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Preliminaries
My thanks to Bahaa Khaddaj for the use of his notes for the lectures I missed.

All rings are commutative and have unity.

Definition 0.1. A number field is a finite extension of Q. An algebraic number is an element of a number
field.

Definition 0.2. An algebraic integer is an α ∈ C such that Z[α] is a finitely generated Z-module.

Definition 0.3. Suppose K is a number field. We define the ring of integers of K, denoted OK , to be the
set of algebraic integers lying in K.

In fact, OK is a ring. That 0 ∈ OK is obvious; closure under addition, multiplication, and additive
inverses will follow from the following theorem.

Theorem 0.4. Suppose α ∈ C. Then α is an algebraic integer if and only if p(α) = 0 for some monic
p ∈ Z[x].

Proof.

( =⇒ ) Suppose α is an algebraic integer. Then Z[α] is a finitely generated Z-module, say by f1(α), . . . , fn(α).
Let k = max{deg(fi) : i ∈ { 1, . . . , n } }+ 1. Then

αk = a1f1(α) + · · ·+ anfn(α)

So if
p(x) = xk + a1f1(x) + · · ·+ anfn(x)

then p ∈ Z[x] is non-zero and monic, and p(α) = 0.

( ⇐= ) Suppose
αk + ak−1α

k−1 + · · ·+ a0 = 0

where a0, . . . , ak−1 ∈ Z. Then {αk−1, . . . , α } generates Z[α] as a Z-module, and Z[α] is finitely
generated as a Z-module.

1



Theorem 0.4

Remark 0.5. α ∈ Qalg is an algebraic integer if and only if its monic minimal polynomial over Q has integer
coefficients.

Hence if α, β ∈ OK , then Z[α, β] is finitely generated. But Z[α+β], Z[αβ], and Z[−α] are submodules of
Z[α, β], and Z is Noetherian; so Z[α+ β], Z[αβ], and Z[−α] are finitely generated, and α+ β, αβ,−α ∈ OK .
So OK is a ring.

1 Dedekind domains
Definition 1.1. A number ring is the ring of integers of a number field.

It turns out that for number rings, being a UFD is equivalent to being a PID. Not all rings satisfy this
property:
Example 1.2. Z[

√
10] is not a UFD: 10 =

√
10

√
10 = 2 · 5, and all of

√
10, 2, and 5 are irreducible.

We define a kind of ring that better corresponds to number rings:

Definition 1.3. Suppose D is a domain, T ⊆ D is a subring, and α ∈ D is an element. Then α is integral
over T if and only if p(α) = 0 for some monic p ∈ T [x].

Fact 1.4. If T is Noetherian, then α is integral over T if and only if T [α] is a finitely-generated T -module.

Definition 1.5. The integral closure of T in D is {α ∈ D : α is integral over T }.

Fact 1.6. The integral closure of T in D is a ring.

So the ring of integers OK in a number field K is the integral closure of Z in K.

Definition 1.7. We say D is integral over T if every element of D is integral over T .

Fact 1.8. Suppose A ⊆ B ⊆ C are domains. If B is integral over A and C is integral over B, then C is
integral over A.

Hence the integral closure of OK in K is OK , since every element of the integral closure of OK in K is
integral over O, and is therefore already in OK .

Definition 1.9. A Dedekind domain is a domain D that is not a field satisfying the following:

1. D is Noetherian.

2. Every non-zero prime ideal of D is maximal.

3. D is integrally closed in its field of fractions.

Proposition 1.10. Suppose K is a number field of degree d over Q; let OK be the ring of integers in K.
Suppose I ⊆ OK is a non-zero ideal. Then I ∼= Zd as additive grapes.

Proof. We first check the case I = OK .

Claim 1.11. For any α ∈ K there is some n ∈ Z such that nα ∈ OK .

Proof. Let p ∈ Q[x] be the monic minimal polynomial for α over Q. Then for any n ∈ N, we have nap( xn ) is
the monic minimal polynomial for nα over Q (where a = deg(p)). If we choose n to cancel the denominators
of the coefficients of p(x), we get that nap( xn ) ∈ Z. Claim 1.11
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Now, let α1, . . . , αd be a basis for K as a vector space over Q. By the claim, we may assume that
α1, . . . , αn ∈ OK . So OK contains an additive subgrape additively isomorphic to Zd; i.e. Zα1 + · · ·+ Zαd.

We now find non-zero A ∈ Z such that AOK ⊆ Zα1 + · · ·+ Zαd. Choose any b ∈ OK . Since α1, . . . , αn

are a basis for K over Q, we may write

b = a1α1 + · · ·+ adαd

for some (unique) a1, . . . , ad ∈ Q. For simplicity, we assume that K is a Galois extension of Q. Then for
every σ ∈ Gal(K/Q) we get a new equation

σi(b) = a1σi(α1) + · · ·+ adσi(αd)

This yields a d× d system of linear equations in a1, . . . , ad:σ1(b)
...

σd(b)

 = M

a1
...
ad


But M is invertible: since the a1, . . . , ad are unique, there is a unique solution. So, by Cramer’s rule, we get
that a1

...
ad

 = M−1

σ1(b)
...

σd(b)

 =
1

det(M)
M ′

σ1(b)
...

σd(b)

 ∈ 1

det(M)
Od

K

But det(M) ∈ OK ; so there is an integer A ∈ Z such that A
det(M) ∈ OK . So each Aai is in OK . But Aai ∈ Q;

so each ai ∈ Z, and Ab ∈ Zα1 + · · ·+ Zαd. Since A doesn’t depend on b, we get that

AOK ⊆ Zα1 + · · ·+ Zαd

So OK is additively isomorphic to a subgrape of Zd that contains a copy of Zd; so OK
∼= Zd as an additive

grape.
Now, let I ⊆ OK be any non-zero ideal; let α ∈ I be non-zero. Then γOK ⊆ I, and γOK

∼= OK
∼= Zd

as additive grapes; better yet, we have I ⊆ OK
∼= Zd as an additive grape. So I ∼= Zd as an additive grape.

Proposition 1.10

This then implies that every non-zero prime of OK is maximal: for any prime ideal P of OK , we note
that the quotient OK/P is an integral domain and it must have finite rank, and is thus a field. So OK is a
Dedekind domain for every number field K.

In general, every PID that is not a field is a Dedekind domain. We also have that every number ring is
a Dedekind domain. In general, we can ask how close a number ring is to being a PID.

Definition 1.12. Suppose D is a domain with fraction field K. A fractional ideal of D is a D-submodule
I of K such that αI ⊆ D for some α ∈ K \ { 0 }.

Remark 1.13. Fractional ideals of D are 1
αI for α ∈ D \ { 0 } and some integral ideal I ⊆ D (i.e. an ideal in

the usual ring-theoretic sense).

Definition 1.14. A fractional ideal I is invertible if there is some fractional ideal J such that IJ = D = (1).
The ideal grape of D is the grape of invertible fractional ideals under ·.

Definition 1.15. Suppose I is a non-zero fractional ideal of D. We define I−1 = {α ∈ K : αI ⊆ D }.

Theorem 1.16. I−1 is a fractional ideal, and II−1 = D if and only if I is invertible; furthermore, in this
case we have that I−1 is the unique fractional ideal J with IJ = D.

Proof. We first check that I−1 is a fractional ideal. It is immediate that 0 ∈ I−1. To check closure under
addition, suppose α, β ∈ I−1; then (α + β)I = αI + βI ⊆ D, and α + β ∈ I−1. To see closure under
multiplication by arbitrary elements of D, suppose α ∈ I−1 and δ ∈ D; then δαI ⊆ δD ⊆ D, and δα ∈ I−1.
So I−1 is a fractional ideal.

We now check the equivalence above.
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( =⇒ ) Immediate.

( ⇐= ) Suppose I is invertible; then there is some fractional ideal J of D with IJ = D. Hence J ⊆ I−1;
then IJ ⊆ II−1 ⊆ D = IJ , and II−1 = D.

For the “furthermore”, we note that

J = J(II−1) = (JI)I−1 = DI−1 = I−1

Theorem 1.16

Example 1.17. I = (2, 1 +
√
5) ⊆ Z[

√
5] is not invertible. To compute I−1, we note that a + b

√
5 ∈ I−1 is

equivalent to requiring that (1 +
√
5)(a+ b

√
5) ∈ Z[

√
5] and 2(a+ b

√
5) ∈ Z[

√
5]. So

I−1 =
{ n

2
+

m

2

√
5 : m ≡ n (mod 2)

}
=

{
n

2
+

n+ 2k

2

√
5 : n, k ∈ Z

}
=

{
n
1 +

√
5

2
+ k

√
5 : n, k ∈ Z

}

=

(
1 +

√
5

2
,
√
5

)

But

(2D+(1+
√
5)D)

((
1 +

√
5

2

)
D +

√
5D

)
= (1+

√
5)D+2

√
5D+(3+

√
5)D+(5+

√
5)D ⊆ 2Z+

√
5Z $ D

Definition 1.18. Suppose D is a domain. The class grape of D is the following quotient:

Cl(D) = { invertible fractional ideals }/{principal fractional ideals }

If every fractional ideal of D is invertible, then Cl(D) measures how close D is to being a PID; in
particular, D is a PID if and only if Cl(D) = { 1 } (under the above assumption).

