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1 Preliminaries
Can collaborate with classmates on homework problems, and can looks things up on the internet. Not
permitted to ask profs or post questions on the internet.

Classes vs. sets: classes are sets or proper classes. Any reasonably defined collection of objects should
form a class.
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2 Category theory
2.1 Categories
Definition 2.1. A category C has two parts:

• Ob(C), a class of objects

• for each A,B ∈ Ob(C) a set of morphisms homC(A,B).

We also require a composition law ◦ : homC(B,C)×homC(A,B)→ homC(A,C) for all A,B,C ∈ Ob(C) such

• Composition is associative, when defined: f ◦ (g ◦ h) = (f ◦ g) ◦ h.

• For all A ∈ Ob(C) there is idA ∈ homC(A,A) such that idA ◦f = f and g ◦ idA = g when defined.

Example 2.2.

1. Grp, the category of all grapes: Ob(Grp) is the class of all groups and homGrp(G,H) the set of grape
homomorphisms G→ H. Notice we have composition and idG : G→ G.

2. Set, the category of all sets: Ob(Set) is the class of all sets and homSet(X,Y ) is the set of functions
X → Y .

3. Top, the category of topological spaces: Ob(Top) is the class of all topological spaces and homTop(X,Y )
is the set of continuous maps X → Y .

4. Ab, the category of abelian grapes.

5. Top∗, the category of pointed topological spaces (topological spaces with an identified point); mor-
phisms will be continuous maps sending the identified point of the domain to the identified point of
the codomain.

An important example for sheaves:
Example 2.3. Suppose X is a topological space. We define the category TopX by

• Ob(TopX) is the set of open subsets of X

• If U, V are open subsets of X, then we set

homTopX
(U, V ) =

{
∅ U 6⊆ V
{ i : U → V } else

Why are we interested in category theory? Categories can provide a unification tool.

2.2 Functors
Definition 2.4. Suppose C and D are categories. A functor F : C → D consists of

• F : Ob(C)→ Ob(D)

• F : homC(A,B)→ homD(F (A), F (B)) for any A,B ∈ Ob(C)

such that

• F (idA) = idF (A) for all A ∈ Ob(C)

• F (f ◦ g) = F (f) ◦ F (g)

Example 2.5.

1. F : Ab→ Grp given by F (A) = A and F (f) = f .
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2. T : Grp → Ab by T (G) = G/G′ (where G′ is the commutator subgrape of G) and if f : G → H then
T (f) : G/G′ → H/H ′ is given by T (f)(gG′) = f(g)H ′.

3. π1 : Top∗ → Grp that sends a pointed topological space to its fundamental grape; i.e. the grape of
loops based at the identified point modulo homotopy equivalence. (Recall that h0 is homotopic to h1
if there are ht for all t ∈ (0, 1) such that the map [0, 1]2 → X given by (x, t) → ht(x) is continuous.)
Given f : (X,x0)→ (Y, y0), we define π1(f) : π1(X,x0)→ π1(Y, y0) by π1(f)(g) = f ◦ g : [0, 1]→ Y .
Apparently the composition T ◦ π1 is the first homology grape of a path-connected topological space.

4. The forgetful functor F : Grp→ Set.

2.3 Natural transformations
Definition 2.6. Suppose C and D are categories; suppose F,G : C → D are functors. A natural transforma-
tion α : F → G consists of a morphism αA : F (A)→ G(A) (i.e. αA ∈ homD(F (A), G(A))) for all A ∈ Ob(C)
such that for all f : A→ B (where A,B ∈ Ob(C)), we have that the following diagram commutes:

F (A) F (B)

G(A) G(B)

F (f)

αA αB

G(f)

Definition 2.7. If there are natural transformations α : F → G and β : G→ F such that α ◦β : G→ G and
β ◦ α : F → F are the respective identity maps, then we say the functors F and G are isomorphic.

Example 2.8. Suppose F : C → D is a functor. Then α = id : F → F given by αA = idA : F (A)→ F (A)

Definition 2.9. Functors F,G : C → D are isomorphic if there is α : F → G and β : G → F such that
β ◦ α = id : F → F and α ◦ β = id : G→ G.

Example 2.10 (Double duals). Let C be the category of finite-dimensional vector spaces over C. We define
F : C → C to be the identity functor; i.e. F (V ) = V for V ∈ Ob(C) and F (T ) = T for T : V → W . We
define G : C → C by G(V ) = V ∗∗ and for T : V → W we let G(T ) : V ∗∗ → W ∗∗ be G(T ) = T ∗∗. We define
a natural transformation α : F → G by αV : V → V ∗∗ is αV (−→v ) = e−→v (where e−→v ∈ V ∗∗ = homC(V

∗,C) is
e−→v (f) = f(−→v ) for f ∈ V ∗).

Then for T : V →W we have the following diagram commutes:

F (V ) G(V )

F (W ) G(W )

αV

F (T ) G(T )

αW

So α : F → G is indeed a natural transformation.

2.4 Opposite category
Definition 2.11. Suppose C is a category. We define the opposite category Cop by Ob(Cop) = Ob(C)
and for A,B ∈ Ob(C) we let homCop(A,B) = homC(B,A); composition is then given by f̃ ◦ g̃ = g̃ ◦ f
for f̃ ∈ homCop(B,A) and g̃ ∈ homCop(C,B) (i.e. f ∈ homC(A,B) and g ∈ homC(B,C)). The identity
morphisms are then the same.

Example 2.12. If C is the category of finite-dimensional vector spaces over C then F : C → Cop given by
F (V ) = V ∗ and F (T ) = T ∗ : W ∗ → V ∗ for T : V → W is a functor. Also G : Cop → C given by G(V ) = V ∗

and G(T ) = T ∗ : W ∗ → V ∗ for T : V → W is also a functor. Then G ◦ F : C → C sends V 7→ V ∗∗ and
T 7→ T ∗∗ : V ∗∗ →W ∗∗ for T : V →W . Likewise F ◦G : Cop → Cop sends V 7→ V ∗∗.
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Exercise 2.13. Show that G ◦ F is naturally isomorphic to the identity functor C → C; i.e. there are natural
transformations α : G◦F → id and β id→ G◦F such that β ◦α = id : G◦F → G◦F and α◦β = id : F ◦G→
F ◦G.

Definition 2.14. Suppose C and D are categories and F : C → D and G : D → C are functors such that
F ◦G : D → D and G ◦F : C → C are isomorphic to the respective identity functors. Then we say C ∼= D are
equivalent.

Example 2.15. If C is the category of finite-dimensional vector spaces over C, then C ∼= Cop.
Example 2.16 (Algebraic geometry).

Definition 2.17. Let k be a field. A k-algebra B is a commutative ring with an injective homomorphism
ϕ : k → B such that ϕ(1k) = 1B .
Remark 2.18. Then B ⊇ ϕ(k) ∼= k; so B is a vector space over k.
Example 2.19. B = C[x, y] is a C-algebra with ϕ : C→ B given by ϕ(λ) = λ.

Definition 2.20. B is finitely generated as a k-algebra if there are a1, . . . , ad ∈ B such that every b ∈ B can
be written as a polynomial p(a1, . . . , ad) for some p ∈ k[x1, . . . , xd]. B is reduced if whenever b ∈ B satisfies
bn = 0 for some n ≥ 1 we have b = 0.

Example 2.21. C[x]/(x) is not reduced; C[x1, x2, x3, . . . ] is not finitely generated.
We can then form the category C of finitely generated, reduced C-algebras. We can also form the category

D of complex affine varieties, whose objects are Y ⊆ Cn for some n ≥ 1 such that Y is the zero set of a finite
set of polynomials p1(x1, . . . , xn), . . . , pd(x1, . . . , xn). (Note that we don’t require irreducibility here.)
Example 2.22. Y = { (a, b) ∈ C2 : b2 = a3 + 1 } ⊆ C2 is the zero set of x22 − x31 − 1.

Then algebraic geometry tells us that C ∼= Dop. The nullstellensatz gives us that for B ∈ C, say B ∼=
C[x1, . . . , xn]/(p1(x1, . . . , xn), . . . , pd(x1, . . . , xn)), that we can set F (B) to Y the zero set of p1, . . . , pn in Cn.
Also G : Dop → C sends Y 7→ C[x1, . . . , xn]/(p1, . . . , pd) where Y is the zero set of p1, . . . , pd ∈ C[x1, . . . , xn].

2.5 Adjoints
Definition 2.23. Suppose A,B are categories. We say F : A → B is left adjoint to G : B → A if, intuitively,
we have

homA(A,G(B)) ∼= homB(F (A), B)

for all A ∈ Ob(A) and B ∈ Ob(B). More formally, we require that for all A ∈ Ob(A) and B ∈ Ob(B) there
be a bijection αA,B : homA(A,G(B))→ homB(F (A), B) such that whenever A,A′ ∈ Ob(A), B,B′ ∈ Ob(B),
ϕ ∈ homA(A,A

′) and ψ ∈ homB(B,B
′), we have the following diagram commutes:

homA(A
′, G(B)) homB(F (A

′), B)

homA(A,G(B
′)) homB(F (A), B

′)

αA′,B

homA(ϕ,G(ψ)) homB(F (ϕ),ψ)

αA,B′

where homA(ϕ,G(ψ)) : homA(A
′, G(B)) → homA(A,G(B

′)) is given by f 7→ G(ψ) ◦ f ◦ ϕ. We then write
F � G.

Example 2.24. If G is the category of grapes and A is the category of abelian grapes, then we have an
inclusion functor I : A → G (given by I(A) = A and I(f) = f for f ∈ homA(A,B)) and a reduction functor
R : G → A (given by R(G) = G/G′ and R(f) is the descent of f to G/G′ → H/H ′ for f : G → H). Then
these are adjoint; which is left adjoint and which is right adjoint?
Example 2.25. If A is the category of abelian grapes and Set is the category of sets then we have a forgetful
functor G : A → Set (given by G(A) = A and G(f) = f). Consider F : Set→ A given by

F (X) = ZX =
⊕
x∈X

Z =

{∑
x∈X

nxex : nx = 0 for all but finitely many x ∈ X

}
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where ex are formal “basis vectors”. Then F � G; if X is a set and A is an abelian grape, then

homSet(X,G(A)) ∼= homA(F (X), A)

with f : X → A being sent to f̃ : ZX → A given by ex 7→ f(x). Furthermore, if ϕ ∈ homSet(X,X
′ and

ψ ∈ hom−A(A,A′), then the following diagram commutes:

homSet(X
′, G(A)) homA(F (X

′), A)

homSet(X,G(A
′)) homA(F (X), A)

αX′,A

homSet(ϕ,G(ψ)) homA(F (ϕ),ψ)

αX,A′

Exercise 2.26 (Stone-Čech compactification). Idea: we have CHaus, the category whose objects are compact
Hausdorff spaces and whose morphisms are continuous maps, and we have Top, the category of topological
spaces. We have an inclusion functor G : CHaus → Top (given by G(X) = X and G(f) = f). In other
words, CHaus is a subcategory of Top; i.e. Ob(CHaus) ⊆ Ob(Top), homCHaus(X,Y ) ⊆ homTop(X,Y ) for all
X,Y ∈ Ob(CHaus), f ◦CHaus g = f ◦Top g when it makes sense, and idX in CHaus equals idX in Top whenever
X ∈ Ob(CHaus).

What would a left adjoint do? We would have F : Top→ CHaus and bijective αX,F (X) : homTop(X,F (X))→
homCHaus(F (X), F (X)). Let β = α−1

X,F (X)(idF (X)); then β : X → F (X). Moreover, the adjoint property
shows that if f : X → K is continuous (where K ∈ Ob(CHaus)) then there is a unique f̃ : F (X) → K such
that the following diagram commutes:

X F (X)

K

β

f

f̃

Example 2.27. Recall we have Top∗, the category of pointed topological spaces, and Grp, the category of
grapes. Recall we also have π1 : Top∗ → Grp given by (X,x0) 7→ π1(X,x0). For example, if (X,x0) = (C, 1),
then π1(X,x0) = { id }, since if g : [0, 1]→ C is continuous, then we can define gt(x) = g(x)t+1 · (1− t); then
g1 = g and g0 = 1. Now, consider (Y, y0) = (S1, 1); let H = Z ∈ Ob(Grp). Suppose π1 had a left adjoint
F : Grp → Top∗. Then homGrp(H,π1(X,x0)) ∼= homTop∗(F (H), (X,x0)); so |homTop∗(F (H), (X,x0))| = 1.
On the other hand, we also have homGrp(H,π1(Y, y0)) ∼= homTop∗(F (H), (Y, y0)), and homTop∗(F (H), (Y, y0))
is infinite. But homTop∗(F (H), (Y, y0)) embeds into homTop∗(F (H), (X,x0)), a contradiction. So π1 does not
have a left adjoint.

As a general principle, forgetful functors (like A → Set) are right adjoint to “free” functors (like F : Set→
A).

Definition 2.28. Given a category A and a set X, we say F (X) is the free object in X in A if there is a
set map f : X → F (X) such that if g : X → A is a set map to some A ∈ Ob(A), then there is a unique
g̃ ∈ homA(F (X), A) such that the following diagram commutes:

F (X) A

X

g̃

f g

Exercise 2.29. If free objects exist, then F � G (where G is the forgetful functor).
Exercise 2.30. Free objects don’t exist in the category of fields.

The most important example will be tensor-hom adjunction, which we will see later.

Theorem 2.31. Right adjoints are unique up to natural isomorphism; i.e. if F : A → B and G,G′ : B → A
are right adjoints for F then there are natural transformations η : G → G′ and µ : G′ → G such that
µ ◦ η = idG : G→ G and η ◦ µ = idG′ : G′ → G′.
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(A similar proof will show that left adjoints are also unique up to natural isomorphism.)

Proof. Suppose F : A → B; suppose G,G′ : B → A are right adjoints for F . We wish to find a natural
isomorphism η : G→ G′. Suppose A ∈ Ob(A) and D ∈ Ob(B). Then we are given

homA(A,GD)
αA,D−−−→ homB(FA,D)

α′
A,D←−−− homA(A,G

′D)

Taking A = GD, we have

homA(GD,GD)
αGD,D−−−−→ homB(FGD,D)

α′
GD,D←−−−− homA(GD,G

′D)

In particular, we have

idGD 7→ αGD,D(idGD) 7→ (α′
GD,D)

−1(αGD,D(idGD)) : GD → G′D

Define ηD : GD → G′D to be (α′
GD,D)

−1(αGD,D(idGD)); we must show that for f : D → D′, the following
diagram commutes:

GD G′D

GD′ G′D′

ηD

Gf G′f

ηD′

We apply the naturality of the adjoint map twice. The first time we use A = A′ = GD, B = D, B′ = D′,
ϕ = idGD : A→ A′, and ψ, f : D → D′. Then the following diagram commutes:

hom(GD,GD) hom(FGD,D) hom(GD,G′D)

hom(GD,GD′) hom(FGD,D′) hom(GD,G′D′)

αGD,D

α′
GD,D

αGD,D′

α′
GD,D′

Starting with idGD in the top left corner, we get

idGD 7→ ηD 7→ G′(f) ◦ ηD

and
idGD 7→ Ψ(G(f))

(where Ψ = (α′
GD,D′)−1 ◦ αGD,D′). Applying naturality again, this time with A = GD, A′ = GD′, ϕ =

GF : GD → GD′, B = B′ = D′ and ψ = idD′ , we find the following diagram commutes:

hom(GD′, GD′) hom(FGD′, D′) hom(GD′, G′D′)

hom(GD,GD′) hom(FGD,D′) hom(GD,G′D′)

Chasing idGD′ , we find
idGD′ 7→ ηD′ 7→ ηD′ ◦G(f)

and
idGD′ 7→ idGD′ ◦G(f) 7→ Ψ ◦G(f)

So the first square yields
Ψ ◦G(f) = G′(f) ◦ ηD

and the second yields
Ψ ◦G(f) = ηD′ ◦G(f)
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So the following diagram commutes:
GD G′D

GD′ G′D′

ηD

Gf G′f

ηD′

And η is a natural transformation; one checks that it is a natural isomorphism. Theorem 2.31

Remark 2.32. If G is naturally isomorphic to G′ and G′ is a right adjoint for F , then G is also a right adjoint
for F .

Proof. Supposeϕ : A→ A′ and ψ : B → B′. Then since F � G′, we have the following diagram commutes:

hom(A′, G′B) hom(FA′, B)

hom(A,G′B′) hom(FA,B′)

αA′,B

αA,B′

Suppose η : G→ G′ is a natural isomorphism; then the following diagram commutes:

hom(A′, GB) hom(A′, G′B)

hom(A,GB′) hom(A,G′B′)

(ηB◦)

(ηB′◦)

(where (ηB◦) maps f 7→ ηB ◦ f) since

ηB′ ◦G(ψ) ◦ f ◦ ϕ = G′(ψ) ◦ ηB ◦ ◦f ◦ ϕ

So if βA,B = αA,B ◦ (ηB◦), then βA,B are bijections hom(A,GB) → hom(FA,B) such that the following
diagram commutes:

hom(A′, GB) hom(FA′, B)

hom(A,GB′) hom(FA,B′)

βA′,B

βA,B′

So F � G. Remark 2.32

2.6 Tensor-Hom adjunction
Let R be a commutative ring, and consider R-Mod, the category of R-modules with homR(M,N) =
homR -Mod(M,N) the set of R-module homomorphisms M → N . Fix an R-module M , and consider
F : R-Mod→ R-Mod given by N 7→M⊗RN . Then we have the universal property that if P is an R-module
and f : M ×N → P is bilinear, then there is a unique homomorphism of R-modules f̃ : M ⊗R N → P such
that the following diagram commutes:

M ×N P

M ⊗R N

f

i
f̃

(Given f : N → N ′, we get id⊗f = F (f) : M ⊗R N → M ⊗R N ′ by m ⊗ n 7→ m ⊗ f(n).) We also
have G : R-Mod → R-Mod given by G(N) = homR(M,N) and if f : N → N ′ then G(f) : homR(M,N) →
homR(M,N ′) is given by ψ 7→ f ◦ ψ.

Theorem 2.33 (Tensor-Hom adjunction). F � G.
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Proof. GivenA,B ∈ R-Mod, we need αA,B : homR(A,GB)→ homR(FA,B); that is, homR(A,homR(M,B))→
homR(M ⊗R A,B). Suppose we have ψ ∈ homR(A,homR(M,B)). Then for a ∈ A we have ψ(a) : M → B;
in particular, for m ∈ M we have ψ(a)(m) ∈ B. We then define ψ0 : M × A → B by ψ0(m, a) = ψ(a)(m).
Then ψ0 is bilinear:

ψ0(rm+m′, a) = ψ(a)(rm+m′)

= rψ(a)(m) + ψ(a)(m′)

= rψ0(m, a) + ψ0(m
′, a)

and

ψ0(m, ra+ a′) = ψ(ra+ a′)(m)

= (rψ(a) + ψ(a′))(m)

= rψ0(m, a) + ψ0(m, a
′)

So by the universal property for tensor products, we get a unique homomorphism ofR-modules ψ̂0 : M⊗RA→
B such that the following diagram commutes:

M ×A B

M ⊗R A

ψ0

ψ̂0

We then set αA,B(ψ) = ψ̂0. This is reversible: if ϕ : M ⊗R A → B, then ϕ̃ : M × A → B given by
(m, a) 7→ ϕ(m⊗ a) is bilinear:

ϕ̃(rm1 +m2, a) = ϕ((rm1 +m2)⊗ a)
= ϕ(r(m1 ⊗ a) +m2 ⊗ a)
= rϕ(m1 ⊗ a) + ϕ(m2 ⊗ a)
= rϕ̃(m1, a) + ϕ̃(m2, a)

and likewise with the other side. We can then think of ϕ̃ as morphism A → homR(M,B) by a 7→ ϕ̃(a)
(where ϕ̃(a)(m) = ϕ̃(m, a)); so ϕ̃ ∈ homR(A,homR(M,B)).

