characteristic
sequence of a set of positive integers contains a 0 in indices not in the set and 1 in indices in the set.

We let s be the characteristic sequence of the set of square-free numbers; so s(n) is 1 if n is square-free
and 0 otherwise. It is a well-known theorem of number theory that the frequency of 1s is 6

π2 ; i.e.

lim
n→∞

|s[1 . . . n]|1
n

where s[1 . . . n] = s(1)s(2) . . . s(n) and |w|1 is the number of occurrences of 1 in w.

Question 1.3. What is the number of distinct blocks of length n occurring in s (the subword complexity of s,
denoted ρs(n))?
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Example 1.4 (Kolakoski sequence).

1 2
1 2 2
1 2 2 1 1
1 2 2 1 1 2 1
1 2 2 1 1 2 1 2 2 1

where each string is generated by considering the previous one to be its run-length encoding; i.e. the first
character is the length of the first run of 1s, the second is the length of the first run of 2s, the third character
is the length of the second run of 1s, etc. In other words, it is the sequence on { 1, 2 } beginning 1, 2 that is
its own sequence of run lengths.

Question 1.5. What is the frequency of 1 in this sequence? i.e. what is

lim
n→∞

|k[1 . . . n]|1
n

We don’t even know if this limit L exists. Chvatal proved that if the limit exists, then it satisfies 0.498 <
L < 0.502.

We now turn to automatic sequences. We begin with an example:

where in the first state the name is q0 and the output is 0. To compute tn:

1. Express n in base 2.

2. Feed the digits into the automaton.

3. Output is associated with the last state reached.

4. This is tn.

This particular example is the Thue-Morse sequence: t = t0t1t2t3 . . . begins 0110100110010110. In particular,

tn =

{
0 if (n)2 has an even number of 1s

1 else

• First studied by Thue (1912)

• Rediscovered by Euwe (1929)

• Rediscovered by Morse (1938)

Thue proved that this sequence is overlap-free: it contains no block of the form axaxa where x is an arbitrary
block and a is a single letter. (An overlap is a word of the form axaxa where a is a single letter and x is an
arbitrary block. For example, “alfalfa” and “entente” are overlaps.)

Definition 1.6. A morphism h satisfies h(xy) = h(x)h(y) for all finite words x and y.

Example 1.7. The map

µ(0) = 01

µ(1) = 10
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So for example
µ(010) = µ(0)µ(10) = µ(0)µ(1)µ(0) = 011001

Iterating, we find

µ(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

It turns out that
µω(0) = lim

n→∞
µn(0) = t

is the Thue-Morse sequence.

We can also define the Thue-Morse sequence via a recurrence:

T0 = 0

Tn+1 = TnTn

(where 0 = 1 and 1 = 0). So

T1 = 01

T2 = 0110

T3 = 01101001

which yields the Thue-Morse sequence.
Yet another way to define it uses finite fields. We use GF(p) to denote the integers modulo p (where p is

prime). Take p = 2; recall that tn is the parity of the number of 1s in the base-2 expansion of n. Let

T (x) =
∑
n≥0

tnx
n = x+ x2 + x4 + x7 + · · · ∈ GF(2)[[x]]

Note that

T (x) =
∑
n≥0

tnx
n

=
∑
n≥0

t2nx
2n +

∑
n≥0

t2n+1x
2n+1

=
∑
n≥0

tnx
2n + x

∑
n≥0

(tn + 1)x2n

=

∑
n≥0

tnx
2n

(1 + x) + x
∑
n≥0

x2n

=

∑
n≥0

tnx
2n

(1 + x) +
x

1 + x2

= T (x2)(1 + x) +
x

1 + x2

= (T (x))2(1 + x) +
x

1 + x2

(since in GF(2) squaring distributes over addition). So T is a root of y2(1 + x) + y + x
1+x2 = 0.

