Course notes for PMATH 646

Christa Hawthorne
Lectures by Rahim N. Moosa, Winter 2016

Contents

1 Preliminaries 1
1.1 Ring theory 1
1.2 Modules 3
1.3 Jacobson radical 5
2 Chapter 2 6
2.1 Exact sequences 7
2.2 Tensor products 10
2.3 Algebras 17
2.4 Tensor products of A-algebras 19
3 Interlude: Finitely generated modules over PIDs 20
4 Chapter 3: Rings and modules of fractions, localizations 29
4.1 Universal property of $S^{-1} A$ 31
4.2 Localization of modules 32
5 Chapter 4: Primary decompositions 42
5.1 Noetherian rings 48
6 Chapter 5: Integral dependence 52
7 Tidbits 62
7.1 Integrally closed domains (Chapter 5) 62

1 Preliminaries

My thanks to Mitchell Haslehurst for the use of his notes when I was absent.
Assignments and final; no midterm. Marks will probably be 35% assignments, 5 or 6 assignments, 65% final.

Office hours will be Mondays 13:30-14:30+ and 2016-01-20 13:30-14:30; can always come by and see if he's in.

Do not collaborate on assignments.
Rings are unital, commutative, and non-trivial. Prime ideals are proper. Maximal ideals are proper.

1.1 Ring theory

Definition 1.1.1. We say an ideal P of R is prime if $a b \in P$ implies $a \in P$ or $b \in P$.
Remark 1.1.2. Equivalently, if $a_{1}, \ldots, a_{n} \in P$ implies $a_{i} \in P$ for some i. Equivalently, if R / P is an integral domain.

Example 1.1.3. In $\mathbb{C}[x]$, let $I=x^{2} \mathbb{C}[x]$. Then $x \cdot x \in I$, but $x \notin I$. So I is not prime.
Definition 1.1.4. We say $e \in R$ is idempotent if $e^{2}=e$.
Definition 1.1.5. We say an ideal M of R is maximal if there does not exist an ideal J of R with $M \varsubsetneqq J$.
Theorem 1.1.6 (Correspondence theorem). There is an inclusion-preserving bijection between ideals of R / I and ideals of R that contain I.

In particular, we send an ideal \bar{J} of R / I to $\pi^{-1}(\bar{J}) \subseteq R$; we send an ideal J of R to $\pi(J) \subseteq R / I$.
Corollary 1.1.7. An ideal M of R is maximal if and only if R / M is a field.
Proof. Note that M is maximal if and only if the only ideals of R that contain M are $\{M, R\}$; by the correspondence theorem, this is equivalent to $F=R / M$ having exactly two ideals (namely (0) and F).

Now, if $a \in F \backslash\{0\}$, then $F a$ is a non-zero ideal of F; so $F a=F$ and $1 \in F a$, and there is $b \in F$ such that $b a=1$. So F is a field.

Conversely, if F is a field, then (0) and F are its only ideals.
Corollary 1.1.7
Corollary 1.1.8. Maximal ideals are prime.
Theorem 1.1.9 (Zorn's lemma). Suppose (P, \leq) is a partially ordered set (e.g. ideals of a ring ordered by set inclusion). If every chain in P has an upper bound, then P has a maximal element.
(A chain is $\left(x_{\gamma}: \gamma \in \Gamma\right)$ where Γ is totally ordered and if $\gamma_{1} \leq \gamma_{2}$ then $x_{\gamma_{1}} \leq x_{\gamma_{2}}$. An upper bound is an x such that $x \geq x_{\gamma}$ for all $\gamma \in \Gamma$.)
Remark 1.1.10. One needs to prove this for arbitrary Γ; it does not suffice to check the case $\Gamma=\mathbb{N}$.
Example 1.1.11. Let P be the collection of countable subsets of \mathbb{R} ordered by set inclusion. Then if $S_{1} \subseteq$ $S_{2} \subseteq S_{3} \subseteq \ldots$ is a chain in P, we have

$$
\bigcup_{i=1}^{\infty} S_{i}
$$

is an upper bound. But P has no maximal element, since if $S \in P$ is maximal, then we may pick $x \in \mathbb{R} \backslash S$; then $S \cup\{x\} \supsetneqq S$ and $S \cup\{x\}$ is countable.
Corollary 1.1.12. Let R be a ring. Then R has a maximal ideal. In fact, if I is an ideal of R, then there is a maximal ideal containing I.
Proof. Suppose I is an ideal of R. Let $S=\{J: J \supseteq I, J$ is an ideal of $R\}$ be ordered by \subseteq. Note that S is non-empty since $I \in S$. Further note that a maximal element of S is a maximal ideal that contains I.

Let Γ be a totally ordered set; let $\left(J_{\gamma}: \gamma \in \Gamma\right)$ be a chain in S.

Claim 1.1.13.

$$
\bigcup_{\gamma \in \Gamma} J_{\gamma} \in S
$$

Proof. Well, $1 \notin J_{\gamma}$ for any $\gamma \in \Gamma$ since J_{γ} is a proper ideal. So

$$
1 \notin \bigcup_{\gamma \in \Gamma} J_{\gamma}
$$

Furthermore, it holds in general that the union of a chain of ideals is an ideal.
Claim 1.1.13
So this is an upper bound. So Zorn's lemma gives us that S has a maximal element.
Corollary 1.1.12
Remark 1.1.14. For rings without identity, there might not be any maximal ideals.
Example 1.1.15. Let $R=\left\{w \in \mathbb{C}: \exists j \geq 1\right.$ such that $\left.w^{2^{j}}=1\right\}$.
Fact 1.1.16. Any proper subgrape of R is finite, and is $R_{n}=\left\{w: w^{2^{n}}=1\right\}$ for some $n \in \mathbb{N}$.
Define a ring structure on R by $r \oplus s=r s$ and $r \otimes s=1$. Note then that 1 is the additive identity, and the ring axioms are satisfied. Then ideals in (R, \oplus, \otimes) are exactly subgrapes of (R, \cdot). Then

$$
R_{1} \varsubsetneqq R_{2} \varsubsetneqq R_{3} \varsubsetneqq \ldots \varsubsetneqq R
$$

So R has no maximal ideals.

1.2 Modules

Definition 1.2.1. Suppose R is a ring. Then an R-module is an abelian grape $(M,+)$ with a map $R \times M \rightarrow$ M (written $(r, m) \mapsto r \cdot m)$ such that the following hold for all $r, s \in R$ and all $m, m_{1}, m_{2} \in M$:

- $r \cdot(s \cdot m)=(r \cdot s) \cdot m$.
- $r \cdot\left(m_{1}+m_{2}\right)=r \cdot m_{1}+r \cdot m_{2}$.
- $(r+s) \cdot m=r \cdot m+s \cdot m$.
- $1_{R} \cdot m=m$.

Remark 1.2.2. We then have that $r \cdot 0_{M}=0_{M}$ for all $r \in R$.
Example 1.2.3.

1. Suppose $R=F$ is a field and V is a vector space over F. Then V is an F-module.
2. Suppose $R=\mathbb{Z}$ and $(A,+)$ is an abelian grape. Then A is a \mathbb{Z}-module under

$$
n \cdot a= \begin{cases}\underbrace{a+\cdots+a}_{n \text { times }} & n \geq 0 \\ \underbrace{(-a)+\cdots+(-a)}_{|n| \text { times }} & n<0\end{cases}
$$

3. Suppose $R=\mathbb{R}[x]$ and $M=(\mathbb{C},+)$. Define $p(x) \cdot \alpha=p(i) \alpha$; then M is an R-module under this multiplication.

Definition 1.2.4. Suppose R is a ring and M is an R-module. Given $S \subseteq M$, we define the annihilator of S to be

$$
\operatorname{Ann}_{R}(S)=\{r \in R: r s=0 \text { for all } s \in S\}
$$

Remark 1.2.5. If $S=\{m\}$ for some $m \in M$, we have $\operatorname{Ann}_{R}(m)=\operatorname{Ann}_{R}(\{m\})=\{r \in R: r m=0\}$. If $S=M$, then $\operatorname{Ann}_{R}(M)=\{r \in R: r m=0$ for all $m \in M\}$.
Remark 1.2.6. $\operatorname{Ann}_{R}(S)$ is an ideal of R.
Definition 1.2.7. We say that M is a faithful R-module if $\operatorname{Ann}_{R}(M)=(0)$.
Example 1.2.8.

1. Consider $M=\mathbb{Z} / 15 \mathbb{Z}$ as a \mathbb{Z}-module. Then $\operatorname{Ann}_{\mathbb{Z}}(M)=15 \mathbb{Z}$.
2. Consider $M=(\mathbb{C},+)$ as an $\mathbb{R}[x]$-module as in Example 1.2.3. Then $\operatorname{Ann}_{\mathbb{R}}[x](M)=\left(x^{2}+1\right) \mathbb{R}[x]$.

Definition 1.2.9. An R-module M is finitely generated if there is a finite subset $\left\{m_{1}, \ldots, m_{d}\right\} \subseteq M$ such that

$$
M=R m_{1}+R m_{2}+\cdots+R m_{d}=\left\{r_{1} m_{1}+r_{2} m_{2}+\cdots+r_{d} m_{d}: r_{1}, \ldots, r_{d} \in R\right\}
$$

Example 1.2.10. \mathbb{Q} is not a finitely generated \mathbb{Z}-module. To see this, note that if

$$
\mathbb{Q}=\mathbb{Z} \frac{m_{1}}{n_{1}}+\cdots+\mathbb{Z} \frac{m_{d}}{n_{d}}
$$

where each $m_{i}, n_{i} \in \mathbb{Z}$ and each $n_{i}>0$, then $\mathbb{Q} \subseteq \mathbb{Z} \frac{1}{N}$ where $N=n_{1} n_{2} \ldots n_{d}$, a contradiction.
Definition 1.2.11. Suppose M is an R-module. A submodule of M is an abelian subgrape $(N,+) \subseteq(M,+)$ that is closed under multiplication by R; i.e. if $r \in R$ and $n \in N$ then $r \cdot n \in N$.

Example 1.2.12. If I is an ideal of R then I is a submodule of R (where we regard R as a module over itself).

Definition 1.2.13. Suppose $N \subseteq M$ is a submodule. We define the module $M / N=\{m+N: m \in M\}$ to be the quotient as an abelian grape together with the multiplication $r \cdot(m+N)=r \cdot m+N$.

Remark 1.2.14. This is well-defined: if $m_{1}+N=m_{2}+N$, then $m_{1}-m_{2}=n \in N$, and $r m_{1}-r m_{2}=$ $r\left(m_{1}-m_{2}\right)=r n \in N$; so $r m_{1}+N=r m_{2}+N$.

Definition 1.2.15. Suppose R be a ring; suppose M and N are R-modules. A map $f: M \rightarrow N$ is an R-module homomorphism or R-homomorphism if it satisfies the following

- $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$ for all $m_{1}, m_{2} \in M$
- $f(r \cdot m)=r \cdot f(m)$ for all $r \in R$ and $m \in M$.

Example 1.2.16. Linear transformations, homomorphisms of abelian grapes.
Notation 1.2.17. We let $\operatorname{hom}_{R}(M, N)$ be the set of R-module homomorphisms $M \rightarrow N$.
Remark 1.2.18. If $f, g \in \operatorname{hom}_{R}(M, N)$ then $(f+g)(m)=f(m)+g(m)$ and $(-f)(m)=-(f(m))$ are also R-module homomorphisms. If $f \in \operatorname{hom}_{R}(M, N)$ and $r \in R$, then $(r f)(m)=r(f(m))=f(r m)$ is also an R-module homomorphism. So we can make $\operatorname{hom}_{R}(M, N)$ into an R-module in a natural way.

Notation 1.2.19. If $f: M \rightarrow N$ is an R-module homomorphism then we set $\operatorname{ker}(f)=\{m \in M: f(m)=0\}$; then this is a submodule of M since if $m_{1}, m_{2} \in \operatorname{ker}(f)$ and $r \in R$ then $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)=0$ and $f\left(r m_{1}\right)=r f\left(m_{1}\right)=0$, so $m_{1}+m_{2}, r m_{1} \in \operatorname{ker}(f)$.

We also set $\operatorname{im}(f)=\{f(m): m \in M\} \subseteq N$; then $\operatorname{im}(f)$ is a submodule of N.
Exercise 1.2.20 (First isomorphism theorem for R-modules). $M / \operatorname{ker}(f) \cong \operatorname{im}(f)$.
Definition 1.2.21. Suppose R is a ring. Suppose $\left(M_{\alpha}: \alpha \in I\right)$ is a collection of R-modules. We define the direct sum of the M_{α} to be

$$
\bigoplus_{\alpha \in I} M_{\alpha}=\left\{\left(m_{\alpha}: \alpha \in I\right): m_{\alpha} \in M_{\alpha} \text { for all } \alpha \in I, m_{\alpha}=0 \text { for all but finitely many } \alpha \in I\right\}
$$

We make this into an R-module by

$$
\begin{aligned}
\left(m_{\alpha}: \alpha \in I\right)+\left(m_{\alpha}^{\prime}: \alpha \in I\right) & =\left(m_{\alpha}+m_{\alpha}^{\prime}: \alpha \in I\right) \\
r \cdot\left(m_{\alpha}: \alpha \in I\right) & =\left(r \cdot m_{\alpha}: \alpha \in I\right)
\end{aligned}
$$

We also define

$$
\prod_{\alpha \in I} M_{\alpha}=\left\{\left(m_{\alpha}: \alpha \in I\right): m_{\alpha} \in M_{\alpha} \text { for all } \alpha \in I\right\}
$$

with coordinate-wise addition and multiplication by R as above; this too is an R-module.
Remark 1.2.22. If $|I|<\infty$ then

$$
\bigoplus_{\alpha \in I} M_{\alpha} \cong \prod_{\alpha \in I} M_{\alpha}
$$

Question 1.2.23. Let $R=\mathbb{Z}, I=\mathbb{N}$, and $M_{\alpha}=\mathbb{Z}$ for all $\alpha \in I$. Does it hold that

$$
\bigoplus_{i \in I} \mathbb{Z} \cong \prod_{i \in I} \mathbb{Z}
$$

as \mathbb{Z}-modules?
No, because

$$
\left|\bigoplus_{i \in I} \mathbb{Z}\right|=\aleph_{0}<2^{\aleph_{0}}=\left|\prod_{i \in I} \mathbb{Z}\right|
$$

Definition 1.2.24. An R-module M has a basis if there is $S \subseteq M$ such that every $m \in M$ has a unique expression

$$
m=\sum_{s \in S} r_{s} \cdot s
$$

where $r_{s}=0$ for all but finitely many $s \in S$. In this case we say M is a free R-module.
Remark 1.2 .25 . This is equivalent to saying that

$$
M \cong \bigoplus_{s \in S} R
$$

where the isomorphism is

$$
\begin{aligned}
f: \quad \bigoplus_{s \in S} R & \rightarrow M \\
\left(r_{s}: s \in S\right) & \mapsto \sum_{s \in S} r_{s} \cdot s
\end{aligned}
$$

Question 1.2.26 (Hard). Does

$$
\prod_{i \in I} \mathbb{Z}
$$

have a basis? (It does not.)

1.3 Jacobson radical

Definition 1.3.1. Suppose R is a ring with unity. We define the Jacobson radical of R to be

$$
J(R)=\bigcap_{M \text { a maximal ideal of } R} M
$$

Remark 1.3.2. As noted before, since R has unity, we have at least one maximal ideal of R; so the intersection is non-empty.

One can often study $R / J(R)$, which is typically nicer, and lift results to R.
Example 1.3.3.

1. Consider $R=\mathbb{Z}$. What is $J(\mathbb{Z})$? Well, in \mathbb{Z} prime ideals are maximal. So

$$
J(\mathbb{Z})=\bigcap_{p \text { prime }} p \mathbb{Z}
$$

So if $n \in J(\mathbb{Z})$, then $p \mid n$ for all primes p. So $n=0$. So $J(\mathbb{Z})=(0)$.
2. Let

$$
R=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \notin 2 \mathbb{Z}\right\}
$$

First note that $\frac{a}{b} \in R$ is a unit exactly when a is odd. What are the maximal ideals of R ? Well, if I is an ideal of R, then I cannot contain units; so $I \subseteq 2 R$. But $2 R$ is an ideal. So $2 R$ is the unique maximal ideal. So $J(R)=2 R$.
3. Let $R=\mathbb{C}[x]$. What are the maximal ideals of $\mathbb{C}[x]$? Well, if I is a non-zero ideal of R then $I=(p(x)) \subseteq\left(x-\lambda_{1}\right)$ where $p(x)$ is monic; say $p(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{d}\right)$ where $\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{C}$. So every proper ideal of R is contained in an ideal $(x-\lambda)$ for some $\lambda \in \mathbb{C}$.
On the other hand, if $(x-\lambda) \subseteq(p(x))$, then $p \mid x-\lambda$; so p is either a unit, in which case $(p(x))=\mathbb{C}[x]$, or p has degree 1 , in which case $(p(x))=(x-\lambda)$.
(Alternatively, consider $\psi: \mathbb{C}[x] \rightarrow \mathbb{C}$ given by $f \mapsto f(\lambda)$. Then ψ is a surjective homomorphism with $\operatorname{ker}(\psi)=(x-\lambda)$. So, by the first isomorphism theorem, we have $\mathbb{C}[x] /(x-\lambda) \cong \mathbb{C}$ is a field. So $(x-\lambda)$ is maximal.)

Proposition 1.3.4. If $x \in J(R)$ then for all $a \in R$ we have $1-a x$ is a unit in R.
Proof. Suppose for contradiction that $1-a x$ is not a unit. Then $R(1-a x) \varsubsetneqq R$; so there is a maximal ideal M such that $R(1-a x) \subseteq M$, and in particular we have $1-a x \in M$. But $x \in J(R) \subseteq M$; so $1=a x+(1-a x) \in M$, a contradiction.
\square Proposition 1.3.4
Theorem 1.3.5 (Nakayama's lemma). Suppose R is a ring and M is a finitely generated R-module. Suppose $J(R) M=M$. Then $M=(0)$.

Proof. Suppose for contradiction that $M \neq(0)$. Pick a generating set $\left\{m_{1}, \ldots, m_{d}\right\}$ for M with d minimal. (So

$$
M=R m_{1}+\cdots+R m_{d}
$$

and no set of size $<d$ works.) Since $M \neq(0)$, we have $d \geq 1$. Since $J(R) M=M$, we have $m_{d} \in J(R) M$; so there are $j_{1}, j_{2}, j_{3}, \ldots, j_{d} \in J(R)$ such that

$$
m_{d}=j_{1} m_{1}+j_{2} m_{2}+\cdots+j_{d} m_{d}
$$

So

$$
\left(1-j_{d}\right) m_{d}=j_{1} m_{1}+j_{2} m_{2}+\cdots+j_{d-1} m_{d-1}
$$

But $1-j_{d}$ is a unit by the previous proposition. So

$$
m_{d}=\left(1-j_{d}\right)^{-1} j_{1} m_{1}+\cdots+\left(1-j_{d}\right)^{-1} j_{d-1} m_{d-1} \in R m_{1}+\cdots+R m_{d-1}
$$

So $\left\{m_{1}, \ldots, m_{d-1}\right\}$ generates M, contradicting the minimality of d. So $M=(0)$. Theorem 1.3.5

Proposition 1.3.6. Suppose $x \in R$ has the property that $1-a x$ is a unit for all $a \in R$. Then $x \in J(R)$.
Proof. Suppose $x \notin J(R)$. Then there is a maximal ideal M such that $x \notin M$. Let $F=R / M$; then F is a field. Let $\bar{x}=x+M \in F$ be the image of x in F; then $\bar{x} \neq 0$ since $x \notin M$. Since F is a field, there is $a \in R$ such that $\overline{a x}=1$ in F. Then $\overline{1-a x}=0$; so $1-a x \in M$, and $1-a x$ is not a unit.Proposition 1.3.6

Corollary 1.3.7. $x \in J(R)$ if and only if $1-a x$ is a unit for all $a \in R$.
Question 1.3.8. In Nakayama's lemma, is the requirement that M be finitely generated necessary? Yes: consider

$$
R=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \notin 2 \mathbb{Z}\right\}
$$

Notice that \mathbb{Q} is an R-module by

$$
\frac{a}{b} \frac{c}{d}=\frac{a b}{c d}
$$

Well, $J(R) \mathbb{Q}=(2 R)\left(\frac{1}{2} \mathbb{Q}\right)=R \mathbb{Q}=\mathbb{Q}$. So $J(R) \mathbb{Q}=\mathbb{Q}$ but $\mathbb{Q} \neq(0)$. (This shows that \mathbb{Q} is not finitely generated as an R-module.)
Question 1.3.9. Let $R=\mathbb{Z} / 720 \mathbb{Z}$. What is $J(R)$? Well, $720=2^{4} \cdot 3^{2} \cdot 5$. The maximal ideals are $2 R, 3 R, 5 R$; so their intersection is $30 R$.

2 Chapter 2

We begin to follow Atiyah and Macdonald.

2.1 Exact sequences

Fix a ring A; suppose M_{0}, \ldots, M_{n} are A-modules and $f_{i}: M_{i} \rightarrow M_{i+1}$ are A-module homomorphisms; we write this as

$$
M_{0} \xrightarrow{f_{0}} M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{n-2}} M_{n-1} \xrightarrow{f_{n-1}} M_{n}
$$

Definition 2.1.1. We say this sequence is exact at M_{i} for $i \in\{1, \ldots, n-1\} \operatorname{if} \operatorname{im}\left(f_{i-1}\right)=\operatorname{ker}\left(f_{i}\right)$. We say the sequence is exact if it isexact at each M_{1}, \ldots, M_{n-1}.

Remark 2.1.2. Suppose $f: M^{\prime} \rightarrow M$ is a homomorphism of A-modules. Then f is injective if and only if $0 \rightarrow M^{\prime} \xrightarrow{f} M$ is exact.
(Here 0 denotes the trivial A-module, and the unnamed homomorphism $0 \rightarrow M^{\prime}$ is the zero homomorphism. (In general, the zero homomorphism $0: N \rightarrow P$ is the A-homomorphism that sends everything to $\left.0_{P}.\right)$)

Proof. Well, $\operatorname{im}(0)=\{0\}$; so exactness is equivalent to $\operatorname{ker}(f)=\{0\}$, which is equivalent to f being injective.
\square Remark 2.1.2
Remark 2.1.3. $f: M \rightarrow M^{\prime \prime}$ is surjective if and only if $M \xrightarrow{f} M^{\prime \prime} \rightarrow 0$ is exact.
Proof. The homomorphism $M^{\prime \prime} \rightarrow 0$ is again the zero homomorphism whose kernel is $M^{\prime \prime}$; so exactness at $M^{\prime \prime}$ is equivalent to $\operatorname{im}(f)=M^{\prime \prime}$, which is equivalent to f being surjective.Remark 2.1.3

Remark 2.1.4. A sequence $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is exact if and only if

1. f is injective
2. g is surjective
3. $\operatorname{im}(f)=\operatorname{ker}(g)$

This follows from the previous remarks and the definition of exactness.
Definition 2.1.5. A short exact sequence is an exact sequence of the form $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$. If M fits into such an exact sequence (in the middle position) then we say that M is an extension of $M^{\prime \prime}$ by M^{\prime}.

Example 2.1.6. Given A-modules $M^{\prime \prime}$ and M^{\prime}, let $M=M^{\prime} \oplus M^{\prime \prime}$. Then we have an injective A-homomorphism $\iota_{1}: M^{\prime} \rightarrow M$ given by $x \mapsto\left(x, 0_{M^{\prime \prime}}\right)$; we also have a surjective A-homomorphism $\pi_{2}: M \rightarrow M^{\prime \prime}$ given by $(x, y) \mapsto y$. Furthermore, we have $\operatorname{im}\left(\iota_{1}\right)=\operatorname{ker}\left(\pi_{2}\right)$. So $0 \rightarrow M^{\prime} \xrightarrow{\iota_{1}} M^{\prime} \oplus M^{\prime \prime} \xrightarrow{\pi_{2}} M^{\prime \prime} \rightarrow 0$ is exact.

Definition 2.1.7. A short exact sequence $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is split if there is an A-isomorphism $\alpha: M \rightarrow M^{\prime} \oplus M^{\prime \prime}$ such that the following diagram commutes:

Example 2.1.8 (A non-split short exact sequence). Let $A=\mathbb{Z}$; fix $n>1$. Then $0 \rightarrow n \mathbb{Z} \xrightarrow{\iota} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z} / n \mathbb{Z} \rightarrow 0$ is exact. However, \mathbb{Z} is torsion-free (i.e. it has no non-zero elements of finite order), and $n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$ has torsion: $n(0,1+n \mathbb{Z})=(n 0, n(1+n \mathbb{Z}))=(0, n+n \mathbb{Z})=(0,0+n \mathbb{Z})=0_{\mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}}$. So $\mathbb{Z} \neq n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$; so the short exact sequence is not split.
Remark 2.1.9. 1. If $f: M^{\prime} \rightarrow M$ is injective then the exact sequence $0 \rightarrow M^{\prime} \xrightarrow{f} M$ extends to a short exact sequence $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M / M^{\prime} \rightarrow 0$ (where g is the quotient map and M^{\prime} is identified with $\operatorname{im}(f))$.
2. If $g: M \rightarrow M^{\prime \prime}$ is surjective then $0 \rightarrow \operatorname{ker}(g) \stackrel{\subseteq}{\longrightarrow} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is a short exact sequence.
3. More generally, given any A-homomorphism $f: M \rightarrow N$ we get a short exact sequence

$$
0 \rightarrow \operatorname{ker}(f) \stackrel{\subseteq}{\longrightarrow} M \stackrel{f}{\rightarrow} \operatorname{im}(f) \rightarrow 0
$$

How can we tell if a short exact sequence splits? (Note that the following answer is not in the text.)
Lemma 2.1.10 (Splitting lemma). Suppose $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is a short exact sequence. Then the following are equivalent:

1. The sequence splits.
2. There is A-linear $\widehat{g}: M^{\prime \prime} \rightarrow M$ such that $g \circ \widehat{g}=\mathrm{id}_{M^{\prime \prime}}$.
3. There is A-linear $\widehat{f}: M \rightarrow M^{\prime}$ such that $\widehat{f} \circ f=\operatorname{id}_{M^{\prime}}$.

Proof.
$\underline{\mathbf{(1)}} \Longrightarrow \mathbf{(2)}$ Suppose we have an isomorphism $\alpha: M \rightarrow M^{\prime} \oplus M^{\prime \prime}$ such that the following diagram commutes:

Let $\iota_{2}: M^{\prime \prime} \rightarrow M^{\prime} \oplus M^{\prime \prime}$ be the injection pointed out above. Let $\widehat{g}=\alpha^{-1} \circ \iota_{2}$; then

$$
g \circ \widehat{g}=\pi_{2} \circ \alpha \circ \alpha^{-1} \circ \iota_{2}=\pi_{2} \circ \iota_{2}=\operatorname{id}_{M^{\prime \prime}}
$$

$\underline{\mathbf{(2)} \Longrightarrow \mathbf{(3)}}$ Given $x \in M$ consider $\widehat{g}(g(x)) \in M$. Then $g(x-\widehat{g}(g(x)))=g(x)-g(\widehat{g}(g(x)))=g(x)-g(x)=0$; so $x-\widehat{g}(x) \in \operatorname{ker}(g)=\operatorname{im}(f)$. So $x-\widehat{g}(g(x))=f(y)$ for some $y \in M^{\prime}$; by injectivity of f, we have that y is unique. We define $\widehat{f}(x)$ to be this y. One then checks that \widehat{f} is A-linear (i.e. a homomorphism of A-modules).
Now, suppose $y \in M^{\prime}$; then $\widehat{f}(f(y))$ is the unique $z \in M^{\prime}$ such that $f(y)-\widehat{g}(g(f(y)))=f(z)$. But $g(f(y))=0$; so $\widehat{f}(f(y))$ is the unique $z \in M^{\prime}$ such that $f(y)=f(z)$; so $z=y$.
$\underline{\mathbf{(3)}} \Longrightarrow \mathbf{(1)}$ Define $\alpha: M \rightarrow M^{\prime} \oplus M^{\prime \prime}$ by $x \mapsto(\widehat{f}(x), g(x))$. Then α is A-linear since \widehat{f} and g are.
For injectivity of α, note that if $\alpha(x)=0$ then $\widehat{f}(x)=0$ and $g(x)=0$. Then $x \in \operatorname{ker}(g)=\operatorname{im}(f)$, and $x=f(y)$ for some $y \in M^{\prime}$; so $0=\widehat{f}(x)=\widehat{f}(f(y))=y$, and $f(y)=0$.
For surjectivity of α, suppose $(y, z) \in M^{\prime} \oplus M^{\prime \prime}$. By surjectivity of g we have some $x \in M$ such that $g(x)=z$; however, there is no reason to expect that $\widehat{f}(x)=y$. Consider instead $u=f(y-\widehat{f}(x))+x \in M$; then

$$
g(u)=g(f(y-\widehat{f}(x)))+g(x)=g(x)=z
$$

and

$$
\widehat{f}(u)=\widehat{f}(f(y-\widehat{f}(x)))+\widehat{f}(x)=y-\widehat{f}(x)+\widehat{f}(x)=y
$$

So $\alpha(u)=(y, z)$, and α is surjective.
We now check that the following diagram commutes:

Note that if $y \in M^{\prime}$ then

$$
\alpha(f(y))=(\widehat{f}(f(y)), g(f(y)))=(y, 0)=\iota_{1}(y)
$$

One also checks that the following diagram commutes:

Lemma 2.1.10
Example 2.1.11.

1. This gives another proof that $0 \rightarrow n \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z} \rightarrow 0$ (over $A=\mathbb{Z}$) does not split: there can be no non-trivial maps $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z}$ since the former has torsion and the latter does not, so there is no right inverse of the map $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$.
2. Consider $A=k$ a field; then A-modules are exactly k-vector spaces.

Proposition 2.1.12. Every short exact sequence $0 \rightarrow V^{\prime} \xrightarrow{f} V \xrightarrow{g} V^{\prime \prime} \rightarrow 0$ splits.
Proof. Let $B \subseteq V^{\prime}$ be a k-basis (possibly infinite). Identifying V^{\prime} with $f\left(V^{\prime}\right) \subseteq V$; we may then expand B to a k-basis $B \sqcup C$ of V. Define $\widehat{f}: V \rightarrow V^{\prime}$ by $\widehat{f}(b)=b$ for all $b \in B$ and $\widehat{f}(c)=0$ for all $c \in C$. Then $\widehat{f} \circ f=\operatorname{id}_{V^{\prime}}$ as $\widehat{f} \circ f$ fixes B pointwise; so, by the splitting lemma, we have that the exact sequence splits.

Proposition 2.1.12
Recall that if M, N are A-modules then $\operatorname{hom}_{A}(M, N)$ is the set of A-linear maps $f: M \rightarrow N$ with the natural A-module structure.
Remark 2.1.13.

1. Fix M an A-module. Then $\operatorname{hom}_{A}(M,-)$ is a covariant functor; i.e. given an A-linear map $v: N \rightarrow N^{\prime}$ we have an induced A-linear map $\bar{v}: \operatorname{hom}(M, N) \rightarrow \operatorname{hom}\left(M, N^{\prime}\right)$ given by $f \mapsto v \circ f$.
2. Fix N an A-module. Then $\operatorname{hom}_{A}(-, N)$ is a contravariant functor; i.e. given an A-linear $v: M \rightarrow M^{\prime}$ we have an induced A-linear map $\bar{v}: \operatorname{hom}\left(M^{\prime}, N\right) \rightarrow \operatorname{hom}(M, N)$ given by $g \mapsto g \circ v$.
Proposition 2.1.14 (2.9 (i)). Fix M an A-module. Then $\operatorname{hom}(M,-)$ is left-exact; i.e. given an exact sequence $0 \rightarrow N^{\prime} \xrightarrow{u} N \xrightarrow{v} N^{\prime \prime}$, we have

$$
0=\operatorname{hom}(M, 0) \rightarrow \operatorname{hom}\left(M, N^{\prime}\right) \xrightarrow{\bar{u}} \operatorname{hom}(M, N) \xrightarrow{\bar{v}} \operatorname{hom}\left(M, N^{\prime \prime}\right)
$$

is exact.
Proof. We first check that \bar{u} is injective. Suppose $g \in \operatorname{hom}\left(M, N^{\prime}\right)$ has $u \circ g=\bar{u}(g)=0$; then $g=0$ since u is injective.

We then check that $\operatorname{ker}(\bar{v})=\operatorname{im}(\bar{u})$. Suppose $h \in \operatorname{im}(\bar{u})$; say $h=u \circ f$ where $f \in \operatorname{hom}\left(M, N^{\prime}\right)$. Then $\bar{v}(h)=v \circ h=v \circ u \circ f=0$ since $v \circ u=0$ by exactness of the original exact sequence at N. So $\operatorname{im}(\bar{u}) \subseteq \operatorname{ker}(\bar{v})$. Conversely, suppose $h \in \operatorname{ker}(\bar{v})$. Define $f: M \rightarrow N^{\prime}$ by noting that for $x \in M$, we have $h(x) \in \operatorname{ker}(v)=\operatorname{im}(u)$; then by injectivity of u there is a unique $y \in N^{\prime}$ such that $u(y)=h(x)$, and we set $f(x)$ to be this y. One then checks that f is A-linear and that $\bar{u}(f)=h . \operatorname{So} \operatorname{im}(\bar{u})=\operatorname{ker}(\bar{v})$, and

$$
0=\operatorname{hom}(M, 0) \rightarrow \operatorname{hom}\left(M, N^{\prime}\right) \xrightarrow{\bar{u}} \operatorname{hom}(M, N) \xrightarrow{\bar{v}} \operatorname{hom}\left(M, N^{\prime \prime}\right)
$$

is exact.

