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1 Introduction

Some recent work in algebraic geometry can be understood as equipping a field with an operator (with some
additional conditions), and attempting to do algebraic geometry in the context of that operator. (So looking
at solutions to polynomials that also involve the operator.) Model theory seems to be the correct framework
for studying this.

No overall textbook, though individual sections may have references. He may periodically post notes. A
few assignments, maybe every other week, and perhaps a short oral final.

All rings are commutative with unity. (So ring morphisms preserve identity, subrings are assumed to be
unital, etc.) After Section 1.3 we assume that all fields are of characteristic zero.

Rahim is numbering the theorems etc. in class; I’ll put those numbers in parentheses after the automatic
theorem numbering LaTeX does.

I use the convention of conflating L with the L-formulas; so “φ ∈ L” means φ is an L-formula, and
“φ ∈ L(A)” means φ is an L-formula with parameters from A.
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1.1 Algebraically closed fields

We view fields as structures in the language L = { 0, 1,+,−,×} of rings. (Throughout this course L will
always denote the language of rings.) Consider the L-theory T of integral domains; note that T is a universal
theory. (In fact it is the universal theory of the theory of fields: the integral domains are precisely the subrings
of fields.)

We are interested in the existentially closed (e.c.) models of T ; i.e. the models M |= T satisfying the
following:
Suppose φ(x) is a conjunction of literals (i.e. atomic or negated atomic, so in this case a system of polynomial
equations and inequations) with parameters from M , where x = (x1, . . . , xn) is a tuple of variables; suppose
further that φ has a solution in some extension M ⊆ N |= T . Then φ has a solution in M .

Remark 1.1. If M is an existentially closed integral domain then it is a field. Indeed, if a ∈M is non-zero,
then xa = 1 has a solution in Frac(M), and thus in M . It is also algebraically closed: if P ∈ M [x] is
non-constant then P (x) = 0 has a solution in Malg, and thus in M .

The converse is a form of Hilbert’s Nullstellensatz: every algebraically closed field is an existentially closed
integral domain. We use model-completeness of the theory ACF of algebraically closed fields:

Proof. Suppose K is an algebraically closed field; suppose φ(x) is some conjunction of literals over K with
a solution in some integral domain R ⊇ K. Then K ⊆ R ⊆ Frac(R) ⊆ Frac(R)alg︸ ︷︷ ︸

L

with L an algebraically

closed field; so by model completeness we have K ⪯ L. But L |= ∃xφ(x); so K |= ∃xφ(x), and φ is solved in
K.

So the existentially closed integral domains are exactly the algebraically closed fields. Note also that the
class of algebraically closed fields are axiomatizable (namely by ACF). We say ACF is a model companion of
T : the theory of the existentially closed models of T . (Note that for general theories the class of existentially
closed models may not be axiomatizable; these have no model companion.)

Fact 1.2. A model of T always has an extension that is existentially closed.

The above is proven by iteratively adding solutions.

1.2 Differential fields

Our language is Lδ = { 0, 1,+,−,×, δ } with δ a unary function symbol.

Definition 1.3. A differential ring is a ring R equipped with a derivation; i.e. δ : R→ R satisfying

• δ(a+ b) = δa+ δb.

• δ(ab) = a(δb) + (δa)b (the Leibniz rule).

Example 1.4.

1. Any ring with the trivial derivation δ(a) = 0 for all a ∈ R is a differential ring.

2. If A is any ring we can consider R = A[t] with δ = d
dt .

3. The ring of smooth functions on R with the usual differentiation.

4. The field of germs of meromorphic functions (functions with isolated singularities) on some open U ⊆ C
equipped with the usual complex differentiation.

Exercise 1.5.

1. Suppose R is an integral domain and δ : R→ R is a derivation. Then δ extends uniquely to a derivation
δ : Frac(R) → Frac(R) given by

δ
(a
b

)
=

(δa)b− b(δa)

b2
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2. Suppose (R, δ) is a differential ring and I ⊆ R is an ideal. We say I is a differential ideal if δa ∈ I for all
a ∈ I. In this case δ induces a unique derivation δ : R/I → R/I given by δ(r + I) = δ(r) + I for r ∈ R.

3. Determine the differential ideals of A[t] as in the previous example.

Suppose R ⊆ S is a ring extension. A derivation δ : R→ S is an additive map satisfying the Leibniz rule
δ(ab) = a(δb) + (δa)b.

Exercise 1.6.

1. Suppose δ : R → F is a derivation where R ⊆ F is a field. Then δ extends uniquely to a derivation
Frac(R) → F .

2. Suppose δ : R → S is a derivation; suppose we have ideals I ⊆ R and J ⊆ S such that J ∩R = I (so
R/I ⊆ S/J). If δ(I) ⊆ J then δ extends uniquely to a derivation δ : R/I → S/J via δ(a+ I) = δ(a)+J .

3. Suppose δ : R → S is a derivation and we are given a ring homomorphism φ : S → S′ such that
φ ↾ R : R→ R′ is an isomorphism. Then φ ◦ δ ◦ (φ ↾ R)−1 : R′ → S′ is a derivation.

Remark 1.7. δ(1) = δ(1 · 1) = 1 · δ(1) + δ(1) · 1 = 2δ(1), so δ(1) is always 0. Hence δ(n) = 0 for n ∈ Z.

Proposition 1.8 (1). Suppose δ : R → S is a derivation (so R ⊆ S). Suppose P ∈ R[x1, . . . , xn] and
a = (a1, . . . , an) ∈ Rn. Then

δ(P (a)) =

n∑
i=1

∂P

∂xi
(a)δ(ai) + P δ(a)

where P δ(x) ∈ S[x1, . . . , xn] is obtained from P by applying δ to the coefficients.

Proof. We let x = (x1, . . . , xn).

Claim 1.9. If P (x) is a monomial (which for us means no leading coefficient) then

δ(P (a)) =

n∑
i=1

∂P

∂xi
(a)δ(ai)

Proof. We induct on the total degree. If deg(P ) = 0 then P = 1, and indeed δ(P (a)) = 0.
Suppose deg(P ) > 0. Then P (x) = xiQ(x) for some 1 ≤ i ≤ n with Q a monomial. Then

δ(P (a)) = δ(aiQ(a))

= (δai)Q(a) + aiδ(Q(a))

= (δai)Q(a) + ai

n∑
j=1

∂Q

∂xj
(a)δ(aj)

= (δai)Q(a) + ai
∂Q

∂xi
(a)δai + ai

∑
j ̸=i

∂Q

∂xj
(a)δaj

=
∂(xiQ)

∂xi
(a)δai +

∑
j ̸=i

∂(xiQ)

∂xj
(a)δaj

as desired. Claim 1.9
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Now, suppose P (x) = bQ(x) where b ∈ R an dQ(x) a monomial. Then

δ(P (a)) = δ(bQ(x))

= bδ(Q(a)) + (δb)Q(a)

= b

(
n∑

i=1

∂Q

∂xi
(a)δai

)
+ (δb)Q(a)

=

n∑
i=1

∂bQ

∂xi
(a)δ(ai) + δ(b)Q(a)

=

n∑
i=1

∂P

∂xi
(a)δ(ai) + P δ(a)

The general P is a sum of such; the result follows because

• δ((P +Q)(a)) = δ(P (a)) + δ(Q(a))

•
∂(P +Q)

∂xi
(a) =

∂P

∂xi
(a) +

∂Q

∂xi
(a)

• (P +Q)δ(a) = P δ(a) +Qδ(a). Proposition 1.8

This proposition is why differential algebra works out as nicely as it does. Note in particular that δ(ai)
always shows up as a linear term, regardless of the degree of the polynomial; so we can solve for it.

Corollary 1.10 (2). A derivation is determined by its values on generators.

Proof. Suppose we have a derivation δ : R → S and Λ ⊆ R generates R as a ring. Then if a ∈ R then
a = P (λ) for some λ = (λ1, . . . , λn) ∈ Λn and P ∈ Z[x1, . . . , xn]. Then

δa = δ(P (λ)) =

n∑
i=1

∂P

∂xi
(λ)δλi

(Note that P δ is 0 since the coefficients of P are integers.) So δ(a) is determined by δ(λ1), . . . , δ(λn).
Corollary 1.10

Lemma 1.11 (3). Suppose δ : R → S is a derivation. Consider the extension of rings R[t] ⊆ S[t]. Given
f ∈ S[t] there is a unique extension of δ to a derivation R[t] → S[t] such that δ(t) = f .

Proof. Uniqueness is by corollary (2), since R[t] is generated by R ∪ { t }.
For existence, we define δ : R[t] → S[t] by δ(P (t)) = P ′(t)f + P δ(t). Taking P ∈ R a constant polynomial

shows that this extends the original δ : R → S. Taking P = t shows that δ(t) = f . One checks that this
defines a derivation R[t] → S[t]. Lemma 1.11

Corollary 1.12 (4). Suppose F ⊆ K is an extension of fields of characteristic 0. Suppose δ : F → K is a
derivation; suppose a ∈ K.

1. If a ∈ F alg then there is a unique extension of δ to a derivation δ : F (a) → K.

2. If a /∈ F alg then for any b ∈ K there is a unique extension of δ to a derivation δ : F (a) → K such that
δa = b.

In particular, δ extends to a differential field (K, δ) and then uniquely to a differential field (Kalg, δ).