A different sequence: consider h(0) = 01 and h(1) = 0. Iterating, we find:

h(0) = 01

h2(0) = 010

h3(0) = 01001

h4(0) = 01001010
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We call hω(0) = 01001010 . . . the infinite Fibonacci word. To get a computational model for this, we need a
representation called the Fibonacci or Zeckendorf (1972) or Lekkerkerker (1950s?) representation (discovered
by Ostrowski in the 1920s). Recall the Fibonacci sequence

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

It turns out that every positive integer can be represented uniquely in the form∑
i≥2

εiFi

where ei ∈ { 0, 1 } and εiεi+1 ̸= 1. This can be used to express the infinite Fibonacci word: the nth character
of the infinite Fibonacci word can be obtained by computing the Fibonacci representation of n and outputting
the last digit.

An example of the Thue-Morse sequence:
Robbins asked what the limit of the following sequence is:

1

2
,
1/2

3/4
,

1/2
3/4

5/6
7/8

This converges to 1
2

√
2. The proof, due to Allouche, goes by considering

A =
∏
n≥0

(
2n+ 1

2n+ 2

)(−1)tn

where tn is the nth term of the Thue-Morse sequence; then A is the limit of the above sequence. Define

B =
∏
n≥1

(
2n

2n+ 1

)(−1)tn

Then

AB =
∏
n≥0

(
2n+ 1

2n+ 2

)(−1)tn ∏
n≥1

(
2n

2n+ 1

)(−1)tn

=
1

2

∏
n≥1

(
n

n+ 1

)(−1)tn

=
1

2

∏
n≥0

(
2n+ 1

2n+ 2

)(−1)t2n+1 ∏
n≥1

(
2n

2n+ 1

)(−1)t2n

=
1

2
A−1B

So A = 1
2A

−1, and A = 1
2

√
2.

2 Automatic sequences

2.1 Linear numeration systems

We begin with a discussion of (linear) numeration systems. A good introduction is (Fraenkel, AMM).
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Definition 2.1. A (linear) numeration system is a way to express elements of N in the form∑
0≤i≤t

aiui

where the ui form the base sequence and satisfy

1 = u0 < u1 < · · ·

Example 2.2. The base k representation, in which ui = ki (for k ≥ 2).

There are two conditions we like linear numeration systems to satisfy:

1. Completeness: each element of N has an expansion.

2. Unambiguity : each element of N has exactly one expansion.

In base k, we have two additional properties:

1. 0 ≤ ai ≤ k.

2. at ̸= 0.

One way to produce expansions is to specify an algorithm; the most natural algorithm is the greedy algorithm.
Namely, given N ∈ N:

1. Choose the largest t such that ut ≤ N .

2. For i = t, t− 1, . . . , 0 let ai =
⌊
N
ui

⌋
and set N = N − aiui.

Example 2.3. u0 = 1, u1 = 2, u2 = 5, u3 = 12, u4 = 29, u5 = 70, . . .. (Continued fraction expansion of
√
2; i.e.

un = 2un−1 + un−2.) Then the greedy algorithm yields

50 = 29 + 12 + 5 + 2 · 2 + 0 · 1

Theorem 2.4. Let 1 = u0 < u1 < u2 < · · · be an increasing sequence of integers. Then every non-negative
integer has exactly one representation of the form∑

0≤i≤t

aiui

where at ̸= 0 and for i ≥ 0 the ai satisfy

a0u0 + a1u1 + · · ·+ aiui < ui+1

Proof. For existence, one simply runs the greedy algorithm:

N = atut + rt (where 0 ≤ rt < ut)

rt = at−1ut−1 + rt−1 (where 0 ≤ rt−1 < ut−1)

...

r2 = a1u1 + r1 (where 0 ≤ r1 < u1)

r1 = a0u0

But ri+1 = a0u0 + · · ·+ aiui; hence the desired inequality is guaranteed.
For uniqueness, suppose

N = asus + · · ·+ a0u0

= bsus + · · ·+ b0u0
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Let i + 1 be the largest index such that ai+1 ̸= bi+1; suppose without loss of generality that ai+1 > bi+1.
Then

(ai+1 − bi+1)ui+1 + (ai − bi)ui + · · ·+ (a0 − b0)u0 = 0

But then

ui+1 ≤ (ai+1 − bi+1)ui+1

= (bi − ai)ui + · · ·+ (b0 − a0)u0

≤ biui + · · ·+ b0u0

contradicting the given inequality. Theorem 2.4

2.2 Automata

We’ll use:

• Deterministic finite automaton (DFA)

• Nondeterministic finite automaton (NFA)

• Deterministic finite automaton with output (DFAO)

• Deterministic finite-state transducer (DFST)

Definition 2.5. A DFA consists of

• A finite non-empty set of states Q

• An input alphabet Σ. (Often Σk = { 0, 1, 2, . . . , k − 1 }.)

