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My thanks to Bahaa Khaddaj for the use of his notes for the lectures I missed.
All rings are commutative and have unity.

Definition 0.1. A number field is a finite extension of Q. An algebraic number is an element of a number
field.

Definition 0.2. An algebraic integer is an « € C such that Z[a] is a finitely generated Z-module.

Definition 0.3. Suppose K is a number field. We define the ring of integers of K, denoted O, to be the
set of algebraic integers lying in K.

In fact, Ok is a ring. That 0 € Ok is obvious; closure under addition, multiplication, and additive
inverses will follow from the following theorem.

Theorem 0.4. Suppose o € C. Then « is an algebraic integer if and only if p(a) = 0 for some monic
p € Zx].

Proof.

(=) Suppose « is an algebraic integer. Then Z[a] is a finitely generated Z-module, say by fi(a), ..., fao(@).
Let k = max{deg(f;):¢€{1,...,n}}+ 1. Then
ak = alfl(a) +oF anfn(a)
So if
p(a) = " +arfi(@) + -+ anful2)

then p € Z[z] is non-zero and monic, and p(a) = 0.

(<= ) Suppose
ak+ak_1ak*1+~~+a0:0

where ag,...,ar_1 € Z. Then {a*71 ... a} generates Z[a] as a Z-module, and Z[a] is finitely
generated as a Z-module.



[0 Theorem 0.4

Remark 0.5. o € Q¥® is an algebraic integer if and only if its monic minimal polynomial over Q has integer
coeflicients.

Hence if o, € Ok, then Z[a, (] is finitely generated. But Z[a + 3], Z[aS], and Z][—«] are submodules of
Z|a, 8], and Z is Noetherian; so Z[a + 8], Z[af], and Z][—a] are finitely generated, and a4 8, a8, —a € Ok.
So Ok is a ring.

1 Dedekind domains

Definition 1.1. A number ring is the ring of integers of a number field.

It turns out that for number rings, being a UFD is equivalent to being a PID. Not all rings satisfy this
property:
Ezample 1.2. Z[+/10] is not a UFD: 10 = +/10v/10 = 2 - 5, and all of +/10, 2, and 5 are irreducible.

We define a kind of ring that better corresponds to number rings:

Definition 1.3. Suppose D is a domain, T' C D is a subring, and « € D is an element. Then « is integral
over T if and only if p(a)) = 0 for some monic p € T[z].

Fact 1.4. If T is Noetherian, then « is integral over T if and only if T[a] is a finitely-generated T-module.
Definition 1.5. The integral closure of T in D is {a € D : « is integral over T }.
Fact 1.6. The integral closure of T in D is a ring.
So the ring of integers Ok in a number field K is the integral closure of Z in K.
Definition 1.7. We say D is integral over T if every element of D is integral over T.

Fact 1.8. Suppose A C B C C are domains. If B is integral over A and C is integral over B, then C is
integral over A.

Hence the integral closure of O in K is Ok, since every element of the integral closure of Ok in K is
integral over O, and is therefore already in Of.

Definition 1.9. A Dedekind domain is a domain D that is not a field satisfying the following:
1. D is Noetherian.
2. Every non-zero prime ideal of D is maximal.
3. D is integrally closed in its field of fractions.

Proposition 1.10. Suppose K is a number field of degree d over Q; let Ok be the ring of integers in K.
Suppose I C O is a non-zero ideal. Then I =2 7% as additive grapes.

Proof. We first check the case I = O.

Claim 1.11. For any o € K there is some n € Z such that na € Ok.

Proof. Let p € Q[z] be the monic minimal polynomial for a over Q. Then for any n € N, we have np(%) is
the monic minimal polynomial for na over Q (where a = deg(p)). If we choose n to cancel the denominators
of the coefficients of p(x), we get that n*p(%) € Z. O Claim 1.11
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Now, let ay,...,a4 be a basis for K as a vector space over Q. By the claim, we may assume that
ai,...,on € Ok. So Ok contains an additive subgrape additively isomorphic to Z%; i.e. Zay + - - - + Zayg.

We now find non-zero A € Z such that AOg C Zay + - -+ + Zayg. Choose any b € Og. Since aq, ..., ay
are a basis for K over QQ, we may write

b=aia1+ -+ agay
for some (unique) aq,...,aq € Q. For simplicity, we assume that K is a Galois extension of Q. Then for
every o € Gal(K/Q) we get a new equation
0:(b) = aroi(aq) + - - + agoi(aq)
This yields a d x d system of linear equations in aq, ..., aq:
Ol(b) aq
=M
O’d(b) Qaq
But M is invertible: since the ai, ..., aq are unique, there is a unique solution. So, by Cramer’s rule, we get
aq g1 (b) 1 g1 (b) 1
=M = M| e —0O4
: det (M) : det(M) &
Qaq O’d(b) Od( )

But det(M) € O; so there is an integer A € Z such that m € Ok. So each Aa; is in O. But Aa; € Q;

so each a; € Z, and Ab € Zay + -+ - + Zay. Since A doesn’t depend on b, we get that

AOKQZCU"F""FZO@

So Ok is additively isomorphic to a subgrape of Z¢ that contains a copy of Z¢; so O = Z% as an additive
grape.

Now, let I C Ok be any non-zero ideal; let o € I be non-zero. Then yOg C I, and yOx = O = 74

as additive grapes; better yet, we have I C O = Z% as an additive grape. So I = Z¢ as an additive grape.

O Proposition 1.10

This then implies that every non-zero prime of O is maximal: for any prime ideal P of Ok, we note
that the quotient Ok /P is an integral domain and it must have finite rank, and is thus a field. So Ok is a
Dedekind domain for every number field K.

In general, every PID that is not a field is a Dedekind domain. We also have that every number ring is
a Dedekind domain. In general, we can ask how close a number ring is to being a PID.

Definition 1.12. Suppose D is a domain with fraction field K. A fractional ideal of D is a D-submodule
I of K such that ol C D for some a € K\ {0}.

Remark 1.13. Fractional ideals of D are é[ for a € D\ {0} and some integral ideal I C D (i.e. an ideal in
the usual ring-theoretic sense).

Definition 1.14. A fractional ideal I is invertible if there is some fractional ideal J such that I.J = D = (1).
The ideal grape of D is the grape of invertible fractional ideals under -.

Definition 1.15. Suppose I is a non-zero fractional ideal of D. We define I=! = {a € K:al C D}.

Theorem 1.16. I~! is a fractional ideal, and II=" = D if and only if I is invertible; furthermore, in this
case we have that I-' is the unique fractional ideal J with IJ = D.

Proof. We first check that I~! is a fractional ideal. It is immediate that 0 € I='. To check closure under
addition, suppose a,3 € I~1; then (a+ B)I = al + BI C D, and o + 3 € I~!. To see closure under
multiplication by arbitrary elements of D, suppose o € I~! and § € D; then éal C 6D C D, and do € I~ 1.
So I~! is a fractional ideal.

We now check the equivalence above.



(=) Immediate.

(<= Suppose I is invertible; then there is some fractional ideal J of D with IJ = D. Hence J C I~ 1;
then IJ CII"'CD=1J,and II"' = D.