Proof.
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1. Let P (t) ∈ F [t] be the minimal polynomial of a over F . Note that P ′(a) ̸= 0 since deg(P ) is minimal
and char(F ) = 0. Extend δ : F → K to δ : F [t] → K[t] by

t 7→ −P δ(a)

P ′(a)

by lemma (3). Then

δ(P (t)) = P ′(t)δt+ P δ(t) (by proposition 1)

= P ′(t)

(
−P δ(a)

P ′(a)

)
+ P δ(t)

So δ(P (t))(a) = 0, and δ(P (t)) ∈ (t− a)K[t]; i.e. δ : F [t] → K[t] takes the ideal PF [t] to (t− a)K[t].
Also (t− a)K[t] ∩ F [t] = PF [t] (since P is the minimal polynomial for a over K). By Exercise 1.6 we
get an induced derivation δ : F [t]/(P ) → K[t]/(t− a) extending δ.

So we have the following picture:

F [t]/(P ) K[t]/(t− a)

F (a) K

δ

∼= φ

where φ is evalation at a, an isomorphism. So we get a derivation φδφ−1 : F (a) → K.

For uniqueness: suppose δ : F (a) → K extends δ : F → K. Then since 0 = P (a) we get 0 = δ(P (a)) =
P ′(a)δa+ P δ(a); so

δa =
−P δ(a)

P ′(a)

So δ is determined on a, and hence on F [a] (by corollary (2)), and hence on F (a) by the quotient rule.

2. Suppose a ∈ K \ F alg; suppose b ∈ K. We wish to show that there is a unique extension of δ to
F [a] → K such that δ(a) = b.

Use lemma (3) to extend δ : F → K to δ : F [t] → K[t] with δ(t) = b. Then we have the following
picture:

F [t] K[t]

F [a] K

δ

φ↾F [t] φ

where φ is the K-algebra homomorphism given by evaluation at a. In particular φ ↾ F [t] is an
isomorphism; so by Exercise 1.6 we get a derivation φδ(φ ↾ F [t])−1 : F [a] → K; so again by Exercise 1.6
we can extend to a derivation F (a) → K. But (φδ(φ ↾ F [t])−1)(a) = b; so this is our desired derivation.
Uniqueness is by corollary (2).

For the “in particular”, suppose δ : F → K is a derivation. Let B be a transcendence basis for K over F ; so
K ⊆ F (B)alg. Extend to δ : F (B) → K by repeated use of part 2; then extend to δ : K → K be repeated
application of part 1. By a similar argument using repeated applications of part 1, we can further extend this
uniquely to (Kalg, δ). Corollary 1.12

1.3 Some motivation: algebraic vector fields

We are actually interested in differential fields of characteristic zero. (From now on we assume that all fields
have characteristic zero.) We are thus interested in differential integral domains.
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Example 1.13. Fix a field k and a finitely generated integral k-algebra R. We are interested in derivations
δ : R→ R which are k-linear : i.e. k ⊆ Rδ. (Here Rδ = { r ∈ R : δr = 0 } is the subring of constants.) In this
case we have δ(ar) = aδ(r) for a ∈ k and r ∈ R.

From algebraic geometry we have a bijective correspondence between finitely generated integral k-algebras
R and irreducible affine algebraic varieties V over k. Indeed, given R we can write R ∼= k[x1, . . . , xn]/I where
I ⊆ k[x1, . . . , xn] is a prime ideal; we then consider V (I) the zero set of I in Kn where K ⊇ k is algebraically
closed. Conversely, given such V ⊆ Kn we consider k[V ] = k[x1, . . . , xn]/I(V ) where I(V ) is the polynomials
in k[x1, . . . , xn] that vanish on V .

What is the geometric content of a derivation δ on R? What structure is this on V ?

Let V ⊆ An be an irreducible affine variety over k. We let k[V ] be the coordinate ring of V as above;
so k[V ] is a finitely generated integral k-algebra and V = Spec(k[V ]). In coordinates, take x1, . . . , xn as
coordinates for An; then k[V ] = k[x1, . . . , xn]/I(V ) for some prime ideal I(V ) ⊆ k[x1, . . . , xn] and

x1 + I(V ), . . . , xn + I(V ) ∈ k[V ]

are generators.

TODO 1. Is this an elaboration of the above?

If you prefer to avoid spectra, it works to fix a large algebraically closed field K ⊇ k and identify V
with Kn ⊇ V (K) = { (a1, . . . , an) ∈ Kn : P (a1, . . . , an) for all P ∈ I(V ) }. So work with the irreducible
Zariski-closed subsets of Kn. (All our varieties will be affine.)

We define the tangent bundle TV ⊆ A2n of V to be the affine algebraic variety defined as the solution set
to the follow: for each P (x1, . . . , xn) ∈ I(V ) ⊆ k[x1, . . . , xn]

• P (x1, . . . , xn) = 0

•
n∑

i=1

∂P

∂xi
(x1, . . . , xn)yi = 0.

So the elements of TV consist of points in V together with vectors orthogonal to the gradients of all elements
of I(V ).

Exercise 1.14. It suffices to consider generators of I(V ).

We have a projection map π : TV → V . If a ∈ V , we use TaV to denote the fibre of π over a: this is
{ v ∈ An : (a, v) ∈ TV }. We call TaV the tangent space of V at a.

Lemma 1.15 (5). Suppose (K, δ) is a differential field with k ⊆ Kδ. Suppose a ∈ V (K) (here V (K) ⊆ Kn is
the set of tuple from Kn satisfying the equations of V ). Then ∇a = (a, δa) = (a1, . . . , an, δa1, . . . , δan) ∈ K2n

lies in TV (K). So ∇ : V (K) → TV (K) defines a section of π : TV (K) → V (K).

Proof. Suppose a ∈ V (K) and P ∈ I(V ); then P (a) = 0. Then

0 = δ(P (a)) =

n∑
i=1

∂P

∂xi
(a)δai + P δ(a)︸ ︷︷ ︸

=0

(since P ∈ k[x1, . . . , xn] and k ⊆ Kδ). So (a1, . . . , an, δa1, . . . , δan) ∈ TV (K), as desired. Lemma 1.15

So in particular δa ∈ TaV .
Note this ∇ is not an algebraic section (i.e. is not a morphism of varieties): it involves δ, not just

polynomial maps.

Definition 1.16. An affine algebraic vector field over k is a variety V ⊆ An over k equipped with an algebraic
section s : V → TV over k of π (so πs = idV ).

In particular, since V ⊆ An and TV ⊆ An, we are demanding that s take the form s(a) = (a, s1(a), . . . , sn(a))
for some polynomials s1, . . . , sn ∈ k[x1, . . . , xn]; so (s1(a), . . . , sn(a)) ∈ TaV . (We’re being a bit vague about
where a lives here; the reader should interpret it as lying in V (L) for some large algebraically closed L if they
prefer naive algebraic geometry, or as lying in V (L′) with L′ any extension of k if they prefer the Grothendieck
approach.)

6



Proposition 1.17 (6). There is a bijective correspondence between

• finitely generated integral k-algebras R equipped with a k-linear derivation δ, and

• affine algebraic vector fields (V, s) over k.

Proof. Given (R, δ) we choose x1, . . . , xn ∈ R generating R over k. Then

R = k[x1, . . . , xn] = k[X1, . . . , Xn]/I(V ) = k[V ]

where the Xi are variables, xi = Xi + I(V ), and V ⊆ An.

TODO 2. Presumably we’re taking V = V (I)?

For each i ∈ { 1, . . . , n } we have δxi = si(x1, . . . , xn) for some si ∈ k[X1, . . . , Xn]. Define s : An → A2n

by a 7→ (a, s1(a), . . . , sn(a)).

Claim 1.18. s ↾ V : V → TV .

Proof. In R = k[V ], for any P ∈ I(V ) ⊆ k[X1, . . . , Xn] we have

n∑
i=1

∂P

∂Xi
(x1, . . . , xn)si(x1, . . . , xn) =

n∑
i=1

∂P

∂Xi
(x1, . . . , xn)δxi = δ(P (x1, . . . , xn)) = 0

since P δ = 0 and P (x1, . . . , xn) = P (X1, . . . , Xn) + I(V ) = I(V ) = 0R since P ∈ I(V ). So in R =
k[X1, . . . , Xn]/I(V ) = k[x1, . . . , xn] we have

0 =

n∑
i=1

∂P

∂Xi
(x1, . . . , xn)si(x1, . . . , xn) =

n∑
i=1

∂P

∂Xi
(X)si(X) + I(V )

where X = (X1, . . . , Xn). So
n∑

i=1

∂P

∂Xi
(X)si(X) ∈ I(V )

So for all a ∈ V we have
n∑

i=1

∂P

∂Xi
(a)si(a) = 0

and thus (a, s1(a), . . . , sn(a)) ∈ TV . Claim 1.18

Suppose for the other direction we are given (V, s). Let R = k[V ] = k[X1, . . . , Xn]/I(V ). Define δ on
k[X1, . . . , Xn] as follows: write s : V → TV as a 7→ (a, s1(a), . . . , sn(a) with s1, . . . , sn ∈ k[X1, . . . , Xn]. We
define δ on k[X1, . . . , Xn] by δ ↾ k = 0 and δ(Xi) = si; this is by iterative application of lemma (3).

In order for δ to induce a derivation on R we need that I(V ) ⊆ k[X] is a differential ideal. Suppose then
that P ∈ I(V ). Then

δP =

n∑
i=1

∂P

∂Xi
(X)δXi + P δ(x)︸ ︷︷ ︸

=0

=

n∑
i=1

∂P

∂Xi
(X)si(X)

since δ ↾ K = 0; it then suffices to check that this lies in I(V ). But for a ∈ V we have

n∑
i=1

∂P

∂Xi
(a)si(a) = 0

since (a, s1(a), . . . , sn(a)) = (a, s(a)) ∈ TV . So δP ∈ I(V ). We thus induce a k-linear derivation on
R = k[X]/I(V ).