• A transition function δ : Q× Σ → Q

• An initial state q0

• A set of accepting states F ⊆ Q.

Then M = (Q,Σ, δ, q0, F ) is a DFA.
We extend δ to map Q× Σ∗ → Q. We then define the set of accepted strings to be

L(M) = {x ∈ Σ∗ : δ(q0, x) ∈ F }

An NFA dispenses with the requirement that there be exactly one transition from a state on a given letter;
more on this later.

Definition 2.6. A DFAO is a tuple M = (Q,Σ, δ, q0,∆, τ) as in a DFA with ∆ an alphabet (the output
alphabet) and τ : Q → ∆ (the output mapping). Then M specifies a map fM : Σ∗ → ∆ given by fM (x) =
τ(δ(q0, x)). A finite-state function is a function computed by a DFAO.

Example 2.7. The Thue-Morse DFAO given earlier is given by

Q = { q0, q1 }
Σ = Σ2

= { 0, 1 }

δ(qi, j) =

{
qi if j = 0

q1−i else

∆ = { 0, 1 }
τ(qi) = i

A finite-state transducer takes in words (possibly infinite) and outputs words.
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Example 2.8. The following inserts a c after each occurrence of ab:

Definition 2.9. A language L ⊆ Σ∗ is regular if L = L(M) for some DFA M .

The following theorems will prove useful; their proofs are left as exercises. (See theorem 4.3.2 in the text.)

Theorem 2.10. If M = (Q,Σ, δ, q0,∆, τ is a DFAO, then for each a ∈ ∆ the language

La = {x ∈ Σ∗ : fM (x) = a }

is regular.

Theorem 2.11. If L1, L2, . . . , Ln partition Σ∗ (i.e. their pairwise disjoint union is Σ∗) with each Li regular
then there is a DFAO M such that fM (x) = a if and only if x ∈ La.

Theorem 2.12. If f is a finite-state function then so is fR where fR(x) = f(xR).

This can be proven using the previous two theorems; here is a slicker proof.

Proof. Suppose M = (Q,Σ, δ, q0,∆, τ) computes f . Let M ′ = (Q′,Σ, δ′, q′0,∆, τ ′) where

• Q′ = ∆Q (the set of all functions Q → ∆).

• q′0 = τ : Q → ∆.

• τ ′(g) = g(q0).

• δ′(g, a) is given by q 7→ g(δ(q, a)).

Claim 2.13. δ′(q′0, w) is given by q 7→ τ(δ(q, wR)).

Proof. We apply induction on |w|.
If w = ε (the empty string), then this is simply because q′0 = τ .
Suppose the claim holds if |w| = n; we will show the claim holds if |w| = n + 1. Write w = xa where

a ∈ Σ and |x| = n. Then

δ′(a′0, xa) = δ′(δ′(q′0, x)︸ ︷︷ ︸
g

, a)

= δ′(g, a)

Then if h = δ′(a′0, xa) we have

h(q) = g(δ(q, a))

= τ(δ(δ(q, a), xR))

= τ(δ(q, axR))

= τ(δ(q, (xa)R))

= τ(δ(q, wR))

Claim 2.13

It then follows that M ′ computes fR. Theorem 2.12

Notation 2.14. We let (n)k be the unique work over Σk = { 0, 1, . . . , k− 1 } (for k ≥ 2) that represents n in
base k with no leading zeroes. (We define (0)k = ε.) So (n)k : N → Σ∗

k.
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Example 2.15. (13)2 = 1101.

Notation 2.16. We let [w]k be the value of w, interpreted as an integer in base k (most significant digit
first). i.e. if w = a1a2 · · · an then

[w]k =

n∑
i=1

aik
n−1−i

So [w]k : Σ
∗
k → N.

