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1 Preliminaries

Can collaborate with classmates on homework problems, and can looks things up on the internet. Not
permitted to ask profs or post questions on the internet.

Classes vs. sets: classes are sets or proper classes. Any reasonably defined collection of objects should
form a class.



2 Category theory

2.1

Categories

Definition 2.1. A category C has two parts:

Ob(C), a class of objects
for each A, B € Ob(C) a set of morphisms home¢ (A, B).

We also require a composition law o: home (B, C) x home(A, B) — home (A4, C) for all A, B,C € Ob(C) such

Composition is associative, when defined: fo(goh) = (fog)oh.
For all A € Ob(C) there is id4 € home (A, A) such that ids of = f and g oids = g when defined.

Ezample 2.2.

1. Grp, the category of all grapes: Ob(Grp) is the class of all groups and homgp (G, H) the set of grape
homomorphisms G — H. Notice we have composition and idg: G — G.

2. Set, the category of all sets: Ob(Set) is the class of all sets and homge (X, Y) is the set of functions
X =Y.

3. Top, the category of topological spaces: Ob(Top) is the class of all topological spaces and homrep (X, Y")
is the set of continuous maps X — Y.

4. Ab, the category of abelian grapes.

5. Top*, the category of pointed topological spaces (topological spaces with an identified point); mor-

phisms will be continuous maps sending the identified point of the domain to the identified point of
the codomain.

An important example for sheaves:

Ezample 2.3. Suppose X is a topological space. We define the category Topy by

o Ob(Topy) is the set of open subsets of X

e If U,V are open subsets of X, then we set

0 Ugv

homaap, (U, V) = {{l U—=V} else

Why are we interested in category theory? Categories can provide a unification tool.

2.2

Functors

Definition 2.4. Suppose C and D are categories. A functor F': C — D consists of
o F: Ob(C) — Ob(D)
o F: hom¢(A, B) — homp(F(A), F(B)) for any A, B € Ob(C)

such that

o F(ida) = idp(a) for all A € Ob(C)

e F(fog)=F(f)oF(g)

Ezxample 2.5.

1. F: Ab — Grp given by F(A) = A and F(f) = f.



2. T: Grp — Ab by T(G) = G/G’ (where G’ is the commutator subgrape of G) and if f: G — H then
T(f): G/G' — H/H' is given by T(f)(¢G") = f(9)H'.

3. m: Top® — Grp that sends a pointed topological space to its fundamental grape; i.e. the grape of
loops based at the identified point modulo homotopy equivalence. (Recall that hg is homotopic to hy
if there are hy for all ¢ € (0,1) such that the map [0,1]> — X given by (x,t) — hy(z) is continuous.)
Given f: (X,20) = (Y, o), we define m1(f): m1(X,20) — m1(Y, yo) by m1(f)(g) = fo.g: [0,1] = Y.

Apparently the composition 7" o 7y is the first homology grape of a path-connected topological space.

4. The forgetful functor F: Grp — Set.

2.3 Natural transformations

Definition 2.6. Suppose C and D are categories; suppose F,G: C — D are functors. A natural transforma-
tion oc: F' — G consists of a morphism a4: F(A) — G(A) (i.e. aa € homp(F(A), G(A))) for all A € Ob(C)
such that for all f: A — B (where A, B € Ob(C)), we have that the following diagram commutes:

F(4) 25 p(B)
aa) 29 q(m)

Definition 2.7. If there are natural transformations a: F' — G and 8: G — F such that aof: G — G and
Boa: F — F are the respective identity maps, then we say the functors F' and G are isomorphic.

Ezample 2.8. Suppose F': C — D is a functor. Then a =id: F — F given by aq = ida: F(A) — F(A)

Definition 2.9. Functors F,G: C — D are isomorphic if there is a: FF — G and 8: G — F such that
foa=id: F— Fand aof=id: G — G.

Ezample 2.10 (Double duals). Let C be the category of finite-dimensional vector spaces over C. We define
F:C — C to be the identity functor; i.e. F(V) =V for V € Ob(C) and F(T) =T for T: V — W. We
define G:C - Cby G(V)=V* and for T: V — W we let G(T): V** — W** be G(T) = T**. We define
a natural transformation a: F — G by ay: V — V** is ay (V) = ew (where ew € V** = home(V*,C) is

e (f) = f(V) for f e V™).

Then for T: V — W we have the following diagram commutes:

(V) —— G(V)

lF(T) Je

FW) 22 g(w)

So a: F — @G is indeed a natural transformation.

2.4 Opposite category

Definition 2.11. Suppose C is a category. We define the opposite category C°P by Ob(C°P) = Ob(C)
and for A, B € Ob(C) we let homgor (A, B) = home(B, A); composition is then given by fo g = g/;/f
for f € homeer(B, A) and § € homeer(C, B) (i.e. f € home(A, B) and g € home(B,C)). The identity
morphisms are then the same.

Ezxample 2.12. If C is the category of finite-dimensional vector spaces over C then F': C — C°P given by
FV)=V*and F(T)=T*: W* - V*for T: V — W is a functor. Also G: C°® — C given by G(V) = V*
and G(T) = T*: W* — V* for T: V — W is also a functor. Then Go F:C — C sends V — V** and
TT: V5 W* forT: V — W. Likewise F o G: C°? — C°P sends V — V**.



Exercise 2.13. Show that G o F' is naturally isomorphic to the identity functor C — C; i.e. there are natural
transformations a: GoF' — id and 8id — G o F such that foa =id: GoF — GoF and aoff =id: FoG —
FodG.

Definition 2.14. Suppose C and D are categories and F': C — D and G: D — C are functors such that
FoG:D — Dand GoF: C — C are isomorphic to the respective identity functors. Then we say C = D are
equivalent.

Ezxample 2.15. If C is the category of finite-dimensional vector spaces over C, then C = C°P.

Ezample 2.16 (Algebraic geometry).

Definition 2.17. Let k be a field. A k-algebra B is a commutative ring with an injective homomorphism
p: k — B such that p(1;) = 15.

Remark 2.18. Then B D (k) = k; so B is a vector space over k.

Ezample 2.19. B = Cl[z,y] is a C-algebra with ¢: C — B given by p(\) = \.

Definition 2.20. B is finitely generated as a k-algebra if there are aq,...,aq € B such that every b € B can
be written as a polynomial p(ay,...,aq) for some p € k[z1,...,24). B is reduced if whenever b € B satisfies
b" = 0 for some n > 1 we have b = 0.

Ezample 2.21. C[z]/(x) is not reduced; C[z1, z2, x3,...] is not finitely generated.

We can then form the category C of finitely generated, reduced C-algebras. We can also form the category
D of complex affine varieties, whose objects are Y C C" for some n > 1 such that Y is the zero set of a finite
set of polynomials p1(z1,...,2,),...,pa(21,...,2,). (Note that we don’t require irreducibility here.)

Ezample 2.22. Y = {(a,b) € C? : b = a® + 1} C C? is the zero set of 23 — 23 — 1.

Then algebraic geometry tells us that C = D°P. The nullstellensatz gives us that for B € C, say B =
Clz1, ..oy znl/(p1(z1, .y 2n), ..y pa(T1, . .., Ty)), that we can set F(B) to Y the zero set of py, ..., p, in C".
Also G: D°® — C sends Y +— Clzy,...,2,]/(p1,.-.,pa) where Y is the zero set of p1,...,pq € Clzy,...,x,).

2.5 Adjoints

Definition 2.23. Suppose A, B are categories. We say F': A — B is left adjoint to G: B — A if, intuitively,

we have
homy (A, G(B)) = homg(F(A), B)

for all A € Ob(A) and B € Ob(B). More formally, we require that for all A € Ob(A) and B € Ob(B) there
be a bijection a4 p: hom4 (A4, G(B)) — homp(F(A), B) such that whenever A, A" € Ob(A), B, B’ € Ob(B),
¢ € hom4(A, A’ ) and ¢ € hompg(B, B’), we have the following diagram commutes:

hom 4 (A’, G(B)) ~2-% homp(F(A'), B)
|pomate.6o) |poms((e).0)
hom 4 (A, G(B')) ~22 homp(F(A), B)

where hom 4 (¢, G(¢)): hom4(A’,G(B)) — hom4(A, G(B’)) is given by f — G(¢) o f o . We then write
F =G

Example 2.24. If G is the category of grapes and A is the category of abelian grapes, then we have an
inclusion functor I: A — G (given by I(A) = A and I(f) = f for f € hom4(A, B)) and a reduction functor
R: G — A (given by R(G) = G/G’ and R(f) is the descent of f to G/G' — H/H' for f: G — H). Then
these are adjoint; which is left adjoint and which is right adjoint?

Example 2.25. If A is the category of abelian grapes and Set is the category of sets then we have a forgetful
functor G: A — Set (given by G(A) = A and G(f) = f). Consider F': Set — A given by

X@Z{anem:nm()forallbutﬁnitelymannyX}

reX zeX



where e, are formal “basis vectors”. Then F & G; if X is a set and A is an abelian grape, then
homget (X, G(A)) = homy (F(X), A)

with f: X — A being sent to f: 7ZX — A given by e, + f(x). Furthermore, if ¢ € homge (X, X’ and
1 € hom —A(A, A’), then the following diagram commutes:

homset (X', G(A)) =4 homy (F(X'), A)
J{homset(eo,G(w)) lhomA (F(¥),%)
homset (X, G(A')) —2% hom(F(X), A)

Ezercise 2.26 (Stone-Cech compactification). Idea: we have CHaus, the category whose objects are compact
Hausdorff spaces and whose morphisms are continuous maps, and we have Top, the category of topological
spaces. We have an inclusion functor G: CHaus — Top (given by G(X) = X and G(f) = f). In other
words, CHaus is a subcategory of Top; i.e. Ob(CHaus) C Ob(Top), homcaus(X,Y) € homre (X, Y) for all
X,Y € Ob(CHaus), focHaus 9 = f oTop g When it makes sense, and idy in CHaus equals idx in Top whenever
X € Ob(CHaus).
What would a left adjoint do? We would have F': Top — CHaus and bijective ax p(x): homrep, (X, F(X)) —

homcpaus(F(X), F(X)). Let 8 = a;()lF(X)(idF(X)); then 8: X — F(X). Moreover, the adjoint property

shows that if f: X — K is continuous (where K € Ob(CHaus)) then there is a unique f: F(X) — K such
that the following diagram commutes:

x 2 F(x)

Ezample 2.27. Recall we have Top®, the category of pointed topological spaces, and Grp, the category of
grapes. Recall we also have m;: Top* — Grp given by (X, zg) — m1 (X, zo). For example, if (X, zq) = (C, 1),
then 71 (X, zo) = {id }, since if g: [0, 1] — C is continuous, then we can define g;(z) = g(x)t+1-(1—1t); then
g1 = g and go = 1. Now, consider (Y,yo) = (S1,1); let H = Z € Ob(Grp). Suppose 7; had a left adjoint
F: Grp — Top®*. Then homeyp(H, 1 (X, 20)) = hompep (F(H), (X, z0)); so |homrep (F(H), (X, z0))| = 1.
On the other hand, we also have homgp (H, 71(Y, y0)) = homyep+ (F'(H), (Y, y0)), and homryep+ (F'(H), (Y, y0))
is infinite. But homrep- (F'(H), (Y, y0)) embeds into homrep (F/(H), (X, o)), a contradiction. So m; does not
have a left adjoint.

As a general principle, forgetful functors (like A — Set) are right adjoint to “free” functors (like F': Set —
A).

Definition 2.28. Given a category A and a set X, we say F(X) is the free object in X in A if there is a
set map f: X — F(X) such that if g: X — A is a set map to some A € Ob(A), then there is a unique
g € hom(F(X), A) such that the following diagram commutes:

F(X) -2 A
1
X

Ezercise 2.29. If free objects exist, then FF = G (where G is the forgetful functor).
Ezercise 2.30. Free objects don’t exist in the category of fields.
The most important example will be tensor-hom adjunction, which we will see later.
Theorem 2.31. Right adjoints are unique up to natural isomorphism; i.e. if F: A — B and G,G': B — A

are right adjoints for F then there are matural transformations n: G — G’ and p: G — G such that
pon=1idg: G = G and nopu=1idg: G' — G'.



(A similar proof will show that left adjoints are also unique up to natural isomorphism.)

Proof. Suppose F: A — B; suppose G,G": B — A are right adjoints for F. We wish to find a natural
isomorphism 7: G — G’. Suppose A € Ob(A) and D € Ob(B). Then we are given

hom_4 (A, GD) =225 homp(F A, D) <22 hom(A, G' D)
Taking A = GD, we have

’
GD,D

hom 4(GD, GD) <225 homp(FGD, D) +=22 hom4(GD,G'D)
In particular, we have
idgp — OéGD,D(idGD) — (O/GD)D)_l(OéGD,DOdGD)): GD - G'D

Define 1p: GD — G'D to be (agp p)~ ' (aep,p(idep)); we must show that for f: D — D', the following
diagram commutes:

GD " G'D
o e
GD' % G'D
We apply the naturality of the adjoint map twice. The first time we use A = A’ = GD, B= D, B’ = D',
p=1idgp: A— A’,and ¢, f: D — D’. Then the following diagram commutes:

aGD,D

hom(GD,GD) ——= hom(FGD, D) <—— hom(GD,G'D)

! L]

hom(GD,GD’) lepmy hom(FGD, D') +—— hom(GD,G'D’)

GD,D’
Starting with idgp in the top left corner, we get

idgp — np — G'(f) onp
and
idep — Y(G(f))
(where ¥ = (agp p)~" o agp,pr). Applying naturality again, this time with A = GD, A" = GD', ¢ =
GF:GD — GD', B= B’ = D’ and ¢ = idp+, we find the following diagram commutes:

hom(GD',GD") —— hom(FGD’,D') +—— hom(GD’,G'D’)

| | |

hom(GD,GD’') —— hom(FGD,D’) «—— hom(GD,G'D")

Chasing idgp, we find
idgp + np = npr o G(f)
and
idGD/ — idGD/ OG(f) — Yo G(f)

So the first square yields
Vo G(f)=G"(f)onp

and the second yields
Vo G(f) =np oG(f)



So the following diagram commutes:
GD - G'D
lor e
GD' 2% G'D
And 7 is a natural transformation; one checks that it is a natural isomorphism. OO0 Theorem 2.31

Remark 2.32. If G is naturally isomorphic to G’ and G’ is a right adjoint for F', then G is also a right adjoint
for F.

Proof. Supposep: A — A’ and ¢: B — B’. Then since F' 2 G’, we have the following diagram commutes:

hom(A4’,G'B) 2aln hom(FA’, B)

| |

hom(A, G'B') ~22% hom(FA, B')
Suppose 1: G — G’ is a natural isomorphism; then the following diagram commutes:

hom(A’, GB) Lizo), hom(A’, G'B)

| |

hom (A, GB’) (12} hom(A,G'B’)

(where (ngo) maps f +— np o f) since
ne o G(Y)o fop=G(d)onpoofop

So if Ba,p = aap o (nBo), then B4 p are bijections hom(A, GB) — hom(F A, B) such that the following
diagram commutes:

Bar,B

hom(A’, GB) —22% hom(FA’, B)

| l

BA,B’

hom(A, GB') —= hom(F A, B')
So "= G. 0 Remark 2.32

2.6 Tensor-Hom adjunction

Let R be a commutative ring, and consider R-Mod, the category of R-modules with homg(M,N) =
homp -Mod(M, N) the set of R-module homomorphisms M — N. Fix an R-module M, and consider
F: R-Mod — R-Mod given by N — M ®pr N. Then we have the universal property that if P is an R-module
and f: M x N — P is bilinear, then there is a unique homomorphism of R-modules f: M ®r N — P such
that the following diagram commutes:

MxN'*f;P

/
,
C
[
0 f

M &g N

(Given f: N — N, we get d®f = F(f): M®@r N - M ®r N by m®n — m® f(n).) We also
have G: R-Mod — R-Mod given by G(N) = hompr(M,N) and if f: N — N’ then G(f): homr(M,N) —
hompg (M, N') is given by ¥ — f o).

Theorem 2.33 (Tensor-Hom adjunction). F = G.



Proof. Given A, B € R-Mod, we need a4 p: hompg(A, GB) — hompg(F A, B); that is, hompg (A4, homg(M, B)) —
homp(M ®g A, B). Suppose we have 1 € hompg(A, hompg(M, B)). Then for a € A we have i(a): M — B;
in particular, for m € M we have 9(a)(m) € B. We then define ¢g: M x A — B by 1hg(m,a) = ¥(a)(m).
Then 1) is bilinear:
Yo(rm +m',a) = (a)(rm +m’)
= r(a)(m) + ¢(a)(m’)
= 7"1/)0 (mv a) + wO (m/a a)

and

Yo(m,ra+a') = y(ra+a')(m)
= (r(a) +9(a’))(m)
= ro(m, a) + o(m,a’)

So by the universal property for tensor products, we get a unique homomorphism of R-modules @//JB : M®pA —
B such that the following diagram commutes:

MXALZ’B

.
.
.
.
LT
.
. Yo

M®gr A
We then set aq p(tp) = %. This is reversible: if p: M ®r A — B, then ¢: M x A — B given by

(m,a) = p(m ® a) is bilinear:

P(rmy +mz,a) = ((rm1 +mz) ® a)

=@(r(m; ®a) + ma @ a)

=rp(m1 ®a) + ¢(m2 ® a)

= r&(mh a) + @(m27 a’)
and likewise with the other side. We can then think of ¢ as morphism A — homp(M, B) by a — @(a)
(where @(a)(m) = @(m,a)); so ¢ € hompg(A,homg(M, B)).