For the “furthermore”, we note that
J=JII'Yy=JNI'=pDrt=r1"!
O Theorem 1.16
Ezample 1.17. I = (2,1 ++/5) C Z[/5] is not invertible. To compute I~!, we note that a + byv/5 € I~! is
equivalent to requiring that (1 + v/5)(a + bv/5) € Z[V/5] and 2(a + bv/5) € Z[\/5]. So
I_lz{g—i—%\/g:mzn (m0d2)}

2%
:{Z”an \/S:n,kez}

:{nl—i—Q\/g—l—k\/g:n,kEZ}

(529

2

But

(2D+(1+M§)D)<(1+2*/5>D+\/SD> = (1+V5)D+2vV5D+ (3+V5)D+ (5++v5)D C 2Z+V5Z S D

Definition 1.18. Suppose D is a domain. The class grape of D is the following quotient:
Cl(D) = { invertible fractional ideals }/{ principal fractional ideals }

If every fractional ideal of D is invertible, then Cl(D) measures how close D is to being a PID; in
particular, D is a PID if and only if CI(D) = {1} (under the above assumption).
We will show that every non-zero fractional ideal of a Dedekind domain is invertible.

Definition 1.19. Suppose D is a domain with fraction field K; suppose P C D is a prime ideal. We define
the local ring of D at P to be
Dp:{ozeK:oz:%,bgéP}

One checks that this is a ring whose unique maximal ideal is

PDPZ{%:aeP,b¢P}

Ezample 1.20. Consider D = Z, P = (2). Then
a a
DP—Z(Q)—{ae@.a—g,b¢(2)}—{a€(@.a—g,bodd}

Now, given § € Q, we can write
a/
b T
where 2 { a’b’; this n is called the (additive) 2-adic valuation of §, denoted va(%). Then Zg) = {a € Q :
va(a) >0}

A result from algebra:

a

Theorem 1.21. If D is a Dedekind domain, then Dp is a PID.



Definition 1.22. A local ring is a ring that has a unique maximal ideal.
Definition 1.23. A discrete valuation ring (or DVR) is a local ring that is also a PID (and is not a field).

Now, if Dp is a DVR with maximal ideal PDp, then PDp = uDp; we call u a uniformizing parameter
or uniformizer for Dp.

Let K be the fraction field of Dp (which is also the fraction field of D). If &« € K\ {0}, we define
vp(a) =max{n € Z:a € (PDp)" } where (PDp)? = Dp and (PDp)~t =u"'Dp.
Ezample 1.24. Using D = Z and P = (2) as above, we note that v3(47) = 0 since 2 is a uniformizing
parameter and 47 € Zgy but 47 ¢ 27 5.

In general we have that vp(a) is the largest n such that o = u"r where r € Dp; ie. 7 = § with b ¢ P.
To achieve the maximum, we demand that a,b ¢ P; i.e. vp(«) is the unique n such that there is some unit
v of Dp with o = u™v.

Remark 1.25. PDp is always principal by the above; if P = (r1,...,r,) and none of r1,...,r, generated
PDp as an ideal of Dp, then they would all have valuation greater than 2. Hence if u is a uniformizing
parameter, then u? | r; for all i € {1,...,n}; so u? | r for all r € 1 Dp + -+ +1,Dp = PDp, and in
particular we get that u? | u. So u is a unit, a contradiction. So PDp = 7;Dp for some i € {1,...,n}.

Theorem 1.26. Every non-zero fractional ideal in a Dedekind domain is invertible.

Proof. Suppose D is a Dedekind domain; suppose [ is a fractional ideal of D. Then there is some a € K
(where K is the fraction field of D) such that ol C D is an integral ideal of D. Better yet, af is invertible
if and only if I is invertible; we may thus assume that I C D. Now, II~! C D by definition of I~!.

If II=' # D, then there is some non-zero prime ideal P of D with II~! C P C D; consider the ideal
Ip = IDp of Dp. Also consider the ideal (I7)p = I"*Dp of Dp. Finally, consider (Ip)~!, the inverse of
the fractional ideal of Ip of Dp.

Now, Dp is a DVR, and in particular is a PID; so Ip, (Ip)~ !, and (I7!)p are all principal, and thus
invertible. So Ip(Ip)~! = Dp.

Claim 1.27. (Ip)~' = (I"1)p.

Proof. We first note that

(I_l)p:{%:bgéP,algD} C {% : %IPQDP}Z(IP)—l
For the converse, write I = a1 D +---+a,D. Then x € (Ip)~! implies that za; € Dp for all i; in particular,
there is some ¢; € D \ P such that c;za; € D. Now, if ¢ = ¢1 - ¢,, then (cx)a; € D for all i. So cx € 71,
and c ¢ P;soz € (I7Y)p. O Claim 1.27

So(II™Y)p=Ip(I7')p =Ip(Ip)~' = Dp. But II"* C P C D,so (II"')p C Pp & Dp, a contradiction.
0 Theorem 1.26

Theorem 1.28. Every non-zero fractional ideal of a Dedekind domain D can be written uniquely (up to
permutation) as a product of prime ideals and their inverses.

Proof. Let I be a non-zero fractional ideal of D; then I = %J for some integral ideal J of D and some a € D.
If J + (a) can be factorized, then I can as well; we may thus assume that I C D.

Now, if I = D, then I is the empty product of prime ideals, and we're done. If I is prime, we’re also
done. Otherwise, there is some maximal ideal P with I C P C D. Then [ = P(IP~1), and P and IP~! are
both integral ideals of D. Iterating, we get

ICIP'CcIP'P;'C---CD

Since D is Noetherian, we get that this process must terminate. Hence IP{1 ~Pl=Dand I =P - P,.
Uniqueness follows straightforwardly from the invertibility of all of the P;. [0 Theorem 1.28

So every ideal in a Dedekind domain factors uniquely into prime ideals. If we want to understand all
ideals, it then suffices to understand prime ideals.



Ezample 1.29. What do the prime ideals of Z[i] look like? Well, if p C Z[i] is prime, then Z[i]/p is a finite
field (by Proposition 1.10). So Z[i]/p 2 F,, for some prime p; in other words, p € p. i.e. Every prime p of
Z[i] contains some prime p of Z; hence p O (p). Hence if we factor (p) inside Z[i], we will find p as a factor.

The upshot is that if we want to find all of the primes of Z[i], all we have to do is start with the primes
p € Z and factor (p) in Z[i]; every p will show up as a factor for some p.

Case 1. By homework, if p =3 (mod 4) then (p) is prime in Z[i].
Case 2. If p =2, we note that 2 = (1 +4)(1 —4) = (1 — )%
Case 3. Suppose p =1 (mod 4). Note that
Z[i)/(p) = Z[z]/(p,2* +1) 2 F,/(a* + 1)
Fact 1.30. 22 +1 = (z — a)(z — b) in F,[z] for some a,b € F,.
Claim 1.31. a # .

Proof. We simply note that ged(z? + 1, ddm (22 4+ 1)) = 1, and hence 22 + 1 has no multiple roots.
Alternatively, note that p # 2, so b = —a # a. O Claim 1.31

Then (z — a) and (z — b) are comaximal, and

Fp/(g;2+1) []/(x—a) pl2]/(x =)
Zlz]/(2* + 1,2 — a,p) x Z[z]/(2* + 1,2 = b,p)
Zlz]/(x = a,p) x Z[z]/(x = b,p)

One then checks (by hand) that (p) = (p,i—a)(p,i—b). (Or one follows the maps through and verifies
that the above guarantees equality.)

Hence all the primes in Z[i] are
o (p) for p=3 (mod 4)
o (141i)=(1-14)
e (p,i—a) where p=1 (mod 4) and a? = —1 (mod p)
The above algorithm also works for any quadratic number field; we’ll end up with
e Some (p) already prime.
o Some that are of the form (p) = p*.
o The rest of the form (p) = (p,x — a)(p,x — b).

We will later show that the class grape is finite.
Question 1.32. How do we tell if we’ve written down all generators of the class grape?

