Course notes for CS 860

Christa Hawthorne
Lectures by Jeffrey O. Shallit, Winter 2017

Contents

1 Introduction 1
2 Automatic sequences 4
2.1 Linear numeration systems 4
2.2 Automata 6
3 Characteristic words 11
3.1 Beatty sequences 11
3.2 Ostrowski's α-numeration system 12
3.3 Cutting sequence 13
4 Logic 13
5 Towards a proof of Cobham's big theorem 14

1 Introduction

We will roughly follow Automatic sequences by Allouche and Shallit.
Terminology: we use "finite sequence", "word", and "string" interchangeably; we use "infinite sequence" and "infinite word" interchangeably.
Σ and Δ will typically be alphabets; i.e. a non-empty set of symbols (usually finite).
Example 1.1. $010101 \cdots$ is a periodic sequence. $123454545 \cdots$ is an ultimately periodic sequence.
We have an intuitive notion of a random sequence; for example, every string of length k should occur in a random sequence. (Note that in a periodic or ultimately periodic sequence, the number of substrings of length n is $O(1)$.)

Somewhere in the middle lie automatic sequences; the number of substrings of length n is $O(n)$ (and in fact is $\Theta(n)$ if the sequence is not ultimately periodic).
Example 1.2 (The characteristic sequence of the square-free numbers). A positive integer n is square-free if it is not divisible by t^{2} for any integer $t>1$. e.g. 30 is square-free, whereas $45=3^{2} \cdot 5$ is not. The characteristic sequence of a set of positive integers contains a 0 in indices not in the set and 1 in indices in the set.

We let s be the characteristic sequence of the set of square-free numbers; so $s(n)$ is 1 if n is square-free and 0 otherwise. It is a well-known theorem of number theory that the frequency of 1 s is $\frac{6}{\pi^{2}}$; i.e.

$$
\lim _{n \rightarrow \infty} \frac{|s[1 \ldots n]|_{1}}{n}
$$

where $s[1 \ldots n]=s(1) s(2) \ldots s(n)$ and $|w|_{1}$ is the number of occurrences of 1 in w.
Question 1.3. What is the number of distinct blocks of length n occurring in s (the subword complexity of s, denoted $\left.\rho_{s}(n)\right)$?

Example 1.4 (Kolakoski sequence).

1	2								
1	2	2							
1	2	2	1	1					
1	2	2	1	1	2	1			
1	2	2	1	1	2	1	2	2	1

where each string is generated by considering the previous one to be its run-length encoding; i.e. the first character is the length of the first run of 1 s , the second is the length of the first run of 2 s , the third character is the length of the second run of 1 s , etc. In other words, it is the sequence on $\{1,2\}$ beginning 1,2 that is its own sequence of run lengths.
Question 1.5. What is the frequency of 1 in this sequence? i.e. what is

$$
\lim _{n \rightarrow \infty} \frac{|k[1 \ldots n]|_{1}}{n}
$$

We don't even know if this limit L exists. Chvatal proved that if the limit exists, then it satisfies $0.498<$ $L<0.502$.

We now turn to automatic sequences. We begin with an example:

where in the first state the name is q_{0} and the output is 0 . To compute t_{n} :

1. Express n in base 2 .
2. Feed the digits into the automaton.
3. Output is associated with the last state reached.
4. This is t_{n}.

This particular example is the Thue-Morse sequence: $\underline{t}=t_{0} t_{1} t_{2} t_{3} \ldots$ begins 0110100110010110 . In particular,

$$
t_{n}= \begin{cases}0 & \text { if }(n)_{2} \text { has an even number of } 1 \mathrm{~s} \\ 1 & \text { else }\end{cases}
$$

- First studied by Thue (1912)
- Rediscovered by Euwe (1929)
- Rediscovered by Morse (1938)

Thue proved that this sequence is overlap-free: it contains no block of the form axaxa where x is an arbitrary block and a is a single letter. (An overlap is a word of the form axaxa where a is a single letter and x is an arbitrary block. For example, "alfalfa" and "entente" are overlaps.)

Definition 1.6. A morphism h satisfies $h(x y)=h(x) h(y)$ for all finite words x and y.
Example 1.7. The map

$$
\begin{aligned}
& \mu(0)=01 \\
& \mu(1)=10
\end{aligned}
$$

So for example

$$
\mu(010)=\mu(0) \mu(10)=\mu(0) \mu(1) \mu(0)=011001
$$

Iterating, we find

$$
\begin{aligned}
\mu(0)=01 & \\
\mu^{2}(0) & =0110 \\
\mu^{3}(0) & =01101001
\end{aligned}
$$

It turns out that

$$
\mu^{\omega}(0)=\lim _{n \rightarrow \infty} \mu^{n}(0)=\underline{t}
$$

is the Thue-Morse sequence.
We can also define the Thue-Morse sequence via a recurrence:

$$
\begin{aligned}
T_{0} & =0 \\
T_{n+1} & =T_{n} \overline{T_{n}}
\end{aligned}
$$

(where $\overline{0}=1$ and $\overline{1}=0$). So

$$
\begin{aligned}
& T_{1}=01 \\
& T_{2}=0110 \\
& T_{3}=01101001
\end{aligned}
$$

which yields the Thue-Morse sequence.
Yet another way to define it uses finite fields. We use $\operatorname{GF}(p)$ to denote the integers modulo p (where p is prime). Take $p=2$; recall that t_{n} is the parity of the number of 1 s in the base- 2 expansion of n. Let

$$
T(x)=\sum_{n \geq 0} t_{n} x^{n}=x+x^{2}+x^{4}+x^{7}+\cdots \in \mathrm{GF}(2)[[x]]
$$