One checks that this is a bijective correspondence (up to isomorphism?). Proposition 1.17
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A morphism of affine algebraic vector fields (V, s) → (W, t) is a morphism of varieties φ : V → W such
that the following diagram commutes:

TV TW

V W

dφ

φ

s t

Remark 1.19. If we fix R and V then the above gives a bijection between derivations on R and affine algebraic
vector fields on V .

We can extend this correspondence to the case when the base field k has a non-trivial derivation (k, δ).

Definition 1.20. Fix a derivation δ on k. Given an affine variety V ⊆ An over k we define the prolongation
of V is the affine algebraic variety τV ⊆ A2n as the solution set of following polynomial equations: for each
P ∈ I(V ) ⊆ k[X] with X = (X1, . . . , Xn) we demand

• P (X) = 0

•
n∑

i=1

∂P

∂Xi
(X)Yi + P δ(X) = 0

in coordinates (X,Y ) = (X1, . . . , Xn, Y1, . . . , Yn).

We have the projection τV → V onto the first n coordinates.

Remark 1.21. If δ = 0 on k then τV = TV .

Fix a ∈ V , and consider τaV = { b ∈ An : (a, b) ∈ τV } the prolongation space of V at a. Then τaV is
defined by the equations ∑

i

∂P

∂Xi
(a)Yi + P δ(a) = 0

for P ∈ I(V ). This is an inhomogeneous linear equation, which then defines an affine subspace.

Remark 1.22. The linear space TaV acts on the affine space τaV ; this is a torsor.

Again, given (K, δ) ⊇ k, δ) we get a projection τV (K)
π−→ V (K) and a section ∇ : V (K) → τV (K) given

by ∇a = (a, δa) ∈ τV (K) for a = (a1, . . . , an) ∈ V (K). As before we have a bijective correspondence between
derivations on k[V ] extending (k, δ) and algebraic sections s : V → τV to π over k (i.e. s = (idV , s1, . . . , sn)).

Definition 1.23. Given (k, δ) an (affine) D-variety over k is an (affine) algebraic variety V over k equipped
with an algebraic section s : V → τV (so π ◦ s = idV ).

Indeed, given R = k[V ] and a derivation δ on R we write k[V ] = k[X]/I(V ). Write δxi = si(x) for some
si ∈ k[X] (here xi = Xi + I); set s = (idV , s1, . . . , sn). One checks that this works.

Conversely, given s : V → τV we define δ on k[X] by δXi = si(X) and extending (k, δ) where s =
(id, s1, . . . , sn). One checks that I(V ) is a δ-ideal. So this induces δ on k[X]/I(V ) = R extending (k, δ).

(This is a literal bijective correspondence, not “up to isomorphism”.)
Unfortunately being finitely generated isn’t first-order; so to do model theory we instead look at all

differential integral k-algebras and hope to recover the finitely generated ones later.

2 Logic of differential rings

We study differential integral domains of characteristic zero. This is first-order axiomatizable in the language
Lδ = L∪ { δ } where L is (as always) the language of rings and δ is a unary function symbol; furthermore the
axiomatization is universal. Call this theory T . We wish to study the existentially closed models of T : for
example, are they axiomatizable?

We’ll need to study differential polynomials: the “free object” in differential algebra. Given (R, δ) |= T
we construct an extension R{X} where X is a single differential indeterminate. As a ring we define
R{X} = R[X(0), X(1), . . .] the polynomial ring over R in algebraic indeterminates X(0), X(1), . . .. This is still
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an integral domain of characteristic 0; it then suffices to equip it with a derivation. We use the derivation δ
extending (R, δ) such that δX(i) = X(i+1). Then (R{X}, δ) |= T and extends (R, δ).

We call this the ring of differential polynomials over R. Given f ∈ R{X} there is a minimal n ≥ 0 such
that f ∈ R[X(0), . . . , X(n)]; this is the order of f , denoted ord(f). Notationally we identify X = X(0); so
X(i) = δiX is just δ applied i times to X. So any f ∈ R{X} of order n can be expressed uniquely as∑

α=(α0,...,αn)∈ωn+1

aαX
α0(δX)α1 · · · (δnX)αn

where each aα ∈ R and cofinitely many are zero.
Each f ∈ R{X} and (S, δ) ⊇ (R, δ) we get a map S → S denoted b 7→ f(b) given by

f(b) =
∑

α∈ωn+1

aαb
α0(δb)α1 · · · (δnb)αn

Iterating we get R{X1, . . . , Xn} in differential indeterminates X1, . . . , Xn.

Proposition 2.1 (7). Every atomic Lδ-formula is T -equivalent to one of the form f(x1, . . . , xn) = 0 where
f ∈ Z{X1, . . . , Xn}.

(We distinguish between the algebraic variables X1, . . . , Xn and the logical variables x1, . . . , xn.)
What are the existentially closed models of T?

Lemma 2.2 (8). If (R, δ) is an existentially closed model of T , then R is an algebraically closed field.

Proof. Let F = Frac(R), and extend δ (uniquely) to (F, δ) ⊇ (R, δ); then (F, δ) |= T . Fix a ∈ R \ { 0 }, and
consider the Lδ-atomic formula over R given by ax = 1. This is solved in (F, δ) by a−1, and hence in (R, δ)
by existential closedness. So a is invertible in R; so R = F is a field.

Fix non-constant P (t) ∈ F [t], and consider the atomic formula over F given by P (x) = 0. We have seen
that (F, δ) extends to (F alg, δ) |= T , and there is a root of P in F alg; so there is one in F by existential
closedness. So F is algebraically closed. Lemma 2.2

Being algebraically closed is certainly not sufficient.

Example 2.3. Consider C with the derivation δ = 0. This is an algebraically closed field, but is not existentially
closed: the equation δx = 1 is solved in (C[t], d

dt ) |= T by t, but has no solution in C.
An algebraic characterization of which systems of δ-polynomial equations and inequations need to be

solved to be existentially closed was given by Lenore Blum in the 70s. She showed that (K, δ) |= T is
existentially closed if and only if for all f, g ∈ K{X} with ord(f) > ord(g) we have that (f(x) = 0)∧ (g(x) ̸= 0
has a solution in K. (Here X is a singleton variable.)

TODO 3. Really? What about
f = δ2x− 2δx+ x, g = δx− x

The proof is somewhat technical; we instead present the geometric axioms of Pierce-Pillay (90s).

Theorem 2.4 (9). (K, δ) |= T is existentially closed if and only if K is an algebraically closed field and

(*) Suppose V is an irreducible affine algebraic variety over K and W ⊆ τV an irreducible subvariety over
K such that π(W ) is Zariski-dense in V . Then there is a ∈ V (K) such that ∇a ∈W . (In fact we will
have ∇a ∈W (K).)

Remark 2.5.
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1. Write

K[V ] = K[X]/I(V )

I(V ) = (P1, . . . , Pℓ)

K[W ] = K[X,Y ]/I(W )

I(W ) = (Q1, . . . , Qr) (for Qi ∈ K[X,Y ])

So I(τV ) ⊆ I(W ). (Here X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are tuples.) Then there is a ∈ V (K)
such that ∇a ∈W if and only if there is a ∈ Kn such that

ℓ∧
i=1

Pi(a) = 0 ∧
∧
j

Qj(a, δa) = 0

2. Suppose (V, s) is a D-variety over (K, δ). Then W = s(V ) is a subvariety of τV and projects dominantly
onto V . So (*) says that there is a ∈ V (K) such that ∇a ∈ W ; i.e. s(a) = ∇(a). ((*) is actually
stronger; this is merely a consequence.)

Definition 2.6. If (V, s) is a D-variety over (K, δ) then we define the D-points over K to be (V, s)♯(K) =
{ a ∈ V (K) : ∇a = s(a) }.

If a = (a1, . . . , an) and s = (idV , s1, . . . , sn) for s1, . . . , sn ∈ K[x1, . . . , xn] then ∇a = s(a) if and only if

n∧
i=1

δ(ai) = si(a1, . . . , an)

TODO 4. Label with Rahim’s numbering?

Proof of Theorem 2.4.

( =⇒ ) Suppose (K, δ) is existentially closed. Then K is an algebraically closed field by (8). Given V
and W ⊆ τV as in (*). Then π(W ) is Zariski-dense in V if and only if K[V ] ⊆ K[W ] (recall
K[W ] = K[X,Y ]/I(W ) and K[V ] = K[X]/I(V )); this is in turn equivalent to I(W ) ∩K[X] = I(V ).
Extend (K, δ) to δ : K[X] → K[X,Y ] by Xi 7→ Yi for i ∈ { 1, . . . , n }. If P ∈ I(V ) then

δ(P (X)) =
∑
i

∂P

∂Xi
(X)Yi + P δ(X) ∈ I(τV ) ⊆ I(W )

(since W ⊆ τV ). So we get an induced δ : K[V ] → K[W ]; extend this to δ : K(V ) → K(W ), and in
turn extend this to δ : K(W ) → K(W ). Then (K, δ) ⊆ (K(W ), δ) |= T .

Let L = K(W ); we show that (*) holds in L. For each i ∈ { 1, . . . , n } let bi = Xi + I(V ) ∈ K[V ] ⊆
K(W ) = L

TODO 5. port the preceding convention to earlier?

Then bi = Xi + I(W ) ∈ K[W ] ⊆ L. Then δbi = δ(Xi + I(V )) = δ(Xi) + I(W ) = Yi + I(W ). Let
b = (b1, . . . , bn) ∈ Ln; then b ∈ V (L). But ∇b = (b1, . . . , bn, δb1, . . . , δbn) = (X1, . . . , Xn, Y1, . . . , Yn) +
I(W ) ∈ W (L). So there is b ∈ V (L) such that ∇b ∈ W (L); then by existential closedness of (K, δ)
there is a ∈ V (K) such that ∇a ∈W (K).