So a4, p is an isomorphism (i.e. bijection); it remains to check the compatibility condition. Suppose

p: A— A’ ¢: B— B’. We wish to check that the following diagram commutes:

hom(A’, GB) “2% hom(FA', B)

| |

hom(A4, GB') “225 hom(F A, B')
Suppose h € hom(A’, hom(M, B)); then, going one way, we get
hi hos dogo F(p) =vogo (idy)

Going the other way, we get
hi= G(p)ohop=1ohoptohoyp)

One checks that (¢ ﬁz?gp)o =1o To 0 (id®¢p). (Hint: look at what they do to m®a.) O Theorem 2.33

2.7 Yoneda’s lemma

Ezample 2.34. Let Abg, be the category of finite abelian grapes. Suppose A € Ob(Abygy,); suppose for all
finite abelian grapes B we know |[homap(A, B)|. Can we recover A? Equivalently, if A1 % Aa, is there
necessarily a B such that |hom(Ay, B)| # |hom(As, B)|.



For example, consider

A =Z3073Zs
Ay =750 74 @7 © Ls

Then
|lhom(A;,Zs)| =5
|lhom(Aq,Zs)| =5
lhom(Ay, Zs)| = 2°
lhom(A1, Zy)| = 2°
lhom(Aq, Zy)| = 2% - 43
lhom(Ay, Z4)| = 2* - 42

The answer turns out to be “yes” for Abg,, but not in general.

Yoneda’s lemma says roughly that we can understand A € Ob(A) by understanding hom 4 (A, B) for all
B € Ob(A).

Definition 2.35. Suppose A is a category; suppose A € Ob(A). We can make a functor hy: A — Set
by ha(B) = homu(A, B) and ha(f): homu(A, B) — homu(A, B’) is ha(f)(¥)) = f o1 whenever f €
hom (B, B’). Such an hy is called a representable functor. (We also give this name to a functor that is
naturally isomorphic to a representable functor.)

On the assignment, we define a category Funct(A, Set) whose objects are functors A — Set and whose
morphisms F' — G are natural transformations n: F — G. Let F be the (full) subcategory of Funct(A, Set)
whose objects are representable functors; i.e. homz(h4, hp) is the class of natural transformations hy — hp.

Theorem 2.36 (Yoneda’s lemma). A 2 F°P.
Recall if n: ha4 — hp is a natural isomorphism then for each C' € Ob(A) we get an isomorphism
ne: ha(C) — hp(C); ie. hom(A, C) = hom(B,C). Yoneda’s lemma gives a partial converse to this.

Ezample 2.37. Consider the forgetful functor G: Grp — Set given by G(H) = H. Then G is a representable
functor: note that homg,p(Z, H) = H for all H € Ob(Grp). So G = hy,.

Another way to view the above: consider F': Set — Grp where F(X) is the free grape on X. Then
Z = F({x}); so by the adjoint property we have homg:p(F(X), H) = homge (X, H). But in Set, we have
H = homget({ 2 }, H) = homep(F({z }), H) = homeyp(Z, H).
Ezample 2.38. Let C be the category of commutative k-algebras (where k is a field). Given a ring C we
can form a category C-Mod. If M is a C-module, a derivation §: C' — M is a k-linear map satisfying
d(c1e2) = c16(c2) 4 c20(c1). Consider Derg(C, M) the set of derivations §: C' — M; this is a C-module
with (¢- f)(a) = ¢- f(a). So we have a functor Der: C-Mod — C-Mod given by M +— Der;(C, M) and
Derk(f)(0) = fod. (Note that fod is indeed a derivation: (fod)(ab) = f(ad(b)+bd(a)) = af(6(b))+bf(6(a)).)

Claim 2.39. Dery, is representable.

Proof. We use Kéhler differentials. Given C' a k-algebra, we construct a C-module (¢, which is the free
C-module on all symbols of the form dc for ¢ € C' modulo the relations

d(Cl + )\(32) = dc; — Mdes
d(cice) = crdea + cadey

For example, consider C' = k[t]. Then in Qy/x, we have
d(ag+as + -+ ast’) = agdl + aydt + - - - + asdt> = 04 ardt + 2aqtdt + - - - + sast® 1dt = o (t)dt

So Qe = K[t]dt. In general Dery (K[t], M) = homy Qs /k, M) where given §: k[t] — M a derivation we
associate fs: Quy/x — M given by fs(dt) = 6(t). (In general we want fs(dc) = d(c).) Then fs(p(t)dt) =



p(t)o(t). Conversely, for f: Qi — M can associate dy: k[t] — M given by d¢(p(t)) = f(dp(t)) =
f@'(t)dt) = p'(t) f(dt); then df(c) = f(dc) and

dr(p(t)a(t)) = (p(t)q(t)) f(dt)
= p'(t)q(t) f(dt) + p(t)q'(t) f(dt)
=q-0s(p) +p-d5(q)

So 4y is indeed a differential. O Claim 2.39
We digress from Yoneda’s lemma for a bit to give an exposition of presheaves.

Definition 2.40 ((Topological) presheaves). Recall that if X is a topological space we defined Topy to
have open subsets of X as objects and

i USV

hormtop = {(Z) else

Then a presheaf of C (where C € { Ab, Ring, Grp, Set, ... }) is a functor S: Topy — C (i.e. a contravariant
S: Topy — C); then if i: U — V, we get pyy = S(i): S(V) — S(U), which we think of as “restriction”
from V to U.

Ezample 2.41. Consider O: Top’ — Set given by U +— { f: U — C continuous } where given f € O(V) we
define pv,u(f) = f U € O(U).

Ezample 2.42. let X = C with the Euclidean topology, and let F: Top$’ — Ring be F(U) ={f: U — C |
fanalytic} HU CV,weget F(U) = F(V)by f—= f U

Definition 2.43. A presheaf F: Topy — C is a sheaf if it satisfies

1. It is separated: if U C X is open and

U:Um

i€l
then if f,g € F(U) satisfy f | U; =g | U; for all i € I, we have f = g.

U=JU

iel
and we are given (f; : ¢ € I) such that f; [ (U; NU;) = f; | (U; NUj), then there is some f € F(U)
such that f [ U; = f; for all i € I.

2. We should be able to glue: if

Ezample 2.44. For example, F: Top§ — Ring given by F(U) = { f: U — C | f continuous } is a sheaf of
rings.

Ezample 2.45. Let X = R with the Euclidean topology. Let F(U) be the set of bounded continuous function
U — R, and endow F with the restriction mapping. This is a presheaf but not a sheaf, since we don’t have

gluing:
= J(=n.n)
n=1

and we can set f,(z) =2 € O(U,) (where U,, = (—n,n)) and f, [ (U, NUp) = fim | (U, NUp,) but there is
no f: R — R bounded such that f [ U, = f, for all n.

We now bring things back to Yoneda’s lemma.

What are the representable presheaves of sets; i.e. representable functors h: Topy — Set? Well, we fix
U C X open and get hy: Topy — Set given by hU(V) = homygyer (U, V) = homrep, (V. U) and 1) — tpoi
for ¢ € homygyer (Vo, Vi) = homrep  (Vi, V2). Then hy (V) is empty if V Z U and is {i: V < U } otherwise.
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Now, if hy and F are two presheaves Topy — Set, what is a natural transformation n: hy — F? Well,
if V1 < V5 then we get the following diagram commutes:

hy(Va) —= F(Va)

|

hy (V1) —2= F(Wh)

If 7 = hy, then the n: hy — hy are in bijection with hy (U) = homygyer (V,U) = homrep (U, V).
Claim 2.46. Any n: hy — F is completely determined by ny .

Proof. If Vi — V5 then we get the following diagram commutes:

Case 1. Suppose V C U is open; so we have V' < U, and hence U — V in Topy. We get

hy(U) —22—— F(U)
| |
vV

hy (V) = hom(U, V) — F(V)

So ny is determined by 1y .
Case 2. Suppose V € U; then hy (V) = 0. O Claim 2.46

We now prove Yoneda’s lemma.

Proof of Theorem 2.36. We have a category A with objects A, B,C, ... and morphisms A ER B; we have a
category F C Funct(A, Set) with objects ha, hp, hc, ... and morphisms 7: hy — hp. We claim that A &

F°P. We need to construct F: A — F°P and G: F°P — A. We define F(A) = hy; given A L, B we define
ng = F(f): hg — ha by, for C € Ob(A), setting (nf)c: hg(C) — ha(C) (i.e. hom(B,C) — hom(A4, C)) to
be ¢ — ¢ o f for ¢ € hom(B,C).

To check that n7: hp — h4 is a natural transformation, suppose g: C — C’ for C,C’ € Ob(.A). We wish
to check that the following diagram commutes:

hs(C) 2% ha(C)
J/hA(g)

hB(C/) (nf)C’ hA(C/)

But going one way, we get

Y goprgotpof
and going the other way, we get

Y=o firgotpof

So the map A — h4 and f +— ny is a functor F': A — F°P.

Now, define G: F°P — A by G(ha) = A. For n: hy — hp, we wish to define f(n) = G(n): B — A. But
Na: ha(A) = hp(A); so we may set f(n) = G(n) =na(ida): B — A. One checks that G is a functor.

Look at Go F': A — A and FoG: F°P — F°P. We claim that these are the respective identity functors.
Well, note that

(G o F)(A) = Glha)
=A

(F o G)(ha) = F(A)
—ha

11



Suppose A ER B; we get A SPU), B We need to check that GF(f) = f. Well, F(f) =ny: hg — ha is

given by (ns)c: hp(C) = ha(C) is ¥ — ¢ o f; then G(ny) = (ny)p(idp) =idgof = f.
Suppose now that n: hg — ha. Then F(G(n)) = F(ng(idg)), and for C' € Ob(.A) we have (F(ng(idp)))c: hp(C) —
ha(C) is given by ¥ — ¢ o np(idp). But by naturality of n we have the following diagram commutes:

hp(B) —— ha(B)

lth) l’“‘(”’)

hi(C) —= ha(C)

and hence, following idg € hg(B), we find nc(v) = Y ong(idg). So nc = (F(np(ids)))c for all C' € Ob(A).
So 1 = F(G(n)).
So Go F =idy and F o G = idrop, as desired. So A = F°P, [0 Theorem 2.36

Corollary 2.47. Any small category (i.e. in which Ob(C) is a set and hom(A, B) is a set for all A,B €
Ob(C)) is concretizable; i.e. is equivalent to a category in which each object is a set.

Idea of proof. Let C be a small category. Then by Yoneda’s lemma we have C = F°P C Funct(C, Set)°P via
C +— he. We make a new category C whose objects are given as follows: for B € Ob(C) we make a set

B= ][] hs©)

Ceob(C)
Given f: B — B’ we define a map f: B - B by ¢c +— ¢c o f where

Yo € E\' = H hB/(C)
CEeob(C)

This gives us a concrete category C with C = Fop = Cop, O Corollary 2.47

2.8 Initial and terminal objects

Definition 2.48. We say I € Ob(C) is an initial object of C if for all C' € Ob(C) there is a unique f: I — C.
We say T is a terminal object if for all C' € Ob(C) there is a unique g: C — T.

Ezxample 2.49. Consider Set. Then @ is the unique initial object, and the terminal objects are exactly the
singletons.

Remark 2.50. If they exist, initial and terminal objects are unique up to unique isomorphism.

Proof. We do the case of initial objects. Suppose I1 and I5 is initial. Then there is a unique ¢;: I; — I and
ig: Io — Iy; then 49 041 : It — I;. But there is a unique map I14 — I, and idy, : I1 — I3; so 49 043 = idy,.
Likewise, we get 71 oio = idy,, and 7; is an isomorphism. Uniqueness is then immediate. OO0 Remark 2.50

Example 2.51.

1. In Ring (in which we require maps to preserve unity), we have I = Z is initial and T' = Op (the zero
ring) is terminal.

2. In Ab we have (0) is initial and terminal; we call this a zero object.

3. In Field" (i.e. non-zero fields) there is no initial or terminal object.

12



2.9 Limits and colimits
We use lim to denote colimits and lim to denote limits.

Definition 2.52. Let C be a category and let B be a category. (Almost always B will be small and B C C
is not necessarily full.) Then a diagram based on B is a functor F': B — C (often the inclusion functor). A
diagram is small if B is a small category. A cone to F is an object N € Ob(C) and a family of morphisms
wp: N — FBfor all B € Ob(B) such that for all f: B; — B; in B we have the following diagram commutes:

N

$B;
lsoJN

FB;, 29 pp,

We can make a category of cones in the natural way; we then define a limit lim F' of the diagram to be a final
(i.e. terminal) object; that is, a cone (L, pp) such that every other cone factors uniquely through (L, o).

Remark 2.53. Since terminal objects are unique up to unique isomorphism if they exist, we have that @F
is unique up to unique isomorphism if it exists.

Definition 2.54. We can dually define a co-cone to F to be an object N € Ob(C) and a family of morphisms
wp: FB — N for all B € Ob(B) such that for all f: B, — B; in B we have the following diagram commutes:

FB; ™Y pp,

J/@B[
¥B;
N

We then define an inverse limit of the diagram to be an initial object in the category of co-cones.

Limits Colimits Diagrams
lim lim
Final object | Initial object | 0
Product | Coproduct | Objects in C with the respective identity morphisms
Equalizer | Coequalizer A—=B
Inverse (projective) limit | Direct limit | Directed set
A+—B —C

Pullback Pushout

E—F+—G

Ezample 2.55. Recall that a directed set I has a reflexive and transitive (i.e. preorder) < such that for all
a,b € I we have an upper bound in I.

Consider I = N with the usual order. Let Ring be the category of rings. Let B C Ring be the category
with objects Z/p"Z for some fixed prime p; for i > 2, we include a morphism ;: Z/p'Z — Z/p'*~'Z given
by [n]i = [n]pi-1. Take F': B — Ring to be the inclusion functor. Then L = @F = l'&lZ/p"Z = 7, the
ring of p-adic integers.

Let’s see how to find L. Embed -

7 L — H 7./p'7Z
i=1
by © — (m1(z), m2(x),...). Now, if 7 is not injective, we can replace L by L/ker(7); so assume 7 is injective.
So
L CZ/pZ x L|p*Z x ...

If (a1,a2,...) € L, then a1 = m((a1,...)) = @a(m(a1,...)) = ag in Z/pZ; likewise we get ant1 = an
(mod p™). So L C Z,,. In fact we have equality: Z, = @Z/p”Z.
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Ezample 2.56. Consider the directed set I = N with a <b <= a | b Let C be the category of fields. Fix
a prime p; notice for n € N we have Fp» the splitting field of zP" — x over Fp. If Fpi C Fp; then we have
Fpi =Fpi-1®...®Fia, has size (p')%; so j = is, and i | j. Conversely, if i | j, say j = is, then we get
an embedding 0;;: i < F,;. What is liglﬁ'pn? The category B has objects IF,,; for ¢ > 1 and morphisms
venerated by 6;; for i | 5. Then L = F, is the algebraic closure of F,,.
We have seen that Z, is a I&H and IFT, is a h_n} More generally, if (I, <) is a directed set, we define
1. Given category with objects { C; : i € I } and morphisms ¢;;: C; — C; for i > j such that ¢, 0 p;; =
i and @;; = id¢,, we define I'&HC@- to be the inverse limit of the C;.
2. Given a category with objects { C; : ¢ € I } and morphisms 6;;: C; — C; again satisfying 6,5, 00;; = 6,
and 0;; = id¢,, we define liqui to be the direct limit of this system.

Definition 2.57 (Products and coproducts). Suppose C is a category and B C C is a subcategory whose
only morphisms are the identity morphisms; let F' be the inclusion functor. We call I&nF the product

II ¢

CeOb(B)

II ¢

CeOb(B)

and we call ligF the coproduct

Mnemonic 2.58. “Colimits are the stalactites of category theory.”

\ /FB’

We can think of the “c” in “colimit” as recalling “ceiling”. We can also recall the L generalizes the
inverse/projective limit, and that li l_ng generalizes the direct limit.

Remark 2.59. When limits/colimits exist, we can regard lim or L as functors. What does this mean? Well,
if we fix a category A and consider all diagrams of type% into A, we can identify this with Funct(B3,.4).
Suppose F,G: B — A and n: FF — G is a natural transformation; consider the colimit case. Then the
following diagram commutes:

Ff FB
nB gﬂ F ng’
af

GB’

B
ligG

which then induces a unique morphism hﬂ n: hgl F— hgi G such that the following diagram commutes:

FB’
B IEF np’
Gf 'hmn GB’

ek
lénG
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Playing a little more, we get that hg is indeed a functor Funct(5, 4) — A.

An overview of our coverage of limits and colimits:
1. Examples
2. Left adjoints preserve colimits, right adjoints preserve limits
3. Criteria for (small) colimits and limits to always exists

What does (2) mean? Well, suppose D: D — A is a diagram; suppose F': A — B and G: B — A have
F = (G. We do the colimit case.

Applying F, we get another cone:

FDf

FDX'

\ A,
F(lim D)

A priori, we don’t know that it’s the universal cone (i.e. colimit).

Theorem 2.60. F(hgq D)= hﬂ(FD)

Mnemonic 2.61. RAPL: “right adjoints preserve limits”. Alternatively, left adjoints are right exact.
Ezample 2.62 (Coproduct in Grp). Consider two copies of Z/2Z: (x| 2> = 1) and (y | y*> = 1).

\WHW/

where Z/2Z [ Z /27 is the free product of 7 /27 with itself. Given maps Z/27Z into G as above, we define g
to be the image of = and h to be the image of y; this then induces a map Z/2Z[[Z/2Z — G via z — g and
y — h.

