Course notes for PMATH 945

Christa Hawthorne
Lectures by Jason P. Bell, Winter 2016

Contents

1 Preliminaries 1
2 Category theory 2
2.1 Categories 2
2.2 Functors 2
2.3 Natural transformations 3
2.4 Opposite category 3
2.5 Adjoints 4
2.6 Tensor-Hom adjunction 7
2.7 Yoneda's lemma 8
2.8 Initial and terminal objects 12
2.9 Limits and colimits 13
2.10 Govorov-Lazard theorem and filtered subcategories 18
3 Abelian categories 20
3.1 Mitchell's embedding lemma 22
3.2 Projective modules 26
3.2.1 Vector bundles 32
3.2.2 Loose ends 33
3.3 Injective modules 34
4 Complexes 39
4.1 Long exact sequence 42
4.2 Homotopies of complexes 45
4.3 Projective resolution 48
5 Derived functors 49
6 Tor 55
6.1 Ext 59
6.1.1 Ext via Yoneda equivalence 60

1 Preliminaries

Can collaborate with classmates on homework problems, and can looks things up on the internet. Not permitted to ask profs or post questions on the internet.

Classes vs. sets: classes are sets or proper classes. Any reasonably defined collection of objects should form a class.

2 Category theory

2.1 Categories

Definition 2.1. A category \mathcal{C} has two parts:

- $\operatorname{Ob}(\mathcal{C})$, a class of objects
- for each $A, B \in \operatorname{Ob}(\mathcal{C})$ a set of morphisms $\operatorname{hom}_{\mathcal{C}}(A, B)$.

We also require a composition law $\circ: \operatorname{hom}_{\mathcal{C}}(B, C) \times \operatorname{hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{hom}_{\mathcal{C}}(A, C)$ for all $A, B, C \in \mathrm{Ob}(\mathcal{C})$ such

- Composition is associative, when defined: $f \circ(g \circ h)=(f \circ g) \circ h$.
- For all $A \in \operatorname{Ob}(\mathcal{C})$ there is $\operatorname{id}_{A} \in \operatorname{hom}_{\mathcal{C}}(A, A)$ such that $\operatorname{id}_{A} \circ f=f$ and $g \circ \operatorname{id}_{A}=g$ when defined.

Example 2.2.

1. Grp, the category of all grapes: $\mathrm{Ob}(\mathbf{G r p})$ is the class of all groups and $\operatorname{hom}_{\operatorname{Grp}}(G, H)$ the set of grape homomorphisms $G \rightarrow H$. Notice we have composition and $\operatorname{id}_{G}: G \rightarrow G$.
2. Set, the category of all sets: $\mathrm{Ob}($ Set $)$ is the class of all sets and $\operatorname{hom}_{\text {Set }}(X, Y)$ is the set of functions $X \rightarrow Y$.
3. Top, the category of topological spaces: $\mathrm{Ob}(\mathbf{T o p})$ is the class of all topological spaces and $\operatorname{hom}_{\text {Top }}(X, Y)$ is the set of continuous maps $X \rightarrow Y$.
4. $\mathbf{A b}$, the category of abelian grapes.
5. Top*, the category of pointed topological spaces (topological spaces with an identified point); morphisms will be continuous maps sending the identified point of the domain to the identified point of the codomain.

An important example for sheaves:
Example 2.3. Suppose X is a topological space. We define the category $\mathbf{T o p}_{X}$ by

- $\mathrm{Ob}\left(\mathbf{T o p}_{X}\right)$ is the set of open subsets of X
- If U, V are open subsets of X, then we set

$$
\operatorname{hom}_{\mathbf{T o p}_{X}}(U, V)= \begin{cases}\emptyset & U \nsubseteq V \\ \{i: U \rightarrow V\} & \text { else }\end{cases}
$$

Why are we interested in category theory? Categories can provide a unification tool.

2.2 Functors

Definition 2.4. Suppose \mathcal{C} and \mathcal{D} are categories. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ consists of

- $F: \mathrm{Ob}(\mathcal{C}) \rightarrow \mathrm{Ob}(\mathcal{D})$
- $F: \operatorname{hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{hom}_{\mathcal{D}}(F(A), F(B))$ for any $A, B \in \mathrm{Ob}(\mathcal{C})$
such that
- $F\left(\mathrm{id}_{A}\right)=\mathrm{id}_{F(A)}$ for all $A \in \mathrm{Ob}(\mathcal{C})$
- $F(f \circ g)=F(f) \circ F(g)$

Example 2.5.

1. $F: \mathbf{A b} \rightarrow \mathbf{G r p}$ given by $F(A)=A$ and $F(f)=f$.
2. $T: \mathbf{G r p} \rightarrow \mathbf{A b}$ by $T(G)=G / G^{\prime}$ (where G^{\prime} is the commutator subgrape of G) and if $f: G \rightarrow H$ then $T(f): G / G^{\prime} \rightarrow H / H^{\prime}$ is given by $T(f)\left(g G^{\prime}\right)=f(g) H^{\prime}$.
3. $\pi_{1}:$ Top* $\rightarrow \mathbf{G r p}$ that sends a pointed topological space to its fundamental grape; i.e. the grape of loops based at the identified point modulo homotopy equivalence. (Recall that h_{0} is homotopic to h_{1} if there are h_{t} for all $t \in(0,1)$ such that the map $[0,1]^{2} \rightarrow X$ given by $(x, t) \rightarrow h_{t}(x)$ is continuous.) Given $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$, we define $\pi_{1}(f): \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ by $\pi_{1}(f)(g)=f \circ g:[0,1] \rightarrow Y$.
Apparently the composition $T \circ \pi_{1}$ is the first homology grape of a path-connected topological space.
4. The forgetful functor $F: \mathbf{G r p} \rightarrow$ Set.

2.3 Natural transformations

Definition 2.6. Suppose \mathcal{C} and \mathcal{D} are categories; suppose $F, G: \mathcal{C} \rightarrow \mathcal{D}$ are functors. A natural transformation $\alpha: F \rightarrow G$ consists of a morphism $\alpha_{A}: F(A) \rightarrow G(A)$ (i.e. $\alpha_{A} \in \operatorname{hom}_{\mathcal{D}}(F(A), G(A))$) for all $A \in \operatorname{Ob}(\mathcal{C})$ such that for all $f: A \rightarrow B$ (where $A, B \in \operatorname{Ob}(\mathcal{C})$), we have that the following diagram commutes:

Definition 2.7. If there are natural transformations $\alpha: F \rightarrow G$ and $\beta: G \rightarrow F$ such that $\alpha \circ \beta: G \rightarrow G$ and $\beta \circ \alpha: F \rightarrow F$ are the respective identity maps, then we say the functors F and G are isomorphic.

Example 2.8. Suppose $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor. Then $\alpha=\mathrm{id}: F \rightarrow F$ given by $\alpha_{A}=\operatorname{id}_{A}: F(A) \rightarrow F(A)$
Definition 2.9. Functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$ are isomorphic if there is $\alpha: F \rightarrow G$ and $\beta: G \rightarrow F$ such that $\beta \circ \alpha=\mathrm{id}: F \rightarrow F$ and $\alpha \circ \beta=\mathrm{id}: G \rightarrow G$.

Example 2.10 (Double duals). Let \mathcal{C} be the category of finite-dimensional vector spaces over \mathbb{C}. We define $F: \mathcal{C} \rightarrow \mathcal{C}$ to be the identity functor; i.e. $F(V)=V$ for $V \in \mathrm{Ob}(\mathcal{C})$ and $F(T)=T$ for $T: V \rightarrow W$. We define $G: \mathcal{C} \rightarrow \mathcal{C}$ by $G(V)=V^{* *}$ and for $T: V \rightarrow W$ we let $G(T): V^{* *} \rightarrow W^{* *}$ be $G(T)=T^{* *}$. We define a natural transformation $\alpha: F \rightarrow G$ by $\alpha_{V}: V \rightarrow V^{* *}$ is $\alpha_{V}(\vec{v})=e_{\vec{v}}$ (where $e_{\vec{v}} \in V^{* *}=\operatorname{hom}_{\mathbb{C}}\left(V^{*}, \mathbb{C}\right)$ is $e_{\vec{v}}(f)=f(\vec{v})$ for $\left.f \in V^{*}\right)$.

Then for $T: V \rightarrow W$ we have the following diagram commutes:

So $\alpha: F \rightarrow G$ is indeed a natural transformation.

2.4 Opposite category

Definition 2.11. Suppose \mathcal{C} is a category. We define the opposite category $\mathcal{C}^{\text {op }}$ by $\operatorname{Ob}\left(\mathcal{C}^{\mathrm{op}}\right)=\operatorname{Ob}(\mathcal{C})$ and for $A, B \in \operatorname{Ob}(\mathcal{C})$ we let $\operatorname{hom}_{\mathcal{C}}{ }^{\text {op }}(A, B)=\operatorname{hom}_{\mathcal{C}}(B, A)$; composition is then given by $\widetilde{f} \circ \widetilde{g}=\widetilde{g \circ f}$ for $\widetilde{f} \in \operatorname{hom}_{\mathcal{C}}{ }^{\text {op }}(B, A)$ and $\widetilde{g} \in \operatorname{hom}_{\mathcal{C}}{ }^{\text {op }}(C, B)$ (i.e. $f \in \operatorname{hom}_{\mathcal{C}}(A, B)$ and $g \in \operatorname{hom}_{\mathcal{C}}(B, C)$). The identity morphisms are then the same.

Example 2.12. If \mathcal{C} is the category of finite-dimensional vector spaces over \mathbb{C} then $F: \mathcal{C} \rightarrow \mathcal{C}^{\text {op }}$ given by $F(V)=V^{*}$ and $F(T)=T^{*}: W^{*} \rightarrow V^{*}$ for $T: V \rightarrow W$ is a functor. Also $G: \mathcal{C}^{\text {op }} \rightarrow \mathcal{C}$ given by $G(V)=V^{*}$ and $G(T)=T^{*}: W^{*} \rightarrow V^{*}$ for $T: V \rightarrow W$ is also a functor. Then $G \circ F: \mathcal{C} \rightarrow \mathcal{C}$ sends $V \mapsto V^{* *}$ and $T \mapsto T^{* *}: V^{* *} \rightarrow W^{* *}$ for $T: V \rightarrow W$. Likewise $F \circ G: \mathcal{C}^{\text {op }} \rightarrow \mathcal{C}^{\text {op }}$ sends $V \mapsto V^{* *}$.

Exercise 2.13. Show that $G \circ F$ is naturally isomorphic to the identity functor $\mathcal{C} \rightarrow \mathcal{C}$; i.e. there are natural transformations $\alpha: G \circ F \rightarrow \mathrm{id}$ and $\beta \mathrm{id} \rightarrow G \circ F$ such that $\beta \circ \alpha=\mathrm{id}: G \circ F \rightarrow G \circ F$ and $\alpha \circ \beta=\mathrm{id}: F \circ G \rightarrow$ $F \circ G$.

Definition 2.14. Suppose \mathcal{C} and \mathcal{D} are categories and $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ are functors such that $F \circ G: \mathcal{D} \rightarrow \mathcal{D}$ and $G \circ F: \mathcal{C} \rightarrow \mathcal{C}$ are isomorphic to the respective identity functors. Then we say $\mathcal{C} \cong \mathcal{D}$ are equivalent.

Example 2.15. If \mathcal{C} is the category of finite-dimensional vector spaces over \mathbb{C}, then $\mathcal{C} \cong \mathcal{C}^{\text {op }}$.
Example 2.16 (Algebraic geometry).
Definition 2.17. Let k be a field. A k-algebra B is a commutative ring with an injective homomorphism $\varphi: k \rightarrow B$ such that $\varphi\left(1_{k}\right)=1_{B}$.
Remark 2.18. Then $B \supseteq \varphi(k) \cong k$; so B is a vector space over k.
Example 2.19. $B=\mathbb{C}[x, y]$ is a \mathbb{C}-algebra with $\varphi: \mathbb{C} \rightarrow B$ given by $\varphi(\lambda)=\lambda$.
Definition 2.20. B is finitely generated as a-algebra if there are $a_{1}, \ldots, a_{d} \in B$ such that every $b \in B$ can be written as a polynomial $p\left(a_{1}, \ldots, a_{d}\right)$ for some $p \in k\left[x_{1}, \ldots, x_{d}\right]$. B is reduced if whenever $b \in B$ satisfies $b^{n}=0$ for some $n \geq 1$ we have $b=0$.

Example 2.21. $\mathbb{C}[x] /(x)$ is not reduced; $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, \ldots\right]$ is not finitely generated.
We can then form the category \mathcal{C} of finitely generated, reduced \mathbb{C}-algebras. We can also form the category \mathcal{D} of complex affine varieties, whose objects are $Y \subseteq \mathbb{C}^{n}$ for some $n \geq 1$ such that Y is the zero set of a finite set of polynomials $p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{d}\left(x_{1}, \ldots, x_{n}\right)$. (Note that we don't require irreducibility here.)
Example 2.22. $Y=\left\{(a, b) \in \mathbb{C}^{2}: b^{2}=a^{3}+1\right\} \subseteq \mathbb{C}^{2}$ is the zero set of $x_{2}^{2}-x_{1}^{3}-1$.
Then algebraic geometry tells us that $\mathcal{C} \cong \mathcal{D}^{\text {op }}$. The nullstellensatz gives us that for $B \in \mathcal{C}$, say $B \cong$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{d}\left(x_{1}, \ldots, x_{n}\right)\right)$, that we can set $F(B)$ to Y the zero set of p_{1}, \ldots, p_{n} in \mathbb{C}^{n}. Also $G: \mathcal{D}^{\text {op }} \rightarrow \mathcal{C}$ sends $Y \mapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(p_{1}, \ldots, p_{d}\right)$ where Y is the zero set of $p_{1}, \ldots, p_{d} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

2.5 Adjoints

Definition 2.23. Suppose \mathcal{A}, \mathcal{B} are categories. We say $F: \mathcal{A} \rightarrow \mathcal{B}$ is left adjoint to $G: \mathcal{B} \rightarrow \mathcal{A}$ if, intuitively, we have

$$
\operatorname{hom}_{\mathcal{A}}(A, G(B)) \cong \operatorname{hom}_{\mathcal{B}}(F(A), B)
$$

for all $A \in \operatorname{Ob}(\mathcal{A})$ and $B \in \operatorname{Ob}(\mathcal{B})$. More formally, we require that for all $A \in \operatorname{Ob}(\mathcal{A})$ and $B \in \operatorname{Ob}(\mathcal{B})$ there be a bijection $\alpha_{A, B}: \operatorname{hom}_{\mathcal{A}}(A, G(B)) \rightarrow \operatorname{hom}_{\mathcal{B}}(F(A), B)$ such that whenever $A, A^{\prime} \in \operatorname{Ob}(\mathcal{A}), B, B^{\prime} \in \operatorname{Ob}(\mathcal{B})$, $\varphi \in \operatorname{hom}_{\mathcal{A}}\left(A, A^{\prime}\right)$ and $\psi \in \operatorname{hom}_{\mathcal{B}}\left(B, B^{\prime}\right)$, we have the following diagram commutes:

 $F \rightleftarrows G$.

Example 2.24. If \mathcal{G} is the category of grapes and \mathcal{A} is the category of abelian grapes, then we have an inclusion functor $I: \mathcal{A} \rightarrow \mathcal{G}$ (given by $I(A)=A$ and $I(f)=f$ for $f \in \operatorname{hom}_{\mathcal{A}}(A, B)$) and a reduction functor $R: \mathcal{G} \rightarrow \mathcal{A}$ (given by $R(G)=G / G^{\prime}$ and $R(f)$ is the descent of f to $G / G^{\prime} \rightarrow H / H^{\prime}$ for $\left.f: G \rightarrow H\right)$. Then these are adjoint; which is left adjoint and which is right adjoint?
Example 2.25. If \mathcal{A} is the category of abelian grapes and Set is the category of sets then we have a forgetful functor $G: \mathcal{A} \rightarrow$ Set (given by $G(A)=A$ and $G(f)=f$). Consider F : Set $\rightarrow \mathcal{A}$ given by

$$
F(X)=\mathbb{Z}^{X}=\bigoplus_{x \in X} \mathbb{Z}=\left\{\sum_{x \in X} n_{x} e_{x}: n_{x}=0 \text { for all but finitely many } x \in X\right\}
$$

where e_{x} are formal "basis vectors". Then $F \rightleftarrows G$; if X is a set and A is an abelian grape, then

$$
\operatorname{hom}_{\text {Set }}(X, G(A)) \cong \operatorname{hom}_{\mathcal{A}}(F(X), A)
$$

with $f: X \rightarrow A$ being sent to $\tilde{f}: \mathbb{Z}^{X} \rightarrow A$ given by $e_{x} \mapsto f(x)$. Furthermore, if $\varphi \in \operatorname{hom}_{\text {Set }}\left(X, X^{\prime}\right.$ and $\psi \in \operatorname{hom}-\mathcal{A}\left(A, A^{\prime}\right)$, then the following diagram commutes:

Exercise 2.26 (Stone-Čech compactification). Idea: we have CHaus, the category whose objects are compact Hausdorff spaces and whose morphisms are continuous maps, and we have Top, the category of topological spaces. We have an inclusion functor G : CHaus \rightarrow Top (given by $G(X)=X$ and $G(f)=f)$. In other words, CHaus is a subcategory of Top; i.e. $\mathrm{Ob}(\mathbf{C H a u s}) \subseteq \operatorname{Ob}(\mathbf{T o p}), \operatorname{hom}_{\mathbf{C H a u s}}(X, Y) \subseteq \operatorname{hom}_{\text {Top }}(X, Y)$ for all $X, Y \in \mathrm{Ob}$ (CHaus), $f{ }^{\circ}{ }_{\text {CHaus }} g=f{ }^{\circ}{ }_{\text {Top }} g$ when it makes sense, and id_{X} in CHaus equals id_{X} in Top whenever $X \in \mathrm{Ob}($ CHaus $)$.

What would a left adjoint do? We would have $F: \mathbf{T o p} \rightarrow$ CHaus and bijective $\alpha_{X, F(X)}: \operatorname{hom}_{\text {Top }}(X, F(X)) \rightarrow$ $\operatorname{hom}_{\text {CHaus }}(F(X), F(X))$. Let $\beta=\alpha_{X, F(X)}^{-1}\left(\operatorname{id}_{F(X)}\right)$; then $\beta: X \rightarrow F(X)$. Moreover, the adjoint property shows that if $f: X \rightarrow K$ is continuous (where $K \in \mathrm{Ob}(\mathbf{C H a u s})$) then there is a unique $\tilde{f}: F(X) \rightarrow K$ such that the following diagram commutes:

Example 2.27. Recall we have Top*, the category of pointed topological spaces, and Grp, the category of grapes. Recall we also have $\pi_{1}: \mathbf{T o p}^{*} \rightarrow \boldsymbol{\operatorname { G r p }}$ given by $\left(X, x_{0}\right) \mapsto \pi_{1}\left(X, x_{0}\right)$. For example, if $\left(X, x_{0}\right)=(\mathbb{C}, 1)$, then $\pi_{1}\left(X, x_{0}\right)=\{$ id $\}$, since if $g:[0,1] \rightarrow \mathbb{C}$ is continuous, then we can define $g_{t}(x)=g(x) t+1 \cdot(1-t)$; then $g_{1}=g$ and $g_{0}=1$. Now, consider $\left(Y, y_{0}\right)=\left(S^{1}, 1\right)$; let $H=\mathbb{Z} \in \mathrm{Ob}(\mathbf{G r p})$. Suppose π_{1} had a left adjoint $F: \mathbf{G r p} \rightarrow$ Top** Then $\operatorname{hom}_{\text {Grp }}\left(H, \pi_{1}\left(X, x_{0}\right)\right) \cong \operatorname{hom}_{\text {Top }^{*}}\left(F(H),\left(X, x_{0}\right)\right) ;$ so $\left|\operatorname{hom}_{\text {Top }^{*}}\left(F(H),\left(X, x_{0}\right)\right)\right|=1$. On the other hand, we also have $\operatorname{hom}_{\text {Grp }}\left(H, \pi_{1}\left(Y, y_{0}\right)\right) \cong \operatorname{hom}_{\operatorname{Top}^{*}}\left(F(H),\left(Y, y_{0}\right)\right)$, and $\operatorname{hom}_{\text {Top }}{ }^{*}\left(F(H),\left(Y, y_{0}\right)\right)$ is infinite. But $\operatorname{hom}_{\text {Top }^{*}}\left(F(H),\left(Y, y_{0}\right)\right)$ embeds into $\operatorname{hom}_{\mathbf{T o p}^{*}}\left(F(H),\left(X, x_{0}\right)\right)$, a contradiction. So π_{1} does not have a left adjoint.

As a general principle, forgetful functors (like $\mathcal{A} \rightarrow$ Set) are right adjoint to "free" functors (like F : Set \rightarrow $\mathcal{A})$.

Definition 2.28. Given a category \mathcal{A} and a set X, we say $F(X)$ is the free object in X in \mathcal{A} if there is a set map $f: X \rightarrow F(X)$ such that if $g: X \rightarrow A$ is a set map to some $A \in \operatorname{Ob}(\mathcal{A})$, then there is a unique $\widetilde{g} \in \operatorname{hom}_{\mathcal{A}}(F(X), A)$ such that the following diagram commutes:

Exercise 2.29. If free objects exist, then $F \rightleftarrows G$ (where G is the forgetful functor).
Exercise 2.30. Free objects don't exist in the category of fields.
The most important example will be tensor-hom adjunction, which we will see later.
Theorem 2.31. Right adjoints are unique up to natural isomorphism; i.e. if $F: \mathcal{A} \rightarrow \mathcal{B}$ and $G, G^{\prime}: \mathcal{B} \rightarrow \mathcal{A}$ are right adjoints for F then there are natural transformations $\eta: G \rightarrow G^{\prime}$ and $\mu: G^{\prime} \rightarrow G$ such that $\mu \circ \eta=\operatorname{id}_{G}: G \rightarrow G$ and $\eta \circ \mu=\operatorname{id}_{G^{\prime}}: G^{\prime} \rightarrow G^{\prime}$.
(A similar proof will show that left adjoints are also unique up to natural isomorphism.)
Proof. Suppose $F: \mathcal{A} \rightarrow \mathcal{B}$; suppose $G, G^{\prime}: \mathcal{B} \rightarrow \mathcal{A}$ are right adjoints for F. We wish to find a natural isomorphism $\eta: G \rightarrow G^{\prime}$. Suppose $A \in \operatorname{Ob}(\mathcal{A})$ and $D \in \operatorname{Ob}(\mathcal{B})$. Then we are given

$$
\operatorname{hom}_{\mathcal{A}}(A, G D) \xrightarrow{\alpha_{A, D}} \operatorname{hom}_{\mathcal{B}}(F A, D) \stackrel{\alpha_{A, D}^{\prime}}{\leftarrow} \operatorname{hom}_{\mathcal{A}}\left(A, G^{\prime} D\right)
$$

Taking $A=G D$, we have

$$
\operatorname{hom}_{\mathcal{A}}(G D, G D) \xrightarrow{\alpha_{G D, D}} \operatorname{hom}_{\mathcal{B}}(F G D, D) \stackrel{\alpha_{G D, D}^{\prime}}{\leftrightarrows} \operatorname{hom}_{\mathcal{A}}\left(G D, G^{\prime} D\right)
$$

In particular, we have

$$
\operatorname{id}_{G D} \mapsto \alpha_{G D, D}\left(\operatorname{id}_{G D}\right) \mapsto\left(\alpha_{G D, D}^{\prime}\right)^{-1}\left(\alpha_{G D, D}\left(\operatorname{id}_{G D}\right)\right): G D \rightarrow G^{\prime} D
$$

Define $\eta_{D}: G D \rightarrow G^{\prime} D$ to be $\left(\alpha_{G D, D}^{\prime}\right)^{-1}\left(\alpha_{G D, D}\left(\operatorname{id}_{G D}\right)\right)$; we must show that for $f: D \rightarrow D^{\prime}$, the following diagram commutes:

We apply the naturality of the adjoint map twice. The first time we use $A=A^{\prime}=G D, B=D, B^{\prime}=D^{\prime}$, $\varphi=\operatorname{id}_{G D}: A \rightarrow A^{\prime}$, and $\psi, f: D \rightarrow D^{\prime}$. Then the following diagram commutes:

Starting with $\mathrm{id}_{G D}$ in the top left corner, we get

$$
\operatorname{id}_{G D} \mapsto \eta_{D} \mapsto G^{\prime}(f) \circ \eta_{D}
$$

and

$$
\mathrm{id}_{G D} \mapsto \Psi(G(f))
$$

(where $\Psi=\left(\alpha_{G D, D^{\prime}}^{\prime}\right)^{-1} \circ \alpha_{G D, D^{\prime}}$). Applying naturality again, this time with $A=G D, A^{\prime}=G D^{\prime}, \varphi=$ $G F: G D \rightarrow G D^{\prime}, B=B^{\prime}=D^{\prime}$ and $\psi=\mathrm{id}_{D^{\prime}}$, we find the following diagram commutes:

Chasing $\operatorname{id}_{G D^{\prime}}$, we find

$$
\operatorname{id}_{G D^{\prime}} \mapsto \eta_{D^{\prime}} \mapsto \eta_{D^{\prime}} \circ G(f)
$$

and

$$
\operatorname{id}_{G D^{\prime}} \mapsto \operatorname{id}_{G D^{\prime}} \circ G(f) \mapsto \Psi \circ G(f)
$$

So the first square yields

$$
\Psi \circ G(f)=G^{\prime}(f) \circ \eta_{D}
$$

and the second yields

$$
\Psi \circ G(f)=\eta_{D^{\prime}} \circ G(f)
$$

So the following diagram commutes:

And η is a natural transformation; one checks that it is a natural isomorphism.
Theorem 2.31
Remark 2.32. If G is naturally isomorphic to G^{\prime} and G^{\prime} is a right adjoint for F, then G is also a right adjoint for F.

Proof. Suppose $\varphi: A \rightarrow A^{\prime}$ and $\psi: B \rightarrow B^{\prime}$. Then since $F \rightleftarrows G^{\prime}$, we have the following diagram commutes:

Suppose $\eta: G \rightarrow G^{\prime}$ is a natural isomorphism; then the following diagram commutes:

(where $\left(\eta_{B} \circ\right.$) maps $f \mapsto \eta_{B} \circ f$) since

$$
\eta_{B^{\prime}} \circ G(\psi) \circ f \circ \varphi=G^{\prime}(\psi) \circ \eta_{B} \circ \circ f \circ \varphi
$$

So if $\beta_{A, B}=\alpha_{A, B} \circ\left(\eta_{B} \circ\right)$, then $\beta_{A, B}$ are bijections $\operatorname{hom}(A, G B) \rightarrow \operatorname{hom}(F A, B)$ such that the following diagram commutes:

So $F \rightleftarrows G$.
Remark 2.32

2.6 Tensor-Hom adjunction

Let R be a commutative ring, and consider R-Mod, the category of R-modules with $\operatorname{hom}_{R}(M, N)=$ $\operatorname{hom}_{R}-\operatorname{Mod}(M, N)$ the set of R-module homomorphisms $M \rightarrow N$. Fix an R-module M, and consider $F: R$-Mod $\rightarrow R$-Mod given by $N \mapsto M \otimes_{R} N$. Then we have the universal property that if P is an R-module and $f: M \times N \rightarrow P$ is bilinear, then there is a unique homomorphism of R-modules $\widetilde{f}: M \otimes_{R} N \rightarrow P$ such that the following diagram commutes:

(Given $f: N \rightarrow N^{\prime}$, we get id $\otimes f=F(f): M \otimes_{R} N \rightarrow M \otimes_{R} N^{\prime}$ by $m \otimes n \mapsto m \otimes f(n)$.) We also have $G: R$-Mod $\rightarrow R$-Mod given by $G(N)=\operatorname{hom}_{R}(M, N)$ and if $f: N \rightarrow N^{\prime}$ then $G(f): \operatorname{hom}_{R}(M, N) \rightarrow$ $\operatorname{hom}_{R}\left(M, N^{\prime}\right)$ is given by $\psi \mapsto f \circ \psi$.

Theorem 2.33 (Tensor-Hom adjunction). $F \rightleftarrows G$.

Proof. Given $A, B \in R$-Mod, we need $\alpha_{A, B}: \operatorname{hom}_{R}(A, G B) \rightarrow \operatorname{hom}_{R}(F A, B) ;$ that is, $\operatorname{hom}_{R}\left(A, \operatorname{hom}_{R}(M, B)\right) \rightarrow$ $\operatorname{hom}_{R}\left(M \otimes_{R} A, B\right)$. Suppose we have $\psi \in \operatorname{hom}_{R}\left(A, \operatorname{hom}_{R}(M, B)\right)$. Then for $a \in A$ we have $\psi(a): M \rightarrow B$; in particular, for $m \in M$ we have $\psi(a)(m) \in B$. We then define $\psi_{0}: M \times A \rightarrow B$ by $\psi_{0}(m, a)=\psi(a)(m)$. Then ψ_{0} is bilinear:

$$
\begin{aligned}
\psi_{0}\left(r m+m^{\prime}, a\right) & =\psi(a)\left(r m+m^{\prime}\right) \\
& =r \psi(a)(m)+\psi(a)\left(m^{\prime}\right) \\
& =r \psi_{0}(m, a)+\psi_{0}\left(m^{\prime}, a\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi_{0}\left(m, r a+a^{\prime}\right) & =\psi\left(r a+a^{\prime}\right)(m) \\
& =\left(r \psi(a)+\psi\left(a^{\prime}\right)\right)(m) \\
& =r \psi_{0}(m, a)+\psi_{0}\left(m, a^{\prime}\right)
\end{aligned}
$$

So by the universal property for tensor products, we get a unique homomorphism of R-modules $\widehat{\psi_{0}}: M \otimes_{R} A \rightarrow$ B such that the following diagram commutes:

We then set $\alpha_{A, B}(\psi)=\widehat{\psi_{0}}$. This is reversible: if $\varphi: M \otimes_{R} A \rightarrow B$, then $\widetilde{\varphi}: M \times A \rightarrow B$ given by $(m, a) \mapsto \varphi(m \otimes a)$ is bilinear:

$$
\begin{aligned}
\widetilde{\varphi}\left(r m_{1}+m_{2}, a\right) & =\varphi\left(\left(r m_{1}+m_{2}\right) \otimes a\right) \\
& =\varphi\left(r\left(m_{1} \otimes a\right)+m_{2} \otimes a\right) \\
& =r \varphi\left(m_{1} \otimes a\right)+\varphi\left(m_{2} \otimes a\right) \\
& =r \widetilde{\varphi}\left(m_{1}, a\right)+\widetilde{\varphi}\left(m_{2}, a\right)
\end{aligned}
$$

and likewise with the other side. We can then think of $\widetilde{\varphi}$ as morphism $A \rightarrow \operatorname{hom}_{R}(M, B)$ by $a \mapsto \widetilde{\varphi}(a)$ $($ where $\widetilde{\varphi}(a)(m)=\widetilde{\varphi}(m, a))$; so $\widetilde{\varphi} \in \operatorname{hom}_{R}\left(A, \operatorname{hom}_{R}(M, B)\right.$).