Note that

$$
\begin{aligned}
T(x) & =\sum_{n \geq 0} t_{n} x^{n} \\
& =\sum_{n \geq 0} t_{2 n} x^{2 n}+\sum_{n \geq 0} t_{2 n+1} x^{2 n+1} \\
& =\sum_{n \geq 0} t_{n} x^{2 n}+x \sum_{n \geq 0}\left(t_{n}+1\right) x^{2 n} \\
& =\left(\sum_{n \geq 0} t_{n} x^{2 n}\right)(1+x)+x \sum_{n \geq 0} x^{2 n} \\
& =\left(\sum_{n \geq 0} t_{n} x^{2 n}\right)(1+x)+\frac{x}{1+x^{2}} \\
& =T\left(x^{2}\right)(1+x)+\frac{x}{1+x^{2}} \\
& =(T(x))^{2}(1+x)+\frac{x}{1+x^{2}}
\end{aligned}
$$

(since in GF(2) squaring distributes over addition). So T is a root of $y^{2}(1+x)+y+\frac{x}{1+x^{2}}=0$.
A different sequence: consider $h(0)=01$ and $h(1)=0$. Iterating, we find:

$$
\begin{aligned}
h(0) & =01 \\
h^{2}(0) & =010 \\
h^{3}(0) & =01001 \\
h^{4}(0) & =01001010
\end{aligned}
$$

We call $h^{\omega}(0)=01001010 \ldots$ the infinite Fibonacci word. To get a computational model for this, we need a representation called the Fibonacci or Zeckendorf (1972) or Lekkerkerker (1950s?) representation (discovered by Ostrowski in the 1920s). Recall the Fibonacci sequence

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

It turns out that every positive integer can be represented uniquely in the form

$$
\sum_{i \geq 2} \varepsilon_{i} F_{i}
$$

where $e_{i} \in\{0,1\}$ and $\varepsilon_{i} \varepsilon_{i+1} \neq 1$. This can be used to express the infinite Fibonacci word: the $n^{\text {th }}$ character of the infinite Fibonacci word can be obtained by computing the Fibonacci representation of n and outputting the last digit.

An example of the Thue-Morse sequence:
Robbins asked what the limit of the following sequence is:

$$
\frac{1}{2}, \frac{1 / 2}{3 / 4}, \frac{\frac{1 / 2}{3 / 4}}{\frac{5 / 6}{7 / 8}}
$$

This converges to $\frac{1}{2} \sqrt{2}$. The proof, due to Allouche, goes by considering

$$
A=\prod_{n \geq 0}\left(\frac{2 n+1}{2 n+2}\right)^{(-1)^{t_{n}}}
$$

where t_{n} is the $n^{\text {th }}$ term of the Thue-Morse sequence; then A is the limit of the above sequence. Define

$$
B=\prod_{n \geq 1}\left(\frac{2 n}{2 n+1}\right)^{(-1)^{t_{n}}}
$$

Then

$$
\begin{aligned}
A B & =\prod_{n \geq 0}\left(\frac{2 n+1}{2 n+2}\right)^{(-1)^{t_{n}}} \prod_{n \geq 1}\left(\frac{2 n}{2 n+1}\right)^{(-1)^{t_{n}}} \\
& =\frac{1}{2} \prod_{n \geq 1}\left(\frac{n}{n+1}\right)^{(-1)^{t_{n}}} \\
& =\frac{1}{2} \prod_{n \geq 0}\left(\frac{2 n+1}{2 n+2}\right)^{(-1)^{t_{2 n+1}}} \prod_{n \geq 1}\left(\frac{2 n}{2 n+1}\right)^{(-1)^{t_{2 n}}} \\
& =\frac{1}{2} A^{-1} B
\end{aligned}
$$

So $A=\frac{1}{2} A^{-1}$, and $A=\frac{1}{2} \sqrt{2}$.

2 Automatic sequences

2.1 Linear numeration systems

We begin with a discussion of (linear) numeration systems. A good introduction is (Fraenkel, AMM).

Definition 2.1. A (linear) numeration system is a way to express elements of \mathbb{N} in the form

$$
\sum_{0 \leq i \leq t} a_{i} u_{i}
$$

where the u_{i} form the base sequence and satisfy

$$
1=u_{0}<u_{1}<\cdots
$$

Example 2.2. The base k representation, in which $u_{i}=k^{i}$ (for $k \geq 2$).
There are two conditions we like linear numeration systems to satisfy:

1. Completeness: each element of \mathbb{N} has an expansion.
2. Unambiguity: each element of \mathbb{N} has exactly one expansion.

In base k, we have two additional properties:

1. $0 \leq a_{i} \leq k$.
2. $a_{t} \neq 0$.

One way to produce expansions is to specify an algorithm; the most natural algorithm is the greedy algorithm. Namely, given $N \in \mathbb{N}$:

1. Choose the largest t such that $u_{t} \leq N$.
2. For $i=t, t-1, \ldots, 0$ let $a_{i}=\left\lfloor\frac{N}{u_{i}}\right\rfloor$ and set $N=N-a_{i} u_{i}$.