Some definitions:

Definition 1.33. Suppose K is a number field; suppose « € K and [K : Q] = n. We then have n embeddings
fi,---y fn: K — C. We define the trace of a to be

trK Zfz

We define the norm of a to be



Remark 1.34. Note that trx (a), Nk (a) € Q, as they are both Galois-invariant. Further note that if « € Ok,
then tr(a), N(«) € Z; this is because the characteristic polynomial of « is

" —tr(a)z" ' 4 - £ N(a)
and the characteristic polynomial is a power of the minimal polynomial, which has integer coefficients if
a € Ok.
The converse is false: there are o € K \ Ok with tr(a), N(a) € Z.
Ezample 1.35. Let K = Q(c) where « satisfies 2% + 2% + 22 + 4. Then a € K \ Ok, but

tr(a) = —1
N(a) = -4
Remark 1.36. tr(a+ 8) = tr(a) + tr(8) and N(af) = N(a)N(B).
Definition 1.37. We say aq,...,a, € K is an integral basis if n = [K : Q] and

O =Zoy + -+ + Zay,

ie. if aq,...,a, € Ok, they form a Q-basis for K, and Og = Zay ® -+ ® Zay,. (I think this is just a
Z-module basis.)
Remark 1.38. Integral bases always exist, since by Proposition 1.10 we know Oy = Z".

Question 1.39. How do we find an integral basis in practice?

Definition 1.40. Let n =[K : Q]. If a, ..., ap, € K, we define the discriminant of aq,. .., ay to be

2

fl(al) fl(Oén)
det(fj(ai))® = |det | 1 . :
falar) oo falan)

Ezample 1.41. A special case: we would like to find oo € Ok such that Ox = Z[a]. This is equivalent to
1,a,...,a" ! being an integral basis. Computing the discriminant, we find

1 file) A@)? - fi(e)"!
disc(1,a,...,a" 1) = | det | : : . .

1 fa@) ful@)? o fu(@)™?
[ — £5()?

i<j
n
= disc <H(m - fz(a))>
i=1
= the characteristic polynomial of «
Remark 1.42. If aq, ...,y € K is not a vector space basis for K over Q then disc(aq,...,a,) = 0. This is
because in this case we have cq,...,c, € Q not all 0 such that

n
E City; = 0
=1

So

n

0=f; (Z Ciai> = Zcifj(ai)
i=1

i=1
for all j. Hence the columns of (f;(c;));; are linearly dependent; hence the determinant is 0, and hence the
discriminant is 0.



If, on the other hand, «q,...,q, is a basis, then the discriminant is non-zero. This is because if

disc(ai,...,an) = 0, then the columns of (fj(a;));; are linearly dependent. So there are ci,...,¢, € Q
such that for all 5 we have
i (Z CMi) = Zcz’fj(%‘) =0
i=1 i=1

But the f; are embeddings; so

n
E City; = 0
=1

and the «; are linearly dependent.
Remark 1.43. It {a,...,a, }and { B1, ..., B, } are both bases, how do disc(ay, . .., o, ) and disc(B1, . . ., Bn)
relate? Well, there is a unique Q-linear T': K — K such that «; — f;. In this case, we get T - (f;())i; =

(f;(B:))ij; hence disc(B1, ..., By) = det(T)? disc(a, . . ., o).
If in fact {aq,...,ap } is an integral basis and S, ..., B, € Ok, then T' € My, (Z); hence

disc(B1,. .., Bn) = (det(T))*disc(ay, . . ., ay)

where (det(7))? is a square integer. Hence if {ay,...,q, } and {B1,...,B, } are both integral bases, then
T is invertible. But T' € M,,(Z); so det(T) = £1, and det(T)? = 1. So in this case we get disc(a,...,a,) =
disc(By, ..., Bn)-

This allows the following definition:
Definition 1.44. Suppose K is a number field. We define the discriminant of K to be disc(aq,...,an)

for any integral basis «aq, ..., a,. We just showed that this is well-defined and independent of the choice of
integral basis.

Remark 1.45. If B1,...,Bn € Ok and disc(B1, ..., B,) # 0 is not divisible by the square of an integer, then
{B1,...,Bn} is an integral basis.

Unfortunately, the converse fails.

Definition 1.46. Say K is a number field with O its ring of integers; say I C Ok is a non-zero ideal. We
define the norm of I to be N(I) = |Ok/I|.

(Recall that the norm of an element is given by

Na= [ file

f: K—C
We will see later how these relate.)
_disc(])
Theorem 1.47. N(I)? = Tiee(K) -
(I think we define disc(I) to be the discriminant of an integral basis for I; i.e. aq,...,aq € I such that

I =Zay + -+ + Zag, where d = [K : Q]. Recall by Proposition 1.10 that I = Z% as additive grapes.)

Proof. Let {a1,...,aq} and {by,...,bs } be integral bases for Ok and I, respectively; let T: O — I be
the unique Q-linear transformation with 7'(a;) = b; for all 4.
Recall from linear algebra that

+(volume of the polytope spanned by {a1,...,aq })det(T) = (volume of the polytope spanned by {b1,...,bq})

But then

volume of the polytope spanned by {ay,...,aq}
det(T)| = =[O0k :I|=|0k/I| =N
[det(T)| volume of the polytope spanned by {b1,...,bs} (O : 1] = 10k /1] (1)
(The third equality follows by noting that (O /I) = (K/I)/(K/Ok), with K/I the fundamental polytope
of I and K /O the fundamental polytope of Of. Here the fundamental domain of a grape action is a set
that every orbit intersects exactly once.)

But (?iisss((zl()) = (det(T))* = N(I)* by Remark 1.43. 0 Theorem 1.47




We can thus extend the definition of norm to fractional ideals as follows:
Definition 1.48. Suppose I is a fractional ideal of Og. We define

disc(1)
disc(K)

N() =

Definition 1.49. A sequence A L B % Cis exact at B if im(f) = ker(g).

TODO 1. Swapped definition of norm of ideals?

Theorem 1.50. Given non-zero fractional ideals I and J of O, we have N(I)N(J) = N(IJ).
Proof. If I = al’, then playing with integral bases we get

N(I) = \/diSC(K) :\/diSC(K) _ 1 [disc(K)

disc(I) disc(al’)  |N(a)]\ disc(I")
So if we choose a@ € Ok such that al,aJ C O, then
N(a)’N(I)N(J) = N(aI)N(aJ)
and
N(a)®*N(IJ) = N(alaJ)

Hence if we can prove the theorem for al and a.J, it will follow for I and J; i.e. we may assume I,J C Ok.
Now, since O is a Dedekind domain, we can factor I and .J into primes

I=PH...pw
J=pPh... pbr
Then N(I) = N(P*---P% = N(P{")---N(P%) by Chinese remainder theorem. (Pairwise comaximality

¢
follows by noting that any prime in the factorization of P/ + P;j must contain both P;"* and P;j , and hence
must be both P; and P}, a contradiction if I # J; so the prime factorization is empty, and P/ + P;” = Og.

Alternatively, a general theorem states that powers of distinct maximal ideals are comaximal.) So

N(I) = N(Pi")---N(P)

N(J)=N(P")---N(P")
N(J) = N(P{T#9) - N(Per)
It then suffices to show that N(P;"*) = N(P;)*. We proceed by induction on a;; the claim is clear if a; = 1.