So $\alpha_{A, B}$ is an isomorphism (i.e. bijection); it remains to check the compatibility condition. Suppose $\varphi: A \rightarrow A^{\prime}, \psi: B \rightarrow B^{\prime}$. We wish to check that the following diagram commutes:

Suppose $h \in \operatorname{hom}\left(A^{\prime}, \operatorname{hom}(M, B)\right)$; then, going one way, we get

$$
h \mapsto \widehat{h_{0}} \mapsto \psi \circ g \circ F(\varphi)=\psi \circ g \circ(\mathrm{id} \otimes \varphi)
$$

Going the other way, we get

$$
h \mapsto G(\psi) \circ h \circ \varphi=\psi \circ h \circ \varphi(\psi \widehat{\circ h \circ \varphi})_{0}
$$

One checks that $(\psi \widehat{\circ h \circ \varphi})_{0}=\psi \circ \widehat{h_{0}} \circ(\mathrm{id} \otimes \varphi)$. (Hint: look at what they do to $m \otimes a$.)Theorem 2.33

2.7 Yoneda's lemma

Example 2.34. Let $\mathbf{A b}_{\text {fin }}$ be the category of finite abelian grapes. Suppose $A \in \operatorname{Ob}\left(\mathbf{A b}_{\text {fin }}\right)$; suppose for all finite abelian grapes B we know $\left|\operatorname{hom}_{\mathbf{A b}}(A, B)\right|$. Can we recover A ? Equivalently, if $A_{1} \not \approx A_{2}$, is there necessarily a B such that $\left|\operatorname{hom}\left(A_{1}, B\right)\right| \neq\left|\operatorname{hom}\left(A_{2}, B\right)\right|$.

For example, consider

$$
\begin{aligned}
& A_{1}=\mathbb{Z}_{2}^{3} \oplus \mathbb{Z}_{4}^{3} \oplus \mathbb{Z}_{5} \\
& A_{2}=\mathbb{Z}_{2}^{4} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{8} \oplus \mathbb{Z}_{5}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|\operatorname{hom}\left(A_{1}, \mathbb{Z}_{5}\right)\right|=5 \\
& \left|\operatorname{hom}\left(A_{1}, \mathbb{Z}_{5}\right)\right|=5 \\
& \left|\operatorname{hom}\left(A_{1}, \mathbb{Z}_{2}\right)\right|=2^{6} \\
& \left|\operatorname{hom}\left(A_{1}, \mathbb{Z}_{2}\right)\right|=2^{6} \\
& \left|\operatorname{hom}\left(A_{1}, \mathbb{Z}_{4}\right)\right|=2^{3} \cdot 4^{3} \\
& \left|\operatorname{hom}\left(A_{1}, \mathbb{Z}_{4}\right)\right|=2^{4} \cdot 4^{2}
\end{aligned}
$$

The answer turns out to be "yes" for $\mathbf{A b}_{\text {fin }}$, but not in general.
Yoneda's lemma says roughly that we can understand $A \in \operatorname{Ob}(\mathcal{A})$ by understanding $\operatorname{hom}_{\mathcal{A}}(A, B)$ for all $B \in \operatorname{Ob}(\mathcal{A})$.

Definition 2.35. Suppose \mathcal{A} is a category; suppose $A \in \operatorname{Ob}(\mathcal{A})$. We can make a functor $h_{A}: \mathcal{A} \rightarrow$ Set by $h_{A}(B)=\operatorname{hom}_{\mathcal{A}}(A, B)$ and $h_{A}(f): \operatorname{hom}_{\mathcal{A}}(A, B) \rightarrow \operatorname{hom}_{\mathcal{A}}\left(A, B^{\prime}\right)$ is $h_{A}(f)(\psi)=f \circ \psi$ whenever $f \in$ $\operatorname{hom}_{\mathcal{A}}\left(B, B^{\prime}\right)$. Such an h_{A} is called a representable functor. (We also give this name to a functor that is naturally isomorphic to a representable functor.)

On the assignment, we define a category $\operatorname{Funct}(\mathcal{A}$, Set $)$ whose objects are functors $\mathcal{A} \rightarrow$ Set and whose morphisms $F \rightarrow G$ are natural transformations $\eta: F \rightarrow G$. Let \mathcal{F} be the (full) subcategory of $\operatorname{Funct}(\mathcal{A}$, Set $)$ whose objects are representable functors; i.e. $\operatorname{hom}_{\mathcal{F}}\left(h_{A}, h_{B}\right)$ is the class of natural transformations $h_{A} \rightarrow h_{B}$.
Theorem 2.36 (Yoneda's lemma). $\mathcal{A} \cong \mathcal{F}^{\mathrm{op}}$.
Recall if $\eta: h_{A} \rightarrow h_{B}$ is a natural isomorphism then for each $C \in \operatorname{Ob}(\mathcal{A})$ we get an isomorphism $\eta_{C}: h_{A}(C) \rightarrow h_{B}(C)$; i.e. $\operatorname{hom}(A, C) \cong \operatorname{hom}(B, C)$. Yoneda's lemma gives a partial converse to this.
Example 2.37. Consider the forgetful functor $G: \operatorname{Grp} \rightarrow$ Set given by $G(H)=H$. Then G is a representable functor: note that $\operatorname{hom}_{\operatorname{Grp}}(\mathbb{Z}, H) \cong H$ for all $H \in \mathrm{Ob}(\mathbf{G r p})$. So $G \cong h_{\mathbb{Z}}$.

Another way to view the above: consider F : Set $\rightarrow \operatorname{Grp}$ where $F(X)$ is the free grape on X. Then $\mathbb{Z}=F(\{x\})$; so by the adjoint property we have $\operatorname{hom}_{\operatorname{Grp}}(F(X), H) \cong \operatorname{hom}_{\text {Set }}(X, H)$. But in Set, we have $H \cong \operatorname{hom}_{\text {Set }}(\{x\}, H) \cong \operatorname{hom}_{\text {Grp }}(F(\{x\}), H)=\operatorname{hom}_{\text {Grp }}(\mathbb{Z}, H)$.
Example 2.38. Let \mathcal{C} be the category of commutative k-algebras (where k is a field). Given a ring C we can form a category C-Mod. If M is a C-module, a derivation $\delta: C \rightarrow M$ is a k-linear map satisfying $\delta\left(c_{1} c_{2}\right)=c_{1} \delta\left(c_{2}\right)+c_{2} \delta\left(c_{1}\right)$. Consider $\operatorname{Der}_{k}(C, M)$ the set of derivations $\delta: C \rightarrow M$; this is a C-module with $(c \cdot f)(a)=c \cdot f(a)$. So we have a functor Der: C-Mod $\rightarrow C$-Mod given by $M \mapsto \operatorname{Der}_{k}(C, M)$ and $\operatorname{Der}_{k}(f)(\delta)=f \circ \delta$. (Note that $f \circ \delta$ is indeed a derivation: $(f \circ \delta)(a b)=f(a \delta(b)+b \delta(a))=a f(\delta(b))+b f(\delta(a))$.)

Claim 2.39. Der $_{k}$ is representable.
Proof. We use Kähler differentials. Given C a k-algebra, we construct a C-module $\Omega_{C / k}$ which is the free C-module on all symbols of the form $d c$ for $c \in C$ modulo the relations

$$
\begin{aligned}
d\left(c_{1}+\lambda c_{2}\right) & =d c_{1}-\lambda d c_{2} \\
d\left(c_{1} c_{2}\right) & =c_{1} d c_{2}+c_{2} d c_{1}
\end{aligned}
$$

For example, consider $C=k[t]$. Then in $\Omega_{k[t] / k}$, we have

$$
d\left(a_{0}+a_{t}+\cdots+a_{s} t^{s}\right)=a_{0} d 1+a_{1} d t+\cdots+a_{s} d t^{2}=0+a_{1} d t+2 a_{2} t d t+\cdots+s a_{2} t^{s-1} d t=p^{\prime}(t) d t
$$

So $\Omega_{k[t] / t}=k[t] d t$. In general $\operatorname{Der}_{k}(k[t], M) \cong \operatorname{hom}_{k[t]}\left(\Omega_{k[t] / k}, M\right)$ where given $\delta: k[t] \rightarrow M$ a derivation we associate $f_{\delta}: \Omega_{k[t] / k} \rightarrow M$ given by $f_{\delta}(d t)=\delta(t)$. (In general we want $f_{\delta}(d c)=\delta(c)$.) Then $f_{\delta}(p(t) d t)=$
$p(t) \delta(t)$. Conversely, for $f: \Omega_{k[t] / k} \rightarrow M$ can associate $\delta_{f}: k[t] \rightarrow M$ given by $\delta_{f}(p(t))=f(d p(t))=$ $f\left(p^{\prime}(t) d t\right)=p^{\prime}(t) f(d t)$; then $\delta_{f}(c)=f(d c)$ and

$$
\begin{aligned}
\delta_{f}(p(t) q(t)) & =(p(t) q(t))^{\prime} f(d t) \\
& =p^{\prime}(t) q(t) f(d t)+p(t) q^{\prime}(t) f(d t) \\
& =q \cdot \delta_{f}(p)+p \cdot \delta_{f}(q)
\end{aligned}
$$

So δ_{f} is indeed a differential.
Claim 2.39
We digress from Yoneda's lemma for a bit to give an exposition of presheaves.
Definition 2.40 ((Topological) presheaves). Recall that if X is a topological space we defined $\mathbf{T o p}_{X}$ to have open subsets of X as objects and

$$
\operatorname{hom}_{\text {Top }_{X}}= \begin{cases}i & U \stackrel{i}{\hookrightarrow} V \\ \emptyset & \text { else }\end{cases}
$$

Then a presheaf of \mathcal{C} (where $\mathcal{C} \in\{\mathbf{A b}, \mathbf{R i n g}, \mathbf{G r p}, \mathbf{S e t}, \ldots\}$) is a functor $S: \mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow \mathcal{C}$ (i.e. a contravariant $S: \boldsymbol{T o p}_{X} \rightarrow \mathcal{C}$); then if $i: U \hookrightarrow V$, we get $p_{V, U}=S(i): S(V) \rightarrow S(U)$, which we think of as "restriction" from V to U.

Example 2.41. Consider $\mathcal{O}: \mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow$ Set given by $U \mapsto\{f: U \rightarrow \mathbb{C}$ continuous $\}$ where given $f \in \mathcal{O}(V)$ we define $p_{V, U}(f)=f \upharpoonright U \in \mathcal{O}(U)$.
Example 2.42. let $X=\mathbb{C}$ with the Euclidean topology, and let $\mathcal{F}: \mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow \boldsymbol{\operatorname { R i n g }}$ be $\mathcal{F}(U)=\{f: U \rightarrow \mathbb{C} \mid$ f analytic $\}$. If $U \subseteq V$, we get $\mathcal{F}(U) \rightarrow \mathcal{F}(V)$ by $f \mapsto f \upharpoonright U$.

Definition 2.43. A presheaf $\mathcal{F}: \mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow \mathcal{C}$ is a sheaf if it satisfies

1. It is separated: if $U \subseteq X$ is open and

$$
U=\bigcup_{i \in I} U_{i}
$$

then if $f, g \in \mathcal{F}(U)$ satisfy $f \upharpoonright U_{i}=g \upharpoonright U_{i}$ for all $i \in I$, we have $f=g$.
2. We should be able to glue: if

$$
U=\bigcup_{i \in I} U_{i}
$$

and we are given $\left(f_{i}: i \in I\right)$ such that $f_{i} \upharpoonright\left(U_{i} \cap U_{j}\right)=f_{j} \upharpoonright\left(U_{i} \cap U_{j}\right)$, then there is some $f \in \mathcal{F}(U)$ such that $f \upharpoonright U_{i}=f_{i}$ for all $i \in I$.

Example 2.44. For example, $\mathcal{F}: \mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow \boldsymbol{R i n g}$ given by $\mathcal{F}(U)=\{f: U \rightarrow \mathbb{C} \mid f$ continuous $\}$ is a sheaf of rings.
Example 2.45. Let $X=\mathbb{R}$ with the Euclidean topology. Let $\mathcal{F}(U)$ be the set of bounded continuous function $U \rightarrow \mathbb{R}$, and endow \mathcal{F} with the restriction mapping. This is a presheaf but not a sheaf, since we don't have gluing:

$$
\mathbb{R}=\bigcup_{n=1}^{\infty}(-n, n)
$$

and we can set $f_{n}(x)=x \in \mathcal{O}\left(U_{n}\right)$ (where $U_{n}=(-n, n)$) and $f_{n} \upharpoonright\left(U_{n} \cap U_{m}\right)=f_{m} \upharpoonright\left(U_{n} \cap U_{m}\right)$ but there is no $f: \mathbb{R} \rightarrow \mathbb{R}$ bounded such that $f \upharpoonright U_{n}=f_{n}$ for all n.

We now bring things back to Yoneda's lemma.
What are the representable presheaves of sets; i.e. representable functors h : $\mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow$ Set? Well, we fix $U \subseteq X$ open and get $h_{U}: \mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow$ Set given by $h_{U}(V)=\operatorname{hom}_{\mathbf{T o p}_{X}^{\text {op }}}(U, V)=\operatorname{hom}_{\mathbf{T o p}_{X}}(V, U)$ and $\psi \mapsto \psi \circ i$ for $\psi \in \operatorname{hom}_{\mathbf{T o p}_{X}^{\text {op }}}\left(V_{2}, V_{1}\right)=\operatorname{hom}_{\mathbf{T o p}_{X}}\left(V_{1}, V_{2}\right)$. Then $h_{U}(V)$ is empty if $V \nsubseteq U$ and is $\{i: V \hookrightarrow U\}$ otherwise.

Now, if h_{U} and \mathcal{F} are two presheaves $\mathbf{T o p}_{X}^{\mathrm{op}} \rightarrow$ Set, what is a natural transformation $\eta: h_{U} \rightarrow \mathcal{F}$? Well, if $V_{1} \hookrightarrow V_{2}$ then we get the following diagram commutes:

If $\mathcal{F}=h_{V}$, then the $\eta: h_{U} \rightarrow h_{V}$ are in bijection with $h_{V}(U)=\operatorname{hom}_{\mathbf{T o p}_{X}^{\text {op }}}(V, U)=\operatorname{hom}_{\mathbf{T o p}_{X}}(U, V)$.
Claim 2.46. Any $\eta: h_{U} \rightarrow \mathcal{F}$ is completely determined by η_{U}.
Proof. If $V_{1} \hookrightarrow V_{2}$ then we get the following diagram commutes:
Case 1. Suppose $V \subseteq U$ is open; so we have $V \stackrel{i}{\hookrightarrow} U$, and hence $U \rightarrow V$ in $\mathbf{T o p}_{X}^{\text {op }}$. We get

So η_{V} is determined by η_{U}.
Case 2. Suppose $V \nsubseteq U$; then $h_{U}(V)=\emptyset$.
Claim 2.46
We now prove Yoneda's lemma.
Proof of Theorem 2.36. We have a category \mathcal{A} with objects A, B, C, \ldots and morphisms $A \xrightarrow{f} B$; we have a category $\mathcal{F} \subseteq \operatorname{Funct}(\mathcal{A}$, Set $)$ with objects $h_{A}, h_{B}, h_{C}, \ldots$ and morphisms $\eta: h_{A} \rightarrow h_{B}$. We claim that $A \cong$ $\mathcal{F}^{\mathrm{op}}$. We need to construct $F: \mathcal{A} \rightarrow \mathcal{F}^{\mathrm{op}}$ and $G: \mathcal{F}^{\mathrm{op}} \rightarrow \mathcal{A}$. We define $F(A)=h_{A}$; given $A \xrightarrow{f} B$ we define $\eta_{f}=F(f): h_{B} \rightarrow h_{A}$ by, for $C \in \operatorname{Ob}(\mathcal{A})$, setting $\left(\eta_{f}\right)_{C}: h_{B}(C) \rightarrow h_{A}(C)$ (i.e. $\left.\operatorname{hom}(B, C) \rightarrow \operatorname{hom}(A, C)\right)$ to be $\psi \mapsto \psi \circ f$ for $\psi \in \operatorname{hom}(B, C)$.

To check that $\eta_{f}: h_{B} \rightarrow h_{A}$ is a natural transformation, suppose $g: C \rightarrow C^{\prime}$ for $C, C^{\prime} \in \operatorname{Ob}(\mathcal{A})$. We wish to check that the following diagram commutes:

But going one way, we get

$$
\psi \mapsto g \circ \psi \mapsto g \circ \psi \circ f
$$

and going the other way, we get

$$
\psi \mapsto \psi \circ f \mapsto g \circ \psi \circ f
$$

So the map $A \mapsto h_{A}$ and $f \mapsto \eta_{f}$ is a functor $F: \mathcal{A} \rightarrow \mathcal{F}^{\mathrm{op}}$.
Now, define $G: \mathcal{F}^{\mathrm{op}} \rightarrow \mathcal{A}$ by $G\left(h_{A}\right)=A$. For $\eta: h_{A} \rightarrow h_{B}$, we wish to define $f(\eta)=G(\eta): B \rightarrow A$. But $\eta_{A}: h_{A}(A) \rightarrow h_{B}(A)$; so we may set $f(\eta)=G(\eta)=\eta_{A}\left(\mathrm{id}_{A}\right): B \rightarrow A$. One checks that G is a functor.

Look at $G \circ F: \mathcal{A} \rightarrow \mathcal{A}$ and $F \circ G: \mathcal{F}^{\mathrm{op}} \rightarrow \mathcal{F}^{\mathrm{op}}$. We claim that these are the respective identity functors. Well, note that

$$
\begin{aligned}
(G \circ F)(A) & =G\left(h_{A}\right) \\
& =A \\
(F \circ G)\left(h_{A}\right) & =F(A) \\
& =h_{A}
\end{aligned}
$$

Suppose $A \xrightarrow{f} B$; we get $A \xrightarrow{G F(f)} B$. We need to check that $G F(f)=f$. Well, $F(f)=\eta_{f}: h_{B} \rightarrow h_{A}$ is given by $\left(\eta_{f}\right)_{C}: h_{B}(C) \rightarrow h_{A}(C)$ is $\psi \mapsto \psi \circ f$; then $G\left(\eta_{f}\right)=\left(\eta_{f}\right)_{B}\left(\mathrm{id}_{B}\right)=\operatorname{id}_{B} \circ f=f$.

Suppose now that $\eta: h_{B} \rightarrow h_{A}$. Then $F(G(\eta))=F\left(\eta_{B}\left(\operatorname{id}_{B}\right)\right)$, and for $C \in \operatorname{Ob}(\mathcal{A})$ we have $\left(F\left(\eta_{B}\left(\operatorname{id}_{B}\right)\right)\right)_{C}: h_{B}(C) \rightarrow$ $h_{A}(C)$ is given by $\psi \mapsto \psi \circ \eta_{B}\left(\operatorname{id}_{B}\right)$. But by naturality of η we have the following diagram commutes:

and hence, following $\operatorname{id}_{B} \in h_{B}(B)$, we find $\eta_{C}(\psi)=\psi \circ \eta_{B}\left(\operatorname{id}_{B}\right)$. So $\eta_{C}=\left(F\left(\eta_{B}\left(\operatorname{id}_{B}\right)\right)\right)_{C}$ for all $C \in \operatorname{Ob}(\mathcal{A})$. So $\eta=F(G(\eta))$.

So $G \circ F=\operatorname{id}_{\mathcal{A}}$ and $F \circ G=\operatorname{id}_{\mathcal{F}^{\text {op }}}$, as desired. So $\mathcal{A} \cong \mathcal{F}^{\mathrm{op}}$. Theorem 2.36

Corollary 2.47. Any small category (i.e. in which $\operatorname{Ob}(\mathcal{C})$ is a set and $\operatorname{hom}(A, B)$ is a set for all $A, B \in$ $\mathrm{Ob}(\mathcal{C}))$ is concretizable; i.e. is equivalent to a category in which each object is a set.
Idea of proof. Let \mathcal{C} be a small category. Then by Yoneda's lemma we have $\mathcal{C} \cong \mathcal{F}^{\mathrm{op}} \subseteq$ Funct $(\mathcal{C} \text {, Set })^{\mathrm{op}}$ via $C \mapsto h_{C}$. We make a new category $\widetilde{\mathcal{C}}$ whose objects are given as follows: for $B \in \mathrm{Ob}(\mathcal{C})$ we make a set

$$
\widehat{B}=\coprod_{C \in \mathrm{Ob}(\mathcal{C})} h_{B}(C)
$$

Given $f: B \rightarrow B^{\prime}$ we define a map $\widehat{f}: \widehat{B^{\prime}} \rightarrow \widehat{B}$ by $\varphi_{C} \mapsto \varphi_{C} \circ f$ where

$$
\varphi_{C} \in \widehat{B^{\prime}}=\coprod_{C \in \operatorname{Ob}(\mathcal{C})} h_{B^{\prime}}(C)
$$

This gives us a concrete category $\widehat{\mathcal{C}}$ with $\mathcal{C} \cong \mathcal{F}^{\mathrm{op}} \cong \widehat{\mathcal{C}^{\mathrm{op}}}$.
Corollary 2.47

2.8 Initial and terminal objects

Definition 2.48. We say $I \in \mathrm{Ob}(\mathcal{C})$ is an initial object of \mathcal{C} if for all $C \in \mathrm{Ob}(\mathcal{C})$ there is a unique $f: I \rightarrow C$. We say T is a terminal object if for all $C \in \mathrm{Ob}(\mathcal{C})$ there is a unique $g: C \rightarrow T$.

Example 2.49. Consider Set. Then \emptyset is the unique initial object, and the terminal objects are exactly the singletons.
Remark 2.50. If they exist, initial and terminal objects are unique up to unique isomorphism.
Proof. We do the case of initial objects. Suppose I_{1} and I_{2} is initial. Then there is a unique $i_{1}: I_{1} \rightarrow I_{2}$ and $i_{2}: I_{2} \rightarrow I_{1}$; then $i_{2} \circ i_{1}: I_{1} \rightarrow I_{1}$. But there is a unique map $I_{1} \rightarrow I_{1}$, and $\operatorname{id}_{I_{1}}: I_{1} \rightarrow I_{1}$; so $i_{2} \circ i_{1}=\operatorname{id}_{I_{1}}$. Likewise, we get $i_{1} \circ i_{2}=\operatorname{id}_{I_{2}}$, and i_{1} is an isomorphism. Uniqueness is then immediate. \square Remark 2.50

Example 2.51.

1. In Ring (in which we require maps to preserve unity), we have $I=\mathbb{Z}$ is initial and $T=0_{R}$ (the zero ring) is terminal.
2. In $\mathbf{A b}$ we have (0) is initial and terminal; we call this a zero object.
3. In Field* (i.e. non-zero fields) there is no initial or terminal object.

2.9 Limits and colimits

We use $\underset{\longrightarrow}{\lim }$ to denote colimits and $\underset{\leftrightarrows}{l i m}$ to denote limits.
Definition 2.52. Let \mathcal{C} be a category and let \mathcal{B} be a category. (Almost always \mathcal{B} will be small and $\mathcal{B} \subseteq \mathcal{C}$ is not necessarily full.) Then a diagram based on \mathcal{B} is a functor $F: \mathcal{B} \rightarrow \mathcal{C}$ (often the inclusion functor). A diagram is small if \mathcal{B} is a small category. A cone to F is an object $N \in \mathrm{Ob}(\mathcal{C})$ and a family of morphisms $\varphi_{B}: N \rightarrow F B$ for all $B \in \operatorname{Ob}(\mathcal{B})$ such that for all $f: B_{i} \rightarrow B_{j}$ in \mathcal{B} we have the following diagram commutes:

$$
\begin{aligned}
& \stackrel{N}{\varphi_{B_{i}}} \stackrel{\varphi_{B_{j}}}{F(f)} \\
& F B_{i} \xrightarrow{F()^{\prime}} F B_{j}
\end{aligned}
$$

We can make a category of cones in the natural way; we then define a limit $\varliminf_{\ddagger} F$ of the diagram to be a final (i.e. terminal) object; that is, a cone $\left(L, \varphi_{B}\right)$ such that every other cone factors uniquely through $\left(L, \varphi_{B}\right)$.

Remark 2.53. Since terminal objects are unique up to unique isomorphism if they exist, we have that $\varliminf_{¿} F$ is unique up to unique isomorphism if it exists.

Definition 2.54. We can dually define a co-cone to F to be an object $N \in \operatorname{Ob}(\mathcal{C})$ and a family of morphisms $\varphi_{B}: F B \rightarrow N$ for all $B \in \operatorname{Ob}(\mathcal{B})$ such that for all $f: B_{i} \rightarrow B_{j}$ in \mathcal{B} we have the following diagram commutes:

We then define an inverse limit of the diagram to be an initial object in the category of co-cones.

Limits	Colimits	Diagrams
\lim	$\underline{\underline{l i m}}$	
Final object	Initial object	\emptyset
Product	Coproduct	Objects in \mathcal{C} with the respective identity morphisms
Equalizer	Coequalizer	$A \Longrightarrow B$
Inverse (projective) limit	Direct limit	Directed set
		$A \longleftarrow B \longrightarrow C$
Pullback	Pushout	
		$E \longrightarrow F \longleftarrow G$

Example 2.55. Recall that a directed set I has a reflexive and transitive (i.e. preorder) \leq such that for all $a, b \in I$ we have an upper bound in I.

Consider $I=\mathbb{N}$ with the usual order. Let Ring be the category of rings. Let $\mathcal{B} \subseteq$ Ring be the category with objects $\mathbb{Z} / p^{n} \mathbb{Z}$ for some fixed prime p; for $i \geq 2$, we include a morphism $\varphi_{i}: \mathbb{Z} / p^{i} \mathbb{Z} \rightarrow \mathbb{Z} / p^{i-1} \mathbb{Z}$ given by $[n]_{p^{i}} \mapsto[n]_{p^{i-1}}$. Take $F: \mathcal{B} \rightarrow$ Ring to be the inclusion functor. Then $L=\varliminf_{幺} F=\varliminf_{幺} \mathbb{Z} / p^{n} \mathbb{Z}=\mathbb{Z}_{p}$ the ring of p-adic integers.

Let's see how to find L. Embed

$$
\widetilde{\pi}: L \rightarrow \prod_{i=1}^{\infty} \mathbb{Z} / p^{i} \mathbb{Z}
$$

by $x \mapsto\left(\pi_{1}(x), \pi_{2}(x), \ldots\right)$. Now, if $\widetilde{\pi}$ is not injective, we can replace L by $L / \operatorname{ker}(\widetilde{\pi})$; so assume $\widetilde{\pi}$ is injective. So

$$
L \subseteq \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p^{2} \mathbb{Z} \times \ldots
$$

If $\left(a_{1}, a_{2}, \ldots\right) \in L$, then $a_{1}=\pi_{1}\left(\left(a_{1}, \ldots\right)\right)=\varphi_{2}\left(\pi_{2}\left(a_{1}, \ldots\right)\right)=a_{2}$ in $\mathbb{Z} / p \mathbb{Z}$; likewise we get $a_{n+1} \equiv a_{n}$ $\left(\bmod p^{n}\right)$. So $L \subseteq \mathbb{Z}_{p}$. In fact we have equality: $\mathbb{Z}_{p}=\lim _{\leftrightarrows} \mathbb{Z} / p^{n} \mathbb{Z}$.

Example 2.56. Consider the directed set $I=\mathbb{N}$ with $a \leq b \Longleftrightarrow a \mid b$ Let \mathcal{C} be the category of fields. Fix a prime p; notice for $n \in \mathbb{N}$ we have $\mathbb{F}_{p^{n}}$ the splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}. If $\mathbb{F}_{p^{i}} \subseteq \mathbb{F}_{p^{j}}$ then we have $\mathbb{F}_{p^{j}}=\mathbb{F}_{p^{i}} \cdot 1 \oplus \ldots \oplus \mathbb{F}_{p^{i}} \alpha_{s}$ has size $\left(p^{i}\right)^{s}$; so $j=i s$, and $i \mid j$. Conversely, if $i \mid j$, say $j=i s$, then we get an embedding $\theta_{i j}: \mathbb{F}_{p^{i}} \hookrightarrow \mathbb{F}_{p^{j}}$. What is $\underset{\longrightarrow}{\lim } \mathbb{F}_{p^{n}}$? The category \mathcal{B} has objects $\mathbb{F}_{p^{i}}$ for $i \geq 1$ and morphisms venerated by $\theta_{i j}$ for $i \mid j$. Then $L=\overline{\mathbb{F}_{p}}$ is the algebraic closure of \mathbb{F}_{p}.

We have seen that \mathbb{Z}_{p} is a $\varliminf_{\rightleftarrows}^{\lim }$ and $\overline{\mathbb{F}_{p}}$ is a $\underset{\longrightarrow}{\lim }$. More generally, if (I, \leq) is a directed set, we define

1. Given category with objects $\left\{C_{i}: i \in I\right\}$ and morphisms $\varphi_{i j}: C_{i} \rightarrow C_{j}$ for $i \geq j$ such that $\varphi_{j k} \circ \varphi_{i j}=$ $\varphi_{i k}$ and $\varphi_{i i}=\mathrm{id}_{C_{i}}$, we define $\lim _{\leftrightarrows} C_{i}$ to be the inverse limit of the C_{i}.
2. Given a category with objects $\left\{C_{i}: i \in I\right\}$ and morphisms $\theta_{i j}: C_{i} \rightarrow C_{j}$ again satisfying $\theta_{j k} \circ \theta_{i j}=\theta_{i k}$ and $\theta_{i i}=\operatorname{id}_{C_{i}}$, we define $\xrightarrow{\lim } C_{i}$ to be the direct limit of this system.
Definition 2.57 (Products and coproducts). Suppose \mathcal{C} is a category and $\mathcal{B} \subseteq \mathcal{C}$ is a subcategory whose only morphisms are the identity morphisms; let F be the inclusion functor. We call $\lim _{\rightleftarrows} F$ the product

$$
\prod_{C \in \operatorname{Ob}(\mathcal{B})} C
$$

and we call $\xrightarrow{\lim } F$ the coproduct

$$
\coprod_{C \in \operatorname{Ob}(\mathcal{B})} C
$$

Mnemonic 2.58. "Colimits are the stalactites of category theory."