We will show that every non-zero fractional ideal of a Dedekind domain is invertible.

Definition 1.19. Suppose D is a domain with fraction field K; suppose P ⊆ D is a prime ideal. We define
the local ring of D at P to be

DP =
{
α ∈ K : α =

a

b
, b /∈ P

}
One checks that this is a ring whose unique maximal ideal is

PDP =
{ a

b
: a ∈ P, b /∈ P

}
Example 1.20. Consider D = Z, P = (2). Then

DP = Z(2) =
{
α ∈ Q : α =

a

b
, b /∈ (2)

}
=
{
α ∈ Q : α =

a

b
, b odd

}
Now, given a

b ∈ Q, we can write
a

b
= 2n

a′

b′

where 2 - a′b′; this n is called the (additive) 2-adic valuation of a
b , denoted v2(

a
b ). Then Z(2) = {α ∈ Q :

v2(α) ≥ 0 }.
A result from algebra:

Theorem 1.21. If D is a Dedekind domain, then DP is a PID.
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Definition 1.22. A local ring is a ring that has a unique maximal ideal.

Definition 1.23. A discrete valuation ring (or DVR) is a local ring that is also a PID (and is not a field).

Now, if DP is a DVR with maximal ideal PDP , then PDP = uDP ; we call u a uniformizing parameter
or uniformizer for DP .

Let K be the fraction field of DP (which is also the fraction field of D). If α ∈ K \ { 0 }, we define
vP (α) = max{n ∈ Z : α ∈ (PDP )

n } where (PDP )
0 = DP and (PDP )

−1 = u−1DP .
Example 1.24. Using D = Z and P = (2) as above, we note that v2(47) = 0 since 2 is a uniformizing
parameter and 47 ∈ Z(2) but 47 /∈ 2Z(2).

In general we have that vP (α) is the largest n such that α = unr where r ∈ DP ; i.e. r = a
b with b /∈ P .

To achieve the maximum, we demand that a, b /∈ P ; i.e. vP (α) is the unique n such that there is some unit
v of DP with α = unv.
Remark 1.25. PDP is always principal by the above; if P = (r1, . . . , rn) and none of r1, . . . , rn generated
PDP as an ideal of DP , then they would all have valuation greater than 2. Hence if u is a uniformizing
parameter, then u2 | ri for all i ∈ { 1, . . . , n }; so u2 | r for all r ∈ r1DP + · · · + rnDP = PDP , and in
particular we get that u2 | u. So u is a unit, a contradiction. So PDP = riDP for some i ∈ { 1, . . . , n }.

Theorem 1.26. Every non-zero fractional ideal in a Dedekind domain is invertible.

Proof. Suppose D is a Dedekind domain; suppose I is a fractional ideal of D. Then there is some α ∈ K
(where K is the fraction field of D) such that αI ⊆ D is an integral ideal of D. Better yet, αI is invertible
if and only if I is invertible; we may thus assume that I ⊆ D. Now, II−1 ⊆ D by definition of I−1.

If II−1 6= D, then there is some non-zero prime ideal P of D with II−1 ⊆ P ⊆ D; consider the ideal
IP = IDP of DP . Also consider the ideal (I−1)P = I−1DP of DP . Finally, consider (IP )

−1, the inverse of
the fractional ideal of IP of DP .

Now, DP is a DVR, and in particular is a PID; so IP , (IP )−1, and (I−1)P are all principal, and thus
invertible. So IP (IP )

−1 = DP .

Claim 1.27. (IP )
−1 = (I−1)P .

Proof. We first note that

(I−1)P =
{ α

b
: b /∈ P, αI ⊆ D

}
⊆
{ α

b
:
α

b
IP ⊆ DP

}
= (IP )

−1

For the converse, write I = a1D+ · · ·+ anD. Then x ∈ (IP )
−1 implies that xai ∈ DP for all i; in particular,

there is some ci ∈ D \ P such that cixai ∈ D. Now, if c = c1 · · · cn, then (cx)ai ∈ D for all i. So cx ∈ I−1,
and c /∈ P ; so x ∈ (I−1)P . Claim 1.27

So (II−1)P = IP (I
−1)P = IP (IP )

−1 = DP . But II−1 ⊆ P ⊆ D, so (II−1)P ⊆ PP $ DP , a contradiction.
Theorem 1.26

Theorem 1.28. Every non-zero fractional ideal of a Dedekind domain D can be written uniquely (up to
permutation) as a product of prime ideals and their inverses.

Proof. Let I be a non-zero fractional ideal of D; then I = 1
aJ for some integral ideal J of D and some a ∈ D.

If J + (a) can be factorized, then I can as well; we may thus assume that I ⊆ D.
Now, if I = D, then I is the empty product of prime ideals, and we’re done. If I is prime, we’re also

done. Otherwise, there is some maximal ideal P with I ⊆ P ⊆ D. Then I = P (IP−1), and P and IP−1 are
both integral ideals of D. Iterating, we get

I ⊆ IP−1
1 ⊆ IP−1

1 P−1
2 ⊆ · · · ⊆ D

Since D is Noetherian, we get that this process must terminate. Hence IP−1
1 · · ·P−1

n = D, and I = P1 · · ·Pn.
Uniqueness follows straightforwardly from the invertibility of all of the Pi. Theorem 1.28

So every ideal in a Dedekind domain factors uniquely into prime ideals. If we want to understand all
ideals, it then suffices to understand prime ideals.
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Example 1.29. What do the prime ideals of Z[i] look like? Well, if ρ ⊆ Z[i] is prime, then Z[i]/ρ is a finite
field (by Proposition 1.10). So Z[i]/ρ ⊇ Fp for some prime p; in other words, p ∈ ρ. i.e. Every prime ρ of
Z[i] contains some prime p of Z; hence ρ ⊇ (p). Hence if we factor (p) inside Z[i], we will find ρ as a factor.

The upshot is that if we want to find all of the primes of Z[i], all we have to do is start with the primes
p ∈ Z and factor (p) in Z[i]; every ρ will show up as a factor for some p.

Case 1. By homework, if p ≡ 3 (mod 4) then (p) is prime in Z[i].

Case 2. If p = 2, we note that 2 = (1 + i)(1− i) = (1− i)2i.

Case 3. Suppose p ≡ 1 (mod 4). Note that

Z[i]/(p) ∼= Z[x]/(p, x2 + 1) ∼= Fp/(x
2 + 1)

Fact 1.30. x2 + 1 = (x− a)(x− b) in Fp[x] for some a, b ∈ Fp.

Claim 1.31. a 6= b.

Proof. We simply note that gcd(x2 + 1, d
dx (x

2 + 1)) = 1, and hence x2 + 1 has no multiple roots.
Alternatively, note that p 6= 2, so b = −a 6= a. Claim 1.31

Then (x− a) and (x− b) are comaximal, and

Fp/(x
2 + 1) ∼= Fp[x]/(x− a)Fp[x]/(x− b)

∼= Z[x]/(x2 + 1, x− a, p)× Z[x]/(x2 + 1, x− b, p)
∼= Z[x]/(x− a, p)× Z[x]/(x− b, p)

One then checks (by hand) that (p) = (p, i−a)(p, i− b). (Or one follows the maps through and verifies
that the above guarantees equality.)

Hence all the primes in Z[i] are

• (p) for p ≡ 3 (mod 4)

• (1 + i) = (1− i)

• (p, i− a) where p ≡ 1 (mod 4) and a2 ≡ −1 (mod p)

The above algorithm also works for any quadratic number field; we’ll end up with

• Some (p) already prime.

• Some that are of the form (p) = ρ2.

• The rest of the form (p) = (p, x− a)(p, x− b).

We will later show that the class grape is finite.
Question 1.32. How do we tell if we’ve written down all generators of the class grape?

Some definitions:

Definition 1.33. Suppose K is a number field; suppose α ∈ K and [K : Q] = n. We then have n embeddings
f1, . . . , fn : K ↪→ C. We define the trace of α to be

trK(α) =

n∑
i=1

fi(α)

We define the norm of α to be

NK(α) =

n∏
i=1

fi(α)
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Remark 1.34. Note that trK(α), NK(α) ∈ Q, as they are both Galois-invariant. Further note that if α ∈ OK ,
then tr(α), N(α) ∈ Z; this is because the characteristic polynomial of α is

xn − tr(α)xn−1 + · · · ±N(α)

and the characteristic polynomial is a power of the minimal polynomial, which has integer coefficients if
α ∈ OK .