For the induction step, we note that
0— PU/PHTY 5 O /PHT —  Og /P =0

—— ——

N(P;) elements N(P;)% elements
is exact. The latter claim about sizes is just the induction hypothesis; for the former, we use the following:
Claim 1.51. P¢/P%* = PaDp /P Dp where D = O, P = P;, and a = a;.
Proof. We define ®: P%/P**! — PDp/P* 1 Dp by a + P**! — a + P Dp. This is clearly an injective
homomorphism. For surjectivity, we note that P%/P%*! is a vector space over Ok /P via

(a+ P)(B+ P*™) = ap + P!

It has dimension 1, as it is spanned by u® (where PDp = (u)); surjectivity then follows because because
P%/P**! is a 1-dimensional vector space over Dp/PDp and P® # P+l O Claim 1.51

In particular, for a = 0, we get that Ox /P = Dp/PDp, which has N(P) elements. But P /P ™!
is a 1-dimensional vector space over O /P;, as noted above; so by the short exact sequence, we get that
Ok /P! has N(P;)N(P;)% = N(P;)%*! elements. O Theorem 1.50

Theorem 1.52. If a # 0 then N((a)) = |N(a)|.

Proof. If K = Q(«), then the characteristic polynomial of T: K — K given by z — ax is the monic minimal
polynomial for o over Q. Its constant term is both N(«a) and det(T) = £N((«)). O Theorem 1.52



2 Geometry of numbers

Definition 2.1. Suppose K is a number field. Let fi,..., f,, be the distinct embeddings of K — R; let
Fri41sGrit1s .-y fritras Gri+ry be the complex conjugate pairs of embeddings K — C (i.e. with f; = §;).

Then [K : Q] =71 + 2r9 = d. Define
Ox: K — (HR) x (HC)
i=1

=1
by
o= (fl(a)v'"7f7"1(a)7fr1+1(a)7 e "fT1+T2(a))

This O is the Minkowski map. Its codomain is Minkowski space, usually considered as a vector space over
R.

The choice of which embedding is f; and which is g; is not important.
Fact 2.2. The image of Ok under Ok is a lattice.
Ezample 2.3. Let K = Q(i). We pick fi(a+ bi) = a+ bi) and g1(a + bi) = a —bi. Sory =0 and rp = 1.
Then Ok = Z[i], and its image under O is Z[i].
Ezample 2.4. Let K = Q(v/2). Here as well we have r; = 2; we pick fi(a+bv2) = a+bv/2 and fo(a+byv2) =
a—bv/2. We note that Q gets mapped to the diagonal, with Z mapped to the integer points on the diagonal.
We also note that v/2Q gets mapped to the antidiagonal. We finally note that the “unit ball” (in which
|N(a)| < 1) is a hyperbola, since it is defined by 1 = [N (a)| = | fi(e) f2()|, and hence is given by y = . In
particular, it isn’t compact.
Remark 2.5. If the unit ball s compact, then there are finitely many units in O, since units have norm 1.
Remark 2.6. © is a Q-linear map, since if @ € Q and z € K then f;(ax) = fi(a) fi(z) = afi(z).

We think of Minkowski space as “unfolding” the Q-vector space so it no longer lies on the real line.

Aside 2.7 (How to compute Ok from K). Find some algebraic integers aq,...,a, € K, and consider
R = Z|ay,...,ay]; compute the discriminant A of R. By Remark 1.43 we have disc(Of )(det(T))? = disc(R).
But all of these are integers; so if A is square-free, then [@f : R] =1, so R = Ok.

N.B. It might be the case that disc(O) has a square factor.
Ezample 2.8. Find Ok (with proof) if K = Q(a) where « is a root of 2% + 3z + 7 = 0.

We first make a guess; we let D = Z[a], and we guess that D = Ox. We know that d?sii?((,i)) =[Ok : D)?

(where the index is taken as additive grapes).
Let’s compute disc(D). If disc(D) is square-free, then since [Ok : D]? | disc(D), we get that [Ok : D] = 1
and D = Og.

Fact 2.9. |disc(Z[])| = |disc(m(x))| where m(zx) is a monic minimal polynomial for a over Q.
The discriminant of a monic polynomial is
[Tt —ri)?
i<j
where the r; are the roots of the polynomial. It also coincides with the resultant of the polynomial and its
derivative, given by

1 Ay N ago
1 (n—1 ag
Res(f, f') = det ! 4n—1 0
’ n (n—1)a,_1 ay
n (n—1)ap—1 - ay
n (m—1ap-1 -+ a1
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where f(z) = 2" + a, 12" ' + -+ + ag. For example,

1 0 -2
disc(z? —2)=det [2 0 0 | =-8

02 0

In our case, we end up with
10 3 70
010 3 7
|disc(Z[a])| = |disc(z® +3z4+7) | =|det [3 0 3 0 0f|=1431=23%.53

0 3030
0 0 3 00

Thus [Ok : D] is 3 or 1. Now, if every local ring D¢ (for @ a prime ideal of D) is a DVR, then D is a
Dedekind domain (since D is already Noetherian and one-dimensional (i.e. every non-zero prime ideal is
maximal)). Conversely, if any D¢ is not a DVR, then D is not a Dedekind domain.

How does this help? Well, Dedekind domains are integrally closed in their field of fractions, and K is the
fraction field of D; hence if D is a Dedekind domain then Ox C D, and Ok = D.

Now, let Q C D be a prime ideal. How do we check if Dg is a DVR? Well, Dq is a DVR if and only if
QDg is a principal ideal. But every non-zero prime ideal () of D contains a unique positive prime integer g.

Case 1. If ¢ # 3 then for any prime ideal P of Ok with Q@ C P we have Dg = (Ok)p, which is a local
ring.

Proof. If D = Ok, we're done. Otherwise, we have [Ok : D] = 3, so for all a € Ok we have 3a € D;
hence 3a € Dg, and a € Dg. So Ox C Dg, and (Ok)p C Dg. Hence (O)p = Dg. O

Case 2. We must now check all the prime ideals @ of D containing 3. By the correspondence theorem,
these are in bijection with prime ideals of

D/(3) = Z[x] /(23 + 3z + 7,3) = (Z/3Z)[z] /(x> + 3z + 7) = (Z/3Z)[z] /(x + 1)3

Fact 2.10 IMPORTANT). In general the prime ideals of F[x]/(g) correspond to the irreducible factors
of g.

In our case, we get that the only prime ideal of D/(3) is (a+1), which corresponds to the ideal (a+1, 3)
of D. So @ = (a+ 1, 3) is the only prime ideal of D = Z[a] containing 3.

We now check if QDg is principal. (This is equivalent to checking that @ is a DVR.) Well, QDg =
(3, + 1)Dg is a principal ideal if and only if @Dg = (3)Dg or QDg = («a + 1)Dg, which occurs if

and only if —2- € Dg or “H € Dg. We easily get that ¢ Dg; on the other hand, we have

3
a—+1 3 a+1

(@+1)P=a*+3a®+3a+1=-3a—-T7+3a*+3a+1=3a>—-6=3(a*—-2)
Hence
3 (a+1)
a+1 a?—2
But a? —2 ¢ Q (since (a+1)(a—1) = a? —1 € @, and hence otherwise we would have 1 € Q). Hence
ai_‘_l € Dg. So QD is principal.
So D is a Dedekind domain, and D = Ok.