One can check that Z/2Z[[Z/2Z = (u,v | v? = 1,vuv™! = u~1), the infinite dihedral grape. In general

we have
[
iel
is just the free product of the G;.
Note that the free product of Z/27 with Z/2Z in Ab is instead the direct sum.
Ezample 2.63 (Coproduct in Set). The coproduct of sets is just the disjoint union.

Ezample 2.64 (Coproduct in Ab). A[[ B = A@® B. More generally in R-Mod we have M [[N =2 M & N; in

fact
[1M:i =P M

iel iel
Ezxample 2.65. Consider G: Grp — Set the forgetful functor. We know F &= G where F is the free
grape functor; is G a left adjoint? No, as it does not preserve colimits: G(Z/2Z]][7Z/2Z) is infinite but
G(2/22)[]G(Z/2Z) = {1,2,3,4}.

15



TODO 1. Get this class.

Definition 2.66. A category in which all small colimits exist is called cocomplete; a category in which all
small limits exist is called complete. A category that is complete and cocomplete is called bicomplete.

Theorem 2.67 (Criterion for existence of small colimits). Suppose C is a category in which all small
coproducts exist and all coequalizers

f
C —= '
g
exist. Then C is cocomplete.

Proof. Suppose that small coproducts exist and all coequalizers exist. Suppose F': B — C is a small diagram.
We wish to show hﬂF exists. Let

c'= ][] FBeObE)

BeOb(B)
Pictorially:
FB FB’ FB”
c’ v
Let
Mor(B)= | J  homg(B,B')
B,B’€Ob(B)

Notice that each ¢ € Mor(B) has a source and target: if ¢: B — B’, we define s(¢) = B and t(p) = B'.
(A somewhat technical point is that we implicitly require in our definition of a category that these maps be
well-defined.) Let

C= ][] F(s(y)eo0be)
@€Mor(B)
Pictorially:
FB FB’ FB"

N oo
C

(Note that ap should really be ap,, where s(¢) = B; for notational convenience, we instead use ap.)
We now construct morphisms ®, ¥: C — C’ such that we will have lim F' is the coequalizer of ® and W.
Since each FB has ig: FB — C’, we have that C’ together with the ip is a cocone over Mor(B); so there
is a unique ®: C' — C’ such that the following diagram commutes:

FB FB
XB) V
. C .
iB igr

|
| D
<+
C/

It also holds that for each ¢ € homp(B, B') we have ig o F(¢): FB — C’; this yields another cocone to C’,
and thus we get a unique ¥: C' — C’ such that the following diagram commutes:

FB
Y
igroF () q
3\1/
o
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By assumption, we have that coequalizers exist; so there is an object L and a morphism v: C’ — L such
that vo ® = vo ¥. We claim that L together with the obvious maps yg =voig: FB — L is a colimit of F.
We first check that (L,vpg) is a cocone. Suppose ¢ € homg(B, B'). Then
VB =voipg
=vodPoap
=voVoap
=wvoig oFp

So the following diagram commutes:

FB—"™ . Fpp

and (L,vp) is indeed a cocone.

Suppose we have another cocone (T,0p). Then for each B € Ob(B) we have 0p: FB — T, so, by
definition of C’, we have a unique h: C’ — T such that hoip = 0 for all B € Ob(B). We want h to factor

through L; i.e. we want a unique h: L — T such that the following diagram commutes:

FB’

\%L

To get to factor through L we must show that ho ® = ho W. But
ho®oag =hoip
—0p
= 0p: 0 F(p)
— hoip o F(p)
=hoipg o F(yp)
=hoWVoap

But by definition of C, we have a unique f: C — T such that g = foap for all B € Ob(B). So ho® = ho ¥,
and by definition of L as the coequalizer we have our desired h. [0 Theorem 2.67

Remark 2.68. The exact same argument shows that if F': C — D with C and D cocomplete satisfies

F(H C’i> ~ [[ Fe

i€l icl
f Ff
F(Coequal( C —= C")) = Coequal( FC —=x FC")
g Fg
Then
F(liy D) = limy FD
for all small diagrams D: B — C.

Corollary 2.69. The following categories are bicomplete:
Category ‘ Product ‘ Coproduct ‘ FEqualizer ‘ Coequalizer

Abelian grapes | ] A; P A; ker(f — g) coker(f — g)
R-modules | T]M; @ M; ker(f —g) | coker(f —g)
Commutative rings 11 R; ®§ R; {f(x)=g(x)} | R/(f(z)—g(z))
Grapes
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2.10 Govorov-Lazard theorem and filtered subcategories

Recall that an R-module M is flat if whenever
0N LN

is exact then so is
O—>N’®RM—>N®RM

Further recall that P is projective if hompg (P, —) is exact, and I is injective if homg(—, I) is exact.

Ezxample 2.70. Free modules are flat.

Theorem 2.71 (Govorov-Lazard). Let R be a commutative ring and let M be an R-module. Then M is
flat if and only if M is a filtered colimit of free modules.

Definition 2.72. Suppose B is a small category. We say B is filtered if
1. If By, By € Ob(B) then there is B € Ob(B) with f € hom(By, B) and g € hom(Bs, B).

2. If f € hom(B’, By) and g € hom(B’, By) then there are B € Ob(B) and u: By — B” and v: By — B”
such that the following diagram commutes:

By
27N
B/ B//
X /

By

If F: B— Ais a diagram and B is filtered, we say th is a filtered colimit.
Ezample 2.73 (Filtered limits in R-Mod). If B is a filtered subcategory of R-Mod, then what is liﬂl’j’? A

concrete description is
limB= || M/~
MeOb(B)

What is ~? If x € M and y € M’ then we set x ~ y if and only if f: M — M" and g: M’ — M" such that
f(z) = g(y). Observe that

1. ~ is an equivalence relation. Reflexivity and symmetry follow immediately; to see transitivity, suppose
z ~yandy ~ z, say with f: M — P, g: M — P, h: M’ — P’, and k: M"” — P’ such that
f(z) = g(y) and h(y) = k(z). Since B is filtered then we have @ € Ob(B) and u: P — @ and
v: P — @ such that the following diagram commutes:

P
% X
M’ Q
N
P
Then (uo f)(x) = (uog)(y) = (voh)(y) = (vok)(z) and z ~ .

| o

MeOb(B)

2. We have an R-module structure on
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In particular, given

T,y € |_| M
MeOb(B)

say * € M7 and y € Ms, we define x + y to be the equivalence class of f(x) 4+ g(y) where we use the
fact that B is filtered to find N € Ob(B) and f: M; — N and g: My — N. One checks that this is
well-defined.

3. We have natural maps
MeOb(B)

Suppose (F, ppr) is a cocone over B. Suppose z ~ y; say x € M,y € M', u: M — M" v: M' — M"

satisfy w(z) = v(y). Then gy (z) = opr (u(x)) = eap(v(y)) = ©mr(y). So the pas are defined on
~-classes, and thus induce a map
|_| M/ ~—F

MeOb(B)

Hence we indeed have
I_l M)~ lim B8

MeOb(B)

Proof of Theorem 2.71. We prove that if the U; come from is a filtered subcategory B of R-Mod whose
objects are free then h_ng U; is flat.

Idea: suppose 0 — N’ Ly N is exact and M = @ U;. We wish to show that
0->MaN 225 v N

is exact. Let F': B — R-Mod be Q — Q ® N’ and G: B — R-Mod be Q — Q ® N. The point is that we get
a natural transformation «: F' — G given by

FU) 2% GU)

UoN 2 penN

for U € Ob(B). Indeed, if h: U — U’ then the following diagram commutes:

F(U) 2 G(U)

lF(h) lG(h)

FU) 22 qU)
since, following u ® n’ € F(U) right and down we get
u@n —=u® f(n')— hu)® f(n)
and following down and right we get
u®@n' +— h(u) @n' — h(u) @ f(n')

The proof is then that, if M = ligll’ﬁ’, then
limp f
M@N' = (limB) ® N = 1lim(U; ® N') —— lim(U; ® N) = (imU;) @ N = M @ N

The isomorphisms follow from the fact that left adjoints preserve colimits and tensor product is a left adjoint;
it remains to see that

h: lim(U; @ N') =7 ling(U; @ N)
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given by
| |[tio N 225 | |U;@ N/ ~
is injective. Suppose
x € |_| Ui@N'/ ~
has h(z) ~ 0. Then we have some U; and 6§ = G(¢): U; ® N — U; ® N such that 6(h(z)) = 0. But then by

naturality of a we have the following diagram commutes:

. / an .
U N' —= U; ® N

| le

U; @ N' —25 U; @ N

But ay, is injective; so F(¢)(x) = 0, and z ~ 0. So h is injective as desired. [0 Theorem 2.71

3 Abelian categories

Definition 3.1. A preadditive category is a category C is a category in which for all A, B € Ob(C) we
have that hom¢ (A, B) has the structure of an abelian grape. (In particlar, there is 04 5: A — B for all
A, B € Ob(C).) We also require that

o4.p,c: home(B,C) x home(A, B) — home (A4, C)
be bilinear (as a homomorphism of Z-modules) for all A, B,C € Ob(C).

Example 3.2. Suppose R is a ring. Define a category with R as the unique object and morphisms ¢,.: R — R
for r € R given by ¢, (z) = rz. Then

o w0 ="0pp

o (Pr+s) 0P =rt + st = Pr 0Pt + s 0

© Pro(ps+ Pt) = Prs + Ort = Pr 0 ps + @r 0y
So this category is preadditive.

Definition 3.3. Suppose C and D are preadditive categories. A functor F': C — D is called additive if the
map f +— F(f) gives a homomorphism home (A4, B) — homp(F A, FB) for all A, B € Ob(C).

Definition 3.4. A preadditive category is additive if all finite (including empty) products and coproducts
exist.

Remark 3.5. If C is additive and A, B € Ob(C) then A[[B = A[]B.

Proof. We are given py: A[[B — A, pp: A[[B — B, ia: A — A][B, and ig: B — A]] B. Drawing
inspiration from familiar abelian categories, our isomorphism 6: A[[ B — A]] B should be igopa +ipopp.
To get its inverse, note that we have a map ps: A — AJ[][B induced by the cone ids: A — A and
04,p: A — B; likewise we gat a map pup: B — AJ[ B.

Claim 3.6. A[[ B is a coproduct.

Proof. Suppose we have f: A — C, g: B — C'; we wish to find unique #: A]] B — C such that the following
diagram commutes:

A B
XA) V
N AllB /,
le
C



What should 8 be? It should be fops + gopp. We must show f =0opus and g =600 ug. But

Oopa=(fopatgops)opua
= fo(paopa)+go(ppopa)
= foidg+go0
=f+0
=f
and similarly we get g =0 o up.

It remains to check that € is unique. Suppose 6 and €' both make the above diagram commute; so
Qopp=0opus=fandboug=60oug=g. Let p: A[[B—Cbetpy =0—0;then pous =voug=0.

Subclaim 3.7. paops+pupopp =idayys.
Proof. Recall that

paopa =ida
pp o up =idp
paopp =0
ppopa=0
But then the following diagram commutes:
AllB
l/m PA+1BOPB
PB
LATLB
2
pPA

A

since
pao(uaopa+pupopp)=idaopa +0=pa
and likewise with pg. But by the universal property of products we have that id 4 [ p is the unique morphism

AJ[B — AJ] B making the above diagram commute. So ida[jp = pa o pa + pp o pp, as desired.
0 Subclaim 3.7

Then
Y=1toidaryp=vo(paopa+pupopp)=(Yopa)opa+ (Youg)ops =0
and 6 = ¢'. O Claim 3.6
The isomorphism then follows by uniqueness of coproducts. [0 Remark 3.5

Remark 3.8. We also have a zero object. Why? The empty coproduct yields an initial object I, and the
empty product gives a final object T

Claim 3.9. 1 =T.

Proof. Or r: T — I and Oy 7: I — T; the fact that idy is the unique morphism 7" — 7" and id; is the unique
morphism I — I yields that O; 7 o 07,y = idr and Op; 0o O 7 = id;. So Or7: I — T is an isomorphism.
O Claim 3.9

Remark 3.10. Notice if f: A — B then the limit of the diagram:

f
A—=1B

0a,B

is the equalizer of f and 0, which we think of as roughly {z € A: f(z) =0}.
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Definition 3.11. If the equalizer of

f
A—=B

0a,B

exists, we call it the kernel of f. If the coequalizer exists, we call it the cokernel.
Definition 3.12. An additive category in which kernels and cokernels exist is called pre-abelian.

Definition 3.13. A map f: A — B is called a monomorphism (which we think of as similar to injectivity)
if whenever f o hy = f o hy we also have hy = ho. We say f is an epimorphism if whenever hy o f = ho o f
we also have hy = hs.

Example 3.14. A morphism can be a monomorphism and an epimorphism without being an isomorphism.

Indeed, consider Ring with Z < Q. It is clear that i is a monomorphism.
Claim 3.15. hy oi = hg o i implies hy = ha.
Proof. We are given that hi(n) = ho(n) for all n € Z. Then
1=hi(1) = hi(b)hy(b™Y) = hy(b)hao(b™!) =1
5o hi(b™1) = ho(b™1); thus
hi(ab™") = hi(a)hy(b™") = ha(a)ho(b™") = ho(ab™")
So hy = ho. O Claim 3.15

Definition 3.16. A monomorphism f: A — B is normal if f is a kernel; i.e. there is g: B — C such that
(4, f) is the kernel of g. Dually, an epimorphism g: B — C'is normal if g is a cokernel.

An abelian category is a pre-abelian category in which every monomorphism is normal and every epimor-
phism is normal.

Exercise 3.17. This implies that f: A — B admits a factorization

where u is an epimorphism and v is a monomorphism.
What is im(f)? It must be ker(coker(f)).

Ezample 3.18. Suppose R is a ring with unity (not necessarily commutative). Then R-Mod, the category of
left R-modules is an abelian category.

Remark 3.19. In R-Mod, monomorphisms are exactly injective homomorphisms. Indeed, if f: M — N is a
monomorphism and i: ker(f) < M then foi = fo0; so since f is a monomorphism we have ¢ = 0, and
ker(f) =0, and f is injective.

Dually, we get that epimorphisms are surjective.

3.1 Mitchell’s embedding lemma

We wish to get a notion of exactness. Suppose
AL B
What does it mean to say that this is exact at B?

1. gof=0
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2. The canonical map ]7: im(f) — ker(g) is an isomorphism.

What is the canonical map? Well, let 7: B — coker(f) and i: im(f) = ker(w) < B be the canonical maps.
Then 7o f = 0, so by the universal property of ker(r) we have a unique 6: A — im(f) such that the following
diagram commutes:

A B
In fact @ is an epimorphism and 4 is a monomorphism. But
O=gof = goiof=0
= goiof =000
= goi=0

since 6 is an epimorphism. So, by the universal property of ker(g), we have a unique map £ im(f) — ker(g)
such that the following diagram commutes:

Remark 3.20. I think this is equivalent to requiring that the map im(f) — B be the kernel of g.
Definition 3.21. Suppose F': C — D is a functor. We say F is:

o full if F': home (A, B) = homp(F A, F'B) is surjective for all A, B € Ob(C).

o faithful if F': hom¢(A, B) — homp(F' A, FB) is injective for all A, B € Ob(C).

o exact if F' is additive and if whenever we have

0%ALB£>C~>O

exact then
0-FA pB % 0 o

is exact.

Lemma 3.22 (Mitchell’s theorem). Suppose A is a small abelian category. Then there is F: A — R-Mod
where R is a Ting and F' is full, faithful, and ezact.
If we start with R-Mod, can we recover R?

Remark 3.23. If A is an abelian category and A € Ob(A) then hom 4(A4, A) = End 4(A) is a ring under o.
In R-Mod, if we consider R as a left R-module, then Endp(R) = R°P (where R°P is R with 7 -geo s = $-g 7).
Indeed, given ¢ € Endgr(R), we have that 1 is determine by (1) since if 9(1) = s then ¢(r) = r¢)(1) = rs.
So ¢ = ¥, for some s € R where ®¢(z) = xs. So

Endgp(R) 2 {®s:s€ R} @ R®

(where the opposite ring comes because (P 0 @,.)(x) = zrs = @,.4(x)).
However, we can have R 2 S with R-Mod = S-Mod.
Ezample 3.24. R-Mod = M,,(R)-Mod.

23



We might remark, though, that given a free module R™ we have Endg(R") = M,(R°P), and thus
Endgr(R"™)°P = M, (R); so we might look and the endomorphism ring of free modules. Being a free module,
however, is not categorically definable. We instead turn to projective modules:

Definition 3.25. Suppose A is an abelian category and M € Ob(A). We get a functor hom(M, —): A — Ab
by B+ hom (M, B). We say that M is a projective object of A if the functor hom(M, —) is exact.

What are the projectives in R-Mod? Well, one checks that for all P we have hom(P, —) is left-exact.

When is hom(P, —) right-exact? We need that given exact M % N — 0 that hom(P, M) — hom(P, N) — 0
is exact; i.e. given any ¢: P — N there is ¢: P — N such that the following diagram commutes:

M2 N

Y
.l
% O

~

P

Remark 3.26. P is projective implies there is Q such that P @ Q = R’. Indeed, consider 7: R! — P; then
since idp: P — P we have s: P — R! such that the following diagram commutes:

The proof is somewhat involved, so we merely give an overview.
A starting result:

Theorem 3.27. Suppose L is a cocomplete abelian category with a projective generator (i.e. P such that
hom(P, —) is exact and faithful). If A C L (i.e. with I: A — L exact) is a small abelian subcategory then
there is fully faithful and exact F': A — R-Mod.

Remark 3.28. In R-Mod, we have that R is a projective generator.

Our strategy is then to take A, find B complete, containing A, and having a projective generator, and
then apply the theorem.

Remark 3.29. hom(?, —) is an additive functor.