TODO 6. Check

( ⇐= ) Suppose φ(x) with x = (x1, . . . , xn) be a conjunction of Lδ-literals with parameters from K with a
realization in some extension (R, δ) |= T of (K, δ). We wish to find a solution to φ(x) in K.
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Note that if t = t(x) is a term over K then t(x) ̸= 0 has a solution in (S, δ) if and only if t(x)y = 1 has
a solution in (Frac(S), δ); applied to S = K, we get that t(x) ̸= 0 has a solution in K if and only if
t(x)y = 1 does. So we may assume that φ(x) is a conjunction of atomic Lδ-formulas over K; say

φ(x) =

ℓ∧
i=1

fi(x) = 0

where fi ∈ K{X} where X = (X1, . . . , Xn).

Let L = Frac(R); so (L, δ) |= T extends (K, δ). Let b ∈ L realize φ(x). Let r = max{ ord(fi) :
i ∈ { 1, . . . , ℓ } }. (Here ord(fi) is the maximum of its orders with respect to any one variable.)
Consider b = (b, δb, . . . , δr−1b) ∈ Lnr. Let V = loc(b/K) be the locus of b over K, that is the
smallest affine subvariety of Anr defined over K and containing b. Phrased differently: I(V ) = { f ∈
K[X(0), . . . , X(r−1)] : f(b) = 0 }.
TODO 7. Should this ideal be over a bigger ring of polynomials?

Then ∇b ∈ τV (L); let W = loc(∇b/K) ⊆ τV ⊆ A2nr. Let π : τV → V be the projection. Then

b = π(b, δb) = π∇b; so b ∈ π(W ) ⊆ π(W ) (Zariski closure) and thus V ⊆ π(W ). So V = π(W ). By (*)
we then get a ∈ V (K) such that ∇a ∈W (K). Write a = (a0, . . . , ar−1).

TODO 8. Intuitively, a is an element of K that “looks like” b over K

We will show that a0 realizes φ(x).

Claim 2.7. δia0 = ai for i < r.

Proof. Well

∇a = (a0, a1, . . . , ar−1, δa0, δa1, . . . , δar−1)

∇b = (b, δb, . . . , δr−1b, δb, δ2b, . . . , δrb)

We use the 2nr coordinates (X(0), . . . , X(r−1), Y (0), . . . , Y (r−1)). Then ∇b satisfies

X(1) = Y (0)

X(2) = Y (1)

...

X(r−1) = Y (r−2)

But these are polynomial equations, and hence are entailed by W . So they hold of ∇a ∈W . So

a1 = δa0

a2 = δa1

= δ2a0
...

ar−1 = δar−2

= δr−1a0

as desired. Claim 2.7

So a = (a0, δa0, . . . , δ
r−1a0).

Write fi(x) = Pi(x, δx, . . . , δ
r−1x) in (r + 1)n variables where Pi ∈ K[X(0), . . . , X(r−1), Y (r−1)]. For

each i ∈ { 1, . . . , ℓ } write 0 = fi(b) = Pi(b, δb, . . . , δ
rb). So ∇b is a root of Pi(X

(0), . . . X(r−1), Y (r−1)

(using the coordinates in the claim). So this is entailed by W , and is thus true of

∇a = ( a0︸︷︷︸
X(0)

, δa0︸︷︷︸
X(1)

, . . . , δr−1a0︸ ︷︷ ︸
X(r−1)

, δa0, . . . , δ
ra0︸︷︷︸

Y (r−1)

So fi(a0) = P1(a0, δa0, . . . , δ
r−1a0, δ

ra0) = 0. Theorem 2.4
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Morally speaking for the right-to-left direction we converted the order-n equation to an order-1 equation,
at which point we can apply (*) (since per Remark 2.5 we can view (*) as guaranteeing the existence of
solutions to certain order-1 equations).

2.1 Axiomatizability

If (K, δ) is a differential field with K algebraically closed, we can rephrase property (*) as:

(*) For every irreducible Zariski-closed V ⊆ Kn and irreducible Zariski-closed W ⊆ τV ⊆ K2n such that
π(W ) ⊆ V is Zariski-dense (where π : K2n → Kn is the projection onto the first n coordinates) there is
a ∈ V such that ∇a = (a, δa) ∈W .

Note that any such V ⊆ Kn takes the form V = Vc = { d ∈ Kn : (c, d) ∈ V } where V ⊆ Km × Kn is
Zariski-closed over Z and c ∈ Km.

Fact 2.8. Fix V ⊆ Km ×Kn. Since K is algebraically closed, we get that { c ∈ Km : Vc is irreducible } is
L-definable.

Roughly speaking, one proves this by showing that if there is a bound on the degree of the generators of
some ideal I then there is a bound on the smallest degree pair (f, g) with fg ∈ I but f, g /∈ I.

Exercise 2.9. If V = Vc then τ(Vc) = τ(V∇c
). (Note that τV ⊆ τ(Km ×Kn) = τKm × τKn (check). So for

c ∈ Km we get that ∇c = (c, δc) ∈ τKm; so the assertion is well-typed.)

Similarly W = Wc for some W ⊆ Km ×K2n and c ∈ Km. Also π : K2n → Kn satisfies the following
commuting diagram:

W ⊆ Km ×K2n Km ×Kn ⊇ V

Km

id×π

So if c ∈ Km then π : K2n → Kn

TODO 9. Something about sending Wc to Vc?

Fact 2.10. If K is algebraically closed then { c ∈ Km : π(Wc) ⊆ Vc is Zariski-dense } is L-definable.

For each m,n and V ⊆ Km ×Kn Zariski-closed and each W ⊆ Km ×K2n Zariski-closed, consider the
condition

(*)n,m,V,W For all c ∈ Km such that Vc is irreducible andWc is irreducible andWc ⊆ τ(Vc) (i.e.Wc ⊆ (τV)∇c
)

and π(Wc) ⊆ Vc is Zariski-dense, there is a ∈ Vc such that ∇a ∈ Wc.

Then (*) is equivalent to { (∗)n,m,V,W | n,m,V,W }.
Remark 2.11. As ACF admits quantifier elimination we get that the above axioms are universal-existential.

Corollary 2.12. The existentially closed models of T form an elementary class. We let DCF0 be the
Lδ-theory of existentially closed models of T ; we call them differentially closed fields of characteristic zero.

Remark 2.13. (DCF0)∀ = T (the universal theory entailed by DCF0).

3 Chapter 2: basic model theory of DCF0

Remark 3.1. From general nonsense it follows that DCF0 is model complete. (In general if the class of
existentially closed models is axiomatizable then the corresponding theory is model complete.)

Some characterizations of model-completeness:

1. Every Lδ is DCF0-equivalent to an existential Lδ-formula (and hence also a universal Lδ-formula by
looking at negations).
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2. If (K, δ) ⊆ (L, δ) are models of DCF0 then (K, δ) ⪯ (L, δ).

3. Every model of DCF0 is an existentially closed model of DCF0.

The above hold generally, though they are above stated for DCF0; see Hodges 8.3.1. The remark follows
from the third condition.

We will prove that DCF0 admits quantifier-elimination.

Proposition 3.2 (11). DCF0 has AP ( amalgamation property) over arbitrary substructures; i.e. if
(K, δ), (L, δ) |= DCF0 with a common substructure (R, δ) then there is (M, δ) |= DCF0 and Lδ-embeddings
(K, δ) ↪→ (M, δ), (L, δ) ↪→ (M, δ) such that the embeddings agree on (R, δ); i.e. the following diagram
commutes:

(M, δ)

(K, δ) (L, δ)

(R, δ)

⊆
⊆

Proof. Since δ on R has a unique extension to Frac(R)alg we may assume that (K, δ) and (L, δ) share a
common substructure that is an algebraically closed field; i.e. we may assume (R, δ) = (F, δ) for F |= ACF.

Since ACF has AP we can embed K and L as fields in some algebraically closed field U .

Claim 3.3. Taking trdeg(U/F ) big enough we may assume that K and L are algebraically disjoint over F :
i.e. there is a transcendence basis B ⊆ K for K over F then B remains transcendental over L. Equivalently,
for all finite b1, . . . , bℓ ∈ K we have trdeg(b1, . . . , bℓ/F ) = trdeg(b1, . . . , bℓ/L).

Proof. Choose B′ ⊆ U transcendental over L with |B′| = |B| (here we’re using that U is large enough to find
such B′). Then K = F (B)alg ∼=F F (B′)alg︸ ︷︷ ︸

K′

is algebraically disjoint from L over F .

We can then pull δ on K to δ′ on K ′; so (K, δ) ∼= (K ′, δ′). Claim 3.3

Fact 3.4. If K is algebraically disjoint from L over F in U and F = F alg then K is linearly disjoint from
L over F : i.e. there is a linear basis for K over F that is linearly independent from L. Equivalently if
b1, . . . , bℓ ∈ K then dimF (span{ b1, . . . , bℓ }) = dimL(span{ b1, . . . , bℓ }).

Fact 3.5. If we have fields

U

K L

F

⊆
⊆

⊆
⊆

with K linearly disjoint from L over F then letting R = K[L] be the subring of U generated by K and L we
have that K ⊗F L ∼= R as rings via the map a⊗ b 7→ ab. (In fact the converse holds as well.)