EDQ

Theorem 2.11 (Convex body). Suppose L is a lattice in R"; i.e. L is a subgrape of R™ isomorphic to Z"
with the property that a basis for L (over Z) is also a basis for R™ as a vector space. Let F' be the fundamental
domain of L; i.e. a subset of R™ such each coset of L intersects in exactly one point. (We will need F to
have a sensible volume, so we will require that it be measurable, and in practice we will imagine it to be
the parallelepiped given by the basis for L.) Let S be a symmetric convex subset of R™. (“Symmetric” here
means that if x € S then —x € S.) If vol(S) > 2" vol(F) then S N L contains a non-zero vector.
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Proof. We may assume S is bounded. For any 7 € L we define
= S+ T = {37+ 7T eSs)
Then vol(S)
o~ vol(F')
Hence for some o # % € L, we must have T= NT% # 0. Then for some 2,7 €8, we have

1 1
§7+7:§7+E?

vol(T%) =

and thus

7—?:%(7—?)65
So W —uwe(LnS)\{0}. O Theorem 2.11

Ezample 2.12. Consider K = Q[v/15], in which Ok = Z[V15]. Draw the lattices Ok, (2,3 — v/15), and
(3,4/15) in Minkowski space. Compute the fundamental domain volumes, discriminants, and smallest non-
zero vectors.

Theorem 2.13. Suppose K is a number field of degree n = 11 + 2ro (where 1 is the number of real
embeddings of K and rq is the number of complex conjugate pairs of complex embeddings). Let A C Ok be
an additive subgrape of finite index m. Then there is some a € A with

|N(a)|§<4) nrlm disc(Ok)

™

(Note here that \/disc(Ok) is the volume of the fundamental domain of Ok, and my/disc(Ok) is the volume
of the fundamental domain of A.)

Proof. For B € R define

T1 T2
Sp = (al,...,arl,ﬁl,...,ﬁm):Z|aj|+22|ﬁj| <B} CR" xC"™

j=1 j=1

For example, if 71 = 0 and ro = 1 then we end up with the disc 2|z| < B; if 71 = 2 and ro = 0 then we end
up with the diamond |z| + |y| < B. It turns out Sp are “roughly” products of the things in the above two
examples. In particular, Sp is bounded, symmetric, and convex, with volume

> (5) "
Pick B > ((4)"nlmy/Te(0x)) " Then
vol(Sp) = 2™ (5)702g > on (2‘"%@)

But the volume of a fundamental polytope of A is 27"2(m+/disc(Ok)); hence by Theorem 2.11 there is
non-zero o € ©~1(O(A) N Sp).
Now, let fi,..., fr,4+r, be the embeddings of K into R and C (up to complex conjugation). Then

Z\fj |+2Z|fn+] <(j)mmm>+g

n

4\ -
= Z‘f] |+22|fn+3 S(w) nlm+/disc(Og) + &’

Z|f] |+ Z|f’!‘1+] S (i) %'m dle(OK) —|—E

12



1
(Here e = B— ((%)mn!mw / disc(OK)) ", and &’ and €” can be computed from ¢; in particular, they approach

0 as € approaches 0.)
Hence, by the arithmetic-geometric mean inequality, we get that

r2
N ()| = T (a |H|fw _(j) 2 /(O + <"

j=1

We somehow concluded that an « can be chosen to work for all sufficiently small €. Hence this is our desired
Q. 0 Theorem 2.13

In particular, if A =T is an ideal, then m = N(I); so we have a € I with

N(a)| < (4);“ Tsc(ORIN ()

™

Ezercise 2.14. Verify the above theorem for K = Q(+/15) with ideals Z[v/15], (2,3 — v/15), and (3, /15).

When working in a fixed K with r; real embeddings and r5 pairs of complex embedings, we typically

denote |
4\ " n!
M = () :—n disc(Ok)

T
Theorem 2.15. Suppose K is a number field. Then Cl(Ok) is finite.

Proof. Well, for any B € R we have that there are only finitely many fractional ideals I with N(I) < B; it
then suffices to show that there is some B such that every ideal class contains a representative of norm < B.
Let B=M = ( )Tz :,'L V/disc(Ok). We will show that for any fractional ideal I there is some o € K*
with N(al) < M.
Suppose I is a non-zero fractional ideal; then there is an integral ideal J C O in the ideal class of 1~1.
Then by Theorem 2.13 there is some o € J \ {0} with |[N(a)| < M - N(J). But I = aJ ! in Cl(Ok), and

[N ()]
IN(J)|

as desired. [J Theorem 2.15

N(aJ ™t = <M

Ezample 2.16. Compute the ideal class grape of O in K = Q(«) where o® +3a+7 = 0. (See Example 2.8.)
Our steps:

1. We compute Ok. In our case, Example 2.8 yields that Ok = Z[a].

2. We compute

4\ " n!
M= <) :—n\/disc((’)K) ~10.7 < 11

™

3. Pick representatives of each of the residue classes of Z/[M]Z, apply f, and factor the results; ideally
pick representatives n that make f(n) small.

-5 | —-133 =-7-19
—4|-69 =-3-23
-3 1 -29
-2 =7
—-113
07
1111
2121 =3-7
3143
4183
5|147 =377

13



Why is this useful? Well, for any n we have |N(«a — n)| is the absolute value of the constant coefficient
of the minimal polynomial for @ — n. But the minimal polynomial for & — n is f(x + n), which has
constant term f(n); hence |[N(a —n)| = |f(n)].

4. List all the ideals of O of norm < M.

2) is prime since Z[a]/(2) = (Z/2Z)[x]/ (23 + z + 1) is a field.

3) = (3,a+ 1)3, as computed in Example 2.8; we let P3 = (3, + 1).
)
)

(
(
o (5) is prime.
o () =(7,0)(7,a+2)(7,a+5) = P;Q7Ry.
But any prime P of norm < 11 would have to satisfy |O /P| = p° for some p € {2,3,5,7}, and hence

would have to contain one such p. So these are all the primes of norm < 11.

5. The above primes thus generate C1(K); in fact we can omit the principal ideals, so we get CI(K) =
(P3, Pr,Qr, Rr).
We immediately get that P§ =1 and P;Q7R7; = 1. Using the table, we see that |[N(a)| = |f(0)] = 7,
and hence that |Ok /()| = N((«)) = |N(a)| = 7; in particular we get that 7 =0 in Ok /(«), and that
7 € (a), and thus that P; = (7,«) = («). So P is principal, and P; = 1.
We likewise get that P3R7; = 1 (since |[N(a —2)| = 21 implies that P3R7; = (o —2)) and that P3Q2 = 1
(since |N(a — 5)| = 3 - 7% implies (o — 5) = P3Q2 since 5 € Q7 and 5 ¢ Ry).
Continuing, we find P3 =1 and @7 = 1. So Cl(K) is trivial.

Ezercise 2.17. Compute C1(Q(v/46)). (It will be the trivial grape.)

We showed last time how to compute the ideal class grape, modulo being able to figure out if a given
ideal is principal. We do an example of the last question.
Ezample 2.18. Say K = Q(+/10); then O = Z[v/10]. Consider P = (2,+/10). Is P principal?

Well, if P is principal, then P = («) for some «, and |N(a)| = N(P) = 2. But a = a + bv/10 for some
a,b € 7Z. So

a® — 106* = £2

Reducing this equation modulo 5, we find that a®> = £2 (mod 5), which has no solutions for a. So P is not
principal.

This strategy works for all quadratic number fields.
Example 2.19. Let K = Q(a) where a® — 2a+ 5 = 0.

1. Tt turns out then that Ok = Z[a]. (One checks that the discriminant is —643, which is prime, and in
particular is square-free.)

2. The Minkowski constant is then

v ()7 (8 Vi - 2 2 vew < s

™

(Observe that making the Minkowski constant a bit bigger won’t be problematic; it may just make a
bit more work.)

3.