Example 2.3. $u_{0}=1, u_{1}=2, u_{2}=5, u_{3}=12, u_{4}=29, u_{5}=70, \ldots$ (Continued fraction expansion of $\sqrt{2}$; i.e. $u_{n}=2 u_{n-1}+u_{n-2}$.) Then the greedy algorithm yields

$$
50=29+12+5+2 \cdot 2+0 \cdot 1
$$

Theorem 2.4. Let $1=u_{0}<u_{1}<u_{2}<\cdots$ be an increasing sequence of integers. Then every non-negative integer has exactly one representation of the form

$$
\sum_{0 \leq i \leq t} a_{i} u_{i}
$$

where $a_{t} \neq 0$ and for $i \geq 0$ the a_{i} satisfy

$$
a_{0} u_{0}+a_{1} u_{1}+\cdots+a_{i} u_{i}<u_{i+1}
$$

Proof. For existence, one simply runs the greedy algorithm:

$$
\begin{aligned}
N & =a_{t} u_{t}+r_{t}\left(\text { where } 0 \leq r_{t}<u_{t}\right) \\
r_{t} & =a_{t-1} u_{t-1}+r_{t-1}\left(\text { where } 0 \leq r_{t-1}<u_{t-1}\right) \\
& \vdots \\
r_{2} & =a_{1} u_{1}+r_{1}\left(\text { where } 0 \leq r_{1}<u_{1}\right) \\
r_{1} & =a_{0} u_{0}
\end{aligned}
$$

But $r_{i+1}=a_{0} u_{0}+\cdots+a_{i} u_{i}$; hence the desired inequality is guaranteed.
For uniqueness, suppose

$$
\begin{aligned}
N & =a_{s} u_{s}+\cdots+a_{0} u_{0} \\
& =b_{s} u_{s}+\cdots+b_{0} u_{0}
\end{aligned}
$$

Let $i+1$ be the largest index such that $a_{i+1} \neq b_{i+1}$; suppose without loss of generality that $a_{i+1}>b_{i+1}$. Then

$$
\left(a_{i+1}-b_{i+1}\right) u_{i+1}+\left(a_{i}-b_{i}\right) u_{i}+\cdots+\left(a_{0}-b_{0}\right) u_{0}=0
$$

But then

$$
\begin{aligned}
u_{i+1} & \leq\left(a_{i+1}-b_{i+1}\right) u_{i+1} \\
& =\left(b_{i}-a_{i}\right) u_{i}+\cdots+\left(b_{0}-a_{0}\right) u_{0} \\
& \leq b_{i} u_{i}+\cdots+b_{0} u_{0}
\end{aligned}
$$

contradicting the given inequality.

2.2 Automata

We'll use:

- Deterministic finite automaton (DFA)
- Nondeterministic finite automaton (NFA)
- Deterministic finite automaton with output (DFAO)
- Deterministic finite-state transducer (DFST)

Definition 2.5. A $D F A$ consists of

- A finite non-empty set of states Q
- An input alphabet Σ. (Often $\Sigma_{k}=\{0,1,2, \ldots, k-1\}$.)
- A transition function $\delta: Q \times \Sigma \rightarrow Q$
- An initial state q_{0}
- A set of accepting states $F \subseteq Q$.

Then $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA.
We extend δ to map $Q \times \Sigma^{*} \rightarrow Q$. We then define the set of accepted strings to be

$$
L(M)=\left\{x \in \Sigma^{*}: \delta\left(q_{0}, x\right) \in F\right\}
$$

An NFA dispenses with the requirement that there be exactly one transition from a state on a given letter; more on this later.

Definition 2.6. A $D F A O$ is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, \Delta, \tau\right)$ as in a DFA with Δ an alphabet (the output alphabet) and $\tau: Q \rightarrow \Delta$ (the output mapping). Then M specifies a map $f_{M}: \Sigma^{*} \rightarrow \Delta$ given by $f_{M}(x)=$ $\tau\left(\delta\left(q_{0}, x\right)\right)$. A finite-state function is a function computed by a DFAO.
Example 2.7. The Thue-Morse DFAO given earlier is given by

$$
\begin{aligned}
Q & =\left\{q_{0}, q_{1}\right\} \\
\Sigma & =\Sigma_{2} \\
& =\{0,1\} \\
\delta\left(q_{i}, j\right) & = \begin{cases}q_{i} & \text { if } j=0 \\
q_{1-i} & \text { else }\end{cases} \\
\Delta & =\{0,1\} \\
\tau\left(q_{i}\right) & =i
\end{aligned}
$$

A finite-state transducer takes in words (possibly infinite) and outputs words.

Example 2.8. The following inserts a c after each occurrence of $a b$:

Definition 2.9. A language $L \subseteq \Sigma^{*}$ is regular if $L=L(M)$ for some DFA M.
The following theorems will prove useful; their proofs are left as exercises. (See theorem 4.3.2 in the text.)
Theorem 2.10. If $M=\left(Q, \Sigma, \delta, q_{0}, \Delta, \tau\right.$ is a $D F A O$, then for each $a \in \Delta$ the language

$$
L_{a}=\left\{x \in \Sigma^{*}: f_{M}(x)=a\right\}
$$

is regular.
Theorem 2.11. If $L_{1}, L_{2}, \ldots, L_{n}$ partition Σ^{*} (i.e. their pairwise disjoint union is Σ^{*}) with each L_{i} regular then there is a DFAO M such that $f_{M}(x)=a$ if and only if $x \in L_{a}$.
Theorem 2.12. If f is a finite-state function then so is f^{R} where $f^{R}(x)=f\left(x^{R}\right)$.
This can be proven using the previous two theorems; here is a slicker proof.
Proof. Suppose $M=\left(Q, \Sigma, \delta, q_{0}, \Delta, \tau\right)$ computes f. Let $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, \Delta, \tau^{\prime}\right)$ where

- $Q^{\prime}=\Delta^{Q}$ (the set of all functions $\left.Q \rightarrow \Delta\right)$.
- $q_{0}^{\prime}=\tau: Q \rightarrow \Delta$.
- $\tau^{\prime}(g)=g\left(q_{0}\right)$.
- $\delta^{\prime}(g, a)$ is given by $q \mapsto g(\delta(q, a))$.