So αA,B is an isomorphism (i.e. bijection); it remains to check the compatibility condition. Suppose
ϕ : A→ A′, ψ : B → B′. We wish to check that the following diagram commutes:

hom(A′, GB) hom(FA′, B)

hom(A,GB′) hom(FA,B′)

αA′,B

αA,B′

Suppose h ∈ hom(A′,hom(M,B)); then, going one way, we get

h 7→ ĥ0 7→ ψ ◦ g ◦ F (ϕ) = ψ ◦ g ◦ (id⊗ϕ)

Going the other way, we get
h 7→ G(ψ) ◦ h ◦ ϕ = ψ ◦ h ◦ ϕ ̂(ψ ◦ h ◦ ϕ)0

One checks that ̂(ψ ◦ h ◦ ϕ)0 = ψ ◦ ĥ0 ◦ (id⊗ϕ). (Hint: look at what they do to m⊗ a.) Theorem 2.33

2.7 Yoneda’s lemma
Example 2.34. Let Abfin be the category of finite abelian grapes. Suppose A ∈ Ob(Abfin); suppose for all
finite abelian grapes B we know |homAb(A,B)|. Can we recover A? Equivalently, if A1 6∼= A2, is there
necessarily a B such that |hom(A1, B)| 6= |hom(A2, B)|.
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For example, consider

A1 = Z3
2 ⊕ Z3

4 ⊕ Z5

A2 = Z4
2 ⊕ Z4 ⊕ Z8 ⊕ Z5

Then

|hom(A1,Z5)| = 5

|hom(A1,Z5)| = 5

|hom(A1,Z2)| = 26

|hom(A1,Z2)| = 26

|hom(A1,Z4)| = 23 · 43

|hom(A1,Z4)| = 24 · 42

The answer turns out to be “yes” for Abfin, but not in general.
Yoneda’s lemma says roughly that we can understand A ∈ Ob(A) by understanding homA(A,B) for all

B ∈ Ob(A).

Definition 2.35. Suppose A is a category; suppose A ∈ Ob(A). We can make a functor hA : A → Set
by hA(B) = homA(A,B) and hA(f) : homA(A,B) → homA(A,B

′) is hA(f)(ψ) = f ◦ ψ whenever f ∈
homA(B,B

′). Such an hA is called a representable functor. (We also give this name to a functor that is
naturally isomorphic to a representable functor.)

On the assignment, we define a category Funct(A,Set) whose objects are functors A → Set and whose
morphisms F → G are natural transformations η : F → G. Let F be the (full) subcategory of Funct(A,Set)
whose objects are representable functors; i.e. homF (hA, hB) is the class of natural transformations hA → hB .

Theorem 2.36 (Yoneda’s lemma). A ∼= Fop.

Recall if η : hA → hB is a natural isomorphism then for each C ∈ Ob(A) we get an isomorphism
ηC : hA(C)→ hB(C); i.e. hom(A,C) ∼= hom(B,C). Yoneda’s lemma gives a partial converse to this.
Example 2.37. Consider the forgetful functor G : Grp→ Set given by G(H) = H. Then G is a representable
functor: note that homGrp(Z,H) ∼= H for all H ∈ Ob(Grp). So G ∼= hZ.

Another way to view the above: consider F : Set → Grp where F (X) is the free grape on X. Then
Z = F ({x }); so by the adjoint property we have homGrp(F (X),H) ∼= homSet(X,H). But in Set, we have
H ∼= homSet({x },H) ∼= homGrp(F ({x }),H) = homGrp(Z,H).
Example 2.38. Let C be the category of commutative k-algebras (where k is a field). Given a ring C we
can form a category C-Mod. If M is a C-module, a derivation δ : C → M is a k-linear map satisfying
δ(c1c2) = c1δ(c2) + c2δ(c1). Consider Derk(C,M) the set of derivations δ : C → M ; this is a C-module
with (c · f)(a) = c · f(a). So we have a functor Der : C-Mod → C-Mod given by M 7→ Derk(C,M) and
Derk(f)(δ) = f◦δ. (Note that f◦δ is indeed a derivation: (f◦δ)(ab) = f(aδ(b)+bδ(a)) = af(δ(b))+bf(δ(a)).)

Claim 2.39. Derk is representable.

Proof. We use Kähler differentials. Given C a k-algebra, we construct a C-module ΩC/k which is the free
C-module on all symbols of the form dc for c ∈ C modulo the relations

d(c1 + λc2) = dc1 − λdc2
d(c1c2) = c1dc2 + c2dc1

For example, consider C = k[t]. Then in Ωk[t]/k, we have

d(a0 + at + · · ·+ ast
s) = a0d1 + a1dt+ · · ·+ asdt

2 = 0 + a1dt+ 2a2tdt+ · · ·+ sa2t
s−1dt = p′(t)dt

So Ωk[t]/t = k[t]dt. In general Derk(k[t],M) ∼= homk[t](Ωk[t]/k,M) where given δ : k[t]→ M a derivation we
associate fδ : Ωk[t]/k → M given by fδ(dt) = δ(t). (In general we want fδ(dc) = δ(c).) Then fδ(p(t)dt) =
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p(t)δ(t). Conversely, for f : Ωk[t]/k → M can associate δf : k[t] → M given by δf (p(t)) = f(dp(t)) =
f(p′(t)dt) = p′(t)f(dt); then δf (c) = f(dc) and

δf (p(t)q(t)) = (p(t)q(t))′f(dt)

= p′(t)q(t)f(dt) + p(t)q′(t)f(dt)

= q · δf (p) + p · δf (q)

So δf is indeed a differential. Claim 2.39

We digress from Yoneda’s lemma for a bit to give an exposition of presheaves.

Definition 2.40 ((Topological) presheaves). Recall that if X is a topological space we defined TopX to
have open subsets of X as objects and

homTopX
=

{
i U

i
↪−→ V

∅ else

Then a presheaf of C (where C ∈ {Ab,Ring,Grp,Set, . . . }) is a functor S : Topop
X → C (i.e. a contravariant

S : TopX → C); then if i : U ↪→ V , we get pV,U = S(i) : S(V ) → S(U), which we think of as “restriction”
from V to U .

Example 2.41. Consider O : Topop
X → Set given by U 7→ { f : U → C continuous } where given f ∈ O(V ) we

define pV,U (f) = f � U ∈ O(U).
Example 2.42. let X = C with the Euclidean topology, and let F : Topop

X → Ring be F(U) = { f : U → C |
f analytic }. If U ⊆ V , we get F(U)→ F(V ) by f 7→ f � U .

Definition 2.43. A presheaf F : Topop
X → C is a sheaf if it satisfies

1. It is separated: if U ⊆ X is open and
U =

⋃
i∈I

Ui

then if f, g ∈ F(U) satisfy f � Ui = g � Ui for all i ∈ I, we have f = g.

2. We should be able to glue: if
U =

⋃
i∈I

Ui

and we are given (fi : i ∈ I) such that fi � (Ui ∩ Uj) = fj � (Ui ∩ Uj), then there is some f ∈ F(U)
such that f � Ui = fi for all i ∈ I.

Example 2.44. For example, F : Topop
X → Ring given by F(U) = { f : U → C | f continuous } is a sheaf of

rings.
Example 2.45. Let X = R with the Euclidean topology. Let F(U) be the set of bounded continuous function
U → R, and endow F with the restriction mapping. This is a presheaf but not a sheaf, since we don’t have
gluing:

R =

∞⋃
n=1

(−n, n)

and we can set fn(x) = x ∈ O(Un) (where Un = (−n, n)) and fn � (Un ∩Um) = fm � (Un ∩Um) but there is
no f : R→ R bounded such that f � Un = fn for all n.

We now bring things back to Yoneda’s lemma.
What are the representable presheaves of sets; i.e. representable functors h : Topop

X → Set? Well, we fix
U ⊆ X open and get hU : Topop

X → Set given by hU (V ) = homTopop
X
(U, V ) = homTopX

(V,U) and ψ 7→ ψ ◦ i
for ψ ∈ homTopop

X
(V2, V1) = homTopX

(V1, V2). Then hU (V ) is empty if V 6⊆ U and is { i : V ↪→ U } otherwise.
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Now, if hU and F are two presheaves Topop
X → Set, what is a natural transformation η : hU → F? Well,

if V1 ↪→ V2 then we get the following diagram commutes:

hU (V2) F(V2)

hU (V1) F(V1)

ηU

ηV

If F = hV , then the η : hU → hV are in bijection with hV (U) = homTopop
X
(V,U) = homTopX

(U, V ).

Claim 2.46. Any η : hU → F is completely determined by ηU .

Proof. If V1 ↪→ V2 then we get the following diagram commutes:

Case 1. Suppose V ⊆ U is open; so we have V i
↪−→ U , and hence U → V in Topop

X . We get

hU (U) F(U)

hU (V ) = hom(U, V ) F(V )

ηU

ηV

So ηV is determined by ηU .

Case 2. Suppose V 6⊆ U ; then hU (V ) = ∅. Claim 2.46

We now prove Yoneda’s lemma.

Proof of Theorem 2.36. We have a category A with objects A,B,C, . . . and morphisms A f−→ B; we have a
category F ⊆ Funct(A,Set) with objects hA, hB , hC , . . . and morphisms η : hA → hB . We claim that A ∼=
Fop. We need to construct F : A → Fop and G : Fop → A. We define F (A) = hA; given A

f−→ B we define
ηf = F (f) : hB → hA by, for C ∈ Ob(A), setting (ηf )C : hB(C)→ hA(C) (i.e. hom(B,C)→ hom(A,C)) to
be ψ 7→ ψ ◦ f for ψ ∈ hom(B,C).

To check that ηf : hB → hA is a natural transformation, suppose g : C → C ′ for C,C ′ ∈ Ob(A). We wish
to check that the following diagram commutes:

hB(C) hA(C)

hB(C
′) hA(C

′)

(ηf )C

hA(g)

(ηf )C′

But going one way, we get
ψ 7→ g ◦ ψ 7→ g ◦ ψ ◦ f

and going the other way, we get
ψ 7→ ψ ◦ f 7→ g ◦ ψ ◦ f

So the map A 7→ hA and f 7→ ηf is a functor F : A → Fop.
Now, define G : Fop → A by G(hA) = A. For η : hA → hB , we wish to define f(η) = G(η) : B → A. But

ηA : hA(A)→ hB(A); so we may set f(η) = G(η) = ηA(idA) : B → A. One checks that G is a functor.
Look at G ◦F : A → A and F ◦G : Fop → Fop. We claim that these are the respective identity functors.

Well, note that

(G ◦ F )(A) = G(hA)

= A

(F ◦G)(hA) = F (A)

= hA

11



Suppose A f−→ B; we get A GF (f)−−−−→ B. We need to check that GF (f) = f . Well, F (f) = ηf : hB → hA is
given by (ηf )C : hB(C)→ hA(C) is ψ 7→ ψ ◦ f ; then G(ηf ) = (ηf )B(idB) = idB ◦f = f .

Suppose now that η : hB → hA. Then F (G(η)) = F (ηB(idB)), and for C ∈ Ob(A) we have (F (ηB(idB)))C : hB(C)→
hA(C) is given by ψ 7→ ψ ◦ ηB(idB). But by naturality of η we have the following diagram commutes:

hB(B) hA(B)

hB(C) hA(C)

ηB

hB(ψ) hA(ψ)

ηC

and hence, following idB ∈ hB(B), we find ηC(ψ) = ψ ◦ηB(idB). So ηC = (F (ηB(idB)))C for all C ∈ Ob(A).
So η = F (G(η)).

So G ◦ F = idA and F ◦G = idFop , as desired. So A ∼= Fop. Theorem 2.36

Corollary 2.47. Any small category (i.e. in which Ob(C) is a set and hom(A,B) is a set for all A,B ∈
Ob(C)) is concretizable; i.e. is equivalent to a category in which each object is a set.

Idea of proof. Let C be a small category. Then by Yoneda’s lemma we have C ∼= Fop ⊆ Funct(C,Set)op via
C 7→ hC . We make a new category C̃ whose objects are given as follows: for B ∈ Ob(C) we make a set

B̂ =
∐

C∈Ob(C)

hB(C)

Given f : B → B′ we define a map f̂ : B̂′ → B̂ by ϕC 7→ ϕC ◦ f where

ϕC ∈ B̂′ =
∐

C∈Ob(C)

hB′(C)

This gives us a concrete category Ĉ with C ∼= Fop ∼= Ĉop. Corollary 2.47

2.8 Initial and terminal objects
Definition 2.48. We say I ∈ Ob(C) is an initial object of C if for all C ∈ Ob(C) there is a unique f : I → C.
We say T is a terminal object if for all C ∈ Ob(C) there is a unique g : C → T .

Example 2.49. Consider Set. Then ∅ is the unique initial object, and the terminal objects are exactly the
singletons.
Remark 2.50. If they exist, initial and terminal objects are unique up to unique isomorphism.

Proof. We do the case of initial objects. Suppose I1 and I2 is initial. Then there is a unique i1 : I1 → I2 and
i2 : I2 → I1; then i2 ◦ i1 : I1 → I1. But there is a unique map I1 → I1, and idI1 : I1 → I1; so i2 ◦ i1 = idI1 .
Likewise, we get i1 ◦ i2 = idI2 , and i1 is an isomorphism. Uniqueness is then immediate. Remark 2.50

Example 2.51.

1. In Ring (in which we require maps to preserve unity), we have I = Z is initial and T = 0R (the zero
ring) is terminal.

2. In Ab we have (0) is initial and terminal; we call this a zero object.

3. In Field∗ (i.e. non-zero fields) there is no initial or terminal object.
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2.9 Limits and colimits
We use lim−→ to denote colimits and lim←− to denote limits.

Definition 2.52. Let C be a category and let B be a category. (Almost always B will be small and B ⊆ C
is not necessarily full.) Then a diagram based on B is a functor F : B → C (often the inclusion functor). A
diagram is small if B is a small category. A cone to F is an object N ∈ Ob(C) and a family of morphisms
ϕB : N → FB for all B ∈ Ob(B) such that for all f : Bi → Bj in B we have the following diagram commutes:

N

FBi FBj

ϕBi

ϕBj

F (f)

We can make a category of cones in the natural way; we then define a limit lim←−F of the diagram to be a final
(i.e. terminal) object; that is, a cone (L,ϕB) such that every other cone factors uniquely through (L,ϕB).

Remark 2.53. Since terminal objects are unique up to unique isomorphism if they exist, we have that lim←−F
is unique up to unique isomorphism if it exists.

Definition 2.54. We can dually define a co-cone to F to be an object N ∈ Ob(C) and a family of morphisms
ϕB : FB → N for all B ∈ Ob(B) such that for all f : Bi → Bj in B we have the following diagram commutes:

FBi FBj

N

F (f)

ϕBi
ϕBj

We then define an inverse limit of the diagram to be an initial object in the category of co-cones.

Limits Colimits Diagrams
lim←− lim−→

Final object Initial object ∅
Product Coproduct Objects in C with the respective identity morphisms

Equalizer Coequalizer A B
Inverse (projective) limit Direct limit Directed set

Pullback Pushout
A B C

E F G

Example 2.55. Recall that a directed set I has a reflexive and transitive (i.e. preorder) ≤ such that for all
a, b ∈ I we have an upper bound in I.

Consider I = N with the usual order. Let Ring be the category of rings. Let B ⊆ Ring be the category
with objects Z/pnZ for some fixed prime p; for i ≥ 2, we include a morphism ϕi : Z/piZ → Z/pi−1Z given
by [n]pi 7→ [n]pi−1 . Take F : B → Ring to be the inclusion functor. Then L = lim←−F = lim←−Z/pnZ = Zp the
ring of p-adic integers.

Let’s see how to find L. Embed

π̃ : L→
∞∏
i=1

Z/piZ

by x 7→ (π1(x), π2(x), . . . ). Now, if π̃ is not injective, we can replace L by L/ ker(π̃); so assume π̃ is injective.
So

L ⊆ Z/pZ× Z/p2Z× . . .

If (a1, a2, . . . ) ∈ L, then a1 = π1((a1, . . . )) = ϕ2(π2(a1, . . . )) = a2 in Z/pZ; likewise we get an+1 ≡ an
(mod pn). So L ⊆ Zp. In fact we have equality: Zp = lim←−Z/pnZ.
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Example 2.56. Consider the directed set I = N with a ≤ b ⇐⇒ a | b Let C be the category of fields. Fix
a prime p; notice for n ∈ N we have Fpn the splitting field of xpn − x over Fp. If Fpi ⊆ Fpj then we have
Fpj = Fpi · 1 ⊕ . . . ⊕ Fpiαs has size (pi)s; so j = is, and i | j. Conversely, if i | j, say j = is, then we get
an embedding θij : Fpi ↪→ Fpj . What is lim−→Fpn? The category B has objects Fpi for i ≥ 1 and morphisms
venerated by θij for i | j. Then L = Fp is the algebraic closure of Fp.

We have seen that Zp is a lim←− and Fp is a lim−→. More generally, if (I,≤) is a directed set, we define
1. Given category with objects {Ci : i ∈ I } and morphisms ϕij : Ci → Cj for i ≥ j such that ϕjk ◦ϕij =
ϕik and ϕii = idCi , we define lim←−Ci to be the inverse limit of the Ci.

2. Given a category with objects {Ci : i ∈ I } and morphisms θij : Ci → Cj again satisfying θjk ◦θij = θik
and θii = idCi

, we define lim−→Ci to be the direct limit of this system.
Definition 2.57 (Products and coproducts). Suppose C is a category and B ⊆ C is a subcategory whose
only morphisms are the identity morphisms; let F be the inclusion functor. We call lim←−F the product∏

C∈Ob(B)

C

and we call lim−→F the coproduct ∐
C∈Ob(B)

C

Mnemonic 2.58. “Colimits are the stalactites of category theory.”

FB FB′

L

Ff

ϕB

ϕB′

We can think of the “c” in “colimit” as recalling “ceiling”. We can also recall the lim←− generalizes the
inverse/projective limit, and that lim−→ generalizes the direct limit.
Remark 2.59. When limits/colimits exist, we can regard lim−→ or lim←− as functors. What does this mean? Well,
if we fix a category A and consider all diagrams of type B into A, we can identify this with Funct(B,A).
Suppose F,G : B → A and η : F → G is a natural transformation; consider the colimit case. Then the
following diagram commutes:

FB FB′

lim−→F

GB GB′

lim−→G

Ff

ϕB

ηB

ϕB′

ηB′

Gf

ψB

ψB′

which then induces a unique morphism lim−→ η : lim−→F → lim−→G such that the following diagram commutes:

FB FB′

lim−→F

GB GB′

lim−→G

Ff

ϕB

ηB

ϕB′

ηB′

lim−→ ηGf

ψB

ψB′
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Playing a little more, we get that lim−→ is indeed a functor Funct(B,A)→ A.
An overview of our coverage of limits and colimits:

1. Examples

2. Left adjoints preserve colimits, right adjoints preserve limits

3. Criteria for (small) colimits and limits to always exists

What does (2) mean? Well, suppose D : D → A is a diagram; suppose F : A → B and G : B → A have
F � G. We do the colimit case.

DX DX ′

lim−→D

Df

ϕX

ϕX′

Applying F , we get another cone:

FDX FDX ′

F (lim−→D)

FDf

FϕX

FϕX′

A priori, we don’t know that it’s the universal cone (i.e. colimit).

Theorem 2.60. F (lim−→D) = lim−→(FD).

Mnemonic 2.61. RAPL: “right adjoints preserve limits”. Alternatively, left adjoints are right exact.
Example 2.62 (Coproduct in Grp). Consider two copies of Z/2Z: 〈x | x2 = 1〉 and 〈y | y2 = 1〉.

〈x | x2 = 1〉 〈y | y2 = 1〉

Z/2Z
∐

Z/2Z

G

where Z/2Z
∐

Z/2Z is the free product of Z/2Z with itself. Given maps Z/2Z into G as above, we define g
to be the image of x and h to be the image of y; this then induces a map Z/2Z

∐
Z/2Z→ G via x 7→ g and

y 7→ h.
One can check that Z/2Z

∐
Z/2Z ∼= 〈u, v | v2 = 1, vuv−1 = u−1〉, the infinite dihedral grape. In general

we have ∐
i∈I

Gi

is just the free product of the Gi.
Note that the free product of Z/2Z with Z/2Z in Ab is instead the direct sum.