Remark 3.30. Not all projectives are generators. Consider for example R = Z/67 = 7./37; then P = 7 /27
is projective and not a generator.

Proof of Theorem 3.27. Suppose A € Ob(A); consider
I -
gEhom(ﬁ,A)
We get ig: P — ]_[gﬁ for each g € hom(?7 A). Furthermore, since the g: P — A form a cocone, we get
pA: ]_[gﬁ — A such that p, o, =g for all g € hom(ﬁﬂél).
Claim 3.31. py4 is an epimorphism.

Proof. In an abelian category, it suffices to verify that if hopy = 0 then h = 0 for all h: A — B. Suppose
then that hops = 0. Then hopy oiy = 0 for all g € hom(P,A); so hog =0 for all g: P — A. So
hom(P,h) = 0: hom (P, A) — hom(P, B). But hom(P,—) is faithful since P is a generator. So h = 0. So
pa is an epimorphism. 0 Claim 3.31
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Now, let

1= |_| hom(?,A)
A€O0D(A)

r=][P
I
From assignment 3, we will see:
1. P is a projective generator.

2. For all A € Ob(A) there is an epimorphism 6: P — A.

Now we can find a ring R:

R =End (H P) = End(P)°P
I

Claim 3.32. There is F': A — R-Mod fully faithful and exact given by M +— hom (P, M) for M € Ob(A).

Proof. We first need to define an R-module structure on hom(P, M). Well, R = End(P)°? = hom(P, P)°P.
Given r € R and ¢ € hom(P, M), we can then set -1 = ¢ or € hom(P, M); bilinearity and associativity
of composition yield that this is in fact an R-module structure.

We also need to check that the images of morphisms are morphisms of R-modules. Suppose f: M — N
for M,N € Ob(A). We must check that hom(P, f): hom(P, M) — hom(P,N) (given by g — foyg) is a
homomorphism of R-modules. Additivity follows from bilinearity of composition; for scalar multiplication,
note that for »r € R we have

r- (hom(P, f)(g)) =7-(fog)=(feg)or=fo(gor)=ro(r-g)=hom(P, f)(r-g)

Now we must check that F' is fully faithful and exact. Projectivity of P immediately yields exactness; that
P is a generator immediately yields faithfulness. It remains to check that F' is full.

Suppose then that «: hom(P, M) — hom(P, N); we wish to find f: M — N such that o« = hom(P, f).
Now we use the second result from the assignment to get epimorphisms 6: P — M and ¢: P — N. Let
K = ker(0); then

0K >PS M0

is a short exact sequence. Since hom(P, —) is exact, we get

hom(

0 — hom(P, K) — hom(P, P) 2229 hom(p, M) — 0

is exact. But hom(P, P) & R as left R-modules, as one sees by looking at the R-module structure we defined.

So
0 —— hom(P,K) —— R""hom(P, M)A —— 0

[e3

R"™ P9 hom(P,N) — 0

Fact 3.33. R is projective.

So there is o’ : R — R such that the following diagram commutes:

0 —— hom(P,K) —— R hom(P, M)A —— 0
io/ @
R"™ P hom(P,N) — 0



But o’: R — R is a morphism; so o = p; is right multiplication by some s € R. Now look at the diagram

0 K P M 0

|s

P——N——0

Consider
K—— P

s

P— N —0

We claim that K — P % P — N is the 0 morphism. Why? Well,
hom(P, K) — R 2% R — hom(P, N)

is the 0 map by the preceding commutative diagram and hom(P, —) is faithful.

Now, M = coker(K — P),and K — P % P Ly N is the 0 map; so there is h: M — N; apply hom(P, —)
and use the fact that hom(P, ) is an epimorphism to conclude that o = hom(P, h). 0 Claim 3.32

O Theorem 3.27

3.2 Projective modules

Definition 3.34. Given a ring R we define R-Mod to be the category of left R-modules; we define Mod(R)
to be the category of right R-modules.

Definition 3.35. Recall that an R-module P is projective if hom(P, —): R-Mod — R-Mod is exact. We
know it is left exact; so it is equivalent to requiring that given any surjection g: M — N and any ¢: P — N,
there is v: P — M such that the following diagram commutes:

M—2% N—0

r\\
~ QT
[N

~

P

Theorem 3.36. Suppose P is an R-module. Then the following are equivalent:

1. We have the condition above; namely that given any surjection g: M — N and any ¢: P — N there
is ¢: P — M such that the following diagram commutes:

M-y N —50

R\
¢
LN

~

P

2. Every short exact sequence
0-MLNL P

splits.
8. There is an R-module @ such that P ® Q is free.
4. The functor hom(P, —) is ezact.
Proof.
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(1) = (2) By (1) we get s: P — N such that the following diagram commutes:

N-—2spP—50

N
N .
So_id
SN

N

P

So we have s such that gos =idp. Now define ¢p: P@® M — N by (p,m) — s(p) + f(m). One checks
that 1) is an isomorphism; so the short exact sequence splits.

(2) = (3) Pick a free module F with ' %> P — 0 exact. Let Q = ker(F % P). So
0-Q—>F—P—=0
is exact. By (2), this splits, and FF =2 P @ Q.
(3) = (4) Suppose
0>M LS M o
is exact. We know that hom(P, —) is left exact; it remains to show that hom(P, g): hom(P, M) —
hom(P, M") (given by ¢ — g o 1)) is surjective. Suppose h: P — M"; we must show that there is
KW': P — M such that h = go h/. By (3) we may find an R-module Q such that FF = P ¢ Q is free.

Define hg: F— M"” by hg [ P = h and hg | Q = 0. Then because F is free there is hy: F — M such
that g o h{, = hg; i.e. the following diagram commutes:

M- M —— 0
}\ﬁ
F

Now let A’ = hyy [ P. Then
goh'=go(hi| P)=(gohy) | P=ho| P=h

(4) = (1) Immediate, since (1) just requires that whenever M — N — 0 is exact then so is hom(P, M) —
hom(P, N) — 0. O Theorem 3.36

Ezample 3.37. Let R = ZxZ;let P =7Zx{0}. Then P is not free since (0,1)-P = (0), so Ann(P) = {0} xZ
is non-trivial. But if @ = {0} X Z then P ® Q = R is free; so P is projective.

We now consider the commutative situation. Suppose (R, m) is a (commutative) local ring (i.e. m is the
unique maximal ideal).

Theorem 3.38 (Kaplansky). If P is a projective R-module then P is free.

Theorem 3.39. Suppose (R, m) is a local ring; suppose P is a finitely generated, projective R-module. Then
P is free.

Proof. Let p1,...,ps be a generating set for P with s minimal. Let

g: Re..®R—» P
e
S times

(0707 307‘ ,507 ,O) = Di

jth

Let @ = ker(g). Then

05Q5R L P50
is exact. Since P is projective, we get that R* =~ Q @ P. Let K = R/m; then K is a field. Applying —®r K
to the above isomorphism, we get

K° = (R/mR)° =2 R°/mR* =2 P/mP @& Q/mQ
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Claim 3.40. P/mP =~ K*.

Proof. Suppose not; then, since these are vector spaces over K, we have P/mP = K* for some ¢ < s (since
P/mP C K?*). Pick aq,...,a; € P such that @y,...,a; € P/mP form a K-basis (i.e. an R/m-basis). Now
let

Py = Ray + -+ Ra; gP

(The containment is proper because ¢ < s and we chose s to be minimal.) Now let N = P/Py, # (0).
Then N is finitely generated since P is finitely generated. What is mN? Well, notice P = mP + P, since
Py = P/mP. So

mN = (mP+P0)/P0 = P/P() =N

But m = J(R) and N is finitely generated; so, by Nakayama’s lemma, we get N = (0), a contradiction.
[0 Claim 3.40

Then since
= (P/mP) &(Q/mQ)
s dimensional

and these are vector spaces over K, we have Q/m@Q = 0. So @ = m@Q. But m = J(R), and Q is a direct
summand of a finitely generated module, and is thus finitely generated; so, by Nakayama’s lemma, we have
Q= (0). But R®* =P @ Q; so R®° = P, and P is free. O Theorem 3.39

KS
—~

s dimensional

Remark 3.41. If R is a PID and P is projective then P is free.

Proof. We prove the case where P is finitely generated. Then by the fundamental theorem for finitely
generated modules over a PID, we have P = R™ & T, where T is torsion; in particular, we get

T =®R/I

for some collection of ideals I of R. But we say that there is @ finitely generated such that P @ Q = RF.
(In particular, we pick g: RY — P, and let @ = ker(g); then L is the number of generators of P.) Since @Q
is finitely generated, we have

QER"®T

where T is torsion. Then
Rl2PeoQQ=(R"eT o (R aeT)=(R"oR) e (TaT)
But R’ is free, and thus has no torsion; so T'= T’ = (0). So P is free. O Remark 3.41

Theorem 3.42 (Bass). Suppose R is a commutative Noetherian ring such that 0 and 1 are the only
idempotents. Suppose P is a projective R-module that is not finitely generated. Then P is free.

Definition 3.43. Suppose R is aring. Recall that the spectrum of R is Spec(R) = {p : p a prime ideal of R }.
We put a topology on Spec(R) called the Zariski topology by declaring the closed sets to be {p:p D I} for
I < R. We define the principal open sets to be V(f)={p: f¢p}.

Definition 3.44. Suppose S is a multiplicatively closed subset of R with 0 ¢ S. Weset ST1R = {s~!r:s¢
S,r € R} where s!r = (r,s) and (rq,s1) ~ (rq,s2) if and only if s3(r182 — s172) = 0. If M is an R-module,
then we define S™*M = M ®x S™!R; then elements of S~1M take the form s~'m = (s,m) for s € S and
m € M, where (s1,m1) ~ (s2,mz) if and only if s3(s1mg — samq) = 0 for some s3 € S. For p € Spec(R),
we define M, = R, ®g M and R, = ST'R with S={z € R:x ¢ p}. If f € R is not nilpotent, we define
M;=R;®r M and Ry = ST'Rwith S ={1,f, f%,... }.

Theorem 3.45. Suppose R is a commutative Noetherian ring; suppose P is a finitely generated R-module.
Then the following are equivalent:

1. P is projective.

2. P, =P ®g R, is free for all p € Spec(R).
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3. Py =P Qg Ry is free for all maximal ideals m of R.
Proof.

(1) = (2) If P is finitely generated and projective then we have n > 1 and a surjection g: R™ — P. If
Q = ker(g), then
0-Q—R"—>P—0

is exact. Then, since P is projective, we have R" = Q @ P. Applying — ®r R, we see that
Ry = (R®R Ry)"
= (P3Q)®r Ry

So P, is a direct summand of a free module. So P, is projective. So P, is free (since R, is a local ring
and P, is finitely generated).

(2) = (3) Clear, since m maximal implies m is prime.

(83) = (1) Suppose Py is free (and of finite rank) for all maximal ideals m of R. Recall that P is
projective if and only if whenever M 2 M’ — 0 is exact then hom(P, M) — hom(P, M') — 0 (given
by @ — g o) is exact. (i.e. hom(P, —) is exact.)

Our strategy: let g: M — M’ be epi; we will show that hom(P, M) — hom(P, M) is epi. Suppose
now that M 2 M’ — 0 is exact. Let m be a maximal ideal. Then, by right exactness of — ® g Rm, we

have y
My =M @p Ry 22% M., = M’ @ My — 0

is exact. Since Py, is projective, we get

homp, (P, M) 225 homp, (P, ML)

By assigment 3, since Ry, is a flat R-module and P is finitely presented, we have
hOInRm (Pm, Mm) = homR(P, M) Rp Rnm = homR(P, M)m
(We say P is finitely presented if there is an exact sequence R™ — R™ — P — 0.)

TODO 2. Why is P finitely presented?

So hom(P, M)y 2= hom(P, M")y, is surjective for all maximal ideals m.

Claim 3.46. Suppose R is commutative and Noetherian. Suppose My, Ms are finitely generated
modules with g: My — My a homomorphism. Suppose (My)m 2 (Ma)m is surjective for all mazimal
ideals m. Then g is surjective.

Proof. Let K = coker(g); then
My % My — K —0

is exact. So, by right exactness of — ® p Ry, we have that
(M1)m) % (M2)w) = K — 0
is exact for all maximal ideals m. Since
(M1)m) % (M3)m — 0
is exact, we have K = (0) for all maximal m. But for k¥ € K we have 17'k ~ 1710 in K, if and only

if there is s ¢ M such that sk = 0. Since Ms is finitely generated, we have K & My/im(g) is finitely
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generated; let ki,..., k. be a set of generators. If m is maximal, then the above implies that there are
S1y..., 8- ¢ msuch that s;k; =0 for all 4. Let s = s1...5s, ¢ m; then sk; = 0 for all i. So sK = 0 since
ki,...,k, generate K.

So for all maximal ideals m of R there is sy ¢ m such that sp-K = 0. Now,let I ={s€ R:s-K =0}.
This is an ideal of K (namely Ann(K)), and if I were proper, then it would be contained in a maximal
ideal m; but s, ¢ m is in I, a contradiction. So I = R; so 1- K = (0), so K = (0), and g is surjective,
as desired. 0 Claim 3.46

So if hom(P, M) and hom(P, M) are finitely generated and M Z» M’ — 0 is exact then
hom(P, M) < hom(P, M) — 0

is exact. Notice that if P = R™ and M = (m1,...,ms) then ¢, ;: R" — M given by

(where r(i) € {1,...,s}). Then

pler) =aiimi + -+ arsms

(P(en) = Gp1M1 + -+ ApsMs
Then
Y =a11p1,1 + ai2p21 + -+ a15Ps1 + -+ AnsPs,n

Because P is locally free (and finitely generated) and M, M’ are finitely generated, one can show
that hom(P, M) and hom(P, M') are finitely generated (exercise). So M, M’ finitely generated imply
hom(P, M) — hom(P, M’) surjective. Now take M = R™ and M’ = P. Then there is s: P — R™ such
that the following diagram commutes:

R 2P —50

7’\\
AN idT
LN

~

P
So P @ ker(g) = R™; so P is projective. O Theorem 3.45

From here, one notes that given P we have P, = Rﬁ(p) for d > 1. Then Spec(R) — Z given by

p — d(p) = rank(P,). By assignment 3, we get that this map is continuous.

Remark 3.47. Suppose P is finitely generated; suppose R is a commutative Noetherian ring. Then if P, is
free then there is f € R\ m such that Py is free as an Ry-module.

Proof. Since P is finitely generated as an R-module, we can write

By assumption, we have that Pn, = {s 'p:s ¢ m,p € P} is free. (Recall that s7'p; = s5 'po if and only if
there is s3 ¢ m such that s3(s1p2 — sop1) = 0.) Pick s7%qq,. .., sglqd € P, such that

d
Py = @Rmsi_l%‘
=1

Then ¢, ...,qq € P form a basis for P; i.e.

d
Py = @ Rugq;
i=1
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Now, for i € {1,...,m} we have 17p; = p; € Py; so
Di = (Mi_llfﬂ)(h + 4 (ui_dlrid)qd

where each y;; € R\ m and each r;; € R. Pick s € R\ m such that sui_jl € R for all 7, j; concretely, one
could take
s = H,U/Z]
4,

Then sp; € Rq1 + --- + Rqq for all 4; so p; € Rsq1 + --- + Rsqq. So let Q = Rqy + --- + Rqq C P; then
Qs = P,. Now consider R? — Q4 = P; given by e; — ¢;; let K be the kernel of this map. Then

0—+K—R!—-P, -0

is exact; so, localizing to Ry, we find that

0= Ky— R = Py—0
is exact. But the map RS — Py, is an isomorphism; so Ky, = (0). But R is Noetherian; so R is Noetherian,
and K is finitely generated as an Rs-module.
Ezercise 3.48. Since K, = (0) there is s’ ¢ m such that Ky = (0).

Now if we invert ss’ we get
0— Koo =(0) > R, - P,y =0

is exact. So Psy = R%,,. Taking f = ss’, we see Py = R? is a free Ry-module, as desired. [0 Remark 3.47

So given m a maximal ideal we get f ¢ m such that Py = R;l. Note that Spec(Rs) ~ {p € Spec(R) : f ¢
p} = V(f) is an open subset of Spec(R). Notice that for every p € V(f) we have R, is a localization of Ry;
so Py = R? implies that P, = R (since P, = Pr ®g,; R, and R = R? ®r; Ry).

What does this say? Well, recall that free modules over a commutative ring have a well-defined rank. So
we have 1: Spec(R) — Z given by p + rankp, (P,). Then this says that 1) is constant on V(f); choosing
our f judiciously, we get that 1 is locally constant.

Ezercise 3.49. v is continuous.

Corollary 3.50. If Spec(R) is connected, then v is constant. In this case, we can define rank(P) to be the
image of .

Ezercise 3.51. Spec(R) is disconnected if and only if R = Ry x Ry for non-zero Ry, Ra, which holds if and
only if R has an idempotent e? = e with e ¢ {0,1}.

Ezample 3.52. Consider R = Z x Z with P = Z x {0} and Q@ = {0} x Z. Then R = P & Q and
Spec(R) = U U V. Furthermore, we have rank(P,) = 1 and rank(Q,) = 0 for all p € U; likewise, we get
that rank(P,) = 0 and rank(Q,) = 1 for all p € V. Since rank is additive for free modules, we have that if
Spec(R) is connected, then rank(P & Q) = rank(P) + rank(Q).

We have seen that not all projectives are free.

Definition 3.53. A finitely generated projective module P is stably free if there are m,n > 1 such that
P ® R™ = R"; equivalently such that

0O—-R"—R"—P—0

is exact.