We can think of the "c" in "colimit" as recalling "ceiling". We can also recall the lim generalizes the inverse/projective limit, and that $\xrightarrow{\lim }$ generalizes the direct limit.
Remark 2.59. When limits/colimits exist, we can regard $\underset{\longrightarrow}{\lim }$ or $\lim ^{\text {a }}$ as functors. What does this mean? Well, if we fix a category \mathcal{A} and consider all diagrams of type \mathcal{B} into \mathcal{A}, we can identify this with $\operatorname{Funct}(\mathcal{B}, \mathcal{A})$. Suppose $F, G: \mathcal{B} \rightarrow \mathcal{A}$ and $\eta: F \rightarrow G$ is a natural transformation; consider the colimit case. Then the following diagram commutes:

which then induces a unique morphism $\underset{\longrightarrow}{\lim } \eta: \underset{\longrightarrow}{\lim } F \rightarrow \underset{\longrightarrow}{\lim } G$ such that the following diagram commutes:

Playing a little more, we get that $\xrightarrow{\lim }$ is indeed a functor $\operatorname{Funct}(\mathcal{B}, \mathcal{A}) \rightarrow \mathcal{A}$.
An overview of our coverage of limits and colimits:

1. Examples
2. Left adjoints preserve colimits, right adjoints preserve limits
3. Criteria for (small) colimits and limits to always exists

What does (2) mean? Well, suppose $D: \mathcal{D} \rightarrow \mathcal{A}$ is a diagram; suppose $F: \mathcal{A} \rightarrow \mathcal{B}$ and $G: \mathcal{B} \rightarrow \mathcal{A}$ have $F \rightleftarrows G$. We do the colimit case.

Applying F, we get another cone:

A priori, we don't know that it's the universal cone (i.e. colimit).
Theorem 2.60. $F(\underset{\longrightarrow}{\lim } D)=\underset{\longrightarrow}{\lim }(F D)$.
Mnemonic 2.61. RAPL: "right adjoints preserve limits". Alternatively, left adjoints are right exact.
Example 2.62 (Coproduct in Grp). Consider two copies of $\mathbb{Z} / 2 \mathbb{Z}$: $\left\langle x \mid x^{2}=1\right\rangle$ and $\left\langle y \mid y^{2}=1\right\rangle$.

where $\mathbb{Z} / 2 \mathbb{Z} \coprod \mathbb{Z} / 2 \mathbb{Z}$ is the free product of $\mathbb{Z} / 2 \mathbb{Z}$ with itself. Given maps $\mathbb{Z} / 2 \mathbb{Z}$ into G as above, we define g to be the image of x and h to be the image of y; this then induces a map $\mathbb{Z} / 2 \mathbb{Z} \coprod \mathbb{Z} / 2 \mathbb{Z} \rightarrow G$ via $x \mapsto g$ and $y \mapsto h$.

One can check that $\mathbb{Z} / 2 \mathbb{Z} \coprod \mathbb{Z} / 2 \mathbb{Z} \cong\left\langle u, v \mid v^{2}=1, v u v^{-1}=u^{-1}\right\rangle$, the infinite dihedral grape. In general we have

$$
\coprod_{i \in I} G_{i}
$$

is just the free product of the G_{i}.
Note that the free product of $\mathbb{Z} / 2 \mathbb{Z}$ with $\mathbb{Z} / 2 \mathbb{Z}$ in $\mathbf{A b}$ is instead the direct sum.
Example 2.63 (Coproduct in Set). The coproduct of sets is just the disjoint union.
Example 2.64 (Coproduct in $\mathbf{A b}$). $A \coprod B \cong A \oplus B$. More generally in R-Mod we have $M \coprod N \cong M \oplus N$; in fact

$$
\coprod_{i \in I} M_{i} \cong \bigoplus_{i \in I} M_{i}
$$

Example 2.65. Consider $G: \mathbf{G r p} \rightarrow$ Set the forgetful functor. We know $F \rightleftarrows G$ where F is the free grape functor; is G a left adjoint? No, as it does not preserve colimits: $G(\mathbb{Z} / 2 \mathbb{Z} \coprod \mathbb{Z} / 2 \mathbb{Z})$ is infinite but $G(\mathbb{Z} / 2 \mathbb{Z}) \coprod G(\mathbb{Z} / 2 \mathbb{Z}) \cong\{1,2,3,4\}$.

TODO 1. Get this class.
Definition 2.66. A category in which all small colimits exist is called cocomplete; a category in which all small limits exist is called complete. A category that is complete and cocomplete is called bicomplete.
Theorem 2.67 (Criterion for existence of small colimits). Suppose \mathcal{C} is a category in which all small coproducts exist and all coequalizers

$$
C \xrightarrow[g]{\stackrel{f}{马}} C^{\prime}
$$

exist. Then \mathcal{C} is cocomplete.
Proof. Suppose that small coproducts exist and all coequalizers exist. Suppose $F: \mathcal{B} \rightarrow \mathcal{C}$ is a small diagram. We wish to show $\underset{\longrightarrow}{\lim } F$ exists. Let

$$
C^{\prime}=\coprod_{B \in \mathrm{Ob}(\mathcal{B})} F B \in \mathrm{Ob}(\mathcal{C})
$$

Pictorially:

Let

$$
\operatorname{Mor}(\mathcal{B})=\bigcup_{B, B^{\prime} \in \operatorname{Ob}(\mathcal{B})} \operatorname{hom}_{\mathcal{B}}\left(B, B^{\prime}\right)
$$

Notice that each $\varphi \in \operatorname{Mor}(\mathcal{B})$ has a source and target: if $\varphi: B \rightarrow B^{\prime}$, we define $s(\varphi)=B$ and $t(\varphi)=B^{\prime}$. (A somewhat technical point is that we implicitly require in our definition of a category that these maps be well-defined.) Let

$$
C=\coprod_{\varphi \in \operatorname{Mor}(\mathcal{B})} F(s(\varphi)) \in \mathrm{Ob}(\mathcal{C})
$$

Pictorially:

(Note that α_{B} should really be $\alpha_{B, \varphi}$ where $s(\varphi)=B$; for notational convenience, we instead use α_{B}.)
We now construct morphisms $\Phi, \Psi: C \rightarrow C^{\prime}$ such that we will have $\xrightarrow{\lim } F$ is the coequalizer of Φ and Ψ.
Since each $F B$ has $i_{B}: F B \rightarrow C^{\prime}$, we have that C^{\prime} together with the $\overrightarrow{i_{B}}$ is a cocone over $\operatorname{Mor}(\mathcal{B})$; so there is a unique $\Phi: C \rightarrow C^{\prime}$ such that the following diagram commutes:

It also holds that for each $\varphi \in \operatorname{hom}_{\mathcal{B}}\left(B, B^{\prime}\right)$ we have $i_{B^{\prime}} \circ F(\varphi): F B \rightarrow C^{\prime}$; this yields another cocone to C^{\prime}, and thus we get a unique $\Psi: C \rightarrow C^{\prime}$ such that the following diagram commutes:

By assumption, we have that coequalizers exist; so there is an object L and a morphism $v: C^{\prime} \rightarrow L$ such that $v \circ \Phi=v \circ \Psi$. We claim that L together with the obvious maps $\gamma_{B}=v \circ i_{B}: F B \rightarrow L$ is a colimit of F.

We first check that $\left(L, \gamma_{B}\right)$ is a cocone. Suppose $\varphi \in \operatorname{hom}_{\mathcal{B}}\left(B, B^{\prime}\right)$. Then

$$
\begin{aligned}
\gamma_{B} & =v \circ i_{B} \\
& =v \circ \Phi \circ \alpha_{B} \\
& =v \circ \Psi \circ \alpha_{B} \\
& =v \circ i_{B^{\prime}} \circ F \varphi
\end{aligned}
$$

So the following diagram commutes:

and $\left(L, \gamma_{B}\right)$ is indeed a cocone.
Suppose we have another cocone $\left(T, \theta_{B}\right)$. Then for each $B \in \operatorname{Ob}(\mathcal{B})$ we have $\theta_{B}: F B \rightarrow T$; so, by definition of C^{\prime}, we have a unique $h: C^{\prime} \rightarrow T$ such that $h \circ i_{B}=\theta_{B}$ for all $B \in \mathrm{Ob}(\mathcal{B})$. We want h to factor through L; i.e. we want a unique $\widetilde{h}: L \rightarrow T$ such that the following diagram commutes:

To get to factor through L we must show that $h \circ \Phi=h \circ \Psi$. But

$$
\begin{aligned}
h \circ \Phi \circ \alpha_{B} & =h \circ i_{B} \\
& =\theta_{B} \\
& =\theta_{B^{\prime}} \circ F(\varphi) \\
& =h \circ i_{B^{\prime}} \circ F(\varphi) \\
& =h \circ i_{B^{\prime}} \circ F(\varphi) \\
& =h \circ \Psi \circ \alpha_{B}
\end{aligned}
$$

But by definition of C, we have a unique $f: C \rightarrow T$ such that $\theta_{\tilde{B}}=f \circ \alpha_{B}$ for all $B \in \operatorname{Ob}(\mathcal{B})$. So $h \circ \Phi=h \circ \Psi$, and by definition of L as the coequalizer we have our desired \widetilde{h}. \square Theorem 2.67

Remark 2.68. The exact same argument shows that if $F: \mathcal{C} \rightarrow \mathcal{D}$ with \mathcal{C} and \mathcal{D} cocomplete satisfies

$$
\begin{aligned}
F\left(\coprod_{i \in I} C_{i}\right) & \cong \coprod_{i \in I} F C_{i} \\
F\left(\operatorname{Coequal}\left(C \xrightarrow[g]{f} C^{\prime}\right)\right) & =\operatorname{Coequal}\left(F C \xrightarrow[F g]{\stackrel{F f}{\longrightarrow}} F C^{\prime}\right)
\end{aligned}
$$

Then

$$
F(\underset{\longrightarrow}{\lim } D)=\underset{\longrightarrow}{\lim } F D
$$

for all small diagrams $D: \mathcal{B} \rightarrow \mathcal{C}$.
Corollary 2.69. The following categories are bicomplete:

Category	Product	Coproduct	Equalizer	Coequalizer
Abelian grapes	$\prod A_{i}$	$\bigoplus A_{i}$	$\operatorname{ker}(f-g)$	$\operatorname{coker}(f-g)$
R-modules	$\prod M_{i}$	$\bigoplus M_{i}$	$\operatorname{ker}(f-g)$	$\operatorname{coker}(f-g)$
Commutative rings	$\prod R_{i}$	$\bigotimes_{\mathbb{Z}}^{R} R_{i}$	$\{f(x)=g(x)\}$	$R /\langle f(x)-g(x)\rangle$
Grapes	\ldots			

2.10 Govorov-Lazard theorem and filtered subcategories

Recall that an R-module M is flat if whenever

$$
0 \rightarrow N^{\prime} \xrightarrow{f} N
$$

is exact then so is

$$
0 \rightarrow N^{\prime} \otimes_{R} M \rightarrow N \otimes_{R} M
$$

Further recall that P is projective if $\operatorname{hom}_{R}(P,-)$ is exact, and I is injective if hom ${ }_{R}(-, I)$ is exact.
Example 2.70. Free modules are flat.
Theorem 2.71 (Govorov-Lazard). Let R be a commutative ring and let M be an R-module. Then M is flat if and only if M is a filtered colimit of free modules.

Definition 2.72. Suppose \mathcal{B} is a small category. We say \mathcal{B} is filtered if

1. If $B_{1}, B_{2} \in \mathrm{Ob}(\mathcal{B})$ then there is $B \in \operatorname{Ob}(\mathcal{B})$ with $f \in \operatorname{hom}\left(B_{1}, B\right)$ and $g \in \operatorname{hom}\left(B_{2}, B\right)$.
2. If $f \in \operatorname{hom}\left(B^{\prime}, B_{1}\right)$ and $g \in \operatorname{hom}\left(B^{\prime}, B_{2}\right)$ then there are $B^{\prime \prime} \in \mathrm{Ob}(\mathcal{B})$ and $u: B_{1} \rightarrow B^{\prime \prime}$ and $v: B_{2} \rightarrow B^{\prime \prime}$ such that the following diagram commutes:

If $F: \mathcal{B} \rightarrow \mathcal{A}$ is a diagram and \mathcal{B} is filtered, we say $\underline{\longrightarrow} F$ is a filtered colimit.
Example 2.73 (Filtered limits in R-Mod). If \mathcal{B} is a filtered subcategory of R-Mod, then what is $\underset{\longrightarrow}{\lim } \mathcal{B}$? A concrete description is

$$
\lim _{\longrightarrow} \mathcal{B}=\bigsqcup_{M \in \mathrm{Ob}(\mathcal{B})} M / \sim
$$

What is \sim ? If $x \in M$ and $y \in M^{\prime}$ then we set $x \sim y$ if and only if $f: M \rightarrow M^{\prime \prime}$ and $g: M^{\prime} \rightarrow M^{\prime \prime}$ such that $f(x)=g(y)$. Observe that

1. \sim is an equivalence relation. Reflexivity and symmetry follow immediately; to see transitivity, suppose $x \sim y$ and $y \sim z$, say with $f: M \rightarrow P, g: M^{\prime} \rightarrow P, h: M^{\prime} \rightarrow P^{\prime}$, and $k: M^{\prime \prime} \rightarrow P^{\prime}$ such that $f(x)=g(y)$ and $h(y)=k(z)$. Since \mathcal{B} is filtered then we have $Q \in \operatorname{Ob}(\mathcal{B})$ and $u: P \rightarrow Q$ and $v: P^{\prime} \rightarrow Q$ such that the following diagram commutes:

Then $(u \circ f)(x)=(u \circ g)(y)=(v \circ h)(y)=(v \circ k)(z)$ and $x \sim z$.
2. We have an R-module structure on

$$
\bigsqcup_{M \in \mathrm{Ob}(\mathcal{B})} M / \sim
$$

In particular, given

$$
x, y \in \bigsqcup_{M \in \mathrm{Ob}(\mathcal{B})} M
$$

say $x \in M_{1}$ and $y \in M_{2}$, we define $x+y$ to be the equivalence class of $f(x)+g(y)$ where we use the fact that \mathcal{B} is filtered to find $N \in \operatorname{Ob}(\mathcal{B})$ and $f: M_{1} \rightarrow N$ and $g: M_{2} \rightarrow N$. One checks that this is well-defined.
3. We have natural maps

$$
i_{M}: M \rightarrow \bigsqcup_{M \in \mathrm{Ob}(\mathcal{B})} M / \sim
$$

Suppose $\left(F, \varphi_{M}\right)$ is a cocone over \mathcal{B}. Suppose $x \sim y$; say $x \in M, y \in M^{\prime}, u: M \rightarrow M^{\prime \prime}, v: M^{\prime} \rightarrow M^{\prime \prime}$ satisfy $u(x)=v(y)$. Then $\varphi_{M}(x)=\varphi_{M^{\prime \prime}}(u(x))=\varphi_{M^{\prime \prime}}(v(y))=\varphi_{M^{\prime}}(y)$. So the φ_{M} are defined on \sim-classes, and thus induce a map

$$
\bigsqcup_{M \in \operatorname{Ob}(\mathcal{B})} M / \sim \rightarrow F
$$

Hence we indeed have

$$
\bigsqcup_{M \in \operatorname{Ob}(\mathcal{B})} M / \sim \cong \lim _{\longrightarrow} \mathcal{B}
$$

Proof of Theorem 2.71. We prove that if the U_{i} come from is a filtered subcategory \mathcal{B} of R-Mod whose objects are free then $\xrightarrow{\lim } U_{i}$ is flat.

Idea: suppose $0 \rightarrow N^{\prime} \xrightarrow{f} N$ is exact and $M=\underset{\longrightarrow}{\lim } U_{i}$. We wish to show that

$$
0 \rightarrow M \otimes N^{\prime} \xrightarrow{\mathrm{id} \otimes f} M \otimes N
$$

is exact. Let $F: \mathcal{B} \rightarrow R$-Mod be $Q \mapsto Q \otimes N^{\prime}$ and $G: \mathcal{B} \rightarrow R$-Mod be $Q \mapsto Q \otimes N$. The point is that we get a natural transformation $\alpha: F \rightarrow G$ given by

$$
\begin{gathered}
F(U) \xrightarrow{\alpha_{U}} G(U) \\
U \otimes N^{\prime} \xrightarrow{\mathrm{id} \otimes f} U \otimes N
\end{gathered}
$$

for $U \in \operatorname{Ob}(\mathcal{B})$. Indeed, if $h: U \rightarrow U^{\prime}$ then the following diagram commutes:

since, following $u \otimes n^{\prime} \in F(U)$ right and down we get

$$
u \otimes n^{\prime} \mapsto u \otimes f\left(n^{\prime}\right) \mapsto h(u) \otimes f\left(n^{\prime}\right)
$$

and following down and right we get

$$
u \otimes n^{\prime} \mapsto h(u) \otimes n^{\prime} \mapsto h(u) \otimes f\left(n^{\prime}\right)
$$

The proof is then that, if $M=\underset{\longrightarrow}{\lim \mathcal{B}}$, then

$$
M \otimes N^{\prime}=(\underset{\longrightarrow}{\lim \mathcal{B}}) \otimes N^{\prime} \cong \underline{\lim }\left(U_{i} \otimes N^{\prime}\right) \xrightarrow{\stackrel{\lim f}{\longrightarrow}} \underline{\lim }\left(U_{i} \otimes N\right) \cong\left(\lim _{\longrightarrow} U_{i}\right) \otimes N=M \otimes N
$$

The isomorphisms follow from the fact that left adjoints preserve colimits and tensor product is a left adjoint; it remains to see that

$$
h: \xrightarrow{\lim }\left(U_{i} \otimes N^{\prime}\right) \xrightarrow{\lim f} \underset{\longrightarrow}{\lim }\left(U_{i} \otimes N\right)
$$

given by

$$
\bigsqcup U_{i} \otimes N^{\prime} \xrightarrow{\mathrm{id} \otimes f} \bigsqcup U_{i} \otimes N / \sim
$$

is injective. Suppose

$$
x \in \bigsqcup U_{i} \otimes N^{\prime} / \sim
$$

has $h(x) \sim 0$. Then we have some U_{j} and $\theta=G(\psi): U_{i} \otimes N \rightarrow U_{j} \otimes N$ such that $\theta(h(x))=0$. But then by naturality of α we have the following diagram commutes:

But $\alpha_{U_{j}}$ is injective; so $F(\psi)(x)=0$, and $x \sim 0$. So h is injective as desired.

3 Abelian categories

Definition 3.1. A preadditive category is a category \mathcal{C} is a category in which for all $A, B \in \mathrm{Ob} \mathcal{C}$) we have that $\operatorname{hom}_{\mathcal{C}}(A, B)$ has the structure of an abelian grape. (In particlar, there is $0_{A, B}: A \rightarrow B$ for all $A, B \in \mathrm{Ob}(\mathcal{C})$.) We also require that

$$
\circ_{A, B, C}: \operatorname{hom}_{\mathcal{C}}(B, C) \times \operatorname{hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{hom}_{\mathcal{C}}(A, C)
$$

be bilinear (as a homomorphism of \mathbb{Z}-modules) for all $A, B, C \in \mathrm{Ob}(\mathcal{C})$.
Example 3.2. Suppose R is a ring. Define a category with R as the unique object and morphisms $\varphi_{r}: R \rightarrow R$ for $r \in R$ given by $\varphi_{r}(x)=r x$. Then

- $\varphi_{0}=0_{r, r}$
- $\left(\varphi_{r}+\varphi_{s}\right) \circ \varphi_{t}=\varphi_{r t}+\varphi_{s t}=\varphi_{r} \circ \varphi_{t}+\varphi_{s} \circ \varphi_{t}$
- $\varphi_{r} \circ\left(\varphi_{s}+\varphi_{t}\right)=\varphi_{r s}+\varphi_{r t}=\varphi_{r} \circ \varphi_{s}+\varphi_{r} \circ \varphi_{t}$

So this category is preadditive.
Definition 3.3. Suppose \mathcal{C} and \mathcal{D} are preadditive categories. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called additive if the map $f \mapsto F(f)$ gives a homomorphism $\operatorname{hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{hom}_{\mathcal{D}}(F A, F B)$ for all $A, B \in \operatorname{Ob}(\mathcal{C})$.

Definition 3.4. A preadditive category is additive if all finite (including empty) products and coproducts exist.

Remark 3.5. If \mathcal{C} is additive and $A, B \in \mathrm{Ob}(\mathcal{C})$ then $A \prod B \cong A \coprod B$.
Proof. We are given $p_{A}: A \prod B \rightarrow A, p_{B}: A \prod B \rightarrow B, i_{A}: A \rightarrow A \coprod B$, and $i_{R}: B \rightarrow A \coprod B$. Drawing inspiration from familiar abelian categories, our isomorphism $\theta: A \prod B \rightarrow A \coprod B$ should be $i_{A} \circ p_{A}+i_{B} \circ p_{B}$. To get its inverse, note that we have a map $\mu_{A}: A \rightarrow A \prod B$ induced by the cone $\operatorname{id}_{A}: A \rightarrow A$ and $0_{A, B}: A \rightarrow B$; likewise we gat a map $\mu_{B}: B \rightarrow A \prod B$.
Claim 3.6. $A \prod B$ is a coproduct.
Proof. Suppose we have $f: A \rightarrow C, g: B \rightarrow C$; we wish to find unique $\theta: A \prod B \rightarrow C$ such that the following diagram commutes:

What should θ be? It should be $f \circ p_{A}+g \circ p_{B}$. We must show $f=\theta \circ \mu_{A}$ and $g=\theta \circ \mu_{B}$. But

$$
\begin{aligned}
\theta \circ \mu_{A} & =\left(f \circ p_{A}+g \circ p_{B}\right) \circ \mu_{A} \\
& =f \circ\left(p_{A} \circ \mu_{A}\right)+g \circ\left(p_{B} \circ \mu_{A}\right) \\
& =f \circ \mathrm{id}_{A}+g \circ 0 \\
& =f+0 \\
& =f
\end{aligned}
$$

and similarly we get $g=\theta \circ \mu_{B}$.
It remains to check that θ is unique. Suppose θ and θ^{\prime} both make the above diagram commute; so $\theta \circ \mu_{A}=\theta^{\prime} \circ \mu_{A}=f$ and $\theta \circ \mu_{B}=\theta^{\prime} \circ \mu_{B}=g$. Let $\psi: A \prod B \rightarrow C$ be $\psi=\theta-\theta^{\prime} ;$ then $\psi \circ \mu_{A}=\psi \circ \mu_{B}=0$.
Subclaim 3.7. $\mu_{A} \circ p_{A}+\mu_{B} \circ p_{B}=\operatorname{id}_{A} \prod_{B}$.
Proof. Recall that

$$
\begin{aligned}
& p_{A} \circ \mu_{A}=\mathrm{id}_{A} \\
& p_{B} \circ \mu_{B}=\mathrm{id}_{B} \\
& p_{A} \circ \mu_{B}=0 \\
& p_{B} \circ \mu_{A}=0
\end{aligned}
$$

But then the following diagram commutes:

since

$$
p_{A} \circ\left(\mu_{A} \circ p_{A}+\mu_{B} \circ p_{B}\right)=\operatorname{id}_{A} \circ p_{A}+0=p_{A}
$$

and likewise with p_{B}. But by the universal property of products we have that $\operatorname{id}_{A} \prod_{B}$ is the unique morphism $A \prod_{B} \rightarrow A \prod_{B}$ making the above diagram commute. So $\operatorname{id}_{A} \prod_{B}=\mu_{A} \circ p_{A}+\mu_{B} \circ p_{B}$, as desired.
\square Subclaim 3.7
Then

$$
\psi=\psi \circ \operatorname{id}_{A} \Pi_{B}=\psi \circ\left(\mu_{A} \circ p_{A}+\mu_{B} \circ p_{B}\right)=\left(\psi \circ \mu_{A}\right) \circ p_{A}+\left(\psi \circ \mu_{B}\right) \circ p_{B}=0
$$

and $\theta=\theta^{\prime}$.
The isomorphism then follows by uniqueness of coproducts. Remark 3.5
Remark 3.8. We also have a zero object. Why? The empty coproduct yields an initial object I, and the empty product gives a final object T.
Claim 3.9. $I \cong T$.
Proof. $0_{T, I}: T \rightarrow I$ and $0_{I, T}: I \rightarrow T$; the fact that id_{T} is the unique morphism $T \rightarrow T$ and id_{I} is the unique morphism $I \rightarrow I$ yields that $0_{I, T} \circ 0_{T, I}=\operatorname{id}_{T}$ and $0_{T, I} \circ 0_{I, T}=\operatorname{id}_{I}$. So $0_{I, T}: I \rightarrow T$ is an isomorphism.

Remark 3.10. Notice if $f: A \rightarrow B$ then the limit of the diagram:

$$
A \underset{0_{A, B}}{\stackrel{f}{\longrightarrow}} B
$$

is the equalizer of f and 0 , which we think of as roughly $\{x \in A: f(x)=0\}$.

Definition 3.11. If the equalizer of

$$
A \xrightarrow[0_{A, B}]{f} B
$$

exists, we call it the kernel of f. If the coequalizer exists, we call it the cokernel.
Definition 3.12. An additive category in which kernels and cokernels exist is called pre-abelian.
Definition 3.13. A map $f: A \rightarrow B$ is called a monomorphism (which we think of as similar to injectivity) if whenever $f \circ h_{1}=f \circ h_{2}$ we also have $h_{1}=h_{2}$. We say f is an epimorphism if whenever $h_{1} \circ f=h_{2} \circ f$ we also have $h_{1}=h_{2}$.

Example 3.14. A morphism can be a monomorphism and an epimorphism without being an isomorphism. Indeed, consider Ring with $\mathbb{Z} \stackrel{i}{\hookrightarrow} \mathbb{Q}$. It is clear that i is a monomorphism.

Claim 3.15. $h_{1} \circ i=h_{2} \circ i$ implies $h_{1}=h_{2}$.
Proof. We are given that $h_{1}(n)=h_{2}(n)$ for all $n \in \mathbb{Z}$. Then

$$
1=h_{1}(1)=h_{1}(b) h_{1}\left(b^{-1}\right)=h_{1}(b) h_{2}\left(b^{-1}\right)=1
$$

so $h_{1}\left(b^{-1}\right)=h_{2}\left(b^{-1}\right)$; thus

$$
h_{1}\left(a b^{-1}\right)=h_{1}(a) h_{1}\left(b^{-1}\right)=h_{2}(a) h_{2}\left(b^{-1}\right)=h_{2}\left(a b^{-1}\right)
$$

So $h_{1}=h_{2}$.
Claim 3.15
Definition 3.16. A monomorphism $f: A \rightarrow B$ is normal if f is a kernel; i.e. there is $g: B \rightarrow C$ such that (A, f) is the kernel of g. Dually, an epimorphism $g: B \rightarrow C$ is normal if g is a cokernel.

An abelian category is a pre-abelian category in which every monomorphism is normal and every epimorphism is normal.

Exercise 3.17. This implies that $f: A \rightarrow B$ admits a factorization

where u is an epimorphism and v is a monomorphism.
What is $\operatorname{im}(f)$? It must be $\operatorname{ker}(\operatorname{coker}(f))$.
Example 3.18. Suppose R is a ring with unity (not necessarily commutative). Then R-Mod, the category of left R-modules is an abelian category.
Remark 3.19. In R-Mod, monomorphisms are exactly injective homomorphisms. Indeed, if $f: M \rightarrow N$ is a monomorphism and $i: \operatorname{ker}(f) \hookrightarrow M$ then $f \circ i=f \circ 0$; so since f is a monomorphism we have $i=0$, and $\operatorname{ker}(f)=0$, and f is injective.

Dually, we get that epimorphisms are surjective.

3.1 Mitchell's embedding lemma

We wish to get a notion of exactness. Suppose

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

What does it mean to say that this is exact at B ?

1. $g \circ f=0$
2. The canonical map $\tilde{f}: \operatorname{im}(f) \rightarrow \operatorname{ker}(g)$ is an isomorphism.

What is the canonical map? Well, let $\pi: B \rightarrow \operatorname{coker}(f)$ and $i: \operatorname{im}(f)=\operatorname{ker}(\pi) \hookrightarrow B$ be the canonical maps. Then $\pi \circ f=0$, so by the universal property of $\operatorname{ker}(\pi)$ we have a unique $\theta: A \rightarrow \operatorname{im}(f)$ such that the following diagram commutes:

In fact θ is an epimorphism and i is a monomorphism. But

$$
\begin{aligned}
0=g \circ f & \Longrightarrow g \circ i \circ \theta=0 \\
& \Longrightarrow g \circ i \circ \theta=0 \circ \theta \\
& \Longrightarrow g \circ i=0
\end{aligned}
$$

since θ is an epimorphism. So, by the universal property of $\operatorname{ker}(g)$, we have a unique $\operatorname{map} \tilde{f}: \operatorname{im}(f) \rightarrow \operatorname{ker}(g)$ such that the following diagram commutes:

Remark 3.20. I think this is equivalent to requiring that the map $\operatorname{im}(f) \rightarrow B$ be the kernel of g.
Definition 3.21. Suppose $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor. We say F is:

- full if $F: \operatorname{hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{hom}_{\mathcal{D}}(F A, F B)$ is surjective for all $A, B \in \mathrm{Ob}(\mathcal{C})$.
- faithful if $F: \operatorname{hom}_{\mathcal{C}}(A, B) \rightarrow \operatorname{hom}_{\mathcal{D}}(F A, F B)$ is injective for all $A, B \in \mathrm{Ob}(\mathcal{C})$.
- exact if F is additive and if whenever we have

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

exact then

$$
0 \rightarrow F A \xrightarrow{F f} F B \xrightarrow{F g} C \rightarrow 0
$$

is exact.
Lemma 3.22 (Mitchell's theorem). Suppose \mathcal{A} is a small abelian category. Then there is $F: \mathcal{A} \rightarrow R$-Mod where R is a ring and F is full, faithful, and exact.

If we start with R-Mod, can we recover R ?
Remark 3.23. If \mathcal{A} is an abelian category and $A \in \operatorname{Ob}(\mathcal{A})$ then $\operatorname{hom}_{\mathcal{A}}(A, A) \cong \operatorname{End}_{\mathcal{A}}(A)$ is a ring under \circ. In R-Mod, if we consider R as a left R-module, then $\operatorname{End}_{R}(R) \cong R^{\text {op }}$ (where $R^{\text {op }}$ is R with $r \cdot R^{\text {op }} s=s \cdot R$. Indeed, given $\psi \in \operatorname{End}_{R}(R)$, we have that ψ is determine by $\psi(1)$ since if $\psi(1)=s$ then $\psi(r)=r \psi(1)=r s$. So $\psi=\Phi_{s}$ for some $s \in R$ where $\Phi_{s}(x)=x s$. So

$$
\operatorname{End}_{R}(R) \cong\left\{\Phi_{s}: s \in R\right\} \cong R^{\mathrm{op}}
$$

(where the opposite ring comes because $\left(\Phi_{s} \circ \Phi_{r}\right)(x)=x r s=\Phi_{r s}(x)$).
However, we can have $R \not \approx S$ with R-Mod $\cong S$-Mod.
Example 3.24. R-Mod $\cong M_{n}(R)$-Mod.