Example 2.63 (Coproduct in Set). The coproduct of sets is just the disjoint union.
Example 2.64 (Coproduct in Ab). A

∐
B ∼= A⊕B. More generally in R-Mod we have M

∐
N ∼=M ⊕N ; in

fact ∐
i∈I

Mi
∼=
⊕
i∈I

Mi

Example 2.65. Consider G : Grp → Set the forgetful functor. We know F � G where F is the free
grape functor; is G a left adjoint? No, as it does not preserve colimits: G(Z/2Z

∐
Z/2Z) is infinite but

G(Z/2Z)
∐
G(Z/2Z) ∼= { 1, 2, 3, 4 }.
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TODO 1. Get this class.

Definition 2.66. A category in which all small colimits exist is called cocomplete; a category in which all
small limits exist is called complete. A category that is complete and cocomplete is called bicomplete.

Theorem 2.67 (Criterion for existence of small colimits). Suppose C is a category in which all small
coproducts exist and all coequalizers

C C ′
f

g

exist. Then C is cocomplete.

Proof. Suppose that small coproducts exist and all coequalizers exist. Suppose F : B → C is a small diagram.
We wish to show lim−→F exists. Let

C ′ =
∐

B∈Ob(B)

FB ∈ Ob(C)

Pictorially:
FB FB′ FB′′

C ′

iB iB′
iB′′

Let
Mor(B) =

⋃
B,B′∈Ob(B)

homB(B,B
′)

Notice that each ϕ ∈ Mor(B) has a source and target: if ϕ : B → B′, we define s(ϕ) = B and t(ϕ) = B′.
(A somewhat technical point is that we implicitly require in our definition of a category that these maps be
well-defined.) Let

C =
∐

ϕ∈Mor(B)

F (s(ϕ)) ∈ Ob(C)

Pictorially:
FB FB′ FB′′

C

αB αB′
αB′′

(Note that αB should really be αB,ϕ where s(ϕ) = B; for notational convenience, we instead use αB .)
We now construct morphisms Φ,Ψ: C → C ′ such that we will have lim−→F is the coequalizer of Φ and Ψ.
Since each FB has iB : FB → C ′, we have that C ′ together with the iB is a cocone over Mor(B); so there

is a unique Φ: C → C ′ such that the following diagram commutes:

FB FB′

C

C ′

αB

iB

αB′

iB′

Φ

It also holds that for each ϕ ∈ homB(B,B
′) we have iB′ ◦F (ϕ) : FB → C ′; this yields another cocone to C ′,

and thus we get a unique Ψ: C → C ′ such that the following diagram commutes:

FB

C

C ′

αB

iB′◦F (ϕ)

Ψ

16



By assumption, we have that coequalizers exist; so there is an object L and a morphism v : C ′ → L such
that v ◦Φ = v ◦Ψ. We claim that L together with the obvious maps γB = v ◦ iB : FB → L is a colimit of F .

We first check that (L, γB) is a cocone. Suppose ϕ ∈ homB(B,B
′). Then

γB = v ◦ iB
= v ◦ Φ ◦ αB
= v ◦Ψ ◦ αB
= v ◦ iB′ ◦ Fϕ

So the following diagram commutes:

FB FB′

L

Fϕ

γB
γB′

and (L, γB) is indeed a cocone.
Suppose we have another cocone (T, θB). Then for each B ∈ Ob(B) we have θB : FB → T ; so, by

definition of C ′, we have a unique h : C ′ → T such that h ◦ iB = θB for all B ∈ Ob(B). We want h to factor
through L; i.e. we want a unique h̃ : L→ T such that the following diagram commutes:

FB FB′

C ′ L

T

iB

θB

iB′

h

v

h̃

To get to factor through L we must show that h ◦ Φ = h ◦Ψ. But

h ◦ Φ ◦ αB = h ◦ iB
= θB

= θB′ ◦ F (ϕ)
= h ◦ iB′ ◦ F (ϕ)
= h ◦ iB′ ◦ F (ϕ)
= h ◦Ψ ◦ αB

But by definition of C, we have a unique f : C → T such that θB = f ◦αB for all B ∈ Ob(B). So h◦Φ = h◦Ψ,
and by definition of L as the coequalizer we have our desired h̃. Theorem 2.67

Remark 2.68. The exact same argument shows that if F : C → D with C and D cocomplete satisfies

F

(∐
i∈I

Ci

)
∼=
∐
i∈I

FCi

F (Coequal( C C ′
f

g
)) = Coequal( FC FC ′

Ff

Fg
)

Then
F (lim−→D) = lim−→FD

for all small diagrams D : B → C.
Corollary 2.69. The following categories are bicomplete:

Category Product Coproduct Equalizer Coequalizer
Abelian grapes

∏
Ai

⊕
Ai ker(f − g) coker(f − g)

R-modules
∏
Mi

⊕
Mi ker(f − g) coker(f − g)

Commutative rings
∏
Ri

⊗R
Z Ri { f(x) = g(x) } R/〈f(x)− g(x)〉

Grapes …
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2.10 Govorov-Lazard theorem and filtered subcategories
Recall that an R-module M is flat if whenever

0→ N ′ f−→ N

is exact then so is
0→ N ′ ⊗RM → N ⊗RM

Further recall that P is projective if homR(P,−) is exact, and I is injective if homR(−, I) is exact.
Example 2.70. Free modules are flat.

Theorem 2.71 (Govorov-Lazard). Let R be a commutative ring and let M be an R-module. Then M is
flat if and only if M is a filtered colimit of free modules.

Definition 2.72. Suppose B is a small category. We say B is filtered if

1. If B1, B2 ∈ Ob(B) then there is B ∈ Ob(B) with f ∈ hom(B1, B) and g ∈ hom(B2, B).

2. If f ∈ hom(B′, B1) and g ∈ hom(B′, B2) then there are B′′ ∈ Ob(B) and u : B1 → B′′ and v : B2 → B′′

such that the following diagram commutes:

B1

B′ B′′

B2

uf

g v

If F : B → A is a diagram and B is filtered, we say lim−→F is a filtered colimit.

Example 2.73 (Filtered limits in R-Mod). If B is a filtered subcategory of R-Mod, then what is lim−→B? A
concrete description is

lim−→B =
⊔

M∈Ob(B)

M/ ∼

What is ∼? If x ∈M and y ∈M ′ then we set x ∼ y if and only if f : M →M ′′ and g : M ′ →M ′′ such that
f(x) = g(y). Observe that

1. ∼ is an equivalence relation. Reflexivity and symmetry follow immediately; to see transitivity, suppose
x ∼ y and y ∼ z, say with f : M → P , g : M ′ → P , h : M ′ → P ′, and k : M ′′ → P ′ such that
f(x) = g(y) and h(y) = k(z). Since B is filtered then we have Q ∈ Ob(B) and u : P → Q and
v : P ′ → Q such that the following diagram commutes:

P

M ′ Q

P ′

ug

h v

Then (u ◦ f)(x) = (u ◦ g)(y) = (v ◦ h)(y) = (v ◦ k)(z) and x ∼ z.

2. We have an R-module structure on ⊔
M∈Ob(B)

M/ ∼

18



In particular, given
x, y ∈

⊔
M∈Ob(B)

M

say x ∈ M1 and y ∈ M2, we define x + y to be the equivalence class of f(x) + g(y) where we use the
fact that B is filtered to find N ∈ Ob(B) and f : M1 → N and g : M2 → N . One checks that this is
well-defined.

3. We have natural maps
iM : M →

⊔
M∈Ob(B)

M/ ∼

Suppose (F,ϕM ) is a cocone over B. Suppose x ∼ y; say x ∈ M , y ∈ M ′, u : M → M ′′, v : M ′ → M ′′

satisfy u(x) = v(y). Then ϕM (x) = ϕM ′′(u(x)) = ϕM ′′(v(y)) = ϕM ′(y). So the ϕM are defined on
∼-classes, and thus induce a map ⊔

M∈Ob(B)

M/ ∼→ F

Hence we indeed have ⊔
M∈Ob(B)

M/ ∼∼= lim−→B

Proof of Theorem 2.71. We prove that if the Ui come from is a filtered subcategory B of R-Mod whose
objects are free then lim−→Ui is flat.

Idea: suppose 0→ N ′ f−→ N is exact and M = lim−→Ui. We wish to show that

0→M ⊗N ′ id ⊗f−−−→M ⊗N

is exact. Let F : B → R-Mod be Q 7→ Q⊗N ′ and G : B → R-Mod be Q 7→ Q⊗N . The point is that we get
a natural transformation α : F → G given by

F (U)
αU−−→ G(U)

U ⊗N ′ id ⊗f−−−→ U ⊗N

for U ∈ Ob(B). Indeed, if h : U → U ′ then the following diagram commutes:

F (U) G(U)

F (U ′) G(U ′)

αU

F (h) G(h)

αU′

since, following u⊗ n′ ∈ F (U) right and down we get

u⊗ n′ 7→ u⊗ f(n′) 7→ h(u)⊗ f(n′)

and following down and right we get

u⊗ n′ 7→ h(u)⊗ n′ 7→ h(u)⊗ f(n′)

The proof is then that, if M = lim−→B, then

M ⊗N ′ = (lim−→B)⊗N
′ ∼= lim−→(Ui ⊗N ′)

lim−→ f

↪−−−→ lim−→(Ui ⊗N) ∼= (lim−→Ui)⊗N =M ⊗N

The isomorphisms follow from the fact that left adjoints preserve colimits and tensor product is a left adjoint;
it remains to see that

h : lim−→(Ui ⊗N ′)
lim−→ f

−−−→ lim−→(Ui ⊗N)
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given by ⊔
Ui ⊗N ′ id ⊗f−−−→

⊔
Ui ⊗N/ ∼

is injective. Suppose
x ∈

⊔
Ui ⊗N ′/ ∼

has h(x) ∼ 0. Then we have some Uj and θ = G(ψ) : Ui ⊗N → Uj ⊗N such that θ(h(x)) = 0. But then by
naturality of α we have the following diagram commutes:

Ui ⊗N ′ Ui ⊗N

Uj ⊗N ′ Uj ⊗N

αUi

F (ψ) θ

αUj

But αUj is injective; so F (ψ)(x) = 0, and x ∼ 0. So h is injective as desired. Theorem 2.71

3 Abelian categories
Definition 3.1. A preadditive category is a category C is a category in which for all A,B ∈ Ob C) we
have that homC(A,B) has the structure of an abelian grape. (In particlar, there is 0A,B : A → B for all
A,B ∈ Ob(C).) We also require that

◦A,B,C : homC(B,C)× homC(A,B)→ homC(A,C)

be bilinear (as a homomorphism of Z-modules) for all A,B,C ∈ Ob(C).

Example 3.2. Suppose R is a ring. Define a category with R as the unique object and morphisms ϕr : R→ R
for r ∈ R given by ϕr(x) = rx. Then

• ϕ0 = 0r,r

• (ϕr + ϕs) ◦ ϕt = ϕrt + ϕst = ϕr ◦ ϕt + ϕs ◦ ϕt

• ϕr ◦ (ϕs + ϕt) = ϕrs + ϕrt = ϕr ◦ ϕs + ϕr ◦ ϕt
So this category is preadditive.

Definition 3.3. Suppose C and D are preadditive categories. A functor F : C → D is called additive if the
map f 7→ F (f) gives a homomorphism homC(A,B)→ homD(FA,FB) for all A,B ∈ Ob(C).

Definition 3.4. A preadditive category is additive if all finite (including empty) products and coproducts
exist.

Remark 3.5. If C is additive and A,B ∈ Ob(C) then A
∏
B ∼= A

∐
B.

Proof. We are given pA : A
∏
B → A, pB : A

∏
B → B, iA : A → A

∐
B, and iR : B → A

∐
B. Drawing

inspiration from familiar abelian categories, our isomorphism θ : A
∏
B → A

∐
B should be iA ◦pA+ iB ◦pB .

To get its inverse, note that we have a map µA : A → A
∏
B induced by the cone idA : A → A and

0A,B : A→ B; likewise we gat a map µB : B → A
∏
B.

Claim 3.6. A
∏
B is a coproduct.

Proof. Suppose we have f : A→ C, g : B → C; we wish to find unique θ : A
∏
B → C such that the following

diagram commutes:
A B

A
∏
B

C

µA

f

µB

g

θ
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What should θ be? It should be f ◦ pA + g ◦ pB . We must show f = θ ◦ µA and g = θ ◦ µB . But

θ ◦ µA = (f ◦ pA + g ◦ pB) ◦ µA
= f ◦ (pA ◦ µA) + g ◦ (pB ◦ µA)
= f ◦ idA+g ◦ 0
= f + 0

= f

and similarly we get g = θ ◦ µB .
It remains to check that θ is unique. Suppose θ and θ′ both make the above diagram commute; so

θ ◦ µA = θ′ ◦ µA = f and θ ◦ µB = θ′ ◦ µB = g. Let ψ : A
∏
B → C be ψ = θ− θ′; then ψ ◦ µA = ψ ◦ µB = 0.

Subclaim 3.7. µA ◦ pA + µB ◦ pB = idA∏
B.

Proof. Recall that

pA ◦ µA = idA
pB ◦ µB = idB
pA ◦ µB = 0

pB ◦ µA = 0

But then the following diagram commutes:

A
∏
B

A
∏
B

A B

pA

pB

µA◦pA+µB◦pB

pA

pB

since
pA ◦ (µA ◦ pA + µB ◦ pB) = idA ◦pA + 0 = pA

and likewise with pB . But by the universal property of products we have that idA∏
B is the unique morphism

A
∏
B → A

∏
B making the above diagram commute. So idA∏

B = µA ◦ pA + µB ◦ pB , as desired.
Subclaim 3.7

Then
ψ = ψ ◦ idA∏

B = ψ ◦ (µA ◦ pA + µB ◦ pB) = (ψ ◦ µA) ◦ pA + (ψ ◦ µB) ◦ pB = 0

and θ = θ′. Claim 3.6

The isomorphism then follows by uniqueness of coproducts. Remark 3.5

Remark 3.8. We also have a zero object. Why? The empty coproduct yields an initial object I, and the
empty product gives a final object T .

Claim 3.9. I ∼= T .

Proof. 0T,I : T → I and 0I,T : I → T ; the fact that idT is the unique morphism T → T and idI is the unique
morphism I → I yields that 0I,T ◦ 0T,I = idT and 0T,I ◦ 0I,T = idI . So 0I,T : I → T is an isomorphism.

Claim 3.9

Remark 3.10. Notice if f : A→ B then the limit of the diagram:

A B
f

0A,B

is the equalizer of f and 0, which we think of as roughly {x ∈ A : f(x) = 0 }.
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Definition 3.11. If the equalizer of

A B
f

0A,B

exists, we call it the kernel of f . If the coequalizer exists, we call it the cokernel.

Definition 3.12. An additive category in which kernels and cokernels exist is called pre-abelian.

Definition 3.13. A map f : A→ B is called a monomorphism (which we think of as similar to injectivity)
if whenever f ◦ h1 = f ◦ h2 we also have h1 = h2. We say f is an epimorphism if whenever h1 ◦ f = h2 ◦ f
we also have h1 = h2.

Example 3.14. A morphism can be a monomorphism and an epimorphism without being an isomorphism.
Indeed, consider Ring with Z i

↪−→ Q. It is clear that i is a monomorphism.

Claim 3.15. h1 ◦ i = h2 ◦ i implies h1 = h2.

Proof. We are given that h1(n) = h2(n) for all n ∈ Z. Then

1 = h1(1) = h1(b)h1(b
−1) = h1(b)h2(b

−1) = 1

so h1(b−1) = h2(b
−1); thus

h1(ab
−1) = h1(a)h1(b

−1) = h2(a)h2(b
−1) = h2(ab

−1)

So h1 = h2. Claim 3.15

Definition 3.16. A monomorphism f : A → B is normal if f is a kernel; i.e. there is g : B → C such that
(A, f) is the kernel of g. Dually, an epimorphism g : B → C is normal if g is a cokernel.

An abelian category is a pre-abelian category in which every monomorphism is normal and every epimor-
phism is normal.

Exercise 3.17. This implies that f : A→ B admits a factorization

A B

im(f)

f

u v

where u is an epimorphism and v is a monomorphism.
What is im(f)? It must be ker(coker(f)).

Example 3.18. Suppose R is a ring with unity (not necessarily commutative). Then R-Mod, the category of
left R-modules is an abelian category.
Remark 3.19. In R-Mod, monomorphisms are exactly injective homomorphisms. Indeed, if f : M → N is a
monomorphism and i : ker(f) ↪→ M then f ◦ i = f ◦ 0; so since f is a monomorphism we have i = 0, and
ker(f) = 0, and f is injective.

Dually, we get that epimorphisms are surjective.

3.1 Mitchell’s embedding lemma
We wish to get a notion of exactness. Suppose

A
f−→ B

g−→ C

What does it mean to say that this is exact at B?

1. g ◦ f = 0
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2. The canonical map f̃ : im(f)→ ker(g) is an isomorphism.

What is the canonical map? Well, let π : B � coker(f) and i : im(f) = ker(π) ↪→ B be the canonical maps.
Then π◦f = 0, so by the universal property of ker(π) we have a unique θ : A→ im(f) such that the following
diagram commutes:

im(f)

A B

i
θ

f

In fact θ is an epimorphism and i is a monomorphism. But

0 = g ◦ f =⇒ g ◦ i ◦ θ = 0

=⇒ g ◦ i ◦ θ = 0 ◦ θ
=⇒ g ◦ i = 0

since θ is an epimorphism. So, by the universal property of ker(g), we have a unique map f̃ : im(f)→ ker(g)
such that the following diagram commutes:

im(f)

ker(g)

B

f̃

i

Remark 3.20. I think this is equivalent to requiring that the map im(f)→ B be the kernel of g.

Definition 3.21. Suppose F : C → D is a functor. We say F is:

• full if F : homC(A,B)→ homD(FA,FB) is surjective for all A,B ∈ Ob(C).

• faithful if F : homC(A,B)→ homD(FA,FB) is injective for all A,B ∈ Ob(C).

• exact if F is additive and if whenever we have

0→ A
f−→ B

g−→ C → 0

exact then
0→ FA

Ff−−→ FB
Fg−−→ C → 0

is exact.

Lemma 3.22 (Mitchell’s theorem). Suppose A is a small abelian category. Then there is F : A → R-Mod
where R is a ring and F is full, faithful, and exact.

If we start with R-Mod, can we recover R?
Remark 3.23. If A is an abelian category and A ∈ Ob(A) then homA(A,A) ∼= EndA(A) is a ring under ◦.
In R-Mod, if we consider R as a left R-module, then EndR(R) ∼= Rop (where Rop is R with r ·Rop s = s ·R r).
Indeed, given ψ ∈ EndR(R), we have that ψ is determine by ψ(1) since if ψ(1) = s then ψ(r) = rψ(1) = rs.
So ψ = Φs for some s ∈ R where Φs(x) = xs. So

EndR(R) ∼= {Φs : s ∈ R } ∼= Rop

(where the opposite ring comes because (Φs ◦ Φr)(x) = xrs = Φrs(x)).
However, we can have R 6∼= S with R-Mod ∼= S-Mod.

Example 3.24. R-Mod ∼=Mn(R)-Mod.
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We might remark, though, that given a free module Rn we have EndR(Rn) ∼= Mn(R
op), and thus

EndR(Rn)op ∼=Mn(R); so we might look and the endomorphism ring of free modules. Being a free module,
however, is not categorically definable. We instead turn to projective modules:

Definition 3.25. Suppose A is an abelian category and M ∈ Ob(A). We get a functor hom(M,−) : A → Ab
by B 7→ homA(M,B). We say that M is a projective object of A if the functor hom(M,−) is exact.

What are the projectives in R-Mod? Well, one checks that for all P we have hom(P,−) is left-exact.
When is hom(P,−) right-exact? We need that given exact M g−→ N → 0 that hom(P,M)→ hom(P,N)→ 0
is exact; i.e. given any ϕ : P → N there is ψ : P → N such that the following diagram commutes:

M N

P

g

ψ
ϕ

Remark 3.26. P is projective implies there is Q such that P ⊕Q ∼= RI . Indeed, consider π : RI � P ; then
since idP : P → P we have s : P → RI such that the following diagram commutes:

RI P

P

π

s
idP

The proof is somewhat involved, so we merely give an overview.
A starting result:

Theorem 3.27. Suppose L is a cocomplete abelian category with a projective generator (i.e. P such that
hom

(
P ,−

)
is exact and faithful). If A ⊆ L (i.e. with I : A → L exact) is a small abelian subcategory then

there is fully faithful and exact F : A → R-Mod.