It is not generally the case that if $v: N \rightarrow N^{\prime \prime}$ is surjective then $\operatorname{hom}(M, N) \xrightarrow{\bar{v}} \operatorname{hom}\left(M, N^{\prime \prime}\right)$.
Example 2.1.15. Consider the quotient map $v: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$; then $\bar{v}: \operatorname{hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z})=0 \rightarrow \operatorname{hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ is not surjective.

Proposition 2.1.16 (2.9 (ii)). Fix N an A-module. Then given an exact sequence $M^{\prime} \xrightarrow{u} M \xrightarrow{v} M^{\prime} \rightarrow 0$, we have

$$
0=\operatorname{hom}(0, N) \rightarrow \operatorname{hom}\left(M^{\prime \prime}, N\right) \xrightarrow{\bar{u}} \operatorname{hom}(M, N) \xrightarrow{\bar{u}} \operatorname{hom}\left(M^{\prime}, N\right)
$$

is exact. (Recall that hom $(-, N)$ is contravariant.)
Exercise 2.1.17. Prove the above proposition, and prove it doesn't preserve full short exact sequences.
Exercise 2.1.18. $\operatorname{hom}_{A}(A, N) \cong N$.

2.2 Tensor products

Definition 2.2.1. Suppose M, N, P are A-modules. A set map $f: M \times N \rightarrow P$ is A-bilinear if for all $x \in M$ we have $f(x,-): N \rightarrow P$ is A-linear and for all $y \in N$ we have $f(-, y): M \rightarrow P$ is A-linear. i.e. for all $x, x^{\prime} \in M$, all $y, y^{\prime} \in N$ and all $a \in A$, we have

$$
\begin{aligned}
f\left(x, y+y^{\prime}\right) & =f(x, y)+f\left(x, y^{\prime}\right) \\
f\left(x+x^{\prime}, y\right) & =f(x, y)+f\left(x^{\prime}, y\right) \\
f(a x, y) & =a f(x, y) \\
& =f(x, a y)
\end{aligned}
$$

We will define an A-module $M \otimes_{A} N$ with the property that A-bilinear maps $M \times N \rightarrow P$ are in bijection with A-linear maps $M \otimes_{A} N \rightarrow P$.

Let C be the free A-module on generators $M \times N$; i.e.

$$
C=\bigoplus_{(x, y) \in M \times N} A \cdot(x, y)
$$

is the set of formal finite A-linear combinations

$$
\sum_{i=1}^{n} a_{i}\left(x_{i}, y_{i}\right)
$$

where each $x_{i} \in M, y_{i} \in N$, and $a_{i} \in A$. Let $D \subseteq C$ be the submodule generated by elements of the form

- $\left(x+x^{\prime}, y\right)-(x, y)-\left(x^{\prime}, y\right)$
- $\left(x, y+y^{\prime}\right)-(x, y)-\left(x, y^{\prime}\right)$
- $(a x, y)-a(x, y)$
- $(x, a y)-a(x, y)$
for $x, x^{\prime} \in M, y, y^{\prime} \in N$, and $a \in A$.
Definition 2.2.2. We set $M \otimes_{A} N=C / D$. Given $x \in M$ and $y \in N$ we let $x \otimes y$ be the image in C / D of (x, y) (i.e. $\left.(x, y)+D \in M \otimes_{A} N\right)$; such elements are called tensors.

Remark 2.2.3. From the construction we see that

1. $M \otimes_{A} N$ is generated by tensors.

Proof. If $c \in C$, then

$$
c=\sum_{i=1}^{n} a_{i}\left(x_{i}, y_{i}\right)
$$

so

$$
\pi(c)=\sum_{i=1}^{n} a_{i} \pi\left(x_{i}, y_{i}\right)=\sum_{i=1}^{n} a_{i}\left(x_{i} \otimes_{A} y_{i}\right)
$$

where $\pi: C \rightarrow C / D$ is the quotient map.
Note that the tensors do not freely generate $M \otimes_{A} N$; there is no uniqueness in writing elements of $M \otimes_{A} N$ as a linear combination of tensors.
2. \otimes behaves bilinearly:

$$
\begin{aligned}
x \otimes\left(y+y^{\prime}\right) & =x \otimes y+x \otimes y^{\prime} \\
\left(x+x^{\prime}\right) \otimes y & =x \otimes y+x^{\prime} \otimes y \\
(a x) \otimes y & =x \otimes(a y) \\
& =a(x \otimes y)
\end{aligned}
$$

Example 2.2.4. With $A=\mathbb{Z}$, consider $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$. Then $2 \otimes 1 \in \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$; in fact

$$
\begin{aligned}
2 \otimes 1 & =2(1 \otimes 1) \\
& =1 \otimes 2 \\
& =1 \otimes 0 \\
& =1 \otimes(0 \cdot 1) \\
& =0(1 \otimes 1) \\
& =0
\end{aligned}
$$

Example 2.2.5. Again with $A=\mathbb{Z}$, consider $2 \otimes 1 \in 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$. Then $2 \otimes 1 \neq 0$. Why?
Lemma 2.2.6. In general if M is generated by $\left\{x_{1}, \ldots, x_{n}\right\}$ and N is generated by $\left\{y_{1}, \ldots, y_{m}\right\}$, then $M \otimes_{A} N$ is generated by $\left\{x_{i} \otimes y_{j}: i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}\right\}$.
Proof. $M \otimes_{A} N$ is generated by tensors $x \otimes y$ but

$$
\begin{aligned}
x & =\sum a_{i} x_{i} \\
y & =\sum b_{j} y_{j} \\
x \otimes y & =\left(\sum a_{i} x_{i}\right) \otimes\left(\sum b_{j} y_{j}\right) \\
& =\sum a_{i} b_{j} x_{i} \otimes y_{j}
\end{aligned}
$$

So $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ is generated as an A-module by $2 \otimes 1$. So if $2 \otimes 1=0$ then $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}=0$.
Lemma 2.2.7. If $f: M \rightarrow N$ is A-linear and P is another A-module then there is an A-linear map $f \otimes$ id: $M \otimes_{A} P \rightarrow N \otimes_{A} P$ such that $(f \otimes \mathrm{id})(m \otimes p)=f(m) \otimes p$. If f is an isomorphism then so is $f \otimes \mathrm{id}$.

Note that this is not completely trivial since not every element of the tensor product is a tensor, and representations as an A-linear combination of tensors are not unique. Thus

$$
(2 \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{f \otimes \mathrm{id}} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \neq 0
$$

(In general $A \otimes_{A} M \cong M$.) So $2 \otimes 1 \neq 0$ in $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$.
Moral: $2 \otimes 1=0$ in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ but $2 \otimes 1 \neq 0$ in $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$.

Going back to the converse of 2.9(i):
Theorem 2.2.8. Suppose we have a (not necessarily exact) sequence

$$
\begin{equation*}
M^{\prime} \xrightarrow{u} M \xrightarrow{v} M^{\prime \prime} \rightarrow 0 \tag{1}
\end{equation*}
$$

such that for every A-module N we have

$$
0 \rightarrow \operatorname{hom}\left(M^{\prime \prime}, N\right) \xrightarrow{\bar{v}} \operatorname{hom}(M, N) \xrightarrow{\bar{u}} \operatorname{hom}\left(M^{\prime}, N\right)
$$

is exact. Then (1) is exact.
Proof. We first check surjectivity of v. Taking $N=\operatorname{coker}(v)=M^{\prime \prime} / \operatorname{im}(v)$, we have a projection $\pi \in$ $\operatorname{hom}\left(M^{\prime \prime}, N\right)$; then $\bar{v}(\pi)=\pi \circ v=0$, so by injectivity of \bar{v} we have $\pi=0$ and $\operatorname{coker}(v)=0$. So v is surjective.

We now check that $\operatorname{im}(u) \subseteq \operatorname{ker}(v)$. Letting $N=M^{\prime \prime}$, we have that $0=\bar{u}\left(\bar{v}\left(\operatorname{id}_{M^{\prime \prime}}\right)\right)=v \circ u$; so $\operatorname{im}(u) \subseteq \operatorname{ker}(v)$.

We finally verify that $\operatorname{ker}(v) \subseteq \operatorname{im}(u)$. Taking $N=\operatorname{coker}(u)$ with the projection $\pi \in \operatorname{hom}(M, N)$, we have $0=\bar{u}(\pi)$; so $\pi \in \operatorname{ker}(\bar{v}) \subseteq \operatorname{im}(\bar{v})$. So there is $f: M^{\prime \prime} \rightarrow N$ such that $\pi=\bar{v}(f)$. But then for $x \in \operatorname{ker}(v)$, we have

$$
\pi(x)=\bar{v}(f)(x)=f(v(x))=0
$$

So $x \in \operatorname{ker}(\pi)=\operatorname{im}(u)$. Theorem 2.2.8

Theorem 2.2.9 (2.12-Universal property of tensor products). Suppose M, N are A-modules. Given any A-module P and any A-bilinear function $f: M \times N \rightarrow P$, there is a unique A-linear map $f^{\prime}: M \otimes_{A} N \rightarrow P$ such that the following diagram commutes:

i.e. every bilinear map on $M \times N$ factors through $M \otimes_{A} N$.

Proof. Let C be the free module on generators $M \times N$. Extend f to an A-linear map $\bar{f}: C \rightarrow P$ by

$$
\bar{f}\left(\sum_{i} a_{i}\left(x_{i}, y_{i}\right)\right)=\sum_{i} a_{i} f\left(x_{i}, y_{i}\right)
$$

Recall the submodule D generated by

- $\left(x+x^{\prime}, y\right)-(x, y)-\left(x^{\prime}, y\right)$
- $\left(x, y+y^{\prime}\right)-(x, y)-\left(x, y^{\prime}\right)$
- $(a x, y)-a(x, y)$
- $(x, a y)-a(x, y)$
for $x, x^{\prime} \in M, y, y^{\prime} \in N$, and $a \in A$. Since f is bilinear, we have $D \subseteq \operatorname{ker}(\bar{f})$. So by the universal property of quotients we get a uniquely determined A-linear map $f^{\prime}: C / D=M \otimes_{A} N \rightarrow D$ such that the following diagram commutes:

So, restricting to $M \times N$, we find the following diagram commutes:

as desired. For uniqueness, suppose $f^{\prime \prime}$ were another such map. Then for any $m \in M$ and $n \in N$ we have $f^{\prime}(m \otimes n)=f(m, n)=f^{\prime \prime}(m \otimes n)$; so f^{\prime} and $f^{\prime \prime}$ agree on all tensors. But the tensors generate $M \otimes N$; so $f^{\prime}=f^{\prime \prime}$.
\square Theorem 2.2.9
Remark 2.2.10. $M \otimes_{A} N$ is the unique A-module with this universal property.
Lemma 2.2.11. Suppose $f: M \rightarrow N$ is A-linear and P is an A-module. Then there is a unique A-linear map $f \otimes 1: M \otimes P \rightarrow N \otimes P$ such that $(f \otimes 1)(x \otimes y)=f(x) \otimes y$.

Proof. Consider $g: M \times P \rightarrow N \otimes P$ given by $(x, y) \mapsto f(x) \otimes y$. Then this is bilinear since f is A-linear and \otimes is bilinear. So the universal property gives us a uniquely determined A-linear map $g^{\prime}: M \otimes P \rightarrow N \otimes P$ such that $x \otimes y \mapsto g(x, y)=f(x) \otimes y$. So we can set $f \otimes 1$ to be this g^{\prime}.
\square Lemma 2.2.11
Remark 2.2.12. We then have that $-\otimes_{A} P$ is a covariant functor.
Proposition 2.2.13 (2.14 (iv)). Suppose M is an A-module. Then $A \otimes_{A} M \cong M$.
Proof. Consider $f: A \times M \rightarrow M$ given by $(a, m) \mapsto a m$. The A-module axioms tell us that f is A-bilinear. So the universal property of tensor products gives us $f^{\prime}: A \otimes_{A} M \rightarrow M$ such that the following diagram commutes:

so $f^{\prime}(a \otimes m)=a m$. Let $g: M \rightarrow A \otimes_{A} M$ be $m \mapsto 1_{A} \otimes m$; then g is A-linear, and

$$
\begin{aligned}
\left(f^{\prime} \circ g\right)(m) & =f^{\prime}(1 \otimes m) \\
& =m \\
\left(g \circ f^{\prime}\right)(a \otimes m) & =g(a m) \\
& =1 \otimes(a m) \\
& =a(1 \otimes m) \\
& =a \otimes m
\end{aligned}
$$

for all $a \in A, m \in M$. In particular, $f^{\prime} \circ g=\operatorname{id}_{M}$, and $g \circ f^{\prime}$ agrees with $\operatorname{id}_{A \otimes M}$ on tensors, and thus $g \circ f^{\prime}=\operatorname{id}_{A \otimes M}$. So f^{\prime} is an isomorphism $A \otimes_{A} M \rightarrow M$. Proposition 2.2.13

One similarly verifies the following:
Proposition 2.2.14 (2.14).

1. $\left(M \otimes_{A} N\right) \otimes_{A} P \cong M \otimes_{A}\left(N \otimes_{A} P\right)$ with isomorphism given on tensors by $(x \otimes y) \otimes z \mapsto x \otimes(y \otimes z)$.
2. $M \otimes_{A} N \cong N \otimes_{A} M$ with isomorphism given on tensors by $x \otimes y \mapsto y \otimes x$.
3. $(M \oplus N) \otimes_{A} P \cong\left(M \otimes_{A} P\right) \oplus\left(N \otimes_{A} P\right)$ with isomorphism given on tensors by $(m, n) \otimes p \mapsto(m \otimes p, n \otimes p)$.

Hom and tensor products are related: they are adjoints.
Proposition 2.2.15. Suppose M, N, P are A-modules. There is a canonical isomorphism of A-modules

$$
\operatorname{hom}(M \otimes N, P) \cong \operatorname{hom}(M, \operatorname{hom}(N, P))
$$

Remark 2.2.16. Fix an A-module N. Let T be the functor $M \mapsto M \otimes N$; let U be the functor $M \mapsto$ $\operatorname{hom}(N, M)$. Then the proposition says that $\operatorname{hom}(T(M), P) \cong \operatorname{hom}(M, U(P))$.

Proof of Proposition 2.2.15. Given $M \otimes N \xrightarrow{f} P$ we define $M \xrightarrow{\widehat{f}} \operatorname{hom}(N, P)$ given by $m \mapsto(n \mapsto f(m \otimes n))$. Conversely, given $M \xrightarrow{g} \operatorname{hom}(N, P)$, we define $M \otimes N \xrightarrow{g} P$ by $(m \otimes n) \mapsto g(m)(n)$. One checks that \widehat{a} and : are A-linear and mutually inverse.

Proposition 2.2.15
Intuitively, these are both isomorphic to the set of A-bilinear maps $M \times N \rightarrow P$.
We can use this to get exactness properties of \otimes :
Proposition 2.2.17 (2.18). Suppose $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is exact. Then for any A-module N we have

$$
M^{\prime} \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M^{\prime \prime} \otimes N \rightarrow 0
$$

Proof. Suppose P be an A-module. Then

$$
0 \rightarrow \operatorname{hom}\left(M^{\prime \prime}, P\right) \xrightarrow{\bar{g}} \operatorname{hom}(M, P) \xrightarrow{\bar{f}} \operatorname{hom}\left(M^{\prime}, P\right)
$$

is exact by Proposition 2.1.14; so

$$
0 \rightarrow \operatorname{hom}\left(N, \operatorname{hom}\left(M^{\prime \prime}, P\right)\right) \rightarrow \operatorname{hom}(N, \operatorname{hom}(M, P)) \rightarrow \operatorname{hom}\left(N, \operatorname{hom}\left(M^{\prime}, P\right)\right)
$$

is exact by Proposition 2.1.16. Applying the previous proposition we get that this is isomorphic to

$$
0 \rightarrow \operatorname{hom}\left(M^{\prime \prime} \otimes N, P\right) \xrightarrow{\overline{g \otimes 1}} \operatorname{hom}(M \otimes N, P) \xrightarrow{\overline{f \otimes 1}} \operatorname{hom}\left(M^{\prime} \otimes N, P\right)
$$

which is then exact. (One checks that the arrows are indeed $\overline{g \otimes 1}$ and $\overline{f \otimes 1}$.) By Theorem 2.2.8, since P was arbitrary, we have that

$$
M^{\prime} \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M^{\prime \prime} \otimes N \rightarrow 0
$$

is exact. Proposition 2.2.17

Note that \otimes is not exact:
Example 2.2.18. Consider $0 \rightarrow \mathbb{Z} \xrightarrow{f} \mathbb{Z}$ given by $x \mapsto 2 x$; then $0 \rightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{f \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ has $1 \otimes 1 \mapsto 2 \otimes 1=1 \otimes 2=1 \otimes 0=0$ but $1 \otimes 1 \neq 0$, and $f \otimes 1$ is not injective.

We can also express this by saying that $2 \mathbb{Z}$ is a submodule of \mathbb{Z} but $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ is not a submodule $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$; i.e. $\iota: 2 \mathbb{Z} \rightarrow \mathbb{Z}$ has $\iota \otimes 1: 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ is not injective.

The above can be expressed as saying that $\mathbb{Z} / 2 \mathbb{Z}$ is not a flat \mathbb{Z}-module.
Definition 2.2.19. An A-module N is flat if whenever $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is exact then $M^{\prime} \otimes N \xrightarrow{f \otimes 1}$ $M \otimes N \xrightarrow{g \otimes 1} M^{\prime \prime} \otimes N$ is exact.

Proposition 2.2.20 (2.19). Suppose N is an A-module. Then the following are equivalent:

1. N is flat.

2. Whenever

$$
0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0
$$

is exact we have

$$
0 \rightarrow M^{\prime} \otimes N \rightarrow M \otimes N \rightarrow M^{\prime \prime} \otimes N \rightarrow 0
$$

is exact.
3. Whenever $f: M^{\prime} \rightarrow M$ is injective we have $f \otimes 1: M^{\prime} \otimes N \rightarrow M \otimes N$ is injective.
4. Whenever M and M^{\prime} are finitely generated and $f: M^{\prime} \rightarrow M$ is injective we have $f \otimes 1: M^{\prime} \otimes N \rightarrow M \otimes N$ is injective.

Proof.
$(1) \Longrightarrow(2)$ Easy.
$(2) \Longrightarrow(1)$ Suppose

$$
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}
$$

is exact. We want exactness of

$$
M^{\prime} \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M^{\prime \prime} \otimes N
$$

We get two short exact sequences:

$$
0 \rightarrow \operatorname{im}(f) \xrightarrow{\iota} M \xrightarrow{\widehat{g}} \operatorname{im}(g) \rightarrow 0
$$

and

$$
0 \rightarrow \operatorname{im}(g) \xrightarrow{t^{\prime \prime}} M^{\prime \prime} \rightarrow \operatorname{coker}(g) \rightarrow 0
$$

By hypothesis, we then have

$$
0 \rightarrow \operatorname{im}(f) \otimes N \xrightarrow{\iota \otimes 1} M \otimes N \xrightarrow{\widehat{g} \otimes 1} \operatorname{im}(g) \otimes N \rightarrow 0
$$

and

$$
\begin{equation*}
0 \rightarrow \operatorname{im}(g) \otimes N \xrightarrow{{t^{\prime \prime} \otimes 1}_{\longrightarrow}^{\prime \prime}} M^{\prime \prime} \otimes N \xrightarrow{\pi \otimes 1} \operatorname{coker}(g) \otimes N \rightarrow 0 \tag{2}
\end{equation*}
$$

are exact. But then

$$
\operatorname{im}(f \otimes 1)=\left(f\left(x^{\prime}\right) \otimes y: x^{\prime} \in M^{\prime}, y \in N\right)=\operatorname{im}(\iota \otimes 1)=\operatorname{ker}(\hat{g} \otimes 1)
$$

Claim 2.2.21. $\operatorname{ker}(\widehat{g} \otimes 1)=\operatorname{ker}(g \otimes 1)$.
Proof. By definition of \widehat{g} we have the following diagram commutes:

Since $-\otimes N$ is a functor, we then get the following diagram commutes:

But by exactness of (2) we have $\iota^{\prime \prime} \otimes 1$ is injective. So $\operatorname{ker}(g \otimes 1)=\operatorname{ker}(\widehat{g} \otimes 1)$.
\square Claim 2.2.21
So $\operatorname{im}(f \otimes 1)=\operatorname{ker}(g \otimes 1)$, and we have that

$$
M^{\prime} \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M^{\prime \prime} \otimes N
$$

is exact.
(3) \Longleftrightarrow (2) Proposition 2.2.17.
$\underline{\mathbf{(4)} \Longrightarrow \mathbf{(3)}}$ Suppose $M^{\prime} \xrightarrow{f} M$ is injective. Suppose $u \in \operatorname{ker}(f \otimes 1)$; we wish to show $u=0$. Write

$$
u=\sum_{i=1}^{n} x_{i} \otimes y_{i}
$$

where each $x_{i} \in M^{\prime}$ and $y_{i} \in N$. Then

$$
0=(f \otimes 1)(u)=\sum_{i=1}^{n} f\left(x_{i}\right) \otimes y_{i}
$$

in $M \otimes N=C_{M, N} / D_{M, N}$. So

$$
\sum_{i=1}^{n}\left(f\left(x_{i}\right), y_{i}\right) \in D_{M, N}
$$

and is thus a finite linear combination $\left(^{*}\right)$ of generators of $D_{M, N}$. Let M_{0} be the submodule of M generated by $f\left(x_{i}\right)$ for $i \in\{1, \ldots, n\}$ and by the elements of M appearing in $\left({ }^{*}\right)$. Let $M_{0}^{\prime}=\left(x_{1}, \ldots, x_{n}\right)$ be the submodule of M^{\prime} generated by x_{1}, \ldots, x_{n}. Then

$$
\sum_{i=1}^{n}\left(f\left(x_{i}\right), y_{i}\right) \in D_{M_{0}, N} \leq C_{M_{0}, N}
$$

by the same witness as (*). So

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \otimes y_{i}=0
$$

in $M_{0} \otimes N=C_{M_{0}, N} / D_{M_{0}, N}$. Let $f_{0}=f \upharpoonright M_{0}^{\prime}: M_{0}^{\prime} \rightarrow M_{0}$; then f_{0} is injective. By hypothesis we have $f_{0} \otimes 1: M_{0}^{\prime} \otimes N \rightarrow M_{0} \otimes N$ is injective. Let

$$
u_{0}=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in M_{0}^{\prime} \otimes N
$$

But

$$
\left(f_{0} \otimes 1\right)\left(u_{0}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \otimes y_{i}=0
$$

in $M_{0} \otimes N$. So $v_{0}=0$. So

$$
\sum_{i=1}^{n}\left(x_{i}, y_{i}\right) \in D_{M_{0}^{\prime}, N} \leq C_{M_{0}^{\prime}, N} \leq C_{M^{\prime}, N}
$$

(and in particular $D_{M_{0}^{\prime}, N} \leq D_{M^{\prime}, N}$); so

$$
\sum_{i=1}^{n}\left(x_{i}, y_{i}\right) \in D_{M^{\prime}, N}
$$

and

$$
u=\sum_{i=1}^{n} x_{i} \otimes y_{i}=0
$$

in $M^{\prime} \otimes N$.
Proposition 2.2.20
Example 2.2.22. Free modules are flat. As an easy example, let $F=A \oplus A$. Suppose $f: M^{\prime} \rightarrow M$ is injective. We then have

Tracing through to find what α should be, we find that if $(x, y) \in M^{\prime} \oplus M^{\prime}$, we get

$$
(x, y) \mapsto(x \otimes 1, y \otimes 1) \mapsto x \otimes(1,0)+y \otimes(0,1) \mapsto f(x) \otimes(1,0)+f(y) \otimes(0,1) \mapsto(f(x) \otimes 1, f(y) \otimes 1) \mapsto(f(x), f(y))
$$

So $\alpha(x, y)=(f(x), f(y))$, and α is injective. So $f \otimes 1$ is injective. Since f was arbitrary, the previous proposition yields that $A \oplus A$ is flat.

2.3 Algebras

Definition 2.3.1. An A-algebra is a ring B with a ring homomorhpism $f: A \rightarrow B$.
Remark 2.3.2. f induces an A-module structure on B by $a b=f(a) b$ for $a \in A, b \in B$; this is indeed an A-module structure on B since f is a ring homomorphism. The A-module structure on B is compatible with the ring structure on B in the sense that

$$
a \cdot\left(b_{1} b_{2}\right)=f(a)\left(b_{1} b_{2}\right)=\left(f(a) b_{1}\right) b_{2}=\left(a \cdot b_{1}\right) b_{2}
$$

Remark 2.3.3. Suppose B is a ring with an A-module structure satisfying $a \cdot\left(b_{1} b_{2}\right)=\left(a \cdot b_{1}\right) b_{2}$. Then B is an A-algebra and the A-module structure is the induced one.

Proof. Define $f: A \rightarrow B$ by $a \mapsto a \cdot 1_{B}$. Then f is a homomorphism since

$$
\begin{aligned}
f\left(a_{1}+a_{2}\right) & =\left(a_{1}+a_{2}\right) \cdot 1_{B} \\
& =a_{1} \cdot 1_{B}+a_{2} \cdot 1_{B} \\
& =f\left(a_{1}\right)+f\left(a_{2}\right) \\
f\left(a_{1} a_{2}\right) & =\left(a_{1} a_{2}\right) \cdot 1_{B} \\
& =a_{1}\left(a_{2} \cdot 1_{B}\right) \\
& =\left(a_{1}\left(1_{B}\left(a_{2} \cdot 1_{B}\right)\right)\right. \\
& =\left(a_{1} \cdot 1_{B}\right)\left(a_{2} \cdot 1_{B}\right) \\
& =f\left(a_{1}\right) f\left(a_{2}\right)
\end{aligned}
$$

Remark 2.3.3
The point is that rings with an A-module structure satisfying $a \cdot\left(b_{1} b_{2}\right)=\left(a \cdot b_{1}\right) b_{2}$ are exactly the rings with a homomorphism $f: A \rightarrow B$.

Example 2.3.4.

1. Suppose $A=k$ is a field. A k-algebra B is just a ring containing k as a subring. Indeed, every ring homomorphism on a field is injective, so we can identify k with its image $f: k \rightarrow B$.
2. Every ring is a \mathbb{Z}-algebra via the unique ring homomorphism $f: \mathbb{Z} \rightarrow B$; namely

$$
n \mapsto \begin{cases}\underbrace{1_{B}+\cdots+1_{B}}_{n \text { times }} & n \geq 0 \\ -f(-n) & \text { else }\end{cases}
$$

3. Suppose A is a ring. The polynomial ring $A\left[t_{1}, \ldots, t_{n}\right]$ is an A-algebra with respect to the inclusion $A \rightarrow A\left[t_{1}, \ldots, t_{n}\right]$.

Definition 2.3.5. Suppose $f: A \rightarrow B$ is an A-algebra. An A-subalgebra is a subring $f(A) \subseteq B^{\prime} \subseteq B$; then the following diagram commutes:

Definition 2.3.6. Suppose $f: A \rightarrow B$ is an A-algebra with $X \subseteq B$. We define the A-subalgebra generated by X, denoted $A[X]$, to be the smallest A-algebra containing X; i.e. the intersection of all subalgebras containing X.

Exercise 2.3.7. $A[X]=\left\{P\left(x_{1}, \ldots, x_{n}\right): P \in A\left[t_{1}, \ldots, t_{n}\right], n \geq 0, x_{1}, \ldots, x_{n} \in X\right\}$.
Definition 2.3.8. We say B is a finitely generated A-algebra if $B=A[X]$ for some finite $X \subseteq B$. We say B is a finite A-algebra if B is finitely generated as an A-module; i.e. there are $x_{1}, \ldots, x_{n} \in B$ such that every element of B is of the form

$$
\sum_{i=1}^{n} a_{i} x_{i}
$$

where each $a_{i} \in A$.
Exercise 2.3.9. Every finite A-algebra is finitely generated.
Example 2.3.10.

1. Suppose $A=k$ is a field. Then a finite k-algebra is a finite dimensional k-vector space with a compatible ring structure.
For example, consider $B=k[t] /\left(t^{2}\right)$ as a k-algebra. Suppose $b \in B$; then b takes the form $P(t)+\left(t^{2}\right)$ for some $P(t)=a_{n} t^{n}+\cdots+a_{0} \in k[t]$; then $b=a_{1} t+a_{0}+\left(t^{2}\right)=a_{1}\left(t+\left(t^{2}\right)\right)+a_{0}\left(1+\left(t^{2}\right)\right)$. So as a k-vector space B is spanned by $t+\left(t^{2}\right)$ and $1+\left(t^{2}\right)$; so B is a finite k-algebra.
2. $B=k[t]$ is a finitely generated k-algebra generated by t. But $\left\{1, t, t^{2}, \ldots\right\}$ is a k-linearly independent set in B; so B is not a finite k-algebra.

Definition 2.3.11. Suppose $f_{1}: A \rightarrow B_{1}$ and $f_{2}: A \rightarrow B_{2}$ are A-algebras. An A-algebra homomorphism is $f: B_{1} \rightarrow B_{2}$ is a ring homomorphism that is A-linear; i.e. such that the following diagram commutes:

Lemma 2.3.12. Suppose $f: A \rightarrow B$ is a finitely generated A-algebra. Then $B \cong A\left[t_{1}, \ldots, t_{n}\right] / I$ as A algebras for some ideal $I \subseteq A\left[t_{1}, \ldots, t_{n}\right]$.

Proof. Suppose $x_{1}, \ldots, x_{n} \in B$ generate B as an A-algebra. Define $F: A\left[t_{1}, \ldots, t_{n}\right] \rightarrow B$ by $a \mapsto a \cdot 1=f(a)$ for $a \in A$ and $t_{i} \mapsto x_{i}$ for $i \in\{1, \ldots, n\}$. This defines an A-algebra homomorphism, since it extends f. Also $\operatorname{im}(F)$ contains x_{1}, \ldots, x_{n} and is an A-subalgebra; so f is surjective. So, by the first isomorphism theorem for rings, we get an isomorphism $\bar{F}: A\left[t_{1}, \ldots t_{n}\right] / \operatorname{ker}(F) \rightarrow B$; one checks that \bar{F} is A-linear. Lemma 2.3.12

Definition 2.3.13. Suppose $f: A \rightarrow B$ is an A-algebra and M is a B-module. We get a natural A-module structure on M via

$$
a \cdot m=f(a) m
$$

This A-module is called the restriction of scalars of M to A.
Proposition 2.3.14. If B is a finite A-algebra and M is a finitely generated B-module, then the restriction of scalars of M to A is a finitely generated A-module.

Proof. Say b_{1}, \ldots, b_{n} generate B as an A-module; say m_{1}, \ldots, m_{ℓ} generate M as a B-module. Then

$$
\left\{b_{i} m_{j}: i \in\{1, \ldots, n\}, j \in\{1, \ldots, \ell\}\right\}
$$

generates M as an A-module. Proposition 2.3.14

We can also go in the opposite direction:

Definition 2.3.15. Suppose N is an A-module. Then $B \otimes_{A} N$ has a B-module structure given by

$$
b \cdot\left(b^{\prime} \otimes n\right)=\left(b b^{\prime}\right) \otimes n
$$

i.e.

$$
b\left(\sum_{i=1}^{k} b_{i} \otimes n_{i}\right)=\sum_{i=1}^{k}\left(b b_{i}\right) \otimes n_{i}
$$

(One checks that this is well-defined and satisfies the module axioms.) This construction is called extension of scalars.
Example 2.3.16. Consider $A=k$ a field; suppose B is a k-algebra. Suppose $A \subseteq B$ and

$$
M=\bigoplus_{i=1}^{n} k \cdot m_{i}
$$

is a finitely generated k-module (i.e. vector space over k). Then

$$
B \otimes_{k} M=B \otimes_{k}\left(\bigoplus_{i=1}^{n} k m_{i}\right) \cong B \otimes_{k}\left(\bigoplus_{i=1}^{n} k\right) \cong \bigoplus_{i=1}^{n}\left(B \otimes_{k} k\right) \cong \bigoplus_{i=1}^{n} B
$$

is a free B-module with generators $1 \otimes m_{1}, \ldots, 1 \otimes m_{n}$.
In general we have:
Proposition 2.3.17. Suppose M is generated as an A-module by m_{1}, \ldots, m_{n}. Then $B \otimes_{A} M$ is generated as a B-module by $1 \otimes m_{1}, \ldots, 1 \otimes m_{n}$.