Claim 2.13. $\delta^{\prime}\left(q_{0}^{\prime}, w\right)$ is given by $q \mapsto \tau\left(\delta\left(q, w^{R}\right)\right)$.
Proof. We apply induction on $|w|$.
If $w=\varepsilon$ (the empty string), then this is simply because $q_{0}^{\prime}=\tau$.
Suppose the claim holds if $|w|=n$; we will show the claim holds if $|w|=n+1$. Write $w=x a$ where $a \in \Sigma$ and $|x|=n$. Then

$$
\begin{aligned}
\delta^{\prime}\left(a_{0}^{\prime}, x a\right) & =\delta^{\prime}(\underbrace{\delta^{\prime}\left(q_{0}^{\prime}, x\right)}_{g}, a) \\
& =\delta^{\prime}(g, a)
\end{aligned}
$$

Then if $h=\delta^{\prime}\left(a_{0}^{\prime}, x a\right)$ we have

$$
\begin{aligned}
h(q) & =g(\delta(q, a)) \\
& =\tau\left(\delta\left(\delta(q, a), x^{R}\right)\right) \\
& =\tau\left(\delta\left(q, a x^{R}\right)\right) \\
& =\tau\left(\delta\left(q,(x a)^{R}\right)\right) \\
& =\tau\left(\delta\left(q, w^{R}\right)\right)
\end{aligned}
$$

It then follows that M^{\prime} computes f^{R}. Theorem 2.12

Notation 2.14. We let $(n)_{k}$ be the unique work over $\Sigma_{k}=\{0,1, \ldots, k-1\}$ (for $k \geq 2$) that represents n in base k with no leading zeroes. (We define $(0)_{k}=\varepsilon$.) So $(n)_{k}: \mathbb{N} \rightarrow \Sigma_{k}^{*}$.

Example 2.15. $(13)_{2}=1101$.
Notation 2.16. We let $[w]_{k}$ be the value of w, interpreted as an integer in base k (most significant digit first). i.e. if $w=a_{1} a_{2} \cdots a_{n}$ then

$$
[w]_{k}=\sum_{i=1}^{n} a_{i} k^{n-1-i}
$$

So $[w]_{k}: \Sigma_{k}^{*} \rightarrow \mathbb{N}$.
Example 2.17. $[00101]_{2}=5$.
Definition 2.18. A sequence $\left(a_{n}: n \geq 0\right)$ taking values in a finite alphabet Δ is k-automatic if there is a DFAO $M=\left(Q, \Sigma_{k}, \delta, q_{0}, \Delta, \tau\right)$ such that $a_{n}=\tau\left(\delta\left(q_{0}, w\right)\right)$ for all $w \in \Sigma_{k}^{*}$ such that $[w]_{k}=n$.

This definition is robust under small changes:

1. We could insist that w be the canonical representation for n; i.e. $w=(n)_{k}$.
2. We could read digits in the reverse order (least significant digit first).
3. We could use alternate digit sets; e.g. the bijective representation $\{1,2,3, \ldots, k\}$. It's a theorem that each positive integer has exactly one representative in the bijective representation.
Example 2.19. In $k=2$, we have

0	ε
1	1
2	2
3	11
4	12
5	21
6	22

4. Base $-k$: where one takes

$$
\sum_{i=0}^{n} a_{i}(-2)^{i}
$$

Example 2.20. In base -2 we have

0	ε
1	1
2	110
3	111

The k cannot be varied; we'll see later that if a sequence is both 2 -automatic and 3 -automatic then it is ultimately periodic.

Theorem 2.21. If there is a DFAO $M=\left(Q, \Sigma, \delta, q_{0}, \Delta, \tau\right)$ with $a_{n}=\tau\left(\delta\left(q_{0},(n)_{k}\right)\right)$ then $\left(a_{n}: n \geq 0\right)$ is k-automatic.

Proof. Add a new start state that goes back to itself on a 0 , and otherwise goes to wherever the old start state would have gone.
\square Theorem 2.21
Example 2.22.

The sequence is

$$
\begin{array}{cccccccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
s_{n} & 2 & 1 & 0 & 2 & 0 & 1 & 2 & 1 & 0 & 1 & 2 & 0 & 2 & 1 & 0
\end{array}
$$

This can also be done least-significant-digit-first with

Example 2.23. We consider the Rudin-Shapiro sequence:

- Shapiro, 1954, MIT, master's thesis
- Rudin, 1956

Let $e_{11}(n)$ be the number of occurrences of " 11 " in $\left.(n)_{2}\right)$. Then the Rudin-Shapiro sequence is given by $r_{n}=(-1)^{e_{11}(n)}$. Note that $e_{11}(n)$ counts even the overlapping occurrences of 11 .

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$e_{11}(n)$	0	0	0	1	0	0	1	2	0	0	0	1	1	1	2	3
r_{n}	1	1	1	-1	1	1	-1	1	1	1	1	-1	-1	-1	1	-1

Now, let $\left(a_{n}: n \geq 1\right)$ be a sequence with entries in $\{-1,1\}$. Then

$$
\sup _{\theta \in \mathbb{R}}\left|\sum_{0 \leq n<N} a_{n} \exp (i n \theta)\right| \geq \sqrt{N}
$$

Salem and Zygmund showed that

$$
\sup _{\theta \in \mathbb{R}}\left|\sum_{0 \leq n<N} a_{n} \exp (i n \theta)\right| \in \Theta(\sqrt{N \log (N)})
$$

for "almost all" sequences $\left(a_{n}: n \geq 0\right)$. For the Rudin-Shapiro sequence, however, we have

$$
\sup _{\theta \in \mathbb{R}}\left|\sum_{0 \leq n<N} r_{n} \exp (i n \theta)\right| \leq(2+\sqrt{2}) \sqrt{N}
$$

Another thing we can do is draw a picture in the plane by starting at the origin, going up one unit, and at each subsequent stage turning right if $r_{n} r_{n-1}=(-1)^{n}$ and left otherwise (and moving one unit in the chosen direction). This turns out to exactly fill one-eighth of the plane.

We can compute this with the following:

We now consider varying k; we will need a preliminary definition.