Example 2.17. [00101]2 = 5.

Definition 2.18. A sequence (an : n ≥ 0) taking values in a finite alphabet ∆ is k-automatic if there is a
DFAO M = (Q,Σk, δ, q0,∆, τ) such that an = τ(δ(q0, w)) for all w ∈ Σ∗

k such that [w]k = n.

This definition is robust under small changes:

1. We could insist that w be the canonical representation for n; i.e. w = (n)k.

2. We could read digits in the reverse order (least significant digit first).

3. We could use alternate digit sets; e.g. the bijective representation { 1, 2, 3, . . . , k }. It’s a theorem that
each positive integer has exactly one representative in the bijective representation.

Example 2.19. In k = 2, we have
0 ε
1 1
2 2
3 11
4 12
5 21
6 22

4. Base −k: where one takes
n∑

i=0

ai(−2)i

Example 2.20. In base −2 we have
0 ε
1 1
2 110
3 111

The k cannot be varied; we’ll see later that if a sequence is both 2-automatic and 3-automatic then it is
ultimately periodic.

Theorem 2.21. If there is a DFAO M = (Q,Σ, δ, q0,∆, τ) with an = τ(δ(q0, (n)k)) then (an : n ≥ 0) is
k-automatic.

Proof. Add a new start state that goes back to itself on a 0, and otherwise goes to wherever the old start
state would have gone. Theorem 2.21

Example 2.22.
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The sequence is
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sn 2 1 0 2 0 1 2 1 0 1 2 0 2 1 0

This can also be done least-significant-digit-first with

Example 2.23. We consider the Rudin-Shapiro sequence:

• Shapiro, 1954, MIT, master’s thesis

• Rudin, 1956

Let e11(n) be the number of occurrences of “11” in (n)2). Then the Rudin-Shapiro sequence is given by
rn = (−1)e11(n). Note that e11(n) counts even the overlapping occurrences of 11.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e11(n) 0 0 0 1 0 0 1 2 0 0 0 1 1 1 2 3
rn 1 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1

Now, let (an : n ≥ 1) be a sequence with entries in {−1, 1 }. Then

sup
θ∈R

∣∣∣∣∣∣
∑

0≤n<N

an exp(inθ)

∣∣∣∣∣∣ ≥ √
N

Salem and Zygmund showed that

sup
θ∈R

∣∣∣∣∣∣
∑

0≤n<N

an exp(inθ)

∣∣∣∣∣∣ ∈ Θ(
√
N log(N))

for “almost all” sequences (an : n ≥ 0). For the Rudin-Shapiro sequence, however, we have

sup
θ∈R

∣∣∣∣∣∣
∑

0≤n<N

rn exp(inθ)

∣∣∣∣∣∣ ≤ (2 +
√
2)
√
N

Another thing we can do is draw a picture in the plane by starting at the origin, going up one unit, and at
each subsequent stage turning right if rnrn−1 = (−1)n and left otherwise (and moving one unit in the chosen
direction). This turns out to exactly fill one-eighth of the plane.

We can compute this with the following:

We now consider varying k; we will need a preliminary definition.
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Definition 2.24. We say k and ℓ are multiplicatively dependent if there is t ≥ 2 and i, j ≥ 1 such that k = ti

and ℓ = tj . Otherwise, they are multiplicatively independent.

Theorem 2.25 (Cobham’s big theorem). A sequence (an : n ≥ 0) is k-automatic and ℓ-automatic for k and
ℓ multiplicatively independent if and only if (an : n ≥ 0) is ultimately periodic.

We will prove this later.

Proposition 2.26. If (an : n ≥ 0) is ultimately periodic then it’s k-automatic for all k ≥ 2.

Proof. Easy case: suppose (an : n ≥ 0) is purely periodic of period t; i.e. that an = an+t for all n ≥ 0. Make
a DFAO with states { 0, . . . , t − 1 } such that if n ≡ i (mod t) then δ(q0, (n)k) = i, and set τ(i) = ai. In
particular, we can set δ(i, a) = (ki+ a mod t).