Remark 3.28. In R-Mod, we have that R is a projective generator.
Our strategy is then to take A, find B complete, containing A, and having a projective generator, and

then apply the theorem.
Remark 3.29. hom

(
P ,−

)
is an additive functor.

Remark 3.30. Not all projectives are generators. Consider for example R = Z/6Z ∼= Z/3Z; then P = Z/2Z
is projective and not a generator.

Proof of Theorem 3.27. Suppose A ∈ Ob(A); consider∐
g∈hom

(
P,A

)P

We get ig : P →
∐
g P for each g ∈ hom

(
P ,A

)
. Furthermore, since the g : P → A form a cocone, we get

pA :
∐
g P → A such that pa ◦ ig = g for all g ∈ hom

(
P ,A

)
.

Claim 3.31. pA is an epimorphism.

Proof. In an abelian category, it suffices to verify that if h ◦ pA = 0 then h = 0 for all h : A → B. Suppose
then that h ◦ pA = 0. Then h ◦ pA ◦ ig = 0 for all g ∈ hom

(
P ,A

)
; so h ◦ g = 0 for all g : P → A. So

hom
(
P , h

)
= 0: hom

(
P ,A

)
→ hom

(
P ,B

)
. But hom

(
P ,−

)
is faithful since P is a generator. So h = 0. So

pA is an epimorphism. Claim 3.31
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Now, let

I =
⊔

A∈Ob(A)

hom
(
P ,A

)
P =

∐
I

P

From assignment 3, we will see:

1. P is a projective generator.

2. For all A ∈ Ob(A) there is an epimorphism θ : P → A.

Now we can find a ring R:

R = End

(∐
I

P

)op

= End(P )op

Claim 3.32. There is F : A → R-Mod fully faithful and exact given by M 7→ hom(P,M) for M ∈ Ob(A).

Proof. We first need to define an R-module structure on hom(P,M). Well, R = End(P )op = hom(P, P )op.
Given r ∈ R and ψ ∈ hom(P,M), we can then set r · ψ = ψ ◦ r ∈ hom(P,M); bilinearity and associativity
of composition yield that this is in fact an R-module structure.

We also need to check that the images of morphisms are morphisms of R-modules. Suppose f : M → N
for M,N ∈ Ob(A). We must check that hom(P, f) : hom(P,M) → hom(P,N) (given by g 7→ f ◦ g) is a
homomorphism of R-modules. Additivity follows from bilinearity of composition; for scalar multiplication,
note that for r ∈ R we have

r · (hom(P, f)(g)) = r · (f ◦ g) = (f ◦ g) ◦ r = f ◦ (g ◦ r) = r ◦ (r · g) = hom(P, f)(r · g)

Now we must check that F is fully faithful and exact. Projectivity of P immediately yields exactness; that
P is a generator immediately yields faithfulness. It remains to check that F is full.

Suppose then that α : hom(P,M) → hom(P,N); we wish to find f : M → N such that α = hom(P, f).
Now we use the second result from the assignment to get epimorphisms θ : P → M and ψ : P → N . Let
K = ker(θ); then

0→ K → P
θ−→M → 0

is a short exact sequence. Since hom(P,−) is exact, we get

0→ hom(P,K)→ hom(P, P )
hom(P,θ)−−−−−−→ hom(P,M)→ 0

is exact. But hom(P, P ) ∼= R as left R-modules, as one sees by looking at the R-module structure we defined.
So

0 hom(P,K) R hom(P,M)A 0

R hom(P,N) 0

hom(P,θ)

α

hom(P,ψ)

Fact 3.33. R is projective.

So there is α′ : R→ R such that the following diagram commutes:

0 hom(P,K) R hom(P,M)A 0

R hom(P,N) 0

hom(P,θ)

α′ α

hom(P,ψ)
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But α′ : R→ R is a morphism; so α′ = ρs is right multiplication by some s ∈ R. Now look at the diagram

0 K P M 0

P N 0

s

Consider
K P

P N 0

s

We claim that K → P
s−→ P → N is the 0 morphism. Why? Well,

hom(P,K)→ R
ρs−→ R→ hom(P,N)

is the 0 map by the preceding commutative diagram and hom(P,−) is faithful.
Now, M = coker(K → P ), and K → P

s−→ P
ψ−→ N is the 0 map; so there is h : M → N ; apply hom(P,−)

and use the fact that hom(P, θ) is an epimorphism to conclude that α = hom(P, h). Claim 3.32

Theorem 3.27

3.2 Projective modules
Definition 3.34. Given a ring R we define R-Mod to be the category of left R-modules; we define Mod(R)
to be the category of right R-modules.

Definition 3.35. Recall that an R-module P is projective if hom(P,−) : R-Mod → R-Mod is exact. We
know it is left exact; so it is equivalent to requiring that given any surjection g : M � N and any ϕ : P → N ,
there is ψ : P →M such that the following diagram commutes:

M N 0

P

g

ψ
ϕ

Theorem 3.36. Suppose P is an R-module. Then the following are equivalent:

1. We have the condition above; namely that given any surjection g : M � N and any ϕ : P → N there
is ψ : P →M such that the following diagram commutes:

M N 0

P

g

ψ
ϕ

2. Every short exact sequence
0→M

f−→ N
g−→ P → 0

splits.

3. There is an R-module Q such that P ⊕Q is free.

4. The functor hom(P,−) is exact.

Proof.
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(1) =⇒ (2) By (1) we get s : P → N such that the following diagram commutes:

N P 0

P

g

s
id

So we have s such that g ◦ s = idP . Now define ψ : P ⊕M → N by (p,m)→ s(p) + f(m). One checks
that ψ is an isomorphism; so the short exact sequence splits.

(2) =⇒ (3) Pick a free module F with F
g−→ P → 0 exact. Let Q = ker(F g−→ P ). So

0→ Q→ F → P → 0

is exact. By (2), this splits, and F ∼= P ⊕Q.

(3) =⇒ (4) Suppose
0→M ′ f−→M

g−→M ′′ → 0

is exact. We know that hom(P,−) is left exact; it remains to show that hom(P, g) : hom(P,M) →
hom(P,M ′′) (given by ψ 7→ g ◦ ψ) is surjective. Suppose h : P → M ′′; we must show that there is
h′ : P → M such that h = g ◦ h′. By (3) we may find an R-module Q such that F = P ⊕ Q is free.
Define h0 : F → M ′′ by h0 � P = h and h0 � Q = 0. Then because F is free there is h′0 : F → M such
that g ◦ h′0 = h0; i.e. the following diagram commutes:

M M ′′ 0

F

g

h′
0

h0

Now let h′ = h′0 � P . Then

g ◦ h′ = g ◦ (h′0 � P ) = (g ◦ h′0) � P = h0 � P = h

(4) =⇒ (1) Immediate, since (1) just requires that whenever M � N → 0 is exact then so is hom(P,M)→
hom(P,N)→ 0. Theorem 3.36

Example 3.37. Let R = Z×Z; let P = Z×{ 0 }. Then P is not free since (0, 1)·P = (0), so Ann(P ) = { 0 }×Z
is non-trivial. But if Q = { 0 } × Z then P ⊕Q = R is free; so P is projective.

We now consider the commutative situation. Suppose (R,m) is a (commutative) local ring (i.e. m is the
unique maximal ideal).

Theorem 3.38 (Kaplansky). If P is a projective R-module then P is free.

Theorem 3.39. Suppose (R,m) is a local ring; suppose P is a finitely generated, projective R-module. Then
P is free.

Proof. Let p1, . . . , ps be a generating set for P with s minimal. Let

g : R⊕ . . .⊕R︸ ︷︷ ︸
s times

� P

(0, 0, . . . , 0, 1︸︷︷︸
ith

, 0, . . . , 0) 7→ pi

Let Q = ker(g). Then
0→ Q

i−→ Rs
g−→ P → 0

is exact. Since P is projective, we get that Rs ∼= Q⊕P . Let K = R/m; then K is a field. Applying −⊗RK
to the above isomorphism, we get

Ks = (R/mR)s ∼= Rs/mRs ∼= P/mP ⊕Q/mQ
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Claim 3.40. P/mP ∼= Ks.

Proof. Suppose not; then, since these are vector spaces over K, we have P/mP ∼= Kt for some t < s (since
P/mP ⊆ Ks). Pick a1, . . . , at ∈ P such that a1, . . . , at ∈ P/mP form a K-basis (i.e. an R/m-basis). Now
let

P0 = Ra1 + · · ·+Rat $ P

(The containment is proper because t < s and we chose s to be minimal.) Now let N = P/P0 6= (0).
Then N is finitely generated since P is finitely generated. What is mN? Well, notice P = mP + P0, since
P0 = P/mP . So

mN = (mP + P0)/P0 = P/P0 = N

But m = J(R) and N is finitely generated; so, by Nakayama’s lemma, we get N = (0), a contradiction.
Claim 3.40

Then since
Ks︸︷︷︸

s dimensional

= (P/mP )︸ ︷︷ ︸
s dimensional

⊕(Q/mQ)

and these are vector spaces over K, we have Q/mQ = 0. So Q = mQ. But m = J(R), and Q is a direct
summand of a finitely generated module, and is thus finitely generated; so, by Nakayama’s lemma, we have
Q = (0). But Rs = P ⊕Q; so Rs = P , and P is free. Theorem 3.39

Remark 3.41. If R is a PID and P is projective then P is free.

Proof. We prove the case where P is finitely generated. Then by the fundamental theorem for finitely
generated modules over a PID, we have P = Rm ⊕ T , where T is torsion; in particular, we get

T = ⊕IR/I

for some collection of ideals I of R. But we say that there is Q finitely generated such that P ⊕ Q ∼= RL.
(In particular, we pick g : RL � P , and let Q = ker(g); then L is the number of generators of P .) Since Q
is finitely generated, we have

Q ∼= Rn ⊕ T ′

where T ′ is torsion. Then

RL ∼= P ⊕Q ∼= (Rm ⊕ T )⊕ (Rn ⊕ T ′) ∼= (Rm ⊕Rn)⊕ (T ⊕ T ′)

But RL is free, and thus has no torsion; so T = T ′ = (0). So P is free. Remark 3.41

Theorem 3.42 (Bass). Suppose R is a commutative Noetherian ring such that 0 and 1 are the only
idempotents. Suppose P is a projective R-module that is not finitely generated. Then P is free.

Definition 3.43. SupposeR is a ring. Recall that the spectrum ofR is Spec(R) = { p : p a prime ideal of R }.
We put a topology on Spec(R) called the Zariski topology by declaring the closed sets to be { p : p ⊇ I } for
I E R. We define the principal open sets to be V (f) = { p : f /∈ p }.

Definition 3.44. Suppose S is a multiplicatively closed subset of R with 0 /∈ S. We set S−1R = { s−1r : s ∈
S, r ∈ R } where s−1r = (r, s) and (r1, s1) ∼ (r2, s2) if and only if s3(r1s2− s1r2) = 0. If M is an R-module,
then we define S−1M = M ⊗R S−1R; then elements of S−1M take the form s−1m = (s,m) for s ∈ S and
m ∈ M , where (s1,m1) ∼ (s2,m2) if and only if s3(s1m2 − s2m1) = 0 for some s3 ∈ S. For p ∈ Spec(R),
we define Mp = Rp ⊗RM and Rp = S−1R with S = {x ∈ R : x /∈ p }. If f ∈ R is not nilpotent, we define
Mf = Rf ⊗RM and Rf = S−1R with S = { 1, f, f2, . . . }.

Theorem 3.45. Suppose R is a commutative Noetherian ring; suppose P is a finitely generated R-module.
Then the following are equivalent:

1. P is projective.

2. Pp = P ⊗R Rp is free for all p ∈ Spec(R).
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3. Pm = P ⊗R Rm is free for all maximal ideals m of R.

Proof.

(1) =⇒ (2) If P is finitely generated and projective then we have n ≥ 1 and a surjection g : Rn � P . If
Q = ker(g), then

0→ Q→ Rn → P → 0

is exact. Then, since P is projective, we have Rn ∼= Q⊕ P . Applying −⊗R Rp we see that

Rnp
∼= (R⊗R Rp)

n

∼= Rn ⊗R Rp

∼= (P ⊕Q)⊗R Rp

∼= Pp ⊕Qp

So Pp is a direct summand of a free module. So Pp is projective. So Pp is free (since Rp is a local ring
and Pp is finitely generated).

(2) =⇒ (3) Clear, since m maximal implies m is prime.

(3) =⇒ (1) Suppose Pm is free (and of finite rank) for all maximal ideals m of R. Recall that P is
projective if and only if whenever M g−→ M ′ → 0 is exact then hom(P,M) → hom(P,M ′) → 0 (given
by ψ 7→ g ◦ ψ) is exact. (i.e. hom(P,−) is exact.)
Our strategy: let g : M � M ′ be epi; we will show that hom(P,M) � hom(P,M ′) is epi. Suppose
now that M g−→M ′ → 0 is exact. Let m be a maximal ideal. Then, by right exactness of −⊗R Rm, we
have

Mm =M ⊗R Rm
g⊗id−−−→M ′

m =M ′ ⊗RMm → 0

is exact. Since Pm is projective, we get

homRm
(Pm,Mm)

g⊗−−−−→ homRm
(Pm,M

′
m)

By assigment 3, since Rm is a flat R-module and P is finitely presented, we have

homRm
(Pm,Mm) ∼= homR(P,M)⊗R Rm = homR(P,M)m

(We say P is finitely presented if there is an exact sequence Rm → Rn → P → 0.)

TODO 2. Why is P finitely presented?

So hom(P,M)m
g◦−−−→ hom(P,M ′)m is surjective for all maximal ideals m.

Claim 3.46. Suppose R is commutative and Noetherian. Suppose M1,M2 are finitely generated
modules with g : M1 → M2 a homomorphism. Suppose (M1)m

g−→ (M2)m is surjective for all maximal
ideals m. Then g is surjective.

Proof. Let K = coker(g); then
M1

g−→M2 → K → 0

is exact. So, by right exactness of −⊗R Rm, we have that

(M1)m)
g−→ (M2)m)→ Km → 0

is exact for all maximal ideals m. Since

(M1)m)
g−→ (M2)m → 0

is exact, we have Km = (0) for all maximal m. But for k ∈ K we have 1−1k ∼ 1−10 in Km if and only
if there is s /∈ M such that sk = 0. Since M2 is finitely generated, we have K ∼= M2/ im(g) is finitely
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generated; let k1, . . . , kr be a set of generators. If m is maximal, then the above implies that there are
s1, . . . , sr /∈ m such that siki = 0 for all i. Let s = s1 . . . sr /∈ m; then ski = 0 for all i. So sK = 0 since
k1, . . . , kr generate K.
So for all maximal ideals m of R there is sm /∈ m such that sm ·K = 0. Now, let I = { s ∈ R : s ·K = 0 }.
This is an ideal of K (namely Ann(K)), and if I were proper, then it would be contained in a maximal
ideal m; but sm /∈ m is in I, a contradiction. So I = R; so 1 ·K = (0), so K = (0), and g is surjective,
as desired. Claim 3.46

So if hom(P,M) and hom(P,M ′) are finitely generated and M
g−→M ′ → 0 is exact then

hom(P,M)
g−→ hom(P,M ′)→ 0

is exact. Notice that if P = Rn and M = 〈m1, . . . ,ms〉 then ϕr,i : R
n →M given by

ej 7→

{
mr(i) i = j

0 else

(where r(i) ∈ { 1, . . . , s }). Then

ϕ(e1) = a11m1 + · · ·+ a1sms

...
ϕ(en) = an1m1 + · · ·+ ansms

Then
ϕ = a11ϕ1,1 + a12ϕ2,1 + · · ·+ a1sϕs,1 + · · ·+ ansϕs,n

Because P is locally free (and finitely generated) and M,M ′ are finitely generated, one can show
that hom(P,M) and hom(P,M ′) are finitely generated (exercise). So M,M ′ finitely generated imply
hom(P,M) � hom(P,M ′) surjective. Now take M = Rn and M ′ = P . Then there is s : P → Rn such
that the following diagram commutes:

Rn P 0

P

g

s
id

So P ⊕ ker(g) ∼= Rn; so P is projective. Theorem 3.45

From here, one notes that given P we have Pp
∼= R

d(p)
p for d ≥ 1. Then Spec(R) → Z given by

p 7→ d(p) = rank(Pp). By assignment 3, we get that this map is continuous.
Remark 3.47. Suppose P is finitely generated; suppose R is a commutative Noetherian ring. Then if Pm is
free then there is f ∈ R \m such that Pf is free as an Rf -module.

Proof. Since P is finitely generated as an R-module, we can write

P = 〈p1, . . . , pm〉 = Rp1 + · · ·+Rpm

By assumption, we have that Pm = { s−1p : s /∈ m, p ∈ P } is free. (Recall that s−1
1 p1 = s−1

2 p2 if and only if
there is s3 /∈ m such that s3(s1p2 − s2p1) = 0.) Pick s−1

1 q1, . . . , s
−1
d qd ∈ Pm such that

Pm =

d⊕
i=1

Rms
−1
i qi

Then q1, . . . , qd ∈ P form a basis for Pm; i.e.

Pm =

d⊕
i=1

Rmqi
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Now, for i ∈ { 1, . . . ,m } we have 1−1pi = pi ∈ Pm; so

pi = (µ−1
i1 ri1)q1 + · · ·+ (µ−1

id rid)qd

where each µij ∈ R \ m and each rij ∈ R. Pick s ∈ R \ m such that sµ−1
ij ∈ R for all i, j; concretely, one

could take
s =

∏
i,j

µij

Then spi ∈ Rq1 + · · · + Rqd for all i; so pi ∈ Rsq1 + · · · + Rsqd. So let Q = Rq1 + · · · + Rqd ⊆ P ; then
Qs = Ps. Now consider Rds � Qs = Ps given by ei 7→ qi; let K be the kernel of this map. Then

0→ K → Rds → Ps → 0

is exact; so, localizing to Rm, we find that

0→ Km → Rdm → Pm → 0

is exact. But the map Rdm → Pm is an isomorphism; so Km = (0). But R is Noetherian; so Rs is Noetherian,
and K is finitely generated as an Rs-module.
Exercise 3.48. Since Km = (0) there is s′ /∈ m such that Ks′ = (0).

Now if we invert ss′ we get
0→ Kss′ = (0)→ Rdss′ → Pss′ → 0

is exact. So Pss′ = Rdss′ . Taking f = ss′, we see Pf ∼= Rdf is a free Rf -module, as desired. Remark 3.47

So given m a maximal ideal we get f /∈ m such that Pf ∼= Rdf . Note that Spec(Rf ) ≈ { p ∈ Spec(R) : f /∈
p } = V (f) is an open subset of Spec(R). Notice that for every p ∈ V (f) we have Rp is a localization of Rf ;
so Pf ∼= Rdf implies that Pp

∼= Rdp (since Pp
∼= Pf ⊗Rf

Rp and Rdp
∼= Rdf ⊗Rf

Rp).
What does this say? Well, recall that free modules over a commutative ring have a well-defined rank. So

we have ψ : Spec(R) → Z given by p 7→ rankRp
(Pp). Then this says that ψ is constant on V (f); choosing

our f judiciously, we get that ψ is locally constant.
Exercise 3.49. ψ is continuous.

Corollary 3.50. If Spec(R) is connected, then ψ is constant. In this case, we can define rank(P ) to be the
image of ψ.

Exercise 3.51. Spec(R) is disconnected if and only if R ∼= R1 × R2 for non-zero R1, R2, which holds if and
only if R has an idempotent e2 = e with e /∈ { 0, 1 }.
Example 3.52. Consider R = Z × Z with P = Z × { 0 } and Q = { 0 } × Z. Then R = P ⊕ Q and
Spec(R) = U t V . Furthermore, we have rank(Pp) = 1 and rank(Qp) = 0 for all p ∈ U ; likewise, we get
that rank(Pp) = 0 and rank(Qp) = 1 for all p ∈ V . Since rank is additive for free modules, we have that if
Spec(R) is connected, then rank(P ⊕Q) = rank(P ) + rank(Q).

We have seen that not all projectives are free.

Definition 3.53. A finitely generated projective module P is stably free if there are m,n ≥ 1 such that
P ⊕Rm ∼= Rn; equivalently such that

0→ Rm → Rn → P → 0

is exact.