2.4 Tensor products of A-algebras

Suppose $f: A \rightarrow B$ and $g: A \rightarrow C$ are A-algebras. Consider $D=B \otimes_{A} C$. We wish to make D into an A-algebra.
Proposition 2.4.1. There is an A-bilinear map $\mu: D \times D \rightarrow D$ such that

$$
\mu\left(b \otimes c, b^{\prime} \otimes c^{\prime}\right)=\left(b b^{\prime}\right) \otimes\left(c c^{\prime}\right)
$$

Proof. We want A-linear $\eta: D \rightarrow \operatorname{hom}_{A}(D, D)$; i.e. we want A-bilinear $\eta_{1}: B \times C \rightarrow \operatorname{hom}_{A}(D, D)$. Fix $b \in B$ and $c \in C$; we then define $\eta_{1}(b, c): B \otimes C \rightarrow D$ to be the A-linear map corresponding to the A-bilinear map

$$
\begin{aligned}
B \times C & \rightarrow D \\
\left(b^{\prime}, c^{\prime}\right) & \mapsto\left(b b^{\prime}\right) \otimes\left(c c^{\prime}\right)
\end{aligned}
$$

One checks that everything involved is bilinear, and thus that we indeed get A-linear $\eta: D \rightarrow \operatorname{hom}_{A}(D, D)$; this then induces bilinear $\mu: D \times D \rightarrow D$ given by $(x, y) \mapsto \eta(x)(y)$. In particular, we have

$$
\mu\left(b \otimes c, b^{\prime} \otimes c^{\prime}\right)=\eta(b \otimes c)\left(b^{\prime} \otimes c^{\prime}\right)=\eta_{1}(b, c)\left(b^{\prime} \otimes c^{\prime}\right)=\left(b b^{\prime}\right) \otimes\left(c c^{\prime}\right)
$$

Proposition 2.4.1
Exercise 2.4.2. Check that μ makes D into a ring; then by bilinearity we have $B \otimes_{A} C$ is an A-algebra.
Remark 2.4.3. The identity element of $B \otimes_{A} C$ is $1_{B} \otimes 1_{C}$. The ring homomorphism $A \rightarrow B \otimes_{A} C$ defining the algebra structure on $B \otimes_{A} C$ is given by $a \mapsto f(a) \otimes g(a)$. (Recall that $f: A \rightarrow B$ and $g: A \rightarrow C$ were the original algebra structures.) We also get canonical ring homomorphisms

$$
\begin{aligned}
B & \rightarrow B \otimes_{A} C \\
b & \mapsto b \otimes 1_{C}
\end{aligned}
$$

and

$$
\begin{aligned}
C & \rightarrow B \otimes_{A} C \\
c & \mapsto 1_{B} \otimes c
\end{aligned}
$$

Example 2.4.4. With $A=\mathbb{Q}$, we have $\mathbb{Q}[t] \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}[t]$ as \mathbb{R}-algebras via the map

$$
\left(a_{n} t^{n}+\cdots+a_{0}\right) \otimes r \mapsto r a_{n} t^{n}+\cdots+r a_{0}
$$

Example 2.4.5. Again with $A=\mathbb{Q}$ we have $\mathbb{Q}\left[t_{1}\right] \otimes_{\mathbb{Q}} \mathbb{Q}\left[t_{2}\right] \cong \mathbb{Q}\left[t_{1}, t_{2}\right]$ is generated by $t_{1}^{n} \otimes t_{2}^{m}$ for $m, n \in \mathbb{N}$.

3 Interlude: Finitely generated modules over PIDs

We follow chapter 12 of Dummit and Foote.
Definition 3.0.1. Suppose M is an A-module and $X \subseteq M$. We say X is linearly independent if whenever

$$
a_{1} x_{1}+\cdots+a_{\ell} x_{\ell}=0
$$

then

$$
a_{1}=\cdots=a_{\ell}=0
$$

(for $a_{i} \in A, x_{i} \in X$). A basis for M is a linearly independent generating set.
Lemma 3.0.2 (1). Suppose M is an A-module. Then M has a basis if and only if M is free.
Proof.
(\Longrightarrow) Suppose $X \subseteq M$ is a basis. Consider the map

$$
\bigoplus_{x \in X} A x \rightarrow M
$$

given by

$$
\left(a_{x} x: x \in X\right) \mapsto \sum_{x \in X} a_{x} x
$$

This is surjective since X generates M; it is injective since if

$$
\sum_{x \in X} a_{x} x=0
$$

then $\left(a_{x} x: x \in X\right)=0$. Composing with the canonical isomorphisms $A x \rightarrow A$, we see

$$
M \cong \bigoplus_{x \in X} A
$$

and M is free.
(\Longleftarrow) Suppose

$$
M \cong \bigoplus_{x \in I} A
$$

Let $e_{i}=(0, \ldots, 0,1,0, \ldots)$ be the standard basis vectors of

$$
\bigoplus_{x \in I} A
$$

Then the images of the e_{i} form a basis for M.
Lemma 3.0.2
Remark 3.0.3. When X is a basis for M, we get A-linear maps $\pi_{x}: M \rightarrow A$ for all $x \in X$ given by

$$
\sum_{y \in X} a_{y} y \mapsto a_{x}
$$

These satisfy

$$
m=\sum_{x \in X} \pi_{x}(m) x
$$

for all $m \in M$.

Even when M is not free, linearly independent sets may exist and be useful.
Definition 3.0.4. Suppose A is an integral domain; suppose M is an A-module. We say M is of finite rank if there is a maximal $m \in \mathbb{N}$ such that M has a linearly independent set of size m; in this case, m is called the rank of M. Otherwise we say M is of infinite rank.
Lemma 3.0.5 (2). Suppose A is an integral domain. Then the free module

$$
M=\bigoplus_{i=1}^{m} A
$$

is of rank m.
Proof. Let F be the fraction field of A. Consider

$$
F^{m}=\underbrace{F \oplus \ldots \oplus F}_{n \text { times }}
$$

as a vector space over F; then $M \subseteq F^{m}$. Suppose $x_{1}, \ldots, x_{m+1} \in X$; then $\left\{x_{1}, \ldots, x_{m+1}\right\}$ is linearly dependent, and we have some $f_{1}, \ldots, f_{m+1} \in F$ such that

$$
f_{1} x_{1}+\cdots+f_{m+1} x_{m+1}=0
$$

Multiplying by a common denominator, we may assume that each $f_{i} \in A$, and thus that $\left\{x_{1}, \ldots, x_{m+1}\right\}$ is linearly dependent in M. So the rank of M is at most m. But we have an obvious linearly independent set of size m; so the rank of M is m.

Lemma 3.0.5
Remark 3.0.6. Suppose A is an integral domain.

1. By Lemma 3.0.2, we don't expect in the general finite rank case to get a basis.
2. If $N \leq M$ and $\operatorname{rank}(M)=n$ then $\operatorname{rank}(N) \leq n$.

Definition 3.0.7. Suppose A is an integral domain; suppose M is an A-module. A torsion element of M is $x \in M$ such that $a x=0$ for some non-zero $a \in A$. We write

$$
\operatorname{Tor}(M)=\{x \in M: x \text { is torsion }\}
$$

Then $\operatorname{Tor}(M)$ is a submodule of M.
Lemma 3.0.8 (3). Suppose A is an integral domain. Then

1. M is torsion if and only if $\operatorname{rank}(M)=0$.
2. Free modules are torsion-free.

Proof.

1. Well

$$
\begin{aligned}
M \text { is torsion } & \Longleftrightarrow \text { for all } x \in M \text { we have non-zero } a \in A \text { such that } a x=0 \\
& \Longleftrightarrow \text { for all } x \in M \text { we have that }\{a\} \text { is linearly dependent } \\
& \Longleftrightarrow \operatorname{rank}(M)=0
\end{aligned}
$$

2. Say

$$
M \cong \bigoplus_{i \in I} A
$$

Suppose $x=\left(a_{i}: i \in I\right) \in M$; suppose we have non-zero $a \in A$ such that $a x=0$. Then $a a_{i}=0$ for all $i \in I$, and thus $a_{i}=0$ for all $i \in I$; so $x=\left(a_{i}: i \in I\right)=0$. So M is torsion-free.Lemma 3.0.8

Proposition 3.0.9 (4). Suppose A is a PID and M is a free A-module of rank m. Suppose $0 \neq N \leq M$ is a submodule. Then

1. N is free of rank $n \leq m$.
2. There exists a basis y_{1}, \ldots, y_{m} of M and $a_{1}\left|a_{2}\right| \cdots \mid a_{n}$ such that $\left\{a_{1} y_{1}, \ldots, a_{n} y_{n}\right\}$ is a basis for N.

Proof. Consider $\operatorname{hom}_{A}(M, A)$. If $\varphi: M \rightarrow A$, then $\varphi(N) \subseteq A$ is an ideal; so, since A is a PID, we have $\varphi(N)=\left(a_{N}\right)$ for some $a_{\varphi} \in A$. Define

$$
\Sigma=\left\{\varphi(N): \varphi \in \operatorname{hom}_{A}(M, A)\right\}
$$

Claim 3.0.10. Σ has a maximal element.
Proof. We apply Zorn's lemma. We need to check that if $I_{1} \subseteq I_{2} \subseteq \ldots$ is a chain in Σ then

$$
\bigcup_{i} I_{i} \in \Sigma
$$

Since A is a PID, we have

$$
\bigcup_{i} I_{i}=(a)
$$

for some $a \in A$. So $a \in I_{i_{0}}$ for some i_{0}; so

$$
\bigcup_{i} I_{i}=I_{i_{0}} \in \Sigma
$$

Claim 3.0.10

Claim 3.0.11. $\Sigma \neq\{0\}$.
Proof. Well, we are guaranteed some basis $\left\{x_{1}, \ldots, x_{m}\right\}$ for M; we then get projections $\pi_{i}: M \rightarrow A$ such that

$$
x=\sum_{i=1}^{m} \pi_{i}(x) x_{i}
$$

for all $x \in M$. But $N \neq 0$; so there is $x \in N$ such that $x \neq 0$. Then

$$
0 \neq x=\sum_{i=1}^{m} \pi_{i}(x) x_{i}
$$

So, since $\left\{x_{1}, \ldots, x_{n}\right\}$ are a basis, we have some $i_{0} \in\{1, \ldots, m\}$ such that $\pi_{i_{0}}(x) \neq 0$. Then $0 \neq \pi_{i_{0}}(N) \in \Sigma$.Claim 3.0.11

Let $\nu(N) \in \Sigma$ be maximal, where $\nu \in \operatorname{hom}_{A}(M, A)$. Let $\nu(N)=\left(a_{1}\right)$; pick $y \in N$ such that $\nu(y)=a_{1}$. Note that $a_{1} \neq 0$ by the claim.

Claim 3.0.12. $a_{1} \mid \varphi(y)$ for all $\varphi \in \operatorname{hom}_{A}(M, A)$.
Proof. Since A is a PID, we have $\left(a_{1}, \varphi(y)\right)=(d)$ for some $d \in A$; say $d=r_{1} a_{1}+r_{2} \varphi(y)$ where $r_{1}, r_{2} \in A$. Consider

$$
\psi=r_{1} \nu+r_{2} \varphi \in \operatorname{hom}_{A}(M, A)
$$

Then $\psi(N) \ni \psi(y)=r_{1} \nu(y)+r_{2} \varphi(y)=r_{1} a_{1}+r_{2} \varphi(y)=d$. So $\left(a_{1}\right) \subseteq(d) \subseteq \psi(N) \in \Sigma$; so, by maximality of $\nu(N)=\left(a_{1}\right)$, we have $(d)=\left(a_{1}\right)$. So $\varphi(y) \in\left(a_{1}\right)$; so $a_{1} \mid \varphi(y)$.

Claim 3.0.12
Claim 3.0.13. There exists $y_{1} \in M$ such that

1. $\nu\left(y_{1}\right)=1$
2. $A y_{1} \cap \operatorname{ker}(\nu)=0$ and $A y_{1}+\operatorname{ker}(\nu)=M$. (One checks that this implies $M=A y_{1} \oplus \operatorname{ker}(\nu)$.)
3. $A\left(a_{1} y_{1}\right) \oplus(\operatorname{ker}(\nu) \cap N)=N$.

Proof. Fix a basis x_{1}, \ldots, x_{m} for M; consider the projection $\pi_{i}: M \rightarrow A$. Then for the $y \in N$ that we previously defined (with $\nu(y)=a_{1}$) we have

$$
y=\sum_{i=1}^{m} \pi_{i}(y) x_{i}
$$

But by the previous claim we have $a_{1} \mid \pi_{i}(y)$, so $\pi_{i}(y)=a_{1} b_{i}$ for some $b_{1}, \ldots, b_{m} \in A$. So

$$
y=\sum_{i=1}^{m} a_{1} b_{i} x_{i}=a_{1} \sum_{i=1}^{m} b_{i} x_{i}=a_{1} y_{1}
$$

where

$$
y_{1}=\sum_{i=1}^{n} b_{i} x_{i}
$$

We now check the desired properties.

1. Well, $\nu\left(a_{1} y_{1}\right)=\nu(y)$; so $a_{1} \nu\left(y_{1}\right)=a_{1}$ in A, and $\nu\left(y_{1}\right)=1$.
2. Suppose $x \in M$. Then

$$
\nu\left(x-\nu(x) y_{1}\right)=\nu(x)-\nu(x) \nu\left(y_{1}\right)=\nu(x)-\nu(x)=0
$$

since we previously showed that $\nu\left(y_{1}\right)=1$. So $x=\nu(x) y_{1}+\left(x-\nu(x) y_{1}\right) \in A y_{1}+\operatorname{ker}(\nu)$, and $M=A y_{1}+\operatorname{ker}(\nu)$.
On the other hand, let $x \in A y_{1} \cap \operatorname{ker}(\nu)$. Then $x=a y_{1}$ for some $a \in A$. But then

$$
0=\nu(x)=\nu\left(a y_{1}\right)=a \nu\left(y_{1}\right)=a
$$

So $x=0$. So $A y_{1} \cap \operatorname{ker}(\nu)=0$.
3. Note $a_{1} y_{1}=y \in N$; so $A\left(a_{1} y_{1}\right)+(\operatorname{ker}(\nu \cap N) \subseteq N$. As before, given $x \in N$ we have

$$
x=\nu(x) y_{1}+\left(x-\nu(x) y_{1}\right)
$$

where $x-\nu(x) y_{1} \in \operatorname{ker}(v)$ as before. But $x \in N$, so $\nu(x) \in \nu(N)$; so $\nu(x)=b a_{1}$ for some $b \in A$. So

$$
x=b a_{1} y_{1}+\left(x-b a_{1} y_{1}\right)
$$

where we still have that $x-b a_{1} y_{1} \in \operatorname{ker}(\nu)$; furthermore, $x-b a_{1} y_{1} \in N$ since $x \in N$ and $a_{1} y_{1} \in N$. So

$$
N=A\left(a_{1} y_{1}\right)+(\operatorname{ker}(v) \cap N)
$$

Also $A\left(a_{1} y_{1}\right) \cap(\operatorname{ker}(\nu) \cap N) \subseteq A y_{1} \cap \operatorname{ker}(\nu)=\emptyset$.
Claim 3.0.13
We now prove the statements of the theorem.

1. Apply induction on $n=\operatorname{rank}(N) \leq \operatorname{rank}(M)=m$ (where the inequalities and equalities follow from previous lemmata).
If $n=0$, then by a previous lemma we have that N is torsion. But M is free and is thus torsion-free. So $N=0$.
Suppose $n>0$.
Exercise 3.0.14. If $M^{\prime}, M^{\prime \prime}$ are finite rank, then $\operatorname{rank}\left(M^{\prime} \oplus M^{\prime \prime}\right)=\operatorname{rank}\left(M^{\prime}\right)+\operatorname{rank}\left(M^{\prime \prime}\right)$.
By part (3) of the previous claim, we then get $\operatorname{rank}(\operatorname{ker}(\nu) \cap N)=n-1$. So $\operatorname{ker}(\nu) \cap N$ is a submodule of the free module M of rank $n-1$; so $\operatorname{ker}(\nu) \cap N$ is free of rank $n-1$ by the induction hypothesis. So N is free of rank n.
2. Apply induction on m the rank of M. By part (1), we have $\operatorname{ker}(\nu)$ is free; by part (2) of the claim, we have $\operatorname{rank}(\operatorname{ker}(\nu))=n-1$. By the induction hypothesis, we then get y_{2}, \ldots, y_{m} a basis for $\operatorname{ker}(\nu)$ and $a_{2}\left|a_{3}\right| \cdots \mid a_{n}$ in A such that $\left\{a_{2} y_{2}, \ldots, a_{n} y_{n}\right\}$ is a basis for $\operatorname{ker}(\nu) \cap N$.
Then by the claim we have y_{1}, \ldots, y_{m} is a basis for M and $a_{1} y_{1}, \ldots, a_{n} y_{n}$ is a basis for N; it remains to check that $a_{1} \mid a_{2}$.
Consider $\varphi: M \rightarrow A$ given by

$$
\begin{aligned}
y_{1} & \mapsto 1 \\
y_{2} & \mapsto 1 \\
y_{i} & \mapsto 0 \text { for } i \notin\{1,2\}
\end{aligned}
$$

Then $\varphi\left(a_{1} y_{1}\right)=a_{1} \varphi\left(y_{1}\right)=a_{1}$; thus $\left(a_{1}\right) \leq \varphi(N) \in \Sigma$ since $a_{1} y_{1} \in N$, and by maximality of $\left(a_{1}\right)$ we have $\left(a_{1}\right)=\varphi(N)$. Also $\varphi\left(a_{2} y_{2}\right)=a_{2} \varphi\left(y_{2}\right)=a_{2} ;$ so $a_{2} \in \varphi(N)=\left(a_{1}\right)$, and a_{1} | a_{2}.
\square Proposition 3.0.9
Theorem 3.0.15 (5: Fundamental theorem for finitely generated modules over PIDs, existence). Suppose A is a PID and M is a finitely generated A-module. Then $M \cong A^{r} \oplus A /\left(a_{1}\right) \oplus \ldots \oplus A /\left(a_{m}\right)$ for some $r \geq 0$ and $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$ are non-zero non-units unit A.

Remark 3.0.16.

1. All the factors on the RHS are cyclic A-modules, so in particular this says that every finitely generated A-module is a direct sum of cyclic submodules. (Note that any cyclic A-module is of the form A / I where if $N=(x)$ then $I=\operatorname{Ann}(x)$; in a PID, we have $I=(a)$.)
2. Each factor of the form A is free; each factor of the form $A /\left(a_{i}\right)$ is non-trivial torsion. This then splits M into a free part and a torsion part.

Corollary 3.0.17. Suppose A is a PID and M is a finitely generated A-module.

1. In Theorem 3.0.15, we have

$$
\operatorname{Tor}(M) \cong A /\left(a_{1}\right) \oplus \ldots \oplus A /\left(a_{m}\right)
$$

2. M is free if and only if M is torsion-free.
3. In Theorem 3.0.15, we have $r=\operatorname{rank}(M)$. (In particular, the r in Theorem 3.0.15 is unique.)

Proof.

1. We saw

$$
A /\left(a_{1}\right) \oplus \ldots \oplus A /\left(a_{m}\right) \subseteq \operatorname{Tor}(M)
$$

Conversely if

$$
\alpha=\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{m}\right) \in A^{r} \oplus A /\left(a_{1}\right) \oplus \ldots A /\left(a_{m}\right)
$$

is torsion then there is $0 \neq b \in A$ such that

$$
b \alpha=\left(b x_{1}, \ldots, b x_{r}, y_{1}, \ldots, y_{m}\right)=0
$$

So $b x_{i}=0$ for $i \in\{1, \ldots, m\}$; so $x_{i}=0$ for $i \in\{1, \ldots, m\}$. So

$$
\left.\alpha=9), 0, \ldots, 0, y_{1}, \ldots, y_{m}\right) \in A /\left(a_{1}\right) \oplus \ldots \oplus A /\left(a_{m}\right)
$$

2. Follows from A.
3. By a previously given exercise we have

$$
\operatorname{rank}(M)=\operatorname{rank}\left(A^{r}\right)+\operatorname{rank}(\operatorname{Tor}(M))
$$

which is then $r+0=r$ by Lemma 3.0.5 and Lemma 3.0.8.
Corollary 3.0.17

Proof of Theorem 3.0.15. Note that we get the a_{i} non-zero and non-unit from the main statement since if $a_{i}=0$ then $A /\left(a_{i}\right)=A$ can be absorbed into A^{r}, and if a_{i} is a unit then $A /\left(a_{i}\right)=0$ can be thrown out.

Now, let x_{1}, \ldots, x_{n} generate M as an A-module. Consider $\pi: A^{n} \rightarrow M$ given by $e_{i} \mapsto x_{i}$ (where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis for A). Then π is a surjective A-linear map. Thus we get an isomorphism

$$
\bar{\pi}: A^{n} / \operatorname{ker}(\pi) \rightarrow M
$$

Apply Proposition 3.0.9 to $\operatorname{ker}(\pi)$ to get a basis y_{1}, \ldots, y_{n} for A^{n} and $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$ in A such that $\left\{a_{1} y_{1}, \ldots, a_{m} y_{m}\right\}$ is a basis for $\operatorname{ker}(\pi)$, for some $m \leq n$. Then

$$
M \cong\left(A y_{1} \oplus \ldots \oplus A y_{n}\right) /\left(A\left(a_{1} y_{1}\right) \oplus \ldots \oplus A\left(a_{m} y_{m}\right)\right)
$$

Consider

$$
\begin{aligned}
f: \quad A y_{1} \oplus \ldots A y_{n} & \rightarrow A /\left(a_{1}\right) \oplus \ldots \oplus A /\left(a_{m}\right) \oplus A^{n-m} \\
\left(\alpha_{1} y_{1}, \ldots, \alpha_{n} y_{n}\right) & \mapsto\left(\alpha_{1} \bmod \left(a_{1}\right), \ldots, \alpha_{m} \bmod \left(a_{m}\right), \alpha_{m+1}, \ldots, \alpha_{n}\right)
\end{aligned}
$$

for $\alpha_{i} \in A$. Then f is an A-linear map and is surjective since f is the direct sum of quotient maps. Also

$$
\operatorname{ker}(f)=A\left(a_{1} y_{1}\right) \oplus \ldots \oplus A\left(a_{m} y_{m}\right)
$$

So

$$
\begin{equation*}
M \cong A /\left(a_{1}\right) \oplus \ldots \oplus A /\left(a_{m}\right) \oplus A^{n-m} \tag{Theorem 3.0.15}
\end{equation*}
$$

We can do better: we can decompose $A /\left(a_{i}\right)$ further. We will need:
Lemma 3.0.18 (7: Chinese remainder theorem). Suppose A is a ring and I and J are ideals of A such that $I+J=A$ (we say I and J are comaximal). Then

$$
A /(I \cap J) \cong A / I \oplus A / J
$$

as rings (and in particular as A-modules).
Proof. Pick $x \in I$ and $y \in J$ such that $x+y=1$. Consider

$$
\begin{aligned}
A & \rightarrow A / I \oplus A / J \\
a & \mapsto(a+I, a+J)
\end{aligned}
$$

We need to show that f is surjective: given $a, b \in A$ we need to find $c \in A$ such that

$$
\begin{aligned}
& c+I=a+I \\
& c+J=b+J
\end{aligned}
$$

i.e.

$$
\begin{gathered}
c \equiv a \quad(\bmod I) \\
c \equiv b \quad(\bmod J) c+J=b+J
\end{gathered}
$$

Let $c=b x+a y$. Then

$$
\begin{aligned}
c+I & =(b x+I)+(a y+I) \\
& =(b+I)(x+I)+(a+I)(y+I) \\
& =(a+I)(y+I) \\
& =(a+I)(1-x+I) \\
& =(a+I)(1+I) \\
& =a+I
\end{aligned}
$$

and similarly we get $c+J=b+J$.
Lemma 3.0.18

By induction one can prove more generally that if I_{1}, \ldots, I_{ℓ} are ideals of a ring A with $I_{i}+I_{j}=A$ for all $i \neq j$ then

$$
A /\left(I_{1} \cap \cdots \cap I_{\ell}\right) \cong A / I_{1} \oplus \ldots \oplus A / I_{\ell}
$$

as rings.
Suppose now that A is a PID and $a \in A$ is a non-zero non-unit. Then A is a UFD, so we can write $a=u p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$ where $u \in A^{\times}, p_{1}, \ldots, p_{s}$ are distinct primes in A, and $\alpha_{1}, \ldots, \alpha_{s}$ are positive integers. Then $(a)=\left(p_{1}^{\alpha_{1}}\right) \cap \cdots \cap\left(p_{s}^{\alpha_{s}}\right)$ by prime factorization. If $i \neq j$ then $\left(p_{i}^{\alpha_{i}}\right)+\left(p_{j}^{\alpha_{j}}\right)=(d)$ for some $d \in A$; but then d is a common divisor of $p_{i}^{\alpha_{i}}$ and $p_{j}^{\alpha_{j}}$, so d is a unit in A and $\left(p_{i}^{\alpha_{i}}\right)+\left(p_{j}^{\alpha_{j}}\right)=A$. So the Chinese remainder theorem yields

$$
A /(a) \cong A /\left(p_{1}^{\alpha_{1}}\right) \oplus \ldots \oplus A /\left(p_{s}^{a_{s}}\right)
$$

So Theorem 3.0.15 implies:
Theorem 3.0.19 (8, FTFGMPID, existence, elementary divisors form). Suppose A is a PID and M is a finitely generated A-module. Then

$$
M \cong A^{r} \oplus A /\left(p_{1}^{\alpha_{1}}\right) \oplus \ldots A /\left(p_{t}^{\alpha_{t}}\right)
$$

where p_{1}, \ldots, p_{t} are (not necessarily distinct) primes in A and $\alpha_{1}, \ldots, \alpha_{t}$ are positive integers.
Exercise 3.0.20. Derive Theorem 3.0.15 from Theorem 3.0.19. The problem is to recover the $a_{1}|\cdots| a_{m}$ condition; the solution is to use the Chinese remainder theorem to put the p_{i} back together properly.

Definition 3.0.21. We call $p_{1}^{\alpha_{1}}, \ldots, p_{t}^{\alpha_{t}}$ the elementary divisors of M; we call a_{1}, \ldots, a_{m} that appeared in Theorem 3.0.15 the invariant factors of M. (Note that this implicitly assumes uniqueness, which we have yet to prove.)

Theorem 3.0.22 (9). These forms are unique; i.e.

1. If we also have

$$
M \cong A^{r^{\prime}} \oplus A /\left(a_{1}^{\prime}\right) \oplus \ldots \oplus A /\left(a_{m^{\prime}}\right)
$$

with $a_{1}^{\prime}|\cdots| a_{m^{\prime}}^{\prime}$ non-zero and non-units then $r=r^{\prime}, m=m^{\prime}$, and $\left(a_{i}\right)=\left(a_{i}^{\prime}\right)$ for all $i \in\{1, \ldots, m\}$ (i.e. a_{i} is the product of a unit and a_{i}^{\prime}; we then write $a_{i} \sim a_{i}^{\prime}$ and say they are associates).
2. If we also have

$$
M \cong A^{r^{\prime}} \oplus A /\left(\left(p_{1}^{\prime}\right)^{\alpha_{1}^{\prime}}\right) \oplus \ldots \oplus A /\left(\left(p_{t^{\prime}}^{\prime}\right)^{\alpha_{t^{\prime}}^{\prime}}\right)
$$

with $p_{1}^{\prime}, \ldots, p_{t}^{\prime}$ primes and $\alpha_{1}^{\prime}, \ldots, \alpha_{t^{\prime}}^{\prime}$ positive integers, then $r=r^{\prime}, t=t^{\prime}$, and after reordering we have $\alpha_{i}=\alpha_{i}^{\prime}$ and $p_{i} \sim p_{i}^{\prime}$ (and in particular that $\left(p_{i}^{\alpha_{i}}\right)=\left(\left(p_{i}^{\prime}\right)^{\alpha_{i}^{\prime}}\right)$).
We will need
Lemma 3.0.23 (10). Suppose A is a principal ideal domain, p is prime in A, and $F=A /(p)$ (so F is a field as (p) is prime and thus maximal). Suppose

$$
M=A /\left(a_{1}\right) \oplus \ldots \oplus A /\left(a_{k}\right)
$$

with each a_{i} divisible by p. Then $M / p M \cong F^{k}$ as vector spaces over F.
(One should check that in general for $I \subseteq A$ an ideal we have that $M / I M$ is naturally an A / I-module via $(a+I)(x+I M)=a x+I M$.)
Proof. Fix $i \in\{1, \ldots, k\}$. Consider the quotient map $\pi_{i}: A /\left(a_{i}\right) \rightarrow\left(A /\left(a_{i}\right)\right) / p\left(A /\left(a_{i}\right)\right)$. But

$$
p\left(A /\left(a_{i}\right)\right)=\left\{p a+\left(a_{i}\right): a \in A\right\}=(p) /\left(a_{i}\right)
$$

since $p \mid a_{i}$, and thus $\left(a_{i}\right) \subseteq(p)$. Thus

$$
\left(A /\left(a_{i}\right)\right) / p\left(A /\left(a_{i}\right)\right)=\left(A /\left(a_{i}\right)\right) /\left((p) /\left(a_{i}\right)\right) \cong A /(p)=F
$$

by the second isomorphism theorem. Consider then

$$
\begin{aligned}
\pi: M=A /\left(a_{1}\right) \oplus \ldots A /\left(a_{n}\right) & \rightarrow F^{k} \\
\left(\alpha_{1}, \ldots, \alpha_{k}\right) & \mapsto\left(\pi_{1}\left(\alpha_{1}, \ldots, \pi_{k}\left(\alpha_{k}\right)\right)\right.
\end{aligned}
$$

Then π is a surjective A-linear map, and

$$
\operatorname{ker}(\pi)=\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right): \operatorname{each} \alpha_{i} \in p\left(A /\left(a_{i}\right)\right)\right\}=p M
$$

Thus $M / p M \cong F^{k}$ as A-modules; one checks that the isomorphism is F-linear.
Lemma 3.0.23
Proof of Theorem 3.0.22. We have already seen that $r=\operatorname{rank}(M)$ and hence is uniquely determined in both forms of FTFGMPID. Considering M / A^{r}, we may assume M is torsion; i.e. that $r=0$.
2. Fix a prime $p \in A$; consider

$$
M[p]=\{x \in M: \text { some power of } p \text { annihilates } \mathrm{x}\}
$$

Then $M[p]$ is a submodules of M. Then

$$
M[p] \cong \bigoplus_{\substack{i \in\{1, \ldots, t\} \\ p_{i} \sim p}} A /\left(p_{i}^{\alpha_{i}}\right)
$$

since if $p_{i} \nsim p$ and $a \in A$ has $p^{\alpha} a \in\left(p_{i}^{\alpha_{i}}\right)$, then $p_{i}^{\alpha_{i}} \mid p^{\alpha} a$; so $p_{i}^{\alpha_{i}} \mid a$ by unique factorization, and $a \in\left(p_{i}^{\alpha_{i}}\right)$. Also

$$
M[p] \cong \bigoplus_{\substack{i \in\left\{\begin{array}{c}
\left.1, \ldots, t^{\prime}\right\} \\
p_{i}^{\prime} \sim p \\
\hline
\end{array}\right.}} A /\left(p_{i}^{\prime \alpha_{i}^{\prime}}\right)
$$

Working with one p at a time, we have reduced to the case when all p_{i} and p_{i}^{\prime} are associates of p. Multiplying by a unit (which doesn't change the ideals), we may assume

$$
p_{1}=p_{2}=\cdots=p_{t}=p_{1}^{\prime}=p_{2}^{\prime}=\cdots=p_{t^{\prime}}^{\prime}=p
$$

So

$$
A /\left(p^{\alpha_{1}}\right) \oplus \ldots \oplus A /\left(p^{\alpha_{t}}\right) \cong M \cong A /\left(p^{\alpha_{1}^{\prime}}\right) \oplus \ldots \oplus A /\left(p^{\alpha_{t^{\prime}}^{\prime}}\right)
$$

As in Lemma 3.0.23, we have $M / p M \cong F^{t}$ and $M / p M \cong F^{t^{\prime}}$ as vector spaces over F; so $t=t^{\prime}$. We then get

$$
A /\left(p^{\alpha_{1}}\right) \oplus \ldots \oplus A /\left(p^{\alpha_{t}}\right) \cong M \cong A /\left(p^{\alpha_{1}^{\prime}}\right) \oplus \ldots \oplus A /\left(p^{\alpha_{t}^{\prime}}\right)
$$

Re-order that

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=1<\alpha_{m+1} \leq \alpha_{m+2} \leq \cdots \leq \alpha_{t}
$$

and

$$
\alpha_{1}^{\prime}=\alpha_{2}^{\prime}=\cdots=\alpha_{m^{\prime}}^{\prime}=1<\alpha_{m^{\prime}+1}^{\prime} \leq \alpha_{m+2}^{\prime} \leq \cdots \leq \alpha_{t}^{\prime}
$$

Note that $p^{\alpha_{t}} M=0$ implies $\alpha_{t}^{\prime} \leq \alpha_{t}$; symmetrically we get $\alpha_{t} \leq \alpha_{t}^{\prime}$, and $\alpha_{t}=\alpha_{t}^{\prime}$.
We proceed by inductino on α_{t}. If $\alpha_{t}=0$, then $M=0$, and there is nothing to do. Suppose then that $\alpha_{t}>0$. Then

$$
p M \cong p A /\left(p^{\alpha_{m+1}}\right) \oplus \ldots \oplus p A /\left(p^{\alpha_{t}}\right) \cong A /\left(p^{a_{m n}-1}\right) \oplus \ldots \oplus A /\left(p^{\alpha_{t}-1}\right)
$$

since $A \rightarrow p A \rightarrow p A /\left(p^{\alpha_{i}}\right)$ has kernel $\left(p^{\alpha_{i}-1}\right)$, so by the first isomorphism theorem we have

$$
A /\left(p^{a_{i}-1}\right) \cong p A /\left(p^{\alpha_{i}}\right)
$$

for $i \in\{m+1, \ldots, t\}$. We similarly get

$$
A /\left(p^{\alpha_{m^{\prime}+1}^{\prime}-1}\right) \oplus \ldots \oplus A /\left(p^{\alpha_{t}^{\prime}}-1\right)
$$

The induction hypothesis then applies to $p M$ to get $t-m=t-m^{\prime}$, and thus $m=m^{\prime}$, and that $\alpha_{m+1}=\alpha_{m+1}^{\prime}, \ldots, \alpha_{t}=\alpha_{t}^{\prime}$.