Definition 2.24. We say k and ℓ are multiplicatively dependent if there is $t \geq 2$ and $i, j \geq 1$ such that $k=t^{i}$ and $\ell=t^{j}$. Otherwise, they are multiplicatively independent.

Theorem 2.25 (Cobham's big theorem). A sequence ($a_{n}: n \geq 0$) is k-automatic and ℓ-automatic for k and ℓ multiplicatively independent if and only if $\left(a_{n}: n \geq 0\right)$ is ultimately periodic.

We will prove this later.
Proposition 2.26. If ($a_{n}: n \geq 0$) is ultimately periodic then it's k-automatic for all $k \geq 2$.
Proof. Easy case: suppose $\left(a_{n}: n \geq 0\right)$ is purely periodic of period t; i.e. that $a_{n}=a_{n+t}$ for all $n \geq 0$. Make a DFAO with states $\{0, \ldots, t-1\}$ such that if $n \equiv i(\bmod t)$ then $\delta\left(q_{0},(n)_{k}\right)=i$, and set $\tau(i)=a_{i}$. In particular, we can set $\delta(i, a)=(k i+a \bmod t)$.

The hard case can roughly speaking be done by checking the finitely many cases first, and then falling through to the easy case. Proposition 2.26

Theorem 2.27. Suppose ($a_{n}: n \geq 0$) over alphabet Δ and $\left(b_{n}: n \geq 0\right)$ over alphabet Δ^{\prime} are k-automatic; suppose $f: \Delta \times \Delta^{\prime} \rightarrow \Delta^{\prime \prime}$. Then $\left(f\left(a_{n}, b_{n}\right): n \geq 0\right)$ is k-automatic.

Proof. Use the Cartesian product construction, and declare $\tau^{\prime \prime}([p, q])=f\left(\tau(p), \tau^{\prime}(q)\right)$ (where τ and τ^{\prime} are output functions for automata for ($a_{n}: n \geq 0$) and ($b_{n}: n \geq 0$), respectively).
\square Theorem 2.27
How do we prove a sequence is not automatic? The pumping lemma is a useful tool to prove languages are not regular.

Lemma 2.28 (Pumping lemma). If L is regular then there is a constant n such that for all $z \in L$ with $|z| \geq n$ we can write $z=u v w$ with $|u v| \leq n$ and $|v| \geq 1$ in such a way that for all $i \geq 0$ we have $u v^{i} w \in L$.

We can prove a sequence $\left(a_{n}: n \geq 0\right)$ is not k-automatic by finding some a such that the set of base- k representations of numbers n with $a_{k}=a$ is not regular; this can be done with the pumping lemma.

Theorem 2.29 (5.5.2). Suppose $\left(a_{n}: n \geq 0\right)$ is an automatic sequence. Then if u, v, w are strings of digits then $\left(a_{\left[u v^{i} w\right]_{k}}: i \geq 0\right)$ is ultimately periodic.

Proof. Since there are finitely many states in a DFAO, there must be some indices $j>i$ such that $\delta\left(q_{0}, u v^{i}\right)=\delta\left(q_{0}, u v^{j}\right)$; let $p=j-i$. Then $\delta\left(q_{0}, u v^{i} w\right)=\delta\left(\left(q_{0}, u v^{i+\ell p} w\right)\right)$ for all $\ell \geq 0$; hence $\tau\left(\delta\left(q_{0}, u v^{i} w\right)\right)=$ $\tau\left(\delta\left(\left(q_{0}, u v^{i+\ell p} w\right)\right)\right)$ for all $\ell \geq 0$, and $\left(a_{n}: n \geq 0\right)$ is ultimately periodic.

Theorem 2.29
Example 2.30. Let $\ell_{k}(n)=\left|(n)_{k}\right|$. Let $f(n)=t_{\ell_{2}(n)}$ (where $\left(t_{n}: n \geq 1\right)$ is the Thue-Morse sequence). Then f is not 2-automatic, since $f\left(2^{j}-1\right)=t_{j}$ is not ultimately periodic.

We will see that the characteristic sequence of squares is not 2 -automatic.
TODO 1. Henceforth the notes will become very terse.
Intersect with $(11)^{*}(00)^{*} 01$, check that the result is not regular; hence the characteristic sequence of squares is not 2 -automatic.

Another characterization of being k-automatic: k-kernels. Illustrate with $k=2$. Given ($a_{n}: n \geq 0$), break it up into ($a_{2 n}: n \geq 0$) and ($a_{2 n+1}: n \geq 0$); do the same to these. Continue. The set of such subsequences is called the 2-kernel.

Each subsequence looks like ($\left.a_{2^{e} \cdot n+i}: n \geq 0\right)$ where $e \geq 0$ and $0 \leq i<w^{e}$.
Definition 2.31. The k-kernel is

$$
K_{k}(\underline{a})=\left\{\left(a_{k^{e} \cdot n+i}: n \geq 0\right): e \geq 0,0 \leq i<k^{e}\right\}
$$

In Thue-Morse, there are only two elements of the 2-kernel: the sequence and its bitwise complement.
Theorem 2.32. If $\left(a_{n}: n \geq 0\right)=\underline{a}$ is a sequence over a finite alphabet Δ then $K_{k}(\underline{a})$ is finite if and only if \underline{a} is k-automatic.

Example 2.33. There are four sequences in the 2-kernel of the Rudin-Shapiro sequence.