The hard case can roughly speaking be done by checking the finitely many cases first, and then falling
through to the easy case. Proposition 2.26

Theorem 2.27. Suppose (an : n ≥ 0) over alphabet ∆ and (bn : n ≥ 0) over alphabet ∆′ are k-automatic;
suppose f : ∆×∆′ → ∆′′. Then (f(an, bn) : n ≥ 0) is k-automatic.

Proof. Use the Cartesian product construction, and declare τ ′′([p, q]) = f(τ(p), τ ′(q)) (where τ and τ ′ are
output functions for automata for (an : n ≥ 0) and (bn : n ≥ 0), respectively). Theorem 2.27

How do we prove a sequence is not automatic? The pumping lemma is a useful tool to prove languages
are not regular.

Lemma 2.28 (Pumping lemma). If L is regular then there is a constant n such that for all z ∈ L with
|z| ≥ n we can write z = uvw with |uv| ≤ n and |v| ≥ 1 in such a way that for all i ≥ 0 we have uviw ∈ L.

We can prove a sequence (an : n ≥ 0) is not k-automatic by finding some a such that the set of base-k
representations of numbers n with ak = a is not regular; this can be done with the pumping lemma.

Theorem 2.29 (5.5.2). Suppose (an : n ≥ 0) is an automatic sequence. Then if u, v, w are strings of digits
then (a[uviw]k : i ≥ 0) is ultimately periodic.

Proof. Since there are finitely many states in a DFAO, there must be some indices j > i such that
δ(q0, uv

i) = δ(q0, uv
j); let p = j− i. Then δ(q0, uv

iw) = δ((q0, uv
i+ℓpw)) for all ℓ ≥ 0; hence τ(δ(q0, uv

iw)) =
τ(δ((q0, uv

i+ℓpw))) for all ℓ ≥ 0, and (an : n ≥ 0) is ultimately periodic. Theorem 2.29

Example 2.30. Let ℓk(n) = |(n)k|. Let f(n) = tℓ2(n) (where (tn : n ≥ 1) is the Thue-Morse sequence). Then
f is not 2-automatic, since f(2j − 1) = tj is not ultimately periodic.

We will see that the characteristic sequence of squares is not 2-automatic.

TODO 1. Henceforth the notes will become very terse.

Intersect with (11)∗(00)∗01, check that the result is not regular; hence the characteristic sequence of
squares is not 2-automatic.

Another characterization of being k-automatic: k-kernels. Illustrate with k = 2. Given (an : n ≥ 0), break
it up into (a2n : n ≥ 0) and (a2n+1 : n ≥ 0); do the same to these. Continue. The set of such subsequences is
called the 2-kernel.

Each subsequence looks like (a2e·n+i : n ≥ 0) where e ≥ 0 and 0 ≤ i < we.

Definition 2.31. The k-kernel is

Kk(a) = { (ake·n+i : n ≥ 0) : e ≥ 0, 0 ≤ i < ke }

In Thue-Morse, there are only two elements of the 2-kernel: the sequence and its bitwise complement.

Theorem 2.32. If (an : n ≥ 0) = a is a sequence over a finite alphabet ∆ then Kk(a) is finite if and only if
a is k-automatic.

Example 2.33. There are four sequences in the 2-kernel of the Rudin-Shapiro sequence.
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Yet another characterization: Cobham’s little theorem. If h is a morphism with h(a) = ax for some a ∈ Σ
and if hn(x) ̸= ε for all n, then h has an infinite fixed point. Iterating: hn(a) = axh(x)h2(x) · · ·hn−1(x).
Hence if we define hω(a) = axh(x)h2(x)h3(x) · · ·, then h(hω(a)(a)) = hω(a).

Example 2.34. Thue-Morse arises as µω(0) where

µ(0) = 01

µ(1) = 10

Theorem 2.35 (Cobham’s little theorem). Suppose k ≥ 2. A sequence a is k-automatic if and only if there
is a letter b and a k-uniform morphism φ : Γ∗ → Γ∗ (i.e. the image of every letter has length k) and a coding
(i.e. 1-uniform morphism) τ : Γ∗ → ∆∗ with φ(b) = bx for some x such that a = τ(φω(b)).