We might remark, though, that given a free module R^{n} we have $\operatorname{End}_{R}\left(R^{n}\right) \cong M_{n}\left(R^{\text {op }}\right)$, and thus $\operatorname{End}_{R}\left(R^{n}\right)^{\mathrm{op}} \cong M_{n}(R)$; so we might look and the endomorphism ring of free modules. Being a free module, however, is not categorically definable. We instead turn to projective modules:

Definition 3.25. Suppose \mathcal{A} is an abelian category and $M \in \operatorname{Ob}(\mathcal{A})$. We get a functor $\operatorname{hom}(M,-): \mathcal{A} \rightarrow \mathbf{A b}$ by $B \mapsto \operatorname{hom}_{\mathcal{A}}(M, B)$. We say that M is a projective object of \mathcal{A} if the functor $\operatorname{hom}(M,-)$ is exact.

What are the projectives in R-Mod? Well, one checks that for all P we have hom $(P,-)$ is left-exact. When is $\operatorname{hom}(P,-)$ right-exact? We need that given exact $M \xrightarrow{g} N \rightarrow 0$ that $\operatorname{hom}(P, M) \rightarrow \operatorname{hom}(P, N) \rightarrow 0$ is exact; i.e. given any $\varphi: P \rightarrow N$ there is $\psi: P \rightarrow N$ such that the following diagram commutes:

Remark 3.26. P is projective implies there is Q such that $P \oplus Q \cong R^{I}$. Indeed, consider $\pi: R^{I} \rightarrow P$; then since $\operatorname{id}_{P}: P \rightarrow P$ we have $s: P \rightarrow R^{I}$ such that the following diagram commutes:

The proof is somewhat involved, so we merely give an overview.
A starting result:
Theorem 3.27. Suppose \mathcal{L} is a cocomplete abelian category with a projective generator (i.e. \bar{P} such that $\operatorname{hom}(\bar{P},-)$ is exact and faithful). If $\mathcal{A} \subseteq \mathcal{L}$ (i.e. with $I: \mathcal{A} \rightarrow \mathcal{L}$ exact) is a small abelian subcategory then there is fully faithful and exact $F: \mathcal{A} \rightarrow R$-Mod.

Remark 3.28. In R-Mod, we have that R is a projective generator.
Our strategy is then to take \mathcal{A}, find \mathcal{B} complete, containing \mathcal{A}, and having a projective generator, and then apply the theorem.
Remark 3.29. $\operatorname{hom}(\bar{P},-)$ is an additive functor.
Remark 3.30. Not all projectives are generators. Consider for example $R=\mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z} / 3 \mathbb{Z}$; then $P=\mathbb{Z} / 2 \mathbb{Z}$ is projective and not a generator.

Proof of Theorem 3.27. Suppose $A \in \operatorname{Ob}(\mathcal{A})$; consider

We get $i_{g}: \bar{P} \rightarrow \coprod_{g} \bar{P}$ for each $g \in \operatorname{hom}(\bar{P}, A)$. Furthermore, since the $g: \bar{P} \rightarrow A$ form a cocone, we get $p_{A}: \coprod_{g} \bar{P} \rightarrow A$ such that $p_{a} \circ i_{g}=g$ for all $g \in \operatorname{hom}(\bar{P}, A)$.
Claim 3.31. p_{A} is an epimorphism.
Proof. In an abelian category, it suffices to verify that if $h \circ p_{A}=0$ then $h=0$ for all $h: A \rightarrow B$. Suppose then that $h \circ p_{A}=0$. Then $h \circ p_{A} \circ i_{g}=0$ for all $g \in \operatorname{hom}(\bar{P}, A) ;$ so $h \circ g=0$ for all $g: \bar{P} \rightarrow A$. So $\operatorname{hom}(\bar{P}, h)=0: \operatorname{hom}(\bar{P}, A) \rightarrow \operatorname{hom}(\bar{P}, B) . \operatorname{But} \operatorname{hom}(\bar{P},-)$ is faithful since \bar{P} is a generator. So $h=0$. So p_{A} is an epimorphism.

Now, let

$$
\begin{aligned}
I & =\bigsqcup_{A \in \mathrm{Ob}(\mathcal{A})} \operatorname{hom}(\bar{P}, A) \\
P & =\coprod_{I} \bar{P}
\end{aligned}
$$

From assignment 3, we will see:

1. P is a projective generator.
2. For all $A \in \operatorname{Ob}(\mathcal{A})$ there is an epimorphism $\theta: P \rightarrow A$.

Now we can find a ring R :

$$
R=\operatorname{End}\left(\coprod_{I} \bar{P}\right)^{\mathrm{op}}=\operatorname{End}(P)^{\mathrm{op}}
$$

Claim 3.32. There is $F: \mathcal{A} \rightarrow R$-Mod fully faithful and exact given by $M \mapsto \operatorname{hom}(P, M)$ for $M \in \operatorname{Ob}(\mathcal{A})$.
Proof. We first need to define an R-module structure on $\operatorname{hom}(P, M)$. Well, $R=\operatorname{End}(P)^{\mathrm{op}}=\operatorname{hom}(P, P)^{\mathrm{op}}$. Given $r \in R$ and $\psi \in \operatorname{hom}(P, M)$, we can then set $r \cdot \psi=\psi \circ r \in \operatorname{hom}(P, M)$; bilinearity and associativity of composition yield that this is in fact an R-module structure.

We also need to check that the images of morphisms are morphisms of R-modules. Suppose $f: M \rightarrow N$ for $M, N \in \operatorname{Ob}(\mathcal{A})$. We must check that $\operatorname{hom}(P, f): \operatorname{hom}(P, M) \rightarrow \operatorname{hom}(P, N)$ (given by $g \mapsto f \circ g$) is a homomorphism of R-modules. Additivity follows from bilinearity of composition; for scalar multiplication, note that for $r \in R$ we have

$$
r \cdot(\operatorname{hom}(P, f)(g))=r \cdot(f \circ g)=(f \circ g) \circ r=f \circ(g \circ r)=r \circ(r \cdot g)=\operatorname{hom}(P, f)(r \cdot g)
$$

Now we must check that F is fully faithful and exact. Projectivity of P immediately yields exactness; that P is a generator immediately yields faithfulness. It remains to check that F is full.

Suppose then that $\alpha: \operatorname{hom}(P, M) \rightarrow \operatorname{hom}(P, N)$; we wish to find $f: M \rightarrow N$ such that $\alpha=\operatorname{hom}(P, f)$. Now we use the second result from the assignment to get epimorphisms $\theta: P \rightarrow M$ and $\psi: P \rightarrow N$. Let $K=\operatorname{ker}(\theta)$; then

$$
0 \rightarrow K \rightarrow P \xrightarrow{\theta} M \rightarrow 0
$$

is a short exact sequence. Since $\operatorname{hom}(P,-)$ is exact, we get

$$
0 \rightarrow \operatorname{hom}(P, K) \rightarrow \operatorname{hom}(P, P) \xrightarrow{\operatorname{hom}(P, \theta)} \operatorname{hom}(P, M) \rightarrow 0
$$

is exact. But hom $(P, P) \cong R$ as left R-modules, as one sees by looking at the R-module structure we defined. So

Fact 3.33. R is projective.
So there is $\alpha^{\prime}: R \rightarrow R$ such that the following diagram commutes:

But $\alpha^{\prime}: R \rightarrow R$ is a morphism; so $\alpha^{\prime}=\rho_{s}$ is right multiplication by some $s \in R$. Now look at the diagram

Consider

We claim that $K \rightarrow P \xrightarrow{s} P \rightarrow N$ is the 0 morphism. Why? Well,

$$
\operatorname{hom}(P, K) \rightarrow R \xrightarrow{\rho_{s}} R \rightarrow \operatorname{hom}(P, N)
$$

is the 0 map by the preceding commutative diagram and $\operatorname{hom}(P,-)$ is faithful.
Now, $M=\operatorname{coker}(K \rightarrow P)$, and $K \rightarrow P \xrightarrow{s} P \xrightarrow{\psi} N$ is the 0 map; so there is $h: M \rightarrow N$; apply hom $(P,-)$ and use the fact that $\operatorname{hom}(P, \theta)$ is an epimorphism to conclude that $\alpha=\operatorname{hom}(P, h)$.

- Claim 3.32 Theorem 3.27

3.2 Projective modules

Definition 3.34. Given a ring R we define R-Mod to be the category of left R-modules; we define $\operatorname{Mod}(R)$ to be the category of right R-modules.

Definition 3.35. Recall that an R-module P is projective if $\operatorname{hom}(P,-): R$ - $\operatorname{Mod} \rightarrow R$-Mod is exact. We know it is left exact; so it is equivalent to requiring that given any surjection $g: M \rightarrow N$ and any $\varphi: P \rightarrow N$, there is $\psi: P \rightarrow M$ such that the following diagram commutes:

Theorem 3.36. Suppose P is an R-module. Then the following are equivalent:

1. We have the condition above; namely that given any surjection $g: M \rightarrow N$ and any $\varphi: P \rightarrow N$ there is $\psi: P \rightarrow M$ such that the following diagram commutes:

2. Every short exact sequence

$$
0 \rightarrow M \xrightarrow{f} N \xrightarrow{g} P \rightarrow 0
$$

splits.
3. There is an R-module Q such that $P \oplus Q$ is free.
4. The functor $\operatorname{hom}(P,-)$ is exact.

Proof.
(1) \Longrightarrow (2) By (1) we get $s: P \rightarrow N$ such that the following diagram commutes:

So we have s such that $g \circ s=\operatorname{id}_{P}$. Now define $\psi: P \oplus M \rightarrow N$ by $(p, m) \rightarrow s(p)+f(m)$. One checks that ψ is an isomorphism; so the short exact sequence splits.
$\mathbf{(2)} \Longrightarrow$ (3) Pick a free module F with $F \xrightarrow{g} P \rightarrow 0$ exact. Let $Q=\operatorname{ker}(F \xrightarrow{g} P)$. So

$$
0 \rightarrow Q \rightarrow F \rightarrow P \rightarrow 0
$$

is exact. By (2), this splits, and $F \cong P \oplus Q$.
$(3) \Longrightarrow$ (4) Suppose

$$
0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0
$$

is exact. We know that $\operatorname{hom}(P,-)$ is left exact; it remains to show that $\operatorname{hom}(P, g): \operatorname{hom}(P, M) \rightarrow$ $\operatorname{hom}\left(P, M^{\prime \prime}\right)$ (given by $\psi \mapsto g \circ \psi$) is surjective. Suppose $h: P \rightarrow M^{\prime \prime}$; we must show that there is $h^{\prime}: P \rightarrow M$ such that $h=g \circ h^{\prime}$. By (3) we may find an R-module Q such that $F=P \oplus Q$ is free. Define $h_{0}: F \rightarrow M^{\prime \prime}$ by $h_{0} \upharpoonright P=h$ and $h_{0} \upharpoonright Q=0$. Then because F is free there is $h_{0}^{\prime}: F \rightarrow M$ such that $g \circ h_{0}^{\prime}=h_{0}$; i.e. the following diagram commutes:

Now let $h^{\prime}=h_{0}^{\prime} \upharpoonright P$. Then

$$
g \circ h^{\prime}=g \circ\left(h_{0}^{\prime} \upharpoonright P\right)=\left(g \circ h_{0}^{\prime}\right) \upharpoonright P=h_{0} \upharpoonright P=h
$$

$\mathbf{(4)} \Longrightarrow \mathbf{(1)}$ Immediate, since (1) just requires that whenever $M \rightarrow N \rightarrow 0$ is exact then so is hom $(P, M) \rightarrow$ $\operatorname{hom}(P, N) \rightarrow 0$.
\square Theorem 3.36
Example 3.37. Let $R=\mathbb{Z} \times \mathbb{Z}$; let $P=\mathbb{Z} \times\{0\}$. Then P is not free since $(0,1) \cdot P=(0)$, so $\operatorname{Ann}(P)=\{0\} \times \mathbb{Z}$ is non-trivial. But if $Q=\{0\} \times \mathbb{Z}$ then $P \oplus Q=R$ is free; so P is projective.

We now consider the commutative situation. Suppose (R, \mathfrak{m}) is a (commutative) local ring (i.e. \mathfrak{m} is the unique maximal ideal).

Theorem 3.38 (Kaplansky). If P is a projective R-module then P is free.
Theorem 3.39. Suppose (R, \mathfrak{m}) is a local ring; suppose P is a finitely generated, projective R-module. Then P is free.

Proof. Let p_{1}, \ldots, p_{s} be a generating set for P with s minimal. Let

$$
\begin{array}{r}
g: \quad \underbrace{R \oplus \ldots \oplus R}_{s \text { times }} \rightarrow P \\
\quad(0,0, \ldots, 0, \underbrace{1}_{i^{\mathrm{th}}}, 0, \ldots, 0) \mapsto p_{i}
\end{array}
$$

Let $Q=\operatorname{ker}(g)$. Then

$$
0 \rightarrow Q \xrightarrow{i} R^{s} \xrightarrow{g} P \rightarrow 0
$$

is exact. Since P is projective, we get that $R^{s} \cong Q \oplus P$. Let $K=R / \mathfrak{m}$; then K is a field. Applying $-\otimes_{R} K$ to the above isomorphism, we get

$$
K^{s}=(R / \mathfrak{m} R)^{s} \cong R^{s} / \mathfrak{m} R^{s} \cong P / \mathfrak{m} P \oplus Q / \mathfrak{m} Q
$$

Claim 3.40. $P / \mathfrak{m} P \cong K^{s}$.
Proof. Suppose not; then, since these are vector spaces over K, we have $P / \mathfrak{m} P \cong K^{t}$ for some $t<s$ (since $P / \mathfrak{m} P \subseteq K^{s}$). Pick $a_{1}, \ldots, a_{t} \in P$ such that $\overline{a_{1}}, \ldots, \overline{a_{t}} \in P / \mathfrak{m} P$ form a K-basis (i.e. an R / \mathfrak{m}-basis). Now let

$$
P_{0}=R a_{1}+\cdots+R a_{t} \varsubsetneqq P
$$

(The containment is proper because $t<s$ and we chose s to be minimal.) Now let $N=P / P_{0} \neq(0)$. Then N is finitely generated since P is finitely generated. What is $\mathfrak{m} N$? Well, notice $P=\mathfrak{m} P+P_{0}$, since $\overline{P_{0}}=P / \mathfrak{m} P$. So

$$
\mathfrak{m} N=\left(\mathfrak{m} P+P_{0}\right) / P_{0}=P / P_{0}=N
$$

But $\mathfrak{m}=J(R)$ and N is finitely generated; so, by Nakayama's lemma, we get $N=(0)$, a contradiction.
Claim 3.40
Then since

$$
\underbrace{K^{s}}_{s \text { dimensional }}=\underbrace{(P / \mathfrak{m} P)}_{s \text { dimensional }} \oplus(Q / \mathfrak{m} Q)
$$

and these are vector spaces over K, we have $Q / \mathfrak{m} Q=0$. So $Q=\mathfrak{m} Q$. But $\mathfrak{m}=J(R)$, and Q is a direct summand of a finitely generated module, and is thus finitely generated; so, by Nakayama's lemma, we have $Q=(0)$. But $R^{s}=P \oplus Q$; so $R^{s}=P$, and P is free.

Theorem 3.39
Remark 3.41. If R is a PID and P is projective then P is free.
Proof. We prove the case where P is finitely generated. Then by the fundamental theorem for finitely generated modules over a PID, we have $P=R^{m} \oplus T$, where T is torsion; in particular, we get

$$
T=\oplus_{I} R / I
$$

for some collection of ideals I of R. But we say that there is Q finitely generated such that $P \oplus Q \cong R^{L}$. (In particular, we pick $g: R^{L} \rightarrow P$, and let $Q=\operatorname{ker}(g)$; then L is the number of generators of P.) Since Q is finitely generated, we have

$$
Q \cong R^{n} \oplus T^{\prime}
$$

where T^{\prime} is torsion. Then

$$
R^{L} \cong P \oplus Q \cong\left(R^{m} \oplus T\right) \oplus\left(R^{n} \oplus T^{\prime}\right) \cong\left(R^{m} \oplus R^{n}\right) \oplus\left(T \oplus T^{\prime}\right)
$$

But R^{L} is free, and thus has no torsion; so $T=T^{\prime}=(0)$. So P is free.
Remark 3.41
Theorem 3.42 (Bass). Suppose R is a commutative Noetherian ring such that 0 and 1 are the only idempotents. Suppose P is a projective R-module that is not finitely generated. Then P is free.

Definition 3.43. Suppose R is a ring. Recall that the spectrum of R is $\operatorname{Spec}(R)=\{\mathfrak{p}: \mathfrak{p}$ a prime ideal of $R\}$. We put a topology on $\operatorname{Spec}(R)$ called the Zariski topology by declaring the closed sets to be $\{\mathfrak{p}: \mathfrak{p} \supseteq I\}$ for $I \unlhd R$. We define the principal open sets to be $V(f)=\{\mathfrak{p}: f \notin \mathfrak{p}\}$.

Definition 3.44. Suppose S is a multiplicatively closed subset of R with $0 \notin S$. We set $S^{-1} R=\left\{s^{-1} r: s \in\right.$ $S, r \in R\}$ where $s^{-1} r=(r, s)$ and $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ if and only if $s_{3}\left(r_{1} s_{2}-s_{1} r_{2}\right)=0$. If M is an R-module, then we define $S^{-1} M=M \otimes_{R} S^{-1} R$; then elements of $S^{-1} M$ take the form $s^{-1} m=(s, m)$ for $s \in S$ and $m \in M$, where $\left(s_{1}, m_{1}\right) \sim\left(s_{2}, m_{2}\right)$ if and only if $s_{3}\left(s_{1} m_{2}-s_{2} m_{1}\right)=0$ for some $s_{3} \in S$. For $\mathfrak{p} \in \operatorname{Spec}(R)$, we define $M_{\mathfrak{p}}=R_{\mathfrak{p}} \otimes_{R} M$ and $R_{\mathfrak{p}}=S^{-1} R$ with $S=\{x \in R: x \notin \mathfrak{p}\}$. If $f \in R$ is not nilpotent, we define $M_{f}=R_{f} \otimes_{R} M$ and $R_{f}=S^{-1} R$ with $S=\left\{1, f, f^{2}, \ldots\right\}$.

Theorem 3.45. Suppose R is a commutative Noetherian ring; suppose P is a finitely generated R-module. Then the following are equivalent:

1. P is projective.
2. $P_{\mathfrak{p}}=P \otimes_{R} R_{\mathfrak{p}}$ is free for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
3. $P_{\mathfrak{m}}=P \otimes_{R} R_{\mathfrak{m}}$ is free for all maximal ideals \mathfrak{m} of R.

Proof.
$(1) \Longrightarrow(2)$ If P is finitely generated and projective then we have $n \geq 1$ and a surjection $g: R^{n} \rightarrow P$. If $Q=\operatorname{ker}(g)$, then

$$
0 \rightarrow Q \rightarrow R^{n} \rightarrow P \rightarrow 0
$$

is exact. Then, since P is projective, we have $R^{n} \cong Q \oplus P$. Applying $-\otimes_{R} R_{\mathfrak{p}}$ we see that

$$
\begin{aligned}
R_{\mathfrak{p}}^{n} & \cong\left(R \otimes_{R} R_{\mathfrak{p}}\right)^{n} \\
& \cong R^{n} \otimes_{R} R_{\mathfrak{p}} \\
& \cong(P \oplus Q) \otimes_{R} R_{\mathfrak{p}} \\
& \cong P_{\mathfrak{p}} \oplus Q_{\mathfrak{p}}
\end{aligned}
$$

So $P_{\mathfrak{p}}$ is a direct summand of a free module. So $P_{\mathfrak{p}}$ is projective. So $P_{\mathfrak{p}}$ is free (since $R_{\mathfrak{p}}$ is a local ring and $P_{\mathfrak{p}}$ is finitely generated).
$\mathbf{(2)} \Longrightarrow \mathbf{(3)}$ Clear, since \mathfrak{m} maximal implies \mathfrak{m} is prime.
$\mathbf{(3)} \Longrightarrow \mathbf{(1)}$ Suppose $P_{\mathfrak{m}}$ is free (and of finite rank) for all maximal ideals \mathfrak{m} of R. Recall that P is projective if and only if whenever $M \xrightarrow{g} M^{\prime} \rightarrow 0$ is exact then $\operatorname{hom}(P, M) \rightarrow \operatorname{hom}\left(P, M^{\prime}\right) \rightarrow 0$ (given by $\psi \mapsto g \circ \psi)$ is exact. (i.e. $\operatorname{hom}(P,-)$ is exact.)
Our strategy: let $g: M \rightarrow M^{\prime}$ be epi; we will show that $\operatorname{hom}(P, M) \rightarrow \operatorname{hom}\left(P, M^{\prime}\right)$ is epi. Suppose now that $M \xrightarrow{g} M^{\prime} \rightarrow 0$ is exact. Let \mathfrak{m} be a maximal ideal. Then, by right exactness of $-\otimes_{R} R_{\mathfrak{m}}$, we have

$$
M_{\mathfrak{m}}=M \otimes_{R} R_{\mathfrak{m}} \xrightarrow{g \otimes \mathrm{id}} M_{\mathfrak{m}}^{\prime}=M^{\prime} \otimes_{R} M_{\mathfrak{m}} \rightarrow 0
$$

is exact. Since $P_{\mathfrak{m}}$ is projective, we get

$$
\operatorname{hom}_{R_{\mathfrak{m}}}\left(P_{\mathfrak{m}}, M_{\mathfrak{m}}\right) \xrightarrow{g \otimes-} \operatorname{hom}_{R_{\mathfrak{m}}}\left(P_{\mathfrak{m}}, M_{\mathfrak{m}}^{\prime}\right)
$$

By assigment 3 , since $R_{\mathfrak{m}}$ is a flat R-module and P is finitely presented, we have

$$
\operatorname{hom}_{R_{\mathfrak{m}}}\left(P_{\mathfrak{m}}, M_{\mathfrak{m}}\right) \cong \operatorname{hom}_{R}(P, M) \otimes_{R} R_{\mathfrak{m}}=\operatorname{hom}_{R}(P, M)_{\mathfrak{m}}
$$

(We say P is finitely presented if there is an exact sequence $R^{m} \rightarrow R^{n} \rightarrow P \rightarrow 0$.)
TODO 2. Why is P finitely presented?
So $\operatorname{hom}(P, M)_{\mathfrak{m}} \xrightarrow{g \circ-} \operatorname{hom}\left(P, M^{\prime}\right)_{\mathfrak{m}}$ is surjective for all maximal ideals \mathfrak{m}.
Claim 3.46. Suppose R is commutative and Noetherian. Suppose M_{1}, M_{2} are finitely generated modules with $g: M_{1} \rightarrow M_{2}$ a homomorphism. Suppose $\left(M_{1}\right)_{\mathfrak{m}} \xrightarrow{g}\left(M_{2}\right)_{\mathfrak{m}}$ is surjective for all maximal ideals \mathfrak{m}. Then g is surjective.

Proof. Let $K=\operatorname{coker}(g)$; then

$$
M_{1} \xrightarrow{g} M_{2} \rightarrow K \rightarrow 0
$$

is exact. So, by right exactness of $-\otimes_{R} R_{\mathfrak{m}}$, we have that

$$
\left.\left.\left(M_{1}\right)_{\mathfrak{m}}\right) \xrightarrow{g}\left(M_{2}\right)_{\mathfrak{m}}\right) \rightarrow K_{\mathfrak{m}} \rightarrow 0
$$

is exact for all maximal ideals \mathfrak{m}. Since

$$
\left.\left(M_{1}\right)_{\mathfrak{m}}\right) \xrightarrow{g}\left(M_{2}\right)_{\mathfrak{m}} \rightarrow 0
$$

is exact, we have $K_{\mathfrak{m}}=(0)$ for all maximal \mathfrak{m}. But for $k \in K$ we have $1^{-1} k \sim 1^{-1} 0$ in $K_{\mathfrak{m}}$ if and only if there is $s \notin M$ such that $s k=0$. Since M_{2} is finitely generated, we have $K \cong M_{2} / \operatorname{im}(g)$ is finitely
generated; let k_{1}, \ldots, k_{r} be a set of generators. If \mathfrak{m} is maximal, then the above implies that there are $s_{1}, \ldots, s_{r} \notin \mathfrak{m}$ such that $s_{i} k_{i}=0$ for all i. Let $s=s_{1} \ldots s_{r} \notin \mathfrak{m}$; then $s k_{i}=0$ for all i. So $s K=0$ since k_{1}, \ldots, k_{r} generate K.
So for all maximal ideals \mathfrak{m} of R there is $s_{\mathfrak{m}} \notin \mathfrak{m}$ such that $s_{\mathfrak{m}} \cdot K=0$. Now, let $I=\{s \in R: s \cdot K=0\}$. This is an ideal of K (namely $\operatorname{Ann}(K)$), and if I were proper, then it would be contained in a maximal ideal \mathfrak{m}; but $s_{\mathfrak{m}} \notin \mathfrak{m}$ is in I, a contradiction. So $I=R$; so $1 \cdot K=(0)$, so $K=(0)$, and g is surjective, as desired.
\square Claim 3.46
So if $\operatorname{hom}(P, M)$ and $\operatorname{hom}\left(P, M^{\prime}\right)$ are finitely generated and $M \xrightarrow{g} M^{\prime} \rightarrow 0$ is exact then

$$
\operatorname{hom}(P, M) \xrightarrow{g} \operatorname{hom}\left(P, M^{\prime}\right) \rightarrow 0
$$

is exact. Notice that if $P=R^{n}$ and $M=\left\langle m_{1}, \ldots, m_{s}\right\rangle$ then $\varphi_{r, i}: R^{n} \rightarrow M$ given by

$$
e_{j} \mapsto \begin{cases}m_{r(i)} & i=j \\ 0 & \text { else }\end{cases}
$$

(where $r(i) \in\{1, \ldots, s\}$). Then

$$
\begin{aligned}
\varphi\left(e_{1}\right) & =a_{11} m_{1}+\cdots+a_{1 s} m_{s} \\
& \vdots \\
\varphi\left(e_{n}\right) & =a_{n 1} m_{1}+\cdots+a_{n s} m_{s}
\end{aligned}
$$

Then

$$
\varphi=a_{11} \varphi_{1,1}+a_{12} \varphi_{2,1}+\cdots+a_{1 s} \varphi_{s, 1}+\cdots+a_{n s} \varphi_{s, n}
$$

Because P is locally free (and finitely generated) and M, M^{\prime} are finitely generated, one can show that $\operatorname{hom}(P, M)$ and $\operatorname{hom}\left(P, M^{\prime}\right)$ are finitely generated (exercise). So M, M^{\prime} finitely generated imply $\operatorname{hom}(P, M) \rightarrow \operatorname{hom}\left(P, M^{\prime}\right)$ surjective. Now take $M=R^{n}$ and $M^{\prime}=P$. Then there is $s: P \rightarrow R^{n}$ such that the following diagram commutes:

So $P \oplus \operatorname{ker}(g) \cong R^{n}$; so P is projective.
Theorem 3.45
From here, one notes that given P we have $P_{\mathfrak{p}} \cong R_{\mathfrak{p}}^{d(\mathfrak{p})}$ for $d \geq 1$. Then $\operatorname{Spec}(R) \rightarrow \mathbb{Z}$ given by $\mathfrak{p} \mapsto d(\mathfrak{p})=\operatorname{rank}\left(P_{\mathfrak{p}}\right)$. By assignment 3 , we get that this map is continuous.
Remark 3.47. Suppose P is finitely generated; suppose R is a commutative Noetherian ring. Then if $P_{\mathfrak{m}}$ is free then there is $f \in R \backslash \mathfrak{m}$ such that P_{f} is free as an R_{f}-module.

Proof. Since P is finitely generated as an R-module, we can write

$$
P=\left\langle p_{1}, \ldots, p_{m}\right\rangle=R p_{1}+\cdots+R p_{m}
$$

By assumption, we have that $P_{\mathfrak{m}}=\left\{s^{-1} p: s \notin \mathfrak{m}, p \in P\right\}$ is free. (Recall that $s_{1}^{-1} p_{1}=s_{2}^{-1} p_{2}$ if and only if there is $s_{3} \notin \mathfrak{m}$ such that $s_{3}\left(s_{1} p_{2}-s_{2} p_{1}\right)=0$.) Pick $s_{1}^{-1} q_{1}, \ldots, s_{d}^{-1} q_{d} \in P_{\mathfrak{m}}$ such that

$$
P_{\mathfrak{m}}=\bigoplus_{i=1}^{d} R_{\mathfrak{m}} s_{i}^{-1} q_{i}
$$

Then $q_{1}, \ldots, q_{d} \in P$ form a basis for $P_{\mathfrak{m}}$; i.e.

$$
P_{\mathfrak{m}}=\bigoplus_{i=1}^{d} R_{\mathfrak{m}} q_{i}
$$

Now, for $i \in\{1, \ldots, m\}$ we have $1^{-1} p_{i}=p_{i} \in P_{\mathfrak{m}}$; so

$$
p_{i}=\left(\mu_{i 1}^{-1} r_{i 1}\right) q_{1}+\cdots+\left(\mu_{i d}^{-1} r_{i d}\right) q_{d}
$$

where each $\mu_{i j} \in R \backslash \mathfrak{m}$ and each $r_{i j} \in R$. Pick $s \in R \backslash \mathfrak{m}$ such that $s \mu_{i j}^{-1} \in R$ for all i, j; concretely, one could take

$$
s=\prod_{i, j} \mu_{i j}
$$

Then $s p_{i} \in R q_{1}+\cdots+R q_{d}$ for all i; so $p_{i} \in R_{s} q_{1}+\cdots+R_{s} q_{d}$. So let $Q=R q_{1}+\cdots+R q_{d} \subseteq P$; then $Q_{s}=P_{s}$. Now consider $R_{s}^{d} \rightarrow Q_{s}=P_{s}$ given by $e_{i} \mapsto q_{i}$; let K be the kernel of this map. Then

$$
0 \rightarrow K \rightarrow R_{s}^{d} \rightarrow P_{s} \rightarrow 0
$$

is exact; so, localizing to $R_{\mathfrak{m}}$, we find that

$$
0 \rightarrow K_{\mathfrak{m}} \rightarrow R_{\mathfrak{m}}^{d} \rightarrow P_{\mathfrak{m}} \rightarrow 0
$$

is exact. But the map $R_{\mathfrak{m}}^{d} \rightarrow P_{\mathfrak{m}}$ is an isomorphism; so $K_{\mathfrak{m}}=(0)$. But R is Noetherian; so R_{s} is Noetherian, and K is finitely generated as an R_{s}-module.
Exercise 3.48. Since $K_{\mathfrak{m}}=(0)$ there is $s^{\prime} \notin \mathfrak{m}$ such that $K_{s^{\prime}}=(0)$.
Now if we invert $s s^{\prime}$ we get

$$
0 \rightarrow K_{s s^{\prime}}=(0) \rightarrow R_{s s^{\prime}}^{d} \rightarrow P_{s s^{\prime}} \rightarrow 0
$$

is exact. So $P_{s s^{\prime}}=R_{s s^{\prime}}^{d}$. Taking $f=s s^{\prime}$, we see $P_{f} \cong R_{f}^{d}$ is a free R_{f}-module, as desired. \square Remark 3.47
So given \mathfrak{m} a maximal ideal we get $f \notin \mathfrak{m}$ such that $P_{f} \cong R_{f}^{d}$. Note that $\operatorname{Spec}\left(R_{f}\right) \approx\{\mathfrak{p} \in \operatorname{Spec}(R): f \notin$ $\mathfrak{p}\}=V(f)$ is an open subset of $\operatorname{Spec}(R)$. Notice that for every $\mathfrak{p} \in V(f)$ we have $R_{\mathfrak{p}}$ is a localization of R_{f}; so $P_{f} \cong R_{f}^{d}$ implies that $P_{\mathfrak{p}} \cong R_{\mathfrak{p}}^{d}$ (since $P_{\mathfrak{p}} \cong P_{f} \otimes_{R_{f}} R_{\mathfrak{p}}$ and $R_{\mathfrak{p}}^{d} \cong R_{f}^{d} \otimes_{R_{f}} R_{\mathfrak{p}}$).