Yet another characterization: Cobham's little theorem. If h is a morphism with $h(a)=a x$ for some $a \in \Sigma$ and if $h^{n}(x) \neq \varepsilon$ for all n, then h has an infinite fixed point. Iterating: $h^{n}(a)=a x h(x) h^{2}(x) \cdots h^{n-1}(x)$. Hence if we define $h^{\omega}(a)=\operatorname{axh}(x) h^{2}(x) h^{3}(x) \cdots$, then $h\left(h^{\omega}(a)(a)\right)=h^{\omega}(a)$.
Example 2.34. Thue-Morse arises as $\mu^{\omega}(0)$ where

$$
\begin{aligned}
& \mu(0)=01 \\
& \mu(1)=10
\end{aligned}
$$

Theorem 2.35 (Cobham's little theorem). Suppose $k \geq 2$. A sequence \underline{a} is k-automatic if and only if there is a letter b and a k-uniform morphism $\varphi: \Gamma^{*} \rightarrow \Gamma^{*}$ (i.e. the image of every letter has length k) and a coding (i.e. 1-uniform morphism) $\tau: \Gamma^{*} \rightarrow \Delta^{*}$ with $\varphi(b)=b x$ for some x such that $\underline{a}=\tau\left(\varphi^{\omega}(b)\right)$.

TODO 2. Missing stuff.
Last time apparently did Christol's theorem.
Formal power series analogue of π : fix $q=p^{n}$. Define

3 Characteristic words

Fix an irrational $\theta \in \mathbb{R}$ with $0<\theta<1$. For $n \geq 1$, define

$$
f_{\theta}(n)=\lfloor(n+1) \theta\rfloor-\lfloor n \theta\rfloor
$$

Define $\underline{f_{\theta}}=f_{\theta}(1) f_{\theta}(2) \cdots$. Known in ergodic theory as "rotations of the circle". Note that $\lfloor(n+1) \theta\rfloor=\lfloor n \theta\rfloor$ if and only if the fractional part of $n \theta$ is below $1-\theta$; else $\lfloor(n+1) \theta\rfloor=\lfloor n \theta\rfloor+1$. Note also that by telescoping we have

$$
\sum_{1 \leq i \leq n} f_{\theta}(i)=\lfloor(n+1) \theta\rfloor
$$

Example 3.1. Take $\theta=\frac{1}{2}(\sqrt{5}-1) \approx 0.61303$.

$$
\begin{array}{ccccccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\lfloor n \theta\rfloor & 0 & 1 & 1 & 2 & 3 & 3 & 4 & 4 & 5 & 6 \\
\lfloor(n+1) \theta\rfloor-\lfloor n \theta\rfloor & 1 & 0 & & 1 & 0 & 1 & 0 & 1 & 1 &
\end{array}
$$

In particular we end up with the infinite Fibonacci word: the fixed point of $1 \mapsto 10$ and $0 \mapsto 1$.
Fact 3.2. A characteristic word $\underline{f_{\theta}}$ has exactly $n+1$ distinct subwords of length n for all $n \geq 0$.

3.1 Beatty sequences

Sequences of the form $(\lfloor n \alpha\rfloor: n \geq 1)$. Usually $\alpha>1$.
Fact 3.3. Two such sequence given by α and β disjointly cover all of $\{1,2,3, \ldots\}$ if and only if $\frac{1}{\alpha}+\frac{1}{\beta}=1$.
Related: Wythoff's game. Consider two piles of coins, one with m and one with n. Two players, Alice and Bob. On their turn, a player can remove i coins from either pile or i coins from both. The winner removes the last coin.

If you list the losing positions, they turn out to be exactly $\left(\lfloor n \theta\rfloor,\left\lfloor n \theta^{2}\right\rfloor\right)$ where $\theta=\frac{1}{2}(1+\sqrt{5})$.
Now, the relation to characteristic sequences. Let $\alpha>1$ be irrational; let

$$
g_{\alpha}(n)= \begin{cases}1 & \text { if } \exists m \text { such that } n=\lfloor m \alpha\rfloor \\ 0 & \text { else }\end{cases}
$$

Theorem 3.4. $g_{\alpha}(n)=f_{\frac{1}{\alpha}}(n)$.

Lemma 3.5. Suppose $0<\alpha<1$ is irrational and $k \geq 1$. Then $h_{k}\left(\underline{f_{\alpha}}\right)=\underline{f_{\frac{1}{k+\alpha}}}$ where

$$
\begin{aligned}
& h_{k}(0)=0^{k-1} 1 \\
& h_{k}(1)=0^{k-1} 10
\end{aligned}
$$

This yields a connection to continued fractions.
Theorem 3.6. Suppose $0<\alpha<1, \alpha=\left[0, a_{1}, a_{2}, \ldots\right]$ (continued fraction expansion) and $\beta=\left[0, a_{n}, a_{n+1}, \ldots\right]$. Then

$$
\underline{f_{\alpha}}=\left(h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{n}}\right)\left(\underline{f_{\beta_{n+1}}}\right)
$$

i.e.

$$
\underline{f_{\alpha}}=\lim _{n \rightarrow \infty}\left(h_{a_{1}} \circ \cdots \circ h_{a_{n}}\right)(0)
$$

Example 3.7. Consider $\alpha=\frac{1}{2}(\sqrt{5}-1)$, so $\alpha=[0,1,1,1, \ldots]$. Then $a_{1}=a_{2}=\cdots$, so

$$
f_{\alpha}=h^{\omega}(1)
$$

TODO 3. Why 1?
For $0<\alpha<1$, write $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$. For convenience we let

$$
\begin{aligned}
X_{n} & =\left(h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{n}}\right)(0) \\
Y_{n} & =\left(h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{n}}\right)(1)
\end{aligned}
$$

Proposition 3.8. $Y_{n}=X_{n} X_{n-1}$.
Theorem 3.9. We have the following identities about the X_{i} :

$$
\begin{aligned}
& X_{0}=0 \\
& X_{1}=0^{a_{1}-1} 1 \\
& X_{n}=X_{n-1}^{a_{n}} X_{n-2} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Lemma 3.10. Let $\frac{p_{n}}{q_{n}}=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$. Then

$$
\begin{aligned}
& \left|X_{n}\right|_{0}=q_{n}-p_{n} \\
& \left|X_{n}\right|_{1}=p_{n}
\end{aligned}
$$

and hence $\left|X_{n}\right|=q_{n}$. In particular, X_{n} is the prefix of $\underline{f_{\alpha}}$ of length q_{n}.
We sometimes call the X_{n} the finite characteristic words.
Theorem 3.11. For $n \geq 1$ we have $X_{n} X_{n-1}=c\left(X_{n-1} X_{n}\right)$, where $c(x 01)=x 10$ and $c(x 10)=x 01$.