TODO 2. Missing stuff.

Last time apparently did Christol’s theorem.
Formal power series analogue of π: fix q = pn. Define

3 Characteristic words

Fix an irrational θ ∈ R with 0 < θ < 1. For n ≥ 1, define

fθ(n) = ⌊(n+ 1)θ⌋ − ⌊nθ⌋

Define fθ = fθ(1)fθ(2) · · ·. Known in ergodic theory as “rotations of the circle”. Note that ⌊(n+ 1)θ⌋ = ⌊nθ⌋
if and only if the fractional part of nθ is below 1− θ; else ⌊(n+1)θ⌋ = ⌊nθ⌋+1. Note also that by telescoping
we have ∑

1≤i≤n

fθ(i) = ⌊(n+ 1)θ⌋

Example 3.1. Take θ = 1
2 (
√
5− 1) ≈ 0.61303.

n 1 2 3 4 5 6 7 8 9 10
⌊nθ⌋ 0 1 1 2 3 3 4 4 5 6

⌊(n+ 1)θ⌋ − ⌊nθ⌋ 1 0 1 0 1 0 1 1

In particular we end up with the infinite Fibonacci word: the fixed point of 1 7→ 10 and 0 7→ 1.

Fact 3.2. A characteristic word fθ has exactly n+ 1 distinct subwords of length n for all n ≥ 0.

3.1 Beatty sequences

Sequences of the form (⌊nα⌋ : n ≥ 1). Usually α > 1.

Fact 3.3. Two such sequence given by α and β disjointly cover all of { 1, 2, 3, . . . } if and only if 1
α + 1

β = 1.

Related: Wythoff’s game. Consider two piles of coins, one with m and one with n. Two players, Alice and
Bob. On their turn, a player can remove i coins from either pile or i coins from both. The winner removes
the last coin.

If you list the losing positions, they turn out to be exactly (⌊nθ⌋, ⌊nθ2⌋) where θ = 1
2 (1 +

√
5).

Now, the relation to characteristic sequences. Let α > 1 be irrational; let

gα(n) =

{
1 if ∃m such that n = ⌊mα⌋
0 else

Theorem 3.4. gα(n) = f 1
α
(n).
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Lemma 3.5. Suppose 0 < α < 1 is irrational and k ≥ 1. Then hk(fα) = f 1
k+α

where

hk(0) = 0k−11

hk(1) = 0k−110

This yields a connection to continued fractions.

Theorem 3.6. Suppose 0 < α < 1, α = [0, a1, a2, . . .] (continued fraction expansion) and β = [0, an, an+1, . . .].
Then

fα = (ha1
◦ ha2

◦ · · · ◦ han
)(fβn+1

)

i.e.
fα = lim

n→∞
(ha1

◦ · · · ◦ han
)(0)

Example 3.7. Consider α = 1
2 (
√
5− 1), so α = [0, 1, 1, 1, . . .]. Then a1 = a2 = · · ·, so

fα = hω(1)

TODO 3. Why 1?

For 0 < α < 1, write α = [0, a1, a2, . . .]. For convenience we let

Xn = (ha1
◦ ha2

◦ · · · ◦ han
)(0)

Yn = (ha1
◦ ha2

◦ · · · ◦ han
)(1)

Proposition 3.8. Yn = XnXn−1.

Theorem 3.9. We have the following identities about the Xi:

X0 = 0

X1 = 0a1−11

Xn = Xan
n−1Xn−2 (for n ≥ 2)

Lemma 3.10. Let pn

qn
= [0, a1, a2, . . . , an]. Then

|Xn|0 = qn − pn

|Xn|1 = pn

and hence |Xn| = qn. In particular, Xn is the prefix of fα of length qn.

We sometimes call the Xn the finite characteristic words.

Theorem 3.11. For n ≥ 1 we have XnXn−1 = c(Xn−1Xn), where c(x01) = x10 and c(x10) = x01.

3.2 Ostrowski’s α-numeration system

Suppose α > 0 is irrational. Write α = [a0, a1, . . .]; as usual, let
pn

qn
= [a0, a1, . . . , an].