Example 3.54 (Swan’s example). Let A = R[x, y, z]/(1 − x2 − y2 − z2). We have a surjection g : A3 � A
given by (a, b, c) 7→ ax+ by + cz; in particular, we have g(rx, ry, rz) = rx2 + ry2 + rz2 = r. Let P = ker(g).
So

0→ P → A3 g−→ A→ 0

is exact, and furthermore is split since s : A→ A3 given by 1 7→ (x, y, z) is a section. So A3 ∼= P ⊕A, and P
is stably free.
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Theorem 3.55 (Swan). P is not free.

Proof. Suppose for contradiction that P were free. Then P ∼= A2 and P ⊆ A3; so P = 〈(f1, f2, f3), (g1, g2, g3)〉 ⊆
A3. Now A3 = P ⊕ s(A) = P ⊕ 〈(x, y, z)〉; so A3 = 〈(f1, f2, f3), (g1, g2, g3), (x, y, z)〉. So

(1, 0, 0) = a1(f1, f2, f3) + b1(g1, g2, g3) + c1(x, y, z)

(0, 1, 0) = a2(f1, f2, f3) + b2(g1, g2, g3) + c2(x, y, z)

(0, 0, 1) = a3(f1, f2, f3) + b3(g1, g2, g3) + c3(x, y, z)

so 1 0 0
0 1 0
0 0 1

 =

a1 b1 c1
a2 b2 c2
a3 b3 c3

f1 f2 f3
g1 g2 g3
x y z


where all entries on the latter two matrices are just functions on S2. If we plug in any (α, β, γ) ∈ S2 (i.e.
with α2 + β2 + γ2 = 1), in particular we get that

0 6= det

f1(α, β, γ) f2(α, β, γ) f3(α, β, γ)
g1(α, β, γ) g2(α, β, γ) g3(α, β, γ)

α β γ


Now view (f1, f2, f3) as a continuous map S2 → R3.

Claim 3.56. For any continuous map ψ : S2 → R3 there is p ∈ S2 and λ ∈ R such that ψ(p) = λp.

Proof. If 0 ∈ im(ψ), we’re done; assume then that ψ : S2 → R3 \ { 0 }. Without loss of generality, we may
then replace ψ(p) by ψ(p)

‖ψ(p)‖ : S
2 → S2. One then uses some homotopy and homology to get a contradiction.

Claim 3.56

But this contradicts the above remark about determinants. Theorem 3.55

3.2.1 Vector bundles

Definition 3.57. Suppose S is a connected, compact real manifold. A (real) vector bundle over S of rank
n is a topological space V with a continuous map π : V → S such that

1. For all x ∈ S we have π−1(x) = { v ∈ V : π(v) = x } is a real vector space of dimension n.

2. For all x ∈ S there is an open neighbourhood U of x in S and a homeomorphism ϕ : U × Rn →
π−1(U) such that π ◦ ϕ = p (where p : U × Rn → U is projection) and for all y ∈ U we have
ϕ � ({ y } × Rn) : { y } × Rn → π−1({ y }) is a linear isomorphism of vectors spaces.

A vector bundle is trivial if V ∼= S × Rn.

There is a correspondence between vector bundles and projective modules as follows: suppose S is a
compact, connected real manifold. Then C(S) = { f : S → R | f is continuous } has a natural ring structure.
Given a vectro bundle π : V → S over S of rank n we define a C(S)-module P (V ) as follows:

Definition 3.58. Let π : V → S be as before. A section of π is a continuous map s : S → V such that
π ◦ s = idS . We then set P (V ) to be the set of sections.

We put a C(S)-module structure on P (V ) by

• (f · s)(x) = f(x)s(x) ∈ π−1({x }) for f ∈ C(S) and s ∈ P (V ).

• (s+ t)(x) = s(x) + t(x) for s, t ∈ P (V ).

Theorem 3.59 (Swan). If V is a vector bundle of rank n then P (V ) is a projective C(S)-module of rank n.
Moreover, the above correspondence gives an equivalence of categories between the category of vector bundles
over S and the category of finitely generated projective C(S)-modules. In particular, under this equivalence,
we have that trivial vector bundles correspond to free modules.
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3.2.2 Loose ends

(Grothendieck grape) Suppose R is a ring. We can make a grape K0(R) out of the collection of isomor-
phism classes of finitely generated (left) projective R-modules as follows. Let A be the free abelian
grape on the isomorphism classes [P ] of finitely generated projective modules P . We then impose the
relations [P1] + [P2] = [P3] whenever there is an exact sequence 0→ P1 → P3 → P2 → 0.
Example 3.60. If k is a field, then the isomorphism classes of finitely generated projective modules are
represented by kn for n ∈ N; but we always have an exact sequence 0 → kn−1 → kn → k → 0. So
[kn] = [kn−1] + [k] for all n ∈ N, and K0(k) ∼= Z.

If R is commutative, we can make K0(R) into a ring via [P ] · [Q] = [P ⊗R Q]. One needs to check
that P ⊗RQ is still projective; but if P,Q are finitely generated and projective, then P ⊕H ∼= Rn and
Q⊕ E ∼= Rm for some R-modules H,E. So

Rnm ∼= Rn ⊗R Rm ∼= (P ⊕H)⊗R (Q⊕ E) ∼= (P ⊗R Q)⊕ (H ⊗R Q)⊕ (P ⊗R E)⊕ (H ⊗R E)

So P ⊗R Q is a direct summand of a free module, and is thus projective.

(Exterior products) Suppose R is a commutative ring and M is an R-module. We define the ith exterior
product of M to be

ΛiM =M ⊗R . . .⊗RM︸ ︷︷ ︸
i times

/N

where N is the submodule generated by

m1 ⊗R . . .⊗R mi = sgn(σ)mσ(1) ⊗R . . .⊗R mσ(i)

Then Λ0M = R and Λ1M =M .
Remark 3.61. ΛiRn ∼= R(

n
i).

Proof. Let e1, . . . , en be a basis for Rn. Then

Rn ⊗R . . .⊗R Rn︸ ︷︷ ︸
i times

is spanned by elements of the form ej1 ⊗R . . .⊗R eji . But

ej1 ⊗R . . .⊗R eji ≡ ±e`1 ⊗R . . .⊗R e`i

where `1 ≤ `2 ≤ · · · ≤ `i. Indeed, one can show that elements of the form e`1 ⊗R . . . ⊗R e`i form a
basis for ΛiRn. Remark 3.61

In particular, we get that ΛnRn ∼= R. If R is a Noetherian commutative ring with Spec(R) connected
and P is a projective module of rank n then ΛiP is projective of rank

(
n
i

)
.

(Picard grape) Now we let Pic(R) denote the multiplicative subset of K0(R) generated by projective
modules of rank 1; this has a grape structure via [P ] · [Q] = [P ⊗RQ]. We call Pic(R) the Picard grape
of R. It is indeed a grape: [P ]⊗R [hom(P,R)] = [R] is the identity. We have a map K0(R)

× → Pic(R)
given by [P ] 7→ [Λrank(P )P ]; this is a homomorphism of semigrapes (under ⊗R).

(A final remark) If R is commutative and P ⊕Rn ∼= Rn+1 then P ∼= R.
This is left as an exercise.

(Step 1) Check that

Λi(M ⊕N) ∼=
i⊕

j=1

Λj(M)⊗R Λi−jN
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(Step 2) Rn+1 ∼= Rn ⊕ P , so

R = R(
n+1
n+1)

∼= Λn+1Rn+1

∼= Λn+1(Rn ⊕ P )

∼=
n+1⊕
j=1

Rn ⊗R Λn+1−jP

(Step 3) Show that since P has rank 1 then ΛjP = (0) for j > 1 and Λn+1Rn = (0); then the
isomorphism in the previous step shows that

R ∼= ΛnRn ⊗R Λ1P ∼= R⊗R P ∼= P

3.3 Injective modules
We now consider the dual notion of projective modules. Suppose A is an abelian category. Recall that P is
a projective object if and only if hom(P,−) is exact.

Definition 3.62. We say I ∈ Ob(A) is an injective object if and only if hom(−, I) is exact; i.e. whenever

0→ A→ B → C → 0

is exact, we have that
0→ hom(C, I)→ hom(B, I)→ hom(A, I)→ 0

is exact. One checks that this is equivalent to requiring that whenever 0→ A
f−→ B is exact then hom(B, I)→

hom(A, I)→ 0 given by ψ 7→ ψ ◦ f is exact; i.e.

0 A B

I

f

h
∃h̃

Lemma 3.63 (Baer). Suppose R is a ring; suppose Q is a left R-module. If for every left ideal I ≤ R and
every homomorphism of R-modules h : I → Q there is a homomorphism of R-modules h̃ : R → Q such that
h̃ � I = h, then Q is injective.

Proof. Suppose we have
0 N M

Q

β

f

i.e. f is injective; assume without loss of generality we assume f is an inclusion. Consider the set S of all
pairs (N ′, β′) with N ⊆ N ′ ⊆ M and β′ : N ′ → Q such that β′ � N = β. We can partially order S via
(N1, β1) ≤ (N2, β2) if N1 ⊆ N2 and β2 � M = β1. Observe that (N, β) ∈ S, so S is non-empty. Further
observe that S is closed under unions of chains: given a chain ((Ni, βi) : i ∈ I) in S, we get(⋃

i∈I
Ni,

⋃
i∈I

βi

)
∈ S

So, by Zorn’s lemma, there is a maximal such pair (N ′, β′) in S. If N ′ = M we’re done. Assume therefore
that there is m ∈ M \ N ′; look at N ′′ = Rm + N ′. Let I = { r ∈ R : rm ∈ N ′ }; then I is a left ideal of
R. Make a map θ : I → Q given by r 7→ β′(rm) ∈ Q. By hypothesis we can extend θ to δ : R → Q; i.e.
so that δ � I = θ. Consider β′′ : N ′′ → Q given by rm + n′ 7→ δ(r) + β′(n′). Notice β′′ is well-defined: if
r1m + n1 = r2m + n2 then (r1 − r2)m ∈ N ′; so r1 − r2 ∈ I, and δ(r1 − r2) = θ(r1 − r2) = β′((r1 − r2)m).
So β′′(r1m + n1) − β′′(r2m + n2) = β′((r1 − r2)m + n1 − n2) = 0. By construction we get β′′ � N ′ = β′,
contradicting the maximality of (N ′, β′). So N ′ =M , and we’re done. Lemma 3.63
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Corollary 3.64. Let R = Z. Then an R-module M is injective if and only if M is divisible.

Proof.

( =⇒ ) Assignment 2.

(⇐= ) Suppose M is divisible; we apply Baer’s criterion. Suppose I E Z; so I = nZ for some n ≥ 0.
Suppose we are given β : I →M ; we wish to extend β to β′ : Z→M . If I = (0), we may take β′ = 0.
Suppose then that n 6= 0; let m = β(n) ∈ M . Since M is divisible, there is x ∈ M such that nx = m;
define β′ : Z→M by 1 7→ x. Then β′(n) = n− x = m = β(n).

Corollary 3.64

Corollary 3.65. Suppose M is an injective Z-module; suppose K ≤M . Then M/K is injective.

Proof. Suppose x +K ∈ M/K; i.e. suppose x ∈ M . Suppose n ∈ Z and n > 0; then there is y ∈ M such
that ny = x. So n(y +K) = x+K; so M/K is divisible. Corollary 3.65

Definition 3.66. An abelian category A has enough projectives if for every A ∈ Ob(A) there is a projective
object P and an epimorphism f : P � A. It has enough injectives if for every A ∈ Ob(A) there is an injective
object Q and a monomorphism f : A ↪→ Q.

We’ll see that R-Mod has enough injectives, where R is a ring. We first verify the case R = Z.

Claim 3.67. Ab = Z-Mod has enough injectives.

Proof. Suppose A is an abelian grape; then there is ZI � A. So A ∼= ZI/K where K ≤ ZI is the kernel.
But Zi ↪→ Qi, and Qi is divisible, and hence injective. So K ≤ ZI ≤ QI ; so A ∼= ZI/K ≤ QI/K and this
last is injective by the corollary. So we have A ↪→ QI/K which is injective. Claim 3.67

We lift this result to R-Mod. For the setup, suppose S,R are rings. (Ultimately we’ll take S = Z.)
Suppose F is an (S,R)-bimodule; i.e. suppose F has structure as a left S-module and as a right R-module.
We assume that F is a flat right R-module; i.e. if 0→M → N is an exact sequence of left R-modules then
0→ F ⊗RM → F ⊗R N is an exact sequence of abelian grapes.
Aside 3.68 (Non-commutative tensor products). Suppose R is a ring, T is a right R-module, and L is a left
R-module. Then T ⊗R L is an abelian grape.
Remark 3.69. Suppose M is a left S-module. We define M̃ = homs(F,M).

Notice that M̃ is a left R-module via the rule (r ·ϕ)(x) = ϕ(x · r). Furthermore, given r1, r2 ∈ R we have
(r1 · r2) · ϕ(x) = ϕ(x · r1r2). Then

r · [(r2 · ϕ)](x) = Γ2 − ϕ(xr1) = ϕ(xr, r2)

Lemma 3.70 (Injective production lemma). Under this setup, if M is an injective left S-module, then M̃
is an injective left R-module.

Proof. We check that homR(−, M̃) is exact. In fact, we know it is enough to show that whenever 0→ A
f−→ B

is exact (for A,B ∈ Ob(R-Mod)), we also have homR(B, M̃) → homR(A, M̃) → 0 given by ψ 7→ ψ ◦ f
is exact. Suppose then that 0 → A

f−→ B is exact. We wish to check that homR(B, homS(F,M)) →
homR(A,homS(F,M)) → 0 given by ψ 7→ ψ ◦ f is exact. From the tensor-hom adjunction, we have
an isomorphism of abelian grapes homR(B,homS(F,M)) ∼= homS(F ⊗R B,M) such that given ψ : B →
homS(F,M) we have ψ 7→ (θ ⊗R b 7→ ψ(b)(θ)).
Exercise 3.71. We have a map homS(F ⊗R B,M)→ homS(F ⊗R A,M) such that given ψ : F ⊗R B → M ,
we have ψ 7→ ψ̂ : F ⊗R A,M) given by ψ̂(θ ⊗R a) = ψ(θ ⊗R f(a)); furthermore, the isomorphisms yield a
commuting diagram:

homR(B, homS(F,M)) homR(A,homS(F,M))

homS(F ⊗R B,M) homS(F ⊗R A,M)

∼= ∼=
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So it suffices to show that homS(F ⊗RB,M)→ homS(F ⊗RA,M)→ 0 is exact. Since M is an injective
left module and F is flat as a right R-module, we get

1. 0→ A
f−→ B is exact.

2. 0→ F ⊗R A
id ⊗Rf−−−−→ F ⊗R B is exact in S-Mod.

3. homS(F ⊗R B,M)→ homS(F ⊗R A,M)→ 0 given by ψ 7→ ψ̂ is exact.

The result then follows from the commuting diagram above. Lemma 3.70

For us, we’ll take S = Z, M = Q/Z, and F a free (and hence flat) right R-module; note that M is
an injective S-module. In this setup, if F is a right R-module, we define F ∗ = homZ(F,Q/Z); this is the
Pontryagin dual of F . Then F ∗ is a left R-module.
Remark 3.72. If A is a left or right R-module, we get an embedding A ↪→ A∗∗ given by m 7→ em where
em : A∗ → Q/Q is given by em(f) = f(m). Why is this an injection? Well, suppose we have m ∈ A \ { 0 }
such that em = 0; i.e. suppose f(m) = 0 for all f ∈ homZ(A,Q/Z). Let C = Zm ⊆ A.

Claim 3.73. There is a non-trivial homomorphism g : C → Q/Z.

Proof. Well, C is cyclic; so we have two cases.

Case 1. Suppose C ∼= Z; then we can just use the inclusion Z ↪→ Q.

Case 2. Suppose C ∼= Z/nZ; then we can use the map Z/nZ → Q/Z given by 1 + nZ 7→ 1
n + Z.

Claim 3.73

By injectivity of Q/Z there is g̃ : A→ Q/Z such that the following diagram commutes:

0 C A

Q/Z

g
g̃

Then em(g̃) = g̃(m) = g(m) 6= 0, and injectivity follows.

Corollary 3.74. Let R be a ring; then R-Mod has enough injectives.

Proof. If A is a right R-module then there is a free right R-module F and a surjection F � A. Since Q/Z is
an injective Z-module and A,F are Z-modules, we get that 0 → homZ(A,Q/Z) → homZ(F,Q/Z) is exact;
i.e. A∗ ↪→ F ∗. By Lemma 3.70, we have that F ∗ is an injective left R-module. We thus see that any left
R-module of the form A∗ with A a right R-module embeds in an injective. But every left R-module A has
A ↪→ A∗∗ = (A∗)∗, which we just saw embeds into the injective left R-module F ∗. So A embeds into an
injective left R-module. So R-Mod has enough injectives. Corollary 3.74

A nice fact:

Fact 3.75. Any R-module A has a unique minimal injective resolution.

Definition 3.76. Let R be a ring; let M ⊆ E be left R-modules. We say that M is an essential submodule
of E (or E is an essential extension of M) if M ∩N 6= (0) for all N ⊆ E.

Proposition 3.77.

1. Given a ring R and R-modules M ⊆ F there is a maximal submodule E ⊆ F with M as an essential
submodule.

2. If F is injective then E is injective.

3. There is up to isomorphism a unique essential extension E of M that is an injective R-module. We
call this the injective envelope of M , denoted E(M).
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Proof.

1. Assignment (up to a small error).

2. Assignment.

3. Since R-Mod has enough injective, there is an injective F and an embedding M i
↪−→ F ; without loss of

generality we assume M ⊆ F . By (1) and (2) we have that there is an essential extension E of M (with
E ⊆ F ) that is injective. So we at least have existence. To see uniqueness, suppose we have M α1

↪−→ E1

and M α2
↪−→ E2 where E1 and E2 are injective and essential extensions of M . Then by injectivity of E2

we get β : E1 → E2 such that the following diagram commutes:

0 M E1

E2

α2

α1

β

i.e. β ◦ α1 = α2. So, since α2 is injective, we have that ker(β � α1(M)) = (0).

Claim 3.78. ker(β) = (0); i.e. β is injective.

Proof. Well, α1(M) ⊆ E1 is an essential submodule, and since ker(β � α1(M)) = (0) we get that
α1(M) ∩ ker(β) = (0); so ker(β) = (0). Claim 3.78

So β is injective; so β(E1) is an injective submodule of E2.

TODO 3. Why an injective submodule?

So there is E′
2 such that β(E1) ⊕ E′

2 = E2. But now we get α2(M) = (β ◦ α1)(M) ⊆ β(E1) and
α2(M) ⊆ E2 is essential. So if E′

2 6= (0) then α2(M)∩E′
2 6= (0), and β(E1)∩E′

2 6= (0), a contradiction.
So E′

2 = (0), and β(E1) = E2. So β is bijective, and E1
∼= E2. Proposition 3.77

In particular, then the exact sequence

0→ E
i
↪−→ F → coker(i)→ 0

splits, and F ∼= E ⊕ coker(i).
Given an R-module M , we have an embedding 0→ M → E(M); let Q1 = coker(M → E(M)). Contin-

uing, we can extend the sequence

0→M → E(M)→ E(Q1)→ E(Q2)→ . . .

where Q2 = coker(E(M)→ E(Q1)).
Remark 3.79. If (Ij : j ∈ J) are injective modules then∏

i∈J
Ij

is injective by using the limit property on the diagram

0 M N

∏
j∈J Ij

Ij
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Remark 3.80. A direct sum of injectives need not be injective.

Theorem 3.81 (Bass). Let R be a commutative ring. Then R is Noetherian if and only if every direct sum
of injectives is again injective.

Sketch of proof.

(⇐= ) Suppose R is not Noetherian; suppose we have a chain of ideals I1 $ I2 $ . . .. Let En = E(R/In).
Then

E =
∞⊕
n=1

En

is not injective. Indeed, let

I =

∞⋃
n=1

In ⊆ R

and consider fn : I → E(R/In) given by the composition I ↪→ R→ R/In ↪→ E(R/In). These fn yield
a map

f : I →
∞∏
n=1

E(R/In)

x 7→ (f1(x), f2(x), . . . )

Note, however that f actually maps into

E =

∞⊕
n=1

E(R/In) ⊆
∞∏
n=1

E(R/In)

since x ∈ I implies x ∈ In for all sufficiently large n, and thus that fn(x) = 0 for all sufficiently large
n. Now, if E is injective, then there is β : R→ E such that the following diagram commutes:

0 I R

E

f
β

Consider then β(1); by definition of E there is m ∈ N such that

β(1) ∈ E1 ⊕ E2 ⊕ . . .⊕ Em ⊕ (0)⊕ (0)⊕ . . .