3| -16 =-2' = _N(a+3)
2|1 = —N(a+2)
16 =23 =-N(a+1)
0|5 = —N(«a)

14 =22 =_-N@-1)
29 =32  =_N(a-2)
3026 =213 =-N(a—3)




(2)= P - Q2
norm 2 norm 4
B)= P - Qs
norm 3 norm 9
5)= P - Qs
norm 5 norm 25
(7)
d.
P2Q2 =1
PR3 =1
P5Q5 =1
P2P3 =1
P5 =1
Pi=1

Manipulating, we find that P = P3 and P> = Q2. So CI(K) = (P,) with P? = 1. Is P, principal?
Well, P, = (2,«+1). Our plan is to find a small box B such that if there is an element of norm 2 then
there is an element of norm 2 in B; we will then look in B. Now,

Ok(a) = (fi(a), f2(a)) eR x C

Checking by hand, we find that

10
1<|f2(a+2)|<§

If |[N(u)| = 2, then by multiplying and dividing by appropriate powers of « + 2 (which has norm 1),
we can ensure that

1<l <3
Since |N(u)| = 2, we get that |f1(w)||f2(u)| = 2; hence
S <1t <2
So our box is
[fi(w)] < 210
o) < 2

This box contains 1 — «, «, 1, 2 — «, and other elements that obviously don’t have norm +2. (e.g.
2 — 2« has a factor of 2, and hence its norm has a factor of 4, and is not 2.)

What does the grape O} look like? Well, it contains elements of finite order, namely the roots of unity

in K.
v (1)« (1)

r1+re

log: Vi — H

i=1

Definition 2.20. Let

be Minkowski space. We define a map
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(where Vie = Vie \ { (T1, -+, @iy s Zryt1s e oo Zryrg) S X1+ Ty Zpy 41 Zry g = 0}) by
log(xla R SRS S EERER) ZT'1+7'2) - (10g(|1‘1|), s 710g(|$7-1 |)a 210g(|2,-1+1|), ce 210g(|2’r1+7—2 |))
(The base doesn’t particular matter; we can choose e.)

The point of log is to turn the multiplicative set OF into the additive subset log(©x (O3%)).

Remark 2.21. One notes that log and Ok are homomorphisms; what is ker(logo©g)? It’s the grape of
roots of unity. Indeed, if w is a root of unity, then |f;(w)| = 1 for all 4, and log(® (w)) = 0. Conversely, if
log(©x (w)) = 0, then |f;(w)| = 1 for all i; hence every power of w is contained in the finite set O x (Ox)N B
(where B = {v : |v;] <1}). Hence w® = w® for some a # b, and w is a root of unity.

Hence

log 0@

0—>Wi>(’)}< r—o

is a short exact sequence, where W is the grape of roots of unity in K and I" = log(O (O} )); i.e. logoOk
induces an isomorphism Oj /W =T.

Sadly, I is not a full lattice in R™*7"2: if o € O}, then |N(a)| = 1; hence
T1 T2
[TIf@l - TTlfr i) =1
i=1 i=1

and thus , v
> log(Ifi(a)| + 2> log(|fr+i(@)]) =0
i=1 i=1

So log(©k («)) € H where H C R™ "2 is the hyperplane given by

ri4r2

i=1

(where the z; are the coordinates in R"1772).

Theorem 2.22 (Dirichlet Unit Theorem). Let K be a number field of degree d with r1 real embeddings and
o pairs of complex embeddings. Then O =2 W x Z™+72=1 where W is the grape of roots of unity in K.

Ezercise 2.23. Compute O}, where K = Q(+/2).

It turns out O} is generated by —1 and 1+ V2. By the Dirichlet unit theorem, we get that the torsion-
free part of Oy is cyclic; hence, since 1 + V/2 has infinite order, it must be a power of the generator. But if
1+ v/2 is a power of some a € O, then in particular every coordinate of 1 4 v/2 in Minkowski space is a
power of the corresponding coordinate of a; i.e. f;(a)™ = fi(14+/2) for all i. But then |fi(a)| < |f:(1+/2)]
for all ¢, which yields a box in Minkowski space; checking every element of the box, we find that none of
them has 14 1/2 as a power. (In principal this would involve checking every power of everything in the box;
however, for any « in the box we note that once n becomes large enough that o™ lands outside the box, we
can stop checking.)

Proof of Theorem 2.22. We have maps
71 T2 1
K* 25 TR < [JC =5 Rrite
i=1 i=1

Let T' = log|0x (O )|. We will prove that I' is a full lattice in the (r; + ro — 1)-dimensional space H =
{(@1, o s Tpygry) 2 T1+ Ty gy, = 0

1. Modulo units, there are only finitely many elements of Ok of norm N, for any fixed N. Indeed, if
N(a) = N, then N((a)) = |N|, and N € («); so there are only finitely many choices for («), and hence
only finitely many choices for a up to units.
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2. Note that T is a discrete subset of R™ "2 because 0k (Of) is discrete in Minkowski space.

3. Let A be the fundamental domain of O in Minkowski space. Pick C' > 2¢ vol(A). Choose aq,...,ay €
Ok such that every o € Ok with 1 < |N(«)| < C satisfies & = wua; for some u € Oj and some
ie{l,...,N}

4. Write O = (f1,. .-, fris fratts - oy fritrs). Choose ¢1,... Cry4ry € Rog with 1 -+ ¢py gy = C.
5. Define
T1 T2
X ={(@1y ey gy Zry ol e ooy By )+ 24| < €1y ]2 < e} C HR X H(C
i=1 i=1

Set
N

T = U[@K(ai)]71 - X

i=1
(where the reciprocal is taken component-wise).

6. Note that T is bounded. We will show that H is covered by the translates of log|T| by T".
If ¥ € H then the inverse image of log|X| — ¥ contains a non-zero vector fx (a) for some o € Ok by
the convex body theorem. Hence if ¥ = log(y) then O (o) = 2y~ for some z € X. Then N(a) < C
by definition of X and H, so ua = a; for some i. So y = x0x (o)™ = 20k (a; 'u); so
U =loglzfx (a7 )| + log|0x (u)]

€H Elog|T| er

So H is covered by I'-translates of log|T|. But log|T| has finite volume; so there is a fundamental
domain of T" of finite volume, and T is a full lattice.

0 Theorem 2.22
Ezercise 2.24. Compute Z[v/3]*.
Fact 2.25. Any finite subgrape of F* is cyclic if F' is a field.

3 Factorization of primes in extensions

Given an extension L/K of number fields and a non-zero prime ideal P of Ok, how does POy, factor into
prime ideals of 07

Fact 3.1. If P is a prime ideal of O, then Q = PN Ok is prime.

In this case we say that P lies over ). Now, QOp is an ideal of Oy, though not necessarily prime; we
also have that QO C P. So

r

QOL — po HPiai

i=1

where P; # P for any i.

Definition 3.2. We set
e«(P/Q) =a
f(P/Q)=[0L/P:Ok/Q]

The former is called the ramification index of P over @, and the latter is called the inertia degree of P over
Q@ (or sometimes the residue degree of P over Q).

Ezample 3.3. Let L = Q(i) and K = Q. Let Q = (2) and P = (1 +4). From previous work we know that
QO = P?; hence e(P/Q) = 2. We also have f(P/Q) =1 because |Or/P| = |0k /Q| = 2.

17



Remark 3.4. In general we can compute inertia degrees just from the norms of P and @, since the quotients
are always finite.