The converse is false: there are α ∈ K \ OK with tr(α), N(α) ∈ Z.
Example 1.35. Let K = Q(α) where α satisfies x3 + x2 + 14

67x+ 4. Then α ∈ K \ OK , but

tr(α) = −1

N(α) = −4

Remark 1.36. tr(α+ β) = tr(α) + tr(β) and N(αβ) = N(α)N(β).

Definition 1.37. We say α1, . . . , αn ∈ K is an integral basis if n = [K : Q] and

OK = Zα1 + · · ·+ Zαn

i.e. if α1, . . . , αn ∈ OK , they form a Q-basis for K, and OK = Zα1 ⊕ · · · ⊕ Zαn. (I think this is just a
Z-module basis.)

Remark 1.38. Integral bases always exist, since by Proposition 1.10 we know OK
∼= Zn.

Question 1.39. How do we find an integral basis in practice?

Definition 1.40. Let n = [K : Q]. If α1, . . . , αn ∈ K, we define the discriminant of α1, . . . , αn to be

det(fj(αi))
2 =

det

f1(α1) · · · f1(αn)
...

. . .
...

fn(α1) · · · fn(αn)




2

Example 1.41. A special case: we would like to find α ∈ OK such that OK = Z[α]. This is equivalent to
1, α, . . . , αn−1 being an integral basis. Computing the discriminant, we find

disc(1, α, . . . , αn−1) =

det

1 f1(α) f1(α)
2 · · · f1(α)

n−1

...
...

...
. . .

...
1 fn(α) fn(α)

2 · · · fn(α)
n−1




2

=
∏
i<j

(fi(α)− fj(α))
2

= disc

(
n∏

i=1

(x− fi(α))

)
= the characteristic polynomial of α

Remark 1.42. If α1, . . . , αn ∈ K is not a vector space basis for K over Q then disc(α1, . . . , αn) = 0. This is
because in this case we have c1, . . . , cn ∈ Q not all 0 such that

n∑
i=1

ciαi = 0

So

0 = fj

(
n∑

i=1

ciαi

)
=

n∑
i=1

cifj(αi)

for all j. Hence the columns of (fj(αi))ij are linearly dependent; hence the determinant is 0, and hence the
discriminant is 0.
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If, on the other hand, α1, . . . , αn is a basis, then the discriminant is non-zero. This is because if
disc(α1, . . . , αn) = 0, then the columns of (fj(αi))ij are linearly dependent. So there are c1, . . . , cn ∈ Q
such that for all j we have

fj

(
n∑

i=1

ciαi

)
=

n∑
i=1

cifj(αi) = 0

But the fj are embeddings; so
n∑

i=1

ciαi = 0

and the αi are linearly dependent.
Remark 1.43. If {α1, . . . , αn } and {β1, . . . , βn } are both bases, how do disc(α1, . . . , αn) and disc(β1, . . . , βn)
relate? Well, there is a unique Q-linear T : K → K such that αi 7→ βi. In this case, we get T · (fj(αi))ij =
(fj(βi))ij ; hence disc(β1, . . . , βn) = det(T )2 disc(α1, . . . , αn).

If in fact {α1, . . . , αn } is an integral basis and β1, . . . , βn ∈ OK , then T ∈ Mn×n(Z); hence

disc(β1, . . . , βn) = (det(T ))2 disc(α1, . . . , αn)

where (det(T ))2 is a square integer. Hence if {α1, . . . , αn } and {β1, . . . , βn } are both integral bases, then
T is invertible. But T ∈ Mn(Z); so det(T ) = ±1, and det(T )2 = 1. So in this case we get disc(α1, . . . , αn) =
disc(β1, . . . , βn).

This allows the following definition:

Definition 1.44. Suppose K is a number field. We define the discriminant of K to be disc(α1, . . . , αn)
for any integral basis α1, . . . , αn. We just showed that this is well-defined and independent of the choice of
integral basis.

Remark 1.45. If β1, . . . , βn ∈ OK and disc(β1, . . . , βn) 6= 0 is not divisible by the square of an integer, then
{β1, . . . , βn } is an integral basis.

Unfortunately, the converse fails.

Definition 1.46. Say K is a number field with OK its ring of integers; say I ⊆ OK is a non-zero ideal. We
define the norm of I to be N(I) = |OK/I|.

(Recall that the norm of an element is given by

N(α) =
∏

f : K↪→C
fi(α)

We will see later how these relate.)

Theorem 1.47. N(I)2 = disc(I)
disc(K) .

(I think we define disc(I) to be the discriminant of an integral basis for I; i.e. α1, . . . , αd ∈ I such that
I = Zα1 + · · ·+ Zαd, where d = [K : Q]. Recall by Proposition 1.10 that I ∼= Zd as additive grapes.)

Proof. Let { a1, . . . , ad } and { b1, . . . , bd } be integral bases for OK and I, respectively; let T : OK → I be
the unique Q-linear transformation with T (ai) = bi for all i.

Recall from linear algebra that

±(volume of the polytope spanned by { a1, . . . , ad })det(T ) = (volume of the polytope spanned by { b1, . . . , bd })

But then

|det(T )| = volume of the polytope spanned by { a1, . . . , ad }
volume of the polytope spanned by { b1, . . . , bd }

= [OK : I] = |OK/I| = N(I)

(The third equality follows by noting that (OK/I) ∼= (K/I)/(K/OK), with K/I the fundamental polytope
of I and K/OK the fundamental polytope of OK . Here the fundamental domain of a grape action is a set
that every orbit intersects exactly once.)

But disc(I)
disc(K) = (det(T ))2 = N(I)2 by Remark 1.43. Theorem 1.47
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We can thus extend the definition of norm to fractional ideals as follows:
Definition 1.48. Suppose I is a fractional ideal of OK . We define

N(I) =

√
disc(I)
disc(K)

Definition 1.49. A sequence A
f−→ B

g−→ C is exact at B if im(f) = ker(g).
TODO 1. Swapped definition of norm of ideals?
Theorem 1.50. Given non-zero fractional ideals I and J of OK , we have N(I)N(J) = N(IJ).
Proof. If I = αI ′, then playing with integral bases we get

N(I) =

√
disc(K)

disc(I)
=

√
disc(K)

disc(αI ′)
=

1

|N(α)|

√
disc(K)

disc(I ′)

So if we choose α ∈ OK such that αI, αJ ⊆ OK , then
N(α)2N(I)N(J) = N(αI)N(αJ)

and
N(α)2N(IJ) = N(αIαJ)

Hence if we can prove the theorem for αI and αJ , it will follow for I and J ; i.e. we may assume I, J ⊆ OK .
Now, since OK is a Dedekind domain, we can factor I and J into primes

I = P a1
1 · · ·P ar

r

J = P b1
1 · · ·P br

r

Then N(I) = N(P a1
1 · · ·P ar

r = N(P a1
1 ) · · ·N(P ar

r ) by Chinese remainder theorem. (Pairwise comaximality
follows by noting that any prime in the factorization of P ai

i +P
aj

j must contain both P ai
i and P

aj

j , and hence
must be both Pi and Pj , a contradiction if I 6= J ; so the prime factorization is empty, and P ai

i +P
aj

j = OK .
Alternatively, a general theorem states that powers of distinct maximal ideals are comaximal.) So

N(I) = N(P a1
1 ) · · ·N(P ar

r )

N(J) = N(P b1
1 ) · · ·N(P br

r )

N(J) = N(P a1+b1
1 ) · · ·N(P ar+br

r )

It then suffices to show that N(P ai
i ) = N(Pi)

ai . We proceed by induction on ai; the claim is clear if ai = 1.
For the induction step, we note that

0 → P ai
i /P ai+1

i︸ ︷︷ ︸
N(Pi) elements

→ OK/P ai+1
i → OK/P ai

i︸ ︷︷ ︸
N(Pi)ai elements

→ 0

is exact. The latter claim about sizes is just the induction hypothesis; for the former, we use the following:

Claim 1.51. P a/P a+1 ∼= P aDP /P
a+1DP where D = OK , P = Pi, and a = ai.