So
β(r) = rβ(1) ⊆ E1 ⊕ E2 ⊕ . . .⊕ Em ⊕ (0)⊕ (0)⊕ . . .

for all r ∈ R. But then for x ∈ Im+1 \ Im, we have fm+1(x) ∈ Em+1 6= (0); so

β(x) = fm+1(x) /∈ E1 ⊕ E2 ⊕ . . .⊕ Em ⊕ (0)⊕ (0)⊕ . . .

a contradiction. So E is not injective.

( =⇒ ) One checks the following:
Exercise 3.82. If M is finitely generated then

homR

(
M,
⊕
i∈I

Ni

)
∼=
⊕
i∈I

homR(M,Ni)
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The idea is then that if R is Noetherian and J ⊆ R is an ideal then J is finitely generated. If the Ni
are injective, then hom(J,Ni)→ hom(R,Ni) is surjective for all i; so

hom
(
J1,
⊕

i∈I Ni
) ⊕

i∈I hom(J,Ni)

hom
(
R,
⊕

i∈I Ni
) ⊕

i∈I hom(R,Ni)

∼=

∼=

TODO 4. What does this mean?

Then Baer’s criterion gives that ⊕
i∈I

Ni

is injective. Theorem 3.81

Bass’ theorem is very useful when studying injectives over a Noetherian ring.

Definition 3.83. An injective module E is decomposable if E = E′ ⊕ E′′ where E′ and E′′ are non-zero;
else it is indecomposable.

For a commutative Noetherian ring R we have that every injective R-module E is of the form

E ∼=
⊕
j∈J

Ej

where Ej is injective and indecomposable. Moreover, there is a bijection from Spec(R) to the isomorphism
classes of indecomposable injectives given by p 7→ E(R/p). Why? Well, if E is indecomposable and injective,
we may pick x ∈ E with maximal annihilator. (Recall Ann(x) = { r ∈ R : rx = 0 }.) The usual trick for
ideals in a Noetherian ring maximal with respect to some property yields that Ann(x) = p is prime. So

R/p Rx E(R/p)

E

∼=

∼=

TODO 5. What does this mean?

4 Complexes
We work in A an abelian category; we can always assume that this is R-Mod by Mitchell’s embedding
theorem.

Definition 4.1. A chain complex C• is a family (Cn : n ∈ Z) with Cn ∈ Ob(A) and morphisms dn : Cn →
Cn−1 such that dn−1 ◦ dn : Cn → Cn−2 = 0. We call the dn the differentials of C•. We then define
Zn(C•) = ker(dn) ⊆ Cn to be the n-cycles of C•; we define Bn(C•) = im(dn+1) ⊆ Cn to be the n-boundaries
of C•. So (0) ⊆ Bn(C•) ⊆ Zn(C•) ⊆ Cn. We define Hn(C•) = Zn(C•)/Bn(C•) to be the nth homology grape
of C•.

Dually, we define a cochain complex C• is a family of (Cn : n ∈ Z) and morphisms dn : Cn → Cn+1

such that dn+1 ◦ dn = 0 for all n ∈ Z. We define Zn(C•) = ker(dn) ⊆ Cn to be the n-cocycles; we define
Bn(C•) = im(dn−1) ⊆ Cn to be the n-coboundaries. We define Hn(C•) = Zn(C)/Bn(C) to be the nth

cohomology grape of C•.

Remark 4.2. Hn(C) = (0) if and only if Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 is exact at Cn.
Remark 4.3. (Cn : n ∈ Z) is a chain complex if and only if Bn = C−n with dn = d−n : C−n → C−n−1.
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Example 4.4 (de Rham complex). Suppose ϕ : R → A is an R-algebra. Recall the Kähler differentials were
ΩA/R the free A-module generated by symbols da for a ∈ A modulo the relations

• d(a+ rb) = da+ rdb for all r ∈ R and a, b ∈ A.

• d(ab) = adb+ bda for all a, b ∈ A.

• dr = 0 for all r ∈ R.

Now define

ΩiA/R = ΛiΩA/R =

i⊗
j=1

ΩA/R/
〈
a1 ⊗ . . .⊗ ai = sgn(σ)aσ(1) ⊗ . . .⊗ aσ(i)

〉
(We also take ΩiA/R = 0 for i < 0.) Given m1, . . . ,mi ∈ ΩA/R we let m1 ∧ . . . ∧ mi denote the image of
m1 ⊗ . . .⊗mi in ΛiΩA/R = ΩiA/R. Note that

• Ω0
A/R = A.

• Ω1
A/R = ΩA/R.

• We have a map d : A→ ΩA/R given by a 7→ da; we call this d0 : Ω0
A/R → Ω1

A/R.

• We have another map d1 : Ω1
A/K → Ω2

A/R given by d1(adb) = da∧ db; in particular, we get d1 ◦ d0 = 0.

• In general, these yield a map dn : ΩnA/R → Ωn+1
A/R satisfying

dn(ω ∧ η) = diω ∧ η + (−1)iω ∧ dn−iη

for all ω ∈ ΩiA/R and all η ∈ Ωn−iA/R. In particular, we take

dn(ω1 ∧ . . .∧ωn) = (d1ω1 ∧ω2 ∧ . . .∧ωn)− (ω1 ∧d1ω2 ∧ω3 ∧ . . .∧ωn)+ (ω1 ∧ω2 ∧d1ω3 ∧ . . .∧ωn)− . . .

• In particular, for ω ∈ Ωn−1
A/R and η ∈ Ω1

A/R, we have

(dn+1 ◦ dn)(ω ∧ η) = dn+1(dn−1ω ∧ η + (−1)n−1ω ∧ dη)
= dn+1(dn−1ω ∧ η) + (−1)n−1dn+1(ω ∧ dη)
= dn(dn−1(ω)) ∧ η + (−1)ndn−1ω ∧ d1η + (−1)n−1dn−1ω ∧ d1η + (−1)n−1(−1)n−1ω ∧ d2(d1η)
= 0

by an inductive argument.

TODO 6. Really?

Exercise 4.5. Suppose k is a field of characteristic 0; let A = k[x1, . . . , xn]. Then

0→ k → Ω0
A/k → Ω2

A/k → · · · → ΩnA/k → 0

is exact.

Definition 4.6. Let C• and C ′
• be two chain complexes; say C• = (Cn, dn) and C ′

• = (C ′
n, d

′
n). A morphism

of chain complexes is a collection of maps fn : Cn → C ′
n such that the following diagram commutes:

Cn Cn−1

C ′
n C ′

n−1

dn

fn fn−1

d′n

Thus if C is an abelian category then we can set Ch(C) to be the category of chain complexes in C. Similarly,
we define Co-Ch(C) the category of cochain complexes in C.

40



In fact Ch(C) and Co-Ch(C) are abelian categories. The only non-trivial part is checking then ker(f) and
coker(f) are objects in Ch(C) for f : C• → C ′

•. One can assume that C = R-Mod, by Mitchell’s embedding
theorem. Note then that the following diagram commutes:

ker(fn) ker(fn−1)

Cn Cn−1

C ′
n C ′

n−1

coker(fn) coker(fn−1)

dn�ker(fn)

dn

fn fn−1

d′n

d′n

since if x′ = x′′ + fn(u) in C ′
n then

d′n(x
′) = d′n(x

′′) + (d′n ◦ fn)(u) = d′n(x
′′) + (fn−1 ◦ dn)(u)

and d′n(x
′) = d′n(x

′′) in coker(fn−1). One also checks that monomorphisms and epimorphisms are normal;
hence Ch(C) is an abelian category.
Remark 4.7. One can show that a morphism C• → C ′

• takes Zn(C•) to Zn(C ′
•) and Bn(C•) to Bn(C ′

•); in
particular, we get a map Hn(C•) to Hn(C

′
•).

Definition 4.8. A morphism u : C• → D• is called a quasi-isomorphism if for every n ∈ Z we have that the
induced map Hn(C•)→ Hn(D•) is an isomorphism.

Proposition 4.9. the following are equivalent:

1. The chain complex C• is exact at each Cn.

2. Hn(C•) = 0 for all n ∈ Z.

3. C• is quasi-isomorphic to · · · → 0→ 0→ 0→ · · ·, the zero chain complex.

Definition 4.10. A chain complex C• is bounded if Cn = 0 for all but finitely many n. We say C• is
bounded above if Cn = 0 for all sufficiently large n; likewise with bounded below. We use Chb(C), Ch−(C),
and Ch+(C) to denote the full subcategories of Ch(C) consisting of chains that are bounded, bounded below,
and bounded above, respectively; Similarly, we get Co-Chb, Co-Ch−, and Co-Ch+.

Remark 4.11. Since Ch(C) (respectively Co-Ch(C)) is an abelian category, it makes sense to talk about short
exact sequences of chain complexes

0→ A•
f−→ B•

g−→ C• → 0

(where “0” denotes the zero chain complex · · · → 0→ 0→ 0→ · · ·). Examining the diagram

· · · ker(fn) ker(fn−1) · · ·

· · · An An−1 · · ·

· · · Bn Bn−1 · · ·

dn�ker(fn)

in in−1

fn

dn

fn−1

d′n
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we see that f : A → B is a monomorphism if and only if · · · → ker(fn) → ker(fn−1) → · · · is the zero
complex. Examining the diagram

· · · An An−1 · · ·

· · · Bn Bn−1 · · ·

· · · Cn Cn−1 · · ·

an

fn fn−1

bn

gn gn−1

cn−1

we see that A•
f−→ B•

g−→ C• is exact at B• if and only if gn ◦ fn = 0 for all n ∈ Z and ker(gn)/ im(fn) = 0
for all n ∈ Z.

4.1 Long exact sequence

If 0 → A•
f−→ B•

g−→ C• → 0 is a short exact sequence in Ch(C) then there are connecting morphisms
δn : Hn(C•)→ Hn−1(A•) such that

· · · Hn+1(C•)

Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)

Hn−2(A•) · · ·

δn+1 f g

δn f g

δn−1

is exact. Dually, if 0 → A• f−→ B• g−→ C• → 0 is a short exact sequence in Co-Ch(C) then there are
δn : Hn(C)→ Hn+1(A) such that

· · · Hn−1(C•)

Hn(A•) Hn(B•) Hn(C•)

Hn+1(A•) Hn+1(B•) Hn+1(C•)

Hn+2(A•) · · ·

δn−1
f g

δn f g

δn+1

is exact. The key ingredient in the proof is the snake lemma.

Lemma 4.12 (Snake lemma). Suppose that C is an abelian category and suppose we have a commuting
diagram with exact rows

A′ B′ C ′ 0

0 A B C

i′

f

p′

g h

i p
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For clarity, we expand the diagram to get a commuting diagram containing the various kernels and cokernels:

ker(f) ker(g) ker(h)

A′ B′ C ′ 0

0 A B C

coker(f) coker(g) coker(h)

i′

f

p′

g h

i p

Then there is δ : ker(h)→ coker(f) as in the following (not necessarily commuting) diagram

ker(f) ker(g) ker(h)

A′ B′ C ′ 0

0 A B C

coker(f) coker(g) coker(h)

i′

f

p′

g h

i p

δ

such that the sequence

ker(f)→ ker(g)→ ker(h) δ−→ coker(f)→ coker(g)→ coker(h)

is exact. Moreover, if i′ is a monomorphism then 0→ ker(f)→ ker(g) is exact; if p is an epimorphism then
coker(g)→ coker(h)→ 0 is exact.

Proof. Without loss of generality we assume C = R-Mod for some R by Mitchell’s embedding theorem. The
only hard part then is finding δ and showing that

ker(g) p′�ker(g)−−−−−−→ ker(h) δ−→ coker(f) i−→ coker(g)

is exact at ker(h) and at coker(f).
What is δ? Well, suppose x ∈ ker(h) ⊆ C ′. Take y such that p′(y) = x; then g(y) ∈ B. We claim

that there is a ∈ A such that i(a) = g(y); we then define δ(x) = a + im(f) ∈ coker(f). Symbolically:
δ = i−1 ◦ g ◦ (p′)−1.

Why is this defined and well-defined? Suppose we have y1, y2 ∈ B′ such that p′(y1) = p′(y2) = x ∈ ker(h);
then h(p′(y1)) = h(p′(y2)) = 0. So, examining our diagram, we find that p(g(y1)) = p(g(y2)) = 0, and
g(y1), g(y2) ∈ ker(p) = im(i). So, since i is a monomorphism, there are unique a1, a2 ∈ A such that
i(a1) = g(y1) and i(a2) = g(y2).

Claim 4.13. i(a1) + im(f) = i(a2) + im(f); i.e. i(a1 − a2) ∈ im(f).

Proof. Well, y1 − y2 ∈ ker(p′) = im(i′); so there is b ∈ A′ such that i′(b) = y1 − y2. But then i(f(b)) =
g(i′(b)) = g(y1 − y2) = i(a1 − a2); so, by injectivity of i, we have f(b) = a1 − a2. Claim 4.13
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So δ is well-defined; it remains to check exactness of

ker(g) p′�ker(g)−−−−−−→ ker(h) δ−→ coker(f) i−→ coker(g)

For exactness at ker(h), note that for x ∈ ker(g), we have

δ(p′(x)) = i−1 ◦ g ◦ (p′)−1(p′(x)) = i−1(g(x)) = i−1(0) = 0

So im(p′ � ker(g)) ⊆ ker(δ). It remains to check that ker(δ) ⊆ im(p′ � ker(g)). Suppose x ∈ ker(δ); we must
find y ∈ ker(g) such that x = p′(y). Well, since x ∈ ker(δ), we have that (i−1 ◦ g ◦ (p′)−1)(x) = 0; i.e. if we
fix a preimage z of x under p′ (i.e. with p′(z) = x), then i−1(g(z)) ∈ im(f). So there is a ∈ A such that
i−1(g(z)) = f(a); so g(z) = i(f(a)) = g(i′(a)). So z− i′(a) ∈ ker(g). But p′(z− i′(a)) = p′(z)−p′(i′(a)) = x;
so x ∈ im(p′ � ker(g)). So im(p′ � ker(g)) = ker(δ), and we have exactness at ker(h).

We now check exactness at coker(f). As usual, to show that im(δ) ⊆ ker(i), we note that

i(f(x)) = i(i−1(g((p′)−1(x))))

= i(i−1(g((p′)−1(x))) + im(f))

= i(i−1(g((p′)−1(x))) + im(f))

= g((p′)−1(x)) + im(i ◦ f) + im(g)

= g((p′)−1(x)) + im(g ◦ i′) + im(g)

= 0 + im(g)

= 0

It remains to check the reverse inclusion. Suppose x ∈ ker(i). Then x ∈ coker(f), so we may write
x = x0 + im(f) for some x0 ∈ A; then since i(x) = 0, we have that i(x0) + im(g) = 0 + im(g), and
i(x0) = g(u) for some u ∈ B′. Hence if we knew that t = p′(u) ∈ ker(h), then we would get

δ(t) = i−1(g((p′)−1(t))) = i−1(g(u)) = x0 = x

and we’d be done. It then suffices to show that p′(u) ∈ ker(h); i.e. that h(p′(u)) = 0. But h(p′(u)) =

p(g(u)) = p(i(x0)) = 0 by exactness of A i−→ B
p−→ C; so we indeed get that p′(u) ∈ ker(h). Lemma 4.12

We now return to our goal of producing a long exact sequence of homology from a short exact sequence
of chain complexes.

Proposition 4.14. Suppose we have a short exact sequence 0→ A• → B• → C• → 0 where A• = (An, an),
B• = (Bn, bn), and C• = (Cn, cn) are chain complexes. Then we get a long exact sequence of homology

· · · Hn+1(C•)

Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)

Hn−2(A•) · · ·

δn+1

δn

δn−1

We are now in a position to do so.

Proof. We get a commuting diagram with exact rows

An Bn Cn 0

0 An−1 Bn−1 Cn−1

an bn cn
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By a weakening of the snake lemma, we get that

Zn(A•)→ Zn(B•)→ Zn(C•)

and
An−1/ im(an)→ Bn−1/ im(bn)→ Cn−1/ im(cn)

are exact for all n ∈ Z. One checks that since 0→ An → Bn and Bn−1 → Cn−1 → 0 are exact, then so are

0→ Zn(A•)→ Zn(B•)→ Zn(C•)

and
An−1/ im(an)→ Bn−1/ im(bn)→ Cn−1/ im(cn)→ 0

for all n ∈ Z.

Claim 4.15. We get an induced map an : An/ im(an+1)→ Zn−1(A•) ⊆ An−1.

Proof. Since an ◦ an+1 = 0, we get that im(an+1) ⊆ ker(an); hence we get an induced an : An/ im(an+1)→
An−1. But we likewise get im(an) ⊆ ker(an−1) = Zn−1(A•); so we indeed get an induced map an : An/ im(an+1)→
Zn−1(A•). Claim 4.15

Likewise we get bn : Bn/ im(bn+1) → Zn−1(B•) and cn : Cn/ im(cn+1) → Zn−1(C•); one checks that the
following diagram commutes:

An/ im(an+1) Bn/ im(bn+1) Cn/ im(cn+1) 0

0 Zn−1(A•) Zn−1(B•) Zn−1(C•)

fn

an

gn

bn cn

fn−1�Zn−1(A•) gn−1�Zn−1(B•)

So we have a commuting diagram with exact rows; so the snake lemma yields δn : ker(cn)→ coker(an) such
that

ker(an)→ ker(bn)→ ker(cn)
δn−→ coker(an)→ coker(bn)→ coker(cn)

But Hn(A•) = ker(an)/ im(an+1) is just the kernel of our induced an : An/ im(an+1) → Zn−1(A•); likewise
we have Hn−1(A•) = Zn−1(A•)/Bn−1(A•) = Zn−1(A•)/ im(an) is just the cokernel of our induced an. So
we indeed get that the sequence

Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)
δn

is exact for all n ∈ Z. Proposition 4.14

4.2 Homotopies of complexes
Definition 4.16. Suppose α, β : A• → B• are two morphisms between the chain complexes A• = (An, an)
and B• = (Bn, bn). We say α is homotopic to β (or α is homotopy equivalent to β, written α ∼ β) if for all
n ∈ Z there is hn−1 : An−1 → Bn (i.e. hn−1 ∈ homC(An−1, Bn) with no (immediate) additional assumptions
on hn−1) such that for all n ∈ Z we have

αn − βn = hn−1 ◦ an + bn+1 ◦ hn

For illustrative purposes, a diagram with all the maps:

An+1 An An−1

Bn+1 Bn Bn−1

an+1 an

αn βn

hn

hn−1
bn+1 bn
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Remark 4.17. ∼ is indeed an equivalence relation.

Proof. For reflexivity, take hn = 0An,Bn−1
for all n ∈ Z. For symmetry, given (hn : n ∈ Z) showing that

α ∼ β, note that (−hn : n ∈ Z) shows that β ∼ α. For transitivity, given (hn : n ∈ Z) and (h̃n : n ∈ Z) such
that

αn − βn = hn−1 ◦ an + bn+1 ◦ hn
βn − γn = h̃n−1 ◦ an + bn+1 ◦ h̃n

note that
αn − γn = (hn−1 + h̃n−1) ◦ an + bn+1 ◦ (hn + h̃n)

Remark 4.17

Proposition 4.18. If α, β : (An, an) → (Bn, bn) are homotopy equivalent then α and β induce the same
maps Hn(A•)→ Hn(B•).