Ezample 3.54 (Swan’s example). Let A = R[x,y, 2]/(1 — 2% — y? — 2?). We have a surjection g: A> — A
given by (a,b, c) = ax + by + cz; in particular, we have g(rz, ry,rz) = re® +ry? + rz?> = r. Let P = ker(g).
So

0->P—-AL A0

is exact, and furthermore is split since s: A — A3 given by 1 + (,%, 2) is a section. So 4> =~ P® A, and P
is stably free.
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Theorem 3.55 (Swan). P is not free.

Proof. Suppose for contradiction that P were free. Then P =2 A% and P C A3;s0 P = ((f1, fa, f3), (91,92, 93)) C
A3' Now AS =P S(A) =P ((x,y,z)), S0 A3 = <(f1af27f3)a (91,92793)7 (33,3172» So

(1,0,0) :a’l(f17f2af3)+b1(91592393)+cl(x7y72)
(07 15()) = a2(f17f27f3) + b2(91,92,93) + 02($7y7z)
(0,0,1) = az(f1, f2, f3) + b3(91, 92, 93) + 3z, y, 2)

1 0 0 ar b o i fa f3
01 0)=1ay by ca g1 92 93
0 0 1 az by c3 r Yy oz

where all entries on the latter two matrices are just functions on S2. If we plug in any («, 3,7) € S? (i.e.
with a? + 32 4+ 42 = 1), in particular we get that

fl(aaﬁvv) fQ( 5&7’7) f3(a3637)
0#det | g1(e, B,7) g2, B,7)  gs(e, B,7)
o v

(0%
«Q, o,

Now view (f1, f2, f3) as a continuous map S? — R3.

Claim 3.56. For any continuous map ¢: S? — R3 there is p € S? and X\ € R such that 1 (p) = Ap.

Proof. If 0 € im(v)), we're done; assume then that ¢: S — R3\ {0}. Without loss of generality, we may

then replace 1(p) by %: S? — S2. One then uses some homotopy and homology to get a contradiction.
O Claim 3.56
But this contradicts the above remark about determinants. 0 Theorem 3.55

3.2.1 Vector bundles

Definition 3.57. Suppose S is a connected, compact real manifold. A (real) vector bundle over S of rank
n is a topological space V' with a continuous map 7: V' — S such that

1. For all z € S we have 7=} (z) = {v € V : m(v) = z } is a real vector space of dimension n.

2. For all x € S there is an open neighbourhood U of z in S and a homeomorphism ¢: U x R® —
7~ Y(U) such that m o ¢ = p (where p: U x R® — U is projection) and for all y € U we have
ol {y} xR"): {y} xR = 7~ 1({y}) is a linear isomorphism of vectors spaces.

A vector bundle is trivial if V=25 x R™.

There is a correspondence between vector bundles and projective modules as follows: suppose S is a
compact, connected real manifold. Then C'(S) ={ f: S — R | f is continuous } has a natural ring structure.
Given a vectro bundle 7: V' — S over S of rank n we define a C(S)-module P(V) as follows:

Definition 3.58. Let w: V — S be as before. A section of 7 is a continuous map s: S — V such that
mos=1idg. We then set P(V') to be the set of sections.

We put a C(S)-module structure on P(V') by
o (f-s)(@)=f(x)s(z) en t{x}) for f € C(S) and s € P(V).
o (s+1t)(z) =s(x) +1t(x) for s,t € P(V).

Theorem 3.59 (Swan). If V is a vector bundle of rank n then P(V') is a projective C(S)-module of rank n.
Moreover, the above correspondence gives an equivalence of categories between the category of vector bundles
over S and the category of finitely generated projective C(S)-modules. In particular, under this equivalence,
we have that trivial vector bundles correspond to free modules.
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3.2.2 Loose ends

(Grothendieck grape) Suppose R is a ring. We can make a grape Ko(R) out of the collection of isomor-
phism classes of finitely generated (left) projective R-modules as follows. Let A be the free abelian
grape on the isomorphism classes [P] of finitely generated projective modules P. We then impose the
relations [Py] + [P2] = [P3] whenever there is an exact sequence 0 — Py — P3 — P> — 0.

FEzample 3.60. If k is a field, then the isomorphism classes of finitely generated projective modules are
represented by k™ for n € N; but we always have an exact sequence 0 — k"1 — k™ — k — 0. So
(k"] = [k" 1] + [k] for all n € N, and Ky (k) = Z.

If R is commutative, we can make Ko(R) into a ring via [P] - [Q] = [P ®g Q]. One needs to check
that P ®g Q is still projective; but if P, Q are finitely generated and projective, then P& H = R™ and
Q@ E = R™ for some R-modules H, E. So

RM2R"@QrR" 2 (POH)Qr(QOE)2 (PRrQ)® (H®rQ)® (PRrE)® (H®R E)
So P ®pg Q is a direct summand of a free module, and is thus projective.

(Exterior products) Suppose R is a commutative ring and M is an R-module. We define the i*! exterior
product of M to be 4
ANM=MQ®r.. g M /N
—_———

% times
where N is the submodule generated by
my @R ... Qr M; = sgn(0)Mg(1) DR - - - R Mg(s)
Then A°M = R and A'M = M.

n
k3

Remark 3.61. A*R™ = R< ).
Proof. Let ey, ..., e, be a basis for R™. Then

R"®pr...Qr R"

7 times

is spanned by elements of the form e;, ®gr ... ®g e;,. But
€j, R ... Qr €, = ﬂ:egl Qr... QR €y,

where ¢ < 5 < --- < {;. Indeed, one can show that elements of the form ey, ®r ... ®g ey, form a
basis for A*R™. 0 Remark 3.61

In particular, we get that A"R™ = R. If R is a Noetherian commutative ring with Spec(R) connected
and P is a projective module of rank n then A*P is projective of rank (T;)

(Picard grape) Now we let Pic(R) denote the multiplicative subset of Ky(R) generated by projective
modules of rank 1; this has a grape structure via [P] - [Q] = [P ®r Q]. We call Pic(R) the Picard grape
of R. Tt is indeed a grape: [P] ®g [hom(P, R)] = [R] is the identity. We have a map Ky(R)* — Pic(R)
given by [P] — [A™*k(P) P]; this is a homomorphism of semigrapes (under ®pg).

(A final remark) If R is commutative and P & R" = R"*! then P & R.

This is left as an exercise.

(Step 1) Check that

N(M o N) =N (M)@r AN
j=1
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(Step 2) R""1 =~ R" @ P, so

n+1)

R = R(n+1
o~ An+1Rn+1
~ A"THR" @ P)

n+1
~ @Rn QR An+17jp
j=1

(Step 3) Show that since P has rank 1 then A7P = (0) for j > 1 and A""'R" = (0); then the
isomorphism in the previous step shows that

RYA"R"QrA'P>2R®@r PP

3.3 Injective modules

We now consider the dual notion of projective modules. Suppose A is an abelian category. Recall that P is
a projective object if and only if hom(P, —) is exact.

Definition 3.62. We say I € Ob(A) is an injective object if and only if hom(—, I) is exact; i.e. whenever
0+A—-B—->C—=0

is exact, we have that
0 — hom(C,I) — hom(B,I) — hom(A,I) — 0

is exact. One checks that this is equivalent to requiring that whenever 0 — A I, Bis exact then hom(B,I) —
hom(A, I) — 0 given by ¢ — 1 o f is exact; i.e.

0*>A$B

Lemma 3.63 (Baer). Suppose R is a ring; suppose Q is a left R-module. If for every left ideal I < R and
every homomorphism of R-modules h: I — Q there is a homomorphism of R-modules h: R — Q such that
h [ I =h, then Q is injective.

Proof. Suppose we have

00— N5 m

s
Q

i.e. f is injective; assume without loss of generality we assume f is an inclusion. Consider the set S of all
pairs (N, 8') with N C N’ C M and 8': N’ — @Q such that 8/ | N = 3. We can partially order S via
(N1,81) < (Na,B2) if Ny € Ny and B2 [ M = 1. Observe that (N, ) € S, so S is non-empty. Further
observe that S is closed under unions of chains: given a chain ((N;,8;) : 4 € I) in S, we get

(U Ni, U 5i> €S
i€l i€l

So, by Zorn’s lemma, there is a maximal such pair (N',8’) in S. If N’ = M we’re done. Assume therefore
that there is m € M \ N’; look at N” = Rm + N'. Let I = {r € R:rm € N'}; then I is a left ideal of
R. Make a map 0: I — @ given by r — 3'(rm) € Q. By hypothesis we can extend 6 to §: R — Q; i.e.
so that § [ I = 6. Consider 8”: N” — @ given by rm +n’ — &(r) + '(n’). Notice 8 is well-defined: if
rim 4+ ny = rgm —+ ng then (ry —ro)m € N’; so 11 —re € I, and 6(ry — ra) = 0(r1 — r3) = B/((r1 — r2)m).
So 8" (rim +ny) — B (rom + ng) = B'((r1 — ra)m + ny — ng) = 0. By construction we get 8”7 | N’ = 8,
contradicting the maximality of (N’,8’). So N’ = M, and we’re done. 0 Lemma 3.63
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Corollary 3.64. Let R =7Z. Then an R-module M is injective if and only if M is divisible.
Proof.
(=) Assignment 2.

(<= ) Suppose M is divisible; we apply Baer’s criterion. Suppose I < Z; so I = nZ for some n > 0.
Suppose we are given 3: I — M; we wish to extend 8 to 8': Z — M. If I = (0), we may take 8’ = 0.
Suppose then that n # 0; let m = 8(n) € M. Since M is divisible, there is & € M such that nx = m;
define f': Z — M by 1 — z. Then '(n) =n —xz =m = (n).

O Corollary 3.64

Corollary 3.65. Suppose M is an injective Z-module; suppose K < M. Then M /K is injective.

Proof. Suppose x + K € M /K; i.e. suppose x € M. Suppose n € Z and n > 0; then there is y € M such
that ny = x. Son(y + K) =2+ K; so M /K is divisible. O Corollary 3.65

Definition 3.66. An abelian category A has enough projectives if for every A € Ob(.A) there is a projective
object P and an epimorphism f: P — A. It has enough injectives if for every A € Ob(A) there is an injective
object @ and a monomorphism f: A — Q.

We'll see that R-Mod has enough injectives, where R is a ring. We first verify the case R = Z.
Claim 3.67. Ab = Z-Mod has enough injectives.

Proof._Suppo_se Ais an abelian grape; then there is Z! — A. So A = Z! /K where K < Z! is the kernel.
But Z! — Q, and Q' is divisible, and hence injective. So K < Z! < Q; s0o A 2 Z! /K < Q!/K and this
last is injective by the corollary. So we have A < Q! /K which is injective. O Claim 3.67

We lift this result to R-Mod. For the setup, suppose S, R are rings. (Ultimately we’ll take S = Z.)
Suppose F' is an (S, R)-bimodule; i.e. suppose F' has structure as a left S-module and as a right R-module.
We assume that F' is a flat right R-module; i.e. if 0 - M — N is an exact sequence of left R-modules then
0> F®rM — F®pgN is an exact sequence of abelian grapes.

Aside 3.68 (Non-commutative tensor products). Suppose R is a ring, T is a right R-module, and L is a left
R-module. Then T ®p L is an abelian grape.
Remark 3.69. Suppose M is a left S-module. We define M = hom, (F,M).

Notice that M is a left R-module via the rule (r-e)(x) = p(x-r). Furthermore, given r1,72 € R we have
(r1-rq) - @(x) = @(x-rire). Then

r-(re - @))(x) = Ty — p(zr1) = p(ar, ra)

Lemma 3.70 (Injective production lemma). Under this setup, if M is an injective left S-module, then M
is an injective left R-module.

Proof. We check that hompg(—, M ) is exact. In fact, we know it is enough to show that whenever 0 — A Ny
is exact (for A, B € Ob(R-Mod)), we also have homp(B, M) — hompg(A, M) — 0 given by ¢ > 1o f
is exact. Suppose then that 0 — A L, B is exact. We wish to check that hompg(B,homg(F, M)) —
hompg (A, homg(F,M)) — 0 given by ¢ +— 1 o f is exact. From the tensor-hom adjunction, we have
an isomorphism of abelian grapes homg (B, homg(F, M)) = homg(F ®r B, M) such that given ¢: B —
homg (F, M) we have ¥ — (8 Qg b — ¥(b)(6)).

Ezercise 3.71. We have a map homg(F ®p B, M) — homg(F ®p A, M) such that given ¢: F ®pr B — M,
we have 1) — 12: F ®pr A, M) given by @(9 ®pra) = Y0 g f(a)); furthermore, the isomorphisms yield a
commuting diagram:

hompg(B,homg(F, M)) —— hompg (A, homg(F, M))

| |

homS(F KRR B,M) E— homS(F(X)R A,M)
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So it suffices to show that homg(F ®g B, M) — homg(F ®r A, M) — 0 is exact. Since M is an injective
left module and F' is flat as a right R-module, we get

1. 0 AL B is exact.
2.0 F®rA M F ®pr B is exact in S-Mod.
3. homg(F ®p B, M) — homg(F ®r A, M) — 0 given by 1 + 1) is exact.
The result then follows from the commuting diagram above. OO0 Lemma 3.70

For us, we'll take S = Z, M = Q/Z, and F a free (and hence flat) right R-module; note that M is
an injective S-module. In this setup, if F' is a right R-module, we define F'* = homy(F,Q/Z); this is the
Pontryagin dual of F. Then F* is a left R-module.

Remark 3.72. If A is a left or right R-module, we get an embedding A — A** given by m — e, where
em: A* — Q/Q is given by e, (f) = f(m). Why is this an injection? Well, suppose we have m € A\ {0}
such that e,, = 0; i.e. suppose f(m) =0 for all f € homy(A,Q/Z). Let C = Zm C A.

Claim 3.73. There is a non-trivial homomorphism g: C — Q/Z.
Proof. Well, C' is cyclic; so we have two cases.
Case 1. Suppose C' = Z; then we can just use the inclusion Z — Q.

Case 2. Suppose C' = Z/nZ; then we can use the map Z/nZ — Q/Z given by 1+ nZ — % + Z.
O Claim 3.73

By injectivity of Q/Z there is g: A — Q/Z such that the following diagram commutes:

0 C A

Q/Z

Then e,,(g) = g(m) = g(m) # 0, and injectivity follows.
Corollary 3.74. Let R be a ring; then R-Mod has enough injectives.

Proof. Tf A is a right R-module then there is a free right R-module F and a surjection F' — A. Since Q/Z is
an injective Z-module and A, F' are Z-modules, we get that 0 — homgz (A4, Q/Z) — homy(F,Q/Z) is exact;
i.e. A* < F*. By Lemma 3.70, we have that F* is an injective left R-module. We thus see that any left
R-module of the form A* with A a right R-module embeds in an injective. But every left R-module A has
A — A*™ = (A*)*, which we just saw embeds into the injective left R-module F*. So A embeds into an
injective left R-module. So R-Mod has enough injectives. O Corollary 3.74

A nice fact:
Fact 3.75. Any R-module A has a unique minimal injective resolution.

Definition 3.76. Let R be a ring; let M C E be left R-modules. We say that M is an essential submodule
of E (or E is an essential extension of M) if M NN # (0) for all N C E.

Proposition 3.77.

1. Given a ring R and R-modules M C F there is a maximal submodule E C F with M as an essential
submodule.

2. If F is injective then E is injective.
3. There is up to isomorphism a unique essential extension E of M that is an injective R-module. We

call this the injective envelope of M, denoted E(M).
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Proof.
1. Assignment (up to a small error).

2. Assignment.

3. Since R-Mod has enough injective, there is an injective F' and an embedding M (—l> F; without loss of
generality we assume M C F. By (1) and (2) we have that there is an essential extension E of M (with

E C F) that is injective. So we at least have existence. To see uniqueness, suppose we have M SN FE4

and M <3 FEs where F7 and Es are injective and essential extensions of M. Then by injectivity of Fs
we get §: E1 — E5 such that the following diagram commutes:

0—— M 25 F,

P
p
lﬂcz s
.
B

Es

i.e. foaj = as. So, since ay is injective, we have that ker(8 | ag (M)) = (0).

Claim 3.78. ker(8) = (0); i.e. 8 is injective.

Proof. Well, a;1(M) C E; is an essential submodule, and since ker(8 [ a;(M)) = (0) we get that
a1 (M) Nker(B8) = (0); so ker(B) = (0). O Claim 3.78

So f is injective; so S(E1) is an injective submodule of Es.

TODO 3. Why an injective submodule?

So there is Ej such that S(F1) @ E} = Es. But now we get ao(M) = (ﬁ o 041)( ) C B(E;) and
az(M) C Ej is essential. So if EY # (0) then ao(M)NES # (0), and S(E1)NEY # (0), a contradiction.
So E4 = (0), and S(E1) = E2. So 8 is bijective, and E7 & Es. O Proposition 3.77

In particular, then the exact sequence

O—>E<—i>F—>coker(i)—>O

splits, and F' = FE @ coker(7).
Given an R-module M, we have an embedding 0 — M — E(M); let Q1 = coker(M — E(M)). Contin-
uing, we can extend the sequence

0—+M— EM)— E(Q) — E(Q) —

where Q2 = coker(E(M) — E(Q1)).
Remark 3.79. If (I; : j € J) are injective modules then

I14
ieJ

is injective by using the limit property on the diagram
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Remark 3.80. A direct sum of injectives need not be injective.

Theorem 3.81 (Bass). Let R be a commutative ring. Then R is Noetherian if and only if every direct sum
of injectives is again injective.

Sketch of proof.