1. We obtain the elementary divisors $p_{1}^{\alpha_{1}}, \ldots, p_{t}^{\alpha_{t}}$ from the invariant factors a_{1}, \ldots, a_{m} by considering the prime factorization. Since $a_{1}|\cdots| a_{m}$, it must be that a_{n} is the product of the largest powers of primes appearing in the elementary divisors; likewise a_{m-1} is the product of the largest powers of primes appearing in the elementary divisors after removing those appearing in a_{m}, and so on. Thus the a_{i} are determined by the $p_{i}^{\alpha_{i}}$; uniqueness of the invariant factors follows. \square Theorem 3.0.22

Example 3.0.24. Consider $A=\mathbb{Z}$; then FTFGMPID is exactly the fundamental theorem of finitely generated abelian grapes. i.e. That any finitely generated abelian grape is isomorphic to something of the form

$$
\mathbb{Z}^{r} \oplus \mathbb{Z} / n_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / n_{m} \mathbb{Z}
$$

where $n_{1}|\cdots| n_{m}$ are integers >1. We also get that it is isomorphic to something of the form

$$
\mathbb{Z}^{r} \oplus \mathbb{Z} / p_{1}^{\alpha_{1}} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / p_{t}^{\alpha_{t}} \mathbb{Z}
$$

where p_{1}, \ldots, p_{t} are positive prime numbers and $\alpha_{1}, \ldots, \alpha_{t}$ are positive integers. Furthermore, both of these decompositions are unique.
Example 3.0.25. Consider $A=F[t]$ where F is a field; then A is a PID. Note that an $F[t]$-module is simply an F-vector space equipped with a linear transformation $T: V \rightarrow V$, where multiplication is

$$
f(t) v=a_{n} T^{n}(v)+a_{n-1} T^{n-1}(v)+\cdots+a_{1} T(v)+a_{0} v=f(T) v
$$

Consider the $F[t]$-module $V=F[t] /(a)$ where $a \in F[t]$ is monic and of non-zero degree; say

$$
a(t)=t^{k}+b_{k-1} t^{k-1}+\cdots+b_{1} t+b_{0}
$$

Let \bar{t} denote the image of t in V. Then $\left\{1, \bar{t},(\bar{t})^{2}, \ldots,(\bar{t})^{k-1}\right\}$ is a basis for V as a vector space over F. The matrix of T with respect to this basis is

$$
\mathcal{C}_{a}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -b_{0} \\
1 & 0 & \ldots & 0 & -b_{1} \\
0 & 1 & \ldots & 0 & -b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & -b_{k-1}
\end{array}\right)
$$

since

$$
T\left((\bar{t})^{k-1}\right)=(\bar{t})^{k}=-b_{k-1}(\bar{t})^{k-1}-\cdots-b_{1} \bar{t}-b_{0}
$$

We call \mathcal{C}_{a} the companion matrix.
Now, let V be any finite-dimensional F-vector space with $T: V \rightarrow V$; then V is an $F[t]$-module, and in particular is finitely generated as an $F[t]$-module. So, by FTFGMPID, we get

$$
V \cong F[t]^{r} \oplus F[t] /\left(a_{1}\right) \oplus \ldots \oplus F[t] /\left(a_{m}\right)
$$

where $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$ are monic polynomials of non-zero degree. (Note that a_{m} is the minimal polynomial of T.) Since $F[t]$ is not finite-dimensional, we have that $r=0$. So

$$
V \cong F[t] /\left(a_{1}\right) \oplus \ldots \oplus F[t] /\left(a_{m}\right)
$$

Choose basis for each cyclic factor as above; then their union B is an basis for V as a vector space over F. The matrix of T with respect to this basis is

$$
\left(\begin{array}{cccc}
\mathcal{C}_{a_{1}} & & & 0 \\
& \mathcal{C}_{a_{2}} & & \\
& & \ddots & \\
0 & & & \mathcal{C}_{a_{m}}
\end{array}\right)
$$

This is called the rational canonical form of T; its uniqueness follows from our previous results. So we have proven the rational canonical form theorem.

Now, consider $V=F[t] /(t-\lambda)^{k}$ for $\lambda \in F$ and $k>0$. One checks that $\left\{(\bar{t}-\lambda)^{k-1}, \ldots,(\bar{t}-\lambda), 1\right\}$ is an F-basis for V. What is the matrix of T with respect to this basis? Well

$$
T\left((\bar{t}-\lambda)^{k-1}\right)=\bar{t}(\bar{t}-\lambda)^{k-1}=(\bar{t}-\lambda)(\bar{t}-\lambda)^{k-1}+\lambda(\bar{t}-\lambda)^{k-1}=\lambda(\bar{t}-\lambda)^{k-1}
$$

and

$$
T\left((\bar{t}-\lambda)^{k-2}\right)=(\bar{t}-\lambda)^{k-1}+\lambda(\bar{t}-\lambda)^{k-2}
$$

etc. So the matrix of T is

$$
J_{\lambda, k}=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \ldots & 0 & 0 \\
0 & \lambda & 1 & \ldots & 0 & 0 \\
0 & 0 & \lambda & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & 0 & \ldots & 0 & \lambda
\end{array}\right)
$$

a Jordan matrix.
Suppose now that V is a finite-dimensional vector space over F and $T: V \rightarrow V$; view this as an $F[t]$ module. So, by the elementary divisor form of FTFGMPID we have

$$
V \cong F[t]^{r} \oplus F[t] /\left(p_{i}^{\alpha_{i}}\right) \oplus \ldots \oplus F[t] /\left(p_{\ell}^{\alpha_{\ell}}\right)
$$

where p_{1}, \ldots, p_{ℓ} are irreducible monic polynomials of non-zero degree. Again $r=0$ since V is finitedimensional.

Suppose now that F is algebraically closed; then each $p_{i}(t)=t-\lambda_{i}$ for some $\lambda_{i} \in F$. So

$$
V \cong F[t] /\left(\left(t-\lambda_{1}\right)_{1}^{\alpha}\right) \oplus \ldots \oplus F[t] /\left(\left(t-\lambda_{\ell}\right)^{\alpha_{\ell}}\right)
$$

Choose bases for the factors as before; then their union B is a basis for V and the matrix of T with respect to B is

$$
\left(\begin{array}{cccc}
J_{\lambda_{1}, \alpha_{1}} & & & 0 \\
& J_{\lambda_{2}, \alpha_{2}} & & \\
& & \ddots & \\
0 & & & J_{\lambda_{\ell}, \alpha_{\ell}}
\end{array}\right)
$$

This is the Jordan canonical form of T; so we have proven the Jordan canonical form theorem.

4 Chapter 3: Rings and modules of fractions, localizations

We return to Atiyah and Macdonald.
We have seen the construction of the field of fractions of an integral domain; we generalize this.
Definition 4.0.1. Suppose A is a ring. A subset $S \subseteq A$ is called multiplicatively closed if

- $1 \in S$.
- If $u, v \in S$ then $u v \in S$.

Given a multiplicatively closed $S \subseteq A$, we define a binary relation \equiv on $A \times S$ by $(a, s) \equiv(b, t)$ if $(a t-b s) u=0$ for some $u \in S$. Note that if $0 \notin S$ and A happens to be an integral domain then $(a, s) \equiv(b, t)$ if and only if $a t-b s=0$, and we recover the equivalence relation used to define the field of fractions.

It is clear that \equiv is reflexive and symmetric.
Claim 4.0.2. \equiv is transitive.

Proof. Suppose $(a, s) \equiv(b, t)$ and $(b, t) \equiv(c, u)$; then we have $v, w \in S$ such that $(a t-b s) v=0$ and $(v u-c t) w=0$. So

$$
\begin{aligned}
a t v u w-b s v u w & =0 \\
b u w s v-c t w s v & =0 \\
\Longrightarrow a t v u w-c t w s v & =0
\end{aligned}
$$

So $(a v-c s) t v w=0$; but $t, v, w \in S$, so $t v w \in S$. So $(a, s) \equiv(c, u)$.
Claim 4.0.2
Let $S^{-1} A=A\left[S^{-1}\right](A \times S) / \equiv$; let $\frac{a}{s}$ denote the equivalence class of (a, s). We view elements of $S^{-1} A$ as "fractions with denominators from S ". Note that

$$
\frac{a}{s}=\frac{a^{\prime}}{s^{\prime}} \Longleftrightarrow\left(a s^{\prime}-a^{\prime} s\right) u=0 \text { for some } u \in S
$$

We make $S^{-1} A$ a ring by

$$
\begin{aligned}
\frac{a}{s}+\frac{b}{t} & =\frac{a t+b s}{t s} \\
\frac{a}{s} \cdot \frac{b}{t} & =\frac{a b}{s t}
\end{aligned}
$$

Exercise 4.0.3.

1. Check that + and . do not depend on the choice of representation for the fractions, and are thus well-defined.
2. Check that $\left(S^{-1} A,+, \cdot\right)$ is a commutative ring with $1=\frac{1}{1}$ and $0=\frac{0}{1}$. Moreover,

$$
\begin{aligned}
f: A & \rightarrow S^{-1} A \\
a & \mapsto \frac{a}{1}
\end{aligned}
$$

Note that f defined above is not in general injective (or surjective); indeed,

$$
a \in \operatorname{ker}(f) \Longleftrightarrow \frac{a}{1}=\frac{0}{1} \Longleftrightarrow(a \cdot 1-0 \cdot 1) v=0 \text { for some } v \in S \Longleftrightarrow a v=0 \text { for some } v \in S
$$

If A is an integral domain and $0 \notin S$ then f is injective. If A is an integral domain and $S=A \backslash\{0\}$ then $S^{-1} A=\operatorname{Frac}(A)$ and $f: A \hookrightarrow \operatorname{Frac}(A)$ is just the usual containment.

We generally assume $0 \notin S$. Indeed, if $0 \in S$ then $S^{-1} A=0$.
Example 4.0.4.

1. Consider $A=\mathbb{Z}$ with $S=\{1,2,4,8, \ldots\}$. Then

$$
S^{-1} A=A\left[S^{-1}\right]=\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\frac{a}{2^{\ell}}: a \in \mathbb{Z}, \ell \geq 0\right\}
$$

More generally, if A is any commutative ring and $s \in A$ then we define

$$
A\left[\frac{1}{s}\right]=S^{-1} A
$$

where $S=\left\{1, s, s^{2}, \ldots\right\}$.
2. Let $\operatorname{Spec} A$ be the set of prime ideals of A; i.e. the set of ideals $P \varsubsetneqq A$ such that whenever $a b \in P$ we have $a \in P$ or $b \in P$. For $P \in \operatorname{Spec} A$, let $S=A \backslash P$. Then A_{P} is defined to be $S^{-1} A$, which we call the localization at P.

Consider $A=\mathcal{C}(X \rightarrow \mathbb{C})$ where X is a compact Hausdorff space. Fix a point $x_{0} \in X$ and let

$$
\mathfrak{m}_{x_{0}}=\left\{f \in A: f\left(x_{0}\right)=0\right\}
$$

Then $A / \mathfrak{m}_{x_{0}} \cong \mathbb{C}$; so $\mathfrak{m}_{x_{0}}$ is maximal, and in particular is prime. We can thus apply the above construction to $\mathfrak{m}_{x_{0}}$ to get

$$
A_{\mathfrak{m}_{x_{0}}}=\left\{\frac{f}{g}: f \in A, g\left(x_{0}\right) \neq 0\right\}
$$

3. Let $s \in A$ and consider $B=A\left[\frac{1}{s}\right]$ as before. What is Spec B in terms of Spec A ? Well, since B is an A-algebra, we have that ideals I of A generate ideals $I^{e}=B I$.

Claim 4.0.5. These are all the prime ideals of B.

Indeed,

$$
\operatorname{Spec}(A) \cong \operatorname{Spec}\left(A\left[\frac{1}{s}\right]\right) \sqcup \operatorname{Spec}(A /(s))
$$

(where the \cong is a homeomorphism in the Zariski topology; to be defined later).

4.1 Universal property of $S^{-1} A$

There is a natural map $\varphi: A \rightarrow S^{-1} A$ given by $\varphi(a)=\frac{a}{1}$. Note, however, that φ is not in general injective. Indeed,

$$
\operatorname{ker}(\varphi)=\left\{a \in A: \frac{a}{1}=\frac{0}{1}\right\}=\{a \in A: a s=0 \text { for some } s \in S\}
$$

So φ is injective if and only if S contains no zero divisors.
Notice φ is a ring homomorphism satisfying $\varphi(s) \in\left(S^{-1} A\right)^{\times}$for all $s \in S$.
Proposition 4.1.1. Suppose $\psi: A \rightarrow \underset{\sim}{B}$ is a ring homomorphism such that $\psi(s) \in B^{\times}$for all $s \in S$. Then there is a unique ring homomorphism $\widetilde{\psi}: S^{-1} A \rightarrow B$ such that the following diagram commutes:

Proof. Define $\widetilde{\psi}$ by

$$
\widetilde{\psi}\left(\frac{a}{s}\right)=\psi(a) \psi(s)^{-1}
$$

Then $\widetilde{\psi}(\varphi(a))=\widetilde{\psi}\left(\frac{a}{1}\right)=\psi(a)$, so the diagram does indeed commute. One then checks that this is the unique ring homomorphism making the diagram commute.

Proposition 4.1.1
Corollary 4.1.2. Let B be a ring with a map $\psi: A \rightarrow B$ satisfying

1. $\psi(s) \in B^{\times}$for all $s \in S$.
2. $\operatorname{ker}(\psi)=\{a \in A:$ as $=0$ for some $s \in S\}$. (Note that \supseteq follows from the previous condition.)
3. Each $b \in B$ has the form $b=\psi(a) \psi(s)^{-1}$ for some $a \in A$ and some $s \in S$.

Then there is a unique isomorphism $\widetilde{\psi}: S^{-1} A \rightarrow B$ such that the following diagram commutes:

4.2 Localization of modules

Definition 4.2.1. Suppose M is an A-module; suppose $S \subseteq A$ is multiplicatively closed. We define

$$
S^{-1} M=M \times S / \sim
$$

where $(m, s) \sim\left(m^{\prime}, s^{\prime}\right)$ if $\left(s^{\prime} m-m^{\prime} s\right) t=0$ for some $t \in S$. One checks that this is an $\left(S^{-1} A\right)$-module via

$$
\begin{aligned}
\frac{a}{s} \frac{m}{t} & =\frac{a m}{s t} \\
\frac{m}{s}+\frac{m^{\prime}}{s^{\prime}} & =\frac{s^{\prime} m+m^{\prime} s}{s s^{\prime}}
\end{aligned}
$$

(where $\frac{m}{s}$ is the equivalence class of (m, s)). (One also checks that these are well-defined.)
Remark 4.2.2. If $f: M \rightarrow N$ is an A-module homomorphism, it induces an $\left(S^{-1} A\right)$-module homomorphism $S^{-1} f: S^{-1} M \rightarrow S^{-1} N$ such that the following diagram commutes:

where $\left.S^{-1} f\right)\left(\frac{m}{s}\right)=\frac{f(m)}{s}$.
Claim 4.2.3. $S^{-1} M \cong M \otimes_{A} S^{-1} A$.
Proof. Define $\Phi: M \otimes_{A} S^{-1} A \rightarrow S^{-1} M$ by $m \otimes_{A} \frac{a}{s} \mapsto \frac{a m}{s}$. One checks that Φ is an isomorphism of ($S^{-1} A$)-modules.

Claim 4.2.3
If $P \subseteq A$ is a prime ideal, then we can also define the localized module at P to be $M_{P}=M \otimes_{A} A_{P}$.
Claim 4.2.4. $M=0$ if and only if $M_{P}=0$ for all such P.
Claim 4.2.5. $f: M \rightarrow N$ is injective if and only if $f_{P}: M_{P} \rightarrow N_{P}$ is injective for all such P.
Claim 4.2.6. A module M is projective if and only if M_{P} is free A_{P}-module for all such P.
Example 4.2.7.

1. Suppose $P \subseteq A$ a prime ideal; we define $A_{P}=S^{-1} A$ where $S=A \backslash P$. (Note that S is multiplicatively closed since P is prime.) We call this the localization of A at P.
2. For $f \in A \backslash\{0\}$, we define $A_{f}=S^{-1} A$ where $S=\left\{1, f, f^{2}, \ldots\right\}$. We call this the localization of A at f.

Why are these examples related? The motivation is from algebraic geometry.
Given a ring A, we define $\operatorname{Spec}(A)$ to be the set of all prime ideals in A. We put a topology on $\operatorname{Spec}(A)$ called the Zariski topology by declaring the closed sets to be sets of the form $V(E)$ for some $E \subseteq A$, where $V(E)=\{P \in \operatorname{Spec}(A): E \subseteq P\}$. One checks that

$$
\begin{aligned}
V(0) & =V(\{0\}) \\
& =\operatorname{Spec}(A) \\
V(1) & =V(\{1\}) \\
& =\emptyset \\
\bigcap_{i \in I} V\left(E_{i}\right) & =V\left(\bigcup_{i \in I} E_{i}\right)
\end{aligned}
$$

For unions, note that $V(E)=V((E) A)$; one then checks that

$$
V(E) \cup V(f)=V((E) A) \cup V((F) A)=V((E) \cdot(F))=V((E) \cap(F))
$$

Exercise 4.2.8. $(E) \cdot(F)=(E) \cap(F)$ if and only if $(E)+(F)=A$.
What are the basic open sets? We get $\operatorname{Spec}(A) \backslash V(f)$ (where $V(f)=V(\{f\})$) since

$$
V(E)=\bigcap_{f \in E} V(f)
$$

Suppose $P \in \operatorname{Spec}(A)$. We define $P \cdot A_{f}$ to be the ideal in A_{f} generated by $\frac{a}{1}$ for $a \in P$. (Recall that the localization map $\alpha: A \rightarrow A_{f}$ is not necessarily an embedding.) We can also write $P \cdot A_{f}=\alpha(P) \cdot A_{f}$. (Note that this notion applies to arbitrary localizations.) In this particular case, we get

$$
P \cdot A_{f}=\left\{\frac{a}{f^{n}}: a \in P, n \geq 0\right\}
$$

since for $b_{1}, \ldots, b_{\ell} \in A_{f}, a_{1}, \ldots, a_{\ell} \in P$, and $n_{1}, \ldots, n_{\ell} \in \mathbb{N}$ we have

$$
\frac{b_{1} a_{1}}{f^{n_{1}}}+\cdots+\frac{b_{\ell} a_{\ell}}{f^{n_{\ell}}}=\frac{a}{f^{N}}
$$

for some $a \in P$ and $N \geq 0$.
Claim 4.2.9. Suppose $f \notin P$; then $P A_{f}$ is prime in A_{f}.
Proof. Suppose

$$
\frac{a}{f^{n}} \cdot \frac{b}{f^{m}}=\frac{c}{f^{\ell}}
$$

for some $c \in P$ and $a, b \in A$. Then we have $r \geq 0$ such that

$$
f^{r}\left(f^{\ell} a b-f^{n+m} c\right)=0
$$

so $f^{\ell+r} a b=f^{n+m+r} c \in P$. But $f \notin P$. So $a b \in P$; so $a \in P$ or $b \in P$, and

$$
\frac{a}{f^{n}} \in P \cdot A_{f}
$$

or

$$
\frac{b}{f^{m}} \in P \cdot A_{f}
$$

Claim 4.2.10. Suppose $Q \in \operatorname{Spec}\left(A_{f}\right)$; then $\alpha^{-1}(Q) \in \operatorname{Spec}(A) \backslash V(f)$.
Proof. We generally have that the pullback of a prime ideal is a prime ideal; it remains to check that $f \notin \alpha^{-1}(Q)$. But if $f \in \alpha^{-1}(Q)$, we would have $\frac{f}{1} \in Q \subseteq A_{f}$; but $\frac{f}{1}$ is a unit in A_{f}, so $Q=A_{f}$, contradicting our assumption that Q is prime.
\square Claim 4.2.10
Claim 4.2.11. Suppose $f \notin P$; then $P=\alpha^{-1}\left(P \cdot A_{F}\right)$.
Proof.
(\subseteq) Generally true.
(\supseteq) Suppose $a \in A$ has $\alpha(a)=\frac{a}{1}=\frac{b}{f^{n}} \in P A_{f}$ for some $b \in P$. Then

$$
f^{n+r} a=f^{r} b \in P
$$

So, since $f \notin P$, we have $a \in P$.
\square Claim 4.2.11
We then get a bijective correspondence

$$
\begin{aligned}
\operatorname{Spec}\left(A_{f}\right) & \leftrightarrow \operatorname{Spec}(A) \backslash V(f) \\
P \cdot A_{f} & \leftarrow P \\
Q & \rightarrow \alpha^{-1}(Q)
\end{aligned}
$$

(One checks that $\alpha^{-1}(Q) \cdot A_{f}=Q$.)

Exercise 4.2.12. This correspondence is a homeomorphism.
So the basic open sets in $\operatorname{Spec}(A)$ are of the form $\operatorname{Spec}\left(A_{f}\right)$ for $f \in A \backslash\{0\}$.
Now, fix $P \in \operatorname{Spec}(A)$. If $f \notin P$ then $P \in \operatorname{Spec}(A) \backslash V(f)$, and $\operatorname{Spec}(A) \backslash V(f)$ is a basic open neighbourhood of P in $\operatorname{Spec}(A)$. But

$$
\bigcap_{f \notin P} \operatorname{Spec}(A) \backslash V(f)=\bigcap_{f \notin P} \operatorname{Spec}\left(A_{f}\right)=\operatorname{Spec}\left(A_{P}\right)
$$

(Note that the above equalities are not literally true; one needs to make some identifications.) We think of $\operatorname{Spec}\left(A_{P}\right)$ as capturing the local behaviour of $P \in \operatorname{Spec}(A)$. (Note that in A_{P} we have that $P \cdot A_{P}$ is the unique maximal ideal; so every $Q \in \operatorname{Spec}\left(A_{P}\right)$ is $Q \subseteq P \cdot A_{P}$.)

In particular, if A is an integral domain, then for any $f \in A \backslash\{0\}$ we have $A \subseteq A_{f} \subseteq \operatorname{Frac}(A)$. Then we have

$$
A_{P}=\bigcap_{f \notin P} A_{f}
$$

is literally true. This is in fact a directed union: given $f, g \notin P$, primality of P gives that $f g \notin P$, so $A_{f} \subseteq A_{f g}$ and $A_{g} \subseteq A_{f g}$. (While arbitrary unions of rings are not typically rings, directed unions are.)

In general (i.e. if A is not necessarily an integral domain), there is a natural map $A_{f} \rightarrow A_{f g}$ by $\frac{a}{f^{n}} \mapsto \frac{a g^{n}}{(f g)^{n}}$. (Though these will no longer be embeddings.) We then have that A_{P} is the directed limit of the A_{f}.
Example 4.2.13. Think about what the topologies $\operatorname{Spec}(\mathbb{Z})$ and $\operatorname{Spec}(\mathbb{C}[t])$ look like.
The final exam will be Monday April $11^{\text {th }} 12: 30-3: 00 \mathrm{pm}$.
Recall that given $S \subseteq A$ multiplicatively closed and M an A-module, we define $S^{-1} M=\left\{\frac{m}{s}: s \in S\right\}$ as an $\left(S^{-1} A\right)$-module. In fact, given an A-linear map $f: M \rightarrow N$ we get an $S^{-1} A$-linear map $S^{-1} f: S^{-1} M \rightarrow$ $S^{-1} N$ given by $\frac{m}{s} \mapsto \frac{f(m)}{s}$.

Proposition 4.2.14 (3.3). S^{-1} is an exact functor; i.e. if

$$
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}
$$

is exact then so is

$$
S^{-1} M^{\prime} \xrightarrow{S^{-1} f} S^{-1} M \xrightarrow{S^{-1} g} S^{-1} M^{\prime \prime}
$$

Proof. Since $\operatorname{im}(f) \subseteq \operatorname{ker}(g)$ we have $g \circ f=0$; so $0=S^{-1}(g \circ f)=S^{-1}(g) \circ S^{-1}(f)$. (One needs to check that S preserves composition.) So $\operatorname{im}\left(S^{-1}(f)\right) \subseteq \operatorname{ker}\left(S^{-1}(g)\right)$.

Conversely, suppose $\frac{m}{s} \in \operatorname{ker}\left(S^{-1}(g)\right)$. Then $S^{-1}(g)\left(\frac{m}{s}\right)=0$; so $\frac{g(m)}{s}=0$ in $S^{-1} M^{\prime \prime}$, and there is $t \in S$ such that $g(t m)=t g(m)=0$ in $M^{\prime \prime}$. But then $t m \in \operatorname{ker}(g) \subseteq \operatorname{im}(f)$; so $t m=f\left(m^{\prime}\right)$ for some $m^{\prime} \in M^{\prime}$. But then

$$
\frac{m}{s}=\frac{t m}{t s}=\frac{f\left(m^{\prime}\right)}{t s}=S^{-1}(f)\left(\frac{m^{\prime}}{t s}\right) \in \operatorname{im}\left(S^{-1}(f)\right)
$$

Corollary 4.2.15 (3.4).

1. Suppose $N \subseteq M$ is a submodule; let $\iota: N \rightarrow M$ be the containment map. Then $S^{-1} \iota: S^{-1} N \rightarrow S^{-1} M$ given by $\frac{n}{s} \mapsto \frac{n}{s}$ is injective. We thus identify $S^{-1} N$ with its image in $S^{-1} M$ and view $S^{-1} N \subseteq S^{-1} M$ as a submodule.
2. There is a natural isomorphism $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$.
3. Suppose $P, N \subseteq M$ are submodules; then $S^{-1}(N+P)=S^{-1} N+S^{-1} P$ (as submodules of $S^{-1} M$).
4. $S^{-1}(P \cap N)=\left(S^{-1} N\right) \cap\left(S^{-1} P\right)$.

Proof.

1. Well, $0 \rightarrow N \rightarrow M$ is exact; so by the previous proposition we get $0 \rightarrow S^{-1} N \xrightarrow{S^{-1} \iota} S^{-1} M$ is exact, and $S^{-1} \iota$ is injective.
2. Well,

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

is exact; so by the previous proposition we get

$$
0 \rightarrow S^{-1} N \rightarrow S^{-1} M \rightarrow S^{-1}(M / N) \rightarrow 0
$$

is also exact. So $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$.
3. Note that

$$
\frac{n+p}{s}=\frac{n}{s}+\frac{p}{s}
$$

4. That $S^{-1}(P \cap N) \subseteq\left(S^{-1} N\right) \cap\left(S^{-1} P\right)$ is clear. Suppose now that

$$
\alpha=\frac{n}{s}=\frac{p}{t} \in\left(S^{-1} N\right) \cap\left(S^{-1} P\right)
$$

Then $u t n=u s p$ for some $u \in S$; let $x=u$ tn for this u. Then $x \in N \cap P$. Then

$$
\alpha=\frac{n}{s}=\frac{u t n}{u t s}=\frac{x}{u t s} \in S^{-1}(N \cap P)
$$

We view $S^{-1} A$ as an A-algebra via the canonical map $A \rightarrow S^{-1} A$ via $a \mapsto \frac{a}{1}$. Given an A-module M, we have two natural ($S^{-1} A$)-modules: $S^{-1} M$ and $S^{-1} A \otimes_{A} M$.
Proposition 4.2.16 (3.5). $S^{-1} A \otimes_{A} M \cong S^{-1} M$ as $\left(S^{-1} A\right)$-modules; in particular, there is an isomorphism $S^{-1} A \otimes_{A} M \rightarrow S^{-1} M$ such that

$$
\frac{a}{s} \otimes m \mapsto \frac{a m}{s}
$$

Proof. Consider the map $S^{-1} A \times M \rightarrow S^{-1} M$ given by $\left(\frac{a}{s}, m\right) \mapsto \frac{a m}{s}$; this is A-bilinear. So, by the universal property for tensor products, we get an A-linear $f: S^{-1} A \otimes_{A} M \rightarrow S^{-1} M$ such that $\frac{a}{s} \otimes m \mapsto \frac{a m}{s}$. But $\frac{m}{s}=f\left(\frac{1}{s} \otimes m\right)$; so f is surjective.
Claim 4.2.17. Every element of $S^{-1} A \otimes_{A} M$ is a tensor.
Proof. Suppose

$$
\sum_{i} \frac{a_{i}}{s_{i}} \otimes m_{i} \in S^{-1} A \otimes_{A} M
$$

Then

$$
\begin{aligned}
\sum_{i} \frac{a_{i}}{s_{i}} \otimes m_{i} & =\sum_{i} \frac{a_{i} \prod_{j \neq i} s_{j}}{\prod_{j} s_{j}} \otimes m_{i} \\
& =\sum_{i} \frac{1}{\prod_{j} s_{j}} \otimes a_{i} \prod_{j \neq i} s_{j} m_{i} \\
& =\frac{1}{\prod_{j} s_{j}} \otimes\left(\sum_{i} a_{i} \prod_{j \neq i} s_{j} m_{i}\right)
\end{aligned}
$$

Hence every element of $S^{-1} A \otimes_{A} M$ is indeed a tensor.
Claim 4.2.18. f is injective.

Proof. By the previous claim, it suffices to check tensors. Suppose

$$
\frac{a}{s} \otimes m \in \operatorname{ker}(f)
$$

Then

$$
0=f\left(\frac{a}{s} \otimes m\right)=\frac{a m}{s}
$$

So there is $t \in S$ such that $\operatorname{tam}=0$. But then

$$
\frac{a}{s} \otimes m=\frac{t a}{t s} \otimes m=\frac{1}{t s} \otimes t a m=\frac{1}{t s} \otimes 0=0
$$

\square Claim 4.2.18
So f is an A-linear isomorphism. To see that f is $\left(S^{-1} A\right)$-linear, note that

$$
f\left(\frac{a}{s}\left(\frac{b}{t} \otimes m\right)\right)=f\left(\frac{a b}{s t} \otimes m\right)=\frac{a b m}{s t}=\frac{a}{s}\left(\frac{b m}{t}\right)=\frac{a}{s} f\left(\frac{b}{t} \otimes m\right)
$$

So f is an $\left(S^{-1} A\right)$-linear isomorphism.
Corollary 4.2.19 (3.6). $S^{-1} A$ is a flat A-algebra (i.e. is a flat A-module).
Proof. Suppose $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is exact. Then by Proposition 4.2 .14 we have $S^{-1} M \xrightarrow{S^{-1} f} S^{-1} M \xrightarrow{S^{-1} g}$ $M^{\prime \prime}$ is exact. By Proposition 4.2.16 we have that

$$
\begin{aligned}
S^{-1} M^{\prime} & \cong S^{-1} A \otimes_{A} M^{\prime} \\
S^{-1} M & \cong S^{-1} A \otimes_{A} M \\
S^{-1} M^{\prime \prime} & \cong S^{-1} A \otimes_{A} M^{\prime \prime}
\end{aligned}
$$

Also, one notes that the following diagram commutes:

Since going one way we get

$$
\frac{q}{s} \otimes m \mapsto \frac{a m}{s} \mapsto \frac{f(a m)}{s}=\frac{a f(m)}{s} \mapsto \frac{q}{s} \otimes f(m)
$$

and going the other way we get

$$
\frac{q}{s} \otimes m \mapsto \frac{q}{s} \otimes f(m)
$$

Likewise we get

$$
\begin{gathered}
S^{-1} M \xrightarrow{S^{-1} g} S^{-1} M^{\prime \prime} \\
\stackrel{\Vdash}{\downarrow} \xlongequal{\downarrow} S^{-1} A \otimes_{A} M^{\prime \prime}
\end{gathered}
$$

So the following diagram commutes:

Then, since the top line is exact, we have that the bottom line is as well (exercise). So $S^{-1} A$ is a flat A-module.

In particular, the following are flat A-algebras:

- A_{P} where $P \subseteq A$ is a prime ideal.
- A_{f} where $f \in A \backslash\{0\}$.
- If A is an integral domain, then $\operatorname{Frac}(A)$ is a flat A-algebra.