Proof. It suffices to show that if γ : (An, an) → (Bn, bn) has γ ∼ 0, then γ induces the 0 map Hn(A•) →
Hn(B•). Suppose γn = hn−1 ◦ an + bn+1 ◦ hn for some hn : An → Bn+1. In diagram:

An+1 An An−1

Bn+1 Bn Bn−1

an+1

γn+1

an

γn
hn hn−1

γn−1

bn+1 bn

Well, Hn(A•) = Zn(A•)/Bn(A•) = ker(an)/ im(an+1), and likewise we have Hn(B•) = ker(bn)/ im(bn+1);
the induced map γ : ker(an)/ im(an+1) → ker(bn)/ im(bn+1) is then given by x + im(an+1) 7→ γn(x) +
im(bn+1). To show that γ induces the 0 map, we must show that γn(ker(an)) ⊆ im(bn+1). Take x ∈ An such
that an(x) = 0. Then

γn(x) = hn−1(an(x)) + bn+1(hn(x)) + im(bn+1) = hn−1(0) + im(bn+1) = im(bn+1)

as desired. Proposition 4.18

A key proposition:

Proposition 4.19. Suppose F• is

· · · → Fi
ϕi−→ Fi−1

ϕi−1−−−→ · · · ϕ1−→ F0 → 0→ 0→ · · ·

and G• is
· · · → Gi

ψi−→ Gi−1
ψi−1−−−→ · · · ψ1−−→ G0 → 0→ 0→ · · ·

i.e. two chain complexes in an abelian category C. (We will work in R-Mod.) Suppose for all i we have Fi
and Gi are projective objects. In addition, let

M = coker(ϕ1) = H0(F•)

N = coker(ψ1) = H0(G•)

and suppose that Hi(G•) = 0 for all i > 0. Then any β : M → N is induced by a chain map α : F• → G•.
Moreover, α is uniquely determined by β up to homotopy equivalence.

Proof. We proceed by induction.

(Existence) We have two exact sequences

F1
ϕ1−→ F0

πF−−→M → 0
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and
G1

ψ1−−→ G0
πG−−→ N → 0

So, since F0 is projective, there is some α0 : F0 → G0 such that πG ◦ α0 = β ◦ πF ; i.e. such that the
following diagram commutes:

F0

G0 N 0

β◦πFα0

πG

Now, α0 ◦ ϕ1 : F1 → G0. Also

πG ◦ α0 ◦ ϕ1 = β ◦ πF ◦ ϕ1 = β ◦ 0 = 0

by exactness; so im(α0 ◦ϕ1) ⊆ ker(πG) = im(ψ1). So, since F1 is projective, there is some α1 : F1 → G1

such that ψ1 ◦ α1 = α0 ◦ ϕ1; i.e. such that the following diagram commutes:

F1

G1 im(ψ1) 0

α0◦ϕ1
α1

ψ1

Continuing in this manner, and using the fact that Hi(G•) = 0 for all i > 0, we get a chain map
α : F• → G•. Moreover, α0 : F0/ im(ϕ1)→ G0/ im(ψ1) has

α0(x+ im(ϕ1)) = α0(x) + im(α0 ◦ ϕ1) = α0(x) + im(ψ1 ◦ α1)

for x ∈ F0. But πG ◦ α0 = β ◦ πF ; so πG(α0(x)) = β(x+ im(ϕ1)), and

α0(x+ im(ϕ1)) = α0(x) + im(ψ1) = β(x) + im(ψ1)

So β is induced by the chain map α : F• → G•.

(Uniqueness) Suppose α, α′ : F• → G• both induce β; we must show that α ∼ α′. This reduces to showing
that if γ : F• → G• induces 0M,N : M → N , then γ ∼ 0; we may thus assume that β : M → N is the 0
map. Our picture is

F1 F0 M 0

G1 G0 N 0

ϕ1

γ1
h0

πF

γ0 0

ψ1 πG

where h0 : F0 → G1 is the map we wish to find.

Claim 4.20. im(γ0) ⊆ im(ψ1) = ker(πG).

Proof. Well, πG ◦ γ0 = 0 ◦ πF = 0; so im(γ0) ⊆ ker(πG) = im(ψ1). Claim 4.20

So, since F0 is projective, there is h0 : F0 → G1 such that γ0 = ψ1 ◦ h0; in (commuting) diagram:

F0

G1 im(ψ1) 0

h0

γ0

ψ1

We must now produce h1 : F1 → G2 such that ψ2 ◦ h1 + h0 ◦ ϕ1 = γ1. But γ0 = ψ1 ◦ h0; so

ψ1 ◦ (h0 ◦ ϕ1 − γ1) = ψ1 ◦ h0 ◦ ϕ1 − ψ1 ◦ γ1 = γ0 ◦ ϕ1 − ψ1 ◦ γ1 = 0
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since γ is a morphism of chain complexes. So im(h0 ◦ ϕ1 − γ1) ⊆ ker(ψ1) = im(ψ2). So, since F1 is
projective, we get h1 : F1 → G2 such that −h0 ◦ ϕ1 + γ1 = ψ2 ◦ h1, as in the following commuting
diagram:

F1

G2 im(ψ2) 0

h1

−h0◦ϕ1+γ1

ψ2

Then γ1 = ψ2◦h1+h0◦ϕ1. Continuing in this manner, we get a homotopy γ ∼ 0. Proposition 4.19

4.3 Projective resolution
Suppose C is an abelian category with enough projectives (respectively, enough injectives); i.e. for all C ∈
Ob(C) there is a projective P ∈ Ob(C) and an epi P � C (respectively, an injective I and a mono C ↪→ I).
Then we can make a projective resolution of C ∈ Ob(C): an exact sequence

· · · → P2
ϕ2−→ P1

ϕ1−→ P0 → C → 0

with each Pi projective.
Why must this exist? We work in R-Mod. Then there is a projective P0 with an epi ϕ0 : P0 � C; we get

a short exact sequence 0→ K0 → P0 → C → 0. Let K0 = ker(ϕ0). Then there is a projective P1 and an epi
ϕ : P1 � K0; then

P1
ϕ1−→ P0

ϕ0−→ C → 0

is exact since im(ϕ1) = K0 = ker(ϕ0). Let K1 = ker(ϕ1); then

0→ K1 → P1 → P0 → C → 0

is exact. We can find a projective P2 and an epi ϕ2 : P2 � K1. Then

P2
ϕ2−→ P1

ϕ1−→ P0 → C → 0

is exact. And so on.
Similarly, if we have enough injectives, we get an injective resolution of C: an exact sequence

0→ C → I0 → I1 → I2 → · · ·

with each Ii injective.

Theorem 4.21. Let C ∈ Ob(C). If

· · · → P2
ϕ2−→ P1

ϕ1−→ P0
ϕ0−→ C → 0

and
· · · → Q2

ψ2−−→ Q1
ψ1−−→ Q0

ψ0−−→ C → 0

are two projective resolutions of C. Then

1. The chain complexes P• and Q• given by

· · · → P2
ϕ2−→ P1

ϕ1−→ P0 → 0→ · · ·

and
· · · → Q2

ψ2−−→ Q1
ψ1−−→ Q0 → 0→ · · ·

respectively are homotopy equivalent.

2. If D is an abelian category and F : C → D is an additive functor, then for all i we have Hi(FP•) ∼=
Hi(FQ•).
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Remark 4.22. FP• and FQ• given by

· · · → FP2
Fϕ2−−−→ FP1

Fϕ1−−−→ FP0 → 0→ · · ·

and
· · · → FQ2

Fψ2−−−→ FQ1
Fψ1−−−→ FQ0 → 0→ · · ·

are indeed chain complexes, since

(Fϕi) ◦ (Fϕi+1) = F (ϕi ◦ ϕi+1) = F (0) = 0

since F is additive.

Proof of Theorem 4.21. By our last result, there are α : P• → Q• and β : Q• → P• such that α, β induce
idC : C → C; we get the following commuting diagram:

P2 P1 P0 C 0

Q2 Q1 Q0 C 0

P2 P1 P0 C 0

α2 α1 α0 idC

β2 β1 β0 idC

So β ◦ α : P• → P• induces idC : C → C. But idP• : P• → P• also induces idC : C → C. So β ◦ α ∼ idP• .
Similarly, we get that α ◦ β ∼ idQ• . We get the following diagram:

· · · P2 P1 P0 0 · · ·

· · · P2 P1 P0 0 · · ·

ϕ2

β2◦α2

ϕ1

β1◦α1
h1

β0◦α0
h0

ϕ2 ϕ1

So there are hi : Pi → Pi+1 such that βi ◦ αi − idPi = ϕi+1 ◦ hi + hi−1 ◦ ϕi. Applying F everywhere, we find
that

F (βi) ◦ F (αi)− idF (Pi) = F (ϕi+1) ◦ F (hi) + F (hi−1) ◦ F (ϕi)

So F (hi) : FPi → FPi+1 show that

F (α) : FP• → FQ•

F (β) : FQ• → FP•

satisfy F (β) ◦ F (α) ∼ idF (P•). Similarly, we get F (α) ◦ F (β) ∼ idF (Q•). So F (β) ◦ F (α) and idF (P•) induce
the same map (i.e. the identity map) from Hi(FP•)→ Hi(FP•). Similarly, F (α) ◦F (β) induces the identity
on Hi(FQ•) for all i. So β ◦α : P• → P• induces idC : C → C. But idP• : P• → P• also induces idC : C → C.
So β ◦ α ∼ idP• . Theorem 4.21

We then say that the map P• → Q• is a quasi-isomorphism; i.e. the induced maps Hi(P•)→ Hi(Q•) are
isomorphisms.

5 Derived functors
Suppose we have 0 → A

f−→ B
g−→ C → 0 exact, and suppose that F is a right-exact additive functor. (e.g.

in R-Mod, if M is a right R-module, we could take F =M ⊗R − : R-Mod→ Ab.) We know

0→ K → FA
Ff−−→ FB

Fg−−→ FC → 0
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is exact for some K; we’d like to understand K. e.g. if N1
i
↪−→ N2 in R-Mod, what is

ker(M ⊗R N1
id ⊗Ri−−−−→M ⊗R N2)?

As we’ll see, there is a first left-derived functor L1F satisfying

L1FC
δ−→ FA

Ff−−→ FB
Fg−−→ FC → 0

In fact the object L1FC is independent of f and g; it merely requires that 0→ A→ B → C → 0 be exact.

Definition 5.1. Suppose C and D are abelian categories; suppose C has enough projectives. Suppose
F : C → D is right-exact and additive. Suppose A ∈ Ob(C); let

· · ·P2 → P1 → P0 → A→ 0

be a projective resolution. From this we obtain a chain complex P• consisting of

· · ·P2
ϕ2−→ P1

ϕ1−→ P0
ϕ0−→ 0→ 0→ · · ·

to which we can apply F to get another chain complex FP• consisting of

· · ·FP2
Fϕ2−−−→ FP1

Fϕ1−−−→ FP0
Fϕ0−−−→ 0→ · · ·

We then define LiF (A) = Hi(FP•); LiF is called the ith left-derived functor of F .

Why is this well-defined? Well, if P• and P ′
• are two chain complexes arising from projective resolutions of

A, then there are u : P• → P ′
• and v : P ′

• → P• with v◦u ∼ idP• and u◦v ∼ idP ′
•
. Then F (u) : FP• → FP ′

• and
F (v) : FP ′

• → FP• have F (u) ◦F (v) = F (u ◦ v) ∼ F (idP ′
•
) = idFP ′

•
. Similarly, we have F (v) ◦F (u) ∼ idFP• .

So F (u) yields a quasi-isomorphism; in particular, we have Hi(FP•) ∼= Hi(FP
′
•), and LiF (A) is well-defined.

If f : A→ B, what is L1F (f)? Well, if

· · ·P2 → P1 → P0 → A→ 0

and
· · ·Q2 → Q1 → Q0 → B → 0

are projective resolutions of A and B respectively, then there is θ : P• → Q• such that θ induces f in
H0(P•)→ H0(Q•). We then set LiF (f) to be the map Hi(FP•)→ Hi(FQ•) induced by F (θ) : FP• → FQ•.
One checks that this is well-defined; one uses the fact that given two chain complexes P• and P ′

• arising from
projective resolutions of A, we have that θ gives a canonical isomorphism Hi(P•)→ Hi(P

′
•).

We saw that LiFA is independent of choice of projective resolution; we also have

Theorem 5.2. L0F = F .

Proof. There is ϕ : P0 � A such that

P2
ϕ2−→ P1

ϕ1−→ P0
ϕ−→ A→ 0

is exact. But F is right-exact; so if K = ker(ϕ), then since 0→ K → P0 → A→ 0 is exact, we get that

FK → FP0 → FA→ 0

is exact. We also have that P1 → P0 → A→ 0 is exact; so

FP1 → FP0 → FA→ 0

is exact. What is L0F? The 0th homology of

· · ·FP1
Fϕ1−−−→ FP0 → 0→ · · ·

i.e. L0FA = FP0/ im(FP1). But im(FP1) = ker(Fϕ); so L0FA ∼= FP0/ ker(Fϕ) ∼= A. Theorem 5.2
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Theorem 5.3. If A is projective then LiFA = 0 for all i ≥ 1.

Proof. Notice
· · · → 0→ 0→ A

idA−−→ A→ 0

is a projective resolution of A; we get the chain complex P• consisting of

· · · → 0→ 0→ A→ 0→ · · ·

Applying F , we get the chain complex

· · · → 0→ 0→ FA→ 0→ · · ·

So Hi(FP•) = 0 for all i ≥ 1; so LiFA = 0 for all i ≥ 1. Theorem 5.3

Theorem 5.4. Suppose F is right-exact and additive; suppose 0 → A
f−→ B

g−→ C → 0 is a short exact
sequence. Then there is a long exact sequence

· · ·

L2FA L2FB L2FC

L1FA L1FB L1FC

FA FB FC 0

δ3 L2Ff L2Fg

δ2 L1Ff L1Fg

δ1 Ff Fg

where δ : LiFC → Li−1FA.

Proof. Fix chain complexes P• and Q• arising from projective resolutions of A and C, respectively; we’d like
to find a projective resolution · · ·U2 → U1 → U0 → B → 0 of B such that the following diagram has exact
columns:

· · · 0 0 0 0

· · · P2 P1 P0 A 0

· · · U2 U1 U0 B 0

· · · Q2 Q1 Q0 C 0

· · · 0 0 0 0

θ2 θ1 θ0 f

τ2 τ1 τ0 g

i.e. such that 0 → P•
θ−→ U•

τ−→ Q• → 0 is exact and θ induces f : A → B on H0(P•) → U•) and τ induces
g : B → C on H0(U•)→ H0(Q•).

Claim 5.5. We can find such U•, θ, and τ .

Proof. At the first stage, we need to find U0 and maps θ0, τ0 and χ0 such that the following diagram
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commutes:
0 0

P0 A 0

U0 B 0

Q0 C 0

0 0

ϕ0

θ0 f

χ0

τ0 g

ψ0

How do we find such U0, θ0, and τ0? Well, Q0 is projective; so we have h0 : Q0 → B such that g ◦ h0 = ψ0;
i.e. such that the following diagram commutes:

Q0

B C 0

ψ0
h0
g

Let k0 = f ◦ ϕ0 : P0 → B. Let U0 = P0 ⊕Q0; let

χ0 = k0 + h0 : P0 ⊕Q0 → B

θ0 = i : P0 → P0 ⊕Q0

τ0 = π : P0 ⊕Q0 → Q0

Working in R-Mod, we note that the following diagram commutes:

0 0

P0 A 0

U0 B 0

Q0 C 0

0 0

ϕ0

θ0 f

χ0

τ0 g

ψ0

Indeed, for the top square, if p ∈ P0 then going one way we get

p 7→ ϕ0 7→ f(ϕ0(p)) = k0(p)

and going the other way we get
p 7→ (p, 0) 7→ k0(p)

For the bottom square, if (p, q) ∈ P0 ⊕Q0, then going one way we get

(p, q) 7→ k0(p) + h0(q) 7→ g(k0(p)) + g(h0(q)) = ψ0(q) + g(f(ϕ0(p))) = ψ0(q)

and going the other way we get
(p, q) 7→ q 7→ ψ0(q)
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We do one more iteration. We now wish to find U1 and maps θ1, τ1, and χ1 such that the following diagram
commutes:

0 0 0

P1 P0 A 0

U1 U0 B 0

Q1 Q0 C 0

0 0 0

ϕ1

θ1

ϕ0

θ0 f

χ1

τ1

χ0

τ0 g

ψ1 ψ0

We let U1 = P1 ⊕Q1, and define the maps by

χ1 = k1 + h1 : P1 ⊕Q1 → ker(χ0)

θ1 = i : P1 → P1 ⊕Q1

τ1 = π : P1 ⊕Q1 → Q1

One checks that the diagram does indeed commute. Continuing in this way, we get the desired result.
Claim 5.5

Now, apply F to 0→ P•
θ−→ U•

τ−→ Q• → 0.

Claim 5.6. 0→ FPi → FUi → FQi → 0 is exact for all i.

Proof. It suffices to show that if
0→ P → U → Q→ 0

is a short exact sequence of projective objects, then

0→ FP → FU → FQ→ 0

is exact. Why? Well, since Q is projective, we have a section s : Q→ U of τ :

Q

0 P U Q 0

idQs

θ τ

Then idU −s ◦ τ : U → U satisfies

τ ◦ (idU −s ◦ τ) = τ − τ ◦ s ◦ τ = τ − idQ ◦τ = 0

So idU −s ◦ τ maps to ker(τ) = im(θ), and there is t : U → P such that θ ◦ t = idU −s ◦ τ :

U

0 P U Q 0

idU −s◦τ
t
θ τ

We now apply F . Since F is right exact, we get

FP
Fθ−−→ FU

Fτ−−→ FQ→ 0

is exact; we also have Ft : FU → FP and Fs : FQ → FU . I think at this point we just use the fact that
since Q is projective, we have a retraction of θ, which then lifts to a retraction of Fθ.

53



TODO 7. Do we still need all the work with s and t?

Claim 5.6

So 0→ FP• → FU• → FQ• → 0 is exact; so we get a long exact sequence of homology

· · ·

H2(FP•) H2(FU•) H2(FQ•)

H1(FP•) H1(FU•) H1(FQ•)

H0(FP•) H0(FU•) H0(FQ•) 0

δ3

δ2

δ1

i.e. we have an exact sequence

· · ·

L2FA L2FB L2FC

L1FA L1FB L1FC

FA FB FC 0

δ3 L2Ff L2Fg

δ2 L1Ff L1Fg

δ1 Ff Fg

as desired. Theorem 5.4

Remark 5.7. We have been using the fact that if C,D are abelian categories and F : C → D is additive, then
F (0C) = 0D. The reason for this is that if A = F (0C), then idA = F (id0C ) = F (0) = 0. So F (A) is an initial
object, since any f ∈ homD(A,B) satisfies f = f ◦ idA = f ◦ 0 = 0; likewise we get that A is a terminal
object, and hence that F (A) = 0D.
Remark 5.8. Suppose C has enough injectives. Suppose G : C → D is additive and left-exact. If C ∈ Ob(C),
we get an injective resolution

0→ C → I0 → I1 → · · ·

Applying G, we get
0→ GC → GI0 → GI1 → · · ·

and hence we get a chain complex I• given by

0→ GI0 → GI1 → · · ·

We then define RiG(C) = Hi(GI•). We get

1. R0G = G.

2. C injective implies RiGC = 0 for i > 0.

3. If 0→ A
f−→ B

g−→ C → 0 is exact, then we get a long exact sequence of homology

0 GA GB GC

R1GR · · ·
δ0
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4. Given
0 A B C 0

0 A′ B C ′

f

α

g

β γ

f ′ g′

We get that the following diagram commutes:

RiGC Ri+1GA

RiGC ′ Ri+1GA′

δi

RiGγ Ri+1Gα

(δ′)i

Remark 5.9. The above results allow us to recover LiFA for all i ≥ 0 and for all A ∈ Ob(C). Indeed, we
have L0FA = FA; suppose now that we know LiFA for all i < n. Then we can put A in a short exact
sequence 0→ K → P → A→ 0 where P is projective; so we get a long exact sequence of homology

· · ·

L2FK 0 L2FA

L1FK 0 L1FA

FK FP FA 0

So L2FA ∼= L1FK, and L3FA ∼= L2FK, and so forth. So knowing LiFK gives us Li+1FA for all i ≥ 1; we
can obtain L1FA from the exact sequence

0→ L1FA→ FK → FP → FA→ 0

6 Tor
Suppose R is a ring; consider R-Mod, the category of left R-modules. Suppose M is a right R-module and
a left S-module (typically S = Z). Then we get a functor F : R-Mod → S-Mod given by N 7→ M ⊗R N .
Then F is right-exact and additive.

Definition 6.1. We define TorRi (M,N) = LiFN . (i.e. TorRi (M,−) = LiF .)