(<= ) Suppose R is not Noetherian; suppose we have a chain of ideals Iy G I, G .... Let E, = E(R/I,).
Then

oo

E = @En
n=1

is not injective. Indeed, let

I =

(@

I, CR

n=1

and consider f,: I — E(R/I,) given by the composition I — R — R/I, — E(R/I,). These f, yield
a map

fiI— ﬁ E(R/I,)

T = (fl(x)7f2(x)a)

Note, however that f actually maps into
n=1 n=1

since x € I implies = € I,, for all sufficiently large n, and thus that f,(z) = 0 for all sufficiently large
n. Now, if F is injective, then there is : R — F such that the following diagram commutes:

0—— 1 — R

-
-

.

I
E

Consider then §(1); by definition of E there is m € N such that

B eE1®E:®.. 9B, (0)0(0)d...

So
Br)y=rB(1) CE1 @ E@®.. ©E,2(0)2(0)D...

for all » € R. But then for x € I,;,41 \ I, we have fp,11(2) € Epg1 # (0); so
B(x) = fmt1(@) E E1 O E2® ... Ep, @ (0)®(0)& ...
a contradiction. So F is not injective.

(=) One checks the following:
Exercise 3.82. If M is finitely generated then

homp, <M, & NZ-) =~ (B homp(M, N;)

i€l icl
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The idea is then that if R is Noetherian and J C R is an ideal then J is finitely generated. If the N;
are injective, then hom(J, N;) — hom(R, N;) is surjective for all é; so

hom (1, @;c; Ni) —— @;c;hom(J, N;)

l }

hom (R, @,;c; Ni) —— @, hom(R, N;)
TODO 4. What does this mean?
Then Baer’s criterion gives that
D
il
is injective. [0 Theorem 3.81

Bass’ theorem is very useful when studying injectives over a Noetherian ring.

Definition 3.83. An injective module F is decomposable if E = E' & E"” where E’ and E” are non-zero;
else it is indecomposable.

For a commutative Noetherian ring R we have that every injective R-module FE is of the form

E=DE;

jeJ

where Ej is injective and indecomposable. Moreover, there is a bijection from Spec(R) to the isomorphism
classes of indecomposable injectives given by p — E(R/p). Why? Well, if E is indecomposable and injective,
we may pick ¢ € E with maximal annihilator. (Recall Ann(z) = {r € R: rz = 0}.) The usual trick for
ideals in a Noetherian ring maximal with respect to some property yields that Ann(x) = p is prime. So

R/p — Rz —— E(R/p)

o

E

TODO 5. What does this mean?

4 Complexes

We work in A an abelian category; we can always assume that this is R-Mod by Mitchell’s embedding
theorem.

Definition 4.1. A chain complex C4 is a family (C,, : n € Z) with C,, € Ob(A) and morphisms d,,: C,, —
Cp—1 such that d,—1 od,: C;, - C,—o2 = 0. We call the d, the differentials of C,. We then define
Z,(Cs) = ker(d,,) C C), to be the n-cycles of C,; we define B, (Ce) = im(d,,+1) C C), to be the n-boundaries
of Cs. S0 (0) C B, (Cs) C Z,(Cs) C C,. We define H,,(Cs) = Z,(Cs)/Bn(Cs) to be the n'™ homology grape
of C,.

Dually, we define a cochain complex C*® is a family of (C™ : n € Z) and morphisms d": C"* — C"*!
such that d"™t od® = 0 for all n € Z. We define Z"(C*®) = ker(d®) C C™ to be the n-cocycles; we define
B™(C*®) = im(d"~!) C C™ to be the n-coboundaries. We define H*(C*) = Z™(C)/B"(C) to be the n*®
cohomology grape of C*.

Remark 4.2. H,(C) = (0) if and only if Cp41 M C, A, C,,_1 is exact at C,,.

Remark 4.3. (C,, : n € Z) is a chain complex if and ounly if B = C_,, with d* =d_,,: C_,, = C_,,_1.
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Ezample 4.4 (de Rham complex). Suppose ¢: R — A is an R-algebra. Recall the Kéhler differentials were
Q4R the free A-module generated by symbols da for a € A modulo the relations

o d(a+1rb) =da+rdbforallr € Rand a,b € A.
o d(ab) = adb+ bda for all a,b € A.
o dr=0forall reR.

Now define ,
K3
QZ/RZAiQA/R=®QA/R/<CL1®...®CL¢ZSgD(U)aU(1)®...®CI,U(i)>
j=1
(We also take qu/R =0 for i < 0.) Given my,...,m; € Qu/p we let my A ... Am; denote the image of

mi®...Q0m; in AiQA/R = qu/R. Note that
. Q%/R = A.
. Q}4/R =Qu/R-
« We have a map d: A — Q4 given by a — da; we call this d°: 9?4/12 — QZ/R.
e We have another map d*: QA/K — Qi/R given by d!(adb) = da A db; in particular, we get d* od’ = 0.
 In general, these yield a map d": 27} /R QZ‘}'}% satisfying
d"(wAn) =dwAn+ (=) 'wAd 'y

for all w € qu/R and all n € QZ?}%. In particular, we take

d" (Wi A Awy) = (drwr Awa A Awy) — (Wi Adrwa Aws A Awy) 4+ (W1 Aws Adrws Ao Awy) — ...

« In particular, for w € QZﬁz and n € Qh/R, we have

(d" Tt od™)(wAn) =d" T d" TwAn+ (=1)""rw Adn)
=d" T (d"twAn) + (=) (w A dn)
=d"(d" N W) An+ (- d" o Andin+ (—D)" T w A d y + (1) (=) w A dP(dMy)
=0

by an inductive argument.

TODO 6. Really?
Ezercise 4.5. Suppose k is a field of characteristic 0; let A = k[z1,...,z,]. Then
0=k—=Q% ), === Q% =0

is exact.

Definition 4.6. Let Cy and C,, be two chain complexes; say Co = (Cy,d,,) and C,, = (CY,,d.,). A morphism
of chain complezes is a collection of maps f,: C,, — C} such that the following diagram commutes:

dn
On — Cn—l

J{fn J{fnf 1
d’

/ n /
On Cn —1

Thus if C is an abelian category then we can set Ch(C) to be the category of chain complexes in C. Similarly,
we define Co-Ch(C) the category of cochain complezes in C.

40



In fact Ch(C) and Co-Ch(C) are abelian categories. The only non-trivial part is checking then ker(f) and
coker(f) are objects in Ch(C) for f: Cy — (. One can assume that C = R-Mod, by Mitchell’s embedding
theorem. Note then that the following diagram commutes:

ker(f,) M ker(frn—1)

| l

dn
Cp, ——— Ch1

lfn lfn_l

d’

! 3 !
Cn Cnf 1

L

coker(f,) —=— coker(fn—_1)
since if 2’ = 2" + f,(u) in C), then

dy, (') = d,, (&") + (dy, 0 f) (u) = d7,(2") + (fa1 0 dn)(u)

and d},(¢') = d), (") in coker(f,—1). One also checks that monomorphisms and epimorphisms are normal;
hence Ch(C) is an abelian category.

Remark 4.7. One can show that a morphism Cy — C} takes Z,(C,) to Z,(C,) and B, (C,) to B,(C.); in
particular, we get a map H,(C,) to H,(C)).

Definition 4.8. A morphism u: Cy — D, is called a quasi-isomorphism if for every n € Z we have that the
induced map H,(Cs) = Hy,(D,) is an isomorphism.

Proposition 4.9. the following are equivalent:
1. The chain complex C, is exact at each C,,.
2. H,(Co) =0 for alln € Z.
3. C, s quasi-isomorphic to -+ —0—0— 0 — ---, the zero chain complex.

Definition 4.10. A chain complex C4 is bounded if C,, = 0 for all but finitely many n. We say C, is
bounded above if C,, = 0 for all sufficiently large n; likewise with bounded below. We use Chy(C), Ch_(C),
and Ch4 (C) to denote the full subcategories of Ch(C) consisting of chains that are bounded, bounded below,
and bounded above, respectively; Similarly, we get Co—Chb, Co-Ch™, and Co-Ch™.

Remark 4.11. Since Ch(C) (respectively Co-Ch(C)) is an abelian category, it makes sense to talk about short
exact sequences of chain complexes

0%A.LB.£>C.~>O

(where “0” denotes the zero chain complex -+ — 0 — 0 — 0 — ---). Examining the diagram

dn [ker(fn)
"

- —— ker(f,) ker(fn,_1) ——— -+~

J/in J/in—l
A, o Ap g ———— e
| e
d’/!L
Bn Bn—l —_—
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we see that f: A — B is a monomorphism if and only if --- — ker(f,) — ker(f,—1) — --- is the zero
complex. Examining the diagram

. >An an}An—l yore

J/fn lf n—1
b

- —— B, —3 By — -

b

Cn—1
D O 2 Cpey —— -

we see that Ae 23 By % C, is exact at B. if and only if gn o f, = 0 for all n € Z and ker(gy)/im(f,) = 0
for all n € Z.

4.1 Long exact sequence

Ifo — A, i> Be L C, — 0 is a short exact sequence in Ch(C) then there are connecting morphisms
On: Hp(Co) — Hy,—1(As) such that

H,1(C) j

e L Ho(Ad) —— H,(B.) —— H,(C.)

6”& Hn71<Ao) 4f> anl(BO) L Hﬂfl(CO) j

5”’1[» Hy_o(Ad)

is exact. Dually, if 0 — A°® S B* % ¢* & 0 s a short exact sequence in Co-Ch(C) then there are
§": H™(C) — H"™"1(A) such that

anl (C.)

6”71[% H(A%) —L— B7(B*) —2— H"(C")

s
& Hn+1(Ao) f Hn+1(Bo) 9 Hn+1(co)

6n+1 @
Hn+2(Ao)
is exact. The key ingredient in the proof is the snake lemma.
Lemma 4.12 (Snake lemma). Suppose that C is an abelian category and suppose we have a commuting

diagram with exact rows

., ’

A — B L 0
ol
0 A—spB-rLsC
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For clarity, we expand the diagram to get a commuting diagram containing the various kernels and cokernels:

ker(f) ——— ker(g) —— ker(h)

A"y T 0
f 9 h
0 A : B L c

coker(f) —— coker(g) —— coker(h)
Then there is §: ker(h) — coker(f) as in the following (not necessarily commuting) diagram

ker(f) —— ker(9) —— ker(h) --

T

A : B — ¢ —1—0
|/ K [»
L L
0— A : B u c

9

—i

~» coker(f) —— coker(g) —— coker(h)
such that the sequence

ker(f) — ker(g) — ker(h) LN coker(f) — coker(g) — coker(h)

is exact. Moreover, if i’ is a monomorphism then 0 — ker(f) — ker(g) is exact; if p is an epimorphism then
coker(g) — coker(h) — 0 is ezact.

Proof. Without loss of generality we assume C = R-Mod for some R by Mitchell’s embedding theorem. The
only hard part then is finding § and showing that

ker(g) P lker(g), ker(h) LN coker(f) KN coker(g)

is exact at ker(h) and at coker(f).

What is 67 Well, suppose z € ker(h) C C’. Take y such that p'(y) = «; then g(y) € B. We claim
that there is a € A such that i(a) = g(y); we then define 6(z) = a + im(f) € coker(f). Symbolically:
d=i"logo(p) L

Why is this defined and well-defined? Suppose we have y;,y2 € B’ such that p'(y1) = p'(y2) = = € ker(h);
then h(p/'(y1)) = h(p'(y2)) = 0. So, examining our diagram, we find that p(g(y1)) = p(9(y2)) = 0, and
9(y1),9(y2) € ker(p) = im(é). So, since i is a monomorphism, there are unique aj,as € A such that
i(a1) = g(y1) and i(az) = g(y2)-

Claim 4.13. i(a;) +im(f) = i(a2) + im(f); i.e. i(a; — ag) € im(f).

Proof. Well, y1 — y2 € ker(p’) = im(¢'); so there is b € A’ such that ¢/(b) = y1 — y2. But then i(f(b)) =
g(i' (b)) = g(y1 — y2) = i(a; — az2); so, by injectivity of 7, we have f(b) = a; — as. O Claim 4.13
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So ¢ is well-defined; it remains to check exactness of

ker(g) M ker(h) LN coker(f) i) coker(g)

For exactness at ker(h), note that for = € ker(g), we have

0(p'(x)) =itogo (p)~Hp'(x)) =i~ Hg(x)) =i~1(0) =0

So im(p’ [ ker(g)) C ker(d). It remains to check that ker(d) C im(p’ | ker(g)). Suppose z € ker(d); we must
find y € ker(g) such that x = p(y). Well, since z € ker(d), we have that (i=*ogo (p/)~1)(x) = 0; i.e. if we
fix a preimage z of z under p’ (i.e. with p/(z) = x), then i~'(g(2)) € im(f). So there is a € A such that
i(9(2) = f(a); s0 g(2) = i(f(a )) =g(i'(a)). So z—1i'(a) € ker(g). But p'(z —i'(a)) = p'(z) —p'(i'(a)) = ;
so z € im(p’ | ker(g)). So im(p’ [ ker(g)) = ker(d), and we have exactness at ker(h).
We now check exactness at coker(f). As usual, to show that im(§) C ker(i), we note that
)=

i(f(z) =i~ (g((P')~1(2))))
=i(i" (g((") ! ())) +im(f))
=i(i" (g((p") " (2))) + im(f))
=g((p")"(x)) +im(io f) +im(g)
= g((p) " (x)) +im(g o ') + im(g)
=0+ im(g)
=0

It remains to check the reverse inclusion. Suppose x € ker(i). Then z € coker(f), so we may write
x = mo + im(f) for some zy € A; then since i(z) = 0, we have that i(zo) + im(g) = 0 + im(g), and
i(zg) = g(u) for some u € B’. Hence if we knew that t = p’(u) € ker(h), then we would get

() =i~ g(() M) =i (g(w) =T0 =
and we’d be done. It then suffices to show that p'(u) € ker(h); i.e. that h(p'(u)) = 0. But h(p/(u)) =
p(g(u)) = p(i(zo)) = 0 by exactness of A = B 2 C; so we indeed get that p/(u) € ker(h). [ Lemma 4.12

We now return to our goal of producing a long exact sequence of homology from a short exact sequence
of chain complexes.

Proposition 4.14. Suppose we have a short exact sequence 0 — Aq — Be — Co — 0 where Aq = (Ap, an),
By = (Bp,by), and Ce = (Ch, ¢p) are chain complexes. Then we get a long exact sequence of homology

Hp1(Cs) U

L Hy(As) ——— Hy(B.) ——— H,(C4) B

Gn
[» H,_1(As) —— Hy—1(Bs) —— Hp—1(Cl) U

5”’1[» Hy_a(Ad)

We are now in a position to do so.

Proof. We get a commuting diagram with exact rows

An B, Cp 0

bk

0——r An—l E— Bn—l E— Cn—l
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By a weakening of the snake lemma, we get that
Zn(Ae) = Zn(Be) = Z,(Cs)

and
Ap—1/im(an) = Bp_1/im(b,) — Cp—1/im(cy)

are exact for all n € Z. One checks that since 0 — A,, — B, and B,,_1 — C,_1 — 0 are exact, then so are
0= Zn(As) = Zy(Be) = Zn(Cs)
and
Ap_1/im(ay) = Bp—1/im(b,) — Cp_1/im(c,) — 0
for all n € Z.
Claim 4.15. We get an induced map ap: An/im(ans1) = Zn—1(As) C Ap—1.
Proof. Since a,, 0 ap+1 = 0, we get that im(a,+1) C ker(a,); hence we get an induced a,: A,,/im(an+1) —

Ap—1. But we likewise get im(a,,) C ker(a,—1) = Zn—1(As); so we indeed get an induced map a,,: A,/im(an+1) —
Zn—1(As). O Claim 4.15

Likewise we get b, : By, /im(b,+1) = Z,—1(Be) and ¢, : Cp,/im(cpt1) = Zn—1(Cs); one checks that the
following diagram commutes:

Ap/im(ant1) —2— Bn/im(bps1) —2— Cp/im(cng1) —— 0

b b I

00— Zn 1 (Ad) r11Zn—1(Ae) Zn_1(Ba) In=11Zn-1(Be) Zn_1(C4)

So we have a commuting diagram with exact rows; so the snake lemma yields d,,: ker(c,) — coker(a,) such
that

ker(a,) — ker(b,) — ker(c,) LN coker(a,) — coker(b,) — coker(cy,)
But H,(A,) = ker(a,)/im(a,+1) is just the kernel of our induced a,: A,/ im(ant+1) = Zn—1(As); likewise
we have H,,_1(Ae) = Zn—1(As)/Bn-1(As) = Zn_1(As)/im(ay,) is just the cokernel of our induced a,. So
we indeed get that the sequence

H,(As) —— H,(Bs) —— H,(Cl) j

s o s(A) s Hoa(Ba) — Bor(C)

is exact for all n € Z. [0 Proposition 4.14

4.2 Homotopies of complexes

Definition 4.16. Suppose «, 3: Aq — B, are two morphisms between the chain complexes Ay = (A, ay)
and By = (B, b,). We say a is homotopic to 8 (or a is homotopy equivalent to B, written « ~ j3) if for all
n € Z there is hy,—1: Ap—1 — B, (i-e. hy—1 € home(A,,_1, By,) with no (immediate) additional assumptions
on h,_1) such that for all n € Z we have

Qnp _ﬁn =hp_ 100y +bn+1 o hy

For illustrative purposes, a diagram with all the maps:

An+1 ,
An+1 ;> An L) An,1

2l
" b hn_1

bny1 n
By,y1 — B, —— B,
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Remark 4.17. ~ is indeed an equivalence relation.