Ezample 3.5. Let L = Qi) and K = Q. Let @ = (3) and P = (3). Then e(P/Q) = 1 and f(P/Q) =
[2[i]/(3) : Z/(3)] = 2.
FEzample 3.6. Let L = Q(¢) and K = Q. Let Q = (5) and P = (2+1i) or (2 —14). (It doesn’t matter which
because they are conjugate over K, and hence the ramification indices and inertia degrees are the same.)
Then e(P/Q) =1 since QO = (2+1i)(2 — i), and f(P/Q) = [Z[i]/(2+ 1) : Z/5] =1 (since N(2+ i) = 5).
Remark 3.7. Suppose K C L C M are number fields; suppose P C O); is prime, and let Q = PN Oy, and
R=PN0Og=0QN0Ok. Then

e(P/R) = e(P/Q)e(Q/R)

F(P/R) = f(P/Q)f(Q/R)
(This last is because [Op /P : Ok /R] = [On /P : O1/Q)[0OL/Q : Ok /R].)

Theorem 3.8. Suppose L/K be number fields; suppose Q C Ok is a non-zero prime ideal. Factor QO =
Pt Per. Then

r

> e(P/Q)f(P/Q) = [L: K]

i=1
Proof. We check the case K = Q. Note that

r

N(QOy) = [[ N (P~

i=1
Since K = Q, we have that
N(QOL) =[0L/Q0Oy|

and we may write () = (¢). But by the Chinese remainder theorem we have
OL/QOL = OL/Plel X oo X OL/PTET
where e; = e(P;/Q). Hence
q[L:K] _ |OK/Q|[LK]
=10./Q0L|
=|0OL/P{'|---|OL/Frr|

= N(P™ N (P)
- (qf(P1/Q))€(P1/Q) e (qf(Pr/Q))E(PT/Q)

as desired. O Theorem 3.8

Definition 3.9. Suppose L/K be an extension of number fields; suppose a € L. Consider T: L — L given
by To(z) = az; then T, is a K-linear transformation. We then define

trL/K(a) = tI‘(Ta)
N/ (a) = det(Ty)

Remark 3.10.
tro/x(a) =Y fi(a)
=1
Niyx(a) =] fi(a)
=1

where fi,...,f.: L = K are the embeddings of L into K. That is, fix an embedding p: K < C and let
fi,.-+, fr be the embeddings L — C such that f; [ K = ¢. Equivalently, regard K and L as K-algebras,
and let f1,..., f» be the K-embeddings (that is, embeddings of K-algebras) L — K.
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Ezercise 3.11. Let L = Q(\/ﬁ, \/g) and K = Q(ﬂ) One checks that O = Z{\/i%] and that

disc(Or) = 28 - 32. Factor (2), (3), and (5) in Oy, and compute all of the ramification indices and inertia
degrees that come up.

Example 3.12. Let K = Q(\/ﬁ) and L = Q(\/§7 \/5) Let a = v2 + +/5. Then
=2V2

Np/k(a) = (V2 + V5)(V2 — V5)
~ -3

(using Remark 3.10). Alternatively, we can use the definitions: we use the basis {1,v/5} for L over K.
Then

T.(1) = V2+V5

& (V2,1)
T.(V5) = vV2-V5+5
& (5,V2)
Hence Y
2 5
[Ta] = ( 1 \/Q)
and

Remark 3.13. Suppose K C L C M is a tower of fields. Then
Nz r(Nayp(a)) = Nayyx(a)
trr i (trar/(a)) = trar i (a)

We also have Ny k(a),tr/k(a) € K, and if @ € O then Ny g (a),trp x(a) € Ok.

Remark 3.14. The converse to the last statement is false; there are a with Ny x(a),trp x(a) € Ok but
a ¢ Op. (Note that Ny, k(a) and trp, i (a) are, up to sign, coefficients in (the monic minimal polynomial of
a over K raised to the power [L : K(a)]).)

We also want to define Ny k(1) for an ideal I C Of. Factor
I=p...Pr
for prime ideals P; C Op. Now, if K = Q, then
Npx(I) = (py) S Felpa) o (p,yard (Pr/pr)
(where P,NZ = (p;)).

Definition 3.15. We set ,
Niyie(1) = Q7M@) /@

where Q; = P, N Ok.

Ezercise 3.16. (Continuation of Exercise 3.11.) Let K = Q(v2) and L = Q(v/2,v/3). Then O =
Z{ﬁ, M} with disc(Op) = 28 - 32. Factor (2), (3), and (5), in Of, and compute all relevant e and

values that arise. Further compute Ny x| Y>2= ) and try /x| Y¥52= ).
f values th Furth Npyi (L2 and try, ) (V552
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el €g
1

Suppose now that L/K is a Galois extension. Say P C Ok is prime; factor POy = Q4.

Claim 3.17. ¢y =---=¢4 and fi = --- = fg.
Ezample 3.18. This is not necessarily true if L/K is not Galois. Consider L = Q(¥/2), K = Q, and P = (5).
Then Op, contains Z[/2] as a subring of finite index, and 5 { disc(Z[{/2]). So (Z[%])sz[%] = (0OL)q and

Z[V2]/(QNZ[V/2]) = Or/Q for any Q containing 5. Hence we can do our computations in Z[/5] instead of
Ok . Now

Z[V2)/(5) = Z[a] /(z* — 2,5)
= (2/52)[z]/(2® - 2)
= (Z/5Z)[x]/(x +2)(a* — 22 - 1)

Hence
(5) = (V2+2,5) (V4 —-2V2-1,5)
f=1 =2

Proof of Claim 3.17. This follows from the fact that if @Q; N Ox = @; N O for prime ideals Q;,Q; € Of,
then there is some element o € Gal(L/K) satisfying o(Q;) = Qj; it remains to check this fact.

Fix 4; choose a € @Q; such that @ = 1 (mod Q;) for all j # . (Possible by the Chinese remainder
theorem.) Then Ny i (a) € P C Ok. But

Npjr(e) = H o(a) € Q;

o€Gal(L/K)

for all j, because P C Q; for all j. Hence for each j there is some ¢; in the Galois grape with o;(a) € Q;.
But 0j(a) =1 (mod Q) for all other k; so o;(a) ¢ Qx for k # j. So 0;(Q;) = Q;. O Claim 3.17

Given o € Gal(L/K), can we “reduce o modulo P” for some prime ideal P C 07
We cannot!

Ezample 3.19. Consider L = Q(v/2, K = Q, and P = (7,2 — 3). Then

OL/P = ZIV3/(7,V2 - 3)
>~ Z[x] /(2 — 2,2 — 3,7)
= (2/72)[s)/ (2% — 2,5 — 3)
= (@)D (z - 3)
>7/77

But if o is the non-trivial automorphism of L over K, we would be trying to fill in the following diagram:

OL%OL

b

The universal property of quotients tells us that & € Gal((Or/P)/(Ok/P N K)) exists exactly when P C
ker(qo o) = o~ 1(P); i.e. when P = o(P).

Definition 3.20. For fixed P, we have that Dp = {0 € Gal(L/K) : o(P) = P} is a subgrape of Gal(L/K),
called the decomposition grape of P. We then get a homomorphism pp: Dp — Gal((Or/P)/(Ok/PNK)),
called the decomposition homomorphism. This homomorphism need not be injective; we thus define the
inertia grape of P to be

Ip =ker(pp)={o€Dp:o=1in Gal((OL/P)/(Ox/PNK))}
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Erercise 3.21. As in Exercise 3.16, we let L = Q(v/2,v/3), so O = Z{\@, \/6;\/5}, and we let K = Q so
that O = Z. We saw that
2
Py = <\/6;f +1, \/§>

Py = <\/6;ﬁ+\/§,3>

j <*/6;ﬁ3\/§+3,5>

were prime. Find Dp and Ip for all of these ideals.