What does this say? Well, recall that free modules over a commutative ring have a well-defined rank. So we have $\psi: \operatorname{Spec}(R) \rightarrow \mathbb{Z}$ given by $\mathfrak{p} \mapsto \operatorname{rank}_{R_{\mathfrak{p}}}\left(P_{\mathfrak{p}}\right)$. Then this says that ψ is constant on $V(f)$; choosing our f judiciously, we get that ψ is locally constant.
Exercise 3.49. ψ is continuous.
Corollary 3.50. If $\operatorname{Spec}(R)$ is connected, then ψ is constant. In this case, we can define $\operatorname{rank}(P)$ to be the image of ψ.

Exercise 3.51. $\operatorname{Spec}(R)$ is disconnected if and only if $R \cong R_{1} \times R_{2}$ for non-zero R_{1}, R_{2}, which holds if and only if R has an idempotent $e^{2}=e$ with $e \notin\{0,1\}$.
Example 3.52. Consider $R=\mathbb{Z} \times \mathbb{Z}$ with $P=\mathbb{Z} \times\{0\}$ and $Q=\{0\} \times \mathbb{Z}$. Then $R=P \oplus Q$ and $\operatorname{Spec}(R)=U \sqcup V$. Furthermore, we have $\operatorname{rank}\left(P_{\mathfrak{p}}\right)=1$ and $\operatorname{rank}\left(Q_{\mathfrak{p}}\right)=0$ for all $\mathfrak{p} \in U$; likewise, we get that $\operatorname{rank}\left(P_{\mathfrak{p}}\right)=0$ and $\operatorname{rank}\left(Q_{\mathfrak{p}}\right)=1$ for all $\mathfrak{p} \in V$. Since rank is additive for free modules, we have that if $\operatorname{Spec}(R)$ is connected, then $\operatorname{rank}(P \oplus Q)=\operatorname{rank}(P)+\operatorname{rank}(Q)$.

We have seen that not all projectives are free.
Definition 3.53. A finitely generated projective module P is stably free if there are $m, n \geq 1$ such that $P \oplus R^{m} \cong R^{n}$; equivalently such that

$$
0 \rightarrow R^{m} \rightarrow R^{n} \rightarrow P \rightarrow 0
$$

is exact.
Example 3.54 (Swan's example). Let $A=\mathbb{R}[x, y, z] /\left(1-x^{2}-y^{2}-z^{2}\right)$. We have a surjection $g: A^{3} \rightarrow A$ given by $(a, b, c) \mapsto a x+b y+c z$; in particular, we have $g(r x, r y, r z)=r x^{2}+r y^{2}+r z^{2}=r$. Let $P=\operatorname{ker}(g)$. So

$$
0 \rightarrow P \rightarrow A^{3} \xrightarrow{g} A \rightarrow 0
$$

is exact, and furthermore is split since $s: A \rightarrow A^{3}$ given by $1 \mapsto(x, y, z)$ is a section. So $A^{3} \cong P \oplus A$, and P is stably free.

Theorem 3.55 (Swan). P is not free.
Proof. Suppose for contradiction that P were free. Then $P \cong A^{2}$ and $P \subseteq A^{3}$; so $P=\left\langle\left(f_{1}, f_{2}, f_{3}\right),\left(g_{1}, g_{2}, g_{3}\right)\right\rangle \subseteq$ A^{3}. Now $A^{3}=P \oplus s(A)=P \oplus\langle(x, y, z)\rangle$; so $A^{3}=\left\langle\left(f_{1}, f_{2}, f_{3}\right),\left(g_{1}, g_{2}, g_{3}\right),(x, y, z)\right\rangle$. So

$$
\begin{aligned}
& (1,0,0)=a_{1}\left(f_{1}, f_{2}, f_{3}\right)+b_{1}\left(g_{1}, g_{2}, g_{3}\right)+c_{1}(x, y, z) \\
& (0,1,0)=a_{2}\left(f_{1}, f_{2}, f_{3}\right)+b_{2}\left(g_{1}, g_{2}, g_{3}\right)+c_{2}(x, y, z) \\
& (0,0,1)=a_{3}\left(f_{1}, f_{2}, f_{3}\right)+b_{3}\left(g_{1}, g_{2}, g_{3}\right)+c_{3}(x, y, z)
\end{aligned}
$$

so

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right)\left(\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \\
g_{1} & g_{2} & g_{3} \\
x & y & z
\end{array}\right)
$$

where all entries on the latter two matrices are just functions on S^{2}. If we plug in any $(\alpha, \beta, \gamma) \in S^{2}$ (i.e. with $\alpha^{2}+\beta^{2}+\gamma^{2}=1$), in particular we get that

$$
0 \neq \operatorname{det}\left(\begin{array}{ccc}
f_{1}(\alpha, \beta, \gamma) & f_{2}(\alpha, \beta, \gamma) & f_{3}(\alpha, \beta, \gamma) \\
g_{1}(\alpha, \beta, \gamma) & g_{2}(\alpha, \beta, \gamma) & g_{3}(\alpha, \beta, \gamma) \\
\alpha & \beta & \gamma
\end{array}\right)
$$

Now view $\left(f_{1}, f_{2}, f_{3}\right)$ as a continuous map $S^{2} \rightarrow \mathbb{R}^{3}$.
Claim 3.56. For any continuous map $\psi: S^{2} \rightarrow \mathbb{R}^{3}$ there is $p \in S^{2}$ and $\lambda \in \mathbb{R}$ such that $\psi(p)=\lambda p$.
Proof. If $0 \in \operatorname{im}(\psi)$, we're done; assume then that $\psi: S^{2} \rightarrow \mathbb{R}^{3} \backslash\{0\}$. Without loss of generality, we may then replace $\psi(p)$ by $\frac{\psi(p)}{\|\psi(p)\|}: S^{2} \rightarrow S^{2}$. One then uses some homotopy and homology to get a contradiction.

But this contradicts the above remark about determinants.

3.2.1 Vector bundles

Definition 3.57. Suppose S is a connected, compact real manifold. A (real) vector bundle over S of rank n is a topological space V with a continuous map $\pi: V \rightarrow S$ such that

1. For all $x \in S$ we have $\pi^{-1}(x)=\{v \in V: \pi(v)=x\}$ is a real vector space of dimension n.
2. For all $x \in S$ there is an open neighbourhood U of x in S and a homeomorphism $\varphi: U \times \mathbb{R}^{n} \rightarrow$ $\pi^{-1}(U)$ such that $\pi \circ \varphi=p$ (where $p: U \times \mathbb{R}^{n} \rightarrow U$ is projection) and for all $y \in U$ we have $\varphi \upharpoonright\left(\{y\} \times \mathbb{R}^{n}\right):\{y\} \times \mathbb{R}^{n} \rightarrow \pi^{-1}(\{y\})$ is a linear isomorphism of vectors spaces.

A vector bundle is trivial if $V \cong S \times \mathbb{R}^{n}$.
There is a correspondence between vector bundles and projective modules as follows: suppose S is a compact, connected real manifold. Then $C(S)=\{f: S \rightarrow \mathbb{R} \mid f$ is continuous $\}$ has a natural ring structure. Given a vectro bundle $\pi: V \rightarrow S$ over S of rank n we define a $C(S)$-module $P(V)$ as follows:

Definition 3.58. Let $\pi: V \rightarrow S$ be as before. A section of π is a continuous map $s: S \rightarrow V$ such that $\pi \circ s=\mathrm{id}_{S}$. We then set $P(V)$ to be the set of sections.

We put a $C(S)$-module structure on $P(V)$ by

- $(f \cdot s)(x)=f(x) s(x) \in \pi^{-1}(\{x\})$ for $f \in C(S)$ and $s \in P(V)$.
- $(s+t)(x)=s(x)+t(x)$ for $s, t \in P(V)$.

Theorem 3.59 (Swan). If V is a vector bundle of rank n then $P(V)$ is a projective $C(S)$-module of rank n. Moreover, the above correspondence gives an equivalence of categories between the category of vector bundles over S and the category of finitely generated projective $C(S)$-modules. In particular, under this equivalence, we have that trivial vector bundles correspond to free modules.

3.2.2 Loose ends

(Grothendieck grape) Suppose R is a ring. We can make a grape $K_{0}(R)$ out of the collection of isomorphism classes of finitely generated (left) projective R-modules as follows. Let A be the free abelian grape on the isomorphism classes $[P]$ of finitely generated projective modules P. We then impose the relations $\left[P_{1}\right]+\left[P_{2}\right]=\left[P_{3}\right]$ whenever there is an exact sequence $0 \rightarrow P_{1} \rightarrow P_{3} \rightarrow P_{2} \rightarrow 0$.
Example 3.60. If k is a field, then the isomorphism classes of finitely generated projective modules are represented by k^{n} for $n \in \mathbb{N}$; but we always have an exact sequence $0 \rightarrow k^{n-1} \rightarrow k^{n} \rightarrow k \rightarrow 0$. So $\left[k^{n}\right]=\left[k^{n-1}\right]+[k]$ for all $n \in \mathbb{N}$, and $K_{0}(k) \cong \mathbb{Z}$.

If R is commutative, we can make $K_{0}(R)$ into a ring via $[P] \cdot[Q]=\left[P \otimes_{R} Q\right]$. One needs to check that $P \otimes_{R} Q$ is still projective; but if P, Q are finitely generated and projective, then $P \oplus H \cong R^{n}$ and $Q \oplus E \cong R^{m}$ for some R-modules H, E. So

$$
R^{n m} \cong R^{n} \otimes_{R} R^{m} \cong(P \oplus H) \otimes_{R}(Q \oplus E) \cong\left(P \otimes_{R} Q\right) \oplus\left(H \otimes_{R} Q\right) \oplus\left(P \otimes_{R} E\right) \oplus\left(H \otimes_{R} E\right)
$$

So $P \otimes_{R} Q$ is a direct summand of a free module, and is thus projective.
(Exterior products) Suppose R is a commutative ring and M is an R-module. We define the $i^{\text {th }}$ exterior product of M to be

$$
\Lambda^{i} M=\underbrace{M \otimes_{R} \ldots \otimes_{R} M}_{i \text { times }} / N
$$

where N is the submodule generated by

$$
m_{1} \otimes_{R} \ldots \otimes_{R} m_{i}=\operatorname{sgn}(\sigma) m_{\sigma(1)} \otimes_{R} \ldots \otimes_{R} m_{\sigma(i)}
$$

Then $\Lambda^{0} M=R$ and $\Lambda^{1} M=M$.
Remark 3.61. $\Lambda^{i} R^{n} \cong R^{\binom{n}{i}}$.
Proof. Let e_{1}, \ldots, e_{n} be a basis for R^{n}. Then

$$
\underbrace{R^{n} \otimes_{R} \ldots \otimes_{R} R^{n}}_{i \text { times }}
$$

is spanned by elements of the form $e_{j_{1}} \otimes_{R} \ldots \otimes_{R} e_{j_{i}}$. But

$$
e_{j_{1}} \otimes_{R} \ldots \otimes_{R} e_{j_{i}} \equiv \pm e_{\ell_{1}} \otimes_{R} \ldots \otimes_{R} e_{\ell_{i}}
$$

where $\ell_{1} \leq \ell_{2} \leq \cdots \leq \ell_{i}$. Indeed, one can show that elements of the form $e_{\ell_{1}} \otimes_{R} \ldots \otimes_{R} e_{\ell_{i}}$ form a basis for $\Lambda^{i} R^{n}$.

Remark 3.61
In particular, we get that $\Lambda^{n} R^{n} \cong R$. If R is a Noetherian commutative ring with $\operatorname{Spec}(R)$ connected and P is a projective module of rank n then $\Lambda^{i} P$ is projective of rank $\binom{n}{i}$.
(Picard grape) Now we let $\operatorname{Pic}(R)$ denote the multiplicative subset of $K_{0}(R)$ generated by projective modules of rank 1 ; this has a grape structure via $[P] \cdot[Q]=\left[P \otimes_{R} Q\right]$. We call $\operatorname{Pic}(R)$ the Picard grape of R. It is indeed a grape: $[P] \otimes_{R}[\operatorname{hom}(P, R)]=[R]$ is the identity. We have a map $K_{0}(R)^{\times} \rightarrow \operatorname{Pic}(R)$ given by $[P] \mapsto\left[\Lambda^{\operatorname{rank}(P)} P\right]$; this is a homomorphism of semigrapes (under \otimes_{R}).
(A final remark) If R is commutative and $P \oplus R^{n} \cong R^{n+1}$ then $P \cong R$.
This is left as an exercise.
(Step 1) Check that

$$
\Lambda^{i}(M \oplus N) \cong \bigoplus_{j=1}^{i} \Lambda^{j}(M) \otimes_{R} \Lambda^{i-j} N
$$

(Step 2) $R^{n+1} \cong R^{n} \oplus P$, so

$$
\begin{aligned}
R & =R^{\binom{n+1}{n+1}} \\
& \cong \Lambda^{n+1} R^{n+1} \\
& \cong \Lambda^{n+1}\left(R^{n} \oplus P\right) \\
& \cong \bigoplus_{j=1}^{n+1} R^{n} \otimes_{R} \Lambda^{n+1-j} P
\end{aligned}
$$

(Step 3) Show that since P has rank 1 then $\Lambda^{j} P=(0)$ for $j>1$ and $\Lambda^{n+1} R^{n}=(0)$; then the isomorphism in the previous step shows that

$$
R \cong \Lambda^{n} R^{n} \otimes_{R} \Lambda^{1} P \cong R \otimes_{R} P \cong P
$$

3.3 Injective modules

We now consider the dual notion of projective modules. Suppose \mathcal{A} is an abelian category. Recall that P is a projective object if and only if $\operatorname{hom}(P,-)$ is exact.
Definition 3.62. We say $I \in \operatorname{Ob}(\mathcal{A})$ is an injective object if and only if $\operatorname{hom}(-, I)$ is exact; i.e. whenever

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

is exact, we have that

$$
0 \rightarrow \operatorname{hom}(C, I) \rightarrow \operatorname{hom}(B, I) \rightarrow \operatorname{hom}(A, I) \rightarrow 0
$$

is exact. One checks that this is equivalent to requiring that whenever $0 \rightarrow A \xrightarrow{f} B$ is exact then hom $(B, I) \rightarrow$ $\operatorname{hom}(A, I) \rightarrow 0$ given by $\psi \mapsto \psi \circ f$ is exact; i.e.

Lemma 3.63 (Baer). Suppose R is a ring; suppose Q is a left R-module. If for every left ideal $I \leq R$ and every homomorphism of R-modules $h: I \rightarrow Q$ there is a homomorphism of R-modules $\widetilde{h}: R \rightarrow Q$ such that $\widetilde{h} \upharpoonright I=h$, then Q is injective.
Proof. Suppose we have

i.e. f is injective; assume without loss of generality we assume f is an inclusion. Consider the set \mathcal{S} of all pairs ($N^{\prime}, \beta^{\prime}$) with $N \subseteq N^{\prime} \subseteq M$ and $\beta^{\prime}: N^{\prime} \rightarrow Q$ such that $\beta^{\prime} \upharpoonright N=\beta$. We can partially order \mathcal{S} via $\left(N_{1}, \beta_{1}\right) \leq\left(N_{2}, \beta_{2}\right)$ if $N_{1} \subseteq N_{2}$ and $\beta_{2} \upharpoonright M=\beta_{1}$. Observe that $(N, \beta) \in \mathcal{S}$, so \mathcal{S} is non-empty. Further observe that \mathcal{S} is closed under unions of chains: given a chain $\left(\left(N_{i}, \beta_{i}\right): i \in I\right)$ in \mathcal{S}, we get

$$
\left(\bigcup_{i \in I} N_{i}, \bigcup_{i \in I} \beta_{i}\right) \in \mathcal{S}
$$

So, by Zorn's lemma, there is a maximal such pair $\left(N^{\prime}, \beta^{\prime}\right)$ in \mathcal{S}. If $N^{\prime}=M$ we're done. Assume therefore that there is $m \in M \backslash N^{\prime}$; look at $N^{\prime \prime}=R m+N^{\prime}$. Let $I=\left\{r \in R: r m \in N^{\prime}\right\}$; then I is a left ideal of R. Make a map $\theta: I \rightarrow Q$ given by $r \mapsto \beta^{\prime}(r m) \in Q$. By hypothesis we can extend θ to $\delta: R \rightarrow Q$; i.e. so that $\delta \upharpoonright I=\theta$. Consider $\beta^{\prime \prime}: N^{\prime \prime} \rightarrow Q$ given by $r m+n^{\prime} \mapsto \delta(r)+\beta^{\prime}\left(n^{\prime}\right)$. Notice $\beta^{\prime \prime}$ is well-defined: if $r_{1} m+n_{1}=r_{2} m+n_{2}$ then $\left(r_{1}-r_{2}\right) m \in N^{\prime} ;$ so $r_{1}-r_{2} \in I$, and $\delta\left(r_{1}-r_{2}\right)=\theta\left(r_{1}-r_{2}\right)=\beta^{\prime}\left(\left(r_{1}-r_{2}\right) m\right)$. So $\beta^{\prime \prime}\left(r_{1} m+n_{1}\right)-\beta^{\prime \prime}\left(r_{2} m+n_{2}\right)=\beta^{\prime}\left(\left(r_{1}-r_{2}\right) m+n_{1}-n_{2}\right)=0$. By construction we get $\beta^{\prime \prime} \upharpoonright N^{\prime}=\beta^{\prime}$, contradicting the maximality of ($N^{\prime}, \beta^{\prime}$). So $N^{\prime}=M$, and we're done.

Corollary 3.64. Let $R=\mathbb{Z}$. Then an R-module M is injective if and only if M is divisible.
Proof.
(\Longrightarrow) Assignment 2.
(\Longleftarrow) Suppose M is divisible; we apply Baer's criterion. Suppose $I \unlhd \mathbb{Z}$; so $I=n \mathbb{Z}$ for some $n \geq 0$. Suppose we are given $\beta: I \rightarrow M$; we wish to extend β to $\beta^{\prime}: \mathbb{Z} \rightarrow M$. If $I=(0)$, we may take $\beta^{\prime}=0$. Suppose then that $n \neq 0$; let $m=\beta(n) \in M$. Since M is divisible, there is $x \in M$ such that $n x=m$; define $\beta^{\prime}: \mathbb{Z} \rightarrow M$ by $1 \mapsto x$. Then $\beta^{\prime}(n)=n-x=m=\beta(n)$.

Corollary 3.64
Corollary 3.65. Suppose M is an injective \mathbb{Z}-module; suppose $K \leq M$. Then M / K is injective.
Proof. Suppose $x+K \in M / K$; i.e. suppose $x \in M$. Suppose $n \in \mathbb{Z}$ and $n>0$; then there is $y \in M$ such that $n y=x$. So $n(y+K)=x+K$; so M / K is divisible.

Corollary 3.65
Definition 3.66. An abelian category \mathcal{A} has enough projectives if for every $A \in \operatorname{Ob}(\mathcal{A})$ there is a projective object P and an epimorphism $f: P \rightarrow A$. It has enough injectives if for every $A \in \operatorname{Ob}(\mathcal{A})$ there is an injective object Q and a monomorphism $f: A \hookrightarrow Q$.

We'll see that R-Mod has enough injectives, where R is a ring. We first verify the case $R=\mathbb{Z}$.
Claim 3.67. $\mathbf{A b}=\mathbb{Z}$-Mod has enough injectives.
Proof. Suppose A is an abelian grape; then there is $\mathbb{Z}^{I} \rightarrow A$. So $A \cong \mathbb{Z}^{I} / K$ where $K \leq \mathbb{Z}^{I}$ is the kernel. But $\mathbb{Z}^{i} \hookrightarrow \mathbb{Q}^{i}$, and Q^{i} is divisible, and hence injective. So $K \leq \mathbb{Z}^{I} \leq \mathbb{Q}^{I}$; so $A \cong \mathbb{Z}^{I} / K \leq \mathbb{Q}^{I} / K$ and this last is injective by the corollary. So we have $A \hookrightarrow \mathbb{Q}^{I} / K$ which is injective.

Claim 3.67
We lift this result to R-Mod. For the setup, suppose S, R are rings. (Ultimately we'll take $S=\mathbb{Z}$.) Suppose F is an (S, R)-bimodule; i.e. suppose F has structure as a left S-module and as a right R-module. We assume that F is a flat right R-module; i.e. if $0 \rightarrow M \rightarrow N$ is an exact sequence of left R-modules then $0 \rightarrow F \otimes_{R} M \rightarrow F \otimes_{R} N$ is an exact sequence of abelian grapes.
Aside 3.68 (Non-commutative tensor products). Suppose R is a ring, T is a right R-module, and L is a left R-module. Then $T \otimes_{R} L$ is an abelian grape.
Remark 3.69. Suppose M is a left S-module. We define $\widetilde{M}=\operatorname{hom}_{s}(F, M)$.
Notice that \widetilde{M} is a left R-module via the rule $(r \cdot \varphi)(x)=\varphi(x \cdot r)$. Furthermore, given $r_{1}, r_{2} \in R$ we have $\left(r_{1} \cdot r_{2}\right) \cdot \varphi(x)=\varphi\left(x \cdot r_{1} r_{2}\right)$. Then

$$
r \cdot\left[\left(r_{2} \cdot \varphi\right)\right](x)=\Gamma_{2}-\varphi\left(x r_{1}\right)=\varphi\left(x r, r_{2}\right)
$$

Lemma 3.70 (Injective production lemma). Under this setup, if M is an injective left S-module, then \widetilde{M} is an injective left R-module.
Proof. We check that $\operatorname{hom}_{R}(-, \widetilde{M})$ is exact. In fact, we know it is enough to show that whenever $0 \rightarrow A \xrightarrow{f} B$ is exact (for $A, B \in \operatorname{Ob}\left(R\right.$-Mod)), we also have $\operatorname{hom}_{R}(B, \widetilde{M}) \rightarrow \operatorname{hom}_{R}(A, \widetilde{M}) \rightarrow 0$ given by $\psi \mapsto \psi \circ f$ is exact. Suppose then that $0 \rightarrow A \xrightarrow{f} B$ is exact. We wish to check that $\operatorname{hom}_{R}\left(B, \operatorname{hom}_{S}(F, M)\right) \rightarrow$ $\operatorname{hom}_{R}\left(A \operatorname{hom}_{S}(F, M)\right) \rightarrow 0$ given by $\psi \mapsto \psi \circ f$ is exact. From the tensor-hom adjunction, we have an isomorphism of abelian grapes $\operatorname{hom}_{R}\left(B, \operatorname{hom}_{S}(F, M)\right) \cong \operatorname{hom}_{S}\left(F \otimes_{R} B, M\right)$ such that given $\psi: B \rightarrow$ $\operatorname{hom}_{S}(F, M)$ we have $\psi \mapsto\left(\theta \otimes_{R} b \mapsto \psi(b)(\theta)\right)$.
Exercise 3.71. We have a map $\operatorname{hom}_{S}\left(F \otimes_{R} B, M\right) \rightarrow \operatorname{hom}_{S}\left(F \otimes_{R} A, M\right)$ such that given $\psi: F \otimes_{R} B \rightarrow M$, we have $\left.\psi \mapsto \widehat{\psi}: F \otimes_{R} A, M\right)$ given by $\widehat{\psi}\left(\theta \otimes_{R} a\right)=\psi\left(\theta \otimes_{R} f(a)\right)$; furthermore, the isomorphisms yield a commuting diagram:

So it suffices to show that $\operatorname{hom}_{S}\left(F \otimes_{R} B, M\right) \rightarrow \operatorname{hom}_{S}\left(F \otimes_{R} A, M\right) \rightarrow 0$ is exact. Since M is an injective left module and F is flat as a right R-module, we get

1. $0 \rightarrow A \xrightarrow{f} B$ is exact.
2. $0 \rightarrow F \otimes_{R} A \xrightarrow{\text { id } \otimes_{R} f} F \otimes_{R} B$ is exact in S-Mod.
3. $\operatorname{hom}_{S}\left(F \otimes_{R} B, M\right) \rightarrow \operatorname{hom}_{S}\left(F \otimes_{R} A, M\right) \rightarrow 0$ given by $\psi \mapsto \widehat{\psi}$ is exact.

The result then follows from the commuting diagram above.
Lemma 3.70
For us, we'll take $S=\mathbb{Z}, M=\mathbb{Q} / \mathbb{Z}$, and F a free (and hence flat) right R-module; note that M is an injective S-module. In this setup, if F is a right R-module, we define $F^{*}=\operatorname{hom}_{\mathbb{Z}}(F, \mathbb{Q} / \mathbb{Z})$; this is the Pontryagin dual of F. Then F^{*} is a left R-module.
Remark 3.72. If A is a left or right R-module, we get an embedding $A \hookrightarrow A^{* *}$ given by $m \mapsto e_{m}$ where $e_{m}: A^{*} \rightarrow \mathbb{Q} / \mathbb{Q}$ is given by $e_{m}(f)=f(m)$. Why is this an injection? Well, suppose we have $m \in A \backslash\{0\}$ such that $e_{m}=0$; i.e. suppose $f(m)=0$ for all $f \in \operatorname{hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z})$. Let $C=\mathbb{Z} m \subseteq A$.

Claim 3.73. There is a non-trivial homomorphism $g: C \rightarrow \mathbb{Q} / \mathbb{Z}$.
Proof. Well, C is cyclic; so we have two cases.
Case 1. Suppose $C \cong \mathbb{Z}$; then we can just use the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$.
Case 2. Suppose $C \cong \mathbb{Z} / n \mathbb{Z}$; then we can use the map $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$ given by $1+n \mathbb{Z} \mapsto \frac{1}{n}+\mathbb{Z}$. Claim 3.73

By injectivity of \mathbb{Q} / \mathbb{Z} there is $\widetilde{g}: A \rightarrow \mathbb{Q} / \mathbb{Z}$ such that the following diagram commutes:

Then $e_{m}(\widetilde{g})=\widetilde{g}(m)=g(m) \neq 0$, and injectivity follows.
Corollary 3.74. Let R be a ring; then R-Mod has enough injectives.
Proof. If A is a right R-module then there is a free right R-module F and a surjection $F \rightarrow A$. Since \mathbb{Q} / \mathbb{Z} is an injective \mathbb{Z}-module and A, F are \mathbb{Z}-modules, we get that $0 \rightarrow \operatorname{hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z}) \rightarrow \operatorname{hom}_{\mathbb{Z}}(F, \mathbb{Q} / \mathbb{Z})$ is exact; i.e. $A^{*} \hookrightarrow F^{*}$. By Lemma 3.70, we have that F^{*} is an injective left R-module. We thus see that any left R-module of the form A^{*} with A a right R-module embeds in an injective. But every left R-module A has $A \hookrightarrow A^{* *}=\left(A^{*}\right)^{*}$, which we just saw embeds into the injective left R-module F^{*}. So A embeds into an injective left R-module. So R-Mod has enough injectives.Corollary 3.74

A nice fact:
Fact 3.75. Any R-module A has a unique minimal injective resolution.
Definition 3.76. Let R be a ring; let $M \subseteq E$ be left R-modules. We say that M is an essential submodule of E (or E is an essential extension of M) if $M \cap N \neq(0)$ for all $N \subseteq E$.

Proposition 3.77.

1. Given a ring R and R-modules $M \subseteq F$ there is a maximal submodule $E \subseteq F$ with M as an essential submodule.
2. If F is injective then E is injective.
3. There is up to isomorphism a unique essential extension E of M that is an injective R-module. We call this the injective envelope of M, denoted $E(M)$.

Proof.

1. Assignment (up to a small error).
2. Assignment.
3. Since R-Mod has enough injective, there is an injective F and an embedding $M \stackrel{i}{\hookrightarrow} F$; without loss of generality we assume $M \subseteq F$. By (1) and (2) we have that there is an essential extension E of M (with $E \subseteq F)$ that is injective. So we at least have existence. To see uniqueness, suppose we have $M \stackrel{\alpha_{1}}{\longleftrightarrow} E_{1}$ and $M \stackrel{\alpha_{2}}{\longleftrightarrow} E_{2}$ where E_{1} and E_{2} are injective and essential extensions of M. Then by injectivity of E_{2} we get $\beta: E_{1} \rightarrow E_{2}$ such that the following diagram commutes:

i.e. $\beta \circ \alpha_{1}=\alpha_{2}$. So, since α_{2} is injective, we have that $\operatorname{ker}\left(\beta \upharpoonright \alpha_{1}(M)\right)=(0)$.

Claim 3.78. $\operatorname{ker}(\beta)=(0)$; i.e. β is injective.
Proof. Well, $\alpha_{1}(M) \subseteq E_{1}$ is an essential submodule, and since $\operatorname{ker}\left(\beta \upharpoonright \alpha_{1}(M)\right)=(0)$ we get that $\alpha_{1}(M) \cap \operatorname{ker}(\beta)=(0)$; so $\operatorname{ker}(\beta)=(0)$.
\square Claim 3.78
So β is injective; so $\beta\left(E_{1}\right)$ is an injective submodule of E_{2}.
TODO 3. Why an injective submodule?
So there is E_{2}^{\prime} such that $\beta\left(E_{1}\right) \oplus E_{2}^{\prime}=E_{2}$. But now we get $\alpha_{2}(M)=\left(\beta \circ \alpha_{1}\right)(M) \subseteq \beta\left(E_{1}\right)$ and $\alpha_{2}(M) \subseteq E_{2}$ is essential. So if $E_{2}^{\prime} \neq(0)$ then $\alpha_{2}(M) \cap E_{2}^{\prime} \neq(0)$, and $\beta\left(E_{1}\right) \cap E_{2}^{\prime} \neq(0)$, a contradiction. So $E_{2}^{\prime}=(0)$, and $\beta\left(E_{1}\right)=E_{2}$. So β is bijective, and $E_{1} \cong E_{2}$.Proposition 3.77

In particular, then the exact sequence

$$
0 \rightarrow E \stackrel{i}{\hookrightarrow} F \rightarrow \operatorname{coker}(i) \rightarrow 0
$$

splits, and $F \cong E \oplus \operatorname{coker}(i)$.
Given an R-module M, we have an embedding $0 \rightarrow M \rightarrow E(M)$; let $Q_{1}=\operatorname{coker}(M \rightarrow E(M))$. Continuing, we can extend the sequence

$$
0 \rightarrow M \rightarrow E(M) \rightarrow E\left(Q_{1}\right) \rightarrow E\left(Q_{2}\right) \rightarrow \ldots
$$

where $Q_{2}=\operatorname{coker}\left(E(M) \rightarrow E\left(Q_{1}\right)\right)$.
Remark 3.79. If $\left(I_{j}: j \in J\right)$ are injective modules then

$$
\prod_{i \in J} I_{j}
$$

is injective by using the limit property on the diagram

Remark 3.80. A direct sum of injectives need not be injective.
Theorem 3.81 (Bass). Let R be a commutative ring. Then R is Noetherian if and only if every direct sum of injectives is again injective.