A proof that doesn’t use the above facts: fix a transcendence basis B for K over F that is transcendental
over L. Say the derivation on K is δ1 and the derivation on L is δ2. Define δ on L(B) by δ ↾ L = δ2
and δb = δ1b for b ∈ B; there is a unique further extension to δ on L(B)alg. Then (L(B)alg, δ) extends
(L, δ2) by definition. Also δ ↾ F = δ1 ↾ F and δ ↾ B = δ1 ↾ B; so δ ↾ F [B] = δ1 ↾ F [B], and thus
δ ↾ F (B)alg = δ1 ↾ F (B)alg. So (L(B)alg, δ) extends (K, δ1). We can then further extend to a model of DCF0.

Alternate proof using the above facts: we can define δ on K ⊗F L by δ(a ⊗ b) = a ⊗ δ2(b) + δ1(a) ⊗ b.
Then pass to Frac(K ⊗F L)

alg, then to an existentially closed model. Proposition 3.2
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Corollary 3.6 (12). If (K, δ), (L, δ) |= DCF0 with a common differential subfield (F, δ) then (K, δ) ≡F (L, δ).
(i.e. (K, δ, a)a∈F ≡ (L, δ, a)a∈F ; i.e. (K, δ) and (L, δ) satisfy the same Lδ-sentences with parameters from F .
) In particular, taking F = (Q, 0) we get that all models of DCF0 are elementarily equivalent; i.e. DCF0 is
complete.

Proof. By AP we can find (M, δ) |= DCF0 and embeddings

(M, δ)

(K, δ) (L, δ)

(F, δ)

⊆
⊆

⊆
⊆

Then by model-completeness we get that (K, δ) ⪯ (M, δ) and (L, δ) ⪯ (M, δ). So of σ is an Lδ-sentence over
F then

(K, δ) |= σ ⇐⇒ (M, δ) |= σ ⇐⇒ (L, δ) |= σ

as σ is over F and hence over both K and L. Corollary 3.6

Corollary 3.7 (13). DCF0 admits quantifier elimination; i.e. every Lδ-formula is DCF0-equivalent to a
quantifier-free Lδ-formula.

Proof. Given φ(x) an Lδ-formula with x = (x1, . . . , xn), recall that φ is DCF0-equivalent to a quantifier-free
one if and only if whenever (K, δ), (L, δ) |= DCF0 with (F, δ) a common substructure and a ∈ Fn we must
have (K, δ) |= φ(a) ⇐⇒ (L, δ) |= φ(a).

But φ(a) is an Lδ-formula over F ; so this follows since (K, δ) ≡F (L, δ). Corollary 3.7

Recall: given a general model of a theory M |= T and A ⊆M and b ∈Mn, we define

tp(b/A) = {φ(x1, . . . , xn) : φ an L-formula over A,M |= φ(b) }

Note that if M ⪯ N and A ⊆M, b ∈Mn then tpM (b/A) = tpN (b/A).
In DCF0 we will consider the following situation: we have (K, δ) |= DCF0, (F, δ) ⊆ (K, δ), and a ∈ Kn.

We have tp(a/F ) as above and tpL(a, δa, δ
2a, . . .︸ ︷︷ ︸

∇∞a

/F ); these will be equal by quantifier elimination. (Recall L

is the language of rings.) In general

tp(a0, a1, . . . /F ) =
⋃
n

tp(a0, . . . , an/F ) = {φ(x0, . . . , xn) ∈ L :M |= φ(a0, . . . , an) }

Proposition 3.8 (14). Suppose (K, δ) |= DCF0 and (F, δ) ⊆ (K, δ) is a substructure that is a field. Suppose
a, b ∈ Kn. Then the following are equivalent:

1. tp(a/F ) = tp(b/F ).

2. Iδ(a/F ) = Iδ(b/F ) where Iδ(a/F ) = {P ∈ F{X} : P (a) = 0 } (where X = (X1, . . . , Xn)). This is a
differential ideal.

Exercise 3.9. This is prime. Is it maximal?

3. qftpL(a, δa, . . . /F ) = qftpL(b, δb, . . . /F ). (Here qftpL(c0, c1, . . . /F ) = {φ(x0, . . . , xℓ) : ℓ < ω, φ ∈
L(F ) quantifier-free,K |= φ(c0, . . . , cℓ) } and L is as usual the language of rings.)

4. There is an isomorphism of differential fields f : F ⟨a⟩ → F ⟨b⟩ such that f(a) = b and f ↾ F = idF .
(Here F{a} is the δ-subring of (K, δ) generated by F and a; this coincides with {P (a) : P ∈ F{X} } =
F [a, δa, . . .]. We then define F ⟨a⟩ = Frac(F{a}) = F (a, δa, . . .).)
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Proof.

(1) =⇒ (2) Immediate.

(2) =⇒ (3) It suffices to show that if P ∈ F [x0, . . . , xℓ] then P (a, δa, . . . , δℓa) = 0 if and only if P (b, δb, . . . , δℓb) =

0. But we can write P (a, δa, . . . δℓa) = Q(a) for some Q ∈ F{X}; we then wish to show that Q(a) = 0
if and only if Q(b) = 0 for all Q ∈ F{X}. But this is just the hypothesis.

(3) =⇒ (4) As F -algebras we have

F [a, δa, . . . , δℓa] ∼= F [x0, . . . , xℓ]/I(a, δa, . . . , δ
ℓa/F ) = F [x0, . . . , xℓ]/I(b, δb, . . . , δ

ℓb/F ) ∼= F [b, δb, . . . , δℓb]

(by the hypothesis). So we get an isomorphism of F -algebras f : F [a, δa, . . . , δℓa] → F [b, δb, . . . , δℓb]
that fixes F and sends δia 7→ δib.

Exercise 3.10. This implies f is in fact an isomorphism of differential rings.

Then extend f to the fraction fields.

(4) =⇒ (1) Consider the diagram

(K, δ) (K, δ)

(F ⟨a⟩, δ) (F ⟨b⟩, δ)
⊆

⊆

f

⊆

Then corollary (12) implies that (K, δ) |= Θ(a) ⇐⇒ (K, δ) |= Θ( fa︸︷︷︸
=b

) for all Θ ∈ Lδ(F ). Proposition 3.8

Corollary 3.11 (15). Suppose (K, δ) |= DCF0 and A ⊆ K. Then acl(A) = Q⟨A⟩alg, the field-theoretic
algebraic closure of the differential field generated by A. (Recall acl(A) consists of the b such that (K, δ) |= φ(b)
for some φ(x) ∈ Lδ(A) such that φ(x) has finitely many realizations in (K, δ).)

Note by quantifier elimination for ACF0 that aclL(A) = Q(A)alg.

Example 3.12. δX = 0 defines Kδ = { a ∈ K : δa = 0 }; in for example (C(t), d
dt ) this defines C, which is

unfortunately infinite. So the argument from ACF0 won’t work here.

Proof of Corollary 3.11.

(⊇) Suppose b ∈ Q⟨A⟩alg; say P (b) = 0 for some P ∈ Q⟨A⟩[x]. Then P (x) = 0 has finitely many solutions
over A.

Exercise 3.13. Convert this to an Lδ-formula over A.

(⊆) Let F = Q⟨A⟩alg; we wish to show that acl(A) ⊆ F . Suppose for contradiction that b ∈ acl(A) \ F ;
suppose φ(x) is an Lδ-formula over A with finitely many realizations in (K, δ) with (K, δ) |= φ(b).
As usual write φ(K) = { b′ ∈ K : (K, δ) |= φ(b′) }. Write |φ(K)| = n < ω. In some algebraically
closed field F ⊆ U ⊇ K we can find K2 ⊆ U algebraically disjoint from K over F and an isomorphism
f : K1 := K → K2 of fields preserving F .

TODO 10. Reference earlier proof?

We can use f to define δ2 on K2 so we have the following picture:

U

K K2

(F, δ)

f

∼=

⊆
⊆

⊆
⊆

(since F is algebraically closed). By the earlier proof
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TODO 11. ref. Of AP?

we get

(M, δ)

K K2

(F, δ)

⪯
⪯

⊆
⊆

But in fact the proof showed K ·K2 ⊆M ⊆ U . But since (K, δ) |= φ(b) we get (M, δ) |= φ(b); following
the isomorphism we also separately get (K2, δ2) |= φ(f(b)), and thus (M, δ) |= φ(f(b)). Also b ̸= f(b)
since f(b) ∈ K2 is transcendental over F in U and hence transcendental over K in U by algebraic
disjointness, whereas b ∈ K.

So in (M, δ) |= DCF0 we get that φ(x) has at least 2 solutions, namely b and f(b). Iterating we get
(N, δ) ⪰ (K, δ) in which φ(x) has n+ 1 distinct solutions; hence (N, δ) |= ∃≥n+1xφ(x), and so (K, δ)
does as well, a contradiction. Corollary 3.11

Note that once we do types and saturation the ⊆ direction will follow more easily.

Proposition 3.14 (16). dcl(A) = Q⟨A⟩. (Recall dcl(A) is the set of b ∈ K such that { b } is A-definable.)

Proof.

(⊇) Suppose b ∈ Q⟨A⟩. Then b = P (a)
Q(a) for some P,Q ∈ Q{X1, . . . , Xℓ}, ℓ < ω, and a ∈ Aℓ. Then

Q(a)x = P (a) is our desired formula.

(⊆) Suppose b ∈ dcl(A) \Q⟨A⟩. If b /∈ Q⟨A⟩ then by corollary (15) we get b /∈ acl(A), a contradiction. We
may thus assume b ∈ Q⟨A⟩alg \Q⟨A⟩. So there is b′ ≠ b in Q⟨A⟩alg a conjugate of b over Q⟨A⟩ (i.e. b, b′
share a minimal polynomial over Q⟨A⟩).
TODO 12. I guess this is because irreducible polynomials are separable in characteristic zero?