Definition 3.22. Suppose L/K is an extension of number fields; suppose I C Oy, is an ideal. The codifferent
of I is

This turns out to be a fractional ideal of Oy,. The codifferent of L/K is the codifferent of Oy, over K. The
different of I is (I*)™"; the different of L/K is Dy /x = (O}) L.

Ezample 3.23. We compute the codifferent of (1) in Z[v/2] over Q; i.e. the codifferent of Q(v/2) over Q. Note
that tr(a+bv/2) = 2a; we thus require that 2a € Z. Further note that tr((a+bv/2)v/2) = tr(2b+ av/2) = 4b;
we thus require that 4b € Z. Hence

{5 e} ()

We thus also get that the different is Dy 5, ,q = (I~ = (2v2).
Fact 3.24. II* = O7.
Proof. 1t is easily seen that I1* C O7F; hence
rcrloy;cr
and [710; =I*. O Fact 3.24
Fact 3.25. If I C Op, then (I*)"! C Op.
Proof. This is just because if I C J then J* C I*. 0 Fact 3.25

Ezample 3.26. Compute the different of L = Q(v/5) over Q. Well, Oy, = Z[IZ—‘@} We want tr(a + bv/5) =
2a € Z and tr((a—i—b\/g)(HT\/g)) =a+5b € Z for a,b € Q. We thus get that a + bv/5 = £ + +(m— g)\/g

Hence
() (2) e} (9) ()

(since 5_1(‘)/5 = ﬁ(%ﬁ)) Hence Dy, x = (V5).

5

Fact 3.27. Dy/x = DurjDPryk- Also, if L/K is Galois, then for all o € Gal(L/K) we have o(Dr k) =
DL/K'

Definition 3.28. The discriminant of L/K is Ak = Nk (Dr k).
Theorem 3.29. (disc(Ok)) = Ak /q-
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Proof. We will show that disc(Og)? generates A%(/Q. For any ideal I C Ok, we have that [ = a1Z+ - -+a,Z
for some ay,...,a, € Ok. The ideal I* is aiZ + - - - + a,Z* where a} € K is given by tr(aia; = ;5. S0 OF
(the codifferent of Ok) is a1Z* + --- + aZ where Og = a1Z + - - - + a,Z. But O} is a fractional ideal of
Ok so there is some non-zero m € Z with mO7j C Og. Define I = mO%; then

N (D )2 _ 1 o m2" _ m2”AK _ AK
K/Q\TK/Q) = Nio(O%)?  Ng(l)?  disc(maj,...,ma%)  disc(af,...,a%)

e 'n

(since Oy )~ = Dgg). (Here we regard Ng o(Dk/q) as an integer by identifying it with a generator of
this ideal.) (Here A refers to disc(K) = disc(ay,...,a,).)

Claim 3.30. disc(af,...,a)) = -

T disc(ai,...,an) "

Proof. We note that

f1(a1) e fn(al)

disc(ay,...,a,) = det : . :
fl(an) e fn(an)
he) - filay)

disc(aj,...,a)) = det

falay) - falay)
But the (4, j) entry of the product of these two matrices is
filai) fr(al) + -+ + fulai) fu(a) = triglaia}) = 6i;

Hence disc(af,...,a)) = m O Claim 3.30
[0 Theorem 3.29

Fact 3.31. Ay = AMUN, (A

ol M/K = L/K L/K( M/L)
Some hard facts:

Fact 3.32.

1. Say P C Oy is prime; let Q = PNOk and e = ¢(P/Q). Then P*~' | Dy and if ged(e, Ny jo(P)) =1
then PeT,DL/K.

2. Suppose n € Z; suppose S is a finite set of prime ideals of Or. Then the set of extensions L/K with
[L: K] <n and L ramified only over primes in S is finite.

3. (Due to Hermite.) Suppose n € Z. Then there are finitely many number fields with discriminant at
most n.

Ezample 3.33. Let L = Q(v/2,/3) so that O, = Z{\/é, M}; let K = Q(v2) so that Ox = Z[V2).
Compute Ap k-
Steps:

1. Compute O3 (codifferent, not grape of units) over K.
2. Invert it to get Dy k-

3. Compute NL/K(DL/K) = AL/K
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4 Interlude—Finite fields

Suppose we have a field extension K of F, with p? elements; so [K : F,] = d. Then K* has p? — 1 elements

and is a grape; so K is the splitting field of 2P" — 1. One checks that it is also a separable extension; hence
every extension of finite fields is Galois. But splitting fields are unique up to isomorphism; hence up to
isomorphism there is exactly one field with p? elements.

How do they relate? In partial diagram:

Fyp
In general, the lattice of finite fields of characteristic p is isomorphic to the lattice of positive integers under
the divisibility relation.

What of the Galois theory? What is Gal(F,«/F,)? There is a natural automorphism Frob,: Fx — F
given by Frob,(a) = aP. By Fermat’s little theorem we get that Frob, fixes I, pointwise. Is it true that
Gal(F,» /IF,) = (Froby)?

Well, |Gal(F,x /F,)| = k. What is [(Frob,)|? Well, (Frob,)"(a) = aP"; so (Frob,)" is trivial if and only
if @ = a?” for all @ € Fyr. But Fx is the splitting field of 2" — z; so the order of Frob,, divides k. Can
it be smaller? Well, any « fixed by (Frob,)” satisfies 2P" —x = 0, and there are no more than p” such o;
hence the order of Frob, is k.

So Gal(F,«/IF,) = (Frob,). So Gal(F,«/F,) is cyclic; thus Gal(F» /F,=) is also cyclic, and is generated
by (Frob,)™.

Exercise 4.1. Let a € Fss = F5(a) be a root of 23 + 3x + 7. Express the other two roots as = + ya + za? for
some x,y, z € 5.

5 Slightly less finite fields

Suppose now we have a Galois extension of number fields L O K; suppose we have P C Of, lying over
Q C Og. Recall that

Dp={0€Gal(L/K):0(P)=P}
Ip={oce€Dp:o=id (mod P)}

Definition 5.1. Suppose L/K be a Galois extension of number fields; suppose P C Op is a prime ideal
lying over @ C Ok. The decomposition field of P over K, denoted Zp is the fixed field of Dp. The inertia
field of P over K, denoted Fp, is the fixed field of Ip. (This notation is not standard.)

Remark 5.2. If Py and P» both lie over @), then Dp, and Dp, are conjugate; so Zp, and Zp, are isomorphic.

Theorem 5.3. Suppose L/K is a Galois extension of number fields; suppose P C Oy, is prime and Q =
PNOgk. Let Z = Zp be the decomposition field of P; let P = PN QOgz. Then

1. P is the only prime ideal of Oy, that lies over Py.
2 (L 7) = |Dp| = ((P/Q)F(P/Q).
5. e(Pz/Q) = [(Pz/Q).

Proof.
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1. Well, Gal(L/Z) = Dp; so Gal(L/Z) fixes P. But Gal(L/Z) acts transitively on the primes lying over
Pz (see the proof of Claim 3.17).

2. Well,

[L:K]=e(P/Q)f(P/Q)(index of Dp in Gal(L/K)) = e(P/Q)f|(l};£|Q)[L : K

Hence |Dp| = e(P/Q)f(P/Q).

3. Well, [L: Z] =e(P/Pz)f(P/Pz);so[L: K] =e(P/Pz)f(P/Pz)[Z : K|. But [L: K] =¢(P/Q)f(P/Q)|Z :
K]; so e(P/Pz)f(P/Pz) =¢e(P/Q)f(P/Q). So e(Pz/Q) = f(Pz/Q) = 1. O Theorem 5.3
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