Proposition 4.2.20 (3.7). Localization commutes with \otimes; i.e. given A-modules M, N and multiplicatively closed $S \subseteq A$, we have an isomorphism (of $\left(S^{-1} A\right)$-modules)

$$
\begin{aligned}
S^{-1} M \otimes_{S^{-1} A} S^{-1} N & \cong S^{-1}\left(M \otimes_{A} N\right) \\
\left(\frac{m}{s} \otimes \frac{n}{t}\right) & \mapsto \frac{m \otimes n}{s t}
\end{aligned}
$$

Proof. Well, by Proposition 4.2.16, we have

$$
S^{-1} M \otimes_{S^{-1} A} S^{-1} N \cong\left(S^{-1} A \otimes_{A} M\right) \otimes_{S^{-1} A}\left(S^{-1} A \otimes_{A} N\right)
$$

We leave it as an exercise to then check that this is in turn isomorphic to

$$
M \otimes_{A}\left(S^{-1} A \otimes_{S^{-1} A}\left(S^{-1} A \otimes_{A} N\right)\right)
$$

and that this is in turn isomorphic to

$$
M \otimes_{A}\left(S^{-1} A \otimes_{A} N\right) \cong\left(M \otimes_{A} N\right) \otimes_{A} S^{-1} A \cong S^{-1}\left(M \otimes_{A} N\right)
$$

(where the last isomorphism is again by Proposition 4.2.16).
Finally, we trace what happens to

$$
\left(\frac{m}{s} \otimes \frac{n}{t}\right) \in S^{-1} M \otimes_{S^{-1} A} S^{-1} N
$$

Well,

$$
\begin{aligned}
\left(\frac{m}{s} \otimes \frac{n}{t}\right) & \mapsto\left(\frac{1}{s} \otimes_{A} m\right) \otimes_{S^{-1} A}\left(\frac{1}{t} \otimes_{A} n\right) \\
& \mapsto m \otimes_{A}\left(\frac{1}{s} \otimes_{S^{-1} A}\left(\frac{1}{t} \otimes_{A} n\right)\right) \\
& \mapsto m \otimes_{A} \frac{1}{s}\left(\frac{1}{t} \otimes_{A} n\right) \\
& =m \otimes_{A}\left(\frac{1}{s t} \otimes_{A} n\right) \\
& \mapsto\left(m \otimes_{A} n\right) \otimes_{A} \frac{1}{s t} \\
& \mapsto \frac{m \otimes_{A} n}{s t}
\end{aligned}
$$

Proposition 4.2.21 (3.8). Suppose M is an A-module. Then the following are equivalent:

1. $M=0$.
2. $M_{P}=0$ for all prime ideals $P \subseteq A$.
3. $M_{m}=0$ for all maximal ideals $m \subseteq A$.

Proof. It is clear that $(1) \Longrightarrow(2) \Longrightarrow(3)$; it remains to check that $(3) \Longrightarrow$ (1).
Suppose we have $x \in M \backslash\{0\}$; then $\operatorname{Ann}(x)=\{a \in A: a x=0\} \varsubsetneqq A$ is a proper ideal. Let $m \supseteq \operatorname{Ann}(x)$ be a maximal ideal. Then if we had $M_{m}=0$, we would have $\frac{x}{1}=0$ in M_{m}, and $s x=0$ for some $s \in S=A \backslash m$. But then $s \in \operatorname{Ann}(x) \subseteq m$, a contradiction. So $M_{m} \neq 0$. Proposition 4.2.21

Definition 4.2.22. A property of modules R is local if M satisfies R exactly when M_{P} satisfies R for all primes $P \subseteq A$.

So Proposition 4.2.21 states that being zero is a local property.
Another example of a local property:
Proposition 4.2.23 (3.9). Injectivity and surjectivity of A-linear maps are local properties; i.e. given an A-linear map $\varphi: M \rightarrow N$, we have that the following are equivalent:

1. $\varphi: M \rightarrow N$ is injective (respectively, surjective).
2. $\varphi: M_{P} \rightarrow N_{P}$ is injective (respectively, surjective) for all prime ideals $P \subseteq A$. (Recall that $\varphi_{P}=$ $S^{-1} \varphi: S^{-1} M \rightarrow S^{-1} N$ is given by $\frac{m}{s} \rightarrow \frac{\varphi(m)}{s}$ where $S=A \backslash P$.)
3. $\varphi_{m}: M_{m} \rightarrow N_{m}$ is injective (respectively, surjective) for all maximal ideals $m \subseteq A$.

Proof.
$\xrightarrow{\mathbf{(1)}} \Longrightarrow \mathbf{(2)}$ Well, $0 \rightarrow M \xrightarrow{\varphi} N$ is exact, and by Proposition 4.2.14 we have that localization is exact. So $0 \rightarrow M_{P} \xrightarrow{\varphi_{P}} N_{P}$ is exact; so φ_{P} is injective. (For surjectivity, consider instead $M \xrightarrow{\varphi} N \rightarrow 0$.)
$\xrightarrow{\mathbf{(2)} \Longrightarrow(3)}$ Trivial.
$\underline{(3) \Longrightarrow(1)}$ Suppose $\operatorname{ker}(\varphi) \neq 0$; then $\operatorname{ker}(\varphi)_{m} \neq 0$ for some maximal ideal $m \subseteq A$. Then $0 \rightarrow \operatorname{ker}(\varphi) \rightarrow$ $M \xrightarrow{\varphi} N$ is exact; so, by Proposition 4.2.14, we get that $0 \rightarrow \operatorname{ker}(\varphi)_{m} \rightarrow M_{m} \xrightarrow{\varphi_{m}} N_{m}$ is exact. So $0 \neq \operatorname{ker}(\varphi)_{m}=\operatorname{ker}\left(\varphi_{m}\right)$. (For surjectivity, consider instead the exact sequence $M \xrightarrow{\varphi} N \rightarrow \operatorname{coker}(\varphi) \rightarrow$ 0.) Proposition 4.2.23

Example 4.2.24. Being an integral domain is not a local property, as we see on the assignment.
Proposition 4.2.25 (3.10). Flatness is a local property; i.e. given an A-module M, we have that the following are equivalent:

1. M is a flat A-module.
2. M_{P} is a flat A_{P}-module for all $P \in \operatorname{Spec}(A)$.
3. M_{m} is a flat A_{m}-module for all maximal ideals $m \subseteq A$.

Proof.
$\mathbf{(1)} \Longrightarrow \mathbf{(2)}$ By Proposition 4.2.16 we have $M_{p} \cong M \otimes_{A} A_{P}$; by assignment 2 question $4(\mathrm{~b})$, we have that if M is a flat A-module then $M \otimes_{A} B$ is a flat B module for any A-algebra $A \rightarrow B$. Applying this to $A \rightarrow A_{P}$ given by $a \mapsto \frac{a}{1}$, we get that M_{P} is a flat A_{P}-module.
$\underline{(2) \Longrightarrow(3)}$ Trivial.
$\mathbf{(3)} \Longrightarrow \mathbf{(1)}$ It suffices to show that if $\varphi: N \rightarrow P$ is injective then so is $\varphi \otimes_{A} \mathrm{id}_{M}$. By Proposition 4.2.23 it suffices to show that for all maximal ideals $m \subseteq A$ we have that the map $\left(N \otimes_{A} M\right)_{m} \rightarrow\left(P \otimes_{A} M\right)_{m}$ is injective. But by Proposition 4.2.20 we have

$$
\begin{aligned}
& \left(N \otimes_{A} M\right)_{m} \cong N_{m} \otimes_{A_{m}} M_{m} \\
& \left(P \otimes_{A} M\right)_{m} \cong P_{m} \otimes_{A_{m}} M_{m}
\end{aligned}
$$

It then suffices to check that the map $N_{m} \otimes_{A_{m}} M_{m} \rightarrow P_{m} \otimes_{A_{m}} M_{m}$ is injective for all maximal ideals $m \subseteq A$. But this is injective because $N_{m} \rightarrow P_{m}$ is injective by Proposition 4.2.23 and since M_{m} is a flat A_{m}-module by assumption.
So $N \otimes_{A} M \rightarrow P \otimes_{A} M$.

Definition 4.2.26. Suppose we have an A-algebra $A \xrightarrow{f} B$. Given an ideal $I \subseteq A$, we define $I \cdot B$ to be $f(I) \cdot B$, the ideal of B generated by $f(I)$; these are called the extension ideals of B. (Note that in general f will not be a containment, or even an embedding.) Given an ideal $J \subseteq B$, we define $J \cap A$ to be $f^{-1}(J)$, which is necessarily an ideal of A; these are called the contraction ideals of A.

Example 4.2.27. Consider $A \rightarrow S^{-1} A$ given by $a \mapsto \frac{a}{1}$, where $S \subseteq A$ is multiplicatively closed. What are the extension and contraction ideals?
Remark 4.2.28. Given $I \subseteq A$, we have

$$
I \cdot S^{-1} A=S^{-1} I=\left\{\frac{a}{s}: a \in I, s \in S\right\}
$$

Proof.
($\supseteq) ~ T r i v i a l . ~$
(\subseteq) Suppose

$$
r=\frac{a_{1}}{1} \frac{b_{1}}{s_{1}}+\cdots+\frac{a_{\ell}}{1} \frac{b_{\ell}}{s_{\ell}} \in I \cdot S^{-1} A
$$

where $a_{1}, \ldots, a_{\ell} \in I, b_{1}, \ldots, b_{\ell} \in A$, and $s_{1}, \ldots, s_{\ell} \in S$. Then

$$
r=\frac{a_{1} b_{1} s_{2} \ldots s_{\ell}+a_{2} b_{2} s_{1} s_{3} \ldots s_{\ell}+\cdots+a_{\ell} b_{\ell} s_{1} s_{2} \ldots s_{\ell-1}}{s_{1} s_{2} \ldots s_{\ell}} \in S^{-1} I
$$

Remark 4.2.28

Remark 4.2.29. Localizations commute with kernels and images; i.e. given $f: M \rightarrow N$ we have $\operatorname{ker}(f)_{P}=$ $\operatorname{ker}\left(f_{P}\right)$ and $\operatorname{im}(f)_{P}=\operatorname{im}\left(f_{P}\right)$.

Proof. Well, $0 \rightarrow \operatorname{ker}(f) \rightarrow M \xrightarrow{f} N$ is exact. So $0 \rightarrow \operatorname{ker}(f)_{P} \rightarrow M_{P} \xrightarrow{f_{P}} N_{P}$ is exact, and $\operatorname{ker}(f)_{P}=$ $\operatorname{ker}\left(f_{P}\right)$. Likewise, we have $M \xrightarrow{f} \operatorname{im}(f) \rightarrow 0$ is exact; so $M_{P} \xrightarrow{f_{P}} \operatorname{im}(f)_{P} \rightarrow 0$ is exact, and $\operatorname{im}\left(f_{P}\right)=\operatorname{im}(f)_{P}$. Remark 4.2.29

Is exactness local? Well, localization is exact, so localization preserves exactness. What of the converse? Does it hold that if $M_{P}^{\prime} \xrightarrow{f_{P}} M_{P} \xrightarrow{g_{P}} M_{P}^{\prime \prime}$ is exact for all $P \in \operatorname{Spec}(A)$ then $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} ?$

Well, Proposition 4.2 .23 says it holds for sequences $0 \rightarrow M \xrightarrow{f} M^{\prime \prime}$ and $M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$. In fact, the answer is yes in general.

Proposition 4.2.30. Exactness is local.
Proof. Suppose $M_{m}^{\prime} \xrightarrow{f_{m}} M_{m} \xrightarrow{g_{m}} M_{m}^{\prime \prime}$ is exact for every maximal ideal m of A. Then for all maximal ideals m of A we have

$$
\operatorname{im}(g \circ f)_{m}=\operatorname{im}\left((g \circ f)_{m}\right)=\operatorname{im}\left(g_{m} \circ f_{m}\right)=0
$$

By Proposition 4.2.21 we get that $\operatorname{im}(g \circ f)=0$; so $\operatorname{im}(f) \subseteq \operatorname{ker}(g)$.
Now, for each maximal ideal ideal m of A, we have

$$
(\operatorname{ker}(g) / \operatorname{im}(f))_{m}=\operatorname{ker}(g)_{m} / \operatorname{im}(f)_{m}=\operatorname{ker}\left(g_{m}\right) / \operatorname{im}\left(f_{m}\right)=0
$$

by Corollary 4.2.15 and exactness of $M_{m}^{\prime} \xrightarrow{f_{m}} M_{m} \xrightarrow{g_{m}} M_{m}^{\prime \prime}$. So by Proposition 4.2.21 we get that $\operatorname{im}(f)=$ $\operatorname{ker}(g)$. Proposition 4.2.30

Consider the A-algebra $f: A \rightarrow S^{-1} A$ given by $a \mapsto \frac{a}{1}$; suppose $S \subseteq A$ is multiplicatively closed. For an ideal I of A, consider $I\left(S^{-1} A\right)=f(I)\left(S^{-1} A\right)=S^{-1} I$; likewise for an ideal J of $S^{-1} A$, consider $J \cap A=f^{-1}(J)$.

Proposition 4.2.31. 1. Every ideal of $S^{-1} A$ is an extension ideal.
2. For every ideal I of A we have

$$
\left(I\left(S^{-1} A\right)\right) \cap A=\bigcup_{s \in S}\{x \in A: s x \in I\}
$$

As a notational convenience, we let $(I: s)=\{x \in A: s x \in I\}$; rewriting the above, we get

$$
\left(I\left(S^{-1} A\right)\right) \cap A=\bigcup_{s \in S}(I: s)
$$

3. For every ideal I of A we have that $I\left(S^{-1} A\right)=S^{-1} A$ if and only if $I \cap S \neq \emptyset$.
4. $I \subseteq A$ is a contraction ideal if and only if the image of S in A / I has no zero divisors.
5. There is a bijective correspondence

$$
\begin{aligned}
\operatorname{Spec}\left(S^{-1} A\right) & \leftrightarrow\{p \in \operatorname{Spec}(A): p \cap S=\emptyset\} \\
P\left(S^{-1} A\right) & \stackrel{F}{\leftarrow} P \\
Q & \xrightarrow{G} Q \cap A
\end{aligned}
$$

Proof.

1. Suppose $J \subseteq S^{-1} A$ is an ideal. Then for $\frac{a}{s} \in J$, we have $\frac{a}{1}=s \frac{a}{s} \in J$; so $\frac{a}{1} \in(J \cap A) S^{-1} A$, and $\frac{a}{s} \in(J \cap A) S^{-1} A$. So $J \subseteq(J \cap A) S^{-1} A$. But it is clear that $J \supseteq(J \cap A) S^{-1} A$; so $J=(J \cap A) S^{-1} A$.
2. (\subseteq) Suppose $x \in\left(I\left(S^{-1} A\right)\right) \cap A$. Then $\frac{x}{1} \in I\left(S^{-1} A\right)=S^{-1} I$. So $\frac{x}{1}=\frac{a}{s}$ for some $a \in I$ and some $s \in S$. So $t s x=t a$ for some $t \in S$. But $t a \in I$ since $a \in I$; so $x \in(I: s t)$.
(\supseteq) Suppose $s x \in I$ for some $s \in S$. Then $\frac{x}{1}=\frac{s x}{s} \in S^{-1} I=I\left(S^{-1} A\right)$. So $(I: s) \subseteq I\left(S^{-1} A\right) \cap A$.
3. (\Longrightarrow) Suppose $I\left(S^{-1} A\right)=S^{-1} A$. Then $I\left(S^{-1} A\right) \cap A=A$. So

$$
A=\bigcup_{s \in S}(I: s)
$$

Then there is $s_{0} \in S$ such that $s_{0} 1 \in I$; so $I \cap S \neq \emptyset$.
(\Longleftarrow) Suppose we have $s \in I \cap S$. Then $\frac{1}{1}=\frac{s}{1} \cdot \frac{1}{s} \in I\left(S^{-1} A\right)$ (since $\frac{s}{1} \in I\left(S^{-1} A\right)$). So $I S^{-1} A=S^{-1} A$.
4. Well,

$$
\begin{aligned}
I \text { is a contraction ideal } & \Longleftrightarrow I=J \cap A \text { for some ideal } J \subseteq S^{-1} A \\
& \Longleftrightarrow I=I\left(S^{-1} A\right) \cap A=f^{-1}\left(S^{-1} I\right)
\end{aligned}
$$

The last reverse implication is clear; to see the forward implication, suppose $I=J \cap A$ for some ideal J of $S^{-1} A$. It is clear that $I \subseteq I\left(S^{-1} A\right) \cap A$. To see that $I \supseteq I\left(S^{-1} A\right) \cap A$, note that $f^{-1}(J)=I$; then $f(I) \subseteq J$, so $I\left(S^{-1} A\right) \subseteq J$, and $I\left(S^{-1} A\right) \cap A \subseteq J \cap A=I$.
Continuing the chain of equivalences, we find

$$
\begin{aligned}
I \text { is a contraction ideal } & \Longleftrightarrow I=\bigcup_{s \in S}(I: s) \\
& \Longleftrightarrow \text { for all } x \in A, s \in S \text { such that } s x \in I \text { we have } x \in I \\
& \Longleftrightarrow \text { for all } x \in A, s \in S \text { such that } s x+I=0+I \text { we have } x+I=0+I \\
& \Longleftrightarrow \text { for all } s \in S \text { we have that } s \text { is not a zero divisor in } A / I
\end{aligned}
$$

5. Suppose $P \in \operatorname{Spec}(A)$ has $P \cap S=\emptyset$. Then

$$
S^{-1} A / P\left(S^{-1} A\right)=S^{-1} A / S^{-1} P \cong S^{-1}(A / P)
$$

as A-modules; this is in turn isomorphic to $(\bar{S})^{-1}(A / P)$ as A-algebras, where \bar{S} is the image of S in A / P. Since P is prime, we have that A / P is an integral domain. So $\bar{S} \subseteq A / P$ is multiplicatively closed and $0 \notin \bar{S}$ since $S \cap P=\emptyset$. So $A / P \subseteq(\bar{S})^{-1}(A / P) \subseteq \operatorname{Frac}(A / P)$; so $(\bar{S})^{-1}(A / P)$ is an integral domain. So $S^{-1} A / P\left(S^{-1} A\right)$ is an integral domain. So $P\left(S^{-1} A\right)$ is prime.
It remains to check that the maps are mutually inverse. That $F \circ G=$ id is exactly an earlier point. Suppose now that $P \in \operatorname{Spec}(A)$ has $P \cap S=\emptyset$. Then A / P is an integral domain and $0 \notin \bar{S}$ since $P \cap S=\emptyset$. So, by the previous point, we have P is a contraction ideal. In fact, the second equivalence of the proof of the previous point shows that an ideal is a contraction ideal if and only if it is the contraction of its extension. So $P=\left(P\left(S^{-1} A\right)\right) \cap P$; So $G \circ F=$ id.
\square Proposition 4.2.31
Example 4.2.32. The prime ideals of A_{P} are in bijective correspondence with prime ideals of A contained in P. The prime ideals of A_{f} are in bijective correspondence with the prime ideals of A not containing f.
Definition 4.2.33. Suppose A is a ring. We define the nilradical of A to be $\mathcal{R}=\left\{f \in A: f^{n}=\right.$ 0 for some $n\}$.
Proposition 4.2.34 (1.8). Suppose A is a ring. Then

$$
\mathcal{R}=\bigcap\{P: P \text { is a prime ideal }\}
$$

Proof.
(\subseteq) Clear: $P \in \operatorname{Spec}(A)$ and $f^{n}=0$, then $f^{n} \in P$, and thus $f \in P$.
(\supseteq) Suppose $f \in A \backslash \mathcal{R}$; we wish to find a prime ideal P with $f \notin P$. Well, $0 \notin S=\left\{1, f, f^{2}, \ldots\right\}$; so the localization A_{f} is non-zero. But then if m is a maximal ideal in A_{f}, Proposition 4.2 .31 gives us that $m \cap A$ is a prime ideal in A that doesn't contain f, as desired. Proposition 4.2.34
Proposition 4.2.35 (3.16). Suppose $f: A \rightarrow B$ is an A-algebra; suppose $P \subseteq A$ is prime. Then the following are equivalent:

1. P is the contraction of a prime ideal of B.
2. P is the contraction of an ideal of B.
3. $P=P B \cap A$.

Proof.
$(1) \Longrightarrow(2)$ Clear.
$\underline{(2) \Longrightarrow(3)}$ That $P \subseteq P B \cap A$ is clear. For the converse, note that by hypothesis we have $P=J \cap A$ for some ideal J of B; then $P B \cap A=((J \cap A) B) \cap A \subseteq J \cap A=P$.
$\underline{(3) \Longrightarrow(1)}$ Suppose $P B \cap A=P$. Let $S=f(A \backslash P)$; then S is multiplicatively closed. Furthermore, if $x \in A \backslash P$ and $f(x) \in P B$, then $x \in f^{-1}(P B)=P B \cap A=P$, a contradiction; so $P B \cap S=\emptyset$. So, by Proposition 4.2.31, we have that $P \cdot S^{-1} B=P B \cdot S^{-1} B \varsubsetneqq S^{-1} B$; so there is a maximal (and hence prime) ideal m of $S^{-1} B$ containing $P \cdot S^{-1} B$; by Proposition 4.2.31, we get that $m \cap S=\emptyset$. But

$$
m \cap B \supseteq\left(P \cdot S^{-1} B\right) \cap B=\left(P B \cdot S^{-1} B\right) \cap B \supseteq P B
$$

So

$$
m \cap A=(m \cap B) \cap A \supseteq P B \cap A=P
$$

Conversely, we have $m \cap S=\emptyset$; so

$$
m \cap B \subseteq B \backslash S=B \backslash f(A \backslash P) \subseteq(B \backslash f(A)) \cup f(P)
$$

So

$$
m \cap A=f^{-1}(m \cap B) \subseteq f^{-1}((B \backslash f(A)) \cup f(P))=f^{-1}(f(P)) \subseteq f^{-1}(f(P) B)=P B \cap A=P
$$

So $P=m \cap A=(m \cap B) \cap A$. But m is a prime ideal of $S^{-1} B$, and hence is a prime ideal of B. So P is the contraction of a prime ideal of B.

Proposition 4.2.35

5 Chapter 4: Primary decompositions

In a general context (i.e. Noetherian rings), we can uniquely factorize ideals into "primary" ideals.
Definition 5.0.1. An ideal Q of A is primary if $Q \neq A$ and whenever $x y \in Q$ we have $x \in Q$ or $y^{n} \in Q$ for some $n>0$.

Remark 5.0.2. Q is primary if and only if $A / Q \neq 0$ and every zero divisor in A / Q is nilpotent.
Remark 5.0.3. Contractions of primary ideals are primary.
Proof. Consider the A-algebra $f: A \rightarrow B$; suppose Q is a prime ideal of B. Let $\pi: A \rightarrow B / Q$ be $x \mapsto f(x)+Q$. Then $\operatorname{ker}(\pi)=f^{-1}(Q)$; so, by the first isomorphism theorem, we get an isomorphism $A / f^{-1}(Q) \cong B / Q$. In particular, we get that every zero divisor of $A / f^{-1}(Q)$ is nilpotent; so $f^{-1}(Q)$ is primary.

Remark 5.0.3
Definition 5.0.4. Suppose A is a ring; suppose I is an ideal of A. We define the radical of A to be $r(A)=\sqrt{A}=\left\{f \in A: f^{n} \in Q\right.$ for some $\left.n \geq 0\right\}$.

Proposition 5.0.5 (4.1). Suppose Q is a primary ideal of A. Then $r(Q)$ is the smallest prime ideal containing Q; i.e. $r(Q)$ is prime and given any prime ideal P containing Q we have $r(Q) \subseteq P$.

Proof. It suffices to show that $r(Q)$ is prime. But if $x y \in r(Q)$, then $x^{m} y^{m} \in Q$ for some $m>0$; so either $x^{m} \in Q$ or $y^{m n} \in Q$ for some $n>0$, and in particular we get $x \in r(Q)$ or $y \in r(Q)$.

Proposition 5.0.5
Definition 5.0.6. Suppose Q is primary; let $P=r(Q)$, so P is prime. We then say that Q is P-primary.
Example 5.0.7. Let $A=\mathbb{Z}$. The prime ideals are (0) and (p) for p prime; the primary ideals are (0) and $\left(p^{n}\right)$ for p prime and $n>0$.

In general it's not true that every primary ideal is a power of a prime ideal; nor is it true in general that a power of a prime ideal is primary.

Remark 5.0.8. If $P \in \operatorname{Spec}(A)$ then for any $n>0$ we have $r\left(P^{n}\right)=P$.
Proof. It is clear that $P \subseteq r\left(P^{n}\right)$. For the converse, note that if $x \in r\left(P^{n}\right)$ then $x^{m} \in P^{n} \subseteq P$ for some $m>0$. But P is prime; so $x \in P$.
\square Remark 5.0.8
It was mentioned that in \mathbb{Z} the primary ideals are $\left(p^{n}\right)$ where p is prime and $n>0$.
Remark 5.0.9.

1. Suppose A is a UFD, $p \in A$ is prime, and $n>0$; then $\left(p^{n}\right)$ is primary.
2. Suppose A is a PID and Q is a primary ideal of A. Then $Q=\left(p^{n}\right)$ for some prime $p \in A$ and some $n>0$.

Proof.

1. Suppose $x y \in\left(p^{n}\right)$; then $p^{n} \mid x y$, and the prime factorization of $x y$ is $x y=p^{m} q_{1} q_{2} \ldots q_{\ell}$ for some $m \geq m$. If $x \notin\left(p^{n}\right)$, then p appears less than n-many times in the prime factorization of x; so p appears in the prime factorization of y. So $p \mid y$, and $p^{n} \mid y^{n}$; so $y^{n} \in\left(p^{n}\right)$.
2. Write $Q=(d)$; let $d=p_{1}^{n_{1}} \ldots p_{\ell}^{n_{\ell}}$ be the prime factorization, and let $m=\max \left\{n_{1}, \ldots, n_{\ell}\right\}$. Then $\left(p_{1} \ldots p_{\ell}\right)^{m} \in(d)$. So $\left(p_{1}, \ldots, p_{\ell} \in r(Q)\right.$; so, by Proposition 5.0 .5 since $r(Q)$ is prime we have that $p_{i} \in r(d)$ for some $i \in\{1, \ldots, \ell\}$. So $p_{i}^{n} \in(d)$, and $d \mid p_{i}^{n}$; so p_{i} is the only prime in the prime factorization of d. So $\ell=1$, and $Q=\left(p_{i}^{n}\right)$.
\square Remark 5.0.9
Example 5.0.10. For k a field, consider $A=k[x, y]$ and $Q=\left(x, y^{2}\right)$.
Claim 5.0.11. Q is primary.

Proof. Well,

$$
A / Q \cong k[y] /\left(y^{2}\right)=\{a y+b: a, b \in k\}
$$

Suppose now that $a y+b$ is a zero divisor; say $0=(a y+b)\left(a^{\prime} y+b^{\prime}\right)=\left(a b^{\prime}+b a^{\prime}\right) y+b b^{\prime}$ with at least one of a^{\prime}, b^{\prime} non-zero. In particular, we get

$$
\begin{aligned}
b b^{\prime} & =0 \\
a b^{\prime}+b a^{\prime} & =0
\end{aligned}
$$

Well, since $b b^{\prime}=0$, we have $b=0$ or $b^{\prime}=0$; but in the latter case the second equation yields $b a^{\prime}=0$ and $a^{\prime} \neq 0$, so $b=0$. So in either case we have $b=0$. So zero divisors are of the form $a y$ for some $a \in k$. But $(a y)^{2}=0$ in $k[y] /\left(y^{2}\right)$; so every zero divisor in A / Q is nilpotent.

Claim 5.0.11
Claim 5.0.12. $r(Q)=(x, y)$.
Proof.
(\supseteq) Easy.
(\subseteq) Note that by Proposition 5.0.5 we have that $r(Q)$ is contained in every prime containing Q. But $Q \subseteq(x, y)$ and (x, y) is prime. So $r(Q) \subseteq(x, y)$.

Claim 5.0.12
But now if we had $Q=P^{n}$ for some prime ideal P and some $n>0$, then $(x, y)=r(Q)=r\left(P^{n}\right)=P$. So $Q=(x, y)^{n}$. But $x \notin(x, y)^{n}$ for any $n>1$; so $n=1$. So $\left.\left(x, y^{2}\right)=Q\right)=(x, y)$, a contradiction since $y \notin\left(x, y^{2}\right)$.

So Q is a primary ideal of a UFD that is not a power of any prime ideal. (Note that given an ideal I we define I^{n} to be the ideal generated by $a_{1} \ldots a_{n}$ for $a_{1}, \ldots, a_{n} \in I$.)
Example 5.0.13. Consider $A=k[x, y, z] /\left(x y-z^{2}\right)$; let \bar{x}, \bar{z} be the images of x, z in A. Let $P=(\bar{x}, \bar{z})$. By the second isomorphism theorem, we then get that

$$
A / P \cong k[x, y, z] /(x, z) \cong k[y]
$$

is an integral domain; so P is prime. But in A we have $\overline{x y}=(\bar{z})^{2} \in P^{2}$.
Claim 5.0.14. $\bar{x} \notin P^{2}$.
Proof. Well, if we had $\bar{x} \in P^{2}$, then we would have $x \in(x, z)^{2}+\left(x y-z^{2}\right) \subseteq(x, y, z)^{2}$ in $k[x, y, z]$, a contradiction.

Claim 5.0.15. $\bar{y} \notin P$.
Proof. If we had $\bar{y} \in P$ then we would have $A / P \cong k \not \approx k[y]$, a contradiction.
Claim 5.0.15
So $\bar{y} \notin r\left(P^{2}\right)=P$. So P^{2} is not primary.
However, we do get
Proposition 5.0.16 (4.2). A power of a maximal ideal is primary.
Proof. Suppose m is a maximal ideal of A; suppose $n>0$. Then $m=r\left(m^{n}\right)$; so m / m^{n} is the nilradical of A / m^{n}; so, by Proposition 4.2.34 we have that m / m^{n} is the intersection of all prime ideals in A / m^{n}. But m / m^{n} is maximal in A / m^{n}. So m / m^{n} is the only prime ideal in A / m^{n}. So for every $\alpha \in A / m^{n}$ we have either $\alpha \in m / m^{n}$ or $(\alpha)=A / m^{n}$. But in the former case we get that $\alpha^{n}=0$, and in the latter case we get that α is invertible in A / m^{n}. So every element of A / m^{n} is either nilpotent or invertible; in particular, we get that all zero divisors are nilpotent.
\square Proposition 5.0.16
Remark 5.0.17. We only used that $r\left(m^{n}\right)$ is maximal. In particular, if I is any ideal whose radical is maximal, then I is primary.

Lemma 5.0.18 (4.3). Suppose Q_{1}, \ldots, Q_{n} are P-primary; i.e. each Q_{i} is primary and $r\left(Q_{i}\right)=P$. Then $Q_{1} \cap \cdots \cap Q_{n}$ is P-primary.

Proof. Well, $r\left(Q_{1} \cap \cdots \cap Q_{n}\right)=r\left(Q_{1}\right) \cap \cdots \cap r\left(Q_{n}\right)=P$. Suppose now that $x y \in Q_{1} \cap \cdots \cap Q_{n}$ with $x \notin Q_{1} \cap \cdots \cap Q_{n}$. Then for some i we have $x \notin Q_{i}$. But $x y \in Q_{i}$, and Q_{i} is primary; so $y \in r\left(Q_{i}\right)=P=$ $r\left(Q_{1} \cap \cdots \cap Q_{n}\right)$. So $Q_{1} \cap \cdots \cap Q_{n}$ is primary. Lemma 5.0.18

Definition 5.0.19. A primary decomposition of an ideal I is an expression of the form $I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ with each Q_{i} primary. We say I is decomposable if I has a primary decomposition.

Fact 5.0.20 (To prove later). In a Noetherian ring every ideal is decomposable.
If in a primary decomposition

$$
I=\bigcap_{i=1}^{n} Q_{i}
$$

we have $r\left(Q_{i}\right)=r\left(Q_{j}\right)$ then $Q_{i} \cap Q_{j}$ is primary with the same radical; so we may replace Q_{i} and Q_{j} by $Q_{i} \cap Q_{j}$ in the decomposition. So, if I is decomposable, then there is a primary decomposition where the $r\left(Q_{i}\right)$ are distinct. Also if

$$
Q_{i} \supseteq \bigcap_{j \neq i} Q_{j}
$$

then we can $\operatorname{drop} Q_{i}$ from the intersection. So we get a decomposition where

$$
Q_{i} \nsupseteq \bigcap_{j \neq i} Q_{j}
$$

for any i.
Definition 5.0.21. A primary decomposition satisfying the above two properties is called an irredundant decomposition. (The book calls these minimal decompositions.)

Lemma 5.0.22 (4.4). Suppose Q is P-primary; suppose $x \in A$. Then

1. If $x \in Q$ then $\{a \in A: x a \in Q\}=(Q: x)=A$.
2. If $x \notin P$ then $(Q: x)=Q$.
3. If $x \notin Q$ then $Q \subseteq(Q: x) \subseteq P$ and $(Q: x)$ is P-primary.

Proof.