Proof. We define Φ: P a/P a+1 → P aDP /P
a+1DP by a+ P a+1 7→ α+ P a+1DP . This is clearly an injective

homomorphism. For surjectivity, we note that P a/P a+1 is a vector space over OK/P via
(α+ P )(β + P a+1) = αβ + P a+1

It has dimension 1, as it is spanned by ua (where PDP = (u)); surjectivity then follows because because
P a/P a+1 is a 1-dimensional vector space over DP /PDP and P a 6= P a+1. Claim 1.51

In particular, for a = 0, we get that OK/P ∼= DP /PDP , which has N(P ) elements. But P ai
i /P ai+1

i

is a 1-dimensional vector space over OK/Pi, as noted above; so by the short exact sequence, we get that
OK/P ai+1

i has N(Pi)N(Pi)
ai = N(Pi)

ai+1 elements. Theorem 1.50

Theorem 1.52. If α 6= 0 then N((α)) = |N(α)|.
Proof. If K = Q(α), then the characteristic polynomial of T : K → K given by x 7→ αx is the monic minimal
polynomial for α over Q. Its constant term is both N(α) and det(T ) = ±N((α)). Theorem 1.52
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2 Geometry of numbers
Definition 2.1. Suppose K is a number field. Let f1, . . . , fr1 be the distinct embeddings of K ↪→ R; let
fr1+1, gr1+1, . . . , fr1+r2 , gr1+r2 be the complex conjugate pairs of embeddings K ↪→ C (i.e. with fi = gi).
Then [K : Q] = r1 + 2r2 = d. Define

ΘK : K →

(
r1∏
i=1

R

)
×

(
r2∏
i=1

C

)
by

α 7→ (f1(α), . . . , fr1(α), fr1+1(α), . . . , fr1+r2(α))

This ΘK is the Minkowski map. Its codomain is Minkowski space, usually considered as a vector space over
R.

The choice of which embedding is fi and which is gi is not important.

Fact 2.2. The image of OK under ΘK is a lattice.

Example 2.3. Let K = Q(i). We pick f1(a + bi) = a + bi) and g1(a + bi) = a − bi. So r1 = 0 and r2 = 1.
Then OK = Z[i], and its image under ΘK is Z[i].
Example 2.4. Let K = Q(

√
2). Here as well we have r1 = 2; we pick f1(a+b

√
2) = a+b

√
2 and f2(a+b

√
2) =

a− b
√
2. We note that Q gets mapped to the diagonal, with Z mapped to the integer points on the diagonal.

We also note that
√
2Q gets mapped to the antidiagonal. We finally note that the “unit ball” (in which

|N(α)| ≤ 1) is a hyperbola, since it is defined by 1 = |N(α)| = |f1(α)f2(α)|, and hence is given by y = 1
x . In

particular, it isn’t compact.
Remark 2.5. If the unit ball is compact, then there are finitely many units in OK , since units have norm 1.
Remark 2.6. ΘK is a Q-linear map, since if α ∈ Q and x ∈ K then fi(αx) = fi(α)fi(x) = αfi(x).

We think of Minkowski space as “unfolding” the Q-vector space so it no longer lies on the real line.
Aside 2.7 (How to compute OK from K). Find some algebraic integers α1, . . . , αn ∈ K, and consider
R = Z[α1, . . . , αn]; compute the discriminant ∆ of R. By Remark 1.43 we have disc(OK)(det(T ))2 = disc(R).
But all of these are integers; so if ∆ is square-free, then [ΘK : R] = 1, so R = OK .

N.B. It might be the case that disc(OK) has a square factor.
Example 2.8. Find OK (with proof) if K = Q(α) where α is a root of x3 + 3x+ 7 = 0.

We first make a guess; we let D = Z[α], and we guess that D = OK . We know that disc(D)
disc(OK) = [OK : D]2

(where the index is taken as additive grapes).
Let’s compute disc(D). If disc(D) is square-free, then since [OK : D]2 | disc(D), we get that [OK : D] = 1

and D = OK .

Fact 2.9. |disc(Z[α])| = |disc(m(x))| where m(x) is a monic minimal polynomial for α over Q.

The discriminant of a monic polynomial is ∏
i<j

(ri − rj)
2

where the ri are the roots of the polynomial. It also coincides with the resultant of the polynomial and its
derivative, given by

Res(f, f ′) = det



1 an−1 · · · a0
1 an−1 · · · a0

. . . . . . . . . . . .
1 an−1 · · · a0

n (n− 1)an−1 · · · a1
n (n− 1)an−1 · · · a1

. . . . . . . . . . . .
n (n− 1)an−1 · · · a1


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where f(x) = xn + an−1x
n−1 + · · ·+ a0. For example,

disc(x2 − 2) = det

1 0 −2
2 0 0
0 2 0

 = −8

In our case, we end up with

|disc(Z[α])| = |disc(x3 + 3x+ 7)| =

∣∣∣∣∣∣∣∣∣∣
det


1 0 3 7 0
0 1 0 3 7
3 0 3 0 0
0 3 0 3 0
0 0 3 0 0


∣∣∣∣∣∣∣∣∣∣
= 1431 = 33 · 53

Thus [OK : D] is 3 or 1. Now, if every local ring DQ (for Q a prime ideal of D) is a DVR, then D is a
Dedekind domain (since D is already Noetherian and one-dimensional (i.e. every non-zero prime ideal is
maximal)). Conversely, if any DQ is not a DVR, then D is not a Dedekind domain.

How does this help? Well, Dedekind domains are integrally closed in their field of fractions, and K is the
fraction field of D; hence if D is a Dedekind domain then OK ⊆ D, and OK = D.

Now, let Q ⊆ D be a prime ideal. How do we check if DQ is a DVR? Well, DQ is a DVR if and only if
QDQ is a principal ideal. But every non-zero prime ideal Q of D contains a unique positive prime integer q.

Case 1. If q 6= 3 then for any prime ideal P of OK with Q ⊆ P we have DQ = (OK)P , which is a local
ring.

Proof. If D = OK , we’re done. Otherwise, we have [OK : D] = 3, so for all a ∈ OK we have 3a ∈ D;
hence 3a ∈ DQ, and a ∈ DQ. So OK ⊆ DQ, and (OK)P ⊆ DQ. Hence (O)P = DQ.

Case 2. We must now check all the prime ideals Q of D containing 3. By the correspondence theorem,
these are in bijection with prime ideals of

D/(3) ∼= Z[x]/(x3 + 3x+ 7, 3) ∼= (Z/3Z)[x]/(x3 + 3x+ 7) ∼= (Z/3Z)[x]/(x+ 1)3

Fact 2.10 (IMPORTANT). In general the prime ideals of F [x]/(g) correspond to the irreducible factors
of g.

In our case, we get that the only prime ideal of D/(3) is (α+1), which corresponds to the ideal (α+1, 3)
of D. So Q = (α+ 1, 3) is the only prime ideal of D = Z[α] containing 3.
We now check if QDQ is principal. (This is equivalent to checking that Q is a DVR.) Well, QDQ =
(3, α + 1)DQ is a principal ideal if and only if QDQ = (3)DQ or QDQ = (α + 1)DQ, which occurs if
and only if 3

α+1 ∈ DQ or α+1
3 ∈ DQ. We easily get that 3

α+1 /∈ DQ; on the other hand, we have

(α+ 1)3 = α3 + 3α2 + 3α+ 1 = −3α− 7 + 3α2 + 3α+ 1 = 3α2 − 6 = 3(α2 − 2)

Hence
3

α+ 1
=

(α+ 1)2

α2 − 2
∈ DQ

But α2 − 2 /∈ Q (since (α+1)(α− 1) = α2 − 1 ∈ Q, and hence otherwise we would have 1 ∈ Q). Hence
3

α+1 ∈ DQ. So QDQ is principal.

So D is a Dedekind domain, and D = OK .

Theorem 2.11 (Convex body). Suppose L is a lattice in Rn; i.e. L is a subgrape of Rn isomorphic to Zn

with the property that a basis for L (over Z) is also a basis for Rn as a vector space. Let F be the fundamental
domain of L; i.e. a subset of Rn such each coset of L intersects in exactly one point. (We will need F to
have a sensible volume, so we will require that it be measurable, and in practice we will imagine it to be
the parallelepiped given by the basis for L.) Let S be a symmetric convex subset of Rn. (“Symmetric” here
means that if x ∈ S then −x ∈ S.) If vol(S) > 2n vol(F ) then S ∩ L contains a non-zero vector.
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Proof. We may assume S is bounded. For any −→v ∈ L we define

T−→v =
1

2
S +−→v = { 1

2
−→x +−→v : −→x ∈ S }

Then
vol(T−→v ) =

vol(S)
2n

> vol(F )

Hence for some −→v 6= −→w ∈ L, we must have T−→v ∩ T−→w 6= ∅. Then for some −→x ,−→y ∈ S, we have
1

2
−→x +−→v =

1

2
−→y +−→w

and thus
−→v −−→w =

1

2
(−→y −−→x ) ∈ S

So −→v −−→w ∈ (L ∩ S) \ { 0 }. Theorem 2.11

Example 2.12. Consider K = Q[
√
15], in which OK = Z[

√
15]. Draw the lattices OK , (2, 3 −

√
15), and

(3,
√
15) in Minkowski space. Compute the fundamental domain volumes, discriminants, and smallest non-

zero vectors.
Theorem 2.13. Suppose K is a number field of degree n = r1 + 2r2 (where r1 is the number of real
embeddings of K and r2 is the number of complex conjugate pairs of complex embeddings). Let A ⊆ OK be
an additive subgrape of finite index m. Then there is some α ∈ A with

|N(α)| ≤
(
4

π

)r2 n!m

nn

√
disc(OK)

(Note here that
√

disc(OK) is the volume of the fundamental domain of OK , and m
√

disc(OK) is the volume
of the fundamental domain of A.)
Proof. For B ∈ R define

SB =

 (α1, . . . , αr1 , β1, . . . , βr2) :

r1∑
j=1

|αj |+ 2

r2∑
j=1

|βj | ≤ B

 ⊆ Rr1 × Cr2

For example, if r1 = 0 and r2 = 1 then we end up with the disc 2|z| ≤ B; if r1 = 2 and r2 = 0 then we end
up with the diamond |x| + |y| ≤ B. It turns out SB are “roughly” products of the things in the above two
examples. In particular, SB is bounded, symmetric, and convex, with volume

2r1
(π
2

)r2 Bn

n!