Exercise 3.15. Suppose (L, δ) is a differential field with a differential subfield (F, δ) ⊆ (L, δ). Suppose
we have an intermediate field F ⊆ K ⊆ L with K algebraic over F . Then K is a differential subfield of
L; i.e. δ(K) ⊆ K.

Then we have the following picture:

(K, δ)

(Q⟨A⟩(b), δ) (Q⟨A⟩(b′), δ)

(Q⟨A⟩, δ)

⊆

f

∼=

⊆
⊆

where f is the field-theoretic isomorphism given by conjugacy of b, b′. By the exercise the intermediate
fields are differential subfields of (K, δ); then by uniqueness of extensions of δ to algebraic extensions of
Q⟨A⟩ we get that f is an isomorphism of differential fields.

Let φ(x) be an Lδ-formula over A such that φ(K) = { b }. By quantifier elimination we may assume
φ(x) is quantifier-free. Then

(K, δ) |= φ(b)

=⇒ (Q⟨A⟩(b), δ) |= φ(b) (since φ is quantifier-free)

=⇒ (Q⟨A⟩(b′), δ) |= φ(b′)

=⇒ (K, δ) |= φ(b′)

a contradiction since b ̸= b′. Proposition 3.14
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4 Interlude on types and saturation

Chapter 7 of the set theory and model theory notes. For this section L will denote an arbitrary first-order
language and T an arbitrary L-theory. We use the numbering from the aforementioned notes.

Proposition 4.1 (7.2). Suppose Φ(x) is a set of L-formulas in free variables x = (x1, . . . , xn) (without
parameters). Then the following are equivalent:

1. Φ(x) is realized in some model of T .

2. Every finite subset of Φ(x) is realized in a model of T .

3. There is M |= T in which all finite subsets of Φ(x) are realized.

Proof.

(1) =⇒ (2) Immediate.

(1) =⇒ (3) Immediate.

(3) =⇒ (2) Immediate

(2) =⇒ (1) Consider L′ = L ∪ { c1, . . . , cn } with c1, . . . , cn new constant symbols; let c = (c1, . . . , cn).

Consider the L′-theory T ∪ Φ(c). Then by hypothesis every finite subset of this is consistent, so by
compactness there is a model of T in which Φ(x) is realized. Proposition 4.1

Definition 4.2. Any such Φ(x) is called a (partial) n-type in T . We say a partial type Φ(x) is complete if for
all φ(x) ∈ L either φ(x) ∈ Φ(x) or ¬φ(x) ∈ Φ(x). We write Sn(T ) for the set of complete n-types of T .

Remark 4.3. If T is a complete theory and M |= T then Φ(x) is a type in T if and only if every finite subset
of T has a realization in M ; this is the third condition plus completeness of T .

Example 4.4. Suppose p(x) is an n-type in T . Then p(x) is complete if and only if p(x) is a maximal n-type
in T .

Definition 4.5. Suppose M is an L-structure and A ⊆M . By a (partial or complete) n-type in M over A
we mean a (complete or partial, respectively) n-type in the L(A)-theory Th(MA). We write SM

n (A) for the
set of complete n-types in M over A.

Remark 4.6. If p ∈ SM
n (A) then every finite subset of p is realized in M .

Exercise 4.7. If A ⊆M ⪯ N then SM
n (A) = SN

n (A).

Example 4.8. Suppose A ⊆ M and b ∈ Mn. Then the set tp(b/A) of L(A)-formulas true of b in M has
tp(b/A) ∈ SM

n (A). These are precisely the elements of SM
n (A) realized in M .

Proposition 4.9 (7.12). Suppose p ∈ SM
n (A). Then there is M ⪯ N and b ∈ Nn such that p = tp(b/A) ∈

SN
n (A) = SM

n (A).

Proof. Consider Σ(x) = Th(MM ) ∪ p(x) (with x = (x1, . . . , xn)); this is a set of L(M)-formulas. One
checks that this is a type in Th(MM ). So there is N |= Th(MM ) in which Σ(x) is realized; then N ⪰ M .

Proposition 4.9

In fact if M is infinite and |M | ≥ |L| then we can take |N | = |M |; we simply apply Löwenheim-Skolem.

Definition 4.10. Suppose κ is an infinite cardinal and M is an L-structure. We say M is κ-saturated if for
all A ⊆M with |A| < κ we have that every type in SM

n (A) is realized in M .

Remark 4.11. If M is κ-saturated then |M | ≥ κ; one sees this by considering {x ̸= m : m ∈ M } and
extending to an element of SM

1 (M).
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Exercise 4.12 ((Done in the notes)). Let L = { 0, 1,+,−,×} and M |= ACF. Then M is κ-saturated if and
only if trdeg(M/F) ≥ κ where

F =

{
Q if char(M) = 0

Fp if char(M) = p

is the prime subfield of F.

Proposition 4.13 (7.26). M is κ-saturated if and only if every p(x) ∈ SM
1 (A) is realized for all A ⊆ M

with |A| < κ.

Proof. One proves by induction on n that p(x) ∈ SM
n (A) with x = (x1, . . . , xn) is realized in M . Indeed,

q = p ↾ (x1, . . . , xn) is realized by b ∈ Mn−1 by the induction hypothesis; we then set r(xn) = {φ(b, xn) :
φ(x1, . . . , xn) ∈ p(x1, . . . , xn) }. One then shows that r(xn) ∈ SM

1 (A ∪ { b1, . . . , bn−1 }), at which point it is
realized by hypothesis, say by bn ∈M . Then (b1, . . . , bn) is the desired tuple. Proposition 4.13

Proposition 4.14 (7.28). Every infinite L-structure has a κ-saturated elementary extension.

Proof. GivenM we consider an elementary extensionM =M0 ⪯M1 such that every type overM is realized in
M1. Indeed, enumerate SM

1 (M) = { pα(x) : α < λ }; then find elementary extensionsM ⪯M (1) ⪯M (2) ⪯ · · ·
such that M (α) realizes pα by transfinite recursion, and set

M1 =
⋃
α<λ

M (α)

Note that we can take |M (α+1)| = |M (α)|. If λ = |SM
1 (M)| ≤ |M | then |M1| = |M |.

Iterate this κ+-many times to get (Mα : α < κ+) (taking unions at limit ordinals). So in Mα+1 every
1-type over Mα is realized. Let

N =
⋃

α<κ+

Mα ⪰M

Then this is κ+-saturated: if A ⊆ N with |A| < κ+ then since κ+ is a regular cardinal we get that A ⊆Mα

for some α < κ+; so types over A are realized in Mα+1 ⪯M . Proposition 4.14

Erratum for question 3: we may assume that the Pi generate I(V ).

Definition 4.15. We say T is ω-stable if whenever M |= T and A ⊆M we have |S1(A)| ≤ |A|+ ℵ0.

TODO 13. Does this require a countable language to be equivalent to the usual definition?

Note that in a countable language we always have |S1(A)| ≤ 2|A|+ℵ0 .
If T is ω-stable and M |= T is infinite then there is N ⪰ M that is saturated (i.e. |N |-saturated);

this follows from the proof of 7.28 and the remarks made therein. Indeed, if κ = |M | then we built a

κ+-sized κ+-saturated model using chains of models M =M0 ⪯M
(1)
0 ⪯ · · · of length |S1(M)|. Following the

cardinalities through we get our desired saturated model.

Proposition 4.16 (7.37). Saturation implies strong homogeneity. (Definition to follow.)

Definition 4.17. If M,N are L-structures with A ⊆M and f : A→ N we say f is elementary (or a partial
elementary map) if for all φ(x1, . . . , xn) ∈ L and a1, . . . , an ∈ A we have M |= φ(a1, . . . , an) ⇐⇒ N |=
φ(f(a1), . . . , f(an)).

Remark 4.18. If f : A → N is elementary and b ∈ M, b′ ∈ N , then f extends to a partial elementary map
A ∪ { b } → N with b 7→ b′ if and only if b′ realizes f(tp(b/A)) = {φ(x, f(a1), . . . , f(an)) : φ(x, a1, . . . , an) ∈
tp(b/A) }.

Definition 4.19. We say M is strongly homogeneous if whenever A ⊆M with |A| < |M | and f : A→M is

a partial elementary map, then f extends to an L-automorphism f̃ : M →M .

Proof of Proposition 4.16. Suppose we are given a partial elementary map f0 : A → M ; let κ = |M |. Enu-
merate M = { bα : α < κ }. Define a chain of partial elementary maps with domains having size < κ as
follows:
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• Given fα define f ′α as follows: if bα ∈ dom(fα) we set f ′α = fα. Else consider fα(tp(bα/ dom(fα)));
since |dom(fα)| < κ then by κ-saturation this has a realization c ∈ M . We then extend fα to f ′α by
bα 7→ c.

• Given f ′α we define fα+1 as follows: if bα ∈ Ran(f ′α) then set fα+1 = f ′α. Else consider (f
′
α)

−1(tp(bα/Ran(f
′
α)));

since |Ran(f ′α)| < κ then by κ-saturation this has a realization c ∈M . We then extend f ′α to fα+1 by
c 7→ bα.

• At limit ordinals β we let

fβ =
⋃
α<β

fα

This is a partial elementary map, and its domain will have cardinality ≤ κ.

So
f̃ =

⋃
α<κ

fα : M →M

is an automorphism. Proposition 4.16

Corollary 4.20. Suppose M is saturated, a, b ∈Mn, and A ⊆M with |A| < |M |. Then tp(a/A) = tp(b/A)
if and only if there is an automorphism f ∈ AutA(M) (i.e. f ↾ A = idA) such that f(a) = b.