1. Generally true; doesn't require that Q be P-primary.
2. That $(Q: x) \supseteq Q$ is clear. For the converse, suppose $y \in(Q: x)$; i.e. suppose $x y \in Q$. If $y \notin Q$ then since Q is primary we have that $x \in r(Q)=P$, a contradiction.
3. Again, that $Q \subseteq(Q: x)$ is clear. Note also that if $x y \in Q$, then since $x \notin Q$ and Q is primary we have that $y \in r(Q)$; so $(Q: x) \subseteq P$. Then

$$
P=r(Q) \subseteq r(Q: x) \subseteq r(P)=P
$$

So $r(Q: x)=P$. Suppose now that $y z \in(Q: x)$; i.e. suppose $x y z \in Q$. If $y \notin(Q: x)$, then $x y \notin Q$; so $z \in r(Q)=P=r(Q: x)$ since Q is primary. So $(Q: x)$ is primary.

Theorem 5.0.23 (4.5: First uniqueness theorem of primary decompositions). Suppose

$$
I=\bigcap_{i=1}^{n} Q_{i}
$$

is an irredundant primary decomposition. Let $P_{i}=r\left(Q_{i}\right)$. Then $\left\{P_{1}, \ldots, P_{n}\right\}$ is independent of the particular irredundant decomposition. (In particular, so is n.)

Proof. We will show that the P_{i} are precisely the prime ideals appearing in $\{r(I: x): x \in A\}$; this will suffice. Note that for any $x \in A$ we have

$$
(I: x)=\left(\bigcap_{i=1}^{n} Q_{i}: x\right)=\bigcap_{i=1}^{n}\left(Q_{i}: x\right)=\bigcap_{\substack{i \\ x \notin Q_{i}}}\left(Q_{i}: x\right)
$$

by Lemma 5.0.22. So

$$
r(I: x)=\bigcap_{\substack{i \\ x \notin Q_{i}}} r\left(Q_{i}: x\right)=\bigcap_{\substack{i \\ x \notin Q_{i}}} P_{i}
$$

again by Lemma 5.0.22.
Claim 5.0.24. In general if Q is prime and $Q \supseteq P_{1} \cap \cdots \cap P_{\ell}$ then $Q \supseteq P_{j}$ for some j.
Proof. If we had $Q \nsupseteq P_{i}$ for all i, we would have $b_{i} \in P_{i} \backslash Q$ for all i. Then

$$
b_{1} \ldots b_{\ell} \in \bigcap_{i=1}^{\ell} P_{i} \subseteq Q
$$

So, since Q is prime, we would have $b_{j} \in Q$ for some j, a contradiction.
Claim 5.0.24
Hence if $r(I: x)$ is prime then $r(I: x)=P_{j}$ for some j.
Conversely, fix j; we show that $P_{j}=r(I: x)$ for some $x \in A$. Since the decomposition is irredundant, there is

$$
x_{j} \in \bigcap_{i \neq j} Q_{i} \backslash Q_{j}
$$

Then

$$
r\left(I: x_{j}\right)=\bigcap_{\substack{i \\ x_{j} \notin Q_{i}}} P_{i}=P_{j}
$$Theorem 5.0.23

Hence if I is a decomposable ideal then we can associate to it as invariants the radicals of the primary ideals appearing in any irredundant primary decomposition.

Definition 5.0.25. The prime ideals P_{1}, \ldots, P_{n} are said to belong to or to be associated to I.
The irredundant primary decomposition is not unique; only the associated primes are.
Example 5.0.26. Let $A=k[x, y]$, where k is a field; consider $I=\left(x^{2}, x y\right)$.
Claim 5.0.27. $I=(x) \cap\left(x^{2}, y\right)$.
Proof.
(\subseteq) One simply notes that $x^{2}, x y \in(x) \cap\left(x^{2}, y\right)$.
(〇) Suppose $f \in(x) \cap\left(x^{2}, y\right)$; then $f=g x=h_{1} x^{2}+h_{2} y$ for some $g, h_{1}, h_{2} \in A$. But then $h_{2} y=g x-h_{1} x^{2}$; so $x \mid h_{2} y$. But x is prime in A, and $x \nmid y$; so $x \mid h_{2}$, and $h_{2}=h_{3} x$ for some $h_{3} \in A$. So

$$
f=h_{1} x^{2}+h_{2} y=h_{1} x^{2}+h_{3} x y \in I
$$

Claim 5.0.27
Now, (x) is prime, and hence primary. Furthermore, $\left(x^{2}, y\right)$ is primary since $k[x, y] /\left(x^{2}, y\right) \cong k[x] /\left(x^{2}\right)$ has zero divisors $a x$ for $a \in k$, which are all nilpotent. Also, $r(x)=(x) \neq(x, y)=r\left(x^{2}, y\right)$; so $I=(x) \cap\left(x^{2}, y\right)$ is an irredundant primary decomposition.
Claim 5.0.28. $I=(x) \cap(x, y)^{2}$.
Proof.
(\subseteq) Again, one notes that $x^{2}, x y \in(x) \cap(x, y)^{2}$.
(\supseteq) Suppose $f \in(x) \cap(x, y)^{2}$. Then, since $f \in(x, y)^{2}$, we have that the monomials of f are all divisible by x^{2}, y^{2}, or $x y$. Since $f \in(x)$ we have that the monomials of f are all divisible by x. So the monomials of f are all divisible by x^{2} or $x y$; so $f \in\left(x^{2}, x y\right)=I$.

Claim 5.0.28
Now, (x) is prime, and $(x, y)^{2}$ is primary by Proposition 5.0.16 since (x, y) is maximal in $k[x, y]$. Also $r(x)=(x) \neq r(x, y)^{2}=(x, y)$, so $I=(x) \cap(x, y)^{2}$ is a second irredundant decomposition. Note also that the primes associated to I are (x) and (x, y), and $(x) \subseteq(x, y)$. So we can have non-trivial containments among the associated prime ideals.

Definition 5.0.29. Suppose I is a decomposable ideal. The minimal elements of the set of associated primes are called the minimal primes (or isolated primes) of I. i.e. a minimal prime of I is an associated prime of I that does not properly contain any other associated prime of I. The other associated primes are called embedded primes.

In the previous example, we saw that (x) is a minimal prime of $\left(x^{2}, x y\right)$ while (x, y) is an embedded prime of $\left(x^{2}, x y\right)$.

Proposition 5.0.30 (4.6). Suppose I is a decomposable ideal. Then the minimal primes of I are precisely the minimal elements of $\{P \supseteq I: P$ prime $\}$.

Proof. Let $I=Q_{1} \cap \cdots \cap Q_{n}$ be an irredundant primary decomposition; let $P_{i}=r\left(Q_{i}\right)$ be the associated prime ideals of I. Suppose $P \supseteq I$ is prime; then $P \supseteq Q_{1} \cap \cdots \cap Q_{n}$, and

$$
P=r(P) \supseteq r\left(Q_{1}\right) \cap \cdots \cap r\left(Q_{n}\right)=P_{1} \cap \cdots \cap P_{n}
$$

So, by Claim 5.0.24, we have $P \supseteq P_{j}$ for some j. Hence every prime containing I contains an associated prime of I. But $\left\{P_{1}, \ldots, P_{n}\right\} \subseteq\{P \supseteq I: P$ prime $\}$, and every element of the latter contains an element of the former; so the minimal elements of $\left\{P_{1}, \ldots, P_{n}\right\}$ are exactly the minimal elements of $\{P \supseteq I: P$ prime $\}$.

Proposition 5.0.30
Remark 5.0.31. If I is decomposable then $r(I)$ is the intersection of the minimal primes of I.
Proof. Proposition 4.2.34 applied to A / I implies

$$
\begin{aligned}
r(I) & =\bigcap\{P \in \operatorname{Spec}(A): P \supseteq I\} \\
& =\bigcap\{P \in \operatorname{Spec}(A): P \supseteq I, P \text { minimal such }\} \\
& =\bigcap\{P \in \operatorname{Spec}(A): P \text { minimal associated prime ideal of } I\}
\end{aligned}
$$

by Proposition 5.0.30. Alternatively, if $I=Q_{1} \cap \cdots \cap Q_{m}$ is the primary decomposition, then $r(I)=$ $r\left(Q_{1}\right) \cap \cdots \cap r\left(Q_{m}\right)$ is the intersection of the minimal elements of $\left\{r\left(Q_{1}\right), \ldots, r\left(Q_{m}\right)\right\}$.Remark 5.0.31

Corollary 5.0.32. Suppose I is a radical decomposable ideal. Then I has a prime decomposition $I=$ $P_{1} \cap \cdots \cap P_{n}$ where P_{1}, \ldots, P_{n} are prime. Moreover, if this decomposition is irredundant (i.e.

$$
P_{i} \nsupseteq \bigcap_{j \neq i} P_{j}
$$

for all $i \in\{1, \ldots, n\}$) then the decomposition is unique (up to reordering).
Proof. Write $I=Q_{1} \cap \cdots \cap Q_{m}$ be the irredundant primary decomposition; then $I=r(I)=r\left(Q_{1}\right) \cap \cdots \cap$ $r\left(Q_{m}\right)$. Let $P_{i}=r\left(Q_{i}\right)$. Reordering, we may assume that P_{1}, \ldots, P_{n} are the minimal primes of I, where $n \leq m$. Then $I=P_{1} \cap \cdots \cap P_{n}$ is an irredundant prime decomposition (since if

$$
P_{i} \supseteq \bigcap_{j \neq i} P_{j}
$$

then by primality of P_{i} we get that $P_{i} \supseteq P_{j}$ for some $j \neq i$, contradicting minimality.)
Suppose now that $I=P_{1} \cap \cdots \cap P_{n}=P_{1}^{\prime} \cap \cdots \cap P_{n^{\prime}}^{\prime}$ are two irredundant prime decompositions. Then both are irredundant primary decompositions, so by Theorem 5.0.23, we get that $n^{\prime}=n$ and

$$
\left\{P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right\}=\left\{r\left(P_{i}^{\prime}\right), \ldots, r\left(P_{n}^{\prime}\right)\right\}=\left\{r\left(P_{1}\right), \ldots, r\left(P_{n}\right)\right\}=\left\{P_{1}, \ldots, P_{n}\right\}
$$

Corollary 5.0.32
Note that radical is necessary here since the intersection of prime ideals is always radical.
For a geometric interpretations, we work in the Zariski topology on $\operatorname{Spec}(A)$; recall that the closed sets are $V(I)=\{P \in \operatorname{Spec}(A): P \supseteq I\}$ for I an ideal of A.

Proposition 5.0.33. $V(I)=V(J)$ if and only if $r(I)=r(J)$.
Proof. We apply Proposition 4.2 .34 to A / I and A / J to get that

$$
\begin{aligned}
r(I)=r(J) & \Longleftrightarrow \bigcap\{P \in \operatorname{Spec}(A): P \supseteq I\}=\bigcap\{P \in \operatorname{Spec}(A): P \supseteq J\} \\
& \Longleftrightarrow\{P \in \operatorname{Spec}(A): P \supseteq I\}=\{P \in \operatorname{Spec}(A): P \supseteq J\} \\
& \Longleftrightarrow V(I)=V(J)
\end{aligned}
$$

since if $P \supseteq I$ then

$$
P \supseteq \bigcap\{Q \in \operatorname{Spec}(A): Q \supseteq J\} \supseteq J
$$

Definition 5.0.34. A closed set is irreducible if it is not the union of two proper closed sets.
Suppose I is a decomposable ideal; let $r(I)=P_{1} \cap \cdots \cap P_{n}$ be the irredundant prime decomposition. Then

$$
V(I)=V(r(I))=V\left(P_{1}\right) \cup \cdots \cup V\left(P_{n}\right)
$$

and this decomposition is irredundant in the sense that

$$
V\left(P_{i}\right) \nsubseteq \bigcup_{j \neq i} V\left(P_{j}\right)
$$

As we will see on assignment 4, we get that each $V\left(P_{i}\right)$ is irreducible. Furthermore, the uniqueness of the prime decomposition of $r(I)$ will imply the uniqueness of the irredundant decomposition of $V(I)$ into irreducible closed sets.

Geometrically, we interpret this as saying that if I is decomposable, then $V(I)$ can be written uniquely as an irredundant union of irreducible closed sets. These $V\left(P_{i}\right)$ are called the irreducible components of $V(I)$.

If we write $I=Q_{1} \cap \cdots \cap Q_{m}$ for $m \geq n$ with $P_{i}=r\left(Q_{i}\right)$, then P_{n+1}, \ldots, P_{m} are the embedded primes. So if $j>n$ we have $V\left(P_{j}\right) \subseteq V\left(P_{i}\right)$ for some $i \leq n$; hence the term "embedded".

Returning to algebra, what can we say about the existence of decomposable ideals?
Definition 5.0.35. A ring is Noetherian if every ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq \cdots$ is stationary; i.e. there is $n \geq 1$ such that $I_{n}=I_{n+1}=I_{n+2}=\cdots$.

A consequence of Noetherianity is that every non-empty set of ideals has a maximal element (with respect to \subseteq); this is simply by Zorn's lemma.

Definition 5.0.36. An ideal I of A is irreducible if whenever $I=J \cap J^{\prime}$ then $I=J$ or $I=J^{\prime}$.
Lemma 5.0.37 (7.13). If A is Noetherian then every ideal is a finite intersection of irreducible ideals.
Proof. If not, let $\mathcal{S} \neq \emptyset$ be the set of counterexamples; let $I \in \mathcal{S}$ be maximal (which exists by Noetherianity). Then $I=J \cap J^{\prime}$ with $J \supsetneqq I$ and $J^{\prime} \supsetneqq I$. Then, by maximality of I, we have $J, J^{\prime} \notin \mathcal{S}$. So

$$
\begin{aligned}
J & =J_{1} \cap \cdots \cap J_{\ell} \\
J^{\prime} & =J_{1}^{\prime} \cap \cdots \cap J_{\ell^{\prime}}^{\prime}
\end{aligned}
$$

with each J_{i} and each J_{i}^{\prime} irreducible. But then

$$
I=J \cap J^{\prime}=J_{1} \cap \cdots \cap J_{\ell} \cap J_{1}^{\prime} \cap \cdots \cap J_{\ell^{\prime}}^{\prime}
$$

So $I \notin \mathcal{S}$, a contradiction.
Lemma 5.0.38 (7.12). In a Noetherian ring, every irreducible ideal is primary.
Proof. Suppose $I \subseteq A$ is an ideal. Then since A is Noetherian we get that A / I is Noetherian. Then I is irreducible if and only if (0) is irreducible in A / I, and I is primary if and only if (0) is primary in A / I; it thus suffices to check the case $I=(0)$. Suppose then that $x y=0$ but $y \neq 0$; we wish to show that $x^{n}=0$ for some n. Consider $\operatorname{Ann}(x) \subseteq \operatorname{Ann}\left(x^{2}\right) \subseteq \ldots$. This is an ascending chain of ideals, so by Noetherianity we get than $\operatorname{Ann}\left(x^{n}\right)=\operatorname{Ann}\left(x^{n+1}\right)=\ldots$ for some n.
Claim 5.0.39. $\left(x^{n}\right) \cap(y)=(0)$.
Proof. If $a \in\left(x^{n}\right) \cap(y)$, then $a=c y$ for some $c \in A$; so $a x=c y x=0$. But $a \in\left(x^{n}\right)$ as well, so $a=b x^{n}$ for some $b \in A$; so $0=a x=b x^{n+1}$, and $b \in \operatorname{Ann}\left(x^{n+1}\right)=\operatorname{Ann}\left(x^{n}\right)$. So $b x^{n}=0$, and $a=0$. Claim 5.0.39

But (0) is irreducible, and by assumption we have that $(y) \neq(0)$; so $\left(x^{n}\right)=(0)$, and $x^{n}=0$.
Lemma 5.0.38
Corollary 5.0.40 (7.14). In a Noetherian ring every ideal is decomposable.

5.1 Noetherian rings

We look more closely at Noetherian rings.
An important characterization of Noetherian rings is the following:
Proposition 5.1.1. A is Noetherian if and only if every ideal is finitely generated.

Proof.

(\Longrightarrow) Suppose $I \subseteq A$ is not finitely generated. We inductively define a sequence of elements $a_{i} \in I$ by picking any $a_{0} \in I$ and choosing $a_{i+1} \in I \backslash\left(a_{0}, \ldots, a_{i}\right)$; this is possible since $I \neq\left(a_{0}, \ldots, a_{i}\right)$ as I is not finitely generated.
(\Longleftarrow) Suppose $I_{1} \subseteq I_{2} \subseteq \ldots$ is an ascending chain of ideals. Let

$$
I=\bigcup_{i=1}^{\infty} I_{i}
$$

Then I is an ideal of A, so I is finitely generated; say $I=\left(a_{1}, \ldots, a_{\ell}\right)$. Pick $N>0$ such that $a_{1}, \ldots, a_{\ell} \in I_{N}$; then $I \subseteq I_{N} \subseteq I_{N+1} \subseteq \ldots \subseteq I$, and $I_{N}=I_{N+1}=\cdots=I . \quad \square$ Proposition 5.1.1

A natural generalization to modules:
Definition 5.1.2. Suppose A is a ring; suppose M is an A-module. We say M is Noetherian if every ascending chain of submodules is stationary.

Remark 5.1.3. A ring A is Noetherian as an A-module if and only if A is a Noetherian ring.
Just as in the ring case, we have:
Proposition 5.1.4. M is Noetherian if and only if every submodule is finitely generated.
Proposition 5.1.5 (6.3). Suppose $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is an exact sequence of A-modules. Then the following are equivalent:

1. M is Noetherian.

Proof.
(\Longrightarrow) This is exactly saying that Noetherianity is preserved under submodules and quotients. But $f: M^{\prime} \rightarrow$ $\operatorname{im}(f)$ is an isomorphism; so any ascending chain of submodules in M^{\prime} gets mapped isomorphically to an ascending chain of submodules in $\operatorname{im}(f) \subseteq M$, and is thus stationary. Furthermore, $M^{\prime \prime} \cong M / \operatorname{ker}(g)$, so any ascending chain of submodules in $M^{\prime \prime}$ lifts to an ascending chain of submodules in M by the correspondence theorem, and is thus stationary. So M^{\prime} and $M^{\prime \prime}$ are Noetherian.
(\Longleftarrow) Suppose $L_{1} \subseteq L_{2} \subseteq \cdots$ is an ascending chain of submodules in M. Choose n such that $g\left(L_{n}\right)=$ $g\left(L_{n+1}\right)=\cdots$ and $f^{-1}\left(L_{n}\right)=f^{-1}\left(L_{n+1}\right)=\cdots$.

Claim 5.1.6. $L_{n}=L_{n+1}=\cdots$.
Proof. We check that $L_{n}=L_{n+1}$. Suppose $a \in L_{n+1}$. Then $g(a) \in g\left(L_{n+1}\right)=g\left(L_{n}\right)$; we may thus pick $b \in L_{n}$ such that $g(a)=g(b)$. So $a-b \in \operatorname{ker}(g)=\operatorname{im}(f)$; pick $c \in M^{\prime}$ such that $a-b=f(c)$. Then $f(c)=a-b \in L_{n+1}$; so $c \in f^{-1}\left(L_{n+1}\right)=f^{-1}\left(L_{n}\right)$, and $a-b=f(c) \in L_{n}$. But $b \in L_{n}$; so $a \in L_{n}$.

Claim 5.1.6
\square Proposition 5.1.5
Corollary 5.1.7 (6.4). If M_{1}, \ldots, M_{n} are Noetherian A-modules then

$$
\bigoplus_{i=1}^{n} M_{i}
$$

is Noetherian.
Proof. Well, $0 \rightarrow M_{1} \rightarrow M_{1} \oplus M_{2} \rightarrow M_{2} \rightarrow 0$ is exact; so $M_{1} \oplus M_{2}$ is Noetherian by Proposition 5.1.5. Iterating, one obtains the desired conclusion. Corollary 5.1.7

Corollary 5.1.8 (6.5). If A is a Noetherian ring, then every finitely generated A-module is Noetherian.
Proof. Suppose M is generated as an A-module by x_{1}, \ldots, x_{ℓ}. We then get a surjective A-linear map

$$
\begin{aligned}
A^{\ell} & \rightarrow M \\
(0, \ldots, \underbrace{1}_{i^{\mathrm{th}} \text { spot }}, \ldots, 0) & \mapsto x_{i}
\end{aligned}
$$

But A is Noetherian, so by Corollary 5.1 .7 we get that A^{ℓ} is Noetherian A-module, and then by Proposition 5.1.5 we get that M is a Noetherian A-module. \square Corollary 5.1.8

Corollary 5.1.9 (Proposition 7.2). If A is a Noetherian ring and B is a finite A-algebra, then B is a Noetherian ring.
(Recall that a finite A-algebra is one that is finitely generated as an A-module.)
Proof. Well, B is a finitely generated A-module, so B is a Noetherian A-module. So every ideal of B is an A-submodule of B; so every ideal of B is finitely generated as an A-module, and hence as a B-submodule. So B is a Noetherian ring.
\square Corollary 5.1.9
Theorem 5.1.10 (7.5: Hilbert's basis theorem). Suppose A is a Noetherian ring. Then $A[x]$ is a Noetherian ring.

Proof. Suppose $I \subseteq A[x]$ is an ideal. Let $J \subseteq A$ be the set of leading coefficients of elements of I.
Claim 5.1.11. J is an ideal.

Proof. Suppose $a, b \in J$; take $f, g \in I$ with $f(x)=a x^{n}+\cdots$ and $g(x)=b x^{m}+\cdots$ (where the remaining terms are of lower order). Suppose without loss of generality that $n \geq m$. Then $x^{n-m} g=b x^{n}+\cdots \in I$; so

$$
f+x^{n-m} g=(a+b) x^{n}+\cdots \in I
$$

so $a+b \in J$. Also, if $c \in A$ then $c f=c a x^{n}+\cdots \in I$; so $c a \in J$. So J is an ideal.
Claim 5.1.11
But A is Noetherian; so $J=\left(a_{1}, \ldots, a_{n}\right)$ where $a_{1}, \ldots, a_{n} \in A$. For $i \in\{1, \ldots, n\}$, pick $f_{i}=a_{i} x^{r_{i}}+\cdots \in$ I. Let $I^{\prime}=\left(f_{1}, \ldots, f_{n}\right) \subseteq I$. Let $r=\max \left\{r_{1}, \ldots, r_{n}\right\}$.
Claim 5.1.12. If $f \in I$ then $f=g+h$ where $\operatorname{deg}(g)<r$ and $h \in I^{\prime}$.
Proof. We apply induction on $\operatorname{deg}(f)$.
For the base case, note that if $\operatorname{deg}(f)<r$, then we can take $g=f$ and $h=0$.
For the induction step, write $f=a x^{m}+\cdots$. Then since $a \in J$ we have

$$
a=\sum_{i=1}^{n} u_{i} a_{i}
$$

for some $u_{1}, \ldots, u_{n} \in A$. Then

$$
h=\sum_{i=1}^{n} u_{i} x^{m-r_{i}} f_{i}=a x^{m}+\cdots \in I^{\prime}
$$

since $u_{i} x^{m-r_{i}} f_{i}$ has leading coefficient $u_{i} a_{i}$ and degree m. But then h and f have the same leading term, namely $a x^{m}$; so $\operatorname{deg}(f-h)<\operatorname{deg}(f)$. So, by the induction hypothesis, we get that $f-h=g+h_{1}$ where $\operatorname{deg}(g)<r$ and $h_{1} \in I^{\prime}$; so $f=g+\left(h+h_{1}\right)$, with $\operatorname{deg}(g)<r$ and $h+h_{1} \in I^{\prime}$.

So $I=I^{\prime}+I \cap\{g \in A[x]: \operatorname{deg}(g)<r\}$. But $M=\{g \in A[x]: \operatorname{deg}(g)<r\}$ is a finitely generated A-module (with generators $1, x, \ldots, x^{r-1}$), and A is Noetherian; so, by Corollary 5.1.8, we have that M is Noetherian. But $I \cap M$ is a submodule of M; hence by Noetherianity we have M is finitely generated as an A-module, say by generators g_{1}, \ldots, g_{ℓ}. So if $f \in I$ then

$$
f=h_{1} f_{1}+\cdots+h_{n} f_{n}+b_{1} g_{1}+\cdots+b_{\ell} g_{\ell} \in\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{\ell}\right)
$$

where $h_{1}, \ldots, h_{n} \in A[x]$ and $b_{1}, \ldots, b_{\ell} \in A$. So $I=\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{\ell}\right)$, and I is finitely generated. Theorem 5.1.10

Corollary 5.1.13. Suppose A is a Noetherian ring; suppose B is a finitely generated A-algebra. Then B is a Noetherian ring.

Proof. Let b_{1}, \ldots, b_{ℓ} be generators for B. Then

$$
\begin{aligned}
A\left[x_{1}, \ldots, x_{\ell}\right] & \xrightarrow{m} B \\
P\left(x_{1}, \ldots, x_{\ell}\right) & \mapsto P\left(b_{1}, \ldots, b_{\ell}\right)
\end{aligned}
$$

is a surjective ring homomorphism. (Note that $P\left(b_{1}, \ldots, b_{\ell}\right)=P^{f}\left(b_{1}, \ldots, b_{\ell}\right)$ where $f: A \rightarrow B$ is the given ring homomorphism and P^{f} is the result of applying f to the coefficients of P.) So $B \cong A\left[x_{1}, \ldots, x_{\ell}\right] / \operatorname{ker}(\pi)$. But applying Hilbert's basis theorem ℓ times yields that $A\left[x_{1}, \ldots, x_{\ell}\right]$ is Noetherian; so B is a Noetherian ring.
\square Corollary 5.1.13
Example 5.1.14. PIDs are Noetherian. So, by Hilbert's basis theorem, we have that every finitely generated ring (i.e. finitely generated \mathbb{Z}-algebra) is Noetherian. Likewise, every finitely generated k-algebra is Noetherian, where k is a field.

Proposition 5.1.15 (7.3). Noetherianity is preserved by localization.
Proof. Suppose A is Noetherian and $S \subseteq A$ is multiplicatively closed; suppose $I \subseteq S^{-1} A$ is an ideal. Since every ideal is an extension ideal, we have some ideal J of A such that $I=S^{-1} J$. Then, since A is Noetherian, we have $J=\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in A$; one checks that $I=\left(\frac{a_{1}}{1}, \ldots, \frac{a_{n}}{1}\right) . \quad \square$ Proposition 5.1.15

Besides primary decomposition, we get many nice properties of Noetherian rings.
Proposition 5.1.16 (7.14). In a Noetherian ring, every ideal contains a finite power of its radical.
Proof. Suppose A is Noetherian; suppose $I \subseteq A$ is an ideal. Write $r(I)=\left(a_{1}, \ldots, a_{n}\right)$. Then for each $i \in\{1, \ldots, n\}$ there is some $r_{i}>0$ such that $a_{i}^{r_{i}} \in I$. But for any $m>0$, we have

$$
r(I)^{m}=\left(a_{1}^{m_{1}} \cdots a_{n}^{m_{n}}: m_{1}+\cdots+m_{n}=m\right)
$$

Let $m=n \max \left\{r_{1}, \ldots, r_{n}\right\}$; then whenever $m_{1}+\cdots+m_{n}=m$ we have $i \in\{1, \ldots, n\}$ such that $m_{i} \geq r_{i}$. Then $r(I)^{m} \subseteq I$.

Proposition 5.1.16
Corollary 5.1.17 (7.15). In a Noetherian ring the nilradical is nilpotent.
Proof. Applying Proposition 5.1.16 to $I=(0)$, we get that $\mathcal{R}^{m}=(0)$ for some m.
Corollary 5.1.17
Corollary 5.1.18 (7.16). Suppose A is Noetherian, $m \subseteq A$ is a maximal ideal, and $Q \subseteq A$ is an ideal. Then the following are equivalent:

1. $r(Q)=m$.
2. Q is m-primary.
3. $m^{n} \subseteq Q \subseteq m$ for some $n>0$.

Proof.
$\underline{\mathbf{1}) \Longrightarrow \mathbf{(2)}}$ By Proposition 5.0.16 we have that Q is primary. So Q is m-primary.
$\underline{\mathbf{(2)} \Longrightarrow \mathbf{(3)}}$ By Proposition 5.1.16 there is $n>0$ such that $m^{n}=r(Q)^{n} \subseteq Q \subseteq m$.
$\mathbf{(3)} \Longrightarrow \mathbf{(1)}$ We are given that $m^{n} \subseteq Q \subseteq m$; taking radicals, we find that

$$
m=r\left(m^{n}\right) \subseteq r(Q) \subseteq r(m)=m
$$

and $r(Q)=m$.
Corollary 5.1.18
Proposition 5.1.19 (7.17). Suppose A is Noetherian and $I \varsubsetneqq A$ is a proper ideal. Then the associated primes of I are precisely the prime ideals appearing in $\{(I: x): x \in A\}$.

Remark 5.1.20. When we proved "uniqueness" of primary decompositions, we saw that the associated primes of any decomposable ideal are the primes that appear in $\{r(I: x): x \in A\}$.

Proof of Proposition 5.1.19. Note that $(I: x)$ is the pullback of the annihilator of the image of x in A / I. So if $\pi: A \rightarrow A / I$ is the quotient, then we get $(I: x)=\pi^{-1}(\operatorname{Ann}(\pi(x)))$. But $\operatorname{Ann}(\pi(x))=(0: \pi(x))$ in A / I. So by the correspondence theorem we have that $(I: x)$ is prime if and only if $(0: \pi(x))=\operatorname{Ann}(\pi(x))$ is prime. So P is an associated prime of I if and only if $\pi(P)$ is an associated prime of (0). It then suffices to show that the associated primes of (0) are exactly the prime ideals which are annihilators.

Let

$$
(0)=\bigcap_{i=1}^{n} Q_{i}
$$

be an irredundant primary decomposition of (0). Fix $i \in\{1, \ldots, n\}$; consider $P_{i}=r\left(Q_{i}\right)$. By Theorem 5.0.23 we know that $P_{i}=r(\operatorname{Ann}(x))$ for some $x \in A$. But by the proof of Theorem 5.0.23, any $x \neq 0$ such that

$$
x \in \bigcap_{j \neq i} Q_{j}
$$

will do; so for any such x we get that $\operatorname{Ann}(x) \subseteq P_{i}$. Now, by Proposition 5.1.16, we have $P_{i}^{m} \subseteq Q_{i}$ for some m. So

$$
\left(\bigcap_{j \neq i} Q_{j}\right) \cdot P_{i}^{m} \subseteq \bigcap_{j \neq i} Q_{j} \cap P_{i}^{m} \subseteq \bigcap_{j=1}^{n} Q_{j}=(0)
$$

Let m be least such that

$$
\left(\bigcap_{j \neq i} Q_{j}\right) \cdot P_{i}^{m}=(0)
$$

Let $x \neq 0$ satisfy

$$
x \in\left(\bigcap_{j \neq i} Q_{j}\right) \cdot P_{i}^{m-1} \neq(0)
$$

Since

$$
x \in \bigcap_{j \neq i} Q_{j}
$$

we get that $\operatorname{Ann}(x) \subseteq P_{i}$; by choice of m we get that $P_{i} \subseteq \operatorname{Ann}(x)$.
The converse is left as an exercise.

6 Chapter 5: Integral dependence

Definition 6.0.1. Suppose $A \subseteq B$ is a subring and $b \in B$. We say b is integral over A if there is a non-zero monic $P \in A[x]$ such that $P(b)=0$.

Remark 6.0.2.

1. If A is a field, then b is integral over A if and only if b is algebraic over A.
2. Every element of A is integral over A; if $a \in A$, we may take $P(x)=x-a$.
3. We can generalize the definition to any A-algebra $f: A \rightarrow B$. We have to make sense of $P(b)$ where $b \in B$ and $P \in A[x]$; as usual, we define $P(b)=P^{f}(b)$ where $P^{f} \in B[x]$ is obtained from P by applying f to the coefficients. Note that $P^{f} \in f(A)[x]$ is monic; one thus gets that
Exercise 6.0.3. Suppose $f: A \rightarrow B$ is an A-algebra; suppose $b \in B$. Then b is integral over A if and only if b is integral over $f(A)$.

Hence for the most part we can work in the setting of a true subring $A \subseteq B$.
Example 6.0.4. Suppose $q=\frac{r}{s} \in \mathbb{Q}$ where $\operatorname{gcd}(r, s)=1$. If q is integral over \mathbb{Z}, then

$$
\left(\frac{r}{s}\right)^{n}+a_{n-1}\left(\frac{r}{s}\right)^{n-1}+\cdots+a_{0}=0
$$

so

$$
r^{n}+\underbrace{a_{n-1} s r^{n-1}+\cdots+a_{0} s^{n}}_{\text {divisible by } s}=0
$$

So $s \mid r^{n}$. But $\operatorname{gcd}(r, s)=1$; so $s=1$, and $q=r \in \mathbb{Z}$. Hence the only rationals integral over \mathbb{Z} are in fact integers.

Proposition 6.0.5 (5.1). Suppose $A \subseteq B$; suppose $b \in B$. Then the following are equivalent:

1. b is integral over A.
2. $A[b]$ (the sub-A-algebra generated by b) is a finite A-algebra; i.e. $A[b]$ is finitely generated as an A module.
3. There exists a finite A-subalgebra $C \subseteq B$ (i.e. $A \subseteq C \subseteq B$ is a subring and C is a finitely generated A-module with $b \in C$.)