Sketch of proof.
(\Longleftarrow) Suppose R is not Noetherian; suppose we have a chain of ideals $I_{1} \varsubsetneqq I_{2} \varsubsetneqq \ldots$. Let $E_{n}=E\left(R / I_{n}\right)$. Then

$$
E=\bigoplus_{n=1}^{\infty} E_{n}
$$

is not injective. Indeed, let

$$
I=\bigcup_{n=1}^{\infty} I_{n} \subseteq R
$$

and consider $f_{n}: I \rightarrow E\left(R / I_{n}\right)$ given by the composition $I \hookrightarrow R \rightarrow R / I_{n} \hookrightarrow E\left(R / I_{n}\right)$. These f_{n} yield a map

$$
\begin{aligned}
f: I & \rightarrow \prod_{n=1}^{\infty} E\left(R / I_{n}\right) \\
x & \mapsto\left(f_{1}(x), f_{2}(x), \ldots\right)
\end{aligned}
$$

Note, however that f actually maps into

$$
E=\bigoplus_{n=1}^{\infty} E\left(R / I_{n}\right) \subseteq \prod_{n=1}^{\infty} E\left(R / I_{n}\right)
$$

since $x \in I$ implies $x \in I_{n}$ for all sufficiently large n, and thus that $f_{n}(x)=0$ for all sufficiently large n. Now, if E is injective, then there is $\beta: R \rightarrow E$ such that the following diagram commutes:

Consider then $\beta(1)$; by definition of E there is $m \in \mathbb{N}$ such that

$$
\beta(1) \in E_{1} \oplus E_{2} \oplus \ldots \oplus E_{m} \oplus(0) \oplus(0) \oplus \ldots
$$

So

$$
\beta(r)=r \beta(1) \subseteq E_{1} \oplus E_{2} \oplus \ldots \oplus E_{m} \oplus(0) \oplus(0) \oplus \ldots
$$

for all $r \in R$. But then for $x \in I_{m+1} \backslash I_{m}$, we have $f_{m+1}(x) \in E_{m+1} \neq(0)$; so

$$
\beta(x)=f_{m+1}(x) \notin E_{1} \oplus E_{2} \oplus \ldots \oplus E_{m} \oplus(0) \oplus(0) \oplus \ldots
$$

a contradiction. So E is not injective.
(\Longrightarrow) One checks the following:
Exercise 3.82. If M is finitely generated then

$$
\operatorname{hom}_{R}\left(M, \bigoplus_{i \in I} N_{i}\right) \cong \bigoplus_{i \in I} \operatorname{hom}_{R}\left(M, N_{i}\right)
$$

The idea is then that if R is Noetherian and $J \subseteq R$ is an ideal then J is finitely generated. If the N_{i} are injective, then $\operatorname{hom}\left(J, N_{i}\right) \rightarrow \operatorname{hom}\left(R, N_{i}\right)$ is surjective for all i; so

TODO 4. What does this mean?

Then Baer's criterion gives that

$$
\bigoplus_{i \in I} N_{i}
$$

is injective.
Bass' theorem is very useful when studying injectives over a Noetherian ring.
Definition 3.83. An injective module E is decomposable if $E=E^{\prime} \oplus E^{\prime \prime}$ where E^{\prime} and $E^{\prime \prime}$ are non-zero; else it is indecomposable.

For a commutative Noetherian ring R we have that every injective R-module E is of the form

$$
E \cong \bigoplus_{j \in J} E_{j}
$$

where E_{j} is injective and indecomposable. Moreover, there is a bijection from $\operatorname{Spec}(R)$ to the isomorphism classes of indecomposable injectives given by $\mathfrak{p} \mapsto E(R / \mathfrak{p})$. Why? Well, if E is indecomposable and injective, we may pick $x \in E$ with maximal annihilator. (Recall $\operatorname{Ann}(x)=\{r \in R: r x=0\}$.) The usual trick for ideals in a Noetherian ring maximal with respect to some property yields that $\operatorname{Ann}(x)=\mathfrak{p}$ is prime. So

TODO 5. What does this mean?

4 Complexes

We work in \mathcal{A} an abelian category; we can always assume that this is R-Mod by Mitchell's embedding theorem.

Definition 4.1. A chain complex C_{\bullet} is a family $\left(C_{n}: n \in \mathbb{Z}\right)$ with $C_{n} \in \operatorname{Ob}(\mathcal{A})$ and morphisms $d_{n}: C_{n} \rightarrow$ C_{n-1} such that $d_{n-1} \circ d_{n}: C_{n} \rightarrow C_{n-2}=0$. We call the d_{n} the differentials of C_{\bullet}. We then define $Z_{n}\left(C_{\bullet}\right)=\operatorname{ker}\left(d_{n}\right) \subseteq C_{n}$ to be the n-cycles of C_{\bullet}; we define $B_{n}\left(C_{\bullet}\right)=\operatorname{im}\left(d_{n+1}\right) \subseteq C_{n}$ to be the n-boundaries of C_{\bullet}. So $(0) \subseteq B_{n}\left(C_{\bullet}\right) \subseteq Z_{n}\left(C_{\bullet}\right) \subseteq C_{n}$. We define $H_{n}\left(C_{\bullet}\right)=Z_{n}\left(C_{\bullet}\right) / B_{n}\left(C_{\bullet}\right)$ to be the $n^{\text {th }}$ homology grape of C_{\bullet}.

Dually, we define a cochain complex C^{\bullet} is a family of $\left(C^{n}: n \in \mathbb{Z}\right)$ and morphisms $d^{n}: C^{n} \rightarrow C^{n+1}$ such that $d^{n+1} \circ d^{n}=0$ for all $n \in \mathbb{Z}$. We define $Z^{n}\left(C^{\bullet}\right)=\operatorname{ker}\left(d^{n}\right) \subseteq C^{n}$ to be the n-cocycles; we define $B^{n}\left(C^{\bullet}\right)=\operatorname{im}\left(d^{n-1}\right) \subseteq C^{n}$ to be the n-coboundaries. We define $H^{n}\left(C^{\bullet}\right)=Z^{n}(C) / B^{n}(C)$ to be the $n^{\text {th }}$ cohomology grape of C^{\bullet}.

Remark 4.2. $H_{n}(C)=(0)$ if and only if $C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1}$ is exact at C_{n}.
Remark 4.3. $\left(C_{n}: n \in \mathbb{Z}\right)$ is a chain complex if and only if $B^{n}=C_{-n}$ with $d^{n}=d_{-n}: C_{-n} \rightarrow C_{-n-1}$.

Example 4.4 (de Rham complex). Suppose $\varphi: R \rightarrow A$ is an R-algebra. Recall the Kähler differentials were $\Omega_{A / R}$ the free A-module generated by symbols $d a$ for $a \in A$ modulo the relations

- $d(a+r b)=d a+r d b$ for all $r \in R$ and $a, b \in A$.
- $d(a b)=a d b+b d a$ for all $a, b \in A$.
- $d r=0$ for all $r \in R$.

Now define

$$
\Omega_{A / R}^{i}=\Lambda^{i} \Omega_{A / R}=\bigotimes_{j=1}^{i} \Omega_{A / R} /\left\langle a_{1} \otimes \ldots \otimes a_{i}=\operatorname{sgn}(\sigma) a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(i)}\right\rangle
$$

(We also take $\Omega_{A / R}^{i}=0$ for $i<0$.) Given $m_{1}, \ldots, m_{i} \in \Omega_{A / R}$ we let $m_{1} \wedge \ldots \wedge m_{i}$ denote the image of $m_{1} \otimes \ldots \otimes m_{i}$ in $\Lambda^{i} \Omega_{A / R}=\Omega_{A / R}^{i}$. Note that

- $\Omega_{A / R}^{0}=A$.
- $\Omega_{A / R}^{1}=\Omega_{A / R}$.
- We have a map $d: A \rightarrow \Omega_{A / R}$ given by $a \mapsto d a$; we call this $d^{0}: \Omega_{A / R}^{0} \rightarrow \Omega_{A / R}^{1}$.
- We have another map $d^{1}: \Omega_{A / K}^{1} \rightarrow \Omega_{A / R}^{2}$ given by $d^{1}(a d b)=d a \wedge d b$; in particular, we get $d^{1} \circ d^{0}=0$.
- In general, these yield a map $d^{n}: \Omega_{A / R}^{n} \rightarrow \Omega_{A / R}^{n+1}$ satisfying

$$
d^{n}(\omega \wedge \eta)=d^{i} \omega \wedge \eta+(-1)^{i} \omega \wedge d^{n-i} \eta
$$

for all $\omega \in \Omega_{A / R}^{i}$ and all $\eta \in \Omega_{A / R}^{n-i}$. In particular, we take

$$
d^{n}\left(\omega_{1} \wedge \ldots \wedge \omega_{n}\right)=\left(d^{1} \omega_{1} \wedge \omega_{2} \wedge \ldots \wedge \omega_{n}\right)-\left(\omega_{1} \wedge d^{1} \omega_{2} \wedge \omega_{3} \wedge \ldots \wedge \omega_{n}\right)+\left(\omega_{1} \wedge \omega_{2} \wedge d^{1} \omega_{3} \wedge \ldots \wedge \omega_{n}\right)-\ldots
$$

- In particular, for $\omega \in \Omega_{A / R}^{n-1}$ and $\eta \in \Omega_{A / R}^{1}$, we have

$$
\begin{aligned}
\left(d^{n+1} \circ d^{n}\right)(\omega \wedge \eta) & =d^{n+1}\left(d^{n-1} \omega \wedge \eta+(-1)^{n-1} \omega \wedge d \eta\right) \\
& =d^{n+1}\left(d^{n-1} \omega \wedge \eta\right)+(-1)^{n-1} d^{n+1}(\omega \wedge d \eta) \\
& =d^{n}\left(d^{n-1}(\omega)\right) \wedge \eta+(-1)^{n} d^{n-1} \omega \wedge d^{1} \eta+(-1)^{n-1} d^{n-1} \omega \wedge d^{1} \eta+(-1)^{n-1}(-1)^{n-1} \omega \wedge d^{2}\left(d^{1} \eta\right) \\
& =0
\end{aligned}
$$

by an inductive argument.
TODO 6. Really?
Exercise 4.5. Suppose k is a field of characteristic 0 ; let $A=k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
0 \rightarrow k \rightarrow \Omega_{A / k}^{0} \rightarrow \Omega_{A / k}^{2} \rightarrow \cdots \rightarrow \Omega_{A / k}^{n} \rightarrow 0
$$

is exact.
Definition 4.6. Let C_{\bullet} and C_{\bullet}^{\prime} be two chain complexes; say $C_{\bullet}=\left(C_{n}, d_{n}\right)$ and $C_{\bullet}^{\prime}=\left(C_{n}^{\prime}, d_{n}^{\prime}\right)$. A morphism of chain complexes is a collection of maps $f_{n}: C_{n} \rightarrow C_{n}^{\prime}$ such that the following diagram commutes:

Thus if \mathcal{C} is an abelian category then we can set $\operatorname{Ch}(\mathcal{C})$ to be the category of chain complexes in \mathcal{C}. Similarly, we define $\operatorname{Co-Ch}(\mathcal{C})$ the category of cochain complexes in \mathcal{C}.

In fact $\operatorname{Ch}(\mathcal{C})$ and $\mathrm{Co}-\mathrm{Ch}(\mathcal{C})$ are abelian categories. The only non-trivial part is checking then $\operatorname{ker}(f)$ and $\operatorname{coker}(f)$ are objects in $\operatorname{Ch}(\mathcal{C})$ for $f: C_{\bullet} \rightarrow C_{\bullet}^{\prime}$. One can assume that $\mathcal{C}=R$-Mod, by Mitchell's embedding theorem. Note then that the following diagram commutes:

since if $x^{\prime}=x^{\prime \prime}+f_{n}(u)$ in C_{n}^{\prime} then

$$
d_{n}^{\prime}\left(x^{\prime}\right)=d_{n}^{\prime}\left(x^{\prime \prime}\right)+\left(d_{n}^{\prime} \circ f_{n}\right)(u)=d_{n}^{\prime}\left(x^{\prime \prime}\right)+\left(f_{n-1} \circ d_{n}\right)(u)
$$

and $d_{n}^{\prime}\left(x^{\prime}\right)=d_{n}^{\prime}\left(x^{\prime \prime}\right)$ in $\operatorname{coker}\left(f_{n-1}\right)$. One also checks that monomorphisms and epimorphisms are normal; hence $\operatorname{Ch}(\mathcal{C})$ is an abelian category.
Remark 4.7. One can show that a morphism $C_{\bullet} \rightarrow C_{\bullet}^{\prime}$ takes $Z_{n}\left(C_{\bullet}\right)$ to $Z_{n}\left(C_{\bullet}^{\prime}\right)$ and $B_{n}\left(C_{\bullet}\right)$ to $B_{n}\left(C_{\bullet}^{\prime}\right)$; in particular, we get a map $H_{n}\left(C_{\bullet}\right)$ to $H_{n}\left(C_{\bullet}^{\prime}\right)$.
Definition 4.8. A morphism $u: C_{\bullet} \rightarrow D_{\bullet}$ is called a quasi-isomorphism if for every $n \in \mathbb{Z}$ we have that the induced map $H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(D_{\bullet}\right)$ is an isomorphism.

Proposition 4.9. the following are equivalent:

1. The chain complex C_{\bullet} is exact at each C_{n}.
2. $H_{n}\left(C_{\bullet}\right)=0$ for all $n \in \mathbb{Z}$.
3. C. is quasi-isomorphic to $\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \cdots$, the zero chain complex.

Definition 4.10. A chain complex C_{0} is bounded if $C_{n}=0$ for all but finitely many n. We say C_{\bullet} is bounded above if $C_{n}=0$ for all sufficiently large n; likewise with bounded below. We use $\mathrm{Ch}_{b}(\mathcal{C}), \mathrm{Ch}_{-}(\mathcal{C})$, and $\mathrm{Ch}_{+}(\mathcal{C})$ to denote the full subcategories of $\mathrm{Ch}(\mathcal{C})$ consisting of chains that are bounded, bounded below, and bounded above, respectively; Similarly, we get $\mathrm{Co}^{-} \mathrm{Ch}^{b}$, $\mathrm{Co}^{-} \mathrm{Ch}^{-}$, and $\mathrm{Co}-\mathrm{Ch}^{+}$.

Remark 4.11. Since $\operatorname{Ch}(\mathcal{C})$ (respectively $\mathrm{Co}-\mathrm{Ch}(\mathcal{C})$) is an abelian category, it makes sense to talk about short exact sequences of chain complexes

$$
0 \rightarrow A_{\bullet} \xrightarrow{f} B \stackrel{g}{\rightarrow} C_{\bullet} \rightarrow 0
$$

(where " 0 " denotes the zero chain complex $\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \cdots$). Examining the diagram

we see that $f: A \rightarrow B$ is a monomorphism if and only if $\cdots \rightarrow \operatorname{ker}\left(f_{n}\right) \rightarrow \operatorname{ker}\left(f_{n-1}\right) \rightarrow \cdots$ is the zero complex. Examining the diagram

we see that $A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet}$ is exact at B_{\bullet} if and only if $g_{n} \circ f_{n}=0$ for all $n \in \mathbb{Z}$ and $\operatorname{ker}\left(g_{n}\right) / \operatorname{im}\left(f_{n}\right)=0$ for all $n \in \mathbb{Z}$.

4.1 Long exact sequence

If $0 \rightarrow A \bullet \xrightarrow{f} B \bullet \xrightarrow{g} C \bullet \rightarrow 0$ is a short exact sequence in $\mathrm{Ch}(\mathcal{C})$ then there are connecting morphisms $\delta_{n}: H_{n}\left(C_{\bullet}\right) \rightarrow H_{n-1}\left(A_{\bullet}\right)$ such that

is exact. Dually, if $0 \rightarrow A^{\bullet} \xrightarrow{f} B^{\bullet} \xrightarrow{g} C^{\bullet} \rightarrow 0$ is a short exact sequence in $\mathrm{Co}-\mathrm{Ch}(\mathcal{C})$ then there are $\delta^{n}: H^{n}(C) \rightarrow H^{n+1}(A)$ such that

is exact. The key ingredient in the proof is the snake lemma.
Lemma 4.12 (Snake lemma). Suppose that \mathcal{C} is an abelian category and suppose we have a commuting diagram with exact rows

For clarity, we expand the diagram to get a commuting diagram containing the various kernels and cokernels:

Then there is $\delta: \operatorname{ker}(h) \rightarrow \operatorname{coker}(f)$ as in the following (not necessarily commuting) diagram

such that the sequence

$$
\operatorname{ker}(f) \rightarrow \operatorname{ker}(g) \rightarrow \operatorname{ker}(h) \xrightarrow{\delta} \operatorname{coker}(f) \rightarrow \operatorname{coker}(g) \rightarrow \operatorname{coker}(h)
$$

is exact. Moreover, if i^{\prime} is a monomorphism then $0 \rightarrow \operatorname{ker}(f) \rightarrow \operatorname{ker}(g)$ is exact; if p is an epimorphism then $\operatorname{coker}(g) \rightarrow \operatorname{coker}(h) \rightarrow 0$ is exact.

Proof. Without loss of generality we assume $\mathcal{C}=R$-Mod for some R by Mitchell's embedding theorem. The only hard part then is finding δ and showing that

$$
\operatorname{ker}(g) \xrightarrow{p^{\prime} \uparrow \operatorname{ker}(g)} \operatorname{ker}(h) \xrightarrow{\delta} \operatorname{coker}(f) \xrightarrow{\bar{i}} \operatorname{coker}(g)
$$

is exact at $\operatorname{ker}(h)$ and at coker (f).
What is δ ? Well, suppose $x \in \operatorname{ker}(h) \subseteq C^{\prime}$. Take y such that $p^{\prime}(y)=x$; then $g(y) \in B$. We claim that there is $a \in A$ such that $i(a)=g(y)$; we then define $\delta(x)=a+\operatorname{im}(f) \in \operatorname{coker}(f)$. Symbolically: $\delta=\overline{i^{-1} \circ g \circ\left(p^{\prime}\right)^{-1}}$.

Why is this defined and well-defined? Suppose we have $y_{1}, y_{2} \in B^{\prime}$ such that $p^{\prime}\left(y_{1}\right)=p^{\prime}\left(y_{2}\right)=x \in \operatorname{ker}(h)$; then $h\left(p^{\prime}\left(y_{1}\right)\right)=h\left(p^{\prime}\left(y_{2}\right)\right)=0$. So, examining our diagram, we find that $p\left(g\left(y_{1}\right)\right)=p\left(g\left(y_{2}\right)\right)=0$, and $g\left(y_{1}\right), g\left(y_{2}\right) \in \operatorname{ker}(p)=\operatorname{im}(i)$. So, since i is a monomorphism, there are unique $a_{1}, a_{2} \in A$ such that $i\left(a_{1}\right)=g\left(y_{1}\right)$ and $i\left(a_{2}\right)=g\left(y_{2}\right)$.

Claim 4.13. $i\left(a_{1}\right)+\operatorname{im}(f)=i\left(a_{2}\right)+\operatorname{im}(f)$; i.e. $i\left(a_{1}-a_{2}\right) \in \operatorname{im}(f)$.
Proof. Well, $y_{1}-y_{2} \in \operatorname{ker}\left(p^{\prime}\right)=\operatorname{im}\left(i^{\prime}\right)$; so there is $b \in A^{\prime}$ such that $i^{\prime}(b)=y_{1}-y_{2}$. But then $i(f(b))=$ $g\left(i^{\prime}(b)\right)=g\left(y_{1}-y_{2}\right)=i\left(a_{1}-a_{2}\right)$; so, by injectivity of i, we have $f(b)=a_{1}-a_{2}$.

Claim 4.13

So δ is well-defined; it remains to check exactness of

$$
\operatorname{ker}(g) \xrightarrow{p^{\prime} \uparrow \operatorname{ker}(g)} \operatorname{ker}(h) \xrightarrow{\delta} \operatorname{coker}(f) \xrightarrow{\bar{i}} \operatorname{coker}(g)
$$

For exactness at $\operatorname{ker}(h)$, note that for $x \in \operatorname{ker}(g)$, we have

$$
\delta\left(p^{\prime}(x)\right)=\overline{i^{-1} \circ g \circ\left(p^{\prime}\right)^{-1}\left(p^{\prime}(x)\right)}=\overline{i^{-1}(g(x))}=\overline{i^{-1}(0)}=0
$$

So $\operatorname{im}\left(p^{\prime} \upharpoonright \operatorname{ker}(g)\right) \subseteq \operatorname{ker}(\delta)$. It remains to check that $\operatorname{ker}(\delta) \subseteq \operatorname{im}\left(p^{\prime} \upharpoonright \operatorname{ker}(g)\right)$. Suppose $x \in \operatorname{ker}(\delta)$; we must find $y \in \operatorname{ker}(g)$ such that $x=p^{\prime}(y)$. Well, since $x \in \operatorname{ker}(\delta)$, we have that $\overline{\left(i^{-1} \circ g \circ\left(p^{\prime}\right)^{-1}\right)(x)}=0$; i.e. if we fix a preimage z of x under p^{\prime} (i.e. with $p^{\prime}(z)=x$), then $i^{-1}(g(z)) \in \operatorname{im}(f)$. So there is $a \in A$ such that $i^{-1}(g(z))=f(a)$; so $g(z)=i(f(a))=g\left(i^{\prime}(a)\right)$. So $z-i^{\prime}(a) \in \operatorname{ker}(g)$. But $p^{\prime}\left(z-i^{\prime}(a)\right)=p^{\prime}(z)-p^{\prime}\left(i^{\prime}(a)\right)=x$; so $x \in \operatorname{im}\left(p^{\prime} \upharpoonright \operatorname{ker}(g)\right)$. So $\operatorname{im}\left(p^{\prime} \upharpoonright \operatorname{ker}(g)\right)=\operatorname{ker}(\delta)$, and we have exactness at $\operatorname{ker}(h)$.

We now check exactness at $\operatorname{coker}(f)$. As usual, to show that $\operatorname{im}(\delta) \subseteq \operatorname{ker}(\bar{i})$, we note that

$$
\begin{aligned}
\bar{i}(f(x)) & =\bar{i}\left(\overline{i^{-1}\left(g\left(\left(p^{\prime}\right)^{-1}(x)\right)\right)}\right) \\
& =\bar{i}\left(i^{-1}\left(g\left(\left(p^{\prime}\right)^{-1}(x)\right)\right)+\operatorname{im}(f)\right) \\
& =i\left(i^{-1}\left(g\left(\left(p^{\prime}\right)^{-1}(x)\right)\right)+\operatorname{im}(f)\right) \\
& =g\left(\left(p^{\prime}\right)^{-1}(x)\right)+\operatorname{im}(i \circ f)+\operatorname{im}(g) \\
& =g\left(\left(p^{\prime}\right)^{-1}(x)\right)+\operatorname{im}\left(g \circ i^{\prime}\right)+\operatorname{im}(g) \\
& =0+\operatorname{im}(g) \\
& =\overline{0}
\end{aligned}
$$

It remains to check the reverse inclusion. Suppose $x \in \operatorname{ker}(\bar{i})$. Then $x \in \operatorname{coker}(f)$, so we may write $x=x_{0}+\operatorname{im}(f)$ for some $x_{0} \in A$; then since $\bar{i}(x)=0$, we have that $i\left(x_{0}\right)+\operatorname{im}(g)=0+\operatorname{im}(g)$, and $i\left(x_{0}\right)=g(u)$ for some $u \in B^{\prime}$. Hence if we knew that $t=p^{\prime}(u) \in \operatorname{ker}(h)$, then we would get

$$
\delta(t)=\overline{i^{-1}\left(g\left(\left(p^{\prime}\right)^{-1}(t)\right)\right)}=i^{-1}(g(u))=\overline{x_{0}}=x
$$

and we'd be done. It then suffices to show that $p^{\prime}(u) \in \operatorname{ker}(h)$; i.e. that $h\left(p^{\prime}(u)\right)=0$. But $h\left(p^{\prime}(u)\right)=$ $p(g(u))=p\left(i\left(x_{0}\right)\right)=0$ by exactness of $A \xrightarrow{i} B \xrightarrow{p} C$; so we indeed get that $p^{\prime}(u) \in \operatorname{ker}(h)$.
\square Lemma 4.12
We now return to our goal of producing a long exact sequence of homology from a short exact sequence of chain complexes.

Proposition 4.14. Suppose we have a short exact sequence $0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C_{\bullet} \rightarrow 0$ where $A_{\bullet}=\left(A_{n}, a_{n}\right)$, $B_{\bullet}=\left(B_{n}, b_{n}\right)$, and $C_{\bullet}=\left(C_{n}, c_{n}\right)$ are chain complexes. Then we get a long exact sequence of homology

We are now in a position to do so.
Proof. We get a commuting diagram with exact rows

By a weakening of the snake lemma, we get that

$$
Z_{n}\left(A_{\bullet}\right) \rightarrow Z_{n}\left(B_{\bullet}\right) \rightarrow Z_{n}\left(C_{\bullet}\right)
$$

and

$$
A_{n-1} / \operatorname{im}\left(a_{n}\right) \rightarrow B_{n-1} / \operatorname{im}\left(b_{n}\right) \rightarrow C_{n-1} / \operatorname{im}\left(c_{n}\right)
$$

are exact for all $n \in \mathbb{Z}$. One checks that since $0 \rightarrow A_{n} \rightarrow B_{n}$ and $B_{n-1} \rightarrow C_{n-1} \rightarrow 0$ are exact, then so are

$$
0 \rightarrow Z_{n}\left(A_{\bullet}\right) \rightarrow Z_{n}\left(B_{\bullet}\right) \rightarrow Z_{n}\left(C_{\bullet}\right)
$$

and

$$
A_{n-1} / \operatorname{im}\left(a_{n}\right) \rightarrow B_{n-1} / \operatorname{im}\left(b_{n}\right) \rightarrow C_{n-1} / \operatorname{im}\left(c_{n}\right) \rightarrow 0
$$

for all $n \in \mathbb{Z}$.
Claim 4.15. We get an induced map $a_{n}: A_{n} / \operatorname{im}\left(a_{n+1}\right) \rightarrow Z_{n-1}\left(A_{\bullet}\right) \subseteq A_{n-1}$.
Proof. Since $a_{n} \circ a_{n+1}=0$, we get that $\operatorname{im}\left(a_{n+1}\right) \subseteq \operatorname{ker}\left(a_{n}\right)$; hence we get an induced $a_{n}: A_{n} / \operatorname{im}\left(a_{n+1}\right) \rightarrow$ A_{n-1}. But we likewise get $\operatorname{im}\left(a_{n}\right) \subseteq \operatorname{ker}\left(a_{n-1}\right)=Z_{n-1}\left(A_{\bullet}\right)$; so we indeed get an induced map $a_{n}: A_{n} / \operatorname{im}\left(a_{n+1}\right) \rightarrow$ $Z_{n-1}\left(A_{\bullet}\right)$.

Claim 4.15
Likewise we get $b_{n}: B_{n} / \operatorname{im}\left(b_{n+1}\right) \rightarrow Z_{n-1}\left(B_{\bullet}\right)$ and $c_{n}: C_{n} / \operatorname{im}\left(c_{n+1}\right) \rightarrow Z_{n-1}\left(C_{\bullet}\right)$; one checks that the following diagram commutes:

So we have a commuting diagram with exact rows; so the snake lemma yields $\delta_{n}: \operatorname{ker}\left(c_{n}\right) \rightarrow \operatorname{coker}\left(a_{n}\right)$ such that

$$
\operatorname{ker}\left(a_{n}\right) \rightarrow \operatorname{ker}\left(b_{n}\right) \rightarrow \operatorname{ker}\left(c_{n}\right) \xrightarrow{\delta_{n}} \operatorname{coker}\left(a_{n}\right) \rightarrow \operatorname{coker}\left(b_{n}\right) \rightarrow \operatorname{coker}\left(c_{n}\right)
$$

But $H_{n}\left(A_{\bullet}\right)=\operatorname{ker}\left(a_{n}\right) / \operatorname{im}\left(a_{n+1}\right)$ is just the kernel of our induced $a_{n}: A_{n} / \operatorname{im}\left(a_{n+1}\right) \rightarrow Z_{n-1}\left(A_{\bullet}\right)$; likewise we have $H_{n-1}\left(A_{\bullet}\right)=Z_{n-1}\left(A_{\bullet}\right) / B_{n-1}\left(A_{\bullet}\right)=Z_{n-1}\left(A_{\bullet}\right) / \operatorname{im}\left(a_{n}\right)$ is just the cokernel of our induced a_{n}. So we indeed get that the sequence

is exact for all $n \in \mathbb{Z}$.

4.2 Homotopies of complexes

Definition 4.16. Suppose $\alpha, \beta: A_{\bullet} \rightarrow B_{\bullet}$ are two morphisms between the chain complexes $A_{\bullet}=\left(A_{n}, a_{n}\right)$ and $B_{\bullet}=\left(B_{n}, b_{n}\right)$. We say α is homotopic to β (or α is homotopy equivalent to β, written $\alpha \sim \beta$) if for all $n \in \mathbb{Z}$ there is $h_{n-1}: A_{n-1} \rightarrow B_{n}$ (i.e. $h_{n-1} \in \operatorname{hom}_{\mathcal{C}}\left(A_{n-1}, B_{n}\right)$ with no (immediate) additional assumptions on h_{n-1}) such that for all $n \in \mathbb{Z}$ we have

$$
\alpha_{n}-\beta_{n}=h_{n-1} \circ a_{n}+b_{n+1} \circ h_{n}
$$

For illustrative purposes, a diagram with all the maps:

$$
\begin{aligned}
& A_{n+1} \xrightarrow{a_{n+1}} A_{n} \xrightarrow{a_{n}} A_{n-1} \\
& B_{n+1} \xrightarrow{h_{n}} B_{n} \xrightarrow{h_{n+1}}{ }^{h_{n}} B_{n-1}
\end{aligned}
$$

Remark 4.17. ~ is indeed an equivalence relation.
Proof. For reflexivity, take $h_{n}=0_{A_{n}, B_{n-1}}$ for all $n \in \mathbb{Z}$. For symmetry, given ($h_{n}: n \in \mathbb{Z}$) showing that $\alpha \sim \beta$, note that $\left(-h_{n}: n \in \mathbb{Z}\right)$ shows that $\beta \sim \alpha$. For transitivity, given $\left(h_{n}: n \in \mathbb{Z}\right)$ and $\left(\widetilde{h_{n}}: n \in \mathbb{Z}\right)$ such that

$$
\begin{aligned}
\alpha_{n}-\beta_{n} & =h_{n-1} \circ a_{n}+b_{n+1} \circ h_{n} \\
\beta_{n}-\gamma_{n} & =\widetilde{h}_{n-1} \circ a_{n}+b_{n+1} \circ \widetilde{h}_{n}
\end{aligned}
$$

note that

$$
\alpha_{n}-\gamma_{n}=\left(h_{n-1}+\widetilde{h}_{n-1}\right) \circ a_{n}+b_{n+1} \circ\left(h_{n}+\widetilde{h}_{n}\right)
$$

Proposition 4.18. If $\alpha, \beta:\left(A_{n}, a_{n}\right) \rightarrow\left(B_{n}, b_{n}\right)$ are homotopy equivalent then α and β induce the same $\operatorname{maps} H_{n}\left(A_{\bullet}\right) \rightarrow H_{n}\left(B_{\bullet}\right)$.