Proof. For reflexivity, take h, = 04, 5, , for all n € Z. For symmetry, given (h, : n € Z) showing that

a ~ 3, note that (—h,, : n € Z) shows that 8 ~ «. For transitivity, given (h,, : n € Z) and (h :n € Z) such
that

_Bn =hp1 Oan+bn+1 ohy
Brn —Yn = hn_1 o ap +byy10hy

note that

— Yn = (hn—l + ?Ln—l) oay + bn+1 o (hn + hn)
0 Remark 4.17

Proposition 4.18. If a, 8: (An,a,) — (By,by,) are homotopy equivalent then « and 8 induce the same
maps Hy(Ae) — Hp(B.).

Proof. Tt suffices to show that if v: (A,,a,) = (Bn,bn) has v ~ 0, then v induces the 0 map H,(A,) —
H, (B,). Suppose v, = hy—1 0 @y + byt © hy, for some hy,: A, — Bpy1. In diagram:

An41
n+1 — A *> An 1

Y

n+1
Bni1 — B, RLIEN B_1

Well, H,,(As) = Z,(As)/Bn(As) = ker(ay,)/im(ay+1), and likewise we have H,,(B,) = ker(b,)/im(b,41);
the induced map v: ker(a,)/im(an,t+1) — ker(b,)/im(b,41) is then given by = + im(any1) — yn(z) +
im(by,+1). To show that ~ induces the 0 map, we must show that v, (ker(ay)) C im(b,41). Take x € A, such
that a,(x) = 0. Then

(@) = hn—1(an () + bnp1 (hn(2)) + im(bny1) = hn—1(0) +im(bp 1) = im(bn 1)
as desired. OO0 Proposition 4.18
A key proposition:
Proposition 4.19. Suppose F, is

i Pi—
-—)Fikp—)Fi_lﬁl"-gFo—)O—}O—)'“

and G 1
= G = Gll——lﬁu-w.%Go%OHO%-n

i.e. two chain complezes in an abelian category C. (We will work in R-Mod.) Suppose for all i we have F;
and G; are projective objects. In addition, let

M = coker(p1) = Ho(F,)
N = coker(¢1) = Ho(G.)

and suppose that H;(Gs) = 0 for all i > 0. Then any f: M — N is induced by a chain map a: Fyg — G.
Moreover, a is uniquely determined by B up to homotopy equivalence.

Proof. We proceed by induction.

(Existence) We have two exact sequences

L2 Ry M =0
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and
G5 Gy FE N S0

So, since F{ is projective, there is some «ag: Fy — Gg such that mg o g = B o mp; i.e. such that the
following diagram commutes:

Now, agop1: Fy — Gp. Also
Tgoapop; =pfompop; =F00=0

by exactness; so im(agog) C ker(mg) = im(t)1). So, since F} is projective, there is some ay: Fy — G4
such that 17 o a3 = ag o ¢1; i.e. such that the following diagram commutes:

x
Gl L im(z/;l) — 0

Continuing in this manner, and using the fact that H;(G,) = 0 for all ¢ > 0, we get a chain map
a: Fg = G,o. Moreover, ag: Fy/im(p1) = Go/im(;) has

ao(z +im(p1)) = ao(z) +im(ag 0 p1) = ag(z) +im(yy 0 aq)
for € Fy. But s 0 ap = B o mp; 50 7 (a0(x)) = B(z + im(py)), and
ag(z +im(p1)) = ao(x) +im(v1) = B(x) + im(t1)
So A is induced by the chain map a: Fo — Gh.

(Uniqueness) Suppose a,a’: Fy — G, both induce 8; we must show that « ~ «’. This reduces to showing
that if v: Fy — G, induces Op; ny: M — N, then v ~ 0; we may thus assume that 5: M — N is the 0
map. Our picture is

FL 25 Fy T2y M 0
l’h // l’Yo \LO
)‘/d) }Lo .
G —— Gy =5 N 0

where hg: Fy — G is the map we wish to find.

Claim 4.20. im(yg) C im(¢)1) = ker(wg).
Proof. Well, g ovy =007p = 0; so im(yy) C ker(ng) = im(t)1). O Claim 4.20
So, since Fj is projective, there is hg: Fy — G; such that 79 = 11 o ho; in (commuting) diagram:

Iy

i
K .
G~ im(yy) —— 0

We must now produce h;: Fy; — G2 such that 95 o hy + hg o 1 = 1. But 79 = ¥1 0 hg; so

Yro(hgopr —m)=91ohgopr —proyr =vopr —Y1071 =0
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since 7 is a morphism of chain complexes. So im(hg o 91 — 71) C ker(y;) = im(¢)2). So, since F} is
projective, we get hy: F1 — Go such that —hg o o1 + 71 = 15 0 hy, as in the following commuting
diagram:

Fy

-

-
-

-
-
2T ha

J{-ho op1+71

Then 1 = 1p20h1+hgop;. Continuing in this manner, we get a homotopy v ~ 0. [ Proposition 4.19

4.3 Projective resolution

Suppose C is an abelian category with enough projectives (respectively, enough injectives); i.e. for all C' €
Ob(C) there is a projective P € Ob(C) and an epi P — C (respectively, an injective I and a mono C' < I).
Then we can make a projective resolution of C' € Ob(C): an exact sequence

~-~—>P2ﬁ)P1£>P0—>C—>O

with each P; projective.
Why must this exist? We work in R-Mod. Then there is a projective Py with an epi @g: Py — C; we get
a short exact sequence 0 — Ko — Py — C — 0. Let Ky = ker(yp). Then there is a projective P; and an epi
p: P| - Kjy; then
P 5 Py 250 =0

is exact since im(y1) = Ko = ker(ypp). Let K3 = ker(p1); then
0K —-P—-FP—-C—0
is exact. We can find a projective P, and an epi py: P» — K7. Then
PP P C—0

is exact. And so on.
Similarly, if we have enough injectives, we get an injective resolution of C: an exact sequence

0=>C—=Iy—=1 =1, — -

with each I; injective.

Theorem 4.21. Let C € Ob(C). If
Y R Ry R ANy g )

and

N M Ny o N2 TNy o

are two projective resolutions of C. Then

1. The chain complexes Py and Qe given by
~-~—>P2¢H2P1ﬂ>P0—>0—>“-

and
N o T N0 TN NN B

respectively are homotopy equivalent.

2. If D is an abelian category and F: C — D is an additive functor, then for all i we have H;(FP,) =
H;(FQ.,).
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Remark 4.22. FP, and F(Q, given by

s FP 2 e TS Ry 0

and
S FQy B PO BV FQy — 0 -

are indeed chain complexes, since
(Fei) o (Fpir1) = F(pio pip1) = F(0) =0
since F' is additive.

Proof of Theorem 4.21. By our last result, there are a: P, — Qo and [: Qs — P, such that «, 8 induce
idg: C — C; we get the following commuting diagram:

Py P, Py C 0
bl e e
Q2 Q1 Qo C 0
PR A
Py Py Py C 0

So foa: Po = P, induces id¢: C — C. But idp,: Ps — P, also induces id¢: C' — C. So foa ~ idp,.
Similarly, we get that oo 8 ~ idg,. We get the following diagram:

P2 P2 Pl ¥1 PO
J{ﬂ2% L@H?ah/o J{ﬂooao
P2 P2 Pl P1 PO

So there are h;: P; — P, 11 such that §; o a; —idp, = ;41 0h; + hi—1 0 ;. Applying F' everywhere, we find
that

0

0

F(Bi) o F(a;) —idp(py = F(@iy1) o F(hi) + F(hi—1) o F(p;)
So F(hz) FP, — FPH_l show that

F(a): FPy, = FQ.

F(B): FQs — FP,
satisfy F'(8) o F'(a) ~ idp(p,). Similarly, we get F(a) o F(8) ~ idp(q,). So F(8) o F(a) and idp(p,) induce
the same map (i.e. the identity map) from H;(FP,) — H;(FP,). Similarly, F'(«) o F(/) induces the identity

on H;(FQ,) for all i. So foa: Py — P, induces idc: C — C. But idp, : Py — P, also induces id¢: C — C.
So Boa~idp,. O Theorem 4.21

We then say that the map Py — Q, is a quasi-isomorphism; i.e. the induced maps H;(P,) — H;(Q,) are
isomorphisms.

5 Derived functors

Suppose we have 0 — A Lpscso exact, and suppose that F' is a right-exact additive functor. (e.g.
in R-Mod, if M is a right R-module, we could take F = M ®p —: R-Mod — Ab.) We know

05K FAX FB X% PO 0
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is exact for some K; we’d like to understand K. e.g. if IV} i) Ny in R-Mod, what is
id®@ri
ker(M Rr N —— M ®pr N2)7
As we'll see, there is a first left-derived functor L F' satisfying
Lrc S rall pp e pe o

In fact the object L1 FC is independent of f and g; it merely requires that 0 - A — B — C — 0 be exact.

Definition 5.1. Suppose C and D are abelian categories; suppose C has enough projectives. Suppose
F: C — D is right-exact and additive. Suppose A € Ob(C); let

Py PP —>A—=0
be a projective resolution. From this we obtain a chain complex P, consisting of
PP P 050
to which we can apply F' to get another chain complex F'P, consisting of

L FP, 2 pp 2 ppy TR0 0

We then define L; F(A) = H;(FP,); L;F is called the i*! left-derived functor of F.

Why is this well-defined? Well, if P, and P, are two chain complexes arising from projective resolutions of
A, then there are u: Py — Pyand v: Py — P, with vou ~ idp, and uov ~ idp;. Then F'(u): FP, — F P, and
F(v): FPy — FP, have F(u)o F(v) = F(uowv) ~ F(idp;) = idpp;. Similarly, we have F'(v) o F(u) ~ idrp, .
So F(u) yields a quasi-isomorphism; in particular, we have H;(FP,) = H;(FP)), and L;F(A) is well-defined.
If f: A— B, what is L1 F(f)? Well, if

PQ—)P1—>P0—>A—>O

and
Q> Q1 > Qo —B—=0

are projective resolutions of A and B respectively, then there is 8: P, — Qo such that # induces f in
Hy(P.) = Hp(Qs). We then set L; F'(f) to be the map H;(FP,) = H;(FQ,) induced by F(0): FPy — FQ,.
One checks that this is well-defined; one uses the fact that given two chain complexes P, and P, arising from
projective resolutions of A, we have that 6 gives a canonical isomorphism H;(P,) — H;(P}).

We saw that L;F'A is independent of choice of projective resolution; we also have

Theorem 5.2. Lo = F.
Proof. There is ¢: Py — A such that
P2 PPy S A0
is exact. But F' is right-exact; so if K = ker(y), then since 0 - K — Py — A — 0 is exact, we get that
FK - FPy—~FA—0
is exact. We also have that P, — Py — A — 0 is exact; so
FPp —-FPy—>FA—0

is exact. What is LoF? The 0" homology of

N ) SREZNG o - RN

ie. LoFFA = FPy/im(FPy). But im(FPy) = ker(Fy); so LoF A= FPy/ker(Fy) = A. O Theorem 5.2
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Theorem 5.3. If A is projective then L;FA =0 for alli> 1.

Proof. Notice
0205 AN 450

is a projective resolution of A; we get the chain complex P, consisting of
o =0=>0—2A4A->0—---
Applying F', we get the chain complex
o =>0—>0—-FA—->0—---

So H;(FP,) =0 foralli>1;s0o L;FA=0 for all i > 1.

[0 Theorem 5.3

Theorem 5.4. Suppose F' is right-exact and additive; suppose 0 — A i) B 2% C = 0 is a short ezact

sequence. Then there is a long eract sequence

)
3[» LyFA 25 1B 2259 1, Fre j

J.
2[» L FA 255 1 pe 259 1 po j

)
1&FA ' g T, pC

where §: L;FC — L;_1FA.

Proof. Fix chain complexes P, and (), arising from projective resolutions of A and C, respectively; we’d like
to find a projective resolution ---Uy — U; — Uy — B — 0 of B such that the following diagram has exact

columns:
0 0 0 0
|
P 2 P, 1 P, 0 A
[
U, Uy Uy B

l” l“ lm g

i.e. such that 0 — P, N Us = Qo — 0 is exact and 6 induces f: A — B on Hy(P,) — U,) and 7 induces

g: B— C on Hy(Us) — Hp(Q)-
Claim 5.5. We can find such U,, 0, and 7.

Proof. At the first stage, we need to find Uy and maps 6y, 79 and xo such that the following diagram
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commutes:
0 0

|

Pp—254—50

PO f

UOLB%O
) g

Qo 50— 0

|

0 0

How do we find such Uy, 6y, and 797 Well, Qg is projective; so we have hy: Qg — B such that g o hg = 1yp;
i.e. such that the following diagram commutes:

Qo
k///hO lwo
B—2%sC—50

Let k;O:fogoO:Po—>B. Let UOZP()@QO; let

xo=ko+ho: Ph® Qo — B
QOZZ.IP()%PO@QO
o =m: Py ® Qo — Qo

Working in R-Mod, we note that the following diagram commutes:

To g9
Qo
|
0

Indeed, for the top square, if p € Py then going one way we get

Lo — 0

0

P o= f(po(p)) = ko(p)

and going the other way we get
p = (p,0) = ko(p)

For the bottom square, if (p, q) € Py ® Qo, then going one way we get
(P @) = ko(p) + hola) = g(ko(p)) + g(ho(q)) = to(a) + 9(f(¢o(p))) = vo(q)
and going the other way we get

(p,q) = q— vo(q)
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We do one more iteration. We now wish to find U; and maps 61, 71, and x; such that the following diagram
commutes:

0 0 0
|
J Ay - K RN 0
lgl l‘% !
U, 5 Uy X B 0
T To g
31 i C\QLO Yo C 0
L
0 0 0

We let Uy = Py & @1, and define the maps by

X1 =k +hi: PL® Q1 — ker(xo)
glzilpl—)Pl@Ql
m=m:PLoQ =+

One checks that the diagram does indeed commute. Continuing in this way, we get the desired result.
O Claim 5.5

Now, apply F to 0 — Po % Uy 5 Qo — 0.
Claim 5.6. 0 — FP, — FU; — FQ; — 0 is exact for all 1.

Proof. 1t suffices to show that if
0—-P—=>U—-0Q—=0

is a short exact sequence of projective objects, then
0—-FP—FU—-FQ—0

is exact. Why? Well, since @ is projective, we have a section s: Q — U of 7:

Q
e lidQ
6 i’ TS
0 P U Q 0

Then idy —so7: U — U satisfies
To(ldy—soT)=7—TosoT=7—idgor =0

So idy —s o 7 maps to ker(7) = im(#), and there is t: U — P such that ot =idy —so7:

U
L ’ lidu —soT
K 6 T
0 P U Q 0

We now apply F. Since F is right exact, we get

P2 rUu I FQ 0

is exact; we also have Ft: FU — FP and Fs: FQ — FU. I think at this point we just use the fact that
since @ is projective, we have a retraction of 6, which then lifts to a retraction of F'6.
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TODO 7. Do we still need all the work with s and t?

So0— FP, - FU, — FQ. — 0 is exact; so we get a long exact sequence of homology

03
[» Hy(FP,) —— Hy(FU,) —— Ha(FQ,)
)

62[—) Hl(FP.) — Hl(FUo) — Hl(FQ.) U

61[» Ho(FP,) —— Ho(FU,) —— Ho(FQJ) — 0

i.e. we have an exact sequence

LQFQ

J
3[» LoFA 25 1o 2P 1R j

5
z[s L FA 2EL L rB 259 1 pe

3
ILFA Y pp 1, po 0

as desired.

O Claim 5.6

[0 Theorem 5.4

Remark 5.7. We have been using the fact that if C, D are abelian categories and F': C — D is additive, then
F(0¢c) = Op. The reason for this is that if A = F/(0¢), then id4 = F'(ido,) = F(0) = 0. So F(A) is an initial
object, since any f € homp(A, B) satisfies f = foidg = f o0 = 0; likewise we get that A is a terminal

object, and hence that F(A) = Op.

Remark 5.8. Suppose C has enough injectives. Suppose G: C — D is additive and left-exact. If C' € Ob(C),

we get an injective resolution
0-C =171 — ...

Applying G, we get
0—-GC—GI° = GI' — ---

and hence we get a chain complex I® given by
0—GI°—=GI' — ---
We then define R'G(C) = H (GI*®). We get
1. R°G =G.
2. C injective implies R'GC = 0 for i > 0.

3.1f0—- A ENY;IEN C — 0 is exact, then we get a long exact sequence of homology

0 GA GB GC
)

50@
R'GR — -
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4. Given

0 AL, ¢ 0
Lol
0 A B 21

We get that the following diagram commutes:
RIGC —2 RI*1GA
lRiG"/ lRi+1G’a
riGor 2 pitigar

Remark 5.9. The above results allow us to recover L; F'A for all ¢+ > 0 and for all A € Ob(C). Indeed, we
have LoFFA = F A; suppose now that we know L;FA for all i < n. Then we can put A in a short exact
sequence 0 - K — P — A — 0 where P is projective; so we get a long exact sequence of homology

)

[» LoFK —— 0 —— Ly FA

[%LlFK*>O*>L1FAj

L FK FP FA 0

So LoFAX L FK, and L3FA = Ly FK, and so forth. So knowing L; F K gives us L; 1 F A for all i > 1; we
can obtain L F'A from the exact sequence

0—>IL1FA—-FK—+FP—FA—0

6 Tor

Suppose R is a ring; consider R-Mod, the category of left R-modules. Suppose M is a right R-module and
a left S-module (typically S = Z). Then we get a functor F': R-Mod — S-Mod given by N — M ®gr N.
Then F is right-exact and additive.