Proof. The right-to-left direction is generally true. For the left-to-right, if tp(a/A) = tp(b/A) then g : A ∪
{ a } →M given by g ↾ A = idA and g(a) = b is a partial elementary map; then by strong homogeneity this
extends to an automorphism. Corollary 4.20

Corollary 4.21. Suppose M is saturated and D ⊆ Mn is a definable set (by which we generally mean
with parameters). Suppose A ⊆M with |A| < |M |. Then D is A-definable if and only if f(D) = D for all
f ∈ AutA(M).

Proof. The left-to-right direction is easy. For the right-to-left suppose f(D) = D for all f ∈ AutA(M); let D
be defined by φ(x, b) with x = (x1, . . . , xn), b ∈Mm, and φ(x, y) ∈ L. Let

Φ(x, z) = {ψ(x) ↔ ψ(z) : ψ ∈ L(A) } ∪ {φ(x, b),¬φ(z, b) }

(for z = (z1, . . . , zn)); then Φ ⊆ L(A ∪ { b1, . . . , bn }).

Claim 4.22. Φ is not a 2n-type.

Proof. Otherwise by saturation of M (and since |A ∪ { b1, . . . , bn }| < |M |) there would be (a, a′) ∈ M2n

realizing Φ; i.e. tp(a/A) = tp(a′/A) and a ∈ D, a′ /∈ D. But by previous corollary we get f ∈ AutA(M) such
that f(a) = a; so f(D) ̸= D, contradicting the hypothesis. Claim 4.22

So some finite subset of Φ(x, z) is not realized in M ; i.e. there are ψ1, . . . , ψℓ ∈ L(A) such that

M |= ∀x∀z

(
ℓ∧

i=1

(ψi(x) ↔ ψi(z)) → (φ(x, b) ↔ φ(z, b))

)

Now for each τ : { 1, . . . , ℓ } → { 0, 1 } let

θτ (x) =
∧

τ(i)=1

ψi(x) ∧
∧

τ(i)=0

¬ψi(x)

Then these are finitely many L(A)-formulas, and if τ ̸= σ then θτ (M) ∩ θσ(M) = ∅. Furthermore by our
earlier work we get θτ (M) ⊆ D or θτ (M) ∩D = ∅. Also

⋃
τ θτ (M) =Mn. So D is defined by∨

τ
θτ (M)⊆D

θτ (x)

and is thus definable over A. Corollary 4.21
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Corollary 4.23. Suppose M is saturated and A ⊆M with |A| < |M |; suppose b ∈M .

1. The following are equivalent:

(a) b ∈ dcl(A)

(b) f(b) = b for all f ∈ AutA(M)

(c) b is the only realization of tp(b/A) in M .

2. The following are equivalent:

(a) b ∈ acl(A).

(b) The orbit of b under AutA(M) is finite.

(c) There are finitely many realizations of tp(b/A) in M .

Proof.

1. (b) ⇐⇒ (c) We have seen since M is saturated and |A| < |M | that the set of realizations of tp(b/A) is
the orbit of b under AutA(M).

(a) =⇒ (b) Clear.

(b) =⇒ (a) D = { b } is definable by x = b; by (b) we get f(D) = D for all f ∈ AutA(M). So by
previous corollary we get that D is A-definable; i.e. b ∈ dcl(A).

2. (b) ⇐⇒ (c) As above.

(a) =⇒ (b) If b ∈ acl(A) then b ∈ D for some finite A-definable D. So if f ∈ AutA(M) then f(b) ∈ D;
so the orbit of b is contained in D, and is thus finite.

(b) =⇒ (a) Let D be the orbit of b under AutA(M); then by hypothesis D is finite, and thus definable.
But f(D) = D for f ∈ AutA(M); so by previous corollary we get that D is A-definable, and
b ∈ acl(A). Corollary 4.23

Proposition 4.24. Saturation implies universality. i.e. If M is saturated and N ≡M with |N | ≤ |M | then
there is an elementary embedding N ↪→M .

Proof. Let f0 : ∅ → M be the empty function; since N ≡ M we get that f0 is a partial elementary map
N →M . Enumerate N = { aα : α < λ } with λ = |N | ≤ |M |. Recursively build a chain of partial elementary
maps fα such that

• |dom(fα)| < λ

• aα ∈ dom(fα+1).

Given fα if aα ∈ dom(fα) we set fα+1 = fα; else use saturation of M to find b realizing fα(tp(aα/ dom(fα))),
and set fα+1 = fα ∪ { (aα, b) }. At limits we take unions.

So we get a partial elementary map N → M whose domain is all of N ; this is then an elementary
embedding. Proposition 4.24

Definition 4.25. Suppose κ is an infinite cardinal. We say T is κ-stable if for all M |= T and all A ⊆M
with |A| ≤ κ we have |Sn(A)| ≤ κ for all n < ω.

Fact 4.26. It suffices to consider n = 1.

Fact 4.27. If T is countable and T is ω-stable then T is κ-stable for all κ.

(See Tent and Ziegler for proofs of these.)
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5 Back to model theory of DCF0

Theorem 5.1 (17). DCF0 is ω-stable.

Proof. Fix a model (K, δ) |= DCF0 and countable A ⊆ K; we wish to show that S1(A) is countable. Let
F = dcl(A) = Q⟨A⟩; then every type in S1(A) extends uniquely to a type in S1(F ). Also since A is countable
so too is F , and F is a differential subfield of (K, δ). By replacing (K, δ) with an ℵ1-saturated elementary
extension we may assume all types in S1(A) are realized in (K, δ).

Consider b ∈ K differentially transcendental over F : that is, (b, δb, δ2b, . . .) is algebraically independent over
F . Then tpL(b, δb, . . . /F ) in variables x0, x1, . . . is completely determined: it is entailed by {P (x0, . . . , xℓ) ̸=
0 : 0 ̸= P ∈ F [x0, . . . , xℓ], ℓ < ω }. Furthermore by quantifier elimination for DCF0 this determines tp(b/F ).
So there is a unique type of a δ-transcendental element over F .

It remains to count tp(b/F ) where b is differentially algebraic over F (i.e. not differentially tran-
scendental over F ). Fix such b ∈ K. Let ℓ < ω be least such that δℓ ∈ F (b, δb, . . . , δℓ−1b)alg; let
P (t) ∈ F (b, δb, . . . , δℓ−1)[t] be the minimal polynomial of δℓb. Then 0 = P (δℓb); differentiating we find

0 = δ(P (δℓb)) = P ′(δℓb)δℓ+1b+ P δ(δℓb)

So

δℓ+1b =
−P δ(δℓb)

P ′(δℓb)
∈ F (b, δb, . . . , δℓb)

Iterating we get that δℓ+rb ∈ F (b, δb, . . . , δℓb) for all r > 0.
We have thus shown:

Claim 5.2. F ⟨b⟩ = F (b, δb, . . . , δℓb).

Claim 5.3. Write P (t) = Q(b, δb, . . . , δℓ−1b, t) with Q ∈ F (X0, . . . , Xℓ−1)[t]. Suppose c ∈ K is such that
(c, δc, . . . , δℓ−1c) is algebraically independent over F but Q(c, δc, . . . , δℓ−1c, δℓc) = 0. Then tp(c/F ) = tp(b/F ).

Proof. The map α : F (b, δb, . . . , δℓ−1b) → F (c, δc, . . . , δℓ−1c) given by fixing F and sending δib 7→ δic is
an isomorphism of fields by algebraic independence over F . We then get a map F (b, . . . , δℓ−1b)[t] →
F (c, δc, . . . , δℓ−1c) which we denote f 7→ fα. Then

Pα(δℓc) = Q(α(b), α(δb), . . . , α(δℓ−1b), δℓc) = Q(c, δc, . . . , δℓ−1, δℓc) = 0

But Pα is monic and irreducible; so it is the minimal polynomial of δℓc over F (c, δc, . . . , δℓ−1c). Hence we can
extend α to an isomorphism F (b, δb, . . . , δℓb) → F (c, δc, . . . , δℓc) sending δℓb 7→ δℓc. This is then by previous
claim an isomorphism F ⟨b⟩ → F ⟨c⟩.

But these are isomorphisms of fields; what about δ? Well αδ ↾ F = δ = δα ↾ F , and for i ≤ ℓ− 1 we have

αδ(δib) = αδi+1b = δi+1c = δ(δic) = δ(α(δib))

Transport δ on F ⟨b⟩ to δ′ on F ⟨c⟩ using α; then δ and δ′ agree on F, b, δb, . . . , δℓ−1, and hence as maps
F (b, δb, . . . , δℓ−1b). By corollary (4) since δℓb is algebraic over F (b, . . . , δℓ−1b), we get that δ = δ′. So
α is an isomorphism of differential fields (F ⟨b⟩, δ) → (F ⟨c⟩, δ) that sends b 7→ c; so tp(c/F ) = tp(b/F ).

Claim 5.3

So if b is differentially algebraic then tp(b/F ) is determined by (ℓ,Q) with ℓ < ω andQ ∈ F (X0, . . . , Xℓ−1)[t].
So |S1(F )| ≤ ℵ0. Theorem 5.1

Corollary 5.4. DCF0 has saturated models. If (K, δ) |= DCF0 and κ ≥ |K| is an infinite regular cardinal
then (K, δ) has a saturated elementary extension of size κ.

Proof. Do the construction producing a κ-saturated elementary extension of (K, δ), and use κ-stability to make
sure the extension is of size κ. (Here one uses that ω-stability implies κ-stable for all κ.) Corollary 5.4

Our convention: we fix a sufficiently large κ for our purposes, and fix (U , δ) |= DCF0 saturated with
|U| = κ. We say (U , δ) is sufficiently saturated. More conventions:
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• A model is an elementary substructure of U .

• A parameter set is some A ⊆ U with |A| < |U| unless stated otherwise.