Proof. It suffices to show that if $\gamma:\left(A_{n}, a_{n}\right) \rightarrow\left(B_{n}, b_{n}\right)$ has $\gamma \sim 0$, then γ induces the 0 map $H_{n}\left(A_{\bullet}\right) \rightarrow$ $H_{n}\left(B_{\bullet}\right)$. Suppose $\gamma_{n}=h_{n-1} \circ a_{n}+b_{n+1} \circ h_{n}$ for some $h_{n}: A_{n} \rightarrow B_{n+1}$. In diagram:

Well, $H_{n}\left(A_{\bullet}\right)=Z_{n}\left(A_{\bullet}\right) / B_{n}\left(A_{\bullet}\right)=\operatorname{ker}\left(a_{n}\right) / \operatorname{im}\left(a_{n+1}\right)$, and likewise we have $H_{n}\left(B_{\bullet}\right)=\operatorname{ker}\left(b_{n}\right) / \operatorname{im}\left(b_{n+1}\right) ;$ the induced map $\gamma: \operatorname{ker}\left(a_{n}\right) / \operatorname{im}\left(a_{n+1}\right) \rightarrow \operatorname{ker}\left(b_{n}\right) / \operatorname{im}\left(b_{n+1}\right)$ is then given by $x+\operatorname{im}\left(a_{n+1}\right) \mapsto \gamma_{n}(x)+$ $\operatorname{im}\left(b_{n+1}\right)$. To show that γ induces the 0 map, we must show that $\gamma_{n}\left(\operatorname{ker}\left(a_{n}\right)\right) \subseteq \operatorname{im}\left(b_{n+1}\right)$. Take $x \in A_{n}$ such that $a_{n}(x)=0$. Then

$$
\gamma_{n}(x)=h_{n-1}\left(a_{n}(x)\right)+b_{n+1}\left(h_{n}(x)\right)+\operatorname{im}\left(b_{n+1}\right)=h_{n-1}(0)+\operatorname{im}\left(b_{n+1}\right)=\operatorname{im}\left(b_{n+1}\right)
$$

as desired.
Proposition 4.18
A key proposition:
Proposition 4.19. Suppose F_{\bullet} is

$$
\cdots \rightarrow F_{i} \xrightarrow{\varphi_{i}} F_{i-1} \xrightarrow{\varphi_{i-1}} \cdots \xrightarrow{\varphi_{1}} F_{0} \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

and $G \bullet$ is

$$
\cdots \rightarrow G_{i} \xrightarrow{\psi_{i}} G_{i-1} \xrightarrow{\psi_{i-1}} \cdots \xrightarrow{\psi_{1}} G_{0} \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

i.e. two chain complexes in an abelian category \mathcal{C}. (We will work in R-Mod.) Suppose for all i we have F_{i} and G_{i} are projective objects. In addition, let

$$
\begin{aligned}
M & =\operatorname{coker}\left(\varphi_{1}\right)
\end{aligned}=H_{0}\left(F_{\bullet}\right)
$$

and suppose that $H_{i}\left(G_{\bullet}\right)=0$ for all $i>0$. Then any $\beta: M \rightarrow N$ is induced by a chain map $\alpha: F_{\bullet} \rightarrow G_{\bullet}$. Moreover, α is uniquely determined by β up to homotopy equivalence.

Proof. We proceed by induction.
(Existence) We have two exact sequences

$$
F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\pi_{F}} M \rightarrow 0
$$

and

$$
G_{1} \xrightarrow{\psi_{1}} G_{0} \xrightarrow{\pi_{G}} N \rightarrow 0
$$

So, since F_{0} is projective, there is some $\alpha_{0}: F_{0} \rightarrow G_{0}$ such that $\pi_{G} \circ \alpha_{0}=\beta \circ \pi_{F}$; i.e. such that the following diagram commutes:

Now, $\alpha_{0} \circ \varphi_{1}: F_{1} \rightarrow G_{0}$. Also

$$
\pi_{G} \circ \alpha_{0} \circ \varphi_{1}=\beta \circ \pi_{F} \circ \varphi_{1}=\beta \circ 0=0
$$

by exactness; so $\operatorname{im}\left(\alpha_{0} \circ \varphi_{1}\right) \subseteq \operatorname{ker}\left(\pi_{G}\right)=\operatorname{im}\left(\psi_{1}\right)$. So, since F_{1} is projective, there is some $\alpha_{1}: F_{1} \rightarrow G_{1}$ such that $\psi_{1} \circ \alpha_{1}=\alpha_{0} \circ \varphi_{1}$; i.e. such that the following diagram commutes:

Continuing in this manner, and using the fact that $H_{i}\left(G_{\bullet}\right)=0$ for all $i>0$, we get a chain map $\alpha: F_{\bullet} \rightarrow G_{\bullet}$. Moreover, $\alpha_{0}: F_{0} / \operatorname{im}\left(\varphi_{1}\right) \rightarrow G_{0} / \operatorname{im}\left(\psi_{1}\right)$ has

$$
\alpha_{0}\left(x+\operatorname{im}\left(\varphi_{1}\right)\right)=\alpha_{0}(x)+\operatorname{im}\left(\alpha_{0} \circ \varphi_{1}\right)=\alpha_{0}(x)+\operatorname{im}\left(\psi_{1} \circ \alpha_{1}\right)
$$

for $x \in F_{0}$. But $\pi_{G} \circ \alpha_{0}=\beta \circ \pi_{F}$; so $\pi_{G}\left(\alpha_{0}(x)\right)=\beta\left(x+\operatorname{im}\left(\varphi_{1}\right)\right)$, and

$$
\alpha_{0}\left(x+\operatorname{im}\left(\varphi_{1}\right)\right)=\alpha_{0}(x)+\operatorname{im}\left(\psi_{1}\right)=\beta(x)+\operatorname{im}\left(\psi_{1}\right)
$$

So β is induced by the chain map $\alpha: F_{\bullet} \rightarrow G_{\bullet}$.
(Uniqueness) Suppose $\alpha, \alpha^{\prime}: F_{\bullet} \rightarrow G_{\bullet}$ both induce β; we must show that $\alpha \sim \alpha^{\prime}$. This reduces to showing that if $\gamma: F_{\bullet} \rightarrow G_{\bullet}$ induces $0_{M, N}: M \rightarrow N$, then $\gamma \sim 0$; we may thus assume that $\beta: M \rightarrow N$ is the 0 map. Our picture is

where $h_{0}: F_{0} \rightarrow G_{1}$ is the map we wish to find.
Claim 4.20. $\operatorname{im}\left(\gamma_{0}\right) \subseteq \operatorname{im}\left(\psi_{1}\right)=\operatorname{ker}\left(\pi_{G}\right)$.
Proof. Well, $\pi_{G} \circ \gamma_{0}=0 \circ \pi_{F}=0 ;$ so $\operatorname{im}\left(\gamma_{0}\right) \subseteq \operatorname{ker}\left(\pi_{G}\right)=\operatorname{im}\left(\psi_{1}\right)$. Claim 4.20

So, since F_{0} is projective, there is $h_{0}: F_{0} \rightarrow G_{1}$ such that $\gamma_{0}=\psi_{1} \circ h_{0}$; in (commuting) diagram:

We must now produce $h_{1}: F_{1} \rightarrow G_{2}$ such that $\psi_{2} \circ h_{1}+h_{0} \circ \varphi_{1}=\gamma_{1}$. But $\gamma_{0}=\psi_{1} \circ h_{0}$; so

$$
\psi_{1} \circ\left(h_{0} \circ \varphi_{1}-\gamma_{1}\right)=\psi_{1} \circ h_{0} \circ \varphi_{1}-\psi_{1} \circ \gamma_{1}=\gamma_{0} \circ \varphi_{1}-\psi_{1} \circ \gamma_{1}=0
$$

since γ is a morphism of chain complexes. So $\operatorname{im}\left(h_{0} \circ \varphi_{1}-\gamma_{1}\right) \subseteq \operatorname{ker}\left(\psi_{1}\right)=\operatorname{im}\left(\psi_{2}\right)$. So, since F_{1} is projective, we get $h_{1}: F_{1} \rightarrow G_{2}$ such that $-h_{0} \circ \varphi_{1}+\gamma_{1}=\psi_{2} \circ h_{1}$, as in the following commuting diagram:

Then $\gamma_{1}=\psi_{2} \circ h_{1}+h_{0} \circ \varphi_{1}$. Continuing in this manner, we get a homotopy $\gamma \sim 0$.Proposition 4.19

4.3 Projective resolution

Suppose \mathcal{C} is an abelian category with enough projectives (respectively, enough injectives); i.e. for all $C \in$ $\mathrm{Ob}(\mathcal{C})$ there is a projective $P \in \mathrm{Ob}(\mathcal{C})$ and an epi $P \rightarrow C$ (respectively, an injective I and a mono $C \hookrightarrow I$). Then we can make a projective resolution of $C \in \operatorname{Ob}(\mathcal{C})$: an exact sequence

$$
\cdots \rightarrow P_{2} \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \rightarrow C \rightarrow 0
$$

with each P_{i} projective.
Why must this exist? We work in R-Mod. Then there is a projective P_{0} with an epi $\varphi_{0}: P_{0} \rightarrow C$; we get a short exact sequence $0 \rightarrow K_{0} \rightarrow P_{0} \rightarrow C \rightarrow 0$. Let $K_{0}=\operatorname{ker}\left(\varphi_{0}\right)$. Then there is a projective P_{1} and an epi $\varphi: P_{1} \rightarrow K_{0}$; then

$$
P_{1} \xrightarrow{\varphi_{1}} P_{0} \xrightarrow{\varphi_{0}} C \rightarrow 0
$$

is exact since $\operatorname{im}\left(\varphi_{1}\right)=K_{0}=\operatorname{ker}\left(\varphi_{0}\right)$. Let $K_{1}=\operatorname{ker}\left(\varphi_{1}\right)$; then

$$
0 \rightarrow K_{1} \rightarrow P_{1} \rightarrow P_{0} \rightarrow C \rightarrow 0
$$

is exact. We can find a projective P_{2} and an epi $\varphi_{2}: P_{2} \rightarrow K_{1}$. Then

$$
P_{2} \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \rightarrow C \rightarrow 0
$$

is exact. And so on.
Similarly, if we have enough injectives, we get an injective resolution of C : an exact sequence

$$
0 \rightarrow C \rightarrow I_{0} \rightarrow I_{1} \rightarrow I_{2} \rightarrow \cdots
$$

with each I_{i} injective.
Theorem 4.21. Let $C \in \mathrm{Ob}(\mathcal{C})$. If

$$
\cdots \rightarrow P_{2} \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \xrightarrow{\varphi_{0}} C \rightarrow 0
$$

and

$$
\cdots \rightarrow Q_{2} \xrightarrow{\psi_{2}} Q_{1} \xrightarrow{\psi_{1}} Q_{0} \xrightarrow{\psi_{0}} C \rightarrow 0
$$

are two projective resolutions of C. Then

1. The chain complexes P_{\bullet} and $Q \bullet$ given by

$$
\cdots \rightarrow P_{2} \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \rightarrow 0 \rightarrow \cdots
$$

and

$$
\cdots \rightarrow Q_{2} \xrightarrow{\psi_{2}} Q_{1} \xrightarrow{\psi_{1}} Q_{0} \rightarrow 0 \rightarrow \cdots
$$

respectively are homotopy equivalent.
2. If \mathcal{D} is an abelian category and $F: \mathcal{C} \rightarrow \mathcal{D}$ is an additive functor, then for all i we have $H_{i}\left(F P_{\mathbf{\bullet}}\right) \cong$ $H_{i}\left(F Q_{\bullet}\right)$.

Remark 4.22. FP• and $F Q_{\bullet}$ given by

$$
\cdots \rightarrow F P_{2} \xrightarrow{F \varphi_{2}} F P_{1} \xrightarrow{F \varphi_{1}} F P_{0} \rightarrow 0 \rightarrow \cdots
$$

and

$$
\cdots \rightarrow F Q_{2} \xrightarrow{F \psi_{2}} F Q_{1} \xrightarrow{F \psi_{1}} F Q_{0} \rightarrow 0 \rightarrow \cdots
$$

are indeed chain complexes, since

$$
\left(F \varphi_{i}\right) \circ\left(F \varphi_{i+1}\right)=F\left(\varphi_{i} \circ \varphi_{i+1}\right)=F(0)=0
$$

since F is additive.
Proof of Theorem 4.21. By our last result, there are $\alpha: P_{\bullet} \rightarrow Q_{\bullet}$ and $\beta: Q_{\bullet} \rightarrow P_{\bullet}$ such that α, β induce $\operatorname{id}_{C}: C \rightarrow C$; we get the following commuting diagram:

So $\beta \circ \alpha: P_{\bullet} \rightarrow P_{\bullet}$ induces $\operatorname{id}_{C}: C \rightarrow C$. But $\operatorname{id}_{P_{\bullet}}: P_{\bullet} \rightarrow P_{\bullet}$ also induces id ${ }_{C}: C \rightarrow C$. So $\beta \circ \alpha \sim \operatorname{id}_{P_{\bullet}}$. Similarly, we get that $\alpha \circ \beta \sim \operatorname{id}_{Q}$. We get the following diagram:

So there are $h_{i}: P_{i} \rightarrow P_{i+1}$ such that $\beta_{i} \circ \alpha_{i}-\operatorname{id}_{P_{i}}=\varphi_{i+1} \circ h_{i}+h_{i-1} \circ \varphi_{i}$. Applying F everywhere, we find that

$$
F\left(\beta_{i}\right) \circ F\left(\alpha_{i}\right)-\operatorname{id}_{F\left(P_{i}\right)}=F\left(\varphi_{i+1}\right) \circ F\left(h_{i}\right)+F\left(h_{i-1}\right) \circ F\left(\varphi_{i}\right)
$$

So $F\left(h_{i}\right): F P_{i} \rightarrow F P_{i+1}$ show that

$$
\begin{aligned}
& F(\alpha): F P_{\bullet} \rightarrow F Q_{\bullet} \\
& F(\beta): F Q_{\bullet} \rightarrow F P_{\bullet}
\end{aligned}
$$

satisfy $F(\beta) \circ F(\alpha) \sim \operatorname{id}_{F\left(P_{\bullet}\right)}$. Similarly, we get $F(\alpha) \circ F(\beta) \sim \operatorname{id}_{F\left(Q_{\bullet}\right)}$. So $F(\beta) \circ F(\alpha)$ and $\operatorname{id}_{F\left(P_{\bullet}\right)}$ induce the same map (i.e. the identity map) from $H_{i}\left(F P_{\bullet}\right) \rightarrow H_{i}\left(F P_{\bullet}\right)$. Similarly, $F(\alpha) \circ F(\beta)$ induces the identity
 So $\beta \circ \alpha \sim \operatorname{id}_{P_{\bullet}}$. Theorem 4.21

We then say that the map $P_{\bullet} \rightarrow Q_{\bullet}$ is a quasi-isomorphism; i.e. the induced maps $H_{i}\left(P_{\bullet}\right) \rightarrow H_{i}\left(Q_{\bullet}\right)$ are isomorphisms.

5 Derived functors

Suppose we have $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ exact, and suppose that F is a right-exact additive functor. (e.g. in R-Mod, if M is a right R-module, we could take $F=M \otimes_{R}-: R$ - Mod $\rightarrow \mathbf{A b}$.) We know

$$
0 \rightarrow K \rightarrow F A \xrightarrow{F f} F B \xrightarrow{F g} F C \rightarrow 0
$$

is exact for some K; we'd like to understand K. e.g. if $N_{1} \stackrel{i}{\hookrightarrow} N_{2}$ in R-Mod, what is

$$
\operatorname{ker}\left(M \otimes_{R} N_{1} \xrightarrow{\mathrm{id} \otimes_{R} i} M \otimes_{R} N_{2}\right) ?
$$

As we'll see, there is a first left-derived functor $L_{1} F$ satisfying

$$
L_{1} F C \xrightarrow{\delta} F A \xrightarrow{F f} F B \xrightarrow{F g} F C \rightarrow 0
$$

In fact the object $L_{1} F C$ is independent of f and g; it merely requires that $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be exact.
Definition 5.1. Suppose \mathcal{C} and \mathcal{D} are abelian categories; suppose \mathcal{C} has enough projectives. Suppose $F: \mathcal{C} \rightarrow \mathcal{D}$ is right-exact and additive. Suppose $A \in \mathrm{Ob}(\mathcal{C})$; let

$$
\cdots P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0
$$

be a projective resolution. From this we obtain a chain complex P_{\bullet} consisting of

$$
\cdots P_{2} \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \xrightarrow{\varphi_{0}} 0 \rightarrow 0 \rightarrow \cdots
$$

to which we can apply F to get another chain complex $F P_{\bullet}$ consisting of

$$
\cdots F P_{2} \xrightarrow{F \varphi_{2}} F P_{1} \xrightarrow{F \varphi_{1}} F P_{0} \xrightarrow{F \varphi_{0}} 0 \rightarrow \cdots
$$

We then define $L_{i} F(A)=H_{i}\left(F P_{\bullet}\right) ; L_{i} F$ is called the $i^{\text {th }}$ left-derived functor of F.
Why is this well-defined? Well, if P_{\bullet} and P_{\bullet}^{\prime} are two chain complexes arising from projective resolutions of A, then there are $u: P_{\bullet} \rightarrow P_{\bullet}^{\prime}$ and $v: P_{\bullet}^{\prime} \rightarrow P_{\bullet}$ with $v \circ u \sim \operatorname{id}_{P_{\bullet}}$ and $u \circ v \sim \operatorname{id}_{P_{\bullet}}$. Then $F(u): F P_{\bullet} \rightarrow F P_{\bullet}^{\prime}$ and $F(v): F P_{\bullet}^{\prime} \rightarrow F P_{\bullet}$ have $F(u) \circ F(v)=F(u \circ v) \sim F\left(\operatorname{id}_{P_{\bullet}^{\prime}}\right)=\operatorname{id}_{F P_{\bullet}^{\prime}}$. Similarly, we have $F(v) \circ F(u) \sim \operatorname{id}_{F P_{\bullet}}$. So $F(u)$ yields a quasi-isomorphism; in particular, we have $H_{i}\left(F P_{\bullet}\right) \cong H_{i}\left(F P_{\bullet}^{\prime}\right)$, and $L_{i} F(A)$ is well-defined.

If $f: A \rightarrow B$, what is $L_{1} F(f)$? Well, if

$$
\cdots P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0
$$

and

$$
\cdots Q_{2} \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow B \rightarrow 0
$$

are projective resolutions of A and B respectively, then there is $\theta: P_{\bullet} \rightarrow Q_{\bullet}$ such that θ induces f in $H_{0}\left(P_{\bullet}\right) \rightarrow H_{0}\left(Q_{\bullet}\right)$. We then set $L_{i} F(f)$ to be the map $H_{i}\left(F P_{\bullet}\right) \rightarrow H_{i}\left(F Q_{\bullet}\right)$ induced by $F(\theta): F P_{\bullet} \rightarrow F Q_{\bullet}$. One checks that this is well-defined; one uses the fact that given two chain complexes P_{\bullet} and P_{\bullet}^{\prime} arising from projective resolutions of A, we have that θ gives a canonical isomorphism $H_{i}\left(P_{\bullet}\right) \rightarrow H_{i}\left(P_{\bullet}^{\prime}\right)$.

We saw that $L_{i} F A$ is independent of choice of projective resolution; we also have
Theorem 5.2. $L_{0} F=F$.
Proof. There is $\varphi: P_{0} \rightarrow A$ such that

$$
P_{2} \xrightarrow{\varphi_{2}} P_{1} \xrightarrow{\varphi_{1}} P_{0} \xrightarrow{\varphi} A \rightarrow 0
$$

is exact. But F is right-exact; so if $K=\operatorname{ker}(\varphi)$, then since $0 \rightarrow K \rightarrow P_{0} \rightarrow A \rightarrow 0$ is exact, we get that

$$
F K \rightarrow F P_{0} \rightarrow F A \rightarrow 0
$$

is exact. We also have that $P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0$ is exact; so

$$
F P_{1} \rightarrow F P_{0} \rightarrow F A \rightarrow 0
$$

is exact. What is $L_{0} F$? The $0^{\text {th }}$ homology of

$$
\cdots F P_{1} \xrightarrow{F \varphi_{1}} F P_{0} \rightarrow 0 \rightarrow \cdots
$$

i.e. $L_{0} F A=F P_{0} / \operatorname{im}\left(F P_{1}\right)$. But $\operatorname{im}\left(F P_{1}\right)=\operatorname{ker}(F \varphi)$; so $L_{0} F A \cong F P_{0} / \operatorname{ker}(F \varphi) \cong A$.
\square Theorem 5.2

Theorem 5.3. If A is projective then $L_{i} F A=0$ for all $i \geq 1$.
Proof. Notice

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow A \xrightarrow{\mathrm{id}_{A}} A \rightarrow 0
$$

is a projective resolution of A; we get the chain complex P_{\bullet} consisting of

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow A \rightarrow 0 \rightarrow \cdots
$$

Applying F, we get the chain complex

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow F A \rightarrow 0 \rightarrow \cdots
$$

So $H_{i}\left(F P_{\bullet}\right)=0$ for all $i \geq 1$; so $L_{i} F A=0$ for all $i \geq 1$.
Theorem 5.4. Suppose F is right-exact and additive; suppose $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is a short exact sequence. Then there is a long exact sequence

where $\delta: L_{i} F C \rightarrow L_{i-1} F A$.
Proof. Fix chain complexes P_{\bullet} and Q_{\bullet} arising from projective resolutions of A and C, respectively; we'd like to find a projective resolution $\cdots U_{2} \rightarrow U_{1} \rightarrow U_{0} \rightarrow B \rightarrow 0$ of B such that the following diagram has exact columns:

i.e. such that $0 \rightarrow P_{\bullet} \xrightarrow{\theta} U_{\bullet} \xrightarrow{\tau} Q_{\bullet} \rightarrow 0$ is exact and θ induces $f: A \rightarrow B$ on $\left.H_{0}\left(P_{\bullet}\right) \rightarrow U_{\bullet}\right)$ and τ induces $g: B \rightarrow C$ on $H_{0}\left(U_{\bullet}\right) \rightarrow H_{0}\left(Q_{\bullet}\right)$.

Claim 5.5. We can find such U_{\bullet}, θ, and τ.
Proof. At the first stage, we need to find U_{0} and maps θ_{0}, τ_{0} and χ_{0} such that the following diagram
commutes:

How do we find such U_{0}, θ_{0}, and τ_{0} ? Well, Q_{0} is projective; so we have $h_{0}: Q_{0} \rightarrow B$ such that $g \circ h_{0}=\psi_{0}$; i.e. such that the following diagram commutes:

Let $k_{0}=f \circ \varphi_{0}: P_{0} \rightarrow B$. Let $U_{0}=P_{0} \oplus Q_{0}$; let

$$
\begin{array}{r}
\chi_{0}=k_{0}+h_{0}: P_{0} \oplus Q_{0} \rightarrow B \\
\theta_{0}=i: P_{0} \rightarrow P_{0} \oplus Q_{0} \\
\tau_{0}=\pi: P_{0} \oplus Q_{0} \rightarrow Q_{0}
\end{array}
$$

Working in R-Mod, we note that the following diagram commutes:

Indeed, for the top square, if $p \in P_{0}$ then going one way we get

$$
p \mapsto \varphi_{0} \mapsto f\left(\varphi_{0}(p)\right)=k_{0}(p)
$$

and going the other way we get

$$
p \mapsto(p, 0) \mapsto k_{0}(p)
$$

For the bottom square, if $(p, q) \in P_{0} \oplus Q_{0}$, then going one way we get

$$
(p, q) \mapsto k_{0}(p)+h_{0}(q) \mapsto g\left(k_{0}(p)\right)+g\left(h_{0}(q)\right)=\psi_{0}(q)+g\left(f\left(\varphi_{0}(p)\right)\right)=\psi_{0}(q)
$$

and going the other way we get

$$
(p, q) \mapsto q \mapsto \psi_{0}(q)
$$

We do one more iteration. We now wish to find U_{1} and maps θ_{1}, τ_{1}, and χ_{1} such that the following diagram commutes:

We let $U_{1}=P_{1} \oplus Q_{1}$, and define the maps by

$$
\begin{gathered}
\chi_{1}=k_{1}+h_{1}: P_{1} \oplus Q_{1} \rightarrow \operatorname{ker}\left(\chi_{0}\right) \\
\theta_{1}=i: P_{1} \rightarrow P_{1} \oplus Q_{1} \\
\tau_{1}=\pi: P_{1} \oplus Q_{1} \rightarrow Q_{1}
\end{gathered}
$$

One checks that the diagram does indeed commute. Continuing in this way, we get the desired result.
Claim 5.5
Now, apply F to $0 \rightarrow P_{\bullet} \xrightarrow{\theta} U_{\bullet} \xrightarrow{\tau} Q_{\bullet} \rightarrow 0$.
Claim 5.6. $0 \rightarrow F P_{i} \rightarrow F U_{i} \rightarrow F Q_{i} \rightarrow 0$ is exact for all i.
Proof. It suffices to show that if

$$
0 \rightarrow P \rightarrow U \rightarrow Q \rightarrow 0
$$

is a short exact sequence of projective objects, then

$$
0 \rightarrow F P \rightarrow F U \rightarrow F Q \rightarrow 0
$$

is exact. Why? Well, since Q is projective, we have a section $s: Q \rightarrow U$ of τ :

Then $\operatorname{id}_{U}-s \circ \tau: U \rightarrow U$ satisfies

$$
\tau \circ\left(\operatorname{id}_{U}-s \circ \tau\right)=\tau-\tau \circ s \circ \tau=\tau-\operatorname{id}_{Q} \circ \tau=0
$$

So $\operatorname{id}_{U}-s \circ \tau$ maps to $\operatorname{ker}(\tau)=\operatorname{im}(\theta)$, and there is $t: U \rightarrow P$ such that $\theta \circ t=\mathrm{id}_{U}-s \circ \tau$:

$$
0 \longrightarrow P \xrightarrow{\substack{k^{\prime-}-\frac{1}{t}}} \stackrel{{ }^{\prime} \operatorname{id}_{U}-s \circ \tau}{U} \xrightarrow{\tau} Q \longrightarrow 0
$$

We now apply F. Since F is right exact, we get

$$
F P \xrightarrow{F \theta} F U \xrightarrow{F \tau} F Q \rightarrow 0
$$

is exact; we also have $F t: F U \rightarrow F P$ and $F s: F Q \rightarrow F U$. I think at this point we just use the fact that since Q is projective, we have a retraction of θ, which then lifts to a retraction of $F \theta$.

TODO 7. Do we still need all the work with s and t ?
Claim 5.6
So $0 \rightarrow F P_{\bullet} \rightarrow F U_{\bullet} \rightarrow F Q_{\bullet} \rightarrow 0$ is exact; so we get a long exact sequence of homology

i.e. we have an exact sequence

as desired.
\square Theorem 5.4
Remark 5.7. We have been using the fact that if \mathcal{C}, \mathcal{D} are abelian categories and $F: \mathcal{C} \rightarrow \mathcal{D}$ is additive, then $F\left(0_{\mathcal{C}}\right)=0_{\mathcal{D}}$. The reason for this is that if $A=F\left(0_{\mathcal{C}}\right)$, then $\operatorname{id}_{A}=F\left(\mathrm{id}_{0_{\mathcal{C}}}\right)=F(0)=0$. So $F(A)$ is an initial object, since any $f \in \operatorname{hom}_{\mathcal{D}}(A, B)$ satisfies $f=f \circ \operatorname{id}_{A}=f \circ 0=0$; likewise we get that A is a terminal object, and hence that $F(A)=0_{\mathcal{D}}$.
Remark 5.8. Suppose \mathcal{C} has enough injectives. Suppose $G: \mathcal{C} \rightarrow \mathcal{D}$ is additive and left-exact. If $C \in \operatorname{Ob}(\mathcal{C})$, we get an injective resolution

$$
0 \rightarrow C \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots
$$

Applying G, we get

$$
0 \rightarrow G C \rightarrow G I^{0} \rightarrow G I^{1} \rightarrow \cdots
$$

and hence we get a chain complex I^{\bullet} given by

$$
0 \rightarrow G I^{0} \rightarrow G I^{1} \rightarrow \cdots
$$

We then define $R^{i} G(C)=H^{i}\left(G I^{\bullet}\right)$. We get

1. $R^{0} G=G$.
2. C injective implies $R^{i} G C=0$ for $i>0$.
3. If $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is exact, then we get a long exact sequence of homology

4. Given

We get that the following diagram commutes:

$$
\begin{aligned}
& R^{i} G C^{\prime} \xrightarrow{\left(\delta^{\prime}\right)^{i}} R^{i+1} G A^{\prime}
\end{aligned}
$$

Remark 5.9. The above results allow us to recover $L_{i} F A$ for all $i \geq 0$ and for all $A \in \operatorname{Ob}(\mathcal{C})$. Indeed, we have $L_{0} F A=F A$; suppose now that we know $L_{i} F A$ for all $i<n$. Then we can put A in a short exact sequence $0 \rightarrow K \rightarrow P \rightarrow A \rightarrow 0$ where P is projective; so we get a long exact sequence of homology

So $L_{2} F A \cong L_{1} F K$, and $L_{3} F A \cong L_{2} F K$, and so forth. So knowing $L_{i} F K$ gives us $L_{i+1} F A$ for all $i \geq 1$; we can obtain $L_{1} F A$ from the exact sequence

$$
0 \rightarrow L_{1} F A \rightarrow F K \rightarrow F P \rightarrow F A \rightarrow 0
$$

6 Tor

Suppose R is a ring; consider R-Mod, the category of left R-modules. Suppose M is a right R-module and a left S-module (typically $S=\mathbb{Z}$). Then we get a functor $F: R$ - Mod $\rightarrow S$-Mod given by $N \mapsto M \otimes_{R} N$. Then F is right-exact and additive.
Definition 6.1. We define $\operatorname{Tor}_{i}^{R}(M, N)=L_{i} F N$. (i.e. $\operatorname{Tor}_{i}^{R}(M,-)=L_{i} F$.)
Remark 6.2. Tor measures how close M is to being flat.
Theorem 6.3. the following are equivalent:

1. M is flat.
2. $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i \geq 1$ and all $N \in \operatorname{Ob}(R-M o d)$.
3. $\operatorname{Tor}_{1}^{R}(M, N)=0$ for all $N \in \operatorname{Ob}(R$-Mod $)$.