Proof.
$\xrightarrow{\mathbf{(1)}} \Longrightarrow \mathbf{(2)}$ Suppose b is integral over A; then

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}=0
$$

for some $n>0$ and some $a_{0}, \ldots, a_{n-1} \in A$. Let $M \subseteq B$ be the A-submodule generated by $1, b, \ldots, b^{n-1}$; then $M \subseteq A[b]$ since $1, b, \ldots, b^{n-1} \in A[b]$.

Claim 6.0.6. $b^{m} \in M$ for all $m \geq 0$.
Proof. We apply induction on m. If $m<n$, then this is by construction. If $m \geq n$ then

$$
b^{m}=b^{m-n} \cdot b^{n}=b^{m-n}\left(-a_{n-1} b^{n-1}-\cdots-a_{1} b-a_{0}\right)=-a_{n-1} b^{m-1}-a_{n-2} b^{m-2}-\cdots-a_{0} b^{m-n}
$$

and by the induction hypothesis we have $b^{m-1}, \ldots, b^{m-n} \in M$; so $b^{m} \in M$.
Claim 6.0.6

But every element of $A[b]$ is of the form

$$
\sum_{j=1}^{\ell} c_{i} b^{i}
$$

for some $c_{i} \in A$. Hence by the claim we have $A[b]=M$.
$(2) \Longrightarrow(3)$ Clear.
$\underline{(3)} \Longrightarrow(\mathbf{1})$ Suppose we have such a C; let c_{1}, \ldots, c_{n} generate C as an A-module. Note that for each $i \in\{1, \ldots, n\}$ we have $b c_{i} \in C$ since $b \in C$ and C is a subring; thus

$$
b c_{i}=\sum_{j=1}^{n} a_{i j} c_{j}
$$

for some $a_{i j} \in A$. So

$$
\left(b-a_{i i}\right) c_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n}-a_{i j} c_{j}=0
$$

We can write this system of linear equations in matrix form as follows:

$$
\underbrace{\left(\begin{array}{ccccc}
b-a_{11} & -a_{12} & -a_{13} & \cdots & -a_{1 n} \\
-a_{21} & b-a_{22} & -a_{23} & \cdots & -a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{n 1} & -a_{n 2} & -a_{n 3} & \cdots & b-a_{n n}
\end{array}\right)}_{M \in M_{n \times n}(C)}\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=0
$$

Multiplying both sides on the left by the matrix of cofactors of M, we find

$$
\left(\begin{array}{ccc}
\operatorname{det}(M) & & 0 \\
& \ddots & \\
0 & & \operatorname{det}(M)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=0
$$

and $\operatorname{det}(M) \in C$. So $\operatorname{det}(M) \cdot c_{i}=0$ for all i. But the c_{1}, \ldots, c_{n} generate C as an A-module, and multiplication by $\operatorname{det}(M)$ is an A-linear map $C \rightarrow C$. So $\operatorname{det}(M) \cdot x=0$ for all $x \in C$. In particular, since $1 \in C$ we have $\operatorname{det}(M)=0$. But

$$
\operatorname{det}(M)=b^{n}+a_{n-1}^{\prime} b^{n-1}+\cdots+a_{1}^{\prime} b+a_{0}
$$

where the a_{i}^{\prime} are sums of products of $a_{i j}$, and thus in A. (One checks this by induction.) So b is integral over A.Proposition 6.0.5

Corollary 6.0.7 (5.2). Suppose $b_{1}, \ldots, b_{\ell} \in B$ are integral over A. Then $A\left[b_{1}, \ldots, b_{\ell}\right]$ is a finite A-algebra.
Proof. By Proposition 6.0.5 we have

- $A\left[b_{1}\right]$ is a finite A-algebra since b_{1} is integral over A.
- $A\left[b_{1}, b_{2}\right]$ is a finite $A\left[b_{1}\right]$-algebra since b_{2} is integral over A, and hence over $A\left[b_{1}\right]$.
- Continuing, we find that $A\left[b_{1}, \ldots, b_{\ell}\right]$ is a finite $A\left[b_{1}, \ldots, b_{\ell-1}\right]$-algebra.

TODO 1. Ref? 2.3.14?
Hence, by ??, we get that $A\left[b_{1}, \ldots, b_{\ell}\right]$ is a finite A-algebra. Corollary 6.0.7

Corollary 6.0.8 (5.3). Suppose $A \subseteq B$. Let $C=\{b \in B: b$ is integral over $A\}$. Then C is a subring of B.
Proof. Suppose $b_{1}, b_{2} \in C$. We wish to show that $b_{1}+b_{2},-b_{1}, b_{1} b_{2} \in C$. But $b_{1}+b_{2},-b_{1}, b_{1} b_{2} \in A\left[b_{1}, b_{2}\right]$ is a finite A-algebra by Corollary 6.0.7; so, by Proposition 6.0 .5 , we get that $b_{1}+b_{2},-b_{1}$, and $b_{1} b_{2}$ are all integral over A. So C is a subring of B.

Definition 6.0.9. The subring C given in Corollary 6.0 .8 is called the integral closure of A in B. If $C=B$ (i.e. every $b \in B$ is integral over A) then we say that B is integral over A. If $C=A$ then we say that A is integrally closed in B.

Example 6.0.10. \mathbb{Z} is integrally closed in \mathbb{Q}.
Remark 6.0.11. Integrality explains the distinction between finitely generated A-algebras and finite A algebras: if B is an A-algebra, then B is a finitely generated integral A-algebra if and only if B is a finite A-algebra.

Proof.
(\Longrightarrow) Suppose $B=A\left[b_{1}, \ldots, b_{\ell}\right]$ is integral over A. Then each b_{1}, \ldots, b_{ℓ} is integral over A; so, by Corollary 6.0 .7 , we have that B is a finitely generated A-module.
(\Longleftarrow) If $b \in B$ then by Proposition 6.0.5 we get that b is integral over A. So B is integral over A.
\square
Corollary 6.0.12 (5.4). Suppose $A \subseteq B \subseteq C$ are rings with B integral over A and C integral over B. Then C is integral over A.

Proof. Suppose $c \in C$. Then c is integral over B, so

$$
c^{n}+b_{n-1} c^{n-1}+\cdots+b_{1} c+b_{0}=0
$$

for some $n>0$ and some $b_{0}, \ldots, b_{n-1} \in B$. Then c is integral over $A\left[b_{0}, \ldots, b_{n-1}\right]$, and $A\left[b_{0}, \ldots, b_{n-1}, c\right]$ is a finite $A\left[b_{0}, \ldots, b_{n-1}\right]$-algebra. But $A\left[b_{0}, \ldots, b_{n-1}\right]$ is a finitely generated and integral extension of A; so $A\left[b_{0}, \ldots, b_{n-1}\right]$ is a finite A-algebra, and $A\left[b_{0}, \ldots, b_{n-1}, c\right]$ is a finite A-algebra. So c is integral over A. \square Corollary 6.0.12

Corollary 6.0.13 (5.5). Integral closures are integrally closed; i.e. if $A \subseteq B$ are rings and C is the integral closure of A in B (i.e. $C=\{b \in B: b$ is integral over $A\}$), then C is integrally closed in B.

Proof. Suppose $b \in B$ is integral over C. Then $C[b]$ is integral over C, and C is integral over A; hence, by Corollary 6.0.12, we get that $C[b]$ is integral over A. So b is integral over A; so $b \in C$.
\square Corollary 6.0.13
Proposition 6.0.14 (5.6). Suppose B is an integral extension of A. Then:

1. Integrality is preserved by quotients; i.e. if $J \subseteq B$ is an ideal, then B / J is an integral extension of $A / J \cap A$.
2. Integrality is preserved by localization: if $S \subseteq A$ is a multiplicatively closed set, then $S^{-1} B$ is an integral extension of $S^{-1} A$.

Proof.

1. Consider $\pi: A \rightarrow B / J$ the composition of $A \stackrel{\subseteq}{\leftrightarrows} B \rightarrow B / J$; then $\operatorname{ker}(\pi)=A \cap J$, so π induces an embedding $A / A \cap J \hookrightarrow B / J$. Suppose $\bar{b} \in B / J$, where $b \in B$. Then b is integral over A; so

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}=0
$$

for some $n>0$ and some $a_{0}, \ldots, a_{n-1} \in A$. Thus

$$
(\bar{b})^{n}+\overline{a_{n-1}}(\bar{b})^{n-1}+\cdots+\overline{a_{1}} \bar{b}+\overline{a_{0}}=0
$$

in B / J, and $\overline{a_{i}} \in A / J \cap I$. So \bar{b} is integral over $A / J \cap I$.
2. Suppose $\frac{b}{s} \in S^{-1} B$. Then $b \in B$ is integral over A; so

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0
$$

for some $n>0$ and some $a_{0}, \ldots, a_{n-1} \in A$. Multiplying by $s^{-n} \in S^{-1} A$, we find that

$$
\left(\frac{b}{s}\right)^{n}+\frac{a_{n-1}}{s}\left(\frac{b}{s}\right)^{n-1}+\frac{a_{n-2}}{s^{2}}\left(\frac{b}{s}\right)^{n-2}+\cdots+\frac{a_{0}}{s^{n}}=0
$$

and each $\frac{a_{n-i}}{s^{i}} \in S^{-1} A$. So $\frac{b}{s}$ is integral over $S^{-1} A$. Proposition 6.0.14

Proposition 6.0.15 (5.8). Suppose B is integral over A. Suppose $Q \subseteq B$ is prime; let $P=Q \cap A \in \operatorname{Spec}(A)$. Then Q is maximal in B if and only if P is maximal in A.

Proof. By Proposition 6.0.14, we have $A / P \hookrightarrow B / Q$ is an integral extension of integral domains. Replacing A by A / P and B by B / Q, it suffices to show the following:
Claim 6.0.16. Suppose A, B are integral domains with B integral over A. Then B is a field if and only if A is a field.

Proof.
(\Longrightarrow) Suppose $a \in A$ is non-zero. Let $b=a^{-1} \in B$; then b is integral over A, so we may write

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0
$$

Then

$$
b^{n}=-\left(a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}\right.
$$

Since B is a field, we may then divide by b^{n-1}; we then get

$$
b=-\left(a_{n-1}+\frac{a_{n-2}}{b}+\cdots+\frac{a_{1}}{b^{n-2}}+\frac{a_{0}}{b^{n-2}}\right)
$$

So

$$
a^{-1}=b=-\left(a_{n-1}+a_{n-2} a+\cdots+a_{1} a^{n-2}+a_{0} a^{n-2}\right) \in A
$$

So A is a field.
($\Longleftarrow)$ Suppose $b \in B$ is non-zero. Then b is integral over A, so we may write

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}=0
$$

Without loss of generality, we may take n to be minimal. Since B is an integral domain, we get that

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b=\underbrace{b}_{\neq 0}(\underbrace{b^{n-1}+a_{n-1} b^{n-2}+\cdots+a_{2} b+a_{1}}_{\neq 0 \text { by minimality of } n}) \neq 0
$$

Then

$$
a_{0}=-\left(b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1}\right) \neq 0
$$

So

$$
-\left(\frac{b^{n}}{a_{0}}+\frac{a_{n-1}}{a_{0}} b^{n-1}+\cdots+\frac{a_{1}}{a_{0}} b\right)=1
$$

and

$$
-\left(\frac{b^{n-1}}{a_{0}}+\frac{a_{n-1} b^{n-2}}{a_{0}}+\cdots+\frac{a_{1}}{a_{0}}\right) b=1
$$

So b has a multiplicative inverse. So B is a field.
Claim 6.0.16
Lifting, we find that Q is maximal in B if and only if P is maximal in A.
Given an extension $A \subseteq B$, in general we are interested in the question of whether a given prime $P \subseteq A$ is a contraction of a prime in B; i.e. is there a prime $Q \subseteq B$ such that $P=Q \cap A$. In this case we say Q lies over P.
Remark 6.0.17.

1. We saw in Proposition 4.2.35 that this has nothing much to do with primality of Q; in particular, we had that P is the contraction of a prime ideal of B if and only if P is the contraction of some ideal of B if and only if $P=P B \cap A$.
2. Such a Q may not exist for the extreme reason that $P B=B$. If $P B \neq B$, there will be always be a prime (indeed, a maximal) $Q \subseteq B$ such that $P B \subseteq Q$; but perhaps $P \varsubsetneqq Q \cap A$.

Theorem 6.0.18 (5.10). Suppose B is integral over A and $P \subseteq A$ is prime. Then there is a prime $Q \subseteq B$ such that $P=Q \cap A$.

Proof. Consider the commuting square:

where $B_{P}=S^{-1} B$ (with $S=A \backslash P$), and α and β are the localization maps. Then $B_{P} \neq 0$; so B_{P} has a maximal ideal $N \subseteq B_{P}$. So $Q=\beta^{-1}(N)$ is a prime ideal in B that does not meet S (by Proposition 4.2.31). So Q does not meet $A \backslash P$, and $Q \cap A \subseteq P$. (Note that we haven't used integrality so far. This result, however, is too weak to derive our conclusion; e.g. if $Q=(0)$.)

Now, by the commuting square, we have $Q \cap A=\alpha^{-1}\left(N \cap A_{P}\right)$. By Proposition 6.0.14, we get that B_{P} is integral over A_{P}; by Proposition 6.0.15, since $N \subseteq B_{P}$ is maximal, we get that $N \cap A_{P} \subseteq A_{P}$ is maximal. So $N \cap A_{P}=P \cdot A_{P}$, and $\alpha^{-1}\left(N \cap A_{P}\right)=P$. So $Q \cap A=P$, as desired. $\quad \square$ Theorem 6.0.18

Suppose now that $B \supseteq A$ an integral extension with a prime $P \subseteq A$ and a prime $Q \subseteq A$ such that $Q \cap A=P$. Suppose $P^{\prime} \subseteq A$ is a prime with $P^{\prime} \supseteq P$. Can we find prime $Q^{\prime} \subseteq B$ with $Q^{\prime} \cap A=P^{\prime}$ and $Q^{\prime} \supseteq Q$?

We can.
Proof. Work in $A / P \hookrightarrow B / Q$; note that this is an integral extension. Then P^{\prime} / P is prime in A; so, by Theorem 6.0.18, we get a prime $\bar{Q}^{\prime} \subseteq B / Q$ such that $\bar{Q}^{\prime} \cap A / P=P^{\prime} / P$. By the correspondence theorem, we have $\bar{Q}^{\prime}=Q^{\prime} / Q$ for some prime $Q^{\prime} \subseteq Q$ containing Q. We get the following diagram:

TODO 2. Relevance?

Then $Q^{\prime} \cap A=P^{\prime}$ since $\left(Q^{\prime} / Q\right) \cap A / P=P^{\prime} / P$.
Iterating, we get:
Theorem 6.0.19 (Going-up theorem). Suppose B is integral over A; suppose $P_{1} \subseteq P_{2} \subseteq \cdots \subseteq P_{n} \subseteq A$ are prime ideals and for some $m \leq n$ we have prime ideals $Q_{1} \subseteq \cdots \subseteq Q_{m}$ of B with $Q_{i} \cap A=P_{i}$ for $i \in\{1, \ldots, m\}$. Then there exist prime ideals $Q_{m+1} \subseteq \cdots \subseteq Q_{n}$ in B containing Q_{m} such that $Q_{j} \cap A=P_{j}$ for $j \in\{m+1, \ldots, n\}$.

Remark 6.0.20. Theorem 6.0 .18 is not true if B is simply an integral A-algebra; i.e. if $f: A \rightarrow B$ is a ring homomorphism that is not necessarily injective. Indeed, we don't necessarily have that $f(P)$ is prime in $f(A)$ if P is prime in A, so we can't apply Theorem 6.0 .18 to $f(A) \subseteq B$ to get the desired result. In particular, one notes that the primes that get mapped to a prime ideal in $f(A)$ are exactly those that contain the kernel. So we $d o$ have that every $P \subseteq A$ containing $\operatorname{ker}(f)$ is the pullback of a prime in Q.

We now turn to a geometric interpretation of Theorem 6.0.18. Suppose $f: A \rightarrow B$ is a (not necessarily integral) A-algebra. Define $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ by $Q \mapsto f^{-1}(Q)$.

Proposition 6.0.21. f^{*} is continuous.
Proof. It suffices to check that the preimage of a closed set is closed. Consider a closed set $V(I)$, where $I \subseteq A$ is an ideal; we wish to show that $\left(f^{*}\right)^{-1}(V(I))$ is closed. Let $J=I \cdot B$ be the ideal generated by $f(I)$ in B.
Claim 6.0.22. $f^{*}(V(I))=V(J)$.
Proof.
(\subseteq) Suppose $Q \in\left(f^{*}\right)^{-1}(V(I))$; then $f^{*}(Q)=f^{-1}(Q) \supseteq I$. So $Q \supseteq Q \cap f(A)=f\left(f^{-1}(A)\right) \supseteq f(I)$; so $Q \supseteq J$, and $Q \in V(J)$.
(\supseteq) Suppose $Q \in \operatorname{Spec}(B)$ has $Q \supseteq J \supseteq f(I)$. Then $f^{*}(Q)=f^{-1}(Q) \supseteq I$; so $f^{*}(Q) \in V(I)$, and $Q \in\left(f^{*}\right)^{-1}(V(I))$. \square Claim 6.0.22 Proposition 6.0.21

Proposition 6.0.23. If B is integral over A, then f^{*} is closed.
Proof. Suppose $J \subseteq B$ is an ideal; we show that $f^{*}(V(J))$ is closed in $\operatorname{Spec}(A)$. Let $I=f^{-1}(J)$; then I is an ideal in A.

Claim 6.0.24. $f^{*}(V(J))=V(I)$.
Proof.
(\subseteq) Suppose $P \in f^{*}(V(J))$; say $P=f^{*}(Q)=f^{-1}(Q)$ for $Q \in V(J)$. Then $Q \supseteq J$, so $P=f^{-1}(Q) \supseteq$ $f^{-1}(J)=I$, and $P \in V(I)$.
(\supseteq) Suppose $P \in V(I)$; then $P \supseteq I=f^{-1}(J) \supseteq \operatorname{ker}(f)$. We have $f: A \rightarrow f(A) \cong A / \operatorname{ker}(f)$; so $f(P)$ is prime in $f(A)$ by the correspondence theorem. But B is integral over $f(A)$; so, by Theorem 6.0 .18 , we get that $f(P)=Q \cap f(A)$ for some $Q \in \operatorname{Spec}(B)$. Then $f^{*}(Q)=f^{-1}(Q)=f^{-1}(Q \cap f(A))=f^{-1}(f(P))=P$ since $P \supseteq \operatorname{ker}(f)$.
Exercise 6.0.25. Since $Q \supseteq J$, we have $Q \in V(J)$.
This is actually false; see homework 5 .
So $P \in f^{*}(V(J))$. Claim 6.0.24
\square Proposition 6.0.23
Remark 6.0.26. If in addition we have that f is injective then f^{*} is surjective; this is precisely Theorem 6.0.18.

What of uniqueness in Theorem 6.0.18? i.e. given an integral extension B of A and a prime P of A, how many primes Q of B satisfy $Q \cap A=P$?

Proposition 6.0.27 (5.9). Suppose B is an integral extension of A; suppose Q, Q^{\prime} are prime ideals in B with $Q \subseteq Q^{\prime}$. If $Q \cap A=Q^{\prime} \cap A$ then $Q=Q^{\prime}$.

Proof. Let $P=Q \cap A=Q^{\prime} \cap A$. Consider two commuting diagrams:

and

where $B_{P}=S^{-1} B$ with $S=A \backslash P$.
Claim 6.0.28. $Q B_{P} \cap A_{P}=P A_{P}$ (always, not assuming integrality).
Proof. Consider the exact sequence of A-modules

$$
0 \rightarrow P \rightarrow A \xrightarrow{\pi \circ \iota} B / Q
$$

(This is exact because $\operatorname{ker}(\pi \circ \iota)=Q \cap A=P$.) Localizing, we find that

$$
0 \rightarrow S^{-1} P \rightarrow S^{-1} A \rightarrow S^{-1}(B / Q)
$$

is exact; i.e.

$$
0 \rightarrow P A_{P} \rightarrow A_{P} \rightarrow B_{P} / Q B_{P}
$$

is exact. So

$$
P A_{P}=\operatorname{ker}\left((\pi \circ \iota)_{P}\right)=\operatorname{ker}\left(\pi_{P} \circ \iota_{P}\right)=\operatorname{ker}\left(\pi_{P}\right) \cap A_{P}=Q B_{P} \cap A_{P}
$$

since ι_{P} is an embedding and since π_{P} is just the quotient map.
Since B is integral over A, Proposition 6.0.14 gives us that B_{P} is integral over A_{P}. Observe that $P A_{P}$ is maximal in A_{P}. Further note that $Q B_{P}$ is prime in B_{P} since there is by Proposition 4.2 .31 a bijective correspondence between primes in B_{P} and primes in B that don't meet S, and $Q \cap(A \backslash P)=\emptyset$ since $Q \cap A=P$. So Proposition 6.0.15 yields that $Q B_{P}$ is maximal in B_{P}. Similarly, we get that $Q^{\prime} B_{P}$ is maximal. But $Q \subseteq Q^{\prime}$, so $Q B_{P} \subseteq Q^{\prime} B_{P}$; so $Q B_{P}=Q^{\prime} B_{P}$. Since $Q \cap S=Q^{\prime} \cap S=\emptyset$, Proposition 4.2.31 yields that $Q=Q^{\prime}$.

> Proposition 6.0.27

Corollary 6.0.29. Suppose B is Noetherian and is an integral extension of A. Then every prime in A has finitely many primes in B lying above it.

Proof. Suppose $P \subseteq A$ is a prime ideal; suppose $Q \subseteq B$ is a prime ideal with $Q \cap A=P$.
Claim 6.0.30. Q is a minimal prime containing $P B$.
Proof. If $Q \supseteq Q^{\prime} \supseteq P B$ with Q^{\prime} prime, then

$$
P=Q \cap A \supseteq Q^{\prime} \cap A \supseteq P B \cap A \supseteq P
$$

So $Q \cap A=Q^{\prime} \cap A=P$, and by Proposition 6.0 .27 we get that $Q=Q^{\prime}$.
Claim 6.0.30

Since B is Noetherian, we know that $P B$ is decomposable. So the minimal prime ideals containing $P B$ are the minimal associated prime ideals. (Recall that the associated primes are the radicals of the primary ideals appearing in the primary decomposition of $P B$.) But there are only finitely many associated prime ideals of $P B$.
\square Corollary 6.0.29
Proposition 6.0.31. Suppose $f: A \rightarrow B$ is an integral A-algebra and B is Noetherian. Then $f^{*}: \operatorname{Spec}(B) \rightarrow$ $\operatorname{Spec}(A)$ is a finite-to-one map.

Proof. Suppose $P \in \operatorname{Spec}(A)$. If $P \nsupseteq \operatorname{ker}(f)$, then $P \notin \operatorname{im}\left(f^{*}\right)$. (Recall that if $P \in \operatorname{im}\left(f^{*}\right)$ then $P=f^{*}(Q)$, so $P=f^{-1}(Q)$, and $P \supseteq \operatorname{ker}(f)$.) So if $P \nsupseteq \operatorname{ker}(f)$ then $\left(f^{*}\right)^{-1}(P)=\emptyset$.

If on the other hand we have $P \supseteq \operatorname{ker}(f)$ then $f(P)$ is a prime ideal in $f(A)$; then

$$
\begin{aligned}
f^{*}(Q)=P & \Longleftrightarrow f^{-1}(Q)=P \\
& \Longleftrightarrow f^{-1}(Q \cap f(A))=P \\
& \Longleftrightarrow Q \cap f(A)=f(P) \text { (since both sides contain } \operatorname{ker}(f))
\end{aligned}
$$

Hence the points of $\left(f^{*}\right)^{-1}(P)$ are exactly the primes in B that lie above $f(P)$; by the previous corollary, we get that there are only finitely many such primes.

Proposition 6.0.31
Lemma 6.0.32 (Noether's normalization lemma). Suppose k is an infinite field and A is a finitely generated k-algebra. Then there exist $u_{1}, \ldots, u_{r} \in A$ algebraically independent over k (i.e. if $p \in k\left[x_{1}, \ldots, x_{r}\right]$ has $p\left(u_{1}, \ldots, u_{r}\right)=0$ then $p=0$) such that A is integral over $k\left[u_{1}, \ldots, u_{r}\right]$.

Note that $k\left[u_{1}, \ldots, u_{r}\right]$ is isomorphic to a polynomial ring over k as u_{1}, \ldots, u_{r} are algebraically independent; the map will be $k\left[x_{1}, \ldots, x_{r}\right] \rightarrow k\left[u_{1}, \ldots, u_{r}\right]$ given by $x_{i} \mapsto u_{i}$.

Proof. Let a_{1}, \ldots, a_{n} generate A as a k-algebra. If we have a_{1}, \ldots, a_{n} are algebraically independent, then we're done. Suppose then that $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is non-zero and satisfies $f\left(a_{1}, \ldots, a_{n}\right)=0$; let $d=\operatorname{deg}(f)$ be the total degree of f (i.e. with $\left.\operatorname{deg}\left(x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}\right)=r_{1}+\cdots+r_{n}\right)$. Let $f_{\ell}\left(x_{1}, \ldots, x_{n}\right)$ be the sum of the monomials in f of degree ℓ; then

$$
f=f_{0}+f_{1}+\cdots+f_{d}
$$

Claim 6.0.33. There exist $\lambda_{1}, \ldots, \lambda_{n-1} \in k$ such that $f_{d}\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right) \neq 0$.
Proof. Well, $f_{d}\left(x_{1}, \ldots, x_{n-1}, 1\right) \in k\left[x_{1}, \ldots, x_{n-1}\right]$ is non-zero since

$$
f_{d}=\sum_{r_{1}+\cdots+r_{n}=d} \gamma_{\left(r_{1}, \ldots, r_{n}\right)} x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}
$$

and if $\left(r_{1}, \ldots, r_{n}\right) \neq\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right)$, then $\left(r_{1}, \ldots, r_{n-1}\right) \neq\left(r_{1}^{\prime}, \ldots, r_{n-1}^{\prime}\right)$ since

$$
r_{n}=d-r_{1}-\cdots-r_{n-1}
$$

Exercise 6.0.34. If k is an infinite field and $P \in k\left[x_{1}, \ldots, x_{\ell}\right]$ is non-zero, then P cannot vanish on all of k^{ℓ}.
So there are $\lambda_{1}, \ldots, \lambda_{n-1} \in k$ such that $f_{d}\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right) \neq 0$.
\square Claim 6.0.33
For $i \in\{1, \ldots, n-1\}$, let $b_{i}=a_{i}-\lambda_{i} a_{n} \in A$; then $k\left[b_{1}, \ldots, b_{n-1}, a_{n}\right]=k\left[a_{1}, \ldots, a_{n}\right]=A$ since $a_{i}=b_{i}+\lambda_{i} a_{n}$. But

$$
\begin{aligned}
0 & =f\left(a_{1}, \ldots, a_{n}\right) \\
& =f\left(b_{1}+\lambda_{1} a_{n}, b_{2}+\lambda_{2} a_{n}, \ldots, b_{n-1}+\lambda_{n-1} a_{n}, a_{n}\right) \\
& =f_{d}\left(b_{1}+\lambda_{1} a_{n}, \ldots, b_{n-1}+\lambda_{n-1} a_{n}, a_{n}\right)+f_{d-1}(\cdots)+\cdots \\
& =f_{d}\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right) a_{n}^{d}+\left(\text { lower degree terms in } a_{n} \text { with coefficients in } k\left[b_{1}, \ldots, b_{n-1}\right]\right)
\end{aligned}
$$

(where the last equality is an exercise). By the claim we have $f_{d}\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1\right) \in k \backslash\{0\}$, so we may divide it out; hence a_{n} is integral over $k\left[b_{1}, \ldots, b_{n-1}\right]$. By an induction argument, we may assume $k\left[b_{1}, \ldots, b_{n-1}\right]$ is integral over some $k\left[u_{1}, \ldots, u_{r}\right]$ which are algebraically independent over k. So A is integral over $k\left[u_{1}, \ldots, u_{r}\right]$.

Lemma 6.0.32

From Noether's normalization lemma, we get that every affine scheme of finite type over a field k (i.e. $\operatorname{Spec}(A)$ where A is a finitely generated k-algebra) si a finite cover of some affine space (i.e. the spectrum of a polynomial ring). i.e. we get a surjective, continuous, closed, finite-to-one map $\operatorname{Spec}(A) \rightarrow$ $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{r}\right]\right)=\mathbb{A}_{k}^{r}$. Noether's normalization lemma gives us that $k\left[x_{1}, \ldots, x_{r}\right] \subseteq A$ is an integral extension.

Why is \mathbb{A}_{k}^{r} called "affine space"? Our intuition is that affine r-space over k is k^{r}. We will see that when k is algebraically closed, we have that the closed points of \mathbb{A}_{k}^{r} form k^{r}.

Proposition 6.0.35 (7.10). Suppose k is a field, A is a finitely generated k-algebra, and $m \subseteq A$ is a maximal ideal. Then A / m is a finite algebraic field extension of k.

Proof. We first note that A / m is an extension of k by π the composition $k \hookrightarrow A \rightarrow A / m$; then $\operatorname{ker}(\pi)=$ $m \cap k=(0)$ since $k \backslash\{0\}$ consists entirely of units, and $m \varsubsetneqq A$. So $k \subseteq A / m$, and A / m is a field. Also A / m is a finitely generated k-algebra: if $A=k\left[a_{1}, \ldots, a_{n}\right]$ for some generators $a_{1}, \ldots, a_{n} \in A$, then $A / m=k\left[\overline{a_{1}}, \ldots, \overline{a_{m}}\right]$, where - denotes the image in A / m. So, by Noether's normalization lemma applied to A / m, we have algebraically independent $u_{1}, \ldots, u_{r} \in A / m$ (where $r \geq 0$) such that $k\left[u_{1}, \ldots, u_{r}\right] \subseteq A / m$ is an integral extension. By Proposition 6.0.15, since $A m$ is a field and integral over $k\left[u_{1}, \ldots, u_{r}\right]$, we get that maximality of (0) in A / m yields maximality of $(0)=(0) \cap k\left[u_{1}, \ldots, u_{r}\right]$ in $k\left[u_{1}, \ldots, u_{r}\right]$, and $k\left[u_{1}, \ldots, u_{r}\right]$ is a field. But u_{1} is not invertible in $k\left[u_{1}, \ldots, u_{r}\right]$; so $r=0$, and $k \subseteq A / m$ is integral, and hence algebraic. It is also a finite extension, since it is finitely generated as a k-algebra. (Recall by Proposition 6.0.5, Corollary 6.0.7 that finitely generated and integral extensions are finite.)

Proposition 6.0.35
Corollary 6.0.36 (Weak Nullstellensatz). Suppose k is an algebraically closed field and $k\left[x_{1}, \ldots, x_{r}\right]$ is a polynomial ring. Then the maximal ideals are of the form $\left(x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{r}-a_{r}\right)$ for some $a_{1}, \ldots, a_{r} \in k$.

Proof. First suppose $a_{1}, \ldots, a_{r} \in k$; we show $\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)$ is a maximal ideal. Consider the k algebra homomorphism $\pi: k\left[x_{1}, \ldots, x_{r}\right] \rightarrow k$ given by $x_{i} \mapsto a_{i}$ for $i \in\{1, \ldots, r\}$. Then $1 \notin \operatorname{ker}(\pi)$ and $\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right) \subseteq \operatorname{ker}(\pi)$; so $1 \notin\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)$, and $\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)$ is proper. Using : to denote image in $R=k\left[x_{1}, \ldots, x_{r}\right] /\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)$, we get that

$$
\begin{gathered}
\overline{x_{1}}=\overline{a_{1}} \\
\vdots \\
\overline{x_{r}}=\overline{a_{r}}
\end{gathered}
$$

So $R=k\left[\overline{x_{1}}, \ldots, \overline{x_{r}}\right]=k\left[a_{1}, \ldots, a_{r}\right]=k$ since $a_{1}, \ldots, a_{r} \in k$. So $k\left[x_{1}, \ldots, x_{r}\right] /\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)$ is a field, and $\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)$ is maximal. Note that this direction did not require algebraic closure.