Pick B >
((

4
π

)r2
n!m

√
disc(OK)

) 1
n . Then

vol(SB) = 2r1
(π
2

)r2 Bn

n!
> 2n

(
2−r2m

√
disc(OK)

)
But the volume of a fundamental polytope of A is 2−r2(m

√
disc(OK)); hence by Theorem 2.11 there is

non-zero α ∈ Θ−1(Θ(A) ∩ SB).
Now, let f1, . . . , fr1+r2 be the embeddings of K into R and C (up to complex conjugation). Then

r1∑
j=1

|fj(α)|+ 2

r2∑
j=1

|fr1+j(α)| ≤
((

4

π

)r2

n!m
√

disc(OK)

) 1
n

+ ε

=⇒

 r1∑
j=1

|fj(α)|+ 2

r2∑
j=1

|fr1+j(α)|

n

≤
(
4

π

)r2

n!m
√

disc(OK) + ε′

=⇒

 1

n

r1∑
j=1

|fj(α)|+
2

n

r2∑
j=1

|fr1+j(α)|

 ≤
(
4

π

)r2 n!

nn
m
√

disc(OK) + ε′′
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(Here ε = B−
((

4
π

)r2
n!m

√
disc(OK)

) 1
n , and ε′ and ε′′ can be computed from ε; in particular, they approach

0 as ε approaches 0.)
Hence, by the arithmetic-geometric mean inequality, we get that

|N(α)| =
r1∏
j=1

|fj(α)|
r2∏
j=1

|fr1+j(α)|2 ≤
(
4

π

)r2 n!

nn
m
√

disc(OK + ε′′

We somehow concluded that an α can be chosen to work for all sufficiently small ε. Hence this is our desired
α. Theorem 2.13

In particular, if A = I is an ideal, then m = N(I); so we have α ∈ I with

|N(α)| ≤
(
4

π

)r2 n!

nn

√
disc(OK)N(I)

Exercise 2.14. Verify the above theorem for K = Q(
√
15) with ideals Z[

√
15], (2, 3−

√
15), and (3,

√
15).

When working in a fixed K with r1 real embeddings and r2 pairs of complex embedings, we typically
denote

M =

(
4

π

)r2 n!

nn

√
disc(OK)

Theorem 2.15. Suppose K is a number field. Then Cl(OK) is finite.

Proof. Well, for any B ∈ R we have that there are only finitely many fractional ideals I with N(I) ≤ B; it
then suffices to show that there is some B such that every ideal class contains a representative of norm ≤ B.

Let B = M =
(
4
π

)r2 n!
nn

√
disc(OK). We will show that for any fractional ideal I there is some α ∈ K∗

with N(αI) ≤ M .
Suppose I is a non-zero fractional ideal; then there is an integral ideal J ⊆ OK in the ideal class of I−1.

Then by Theorem 2.13 there is some α ∈ J \ { 0 } with |N(α)| ≤ M ·N(J). But I ≡ αJ−1 in Cl(OK), and

N(αJ−1) =
|N(α)|
|N(J)|

≤ M

as desired. Theorem 2.15

Example 2.16. Compute the ideal class grape of OK in K = Q(α) where α3+3α+7 = 0. (See Example 2.8.)
Our steps:

1. We compute OK . In our case, Example 2.8 yields that OK = Z[α].

2. We compute

M =

(
4

π

)r2 n!

nn

√
disc(OK) ≈ 10.7 < 11

3. Pick representatives of each of the residue classes of Z/dMeZ, apply f , and factor the results; ideally
pick representatives n that make f(n) small.

−5 −133 = −7 · 19
−4 −69 = −3 · 23
−3 −29
−2 −7
−1 3
0 7
1 11
2 21 = 3 · 7
3 43
4 83
5 147 = 3 · 72

13



Why is this useful? Well, for any n we have |N(α−n)| is the absolute value of the constant coefficient
of the minimal polynomial for α − n. But the minimal polynomial for α − n is f(x + n), which has
constant term f(n); hence |N(α− n)| = |f(n)|.

4. List all the ideals of OK of norm < M .

• (2) is prime since Z[α]/(2) ∼= (Z/2Z)[x]/(x3 + x+ 1) is a field.
• (3) = (3, α+ 1)3, as computed in Example 2.8; we let P3 = (3, α+ 1).
• (5) is prime.
• (7) = (7, α)(7, α+ 2)(7, α+ 5) = P7Q7R7.

But any prime P of norm < 11 would have to satisfy |OK/P | = pe for some p ∈ { 2, 3, 5, 7 }, and hence
would have to contain one such p. So these are all the primes of norm < 11.

5. The above primes thus generate Cl(K); in fact we can omit the principal ideals, so we get Cl(K) =
〈P3, P7, Q7, R7〉.
We immediately get that P 3

3 ≡ 1 and P7Q7R7 ≡ 1. Using the table, we see that |N(α)| = |f(0)| = 7,
and hence that |OK/(α)| = N((α)) = |N(α)| = 7; in particular we get that 7 ≡ 0 in OK/(α), and that
7 ∈ (α), and thus that P7 = (7, α) = (α). So P7 is principal, and P7 ≡ 1.
We likewise get that P3R7 ≡ 1 (since |N(α− 2)| = 21 implies that P3R7 = (α− 2)) and that P3Q

2
7 ≡ 1

(since |N(α− 5)| = 3 · 72 implies (α− 5) = P3Q
2
7 since 5 ∈ Q7 and 5 /∈ R7).

Continuing, we find P3 ≡ 1 and Q7 ≡ 1. So Cl(K) is trivial.

Exercise 2.17. Compute Cl(Q(
√
46)). (It will be the trivial grape.)

We showed last time how to compute the ideal class grape, modulo being able to figure out if a given
ideal is principal. We do an example of the last question.
Example 2.18. Say K = Q(

√
10); then OK = Z[

√
10]. Consider P = (2,

√
10). Is P principal?

Well, if P is principal, then P = (α) for some α, and |N(α)| = N(P ) = 2. But α = a + b
√
10 for some

a, b ∈ Z. So
a2 − 10b2 = ±2

Reducing this equation modulo 5, we find that a2 ≡ ±2 (mod 5), which has no solutions for a. So P is not
principal.

This strategy works for all quadratic number fields.
Example 2.19. Let K = Q(α) where α3 − 2α+ 5 = 0.

1. It turns out then that OK = Z[α]. (One checks that the discriminant is −643, which is prime, and in
particular is square-free.)

2. The Minkowski constant is then

M =

(
4

π

)r2( n!

nn

)√
|disc(K)| = 4

π

6

27

√
643 ≤ 8

(Observe that making the Minkowski constant a bit bigger won’t be problematic; it may just make a
bit more work.)

3.
−3 −16 = −24 = −N(α+ 3)
−2 1 = −N(α+ 2)
−1 6 = 2 · 3 = −N(α+ 1)
0 5 = −N(α)
1 4 = 22 = −N(α− 1)
2 9 = 32 = −N(α− 2)
3 26 = 2 · 13 = −N(α− 3)
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4.

(2) = P2︸︷︷︸
norm 2

· Q2︸︷︷︸
norm 4

(3) = P3︸︷︷︸
norm 3

· Q3︸︷︷︸
norm 9

(5) = P5︸︷︷︸
norm 5

· Q5︸︷︷︸
norm 25

(7)

5.

P2Q2 ≡ 1

P3Q3 ≡ 1

P5Q5 ≡ 1

P2P3 ≡ 1

P5 ≡ 1

P 2
3 ≡ 1

Manipulating, we find that P2 ≡ P3 and P2 ≡ Q2. So Cl(K) = 〈P2〉 with P 2
2 ≡ 1. Is P2 principal?