Proof.
$\underline{\mathbf{(1)} \Longrightarrow(2)}$ Take a left R-module N and a projective resolution

$$
\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow N \rightarrow 0
$$

Then since M is flat and the resolution is exact, we get that

$$
\cdots \rightarrow M \otimes_{R} P_{1} \rightarrow M \otimes_{R} P_{0} \rightarrow M \otimes_{R} N \rightarrow 0
$$

is still exact. So $H_{i}\left(F\left(P_{\bullet}\right)\right)=0$ for all $i \geq 1$; so $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i \geq 1$.
$\xrightarrow{(2)} \Longrightarrow(3)$ Immediate.
$\mathbf{(3)} \Longrightarrow \mathbf{(1)}$ Suppose that $\operatorname{Tor}_{1}^{R}(M, N)=0$ for all $N \in \operatorname{Ob}(R$-Mod); suppose $0 \rightarrow A \rightarrow B$ is exact. Let C be the cokernel of $A \rightarrow B$; so $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact. Applying $M \otimes_{R}-$ and taking the long exact sequence of homology, we find that

But $\operatorname{Tor}_{1}^{R}(M, C)=0$. So $0 \rightarrow M \otimes_{R} A \rightarrow M \otimes_{R} B \rightarrow M \otimes_{R} C \rightarrow 0$ is exact; so M is flat. \square Theorem 6.3

In algebraic geometry, Tor is used to give a measure of "intersection"; see Serre's formula.
Example 6.4. Consider $R=\mathbb{C}[x]$; consider $M=\mathbb{C}[x] /(f(x))$ and $N=\mathbb{C}[x] /(g(x))$. Then N fits into a short exact sequence

$$
0 \rightarrow(g(x)) \rightarrow \mathbb{C}[x] \rightarrow \mathbb{C}[x] /(g(x)) \rightarrow 0
$$

Since $(g(x))$ is principal, we get that it is isomorphic as an $\mathbb{C}[x]$-module to $\mathbb{C}[x]$. So we get a free resolution of N

$$
0 \rightarrow \mathbb{C}[x] \xrightarrow{m} \mathbb{C}[x] \xrightarrow{\pi} N \rightarrow 0
$$

(where $m(p)=p g$). Tensoring with M, we get a chain complex C • given by

$$
\cdots \rightarrow 0 \rightarrow M \otimes_{\mathbb{C}[x]} \mathbb{C}[x] \rightarrow M \otimes_{\mathbb{C}[x]} \mathbb{C}[x] \rightarrow 0
$$

So $\operatorname{Tor}_{i}^{R}(M, N)=H_{i}\left(C_{\bullet}\right)$. In particular, we have $H_{i}\left(C_{\bullet}\right)=0$ for all $i \geq 2$; so $\operatorname{Tor}_{i}^{R}(M, N)=0$ for all $i \geq 2$.
For $\operatorname{Tor}_{0}^{R}(M, N)$, note that the map $M \otimes_{C[x]} \mathbb{C}[x] \rightarrow M \otimes_{\mathbb{C}[x]} \mathbb{C}[x]$ can be expressed as a map $M \rightarrow M$ given by $a \mapsto g(x) a$. Then $\operatorname{Tor}_{0}^{R}(M, N)$ is the kernel of the zero map modulo the image of this map; i.e. $M / g(x) M$. Since $M=\mathbb{C}[x] /(f(x))$, we note that $M / g(x) M=\mathbb{C}[x] /(f(x), g(x))$. In particular, if $h=\operatorname{gcd}(f, g)$, then $M \otimes_{R} N=\operatorname{Tor}_{0}(M, N)=\mathbb{C}[x] /(h(x))$.

For $\operatorname{Tor}_{1}^{R}(M, N)$, we are interested in the homology at the left $M \otimes_{\mathbb{C}}[x] \mathbb{C}[x]$. But the incoming map is the $0 \mathrm{map} ;$ so $\operatorname{Tor}_{i}^{R}(M, N)=\operatorname{ker}(m)$. Writing $M=\mathbb{C}[x] /(f(x))$, we see that

$$
\operatorname{Tor}_{1}^{R}(M, N)=\{a(x)+(f(x)): f(x) \mid a(x) g(x)\}=\{a(x)+(f(x)): f(x) \mid a(x) h(x)\}
$$

Writing $f(x)=s(x) h(x)$, we see that $\operatorname{Tor}_{1}^{R}(M, N)=(s(x)) /(f(x))$. Indeed, as we will see on assignment 4, we in general have that $\operatorname{Tor}_{1}^{R}(R / I, R / J) \cong I \cap J / I J$.

Theorem 6.5 (Flatness criteria). Suppose R is a ring; suppose M is a right R-module. Then the following are equivalent:

1. M is flat.
2. $M \otimes_{R} I \rightarrow M=M \otimes_{R} R$ is injective for all left ideals $I \varsubsetneqq R$.
3. $\operatorname{Tor}_{1}^{R}(M, R / I)=0$ for all left ideals $I \varsubsetneqq R$.

Proof.
$(1) \Longrightarrow(2)$ Immediate.
$\underline{(2) \Longrightarrow(3)}$ Suppose we have a left ideal $I \varsubsetneqq R$. Then the exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ yields an exact sequence

But $M \otimes_{R} I \rightarrow M \otimes_{R} R$ is injective; so $\operatorname{Tor}_{1}^{R}(M, R / I)=0$.
$\underline{(3) \Longrightarrow(1)}$ Suppose (3) holds but M is not flat. Then there are left R-modules $N^{\prime} \subseteq N$ such that $M \otimes_{R}$ $N^{\prime} \rightarrow M \otimes_{R} N$ is not injective. We make the following reductions:
Claim 6.6. Without loss of generality, we may assume N^{\prime} is finitely generated.
Proof. Well, there is a non-zero $x \in M \otimes_{R} N^{\prime}$ such that $\varphi(x)=0$ in $M \otimes_{R} N$. Write

$$
x=m_{1} \otimes_{R} n_{1}+\cdots+m_{k} \otimes_{R} n_{k}
$$

where $n_{1}, \ldots, n_{k} \in N^{\prime}$ and $m_{1}, \ldots, m_{k} \in M$. Let $N_{0} \subseteq N^{\prime}$ be $R n_{1}+\cdots+R n_{k}$. Then x has some preimage $x_{0} \in M \otimes_{R} N_{0}$ (under $M \otimes_{R} N_{0} \rightarrow M \otimes_{R} N^{\prime}$); then we have $N_{0} \subseteq N^{\prime} \subseteq N$ and the map $M \otimes_{R} N_{0} \rightarrow M \otimes_{R} N$ factors through $M \otimes_{R} N^{\prime}$, and in particular has $x_{0} \neq 0$ in the kernel. So we can instead consider $N_{0} \subseteq N$ and $x_{0} \in \operatorname{ker}\left(M \otimes_{R} N_{0} \rightarrow M \otimes_{R} N\right)$.

Claim 6.6
Claim 6.7. We may assume N is finitely generated.
Proof. Consider $\varphi: M \otimes_{R} N_{0} \rightarrow M \otimes_{R} N$; then $0 \neq x=m_{1} \otimes_{R} n_{1}+\cdots+m_{k} \otimes_{R} n_{k} \in \operatorname{ker}(\varphi)$. Notice that $M \otimes_{R} N$ is a free \mathbb{Z}-module on symbols (m, n) modulo relations of the form

$$
\begin{aligned}
(m r, n)-(m, r n) & =0 \\
\left(m_{1}+m_{2}, n\right)-\left(m_{1}, n\right)-\left(m_{2}, n\right) & =0 \\
\left(m, n_{1}+n_{2}\right)-\left(m, n_{1}\right)-\left(m, n_{2}\right) & =0
\end{aligned}
$$

So if $x=0$ in $M \otimes_{R} N$, then we can capture that fact using only finitely many relations from the above; say using (not in order)

$$
\begin{gathered}
\left(\widetilde{m_{1}} r_{1}, \widetilde{n_{1}}\right)-\left(\widetilde{m_{1}}, r_{1} \widetilde{n_{1}}\right) \\
\vdots \\
\left(\widetilde{m_{s}} r_{s}, \widetilde{n_{s}}\right)-\left(\widetilde{m_{s}}, r_{s} \widetilde{n_{s}}\right) \\
\left(m_{11}+m_{21}, n_{1}^{\prime}\right)-\left(m_{11}, n_{1}^{\prime}\right)-\left(m_{21}, n_{1}^{\prime}\right) \\
\vdots \\
\left(m_{1 j}+m_{2 j}, n_{j}^{\prime}\right)-\left(m_{1 j}, n_{j}^{\prime}\right)-\left(m_{2 j}, n_{j}^{\prime}\right) \\
\left(m_{1}^{\prime}, n_{11}+n_{21}\right)-\left(m, n_{11}\right)-\left(m, n_{21}\right) \\
\vdots \\
\left(m_{t}^{\prime}, n_{1 t}+n_{2 t}\right)-\left(m, n_{1 t}\right)-\left(m, n_{2 t}\right)
\end{gathered}
$$

So we only need to take

$$
\widehat{N}=R \widetilde{n_{1}}+\cdots+R \widetilde{n_{s}}+R n_{1}^{\prime}+\cdots+R n_{j}^{\prime}+R n_{11}+R n_{21}+\cdots+R n_{1 t}+R n_{2 t}+\underbrace{R n_{1}+\cdots+R n_{k}}_{N_{0}}
$$

Then $x_{0} \in \operatorname{ker}\left(M \otimes_{R} N_{0} \rightarrow M \otimes_{R} \widehat{N}\right)$.
Claim 6.7
We now have $N_{0} \subseteq \widehat{N}$ both finitely generated with $M \otimes_{R} N_{0} \rightarrow M \otimes_{R} \widehat{N}$ not injective. Write $N_{0}=$ $\left\langle n_{1}, \ldots, n_{k}\right\rangle ;$ write $\widehat{N}=\left\langle n_{1}, \ldots, n_{k}, u_{1}, \ldots, u_{m}\right\rangle$. For $i \in\{1, \ldots, m\}$, let $N_{i}=\left\langle n_{1}, \ldots, n_{k}, u_{1}, \ldots, u_{i}\right\rangle$; then

$$
N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{m}=\widehat{N}
$$

Claim 6.8. We may instead consider N_{i} and N_{i+1} for some $i \in\{1, \ldots, m\}$.
Proof. Since the composition

$$
M \otimes_{R} N_{0} \rightarrow \cdots \rightarrow M \otimes_{R} N_{m}=M \otimes_{R} \widehat{N}
$$

is not injective, there is some $i \in\{1, \ldots, m\}$ such that $M \otimes_{R} N_{i} \rightarrow M \otimes_{R} N_{i+1}$ is not injective.
Claim 6.8

Note now that

$$
N_{i+1} / N_{i}=\left\langle n_{1}, \ldots, n_{k}, u_{1}, \ldots, u_{i+1}\right\rangle /\left\langle n_{1}, \ldots, n_{k}, u_{1}, \ldots, u_{i}\right\rangle
$$

is cyclic; so there is $\psi: R \rightarrow N_{i+1} / N_{i}$ given by $r \mapsto r u_{i+1}+N_{i}$. Let $I=\operatorname{ker}\left(\psi\right.$. Then $N_{i+1} / N_{i} \cong R / I$; i.e. $0 \rightarrow N_{i} \rightarrow N_{i+1} \rightarrow R / I \rightarrow 0$ is exact. So we get a long exact sequence of homology

But $\operatorname{Tor}_{1}^{R}(M, R / I)=0$ by hypothesis; so $0 \rightarrow M \otimes_{R} N_{i} \rightarrow M \otimes_{R} N_{i+1}$ is exact, a contradiction.

Corollary 6.9. Suppose k is a field; let $R=k[t] /\left(t^{2}\right)$, and suppose M is an R-module. Then M is flat if and only if $M / \bar{t} M \cong \bar{t} M$ (where $\bar{t}=t+\left(t^{2}\right)$).
Proof. As previously shown, we get that M is flat if and only if $\operatorname{Tor}_{1}^{R}(M, R / I)=0$ for all proper ideals I of R. Notice that $I=(0)$ or $I=(\bar{t})$, by the correspondence theorem. In the case $I=(0)$, we have $R / I=R$ is projective, and hence that $\operatorname{Tor}_{1}^{R}(M, R)=0$.

So M is flat if and only if $\operatorname{Tor}_{1}^{R}(M, R /(\bar{t}))=0$. Notice, however, that $R /(\bar{t}) \cong\left(k[t] /\left(t^{2}\right)\right) /\left(t+\left(t^{2}\right)\right) \cong$ $k[t] /(t) \cong k$. So M is flat if and only if $\operatorname{Tor}_{1}^{R}(M, k)=0$. One checks that

$$
\cdots \rightarrow R \rightarrow R \rightarrow R \xrightarrow{\pi} k \rightarrow 0
$$

is a projective resolution of k (where $R \rightarrow R$ is given by $r \mapsto r \bar{t}$); hence the chain complex from which we derive $\operatorname{Tor}_{i}^{R}(M, k)$ is

$$
\cdots \rightarrow M \otimes_{R} R \rightarrow M \otimes_{R} R \rightarrow M \otimes_{R} R \rightarrow 0
$$

where the maps $M \otimes_{R} R \rightarrow M \otimes_{R} R$ can be expressed as the maps $M \rightarrow M$ given by $m \mapsto \bar{t} m$. So, unpacking our earlier statement that M is flat if and only if $\operatorname{Tor}_{1}^{R}(M, k)=0$, we find that M is flat if and only if $\{m \in M: \bar{t} m=0\}=\{\bar{t} m: m \in M\}=\bar{t} M$; i.e. if and only if ker $M \rightarrow \bar{t} M=\bar{t} M$, which by first isomorphism theorem is equivalent to $M / \bar{t} M \cong \bar{t} M$.
\square Corollary 6.9
Theorem 6.10. Suppose R is a commutative ring; suppose $a \in R$ is not a zero divisor. Suppose M is flat and we have $m \in M$ such that $a m=0$. Then $m=0$.

Proof. Consider the short exact sequence $0 \rightarrow R \rightarrow R \rightarrow R / a R \rightarrow 0$ (with the map $R \rightarrow R$ given by $x \mapsto x a)$. Tensoring with M, we find that

$$
0 \rightarrow M \otimes_{R} R \rightarrow M \otimes_{R} M \rightarrow M \otimes_{R} R / a R \rightarrow 0
$$

is exact; we can express this as a short exact sequence

$$
0 \rightarrow M \rightarrow M \rightarrow M \otimes_{R} / a R \rightarrow 0
$$

where the map $M \rightarrow M$ is $m \mapsto m a$. So the map $M \rightarrow M$ given by $m \mapsto a m$ is injective; so if $a m=0$, then $m=0$. Theorem 6.10

The converse holds if R is a PID.
Theorem 6.11. If R is a PID, then M is flat if and only if M is torsion-free; i.e. whenever $a \in R \backslash\{0\}$ and am=0, we have $m=0$.

Proof.
(\Longrightarrow) Generally true.
($\Longleftarrow)$ Suppose M is torsion-free; let $a \in R \backslash\{0\}$. Then

$$
0 \rightarrow M \rightarrow M \rightarrow M / a M \rightarrow 0
$$

is exact (where the map $M \rightarrow M$ is $m \mapsto a m$). Consider also the short exact sequence $0 \rightarrow R \rightarrow R \rightarrow$ $R / a R \rightarrow 0$ (where the map $R \rightarrow R$ is $x \mapsto a x$); tensoring with M, we obtain a long exact sequence

But M is torsion-free; so the map $M \otimes_{R} R \rightarrow M \otimes_{R}$ can be expressed as the map $M \rightarrow M$ given by $m \mapsto a m$. So $\operatorname{Tor}_{1}^{R}(M, R / a R)=0$ for all $a \neq 0$. So, since R is a PID, we have $\operatorname{Tor}_{1}^{R}(M, R / I)=0$ for all ideals I of R. So M is flat. Theorem 6.11
So for example in \mathbb{Z}, we have

- The injectives are the divisible \mathbb{Z}-modules (namely direct sums of \mathbb{Q} and $C_{p}=\left\{\exp \left(2 \pi i j / p^{k}\right): k \geq\right.$ $0, j \geq 0\}$).
- The projectives are the free \mathbb{Z}-modules.
- The flat \mathbb{Z}-modules are the torsion-free \mathbb{Z}-modules.

Some general facts:
Suppose R is commutative; suppose M and N are R-modules. Then

$$
\operatorname{Tor}_{0}^{R}(M, N)=M \otimes_{R} N \cong N \otimes_{R} M \operatorname{Tor}_{0}^{R}(N, M)
$$

Fact 6.12. In general, we have $\operatorname{Tor}_{i}^{R}(M, N) \cong \operatorname{Tor}_{i}^{R}(N, M)$.
Fact 6.13. Suppose R and S are commutative; suppose A is an R-module, C is an S-module, and B is both an R-module and an S-module. If B is flat as an R-module and as an S-module, then $\operatorname{Tor}_{n}^{S}\left(A \otimes_{R} B, C\right) \cong$ $\operatorname{Tor}_{n}^{R}\left(A, B \otimes_{S} C\right)$.

In particular, for $n=0$ we get $\left(A \otimes_{R} B\right) \otimes_{S} C \cong A \otimes_{R}\left(B \otimes_{S} C\right)$. Another special case is when S is a flat R-algebra, and we let $B=S$; we then get $\operatorname{Tor}_{n}^{S}\left(A \otimes_{R} S, C\right) \cong \operatorname{Tor}_{n}^{R}(A, C)$.

6.1 Ext

Suppose R is a ring; suppose M and N are left R-modules. We create $\operatorname{Ext}_{R}^{i}(M, N)$ as follows:
Define $G=\operatorname{hom}(M,-): R$-Mod $\rightarrow \mathbf{A b}$; then G is additive and left-exact. We then $\operatorname{set} \operatorname{Ext}_{R}^{i}(M, N)=$ $R^{i} G(N)$. To compute $\operatorname{Ext}_{R}^{i}(M, N)$, we take an injective resolution

$$
0 \rightarrow N \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots
$$

and obtain a cochain complex

$$
0 \rightarrow \operatorname{hom}\left(M, I^{0}\right) \rightarrow \operatorname{hom}\left(M, I^{1}\right) \rightarrow \cdots
$$

We then have $\operatorname{Ext}_{R}^{i}(M, N)=H^{i}\left(\operatorname{hom}\left(M, I^{\bullet}\right)\right)$.
Example 6.14. Let $M=N=\mathbb{Z} / 3 \mathbb{Z}$; we compute $\operatorname{Ext}_{\mathbb{Z}}^{i}(M, N)$. We get an injective resolution

$$
0 \rightarrow \mathbb{Z} / 3 \mathbb{Z} \rightarrow C_{3} \rightarrow C_{3} \rightarrow 0
$$

where the map $C_{3} \rightarrow C_{3}$ is $x \mapsto x^{3}$. Our cochain complex is then

$$
0 \rightarrow \operatorname{hom}\left(\mathbb{Z} / 3 \mathbb{Z}, C_{3}\right) \xrightarrow{a} \operatorname{hom}\left(\mathbb{Z} / 3 \mathbb{Z}, C_{3}\right) \xrightarrow{b} 0 \rightarrow \cdots
$$

Suppose $\psi: \mathbb{Z} / 3 \mathbb{Z} \rightarrow C_{3}$. Then $\psi \in \operatorname{ker}(a)$ if and only if $\psi(1)^{3}=1$ in C_{3}; i.e. if and only if $\psi(1) \in$ $\{1, \exp (2 \pi i / 3), \exp (4 \pi i / 3)\}$. So $\operatorname{ker}(a) \cong \mathbb{Z} / 3 \mathbb{Z}$. So $\operatorname{Ext}_{\mathbb{Z}}^{0}(\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}) \cong \mathbb{Z} / 3 \mathbb{Z}$.

We also get that $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z})=0$ for $i \geq 2$; it remains to find $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z})$. But this is just

$$
\operatorname{ker}(b) / \operatorname{im}(a)=\operatorname{hom}\left(\mathbb{Z} / 3 \mathbb{Z}, C_{3}\right) / \operatorname{im}(a)=\operatorname{hom}(\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}) / \operatorname{im}(a) \cong \mathbb{Z} / 3 \mathbb{Z}
$$

An alternative description of Ext: consider $\widetilde{G}=\operatorname{hom}(-, N):(R \text {-Mod })^{\mathrm{op}} \rightarrow \mathbf{A b}$. Then \widetilde{G} is left-exact and additive. We can compute $R^{i} \widetilde{G}$ by taking an injective resolution of M in $(R \text {-Mod })^{\text {op }}$

$$
0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots
$$

i.e. an exact sequence

$$
\cdots \rightarrow I^{1} \rightarrow I^{0} \rightarrow M \rightarrow 0
$$

where the I^{i} are projective. So if we take a projective resoltuion

$$
\cdots \rightarrow P^{0} \rightarrow M \rightarrow 0
$$

in R-Mod and apply hom $(-, N)$, we get a cochain complex

$$
0 \rightarrow \operatorname{hom}\left(P^{0}, N\right) \rightarrow \operatorname{hom}\left(P^{1}, N\right) \rightarrow \cdots
$$

with $R^{i} \widetilde{G}(M)=H^{i}\left(\operatorname{hom}\left(P^{\bullet}, N\right)\right)$.
Fact 6.15. $R^{i} \widetilde{G}(M) \cong \operatorname{Ext}_{R}^{i}(M, N)$.

6.1.1 Ext via Yoneda equivalence

If X and X^{\prime} are two R-modules and we have two short exact sequences

$$
\alpha: 0 \rightarrow A \rightarrow X \rightarrow B \rightarrow 0
$$

and

$$
\alpha^{\prime}: 0 \rightarrow A \rightarrow X^{\prime} \rightarrow B \rightarrow 0
$$

then we write $\alpha \sim_{Y} \alpha^{\prime}$ if there is $f: X \rightarrow X^{\prime}$ such that the following diagram commutes:

We then define $E^{1}(A, B)$ to be the set of equivalence classes of \sim_{Y}.
Fact 6.16. $E^{1}(A, B) \cong \operatorname{Ext}_{R}^{1}(A, B)$.
More generally, we can define an analogous equivalence relation on exact sequences

$$
\alpha: 0 \rightarrow A \rightarrow X_{1} \cdots \rightarrow X_{n} \rightarrow B \rightarrow 0
$$

We let $E^{n}(A, B)$ be the collection of equivalence classes of exact sequences under the analogous equivalence relation.
Remark 6.17. We get a map $E^{n}(A, B) \times E^{m}(B, C) \rightarrow E^{n+m}(A, C)$ given by appending the sequences. Taking $A=B=C$, we find that

$$
\bigoplus E^{n}(A, A)
$$

is a graded ring.
TODO 8. Missing stuff.
Theorem 6.18 (Eilenberg-Watts). Suppose $F, G, H: R$-Mod $\rightarrow S$-Mod are additive. Suppose

- F is right-exact and commutes with direct sums.
- G is contravariant, left-exact, and converts direct sums into direct products.
- H has $S=\mathbb{Z}$, is left-exact, and commutes with projective limits.

Then

- $F \cong M \otimes_{R}$ - for some (R, S)-bimodule M.
- $G \cong \operatorname{hom}(-, N)$ for some (R, S)-bimodule N.
- $H \cong \operatorname{hom}(M,-)$ where M is an R-module.

Example 6.19 (Grape cohomology). Fix a grape G and consider G-Mod, the category fo abelian grapes $(A,+)$ endowed with a G-action $G \times A \rightarrow A$. Consider $H: G$ - Mod $\rightarrow \mathbf{A b}$ given by $A \mapsto\{a \in A: g a=$ a for all $g \in G\}$. For example, if $G=S_{2}$ and $A=\mathbb{Z} \oplus \mathbb{Z}$, we can set $(1,2)(a, b)=(b, a)$, and thus get $A \in G$-Mod. In this case we have

$$
H A=\{(a, b):(1,2)(a, b)=(a, b)\}=\mathbb{Z}(1,1) \cong \mathbb{Z}
$$

One can easily verify that H is left-exact. However, it is not right-exact: for example, if

- $G=\mathbb{Z} / 2 \mathbb{Z}$
- $B=\mathbb{Z} / 4 \mathbb{Z}$
- $C=\mathbb{Z} / 2 \mathbb{Z}$
then we can consider the quotient map $\varphi: B \rightarrow C$; then $H \varphi=0$.
One can also easily verify that H commutes with projective limits. One also notes that G-Mod \cong $\mathbb{Z}[G]$-Mod (where

$$
\mathbb{Z}[G]=\left\{\sum_{g \in G} n_{g} g: n_{g} \in \mathbb{Z} n_{g}=0 \text { for all but finitely many } g\right\}
$$

is the grape algebra). So we can view H as a functor $\mathbb{Z}[G]-\mathbf{M o d} \rightarrow \mathbf{A b}$; by Eilenberg-Watts, we then get $H \cong \operatorname{hom}_{\mathbb{Z}[G]}(M,-)$ for some $\mathbb{Z}[G]$-module M. In fact we may take $M=\mathbb{Z}$ with the trivial G-action, which yields the $\mathbb{Z}[G]$-module structure

$$
\left(\sum_{g} n_{g} g\right) m=\sum_{g} n_{g} g m=\left(\sum_{g} n_{g}\right) m
$$

Indeed, given $\theta \in \operatorname{hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A)$, we may let $a=\theta(1)$; then $g \cdot a=\theta(g \cdot 1)=\theta(1)=a$, and $a \in H A$. Conversely, if $a \in H A$, then $\theta: \mathbb{Z} \rightarrow A$ given by $\theta(n)=n a$ has $\theta \in \operatorname{hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A)$. So $\operatorname{hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A) \cong H A$.

We may thus conclude that

$$
H^{i}(G, A):=R^{i} H(A) \cong R^{i} \operatorname{hom}_{\mathbb{Z}[G]}(\mathbb{Z},-)(A)=\operatorname{Ext}_{\mathbb{Z}[G]}^{i}(\mathbb{Z}, A)
$$

Example 6.20. Let $G=\left\langle x: x^{2}=1\right\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$; let $A=\mathbb{Z} \oplus \mathbb{Z}$ with $x(a, b)=(b, a)$. Then $R=\mathbb{Z}[G] \cong$ $\mathbb{Z}[x] /\left(x^{2}-1\right)=\mathbb{Z}[x] /(x+1)(x-1)$. So $H^{i}(G, A)=\operatorname{Ext}_{R}^{i}(\mathbb{Z}, A)$. Note that we get an exact sequence

$$
\cdots \xrightarrow{\varphi_{2}} R \xrightarrow{\varphi_{1}} R \xrightarrow{\varphi_{2}} R \xrightarrow{\varphi_{1}} R \xrightarrow{\theta} \mathbb{Z} \rightarrow 0
$$

where $\varphi_{1}(a)=a(x-1)$ and $\varphi_{2}(a)=a(x+1)$. We truncate and apply hom $(-, A)$ to get a cochain complex

$$
0 \rightarrow \operatorname{hom}_{R}(R, A) \rightarrow \operatorname{hom}_{R}(R, A) \rightarrow \cdots
$$

i.e.

$$
0 \rightarrow \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2} \rightarrow \cdots
$$

Then

$$
\begin{aligned}
H^{0} & =\{(a, a): a \in \mathbb{Z}\}=\mathbb{Z}(1,1)=H A \\
H^{1} & =\operatorname{ker} / \mathrm{im} \\
& =\{(a, b): a=-b\} /\{(b-a, a-b): a, b \in \mathbb{Z}\} \\
& =(0) \\
H^{2} & =(0) \text { (similarly) } \\
H^{3} & =(0) \\
& \vdots
\end{aligned}
$$

So

$$
H^{i}(G, A)= \begin{cases}\mathbb{Z} & \text { if } i=0 \\ 0 & \text { else }\end{cases}
$$

What is the significance of this? In the assignment we are asked to show that

$$
H^{1}(G, A) \cong\{\text { crossed homomorphisms }\} /\{\text { principal crossed homomorphisms }\}
$$

Hence in this case we get that all crossed homomorphisms are principal; i.e. given $f: G \rightarrow A$ with $f(g h)=$ $f(g)+g f(h)$, we have that f takes the form $f(g)=g a-a$ for some $a \in A$.

We now showcase another use of the above. Suppose now that $A \in \mathrm{Ob}(G$-Mod); consider all grapes H such that we have

$$
1 \rightarrow A \xrightarrow{i} H \xrightarrow{\pi} G \rightarrow 1
$$

i.e. $A \unlhd H$ and $H / A \cong G$. Then G acts on any such A by declaring $g a=h a h^{-1} \in A$ where we pick $h \in H$ satisfying $\pi(h)=g$. We consider the case where this coincides with our original G-action. Then $H^{2}(G, A)$ is isomorphic to all such extensions $1 \rightarrow A \rightarrow H \rightarrow G \rightarrow 1$ modulo Yoneda equivalence. Note that we always have at least one such extension; namely $A \rtimes G$. So in our example, since $H^{2}(G, A)=0$, we get

$$
1 \rightarrow \mathbb{Z}^{2} \rightarrow H \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 1
$$

where $1 \neq x \in \mathbb{Z} / 2 \mathbb{Z}$ acts via permuting coordinates.
Example 6.21. Suppose k is a field of characteristic 0 ; let \bar{k} be the algebraic closure. Let $G=\operatorname{Gal}(\bar{k} / k)$; then G acts on $(\bar{k})^{*}$ via $\sigma \lambda=\sigma(\lambda)$. Then $H^{2}\left(\operatorname{Gal}(\bar{k}, k),(\bar{k})^{*}\right)$ is the Brauer grape of k, denoted $\operatorname{Br}(k)$; this gives the structure of all finite-dimensional division rings D over k with $Z(D)=k$. For example, it holds that

$$
\operatorname{Br}(\mathbb{R})=\mathbb{Z} / 2 \mathbb{Z} \cong H^{2}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \mathbb{C}^{*}\right)=H^{2}\left(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{C}^{*}\right)
$$

Example 6.22 (Hochschild homology/cohomology). Suppose A is a ring; suppose M is an (A, A)-bimodule. We set

$$
\begin{aligned}
\operatorname{HH}_{i}(M) & =\operatorname{Tor}_{i}^{A \otimes A^{\mathrm{op}}}(A, M) \\
\operatorname{HH}^{i}(M) & =\operatorname{Ext}_{i}^{A \otimes A^{\mathrm{op}}}(A, M)
\end{aligned}
$$

There is also local cohomology and sheaf cohomology.