3.2 Ostrowski's α-numeration system

Suppose $\alpha>0$ is irrational. Write $\alpha=\left[a_{0}, a_{1}, \ldots\right]$; as usual, let $\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$.
Theorem 3.12 (Ostrowski). Every $N \geq 0$ has a unique representation in the form

$$
N=\sum_{0 \leq i \leq j} b_{i} q_{i}
$$

where the b_{i} satisfy

1. $0 \leq b_{0}<a_{1}$.
2. $0 \leq{ }_{i} \leq a_{i+1}$ for $i \geq 1$.
3. If $b_{i}=a_{i+1}$ then $b_{i-1}=0$.

In particular, Fraenkel's theorem implies that this representation is unique, and is obtained by the greedy algorithm.
Example 3.13. Let $\alpha=\pi$, so $\alpha=[3,7,15,1,292,1, \ldots]$. Then the first few q_{n} are $(1,7,106,113,33102,33215)$. Picking numbers, we have

$$
\begin{aligned}
5 & =5 \cdot 1 \\
7 & =1 \cdot 7+0 \cdot 1 \\
300 & =2 \cdot 113+0 \cdot 106+10 \cdot 7+4 \cdot 1 \\
33000 & =292 \cdot 113+0 \cdot 106+0 \cdot 7+4 \cdot 1
\end{aligned}
$$

Theorem 3.14. Suppose $0<\alpha<1$ is irrational. Let $\underline{f_{\alpha}}$ be the characteristic word, so $f_{\alpha}(n)=\lfloor(n+1) \alpha\rfloor-$ $\lfloor n \alpha\rfloor$. Then $f_{\alpha}(n)=1$ if and only if $(n)_{\alpha}$ ends in $\overline{a n}$ odd number of 0 s. (Here $(n)_{\alpha}$ is the sequence of coefficients in the Ostrowski representation; so $(33000)_{\pi}=(292,0,0,4)$.)

3.3 Cutting sequence

Take a line of slope α through the origin; say $\alpha=\frac{1}{2}(\sqrt{5}-1)$. Whenever it intersects a lattice line, write a 0 if it intersects a vertical line and 1 if it intersects a horizontal line. For our particular α we find that the cutting sequence is $01001010010 \ldots$, which is the infinite Fibonacci word. One can check that if $\lfloor(n+1) \alpha\rfloor=\lfloor n \alpha\rfloor$ then we get a 0 ; else we get a 01 . One can further check that if $\underline{c_{\theta}}$ is the cutting sequence for θ then $\underline{c_{\theta}}=\underline{f_{\theta /(\theta+1)}}$.

Theorem 3.15. Fix $0<\alpha<1$ irrational; fix $b \geq 2$. Let $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$. Let $\frac{p_{n}}{q_{n}}=\left[0, a_{1}, a_{2}, \ldots, a_{n}\right]$. Let X_{n} be the prefix of $\underline{f_{\alpha}}$ of length q_{n}. Set

$$
x_{n}=\left[X_{n}\right]_{b}=f_{\alpha}(1) b^{q_{n}-1}+f_{\alpha}(2) b^{q_{n}-2}+\cdots+f_{\alpha}\left(q_{n}\right) b^{0}=b^{q_{n}} \sum_{1 \leq k \leq q_{n}} f_{\alpha}(k) b^{-k}
$$

Let

$$
y_{n}=\frac{b^{q_{n}-1}}{b-1}
$$

Let

$$
t_{n}=\frac{b^{q_{n}}-b^{q_{n-2}}}{b^{q_{n-1}}-1}
$$

(One checks that the t_{n} are integers.) Then

$$
\frac{x_{n}}{y_{n}}=\left[0, t_{1}, t_{2}, \ldots, t_{n}\right]
$$

Corollary 3.16. With t_{n} as above we have

$$
\left[0, t_{1}, t_{2}, \ldots\right]=(b-1) \sum_{k \geq 1} f_{\alpha}(k) b^{-k}
$$

4 Logic

Lecture notes online; see lecture 10 summary. (He asks that you not spread his notes.)

5 Towards a proof of Cobham's big theorem

Definition 5.1. The subword complexity of a sequence \underline{s} is $P_{\underline{s}}(n)$ the number of distinct blocks of length n appearing in \underline{s}.

Fact 5.2. $P_{\underline{s}}(n) \in O(n)$ if \underline{s} is k-automatic for some k. For "almost all" sequences we have $P_{\underline{s}}(n)=k^{n}$. If \underline{s} is the image of a fixed point of a morphism then $P_{\underline{s}}(n) \in O\left(n^{2}\right)$.

Fact 5.3. $P_{\underline{s}}(n)=n+1$ if \underline{s} is a Sturmian word.
Proposition 5.4. $P_{s}(n) \leq P_{s}(n+1) \leq k P_{s}(n)$. (Here $k=|\Sigma|$.)
Theorem 5.5. $P_{s}(n+1)-P_{s}(n) \leq k\left(P_{s}(n)-P_{s}(n-1)\right)$.
Theorem 5.6 (10.2.6). Let $w=b_{1} b_{2} \cdots$ be an infinite word on a finite alphabet. Then the following are equivalent:

1. There is $N \geq 0$ such that for all $n \geq 0$ we have $P_{w}(n) \leq N$.
2. There is $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $P_{w}(n)=P_{w}\left(n_{0}\right)$.
3. There is $k \geq 0$ such that $P_{w}(k) \leq k$.
4. There is $m \geq 0$ such that $P_{w}(m)=P_{w}(m+1)$.
5. w is ultimately periodic.