Well, P2 = (2, α+1). Our plan is to find a small box B such that if there is an element of norm 2 then
there is an element of norm 2 in B; we will then look in B. Now,

ΘK(a) = (f1(a), f2(a)) ∈ R× C

Checking by hand, we find that
1 < |f2(α+ 2)| < 10

3

If |N(u)| = 2, then by multiplying and dividing by appropriate powers of α + 2 (which has norm 1),
we can ensure that

1 ≤ |f2(u)| ≤
10

3

Since |N(u)| = 2, we get that |f1(u)||f2(u)| = 2; hence

3

5
≤ |f1(u)| ≤ 2

So our box is

|f1(u)| ≤ 2

|f2(u)| ≤
10

3

This box contains 1 − α, α, 1, 2 − α, and other elements that obviously don’t have norm ±2. (e.g.
2− 2α has a factor of 2, and hence its norm has a factor of 4, and is not 2.)

What does the grape O∗
K look like? Well, it contains elements of finite order, namely the roots of unity

in K.

Definition 2.20. Let

VK =

(
r1∏
i=1

R

)
×

(
r2∏
i=1

C

)
be Minkowski space. We define a map

log : V ′
K →

r1+r2∏
i=1
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(where V ′
K = VK \ { (x1, . . . , xr1 , zr1+1, . . . , zr1+r2) : x1 · · ·xr1zr1+1 · · · zr1+r2 = 0 }) by

log(x1, . . . , xr1 , zr1+1, . . . , zr1+r2) = (log(|x1|), . . . , log(|xr1 |), 2 log(|zr1+1|), . . . , 2 log(|zr1+r2 |))

(The base doesn’t particular matter; we can choose e.)

The point of log is to turn the multiplicative set O∗
K into the additive subset log(ΘK(O∗

K)).
Remark 2.21. One notes that log and ΘK are homomorphisms; what is ker(log ◦ΘK)? It’s the grape of
roots of unity. Indeed, if w is a root of unity, then |fi(w)| = 1 for all i, and log(ΘK(w)) = 0. Conversely, if
log(ΘK(w)) = 0, then |fi(w)| = 1 for all i; hence every power of w is contained in the finite set ΘK(OK)∩B
(where B = { v : |vi| ≤ 1 }). Hence wa = wb for some a 6= b, and w is a root of unity.

Hence
0 → W

i−→ O∗
K

log ◦ΘK−−−−−→ Γ → 0

is a short exact sequence, where W is the grape of roots of unity in K and Γ = log(ΘK(O∗
K)); i.e. log ◦ΘK

induces an isomorphism O∗
K/W ∼= Γ.

Sadly, Γ is not a full lattice in Rr1+r2 : if α ∈ O∗
K , then |N(α)| = 1; hence

r1∏
i=1

|fi(α)| ·
r2∏
i=1

|fr1+i(α)|2 = 1

and thus
r1∑
i=1

log(|fi(α)|+ 2

r2∑
i=1

log(|fr1+i(α)|) = 0

So log(ΘK(α)) ∈ H where H ⊆ Rr1+r2 is the hyperplane given by

r1+r2∑
i=1

xi = 0

(where the xi are the coordinates in Rr1+r2).

Theorem 2.22 (Dirichlet Unit Theorem). Let K be a number field of degree d with r1 real embeddings and
r2 pairs of complex embeddings. Then O∗

K
∼= W × Zr1+r2−1 where W is the grape of roots of unity in K.

Exercise 2.23. Compute O∗
K , where K = Q(

√
2).

It turns out O∗
K is generated by −1 and 1 +

√
2. By the Dirichlet unit theorem, we get that the torsion-

free part of O∗
K is cyclic; hence, since 1 +

√
2 has infinite order, it must be a power of the generator. But if

1 +
√
2 is a power of some α ∈ O∗

K , then in particular every coordinate of 1 +
√
2 in Minkowski space is a

power of the corresponding coordinate of α; i.e. fi(α)n = fi(1+
√
2) for all i. But then |fi(α)| ≤ |fi(1+

√
2)|

for all i, which yields a box in Minkowski space; checking every element of the box, we find that none of
them has 1+

√
2 as a power. (In principal this would involve checking every power of everything in the box;

however, for any α in the box we note that once n becomes large enough that αn lands outside the box, we
can stop checking.)

Proof of Theorem 2.22. We have maps

K∗ θK−−→
r1∏
i=1

R×
r2∏
i=1

C log−−→ Rr1+r2

Let Γ = log|θK(O∗
K)|. We will prove that Γ is a full lattice in the (r1 + r2 − 1)-dimensional space H =

{ (x1, . . . , xr1+r2) : x1 + · · ·+ xr1+r2 = 0 }.

1. Modulo units, there are only finitely many elements of OK of norm N , for any fixed N . Indeed, if
N(α) = N , then N((α)) = |N |, and N ∈ (α); so there are only finitely many choices for (α), and hence
only finitely many choices for α up to units.
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2. Note that Γ is a discrete subset of Rr1+r2 because θK(OK) is discrete in Minkowski space.

3. Let A be the fundamental domain of OK in Minkowski space. Pick C > 2d vol(A). Choose a1, . . . , aN ∈
OK such that every α ∈ OK with 1 ≤ |N(α)| ≤ C satisfies α = uai for some u ∈ O∗

K and some
i ∈ { 1, . . . , N }.

4. Write θK = (f1, . . . , fr1 , fr1+1, . . . , fr1+r2). Choose c1, . . . , cr1+r2 ∈ R>0 with c1 · · · cr1+r2 = C.

5. Define

X = { (x1, . . . , xr1 , zr1+1, . . . , zr1+r2) : |xi| < ci, |zi| < ci } ⊆
r1∏
i=1

R×
r2∏
i=1

C

Set

T =

N⋃
i=1

[θK(ai)]
−1 ·X

(where the reciprocal is taken component-wise).

6. Note that T is bounded. We will show that H is covered by the translates of log|T | by Γ.
If −→v ∈ H then the inverse image of log|X| −−→v contains a non-zero vector θK(α) for some α ∈ OK by
the convex body theorem. Hence if −→v = log(y) then θK(α) = xy−1 for some x ∈ X. Then N(α) < C
by definition of X and H, so uα = ai for some i. So y = xθK(α)−1 = xθK(a−1

i u); so
−→v︸︷︷︸
∈H

= log|xθK(a−1
i )|︸ ︷︷ ︸

∈log|T |

+ log|θK(u)|︸ ︷︷ ︸
∈Γ

So H is covered by Γ-translates of log|T |. But log|T | has finite volume; so there is a fundamental
domain of Γ of finite volume, and Γ is a full lattice.

Theorem 2.22

Exercise 2.24. Compute Z[
√
3]∗.

Fact 2.25. Any finite subgrape of F ∗ is cyclic if F is a field.

3 Factorization of primes in extensions
Given an extension L/K of number fields and a non-zero prime ideal P of OK , how does POL factor into
prime ideals of OL?

Fact 3.1. If P is a prime ideal of OL, then Q = P ∩ OK is prime.

In this case we say that P lies over Q. Now, QOL is an ideal of OL, though not necessarily prime; we
also have that QOL ⊆ P . So

QOL = P a
r∏

i=1

P ai
i

where Pi 6= P for any i.

Definition 3.2. We set

e(P/Q) = a

f(P/Q) = [OL/P : OK/Q]

The former is called the ramification index of P over Q, and the latter is called the inertia degree of P over
Q (or sometimes the residue degree of P over Q).

Example 3.3. Let L = Q(i) and K = Q. Let Q = (2) and P = (1 + i). From previous work we know that
QOL = P 2; hence e(P/Q) = 2. We also have f(P/Q) = 1 because |OL/P | = |OK/Q| = 2.

17



Remark 3.4. In general we can compute inertia degrees just from the norms of P and Q, since the quotients
are always finite.
Example 3.5. Let L = Q(i) and K = Q. Let Q = (3) and P = (3). Then e(P/Q) = 1 and f(P/Q) =
[Z[i]/(3) : Z/(3)] = 2.
Example 3.6. Let L = Q(i) and K = Q. Let Q = (5) and P = (2 + i) or (2 − i). (It doesn’t matter which
because they are conjugate over K, and hence the ramification indices and inertia degrees are the same.)
Then e(P/Q) = 1 since QOL = (2 + i)(2− i), and f(P/Q) = [Z[i]/(2 + i) : Z/5] = 1 (since N(2 + i) = 5).
Remark 3.7. Suppose K ⊆ L ⊆ M are number fields; suppose P ⊆ OM is prime, and let Q = P ∩ OL and
R = P ∩ OK = Q ∩ OK . Then

e(P/R) = e(P/Q)e(Q/R)

f(P/R) = f(P/Q)f(Q/R)

(This last is because [OM/P : OK/R] = [OM/P : OL/Q][OL/Q : OK/R].)