Theorem 3.12 (Ostrowski). Every N ≥ 0 has a unique representation in the form

N =
∑

0≤i≤j

biqi

where the bi satisfy

1. 0 ≤ b0 < a1.
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2. 0 ≤i≤ ai+1 for i ≥ 1.

3. If bi = ai+1 then bi−1 = 0.

In particular, Fraenkel’s theorem implies that this representation is unique, and is obtained by the greedy
algorithm.

Example 3.13. Let α = π, so α = [3, 7, 15, 1, 292, 1, . . .]. Then the first few qn are (1, 7, 106, 113, 33102, 33215).
Picking numbers, we have

5 = 5 · 1
7 = 1 · 7 + 0 · 1

300 = 2 · 113 + 0 · 106 + 10 · 7 + 4 · 1
33000 = 292 · 113 + 0 · 106 + 0 · 7 + 4 · 1

Theorem 3.14. Suppose 0 < α < 1 is irrational. Let fα be the characteristic word, so fα(n) = ⌊(n+ 1)α⌋ −
⌊nα⌋. Then fα(n) = 1 if and only if (n)α ends in an odd number of 0s. (Here (n)α is the sequence of
coefficients in the Ostrowski representation; so (33000)π = (292, 0, 0, 4).)

3.3 Cutting sequence

Take a line of slope α through the origin; say α = 1
2 (
√
5− 1). Whenever it intersects a lattice line, write a 0 if

it intersects a vertical line and 1 if it intersects a horizontal line. For our particular α we find that the cutting
sequence is 01001010010 . . ., which is the infinite Fibonacci word. One can check that if ⌊(n+ 1)α⌋ = ⌊nα⌋
then we get a 0; else we get a 01. One can further check that if cθ is the cutting sequence for θ then
cθ = fθ/(θ+1).

Theorem 3.15. Fix 0 < α < 1 irrational; fix b ≥ 2. Let α = [0, a1, a2, . . .]. Let pn

qn
= [0, a1, a2, . . . , an]. Let

Xn be the prefix of fα of length qn. Set

xn = [Xn]b = fα(1)b
qn−1 + fα(2)b

qn−2 + · · ·+ fα(qn)b
0 = bqn

∑
1≤k≤qn

fα(k)b
−k

Let

yn =
bqn−1

b− 1

Let

tn =
bqn − bqn−2

bqn−1 − 1

(One checks that the tn are integers.) Then

xn

yn
= [0, t1, t2, . . . , tn]

Corollary 3.16. With tn as above we have

[0, t1, t2, . . .] = (b− 1)
∑
k≥1

fα(k)b
−k

4 Logic

Lecture notes online; see lecture 10 summary. (He asks that you not spread his notes.)
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5 Towards a proof of Cobham’s big theorem

Definition 5.1. The subword complexity of a sequence s is Ps(n) the number of distinct blocks of length n
appearing in s.

Fact 5.2. Ps(n) ∈ O(n) if s is k-automatic for some k. For “almost all” sequences we have Ps(n) = kn. If s
is the image of a fixed point of a morphism then Ps(n) ∈ O(n2).

Fact 5.3. Ps(n) = n+ 1 if s is a Sturmian word.

Proposition 5.4. Ps(n) ≤ Ps(n+ 1) ≤ kPs(n). (Here k = |Σ|.)

Theorem 5.5. Ps(n+ 1)− Ps(n) ≤ k(Ps(n)− Ps(n− 1)).

Theorem 5.6 (10.2.6). Let w = b1b2 · · · be an infinite word on a finite alphabet. Then the following are
equivalent:

1. There is N ≥ 0 such that for all n ≥ 0 we have Pw(n) ≤ N .

2. There is n0 ≥ 0 such that for all n ≥ n0 we have Pw(n) = Pw(n0).

3. There is k ≥ 0 such that Pw(k) ≤ k.

4. There is m ≥ 0 such that Pw(m) = Pw(m+ 1).

5. w is ultimately periodic.