Now, suppose $m \subseteq k\left[x_{1}, \ldots, x_{r}\right]$ is maximal. Then $k \subseteq k\left[x_{1}, \ldots, x_{r}\right] / m$ is a finite algebraic extension by Proposition 6.0.35. Since k is algebraically closed, we get that $k=k\left[x_{1}, \ldots, x_{r}\right] / m$. Consider the k algebra homomorphism $\pi: k\left[x_{1}, \ldots, x_{r}\right] \rightarrow k\left[x_{1}, \ldots, x_{r}\right] / m=k$. Let $a_{i}=\pi\left(x_{i}\right)$ for $i \in\{1, \ldots, r\}$; then $a_{1}, \ldots, a_{r} \in k$. Then

$$
\pi\left(x_{i}-a_{i}\right)=\pi\left(x_{i}\right)-\pi\left(a_{i}\right)=\pi\left(x_{i}\right)-a_{i}=a_{i}-a_{i}=0
$$

So $\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right) \subseteq \operatorname{ker}(\pi)=m$. But $\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)$ is maximal by the previous part of the proof. So $\left(x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right)=m$.
\square Corollary 6.0.36
Example 6.0.37. $\left(x^{2}+1\right)$ is maximal in $\mathbb{Q}[x]$ but is not of the above form.
We now give a geometric interpretation of the above.
Definition 6.0.38. A point p in a topological space T is closed if $\{p\}$ is a closed set.
Remark 6.0.39. In $\operatorname{Spec}(A)$, the closed points are precisely the maximal ideals.
Proof. Suppose $m \subseteq A$ is maximal. Then $\{m\}=V(m)$. Conversely, if $P \in \operatorname{Spec}(A)$ is closed, then $P=V(I)$ for some ideal I; so if $Q \supseteq P$ is prime, then $Q \in V(I)=\{P\}$, and $Q=P$. So P is maximal. Remark 6.0.39

Corollary 6.0.40. Suppose k is an algebraically closed field. Then there is a bijective correspondence between k^{n} and the set of closed points in $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)=\mathbb{A}_{k}^{n}$

Proof. Given $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$, we get a maximal ideal $F\left(a_{1}, \ldots, a_{n}\right)=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$, which is then a closed point. By the weak Nullstellensatz we get that F is surjective. To see that F is injective, note that if $F\left(a_{1}, \ldots, a_{n}\right)=F\left(b_{1}, \ldots, b_{n}\right)$, then $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)=m=\left(x_{1}-b_{1}, \ldots, x_{n}-b_{n}\right)$. Then $\overline{x_{i}}=\overline{a_{i}}=a_{i}$ and $\overline{x_{i}}=\overline{b_{i}}=b_{i}$ (since k embeds into $k\left[x_{1}, \ldots, x_{n}\right] / m$); so $a_{i}=b_{i}$, and F is a bijection.

Corollary 6.0.40
Another formulation of the weak Nullstellensatz, which justifies the name, is the following:
Corollary 6.0.41. Suppose k is an algebraically closed field; suppose $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. Let $Z(I)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n}: f\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for all $\left.f \in I\right\}$. Then $Z(I) \neq \emptyset$ if and only if I is proper.

Proof.
(\Longrightarrow) It is easily seen that if $1 \in I$ then $Z(I)=\emptyset$.
(\Longleftarrow) Suppose I is proper; then there is a maximal ideal m containing I. Then by the weak Nullstellensatz, we get that $m=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in k$. But then $\left(a_{1}, \ldots, a_{n}\right) \in Z(m)$ since if $g=\left(x_{1}-a_{1}\right) f_{1}+\cdots+\left(x_{n}-a_{n}\right) f_{n}$ then

$$
g\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}-a_{1}\right) f_{1}\left(a_{1}, \ldots, a_{n}\right)+\cdots+\left(a_{n}-a_{n}\right) f_{n}\left(a_{1}, \ldots, a_{n}\right)=0
$$

But $I \subseteq m$; so $Z(m) \subseteq Z(I)$, and $\left(a_{1}, \ldots, a_{n}\right) \in Z(I)$. So $Z(I) \neq \emptyset$.
Corollary 6.0.41
Definition 6.0.42. Suppose k is a field. An algebraic subset of k^{n} is a subset of the form $Z(I)$ for some ideal I of $k\left[x_{1}, \ldots, x_{n}\right]$.

Remark 6.0.43.

1. One can instead consider $Z(X)$ for any subset $X \subseteq k\left[x_{1}, \ldots, x_{n}\right]$; however, it is easily seen that $Z(X)=Z(I)$ where $I=(X)$. In particular, by Hilbert's basis theorem, we get that any algebraic set is of the form $Z\left(\left\{f_{1}, \ldots, f_{\ell}\right\}\right)$ for some f_{1}, \ldots, f_{ℓ}; we simply take f_{1}, \ldots, f_{ℓ} to be the generators of $I=(X)$.
2. The algebraic subsets of k^{n} are the closed sets of a topology on k^{n}, called the Zariski topology.
3. We compare $V(I)$ and $Z(I)$. We have $V(I)$ is a Zariski-closed subset of $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$; this approach is due to Grothendieck. On the other hand, we have $Z(I)$ is a Zariski-closed subset of k^{n}; this is the classical approach.
We may regard $k^{n} \subseteq \operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$; in fact, the Zariski topology on k^{n} is the induced topology from the Zariski topology on $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$.

Note that $I \mapsto Z(I)$ is an inclusion-reversing map from ideals in the polynomial ring to algebraic sets. There is a natural map in the other direction: if $Z \subseteq k^{n}$ is an algebraic set, we define

$$
I(Z)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for } \operatorname{all}\left(a_{1}, \ldots, a_{n}\right) \in Z\right\}
$$

It is easily seen that $I(Z)$ is an ideal of $k\left[x_{1}, \ldots, x_{n}\right]$. Are these maps mutually inverse? In particular, is $I(Z(I))=I$ for all ideals I of $k\left[x_{1}, \ldots, x_{n}\right]$? Clearly we have $I \subseteq I(Z(I))$. Does it hold that $I(Z(I)) \subseteq I$ for all ideals I of $k\left[x_{1}, \ldots, x_{n}\right]$?

It does not. Suppose $f \in k\left[x_{1}, \ldots, x_{n}\right]$ has $f^{\ell} \in I$ for some $\ell>0$. Then for each $\left(a_{1}, \ldots, a_{n}\right) \in Z(I)$, we have

$$
0=f^{\ell}\left(a_{1}, \ldots, a_{n}\right)=\left(f\left(a_{1}, \ldots, a_{\ell}\right)\right)^{\ell}
$$

But $f\left(a_{1}, \ldots, a_{\ell}\right) \in k$; so $f\left(a_{1}, \ldots, a_{\ell}\right)=0$ for all $\left(a_{1}, \ldots, a_{\ell}\right) \in Z(I)$. So $f \in I$. In particular, we get

$$
I \subseteq r(I) \subseteq I(Z(I))
$$

So for I not radical, we get $I \varsubsetneqq r(I) \subseteq I(Z(I))$, and $I \neq I(Z(I))$.
The full Nullstellensatz says that this is the only obstacle.

Theorem 6.0.44 (Hilbert's Nullstellensatz). Suppose k is an algebraically closed field; suppose $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. Then $I(V(I))=r(I)$.

Remark 6.0.45. We can recover the corollary to weak Nullstellensatz from Hilbert's Nullstellensatz since if I is a proper ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ then so is $r(I)$; hence $I(Z(I))=r(I) \neq k\left[x_{1}, \ldots, x_{n}\right]$, and thus $Z(I) \neq \emptyset$. (Vacuously we get that $I(\emptyset)=k\left[x_{1}, \ldots, x_{n}\right]$.)

Hence we get the classical algebro-geometric correspondence mapping an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ to $Z(I)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n}: f\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for all $\left.f \in\right\}$.
Remark 6.0.46. $Z(I)=Z(r(I))$. (Recall that we had a similar fact about $V(I) \subseteq \operatorname{Spec}(A)$.)
Proof.
(\subseteq) Last time we saw that $r(I) \subseteq I(Z(I))$; hence $Z(I) \subseteq Z(I(Z(I))) \subseteq Z(r(I))$.
(\supseteq) Since $I \subseteq r(I)$, we get that $Z(r(I)) \subseteq Z(I)$.
Remark 6.0.46
Proof of Theorem 6.0.44. We just saw that $r(I) \subseteq I(Z(r(I)))=I(Z(I))$. For the other direction, given $f \notin r(I)$, we wish to find a point in $Z(I)$ on which f does not vanish. Since $f \notin r(I)$, we get a prime ideal $P \supseteq I$ with $f \notin P$; let \bar{f} denote the image of f in $A=k\left[x_{1}, \ldots, x_{n}\right] / P$. Then since $f \notin P$ we get that $\bar{f} \neq 0$, and $A_{\bar{f}} \neq 0$; since A is an integral domain (as P is prime), we get that $A \subseteq A_{\bar{f}}$. (Recall $A_{\bar{f}}=S^{-1} A$ where $\left.S=\left\{1, \bar{f},(\bar{f})^{2}, \ldots\right\}.\right)$

Note that $\frac{1}{\bar{f}} \in A_{\bar{f}}$; so $A\left[\frac{1}{\bar{f}}\right] \subseteq A_{\bar{f}}$. But every element of $A_{\bar{f}}$ is of the form $\frac{a}{(\bar{f})^{\ell}}$ for some $a \in A$ and $\ell \geq 0$. So $A\left[\frac{1}{\bar{f}}\right]=A_{\bar{f}}$, and $A_{\bar{f}}=k\left[\overline{x_{1}}, \ldots, \overline{x_{n}}, \frac{1}{\bar{f}}\right]$ is a finitely generated k-algebra.

Now, let $m \subseteq A_{\bar{f}}$ be a maximal ideal; then by Proposition 6.0 .35 we get that $A_{\bar{f}} / m$ is a finite algebraic extension of k. But k is algebraically closed; so $A_{\bar{f}} / m=k$. Let $\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k$ be the corresponding k-algebra homomorphism. Let $a_{i}=\pi\left(x_{i}\right)$ for $i \in\{1, \ldots, n\}$; then $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$.

Note that for $g \in I$ we have $g\left(a_{1}, \ldots, a_{n}\right)=g\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{n}\right)\right)=\pi\left(g\left(x_{1}, \ldots, x_{n}\right)\right)=0$ since $g \in I \subseteq P$ and π factors through $k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right] / P$. So $\left(a_{1}, \ldots, a_{n}\right) \in Z(I)$. We also get that

$$
f\left(a_{1}, \ldots, a_{n}\right)=f\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{n}\right)\right)=\pi\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\pi(f) \neq 0
$$

Since \bar{f} is invertible in $A_{\bar{f}}$, we have that $\bar{f} \notin m$; so $\pi(f)=\bar{f}+m \neq 0$ in $A_{\bar{f}} / m$. So f does not vanish on $Z(I)$. So $I(Z(I)) \subseteq r(I)$, and $I(Z(I))=r(I)$. Theorem 6.0.44

Corollary 6.0.47. Suppose k is an algebraically closed field. Then there is an inclusion-reversing bijective correspondence between radical ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ and algebraic subsets of k^{n} given by I and Z.

Proof. Note that $I(Z)$ is radical: if f^{ℓ} vanishes on Z then so does f. So the codomains are correct. It is clear that the maps are inclusion-reversing. It remains to show that they are mutually inverse. By Hilbert's Nullstellensatz, we get that $I(Z(I))=r(I)=I$ since I is radical. For the other direction, note that if $Z \subseteq k^{n}$ is algebraic, then $Z=Z(J)$ for some ideal $J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$; then by Hilbert's Nullstellensatz

$$
Z(I(Z))=Z(I(Z(J)))=Z(r(J))=Z(J)=Z
$$

So Z and I are mutually inverse.
\square Corollary 6.0.47

7 Tidbits

7.1 Integrally closed domains (Chapter 5)

Definition 7.1.1. An integral domain A is integrally closed if it is integrally closed in $\operatorname{Frac}(A)$; i.e. if

$$
\{r \in \operatorname{Frac}(A): r \text { is integral over } A\}=A
$$

Example 7.1.2. As previously noted, \mathbb{Z} is integrally closed in \mathbb{Q}; so \mathbb{Z} is an integrally closed domain. Warning: \mathbb{Z} is not integrally closed in, for example, \mathbb{C}.

Example 7.1.3. As remarked in the homework, the proof that \mathbb{Z} is integrally closed in \mathbb{Q} shows that any UFD is integrally closed. In particular, $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $k\left[x_{1}, \ldots, x_{n}\right]$ for k a field are integrally closed.

Proposition 7.1.4 (5.12). Localization preserves integral closures. i.e. suppose $A \subseteq B$ are rings and C is the integral closure of A in B; suppose $S \subseteq A$ is multiplicatively closed. Then $S^{-1} C$ is the integral closure of $S^{-1} A$ in $S^{-1} B$.

Proof. We saw in Proposition 6.0.14 that localization preserves integrality; hence since C is integral over A we get that $S^{-1} C$ is integral over $S^{-1} A$. Suppose now that $\frac{b}{s} \in S^{-1} B$ is integral over $S^{-1} A$. Then we have $n>0, a_{0}, \ldots, a_{n-1} \in A$, and $s_{0}, \ldots, s_{n-1} \in S$ such that

$$
\left(\frac{b}{s}\right)^{n}+\frac{a_{n-1}}{s_{n-1}}\left(\frac{b}{s}\right)^{n-1}+\cdots+\frac{a_{1}}{s_{1}} \frac{b}{s}+\frac{a_{0}}{s_{0}}=0
$$

Let $t=s_{0} \cdots s_{n-1}$; multiplying both sides by $(s t)^{n}$, we find that

$$
(b t)^{n}+\frac{a_{n-1} s t}{s_{n-1}}(b t)^{n-1}+\cdots+\frac{a_{1} s^{n-1} t^{n-1}}{s_{1}}(b t)+\frac{a_{0} s^{n} t^{n}}{s_{0}}=0
$$

But each $\frac{a_{i} s^{n-i} t^{n-i}}{s_{i}} \in A$ since $s_{i} \mid t$; so $b t \in B$ is integral over A. So $b t \in C$. So in $S^{-1} B$, we get that $\frac{b}{s}=\frac{1}{s t}(b t) \in S^{-1} C$ (since $t \in S$).

So $S^{-1} C$ is the integral closure of $S^{-1} A$ in $S^{-1} B$.
Proposition 7.1.4
Proposition 7.1.5 (5.13). Being integrally closed is a local property; i.e. if A is an integral domain, then the following are equivalent:

1. A is integrally closed.
2. A_{P} is integrally closed for all primes $P \subseteq A$.
3. A_{m} is integrally closed for all maximal ideals $m \subseteq A$.

Proof.
$\underline{\mathbf{(1)}} \Longrightarrow \mathbf{(2)}$ In general if C is the integral closure of A in $k=\operatorname{Frac}(A)$ and $P \subseteq A$ is prime then $C_{P}=S^{-1} C$ (with $S=A \backslash P$); hence by Proposition 7.1.4 we get that C_{P} is the integral closure of A_{P} in $k_{P}=$ $k=\operatorname{Frac}\left(A_{P}\right)\left(\right.$ since $\left.A \subseteq A_{P} \subseteq k=\operatorname{Frac}(A)\right)$. By hypothesis we get that $A=C$, and thus $A_{P}=C_{P}$; hence A_{P} is integrally closed in $\operatorname{Frac}\left(A_{P}\right)=k$. So A_{P} is integrally closed.
$(2) \Longrightarrow(3)$ Clear.
Proposition 7.1.5
$\mathbf{(3)} \Longrightarrow \mathbf{(1)}$ Let $K=\operatorname{Frac}(A)$; let C be the integral closure of A in K. Suppose $m \subseteq A$ is maximal; then $A_{m} \subseteq C_{m} \subseteq K_{m}=K$. By Proposition 7.1.4, we get that C_{m} is the integral closure of A_{m} in K. But A_{m} is integrally closed by hypothesis; so $A_{m}=C_{m}$. So for all maximal ideals m of A we have $\iota_{m}: A_{m} \rightarrow C_{m}$ is surjective. But by Proposition 4.2 .23 we have that surjectivity is local; so $\iota: A \rightarrow C$ is surjective, and $A=C$ is integrally closed.

One important source of integrally closed domains is DVRs
Definition 7.1.6. Suppose k is a field. A discrete valuation on k is a surjective $v: k^{*} \rightarrow \mathbb{Z}$ satisfying

1. v is a grape homomorphism $\left(k^{*}, \cdot\right) \rightarrow(\mathbb{Z},+)$.
2. $v(x+y) \geq \min \{v(x), v(y)\}$ for all $x, y \in k^{*}$ with $x+y \neq 0$.
(If we set $v(0)=\infty$ with the usual conventions for arithmetic on the extended reals, then the above two properties hold on all of k.) The valuation ring is $\mathcal{O}_{v}=\{a \in k: v(a) \geq 0\}$; the maximal ideal is $m_{v}=\{a \in k: v(a)>0\}$.

Example 7.1.7. Let $k=\mathbb{Q}$; suppose p is prime. Consider $v: \mathbb{Q}^{*} \rightarrow \mathbb{Z}$ given by $p^{\ell} \frac{n}{m} \mapsto \ell$ (where $n, m \notin p \mathbb{Z}$); this is the p-adic valuation. Then

$$
\mathcal{O}_{v}=\left\{\frac{n}{m}: p \nmid m\right\}=\mathbb{Z}_{(p)}
$$

and

$$
m_{v}=\left\{\frac{n}{m}: p \nmid m, p \mid n\right\}=p \mathbb{Z}_{(p)}
$$

Example 7.1.8. Suppose k is a field; let $K=k(x)=\operatorname{Frac}(k[x])$. Fix an irreducible $f \in k[x]$; we then define $v: k(x)^{*} \rightarrow \mathbb{Z}$ by $f^{\ell} \frac{g}{h} \mapsto \ell$ as above. This is the f-adic valuation. We then get $\mathcal{O}_{v}=k[x]_{(f)}$ and $m_{v}=f k[x]_{(f)}$.

Proposition 7.1.9. Suppose $v: K^{*} \rightarrow \mathbb{Z}$ is a discrete valuation.

1. If $x \in K^{*}$ then either $x \in \mathcal{O}_{v}$ or $x^{-1} \in \mathcal{O}_{v}$.
2. \mathcal{O}_{v} is a local ring and m_{v} is its maximal ideal.
3. m_{v} is principal.
4. Every non-zero ideal of \mathcal{O}_{v} is of the form m_{v}^{k} for some $k \geq 0$. In particular, we get that \mathcal{O}_{v} is a PID.
5. \mathcal{O}_{v} is integrally closed.

Proof.

1. Note that

$$
x \in \mathcal{O}_{v} \Longleftrightarrow v(x) \geq 0 \Longleftrightarrow v\left(x^{-1}\right)=-v(x) \leq 0 \Longleftrightarrow x^{-1} \notin \mathcal{O}_{v}
$$

2. To see that \mathcal{O}_{v} is a ring, one notes that for $x, y \in \mathcal{O}_{v}$ we have

$$
\begin{aligned}
v(x+y) & \geq \min \{v(x), v(y)\} \\
& \geq 0 \\
v(x y) & =v(x)+v(y) \\
& \geq 0 \\
v(1) & =0 \\
& \geq 0 \\
v(-1) & =0 \\
& \leq 0
\end{aligned}
$$

A similar proof shows that m_{v} is an ideal. To check that m_{v} is maximal, one simply checks that \mathcal{O}_{v} / m_{v} is a field.
3. Since $v: K^{*} \rightarrow \mathbb{Z}$ is surjective, there is $x \in K^{*}$ such that $v(x)=1$. Suppose now that $y \in m_{v}$; then $\frac{y}{x} \in K$, and $v\left(\frac{y}{x}\right)=v(y)-v(x)=v(y)-1 \geq 0$ since $v(y)>0$. So $y=\frac{y}{x} \cdot x$, and $m_{v}=(x)$.
4. For $k \geq 0$ we let $m_{k}=\left\{y \in \mathcal{O}_{v}: v(y) \geq k\right\}$.

Claim 7.1.10. The only non-zero ideals of \mathcal{O}_{v} are the m_{k}.
Proof. Suppose I is a non-zero ideal of \mathcal{O}_{v}. Let $k \geq 0$ be minimal such that there is $a \in I$ with $v(a)=k$; then $a \neq 0$. By minimality of k, we have $I \subseteq m_{k}$. Conversely, suppose $y \in m_{k}$. Then $\frac{y}{a} \in K$, and $v\left(\frac{y}{a}\right)=v(y)-k \geq 0$; so $\frac{y}{a} \in \mathcal{O}_{v}$, and $y=\frac{y}{a} a \in I$.

By the previous part, we get that $m_{v}=(x)$ where $v(x)=1$.
Claim 7.1.11. $m_{k}=m_{v}^{k}=\left(x^{k}\right)$.

Proof.
(\subseteq) Suppose $y \in m_{k}$; then $\frac{y}{x^{n}} \in K$ has $v\left(\frac{y}{x^{n}}\right)=v(y)-k \geq 0$. So $\frac{y}{x^{k}} \in \mathcal{O}_{v}$, and $y \in\left(x^{k}\right)$.
(\supseteq) Clear since $v\left(x^{k}\right)=k v(x)=k$.
The two claims yield the desired result.
5. Well, \mathcal{O}_{v} is an integral domain as a subring of a field. By Item 1 we get that $\operatorname{Frac}\left(\mathcal{O}_{v}\right)=K$; it then suffices to show that \mathcal{O}_{v} is integrally closed in K. Suppose $b \in K$ is integral over \mathcal{O}_{v}; say

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0
$$

for some $a_{n-1}, \ldots, a_{0} \in \mathcal{O}_{v}$. If we had $b \notin \mathcal{O}_{v}$, then $b^{-1} \in \mathcal{O}_{v}$; so, multiplying by b^{1-n}, we get that

$$
b+\underbrace{a_{n-1}+a_{n-2} b^{-1}+\cdots+a_{0} b^{1-n}}_{\in \mathcal{O}_{v}}=0
$$

So $b \in \mathcal{O}_{v}$, a contradiction. So $b \in \mathcal{O}_{v}$.
Proposition 7.1.9
Lemma 7.1.12 (Chapter 9). Suppose A is a local Noetherian integral domain in which every non-zero ideal is a power of the maximal ideal. Then A is a DVR or a field.
Proof. Let $m \subseteq A$ be the maximal ideal; suppose A is not a field.
Claim 7.1.13. $m^{2} \neq m$.
Proof. Suppose for contradiction that $m \cdot m=m$. But $m=J(A)$, and since A is Noetherian we have that m is finitely generated; so, by Nakayama's lemma, we get that $m=0$, contradicting our assumption that A is not a field.

Claim 7.1.13
We may thus let $x \in m \backslash m^{2}$. Then by hypothesis we have $(x)=m^{k}$ for some $k \geq 0$. But if $k \geq 2$ then $m^{k} \subseteq m^{2}$; thus, since $x \notin m^{2}$, we get that $(x)=m$. So each $m^{k}=\left(x^{k}\right)$. Define $v: A \backslash\{0\} \rightarrow \mathbb{Z}$ by sending a to the unique k such that $(a)=\left(x^{k}\right)=m^{k}$; we then extend v to $\operatorname{Frac}(A)^{*}$ by setting

$$
v\left(\frac{a}{b}\right) \mapsto v(a)-v(b)
$$

One checks that v is a discrete valuation with $A=\mathcal{O}_{v}$. So A is a discrete valuation ring.
Lemma 7.1.12
In the study of Noetherian integral domains, the simplest case we come across are those of dimension 0: Noetherian integral domains A for which there do not exist prime ideals $P \varsubsetneqq Q$. Since (0) is prime, this is equivalent to A being a field.

The next case are those of dimension 1: Noetherian integral domains A such that there does not exist prime ideals $P_{0} \varsubsetneqq P_{1} \varsubsetneqq P_{2}$. Since (0) is prime, this is equivalent to requiring that every non-zero prime ideal is maximal. We focus on this case.

Lemma 7.1.14. Suppose $A \subseteq B$ are integral domains. Suppose A is of dimension 1 and B is integral over A. Then B is of dimension 1 .

Proof. A is not a field; so, by Proposition 6.0.15 we get that B is not a field. Suppose $Q \subseteq B$ is a prime ideal.

Case 1. Suppose $Q \cap A=0$. Then (0$) \subseteq Q$ are prime ideals in B, and both (0) and Q lie above (0) in A. So Proposition 6.0.27 yields that $(0)=Q$.

Case 2. Suppose $Q \cap A=P \neq(0)$. Since A is of dimension 1, we get that P is maximal; so, by Proposition 6.0.15, we get that Q is maximal.

So every non-zero prime ideal is maximal; so B is of dimension 1.
Lemma 7.1.14
Example 7.1.15 (Plane curves). Suppose k is a field; suppose $f \in k[x, y]$ is non-zero and irreducible. Then $k[x, y] /(f)$ is a Noetherian integral domain of dimension 1.

Proof. Let $A=k[x, y] /(f)$; then A is a finitely-generated k-algebra, and is thus Noetherian, by Hilbert's basis theorem. Since (f) is prime, we get that A is an integral domain. Let $K=\operatorname{Frac}(A)=k(\bar{x}, \bar{y})$ where $\bar{x}=x+(f) \in A$ and $\bar{y}=y+(f) \in A$. Since $f(\bar{x}, \bar{y})=\overline{f(x, y)}=0$ in A, we have that $\{\bar{x}, \bar{y}\}$ is algebraically dependent; so $\operatorname{trdeg}(K / k) \leq 1$. One checks then that $\operatorname{trdeg}(K / k)=1$. By Noether's normalization lemma, we get that A is integral over $k\left[a_{1}, \ldots, a_{n}\right]$ where $a_{1}, \ldots, a_{n} \in A$ are algebraically independent over k; by the above, we get that $n=1$, and A is integral over a polynomial ring in one variable. But such rings are PIDs, and are thus of dimension 1 ; hence, by Lemma 7.1.14, we get that A is of dimension 1 .

Example 7.1.16 (Rings of integers). Suppose K is a finite algebraic extension of \mathbb{Q}. (Such fields are called number fields.) Let A be the integral closure of \mathbb{Z} in K; this is called the ring of integers in K. Then A is a Noetherian integral domain of dimension 1.

Proof. That A is of dimension 1 follows by Lemma 7.1.14; that A is an integral follows as it is a subring of a field. To see that A is Noetherian needs work; this is 5.17 in the book.

Theorem 7.1.17 (9.3). Suppose A is a Noetherian integral domain of dimension 1. Then the following are equivalent:

1. A is integrally closed.
2. For every non-zero $P \in \operatorname{Spec}(A)$ we have A_{P} is a $D V R$.
3. Every primary ideal of A is a power of a prime ideal.

Proof.

$\mathbf{(2)} \Longrightarrow \mathbf{(1)}$ DVRs are integrally closed; so every localization at a non-zero prime is integrally closed. But being integrally closed is a local property; so A is integrally closed.
(Note that this direction only required that A be an integral domain.)
$\mathbf{(2)} \Longrightarrow \mathbf{(3)}$ Suppose $Q \subseteq A$ is P-primary, so $P=r(Q)$ is prime in A. We will show that Q is a power of P. If $Q=(0)$, we're done; assume then that $Q \neq 0$. So $P \neq 0$; so, since A is of dimension 1 , we get that P is maximal. In the localization, we have $Q A_{P} \subseteq P A_{P}$. But A_{P} is a DVR; so every ideal is a power of $P A_{P}$ (the maximal ideal). So $Q A_{P}=\left(P A_{P}\right)^{k}=P^{k} A_{P}$. (One checks this last equality; it essentially says that localization is compatible with taking powers of primes.) Note that in A, both Q and P^{k} are primary ideals in P (by hypothesis and since P is maximal, respectively). By question 4 on homework 4, we have that primary ideals in A_{P} correspond bijectively to primary ideals of A contained in P. So $Q A_{P}=P^{k} A_{P}$ implies that $Q=P^{k}$.
$\underline{(3) \Longrightarrow(2)}$ Suppose $P \subseteq A$ is a non-zero prime. Note that since A is of dimension 1 we get that A_{P} is as well; so $P A_{P}$ is the only non-zero prime ideal. Suppose now that I is a proper, non-zero ideal of A_{P}; then $r(I)$ is a non-zero prime, and thus $r(I)=P A_{P}$. So, by Proposition 5.0.16, we get that A_{P}; by question 4 on homework 4, we get that $I \cap A$ is primary in A. So, since $I \cap A \subseteq P$, the hypothesis and dimension 1 yield that $I \cap A=P^{k}$ for some $k>0$. So $I=P^{k} A_{P}=\left(P A_{P}\right)^{k}$.
So every non-zero ideal of A_{P} is a power of the maximal ideal. By Lemma 7.1.12, we get that A_{P} is a DVR.
$\underline{(1) \Longrightarrow(2)}$ Suppose $P \subseteq A$ is a non-zero prime ideal; we show that A_{P} is a DVR. Let $R=A_{P}$; let $m=P A_{P}$. Since A is integrally closed, we get that R is as well. But R is of dimension 1 ; so m is the only non-zero prime ideal of R. Suppose $a \in m$ is non-zero; then

$$
r((a))=\bigcap V(a)=m
$$

By Noetherianity and Proposition 5.1.16, we get that $m^{k} \subseteq(a)$ for some $k \geq 0$; choose a least such k, so $m^{k} \subseteq(a)$ but $m^{k-1} \nsubseteq(a)$. Suppose $b \in m^{k-1} \backslash(a)$; consider

$$
\alpha=\frac{b}{a} \in K=\operatorname{Frac}(R)
$$

Note that $\alpha m \subseteq R$: indeed, if $x \in m$ then $\alpha x=\frac{b x}{a}$ with $b \in m^{k-1}$; so $b x \in m^{k} \subseteq(a)$, so $a \mid b x$ in R, and $\frac{b x}{a} \in R$. We further note that αm is an ideal in R.

Claim 7.1.18. $\alpha m=R$.

Proof. If not, we would have $\alpha m \subseteq m$. Consider $\varphi: m \rightarrow m$ given by $x \mapsto \alpha x$. Then since m is a finitely-generated R-module (by Noetherianity) and φ is R-linear, generalized Cayley-Hamilton (i.e. linear algebra; see proof of Proposition 6.0.5) yields that α is integral over R. But R is integrally closed and $\alpha \in \operatorname{Frac}(R)=K$; so $\alpha \in R$. So $a \mid b$ in R, contradicting our assumption that $b \notin(a)$. Claim 7.1.18

Claim 7.1.19. m is principal.
Proof. By the previous claim, we get that $1 \in \alpha m=\frac{b}{a} m$; so $\alpha^{-1}=\frac{a}{b} \in m \subseteq R$. So ($\frac{a}{b}$) $\subseteq m$. Conversely, if $x \in m$ then

$$
x=\alpha \alpha^{-1} x=\frac{a}{b} \underbrace{\alpha x}_{\in \alpha m \subseteq R} \in\left(\frac{a}{b}\right)
$$

So $m=\left(\frac{a}{b}\right)$. Claim 7.1.19

Claim 7.1.20. Every non-zero ideal of R is a power of m; hence R is a $D V R$.
Proof. Suppose I is a non-zero ideal of R. Suppose I is proper; then $I \subseteq m$, and $r(I)=m$ since R is of dimension 1. By Noetherianity we get that $m^{k} \subseteq I$ for some k. If $I \subseteq m^{k}$, then $I=m^{k}$, and we're done. Suppose then that $I \nsubseteq m^{k}$; choose a least ℓ such that $I \nsubseteq m^{\ell}$. By the previous claim we may write $m=(x)$. Then $I \subseteq\left(x^{\ell-1}\right)$ but $I \nsubseteq\left(x^{\ell}\right)$. So there is $y \in I$ such that $y \notin\left(x^{\ell}\right)$ but $y=a x^{\ell-1}$ for some $a \in R$. So $a \notin(x)=m$; so $a \in R^{\times}$, and $x^{\ell-1}=a^{-1} y \in I$. So $m^{\ell-1}=\left(x^{\ell-1}\right) \subseteq I$; so $I=\left(x^{\ell-1}\right)=m^{\ell-1}$.

So R is a DVR.
Theorem 7.1.17
Definition 7.1.21. A Dedekind domain is a Noetherian integral domain of dimension 1 such that any of the three conditions of Theorem 7.1.17 hold.

Corollary 7.1.22. In a Dedekind domain A every proper ideal has a factorization as a product of prime ideals.

Proof. Suppose I is a proper ideal. If $I=(0)$ then I is prime; assume then that $I \neq(0)$. Take an irredundant primary decomposition

$$
I=Q_{1} \cap \cdots \cap Q_{\ell}
$$

where the Q_{i} are P_{i}-primary (with $P_{i}=r\left(Q_{i}\right)$) and P_{1}, \ldots, P_{ℓ} are distinct. By dimension 1 we get that P_{1}, \ldots, P_{ℓ} are maximal; hence if $i \neq j$ then $P_{i}+P_{j}=A$. So

$$
r\left(Q_{i}+Q_{j}\right)=r\left(r\left(Q_{i}\right)+r\left(Q_{j}\right)\right)=r\left(P_{i}+P_{j}\right)=r(A)=A
$$

So $Q_{i}+Q_{j}=A$. Recall in general that if $I+J=A$ then $I \cap J=I J$. So

$$
I=Q_{1} \cdots \cdot Q_{\ell}=P_{1}^{r_{1}} \cdot P_{2}^{r_{2}} \cdots \cdot P_{\ell}^{r_{\ell}}
$$

since Q_{i} is P_{i}-prime and A is a Dedekind domain implies $Q_{i}=P_{i}^{k}$.
Corollary 7.1.22
In fact the factorization is unique.
Final exam: Monday April 11, 12:30-15:00, MC 4041. Office hours this week: MW 13:30-15:30, Friday 12:30-14:30, MC 5018. Will cover everything we covered in class except the final week (DVRs, dimension 1 , Dedekind domains). The exam format will be content/synthesis (definitions, true or false, short answer, example and counterexample) and a couple of problem-solving questions (problems and proofs). Recall that the exam is 65% of the final grade and the assignments are 35%.