Theorem 3.8. Suppose L/K be number fields; suppose Q ⊆ OK is a non-zero prime ideal. Factor QOL =
P e1
1 · · ·P er

r . Then
r∑

i=1

e(Pi/Q)f(Pi/Q) = [L : K]

Proof. We check the case K = Q. Note that

N(QOL) =

r∏
i=1

N(Pi)
ei

Since K = Q, we have that
N(QOL) = |OL/QOL|

and we may write Q = (q). But by the Chinese remainder theorem we have

OL/QOL
∼= OL/P

e1
1 × · · · × OL/P

er
r

where ei = e(Pi/Q). Hence

q[L:K] = |OK/Q|[L:K]

= |OL/QOL|
= |OL/P

e1
1 | · · · |OL/P

er
r |

= N(P1)
e1 · · ·N(P er

r )

= (qf(P1/Q))e(P1/Q) · · · (qf(Pr/Q))e(Pr/Q)

as desired. Theorem 3.8

Definition 3.9. Suppose L/K be an extension of number fields; suppose a ∈ L. Consider T : L → L given
by Ta(x) = ax; then Ta is a K-linear transformation. We then define

trL/K(a) = tr(Ta)

NL/K(a) = det(Ta)

Remark 3.10.

trL/K(a) =

r∑
i=1

fi(a)

NL/K(a) =

r∏
i=1

fi(a)

where f1, . . . , fr : L → K are the embeddings of L into K. That is, fix an embedding ϕ : K ↪→ C and let
f1, . . . , fr be the embeddings L ↪→ C such that fi � K = ϕ. Equivalently, regard K and L as K-algebras,
and let f1, . . . , fr be the K-embeddings (that is, embeddings of K-algebras) L ↪→ K.
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Exercise 3.11. Let L = Q(
√
2,
√
3) and K = Q(

√
2). One checks that OL = Z

[√
2,

√
2+

√
6

2

]
and that

disc(OL) = 28 · 32. Factor (2), (3), and (5) in OL and compute all of the ramification indices and inertia
degrees that come up.
Example 3.12. Let K = Q(

√
2) and L = Q(

√
2,
√
5). Let a =

√
2 +

√
5. Then

trL/K(a) = (
√
2 +

√
5) + (

√
2−

√
5)

= 2
√
2

NL/K(a) = (
√
2 +

√
5)(

√
2−

√
5)

= −3

(using Remark 3.10). Alternatively, we can use the definitions: we use the basis { 1,
√
5 } for L over K.

Then

Ta(1) =
√
2 +

√
5

↔ (
√
2, 1)

Ta(
√
5) =

√
2 ·

√
5 + 5

↔ (5,
√
2)

Hence
[Ta] =

(√
2 5

1
√
2

)
and

trL/K(a) = 2
√
2

NL/K(a) = −3

Remark 3.13. Suppose K ⊆ L ⊆ M is a tower of fields. Then

NL/R(NM/L(a)) = NM/K(a)

trL/K(trM/L(a)) = trM/K(a)

We also have NL/K(a), trL/K(a) ∈ K, and if a ∈ OL then NL/K(a), trL/K(a) ∈ OK .
Remark 3.14. The converse to the last statement is false; there are a with NL/K(a), trL/K(a) ∈ OK but
a /∈ OL. (Note that NL/K(a) and trL/K(a) are, up to sign, coefficients in (the monic minimal polynomial of
a over K raised to the power [L : K(a)]).)

We also want to define NL/K(I) for an ideal I ⊆ OL. Factor

I = P a1
1 · · ·P ar

r

for prime ideals Pi ⊆ OL. Now, if K = Q, then

NL/K(I) = (p1)
a1f(Pi/pi) · · · (pr)arf(Pr/pr)

(where Pi ∩ Z = (pi)).

Definition 3.15. We set
NL/K(I) = Q

a1f(P1/Q1)
1 · · ·Qarf(Pr/Qr)

r

where Qi = Pi ∩ OK .

Exercise 3.16. (Continuation of Exercise 3.11.) Let K = Q(
√
2) and L = Q(

√
2,
√
3). Then OL =

Z
[√

2,
√
6+

√
2

2

]
with disc(OL) = 28 · 32. Factor (2), (3), and (5), in OL, and compute all relevant e and

f values that arise. Further compute NL/K

(√
6+

√
2

2

)
and trL/K

(√
6+

√
2

2

)
.
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Suppose now that L/K is a Galois extension. Say P ⊆ OK is prime; factor POK = Qe1
1 · · ·Qeg

g .

Claim 3.17. e1 = · · · = eg and f1 = · · · = fg.

Example 3.18. This is not necessarily true if L/K is not Galois. Consider L = Q( 3
√
2), K = Q, and P = (5).

Then OL contains Z[ 3
√
2] as a subring of finite index, and 5 - disc(Z[ 3

√
2]). So (Z[ 3

√
5])Q∩Z[ 3√2] = (OL)Q and

Z[ 3
√
2]/(Q∩Z[ 3

√
2]) ∼= OL/Q for any Q containing 5. Hence we can do our computations in Z[ 3

√
5] instead of

OK . Now

Z[ 3
√
2]/(5) ∼= Z[x]/(x3 − 2, 5)

∼= (Z/5Z)[x]/(x3 − 2)
∼= (Z/5Z)[x]/(x+ 2)(x2 − 2x− 1)

Hence
(5) = (

3
√
2 + 2, 5)︸ ︷︷ ︸
f=1

(
3
√
4− 2

3
√
2− 1, 5)︸ ︷︷ ︸

f=2

Proof of Claim 3.17. This follows from the fact that if Qi ∩ OK = Qj ∩ OK for prime ideals Qi, Qj ⊆ OL,
then there is some element σ ∈ Gal(L/K) satisfying σ(Qi) = Qj ; it remains to check this fact.

Fix i; choose α ∈ Qi such that α ≡ 1 (mod Qj) for all j 6= i. (Possible by the Chinese remainder
theorem.) Then NL/K(α) ∈ P ⊆ OK . But

NL/K(α) =
∏

σ∈Gal(L/K)

σ(α) ∈ Qj

for all j, because P ⊆ Qj for all j. Hence for each j there is some σj in the Galois grape with σj(α) ∈ Qj .
But σj(α) ≡ 1 (mod QK) for all other k; so σj(α) /∈ Qk for k 6= j. So σj(Qi) = Qj . Claim 3.17

Given σ ∈ Gal(L/K), can we “reduce σ modulo P” for some prime ideal P ⊆ OL?
We cannot!

Example 3.19. Consider L = Q(
√
2, K = Q, and P = (7,

√
2− 3). Then

OL/P ∼= Z[
√
2]/(7,

√
2− 3)

∼= Z[x]/(x2 − 2, x− 3, 7)
∼= (Z/7Z)[x]/(x2 − 2, x− 3)

= (Z/7Z)[x]/(x− 3)
∼= Z/7Z

But if σ is the non-trivial automorphism of L over K, we would be trying to fill in the following diagram:

OL OL

OL/P OL/P

σ

q
q◦σ

q

σ

The universal property of quotients tells us that σ ∈ Gal((OL/P )/(OK/P ∩ K)) exists exactly when P ⊆
ker(q ◦ σ) = σ−1(P ); i.e. when P = σ(P ).

Definition 3.20. For fixed P , we have that DP = {σ ∈ Gal(L/K) : σ(P ) = P } is a subgrape of Gal(L/K),
called the decomposition grape of P . We then get a homomorphism ϕP : DP → Gal((OL/P )/(OK/P ∩K)),
called the decomposition homomorphism. This homomorphism need not be injective; we thus define the
inertia grape of P to be

IP = ker(ϕP ) = {σ ∈ DP : σ = 1 in Gal((OL/P )/(OK/P ∩K)) }
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Exercise 3.21. As in Exercise 3.16, we let L = Q(
√
2,
√
3), so OL = Z

[√
2,

√
6+

√
2

2

]
, and we let K = Q so

that OK = Z. We saw that

P2 =

(√
6 +

√
2

2
+ 1,

√
2

)

P3 =

(√
6 +

√
2

2
+
√
2, 3

)

P5 =

(√
6 +

√
2

2
− 3

√
2 + 3, 5

)

were prime. Find DP and IP for all of these ideals.

Definition 3.22. Suppose L/K is an extension of number fields; suppose I ⊆ OL is an ideal. The codifferent
of I is

I∗ = {x ∈ L : trL/K(xI) ⊆ OK }

This turns out to be a fractional ideal of OL. The codifferent of L/K is the codifferent of OL over K. The
different of I is (I∗)−1; the different of L/K is DL/K = (O∗

L)
−1.