Definition 5.7. Suppose 0 < α < 1 and α is irrational; suppose θ ∈ R. (In the case of characteristic words
we use θ = 0.) We set sα,θ = s1s2 · · · where

si = ⌊(i+ 1)α+ θ⌋ − ⌊iα+ θ⌋

These are the Sturmian words.

Theorem 5.8. The subword complexity of sα,θ is n+ 1 for all n ≥ 0.

Fact 5.9 (Three-gap theorem). Suppose α is irrational. If we arrange 0, {−α }, {−2α }, . . . , {−nα }, 1 in
ascending order and compute the lengths of the corresponding intervals, we get at most three and at least
two different lengths; if there are three, then the largest is the sum of the other two. (Here {x } denotes the
fractional part of x.)

We now return to the proof of Cobham’s big theorem.

Theorem 5.10. Let (sn : n ≥ 0) be a sequence over ∆ that is both k-automatic and ℓ-automatic for k and ℓ
multiplicatively independent. Then (sn : n ≥ 0) is ultimately periodic.

Proof. We follow the following steps:

1. Translate to a question about sets.

2. If a subset of N is both k-automatic and ℓ-automatic, then it has bounded gaps. (Sometimes called
“syndetic” or “non-expanding”.)

3. If a set X has bounded gaps and is not ultimately periodic and is both k- and ℓ-automatic, then there
is X ′ that has unbounded gaps and is both k- and ℓ-automatic. Hence the existence of such an X yields
a contradiction.

Without further ado:
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1. Given (sn : n ≥ 0) over ∆, set

sa(n) =

{
1 if s(n) = a

0 else

so
sn =

∑
a∈∆

asa(n)

We then set Sa = {x ∈ N : sa(x) = 1 }.
We say a set S is k-automatic if its characteristic sequence is; likewise with ultimate periodicity.

Remark 5.11. (s(n) : n ≥ 0) is k-automatic if and only if each Sa is k-automatic; likewise with ultimate
periodicity.

It then suffices to consider sets to prove the theorem.

2. We need the following results from Diophantine approximation theory.

Claim 5.12 (Dirichlet’s theorem). For all θ ∈ R \ { 0 } and all N ≥ 1 there is n ≤ N and r ∈ Z such
that

|nθ − r| < 1

N

Proof. Consider
0, { θ }, { 2θ }, . . . , {Nθ }

and the intervals
[0, N−1), [N−1, 2N−1), · · · , [(N − 1)N−1, 1)

By pigeonhole there are 0 ≤ i < j ≤ N such that { iθ } and { jθ } lie in the same interval; say

iθ = s+ { iθ }
jθ = t+ { jθ }

So (j − 1)θ = t− s+ { jθ } − { iθ }. We then set r = t− s and n = j − i. Claim 5.12

Claim 5.13 (Kronecker’s theorem). Suppose θ is irrational. Then for all real α and all ε > 0 there are
a and c such that |aθ − α− c| < ε.

Proof. By Dirichlet’s theorem there is a, b such that |aθ−b| < ε. So { aθ } < ε or { aθ } > 1−ε; suppose
for concreteness that { aθ } < ε. Since θ is irrational we get that |aθ − b| > 0. Consider

0, { aθ }, { 2aθ }, . . . , 1

Then {α } lies in one of these intervals, we get that

|aθ − α− c| < ε

Claim 5.13

Corollary 5.14. If k and ℓ are multiplicatively independent then { kp/ℓq : p, q ≥ 0 } is dense in the
positive reals.

Proof. Suppose x ∈ R>0. Let

θ =
log(k)

log(ℓ)

α =
log(x)

log(ℓ)
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By Kronecker’s theorem we get that for all ε > 0 there are a, c such that

|aθ − α− c| < ε

Hence
|a log(k)− log(x)− c log(ℓ)| < ε log(l)

so
a log(k)− c log(ℓ) ∈ (log(x)− ε log(ℓ), log(x) + ε log(ℓ))

Exponentiating:
ka

ℓc
∈ (xℓ−ε, xℓε)

Taking ε to be small, we see that we can approximate x arbitrarily well by elements of the desired form.
Corollary 5.14

Claim 5.15. If X ⊆ N is k- and ℓ-automatic then X has bounded gaps.

Theorem 5.10
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