Remark 6.2. Tor measures how close M is to being flat.

Theorem 6.3. the following are equivalent:

1. M is flat.

2. TorRi (M,N) = 0 for all i ≥ 1 and all N ∈ Ob(R-Mod).

3. TorR1 (M,N) = 0 for all N ∈ Ob(R-Mod).

Proof.

(1) =⇒ (2) Take a left R-module N and a projective resolution

· · · → P1 → P0 → N → 0

Then since M is flat and the resolution is exact, we get that

· · · →M ⊗R P1 →M ⊗R P0 →M ⊗R N → 0

is still exact. So Hi(F (P•)) = 0 for all i ≥ 1; so TorRi (M,N) = 0 for all i ≥ 1.
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(2) =⇒ (3) Immediate.

(3) =⇒ (1) Suppose that TorR1 (M,N) = 0 for all N ∈ Ob(R-Mod); suppose 0 → A → B is exact. Let C
be the cokernel of A → B; so 0 → A → B → C → 0 is exact. Applying M ⊗R − and taking the long
exact sequence of homology, we find that

M ⊗R A M ⊗R B M ⊗R C 0

TorR1 (M,C)

But TorR1 (M,C) = 0. So 0 → M ⊗R A → M ⊗R B → M ⊗R C → 0 is exact; so M is flat.
Theorem 6.3

In algebraic geometry, Tor is used to give a measure of “intersection”; see Serre’s formula.
Example 6.4. Consider R = C[x]; consider M = C[x]/(f(x)) and N = C[x]/(g(x)). Then N fits into a short
exact sequence

0→ (g(x))→ C[x]→ C[x]/(g(x))→ 0

Since (g(x)) is principal, we get that it is isomorphic as an C[x]-module to C[x]. So we get a free resolution
of N

0→ C[x] m−→ C[x] π−→ N → 0

(where m(p) = pg). Tensoring with M , we get a chain complex C• given by

· · · → 0→M ⊗C[x] C[x]→M ⊗C[x] C[x]→ 0

So TorRi (M,N) = Hi(C•). In particular, we have Hi(C•) = 0 for all i ≥ 2; so TorRi (M,N) = 0 for all i ≥ 2.
For TorR0 (M,N), note that the mapM⊗C[x]C[x]→M⊗C[x]C[x] can be expressed as a mapM →M given

by a 7→ g(x)a. Then TorR0 (M,N) is the kernel of the zero map modulo the image of this map; i.e. M/g(x)M .
Since M = C[x]/(f(x)), we note that M/g(x)M = C[x]/(f(x), g(x)). In particular, if h = gcd(f, g), then
M ⊗R N = Tor0(M,N) = C[x]/(h(x)).

For TorR1 (M,N), we are interested in the homology at the left M ⊗C[x] C[x]. But the incoming map is
the 0 map; so TorRi (M,N) = ker(m). Writing M = C[x]/(f(x)), we see that

TorR1 (M,N) = { a(x) + (f(x)) : f(x) | a(x)g(x) } = { a(x) + (f(x)) : f(x) | a(x)h(x) }

Writing f(x) = s(x)h(x), we see that TorR1 (M,N) = (s(x))/(f(x)). Indeed, as we will see on assignment 4,
we in general have that TorR1 (R/I,R/J) ∼= I ∩ J/IJ .

Theorem 6.5 (Flatness criteria). Suppose R is a ring; suppose M is a right R-module. Then the following
are equivalent:

1. M is flat.

2. M ⊗R I →M =M ⊗R R is injective for all left ideals I $ R.

3. TorR1 (M,R/I) = 0 for all left ideals I $ R.

Proof.

(1) =⇒ (2) Immediate.

(2) =⇒ (3) Suppose we have a left ideal I $ R. Then the exact sequence 0→ I → R→ R/I → 0 yields an
exact sequence

M ⊗R I M ⊗R R M ⊗R R/I 0

0 TorR1 (M,R/I)

But M ⊗R I →M ⊗R R is injective; so TorR1 (M,R/I) = 0.
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(3) =⇒ (1) Suppose (3) holds but M is not flat. Then there are left R-modules N ′ ⊆ N such that M ⊗R
N ′ →M ⊗R N is not injective. We make the following reductions:

Claim 6.6. Without loss of generality, we may assume N ′ is finitely generated.

Proof. Well, there is a non-zero x ∈M ⊗R N ′ such that ϕ(x) = 0 in M ⊗R N . Write

x = m1 ⊗R n1 + · · ·+mk ⊗R nk

where n1, . . . , nk ∈ N ′ and m1, . . . ,mk ∈ M . Let N0 ⊆ N ′ be Rn1 + · · · + Rnk. Then x has some
preimage x0 ∈ M ⊗R N0 (under M ⊗R N0 → M ⊗R N ′); then we have N0 ⊆ N ′ ⊆ N and the map
M ⊗RN0 →M ⊗RN factors through M ⊗RN ′, and in particular has x0 6= 0 in the kernel. So we can
instead consider N0 ⊆ N and x0 ∈ ker(M ⊗R N0 →M ⊗R N). Claim 6.6

Claim 6.7. We may assume N is finitely generated.

Proof. Consider ϕ : M ⊗R N0 →M ⊗R N ; then 0 6= x = m1 ⊗R n1 + · · ·+mk ⊗R nk ∈ ker(ϕ). Notice
that M ⊗R N is a free Z-module on symbols (m,n) modulo relations of the form

(mr, n)− (m, rn) = 0

(m1 +m2, n)− (m1, n)− (m2, n) = 0

(m,n1 + n2)− (m,n1)− (m,n2) = 0

So if x = 0 in M ⊗R N , then we can capture that fact using only finitely many relations from the
above; say using (not in order)

(m̃1r1, ñ1)− (m̃1, r1ñ1)

...
(m̃srs, ñs)− (m̃s, rsñs)

(m11 +m21, n
′
1)− (m11, n

′
1)− (m21, n

′
1)

...
(m1j +m2j , n

′
j)− (m1j , n

′
j)− (m2j , n

′
j)

(m′
1, n11 + n21)− (m,n11)− (m,n21)

...
(m′

t, n1t + n2t)− (m,n1t)− (m,n2t)

So we only need to take

N̂ = Rñ1 + · · ·+Rñs +Rn′
1 + · · ·+Rn′

j +Rn11 +Rn21 + · · ·+Rn1t +Rn2t +Rn1 + · · ·+Rnk︸ ︷︷ ︸
N0

Then x0 ∈ ker(M ⊗R N0 →M ⊗R N̂). Claim 6.7

We now have N0 ⊆ N̂ both finitely generated with M ⊗R N0 → M ⊗R N̂ not injective. Write N0 =
〈n1, . . . , nk〉; write N̂ = 〈n1, . . . , nk, u1, . . . , um〉. For i ∈ { 1, . . . ,m }, let Ni = 〈n1, . . . , nk, u1, . . . , ui〉;
then

N0 ⊆ N1 ⊆ · · · ⊆ Nm = N̂

Claim 6.8. We may instead consider Ni and Ni+1 for some i ∈ { 1, . . . ,m }.

Proof. Since the composition

M ⊗R N0 → · · · →M ⊗R Nm =M ⊗R N̂

is not injective, there is some i ∈ { 1, . . . ,m } such that M ⊗R Ni → M ⊗R Ni+1 is not injective.
Claim 6.8
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Note now that
Ni+1/Ni = 〈n1, . . . , nk, u1, . . . , ui+1〉/〈n1, . . . , nk, u1, . . . , ui〉

is cyclic; so there is ψ : R� Ni+1/Ni given by r 7→ rui+1 +Ni. Let I = ker(ψ. Then Ni+1/Ni ∼= R/I;
i.e. 0→ Ni → Ni+1 → R/I → 0 is exact. So we get a long exact sequence of homology

M ⊗R Ni M ⊗R Ni+1 M ⊗R R/I 0

· · · TorR1 (M,R/I)

But TorR1 (M,R/I) = 0 by hypothesis; so 0 → M ⊗R Ni → M ⊗R Ni+1 is exact, a contradiction.
Theorem 6.5

Corollary 6.9. Suppose k is a field; let R = k[t]/(t2), and suppose M is an R-module. Then M is flat if
and only if M/tM ∼= tM (where t = t+ (t2)).

Proof. As previously shown, we get that M is flat if and only if TorR1 (M,R/I) = 0 for all proper ideals I of
R. Notice that I = (0) or I = (t), by the correspondence theorem. In the case I = (0), we have R/I = R is
projective, and hence that TorR1 (M,R) = 0.

So M is flat if and only if TorR1 (M,R/(t)) = 0. Notice, however, that R/(t) ∼= (k[t]/(t2))/(t + (t2)) ∼=
k[t]/(t) ∼= k. So M is flat if and only if TorR1 (M,k) = 0. One checks that

· · · → R→ R→ R
π−→ k → 0

is a projective resolution of k (where R → R is given by r 7→ rt); hence the chain complex from which we
derive TorRi (M,k) is

· · · →M ⊗R R→M ⊗R R→M ⊗R R→ 0

where the maps M ⊗R R → M ⊗R R can be expressed as the maps M → M given by m 7→ tm. So,
unpacking our earlier statement that M is flat if and only if TorR1 (M,k) = 0, we find that M is flat if and
only if {m ∈ M : tm = 0 } = { tm : m ∈ M } = tM ; i.e. if and only if kerM → tM = tM , which by first
isomorphism theorem is equivalent to M/tM ∼= tM . Corollary 6.9

Theorem 6.10. Suppose R is a commutative ring; suppose a ∈ R is not a zero divisor. Suppose M is flat
and we have m ∈M such that am = 0. Then m = 0.

Proof. Consider the short exact sequence 0 → R → R → R/aR → 0 (with the map R → R given by
x 7→ xa). Tensoring with M , we find that

0→M ⊗R R→M ⊗RM →M ⊗R R/aR→ 0

is exact; we can express this as a short exact sequence

0→M →M →M ⊗R /aR→ 0

where the map M →M is m 7→ ma. So the map M →M given by m 7→ am is injective; so if am = 0, then
m = 0. Theorem 6.10

The converse holds if R is a PID.

Theorem 6.11. If R is a PID, then M is flat if and only if M is torsion-free; i.e. whenever a ∈ R \ { 0 }
and am = 0, we have m = 0.

Proof.

( =⇒ ) Generally true.
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(⇐= ) Suppose M is torsion-free; let a ∈ R \ { 0 }. Then

0→M →M →M/aM → 0

is exact (where the map M →M is m 7→ am). Consider also the short exact sequence 0→ R→ R→
R/aR→ 0 (where the map R→ R is x 7→ ax); tensoring with M , we obtain a long exact sequence

M ⊗R R M ⊗R R M ⊗R R/aR 0

0 = TorR1 (M,R) TorR1 (M,R/aR)

But M is torsion-free; so the map M ⊗R R → M⊗R can be expressed as the map M → M given by
m 7→ am. So TorR1 (M,R/aR) = 0 for all a 6= 0. So, since R is a PID, we have TorR1 (M,R/I) = 0 for
all ideals I of R. So M is flat. Theorem 6.11

So for example in Z, we have

• The injectives are the divisible Z-modules (namely direct sums of Q and Cp = { exp(2πij/pk) : k ≥
0, j ≥ 0 }).

• The projectives are the free Z-modules.

• The flat Z-modules are the torsion-free Z-modules.

Some general facts:
Suppose R is commutative; suppose M and N are R-modules. Then

TorR0 (M,N) =M ⊗R N ∼= N ⊗RM TorR0 (N,M)

Fact 6.12. In general, we have TorRi (M,N) ∼= TorRi (N,M).

Fact 6.13. Suppose R and S are commutative; suppose A is an R-module, C is an S-module, and B is both
an R-module and an S-module. If B is flat as an R-module and as an S-module, then TorSn(A⊗R B,C) ∼=
TorRn (A,B ⊗S C).

In particular, for n = 0 we get (A ⊗R B) ⊗S C ∼= A ⊗R (B ⊗S C). Another special case is when S is a
flat R-algebra, and we let B = S; we then get TorSn(A⊗R S,C) ∼= TorRn (A,C).

6.1 Ext
Suppose R is a ring; suppose M and N are left R-modules. We create ExtiR(M,N) as follows:

Define G = hom(M,−) : R-Mod → Ab; then G is additive and left-exact. We then set ExtiR(M,N) =
RiG(N). To compute ExtiR(M,N), we take an injective resolution

0→ N → I0 → I1 → · · ·

and obtain a cochain complex
0→ hom(M, I0)→ hom(M, I1)→ · · ·

We then have ExtiR(M,N) = Hi(hom(M, I•)).
Example 6.14. Let M = N = Z/3Z; we compute ExtiZ(M,N). We get an injective resolution

0→ Z/3Z→ C3 → C3 → 0

where the map C3 → C3 is x 7→ x3. Our cochain complex is then

0→ hom(Z/3Z, C3)
a−→ hom(Z/3Z, C3)

b−→ 0→ · · ·

Suppose ψ : Z/3Z → C3. Then ψ ∈ ker(a) if and only if ψ(1)3 = 1 in C3; i.e. if and only if ψ(1) ∈
{ 1, exp(2πi/3), exp(4πi/3) }. So ker(a) ∼= Z/3Z. So Ext0Z(Z/3Z,Z/3Z) ∼= Z/3Z.

We also get that ExtiZ(Z/3Z,Z/3Z) = 0 for i ≥ 2; it remains to find Ext1Z(Z/3Z,Z/3Z). But this is just

ker(b)/ im(a) = hom(Z/3Z, C3)/ im(a) = hom(Z/3Z,Z/3Z)/ im(a) ∼= Z/3Z
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An alternative description of Ext: consider G̃ = hom(−, N) : (R-Mod)op → Ab. Then G̃ is left-exact and
additive. We can compute RiG̃ by taking an injective resolution of M in (R-Mod)op

0→M → I0 → I1 → · · ·

i.e. an exact sequence
· · · → I1 → I0 →M → 0

where the Ii are projective. So if we take a projective resoltuion

· · · → P 0 →M → 0

in R-Mod and apply hom(−, N), we get a cochain complex

0→ hom(P 0, N)→ hom(P 1, N)→ · · ·

with RiG̃(M) = Hi(hom(P •, N)).

Fact 6.15. RiG̃(M) ∼= ExtiR(M,N).

6.1.1 Ext via Yoneda equivalence

If X and X ′ are two R-modules and we have two short exact sequences

α : 0→ A→ X → B → 0

and
α′ : 0→ A→ X ′ → B → 0

then we write α ∼Y α′ if there is f : X → X ′ such that the following diagram commutes:

0 A X B 0

0 A X ′ B 0

id f id

We then define E1(A,B) to be the set of equivalence classes of ∼Y .

Fact 6.16. E1(A,B) ∼= Ext1R(A,B).

More generally, we can define an analogous equivalence relation on exact sequences

α : 0→ A→ X1 · · · → Xn → B → 0

We let En(A,B) be the collection of equivalence classes of exact sequences under the analogous equivalence
relation.
Remark 6.17. We get a map En(A,B)×Em(B,C)→ En+m(A,C) given by appending the sequences. Taking
A = B = C, we find that ⊕

En(A,A)

is a graded ring.

TODO 8. Missing stuff.

Theorem 6.18 (Eilenberg-Watts). Suppose F,G,H : R-Mod→ S-Mod are additive. Suppose

• F is right-exact and commutes with direct sums.

• G is contravariant, left-exact, and converts direct sums into direct products.

• H has S = Z, is left-exact, and commutes with projective limits.
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Then

• F ∼=M ⊗R − for some (R,S)-bimodule M .

• G ∼= hom(−, N) for some (R,S)-bimodule N .

• H ∼= hom(M,−) where M is an R-module.

Example 6.19 (Grape cohomology). Fix a grape G and consider G-Mod, the category fo abelian grapes
(A,+) endowed with a G-action G × A → A. Consider H : G-Mod → Ab given by A 7→ { a ∈ A : ga =
a for all g ∈ G }. For example, if G = S2 and A = Z ⊕ Z, we can set (1, 2)(a, b) = (b, a), and thus get
A ∈ G-Mod. In this case we have

HA = { (a, b) : (1, 2)(a, b) = (a, b) } = Z(1, 1) ∼= Z

One can easily verify that H is left-exact. However, it is not right-exact: for example, if

• G = Z/2Z

• B = Z/4Z

• C = Z/2Z

then we can consider the quotient map ϕ : B → C; then Hϕ = 0.
One can also easily verify that H commutes with projective limits. One also notes that G-Mod ∼=

Z[G]-Mod (where

Z[G] =

∑
g∈G

ngg : ng ∈ Zng = 0 for all but finitely manyg


is the grape algebra). So we can view H as a functor Z[G]-Mod → Ab; by Eilenberg-Watts, we then get
H ∼= homZ[G](M,−) for some Z[G]-module M . In fact we may take M = Z with the trivial G-action, which
yields the Z[G]-module structure (∑

g

ngg

)
m =

∑
g

nggm =

(∑
g

ng

)
m

Indeed, given θ ∈ homZ[G](Z, A), we may let a = θ(1); then g · a = θ(g · 1) = θ(1) = a, and a ∈ HA.
Conversely, if a ∈ HA, then θ : Z→ A given by θ(n) = na has θ ∈ homZ[G](Z, A). So homZ[G](Z, A) ∼= HA.

We may thus conclude that

Hi(G,A) := RiH(A) ∼= Ri homZ[G](Z,−)(A) = ExtiZ[G](Z, A)

Example 6.20. Let G = 〈x : x2 = 1〉 ∼= Z/2Z; let A = Z ⊕ Z with x(a, b) = (b, a). Then R = Z[G] ∼=
Z[x]/(x2 − 1) = Z[x]/(x+ 1)(x− 1). So Hi(G,A) = ExtiR(Z, A). Note that we get an exact sequence

· · · ϕ2−→ R
ϕ1−→ R

ϕ2−→ R
ϕ1−→ R

θ−→ Z→ 0

where ϕ1(a) = a(x− 1) and ϕ2(a) = a(x+ 1). We truncate and apply hom(−, A) to get a cochain complex

0→ homR(R,A)→ homR(R,A)→ · · ·

i.e.
0→ Z2 → Z2 → Z2 → · · ·
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Then

H0 = { (a, a) : a ∈ Z } = Z(1, 1) = HA

H1 = ker / im
= { (a, b) : a = −b }/{ (b− a, a− b) : a, b ∈ Z }
= (0)

H2 = (0) (similarly)
H3 = (0)

...

So

Hi(G,A) =

{
Z if i = 0

0 else

What is the significance of this? In the assignment we are asked to show that

H1(G,A) ∼= { crossed homomorphisms }/{principal crossed homomorphisms }

Hence in this case we get that all crossed homomorphisms are principal; i.e. given f : G→ A with f(gh) =
f(g) + gf(h), we have that f takes the form f(g) = ga− a for some a ∈ A.

We now showcase another use of the above. Suppose now that A ∈ Ob(G-Mod); consider all grapes H
such that we have

1→ A
i−→ H

π−→ G→ 1

i.e. A E H and H/A ∼= G. Then G acts on any such A by declaring ga = hah−1 ∈ A where we pick h ∈ H
satisfying π(h) = g. We consider the case where this coincides with our original G-action. Then H2(G,A) is
isomorphic to all such extensions 1 → A → H → G → 1 modulo Yoneda equivalence. Note that we always
have at least one such extension; namely AoG. So in our example, since H2(G,A) = 0, we get

1→ Z2 → H → Z/2Z→ 1

where 1 6= x ∈ Z/2Z acts via permuting coordinates.
Example 6.21. Suppose k is a field of characteristic 0; let k be the algebraic closure. Let G = Gal(k/k); then
G acts on (k)∗ via σλ = σ(λ). Then H2(Gal(k, k), (k)∗) is the Brauer grape of k, denoted Br(k); this gives
the structure of all finite-dimensional division rings D over k with Z(D) = k. For example, it holds that

Br(R) = Z/2Z ∼= H2(Gal(C/R),C∗) = H2(Z/2Z,C∗)

Example 6.22 (Hochschild homology/cohomology). Suppose A is a ring; suppose M is an (A,A)-bimodule.
We set

HHi(M) = TorA⊗Aop

i (A,M)

HHi(M) = ExtA⊗Aop

i (A,M)

There is also local cohomology and sheaf cohomology.
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