Definition 5.7. Suppose $0<\alpha<1$ and α is irrational; suppose $\theta \in \mathbb{R}$. (In the case of characteristic words we use $\theta=0$.) We set $\underline{s}_{\alpha, \theta}=s_{1} s_{2} \cdots$ where

$$
s_{i}=\lfloor(i+1) \alpha+\theta\rfloor-\lfloor i \alpha+\theta\rfloor
$$

These are the Sturmian words.
Theorem 5.8. The subword complexity of $\underline{s}_{\alpha, \theta}$ is $n+1$ for all $n \geq 0$.
Fact 5.9 (Three-gap theorem). Suppose α is irrational. If we arrange $0,\{-\alpha\},\{-2 \alpha\}, \ldots,\{-n \alpha\}, 1$ in ascending order and compute the lengths of the corresponding intervals, we get at most three and at least two different lengths; if there are three, then the largest is the sum of the other two. (Here $\{x\}$ denotes the fractional part of x.)

We now return to the proof of Cobham's big theorem.
Theorem 5.10. Let $\left(s_{n}: n \geq 0\right)$ be a sequence over Δ that is both k-automatic and ℓ-automatic for k and ℓ multiplicatively independent. Then $\left(s_{n}: n \geq 0\right)$ is ultimately periodic.

Proof. We follow the following steps:

1. Translate to a question about sets.
2. If a subset of \mathbb{N} is both k-automatic and ℓ-automatic, then it has bounded gaps. (Sometimes called "syndetic" or "non-expanding".)
3. If a set X has bounded gaps and is not ultimately periodic and is both k - and ℓ-automatic, then there is X^{\prime} that has unbounded gaps and is both k - and ℓ-automatic. Hence the existence of such an X yields a contradiction.

Without further ado:

1. Given $\left(s_{n}: n \geq 0\right)$ over Δ, set

$$
s_{a}(n)= \begin{cases}1 & \text { if } s(n)=a \\ 0 & \text { else }\end{cases}
$$

so

$$
s_{n}=\sum_{a \in \Delta} a s_{a}(n)
$$

We then set $S_{a}=\left\{x \in \mathbb{N}: s_{a}(x)=1\right\}$.
We say a set S is k-automatic if its characteristic sequence is; likewise with ultimate periodicity.
Remark 5.11. $(s(n): n \geq 0)$ is k-automatic if and only if each S_{a} is k-automatic; likewise with ultimate periodicity.

It then suffices to consider sets to prove the theorem.
2. We need the following results from Diophantine approximation theory.

Claim 5.12 (Dirichlet's theorem). For all $\theta \in \mathbb{R} \backslash\{0\}$ and all $N \geq 1$ there is $n \leq N$ and $r \in \mathbb{Z}$ such that

$$
|n \theta-r|<\frac{1}{N}
$$

Proof. Consider

$$
0,\{\theta\},\{2 \theta\}, \ldots,\{N \theta\}
$$

and the intervals

$$
\left[0, N^{-1}\right),\left[N^{-1}, 2 N^{-1}\right), \cdots,\left[(N-1) N^{-1}, 1\right)
$$

By pigeonhole there are $0 \leq i<j \leq N$ such that $\{i \theta\}$ and $\{j \theta\}$ lie in the same interval; say

$$
\begin{aligned}
& i \theta=s+\{i \theta\} \\
& j \theta=t+\{j \theta\}
\end{aligned}
$$

So $(j-1) \theta=t-s+\{j \theta\}-\{i \theta\}$. We then set $r=t-s$ and $n=j-i$.
Claim 5.13 (Kronecker's theorem). Suppose θ is irrational. Then for all real α and all $\varepsilon>0$ there are a and c such that $|a \theta-\alpha-c|<\varepsilon$.

Proof. By Dirichlet's theorem there is a, b such that $|a \theta-b|<\varepsilon$. So $\{a \theta\}<\varepsilon$ or $\{a \theta\}>1-\varepsilon$; suppose for concreteness that $\{a \theta\}<\varepsilon$. Since θ is irrational we get that $|a \theta-b|>0$. Consider

$$
0,\{a \theta\},\{2 a \theta\}, \ldots, 1
$$

Then $\{\alpha\}$ lies in one of these intervals, we get that

$$
|a \theta-\alpha-c|<\varepsilon
$$

Corollary 5.14. If k and ℓ are multiplicatively independent then $\left\{k^{p} / \ell^{q}: p, q \geq 0\right\}$ is dense in the positive reals.

Proof. Suppose $x \in \mathbb{R}^{>0}$. Let

$$
\begin{aligned}
\theta & =\frac{\log (k)}{\log (\ell)} \\
\alpha & =\frac{\log (x)}{\log (\ell)}
\end{aligned}
$$

By Kronecker's theorem we get that for all $\varepsilon>0$ there are a, c such that

$$
|a \theta-\alpha-c|<\varepsilon
$$

Hence

$$
|a \log (k)-\log (x)-c \log (\ell)|<\varepsilon \log (l)
$$

so

$$
a \log (k)-c \log (\ell) \in(\log (x)-\varepsilon \log (\ell), \log (x)+\varepsilon \log (\ell))
$$

Exponentiating:

$$
\frac{k^{a}}{\ell^{c}} \in\left(x \ell^{-\varepsilon}, x \ell^{\varepsilon}\right)
$$

Taking ε to be small, we see that we can approximate x arbitrarily well by elements of the desired form.Corollary 5.14

Claim 5.15. If $X \subseteq \mathbb{N}$ is k - and ℓ-automatic then X has bounded gaps.