Definition 6.1. We define Tor(M, N) = L;FN. (i.e. Tor®(M,—) = L;F.)
Remark 6.2. Tor measures how close M is to being flat.
Theorem 6.3. the following are equivalent:
1. M is flat.
2. Tor®(M,N) =0 for all i > 1 and all N € Ob(R-Mod).
3. Torf(M,N) =0 for all N € Ob(R-Mod).
Proof.
(1) = (2) Take a left R-module N and a projective resolution
v = P =>P - N-=0
Then since M is flat and the resolution is exact, we get that
o> MR PL > M®Ogr Py > M®rpN —0
is still exact. So H;(F(P,)) =0 for all i > 1; so Torl(M, N) =0 for all i > 1.
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(2) = (3) Immediate.

(3) = (1) Suppose that Torf'(M, N) = 0 for all N € Ob(R-Mod); suppose 0 — A — B is exact. Let C
be the cokernel of A - B;s0 0 - A — B — C — 0 is exact. Applying M ®r — and taking the long
exact sequence of homology, we find that

[»M®RA—>M®334>M®304>0

Torf(M, C) j

But Tor{(M,C) = 0. So0 - M ®r A - M Qg B — M @ C — 0 is exact; so M is flat.
O Theorem 6.3

In algebraic geometry, Tor is used to give a measure of “intersection”; see Serre’s formula.
Ezample 6.4. Consider R = Clz]; consider M = Clz]/(f(z)) and N = C[z]/(g(x)). Then N fits into a short

exact sequence

0= (g9(z)) = Clz] — Clz]/(g(x)) = 0

Since (g(z)) is principal, we get that it is isomorphic as an Clz]-module to C[z]. So we get a free resolution
of N

0—>Clz] 5 Clz] 5N =0
(where m(p) = pg). Tensoring with M, we get a chain complex Cq given by
e =0 — M®C[;p] (C[x} — M®(C[m] (C[QJ] —0

So Torf'(M,N) = H;(C,). In particular, we have H;(C,) = 0 for all i > 2; so Tor? (M, N) = 0 for all i > 2.
For Torgz(M , V), note that the map M ®¢ (5 Clz] — M ®c[,Clx] can be expressed as a map M — M given
by a — g(x)a. Then Tor(lf(M, N) is the kernel of the zero map modulo the image of this map; i.e. M /g(z)M.
Since M = C[z]/(f(z)), we note that M /g(x)M = Clz]/(f(x),g(z)). In particular, if h = ged(f,g), then
M ®@r N = Torg(M, N) = Clz]/(h(x)).
For Torf(M, N), we are interested in the homology at the left M ®clz] C[z]. But the incoming map is
the 0 map; so Tor? (M, N) = ker(m). Writing M = C[z]/(f(x)), we see that

Tory'(M,N) = {a(z) + (f(2)) : f(z) | a(x)g(z) } = {a(z) + (f(z)) : f(z) | alz)h(z)}

Writing f(z) = s(x)h(x), we see that Torf (M, N) = (s(x))/(f(x)). Indeed, as we will see on assignment 4,
we in general have that Torf(R/I,R/J) = IN.J/1J.

Theorem 6.5 (Flatness criteria). Suppose R is a ring; suppose M is a right R-module. Then the following
are equivalent:

1. M is flat.
2. M@rI - M =M ®g R is injective for all left ideals I ; R.
3. Torf(M,R/I) =0 for all left ideals I S R.

Proof.

(1) = (2) Immediate.

(2) = (8) Suppose we have a left ideal I G R. Then the exact sequence 0 — I — R — R/I — 0 yields an
exact sequence

[»M@)RI%M@@RR%M@RR/I%O

0 —— Torf (M, R/I) j

But M ®r I — M Qg R is injective; so Tor(M, R/I) = 0.
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(3) = (1) Suppose (3) holds but M is not flat. Then there are left R-modules N’ C N such that M ®g
N’ — M ®pg N is not injective. We make the following reductions:

Claim 6.6. Without loss of generality, we may assume N’ is finitely generated.

Proof. Well, there is a non-zero € M ® g N’ such that ¢(z) =0in M ®r N. Write
T=m; Qrni+- -+ mpOr Nk

where ny,...,n; € N and mq,...,mp € M. Let Ny C N’ be Rny + --- + Rnj. Then z has some
preimage xg € M ®r Ny (under M ® g Ng = M ®g N'); then we have Ny C N’ C N and the map
M ®gr Ng — M ®pr N factors through M ® g N’, and in particular has g # 0 in the kernel. So we can
instead consider Ng C N and z( € ker(M ®r No - M ®r N). [0 Claim 6.6

Claim 6.7. We may assume N is finitely generated.

Proof. Consider ¢: M ® g Ny = M ®p N; then 0 # 2 = my @gny + - -+ my, @ ni € ker(p). Notice
that M ®@g N is a free Z-module on symbols (m,n) modulo relations of the form

(mr,n) — (m,rn) =0
(my +ma,n) — (my,n) — (ma,n) =0

(m,n1 +n2) — (m,nq) — (m,n2) =0

Soif x = 0in M ®g N, then we can capture that fact using only finitely many relations from the
above; say using (not in order)

(/fﬁ/lrlv an) - (Tr/\flv Tl’;ﬁ)

(msrs, 1s) = (M, 7510

(m11 +ma1,ny) — (ma1,ny) — (ma1,n})

(maj +maj,n}) — (mij,nj) — (maj,n})

(mh,n11 4+ n21) — (m,n11) — (m,n21)

(my, nae +nage) — (m,n1g) — (M, nay)
So we only need to take

]\Af:Rﬁvl+-~-—|—Rn~s—|—Rn’1+~--+Rn;+Rn11—|—Rn21+---+Rn1t+Rn2t+Rn1+~-~+Rnk
N —.

No
Then zy € ker(M ®g Ny - M Qg ]V) O Claim 6.7
We now have Ny QAN both finitely generated with M ®r Ng —» M ®g N not injective. Write Ny =
(n1,...,ng); write N = {(nq,...,ng,ug,...,Up). Forie {1,....m}, let N; = (ny,...,ng,u1,...,u;);
then

NgCN, C---CN,, =N
Claim 6.8. We may instead consider N; and N;y1 for somei € {1,...,m}.
Proof. Since the composition
M®rNy— - —M®g Ny =M®grN
is not injective, there is some ¢ € {1,...,m} such that M ®r N; - M ®pr N;;+1 is not injective.

O Claim 6.8
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Note now that

Ni-i—l/Ni = <n1,...,nk,U]_,-.-,’U/i+1>/<n1,.-- y T, ULy - - '7ui>
is cyclic; so there is ¢¥: R — N;+1/N; given by r — ru;+1 + N;. Let I = ker(¢p. Then N;y1/N; 2 R/I;
ie. 0 = N; =» N,11 — R/I — 0 is exact. So we get a long exact sequence of homology

M ®r N, —— M®RNi+1 E— M®RR/14> 0

oo ——— Tor® (M, R/T)
But Torf”(M7 R/I) = 0 by hypothesis; so 0 = M ®gr N; = M ®g N;;1 is exact, a contradiction.
[0 Theorem 6.5

Corollary 6.9. Suppose k is a field; let R = k[t]/(t?), and suppose M is an R-module. Then M is flat if
and only if M/tM = tM (wheret =t + (t2)).

Proof. As previously shown, we get that M is flat if and only if Torf (M, R/I) = 0 for all proper ideals I of
R. Notice that I = (0) or I = (), by the correspondence theorem. In the case I = (0), we have R/I = R is
projective, and hence that Tort*(M, R) = 0.

So M is flat if and only if Torf (M, R/()) = 0. Notice, however, that R/(f) = (k[t]/(t?))/(t + (t?)) =
E[t]/(t) = k. So M is flat if and only if Torf(M, k) = 0. One checks that

+3R—-R—-R5 k-0

is a projective resolution of k (where R — R is given by r + rt); hence the chain complex from which we
derive Tor®(M, k) is
o> MRIRR—-M®pR—>M®rR—0

where the maps M ®p R — M ®gr R can be expressed as the maps M — M given by m — tm. So,
unpacking our earlier statement that M is flat if and only if Tor®(M, k) = 0, we find that M is flat if and
onlyif {meM:tm=0}={tm:m e M} =tM,; ie. if and only if ker M — tM = tM, which by first
isomorphism theorem is equivalent to M /tM = tM. O Corollary 6.9

Theorem 6.10. Suppose R is a commutative ring; suppose a € R is not a zero divisor. Suppose M is flat
and we have m € M such that am = 0. Then m = 0.

Proof. Consider the short exact sequence 0 - R — R — R/aR — 0 (with the map R — R given by
2+ xa). Tensoring with M, we find that

0>MRR—-M®rM—MegR/aR—0
is exact; we can express this as a short exact sequence
0—>M-—>M—Me®gr/aR—0

where the map M — M is m — ma. So the map M — M given by m — am is injective; so if am = 0, then
m = 0. [J Theorem 6.10

The converse holds if R is a PID.

Theorem 6.11. If R is a PID, then M is flat if and only if M is torsion-free; i.e. whenever a € R\ {0}
and am = 0, we have m = 0.

Proof.

(=) Generally true.
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(<= Suppose M is torsion-free; let a € R\ {0}. Then
0->M-—->M-—M/aM —0

is exact (where the map M — M is m +— am). Consider also the short exact sequence 0 -+ R — R —
R/aR — 0 (where the map R — R is « — ax); tensoring with M, we obtain a long exact sequence

M@iR——— M®y R —— M ®p R/JaR —— 0

0 = Tor®(M,R) —— Tor*(M, R/aR)

But M is torsion-free; so the map M ®r R — M®p can be expressed as the map M — M given by
m — am. So Torf (M, R/aR) = 0 for all a # 0. So, since R is a PID, we have Torf(M, R/I) = 0 for
all ideals I of R. So M is flat. 0 Theorem 6.11

So for example in Z, we have

o The injectives are the divisible Z-modules (namely direct sums of Q and C, = {exp(2mij/p*) : k >
0,j>0}).

e The projectives are the free Z-modules.
e The flat Z-modules are the torsion-free Z-modules.

Some general facts:
Suppose R is commutative; suppose M and N are R-modules. Then

Torf(M,N) = M ®p N = N @z M Torf (N, M)
Fact 6.12. In general, we have Tor® (M, N) = Tor®(N, M).

Fact 6.13. Suppose R and S are commutative; suppose A is an R-module, C is an S-module, and B is both
an R-module and an S-module. If B is flat as an R-module and as an S-module, then Tori(A ®r B,C) =
Tor®(A, B ®g C).

In particular, for n = 0 we get (A ®r B) ®s C =2 A®gr (B ®s C). Another special case is when S is a
flat R-algebra, and we let B = S; we then get Tors (A ®p S, C) = Tor(A, C).
6.1 Ext

Suppose R is a ring; suppose M and N are left R-modules. We create Extlé(M ,N) as follows: 4
Define G = hom(M, —): R-Mod — Ab; then G is additive and left-exact. We then set Extp(M,N) =
R'G(N). To compute Ext’% (M, N), we take an injective resolution

0=N-=I"=T1 ...

and obtain a cochain complex
0 — hom(M, I’) — hom(M,I") — -

We then have Ext% (M, N) = H'(hom(M, I*)).
Ezample 6.14. Let M = N = 7Z/3Z; we compute Extl (M, N). We get an injective resolution

0—-2/3Z—C3—C5—0
where the map Cs — C3 is z + 22, Our cochain complex is then
0 = hom(Z/3Z, C5) < hom(Z/3Z,C5) 2 0 — - --

Suppose : Z/3Z — Cs. Then v € ker(a) if and only if ¥(1)> = 1 in C3; i.e. if and only if ¥(1) €
{1,exp(27i/3),exp(4mi/3) }. So ker(a) = Z/3Z. So Exty(Z/3Z,7./3Z) = 7./31.
We also get that Ext}(Z/37,7/37) = 0 for i > 2; it remains to find Ext;(Z/3Z,7/37). But this is just

ker(b)/im(a) = hom(Z/3Z,Cs)/im(a) = hom(Z/3Z,Z/3Z)/ im(a) = Z/3Z
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An alternative description of Ext: consider G = hom(—, N): (R-Mod)°? — Ab. Then G is left-exact and
additive. We can compute R'G by taking an injective resolution of M in (R-Mod)°P

0—-M—=1'=T1" - ...

i.e. an exact sequence
s IS I M0

where the I’ are projective. So if we take a projective resoltuion
o PP 5 M0
in R-Mod and apply hom(—, N), we get a cochain complex

0 — hom(P° N) — hom(P', N) — - --
with R‘G(M) = H'(hom(P*, N)).

Fact 6.15. R'G(M) = Ext’ (M, N).

6.1.1 Ext via Yoneda equivalence

If X and X’ are two R-modules and we have two short exact sequences
a:0—->A—-X—->B—-0

and
o:0A—-X -B—0

then we write @ ~y o' if there is f: X — X’ such that the following diagram commutes:

0 A X B 0
lid lf lid
0 A X' B 0

We then define E'(A, B) to be the set of equivalence classes of ~y-.
Fact 6.16. E'(A, B) = Extg(A, B).
More generally, we can define an analogous equivalence relation on exact sequences
a:0—-A—-X;---— X, >B—=0

We let E™(A, B) be the collection of equivalence classes of exact sequences under the analogous equivalence
relation.

Remark 6.17. We get a map E™(A, B)x E™(B,C) — E""™ (A, C) given by appending the sequences. Taking
A =B =C, we find that

PE"A A
is a graded ring.
TODO 8. Missing stuff.
Theorem 6.18 (Eilenberg-Watts). Suppose F,G, H: R-Mod — S-Mod are additive. Suppose
e F is right-exact and commutes with direct sums.
e G is contravariant, left-exact, and converts direct sums into direct products.

e H has S =7, is left-exact, and commutes with projective limits.
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Then
o F=M®pg— for some (R,S)-bimodule M.
o G = hom(—,N) for some (R, S)-bimodule N .
o H = hom(M,—) where M is an R-module.

Ezample 6.19 (Grape cohomology). Fix a grape G and consider G-Mod, the category fo abelian grapes
(A,4) endowed with a G-action G x A — A. Consider H: G-Mod — Ab given by A — {a € A : ga =
aforall g € G}. For example, if G = Sy and A = Z & Z, we can set (1,2)(a,b) = (b,a), and thus get
A € G-Mod. In this case we have

HA = {(a,b): (1,2)(a,b) = (a,) } = Z(1,1) = Z

One can easily verify that H is left-exact. However, it is not right-exact: for example, if

. G=17/2Z
« B=17/4Z
. C=17/2Z

then we can consider the quotient map ¢: B — C; then Hyp = 0.
One can also easily verify that H commutes with projective limits. One also notes that G-Mod =
Z|G)-Mod (where

Z|G] = Z ngg : ng € Zng = 0 for all but finitely manyg
geG

is the grape algebra). So we can view H as a functor Z[G]-Mod — Ab; by Eilenberg-Watts, we then get
H = homgg (M, —) for some Z[G]-module M. In fact we may take M = Z with the trivial G-action, which
yields the Z[G]-module structure

A

Indeed, given 6 € homgyg(Z, A), we may let a = 6(1); then g-a = 0(g-1) = 6(1) = a, and a € HA.
Conversely, if a € HA, then §: Z — A given by 0(n) = na has 6 € homgg)(Z, A). So homyg)(Z, A) = HA.
We may thus conclude that
H'(G,A) := R'H(A) = R"homyc(Z, —)(A) = Extye(Z, A)

Ezample 6.20. Let G = (x : 2® = 1) = Z/2Z; let A = Z ® Z with z(a,b) = (b,a). Then R = Z[G] =
Zlx]/(x* — 1) = Z]x]/(z + 1)(x — 1). So H (G, A) = Ext’;(Z, A). Note that we get an exact sequence

R R R RS 50
where ¢1(a) = a(x — 1) and y3(a) = a(x + 1). We truncate and apply hom(—, A) to get a cochain complex
0 — homp(R, A) — homp(R,A) — ---

ie.
02> —=7>—=7%— ...
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Then

H°={(a,a):a€Z}=2(1,1)=HA

H' = ker /im
={(a,0):a==-b}/{(b—a,a—b):a,bEZ}
=(0)

H? = (0) (similarly)

H* = (0)

So
o -
What is the significance of this? In the assignment we are asked to show that
H'(G, A) = { crossed homomorphisms }/{ principal crossed homomorphisms }

Hence in this case we get that all crossed homomorphisms are principal; i.e. given f: G — A with f(gh) =
f(g) + gf(h), we have that f takes the form f(g) = ga — a for some a € A.
We now showcase another use of the above. Suppose now that A € Ob(G-Mod); consider all grapes H
such that we have 4
1-AS5HLG—1

ie. A< H and H/A = G. Then G acts on any such A by declaring ga = hah™! € A where we pick h € H
satisfying m(h) = g. We consider the case where this coincides with our original G-action. Then H?(G, A) is
isomorphic to all such extensions 1 - A - H — G — 1 modulo Yoneda equivalence. Note that we always
have at least one such extension; namely A x G. So in our example, since H2(G, A) = 0, we get

1 =7 H—=7/27 -1

where 1 # a € Z/27 acts via permuting coordinates.

Ezample 6.21. Suppose k is a field of characteristic 0; let k be the algebraic closure. Let G = Gal(k/k); then
G acts on (k)* via oA = o()\). Then H?(Gal(k, k), (k)*) is the Brauer grape of k, denoted Br(k); this gives
the structure of all finite-dimensional division rings D over k with Z(D) = k. For example, it holds that

Br(R) = Z/2Z = H?*(Gal(C/R),C*) = H*(Z/2Z,C*)

Ezample 6.22 (Hochschild homology/cohomology). Suppose A is a ring; suppose M is an (A, A)-bimodule.
We set

HH; (M) = Tor*®4™ (A, M)
HH' (M) = ExtA®4” (4, M)

There is also local cohomology and sheaf cohomology.
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