Example 3.23. We compute the codifferent of (1) in Z[
√
2] over Q; i.e. the codifferent of Q(

√
2) over Q. Note

that tr(a+ b
√
2) = 2a; we thus require that 2a ∈ Z. Further note that tr((a+ b

√
2)
√
2) = tr(2b+a

√
2) = 4b;

we thus require that 4b ∈ Z. Hence

(1)∗ =

{
k

2
+

`
√
2

4
: k, ` ∈ Z

}
=

(√
2

4

)

We thus also get that the different is DQ(
√
2)/Q = (I∗)−1 = (2

√
2).

Fact 3.24. II∗ = O∗
L.

Proof. It is easily seen that II∗ ⊆ O∗
L; hence

I∗ ⊆ I−1O∗
L ⊆ I∗

and I−1O∗
L = I∗. Fact 3.24

Fact 3.25. If I ⊆ OL then (I∗)−1 ⊆ OL.

Proof. This is just because if I ⊆ J then J∗ ⊆ I∗. Fact 3.25

Example 3.26. Compute the different of L = Q(
√
5) over Q. Well, OL = Z

[
1+

√
5

2

]
. We want tr(a+ b

√
5) =

2a ∈ Z and tr
(
(a+ b

√
5)
(

1+
√
5

2

))
= a+ 5b ∈ Z for a, b ∈ Q. We thus get that a+ b

√
5 = `

2 + 1
5

(
m− `

2

)√
5.

Hence

O∗
L =

{
`

(
5−

√
5

10

)
+m

(√
5

5

)
: `,m ∈ Z

}
=

(
5−

√
5

10
,

√
5

5

)
=

(√
5

5

)

(since 5−
√
5

10 =
√
5
5

(
−1+

√
5

2

)
). Hence DL/K = (

√
5).

Fact 3.27. DM/K = DM/LDL/K . Also, if L/K is Galois, then for all σ ∈ Gal(L/K) we have σ(DL/K) =
DL/K .

Definition 3.28. The discriminant of L/K is ∆L/K = NL/K(DL/K).

Theorem 3.29. (disc(OK)) = ∆K/Q.

21



Proof. We will show that disc(OK)2 generates ∆2
K/Q. For any ideal I ⊆ OK , we have that I = a1Z+· · ·+anZ

for some a1, . . . , an ∈ OK . The ideal I∗ is a∗1Z+ · · ·+ anZ∗ where a∗i ∈ K is given by tr(aia∗j = δij . So O∗
K

(the codifferent of OK) is a1Z∗ + · · · + a∗nZ where OK = a1Z + · · · + anZ. But O∗
K is a fractional ideal of

OK ; so there is some non-zero m ∈ Z with mO∗
K ⊆ OK . Define I = mO∗

K ; then

NK/Q(DK/Q)
2 =

1

NK/Q(O∗
K)2

=
m2n

NK/Q(I)2
=

m2n∆K

disc(ma∗1, . . . ,ma∗n)
=

∆K

disc(a∗1, . . . , a∗n)

(since O∗
K)−1 = DK/Q). (Here we regard NK/Q(DK/Q) as an integer by identifying it with a generator of

this ideal.) (Here ∆K refers to disc(K) = disc(a1, . . . , an).)

Claim 3.30. disc(a∗1, . . . , a∗n) = 1
disc(a1,...,an)

.

Proof. We note that

disc(a1, . . . , an) = det

f1(a1) · · · fn(a1)
...

. . .
...

f1(an) · · · fn(an)


2

disc(a∗1, . . . , a∗n) = det

f1(a
∗
1) · · · f1(a

∗
n)

...
. . .

...
fn(a

∗
1) · · · fn(a

∗
n)


2

But the (i, j) entry of the product of these two matrices is

f1(ai)f1(a
∗
j ) + · · ·+ fn(ai)fn(a

∗
j ) = trK/Q(aia

∗
j ) = δij

Hence disc(a∗1, . . . , a∗n) = 1
disc(a1,...,an)

. Claim 3.30

Theorem 3.29

Fact 3.31. ∆M/K = ∆
[M :L]
L/K NL/K(∆M/L).

Some hard facts:

Fact 3.32.

1. Say P ⊆ OL is prime; let Q = P ∩OK and e = e(P/Q). Then P e−1 | DL/K and if gcd(e,NL/Q(P )) = 1
then P e - DL/K .

2. Suppose n ∈ Z; suppose S is a finite set of prime ideals of OK . Then the set of extensions L/K with
[L : K] ≤ n and L ramified only over primes in S is finite.

3. (Due to Hermite.) Suppose n ∈ Z. Then there are finitely many number fields with discriminant at
most n.

Example 3.33. Let L = Q(
√
2,
√
3) so that OL = Z

[√
2,

√
6+

√
2

2

]
; let K = Q(

√
2) so that OK = Z[

√
2].

Compute ∆L/K .
Steps:

1. Compute O∗
L (codifferent, not grape of units) over K.

2. Invert it to get DL/K .

3. Compute NL/K(DL/K) = ∆L/K .
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4 Interlude—Finite fields
Suppose we have a field extension K of Fp with pd elements; so [K : Fp] = d. Then K∗ has pd − 1 elements
and is a grape; so K is the splitting field of xpd − 1. One checks that it is also a separable extension; hence
every extension of finite fields is Galois. But splitting fields are unique up to isomorphism; hence up to
isomorphism there is exactly one field with pd elements.

How do they relate? In partial diagram:

Fp4 Fp6

Fp2 Fp3 Fp5

Fp

In general, the lattice of finite fields of characteristic p is isomorphic to the lattice of positive integers under
the divisibility relation.

What of the Galois theory? What is Gal(Fpk/Fp)? There is a natural automorphism Frobp : Fpk → Fpk

given by Frobp(α) = αp. By Fermat’s little theorem we get that Frobp fixes Fp pointwise. Is it true that
Gal(Fpk/Fp) = 〈Frobp〉?

Well, |Gal(Fpk/Fp)| = k. What is |〈Frobp〉|? Well, (Frobp)
n(α) = αpn ; so (Frobp)

n is trivial if and only
if α = αpn for all α ∈ Fpk . But Fpk is the splitting field of xpk − x; so the order of Frobp divides k. Can
it be smaller? Well, any α fixed by (Frobp)

n satisfies xpn − x = 0, and there are no more than pn such α;
hence the order of Frobp is k.

So Gal(Fpk/Fp) = 〈Frobp〉. So Gal(Fpk/Fp) is cyclic; thus Gal(Fpn/Fpm) is also cyclic, and is generated
by (Frobp)

m.
Exercise 4.1. Let a ∈ F53 = F5(a) be a root of x3 + 3x+ 7. Express the other two roots as x+ ya+ za2 for
some x, y, z ∈ F5.

5 Slightly less finite fields
Suppose now we have a Galois extension of number fields L ⊇ K; suppose we have P ⊆ OL lying over
Q ⊆ OK . Recall that

DP = {σ ∈ Gal(L/K) : σ(P ) = P }
IP = {σ ∈ DP : σ ≡ id (mod P ) }

Definition 5.1. Suppose L/K be a Galois extension of number fields; suppose P ⊆ OL is a prime ideal
lying over Q ⊆ OK . The decomposition field of P over K, denoted ZP is the fixed field of DP . The inertia
field of P over K, denoted FP , is the fixed field of IP . (This notation is not standard.)

Remark 5.2. If P1 and P2 both lie over Q, then DP1
and DP2

are conjugate; so ZP1
and ZP2

are isomorphic.

Theorem 5.3. Suppose L/K is a Galois extension of number fields; suppose P ⊆ OL is prime and Q =
P ∩ OK . Let Z = ZP be the decomposition field of P ; let P = P ∩ OZ . Then

1. P is the only prime ideal of OL that lies over PZ .

2. [L : Z] = |DP | = e(P/Q)f(P/Q).

3. e(PZ/Q) = f(PZ/Q).

Proof.
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1. Well, Gal(L/Z) = DP ; so Gal(L/Z) fixes P . But Gal(L/Z) acts transitively on the primes lying over
PZ (see the proof of Claim 3.17).

2. Well,

[L : K] = e(P/Q)f(P/Q)(index of DP in Gal(L/K)) =
e(P/Q)f(P/Q)[L : K]

|DP |
Hence |DP | = e(P/Q)f(P/Q).

3. Well, [L : Z] = e(P/PZ)f(P/PZ); so [L : K] = e(P/PZ)f(P/PZ)[Z : K]. But [L : K] = e(P/Q)f(P/Q)[Z :
K]; so e(P/PZ)f(P/PZ) = e(P/Q)f(P/Q). So e(PZ/Q) = f(PZ/Q) = 1. Theorem 5.3
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