• A type is a type in (U , δ) over some A ⊆ U with |A| < |U|.

• A global type is an element of Sn(U).

Definition 5.5. Suppose A,B,C are subsets of U . We say A is independent of B over C, denoted A |⌣C
B if

acl(C ∪A) = Q⟨C,A⟩alg is algebraically disjoint from acl(C ∪B) = Q⟨C,B⟩alg over acl(C) = Q⟨C⟩alg. (Recall
this means that if a is a finite tuple from acl(CA) then trdeg(a/ acl(C)) = trdeg(a/ acl(CB)). Equivalently for
some (equivalently any) transcendence basis A0 for acl(CA) over acl(C) we have that A0 remains algebraically
independent over acl(CB).)

Notation 5.6. If a is a tuple with a = (a1, . . . , an) then we say a |⌣C
B if { a1, . . . , an } |⌣C

B.

Definition 5.7. If C ⊆ B, p(x) ∈ Sn(C), and p(x) ⊆ q(x) ∈ Sn(B), we say q is a free extension of p if for
some (equivalently any) a |= q we have a |⌣C

B.

Proposition 5.8 (18).

(Symmetry) A |⌣C
B implies B |⌣C

A.

(Transitivity) Suppose A ⊆ B ⊆ C and a is a tuple. Then a |⌣A
C if and only if a |⌣B

C and a |⌣A
B.

(Invariance) If α ∈ Aut(U) then A |⌣C
B implies α(A) |⌣α(C)

α(B).

(Finite character) A |⌣C
B if and only if A0 |⌣C

B0 for all finite A0 ⊆ A and B0 ⊆ B.

(Non-triviality) A |⌣C
A if and only if A ⊆ acl(C).

(Superstability) If a is a finite tuple and B a set then A |⌣B0
B for some finite B0 ⊆ B.

(Extension) Suppose C ⊆ B. Then every p(x) ∈ Sn(C) has a free extension to Sn(B).

(Stationarity) Suppose C ⊆ B and C = acl(C) = F . Then every p ∈ Sn(C) has a unique free extension to
Sn(C).

Proof.

(Symmetry) Let F = Q⟨C⟩alg = acl(C); let A0 be a transcendence basis for acl(AC)/F and B0 a
transcendence basis for acl(BC)/F . Then since A |⌣C

B we get that A0 is algebraically independent
over acl(BC) ⊇ F (B0); then since B0 is algebraically independent over F we get that A0 ∪ B0 is
algebraically independent over F . So B0 is algebraically independent over F (A0), and thus over
F (A0)

alg = acl(AC); so B |⌣C
A.

(Transitivity) ( =⇒ ) Suppose a |⌣A
C, and let A0 be a transcendence basis for acl(Aa) = acl(A ∪

{ a1, . . . , an }) (where a = (a1, . . . , an)). Then since a |⌣A
C we get that A0 is algebraically

independent over Q⟨C⟩alg, and hence a |⌣A
B. We defer the proof that a |⌣B

C

TODO 14. And I guess the converse?

(Invariance) α preserves acl; so α(acl(X)) = acl(α(X)). Also α is a field automorphism of U |= ACF0; so
K algebraically disjoint from L over F implies α(K) is algebraically disjoint from α(L) over α(F ).

(Finite character) ( =⇒ ) By symmetry and transitivity we get

A |⌣C
B =⇒ A0 |⌣C

B =⇒ B |⌣C
A0 =⇒ B0 |⌣C

A0 =⇒ A0 |⌣C
B0

( ⇐= ) If A ̸ |⌣C
B then it is witnessed by some algebraic dependence, which can only involve finite

subsets of A and B; so A0 ̸ |⌣C
B0 for some finite A0 ⊆ A and B0 ⊆ B.
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(Non-triviality) We have that acl(AC) is algebraically disjoint from acl(AC) over acl(C) if and only if
acl(AC) = acl(C), which occurs if and only if A ⊆ acl(C).

(Superstability)

(Step 1) Reduce to a a singleton. If we assume the case where a is a singleton, and want to do say
the case a = (a1, a2), then there is finite B1 ⊆ B such that a1 |⌣B1

B for some finite B1 ⊆ B, and

there is B2 ⊆ B finite such that a2 |⌣B2a1
Ba1. One then shows that (a1, a2) |⌣B1B2

B; one uses

transitivity and symmetry, and instead shows that B |⌣B1B2a1
a2 and B |⌣B1B2

a1.

(Step 2) Let F = acl(B) = Q⟨B⟩alg. If a is δ-transcendental over F then A |⌣∅B. Indeed, in this case

{ δia : i < ω } is algebraically independent over F (and hence also over Qalg), and acl(a) = Q⟨a⟩alg;
so { δia : i < ω } is a transcendence basis for acl(a) over acl(∅), and it is independent from
acl(B) = F . So acl(a) is algebraically disjoint from acl(B) over acl(∅), and a |⌣∅ B.

Suppose then that a is δ-algebraic over F ; let ℓ < ω be least such that δℓa ∈ F (a, . . . , δℓ−1a)alg;
let P (t) = Q(a, . . . , δℓ−1a, t) be the minimal polynomial of δℓa over F (a, . . . , δℓ−1a) (so Q ∈
F (X(0), . . . , X(ℓ−1))[t]). Then Q involves finitely many parameters from F = Q⟨B⟩alg; let
B0 ⊆ B be finite such that if F0 = Q⟨B0⟩alg then Q ∈ F0(X

(0), . . . , X(ℓ−1))[t]. Then since
0 = P (δℓa) = Q(a, . . . , δℓ−1a, δℓa) we get that δℓa ∈ F0(a, . . . , δ

ℓ−1a)alg, and hence F0⟨a⟩alg =
F0(a, . . . , δ

ℓ−1a)alg. (Actually F0⟨a⟩ = F0(a, . . . , δ
ℓa) ⊆ F0(a, . . . , δ

ℓ−1a)alg.) So { δia : i < ℓ } is a
transcendence basis for F0⟨a⟩alg = acl(B0a) over F0 = acl(B0) which remains independent over
F = acl(B); so a |⌣B0

B.

(Extension) Write

p(x) = tp(a/C)

F = acl(C)

L = acl(B)

K = acl(Ca) = F ⟨a⟩alg

So F ⊆ L. Let K ′ be a field-isomorphic (over F ) copy of K that is algebraically disjoint from L over F .

TODO 15. Ref to earlier instance of this?

Let δ′ be a derivation on K ′ such that (K ′, δ′) ∼= (K, δ) over F . Then we have the diagram

(K ′(L)alg, δ′)

(K ′, δ′) (L, δ)

(F, δ)

⊆
⊆

⊆
⊆

We can then extend (K ′(L)alg, δ′) to (M, δ′) |= DCF0. By universality there is an elementary embedding
↾ : (M, δ) ↪→ U

TODO 16. Fixing L?

Then K̂ := ρ(K ′) is a differential subfield of U . Then K̂ = F ⟨b⟩alg for some b, and the map F ⟨a⟩ → F ⟨b⟩
given by a 7→ b is an isomorphism of differential fields. So by (14) we get tp(a/F ) = tp(b/F ), and
hence that p(x) = tp(a/C) = tp(b/C). Since K ′ is algebraically disjoint from L over F we get

acl(Cb) = K̂ = ρ(K ′) is algebraically disjoint from acl(B) = L = ρ(L) over acl(C) = F = ρ(F ). So
b |⌣C

B, and tp(b/B) ∈ Sn(B) is a free extension of tp(b/C) = p ∈ Sn(C).
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(Stationarity) We again reduce to the case n = 1; we do this reduction in the case n = 2 to illustrate.
Suppose we have (a1, a2) |⌣F

B and (b1, b2) |⌣F
B, and that tp(a1a2/F ) = tp(b1b2/F ); we wish to

show that tp(a1a2/B) = tp(b1b2/B). By the case of 1-types we get that tp(a1/B) = tp(b1/B); so by
strong homogeneity there is σ ∈ AutB(U) such that σ(a1) = b1. Also by strong homogeneity there is
τ ∈ AutF (U) such that τ(ai) = bi. Then σ◦τ−1 ∈ AutFb1(U), so tp(b2/ acl(Fb1)) = tp(σ(a2)/ acl(Fb1)).
By symmetry and transitivity we get a2 |⌣Fa1

B; so applying σ we get that σ(a2) |⌣Fb1
B, and

hence σ(a2) |⌣acl(Fb1)
B. Also b2 |⌣Fb1

B, so b2 |⌣acl(Fb1)
B. So by the case of 1-types we get

tp(σ(a2)/Bb1) = tp(b2/Bb1); let ρ ∈ Aut(Bb1) such that ρ(σ(a2)) = b2. Then ρ ◦ σ sends ai to bi, and
ρ, σ both fix B. So tp(a1a2/B) = tp(b1b2/B).

We now do the case of 1-types. Suppose a, b ∈ U with a |⌣F
B and b |⌣F

B and tp(a/F ) = tp(b/F )
(and F = acl(F )). We want tp(a/L) = tp(b/L) where L = acl(B) ⊇ F . Then if a is δ-transcendental
over F then a is δ-transcendental over L (since a |⌣F

L), and also b is δ-transcendental over L; so

tp(a/L) = tp(b/L). Assume then that a is δ-algebraic over F ; let (ℓa, Qa) determine tp(a/F ) (so δℓa ∈
F (a, . . . , δℓ−1a)alg and Qa(a, . . . , δ

ℓ−1a, t) is its minimal polynomial, with Qa ∈ F (X(0), . . . , X(ℓa−1))[t]).

Claim 5.9. Since a |⌣F
L, we get that (ℓa, Qa) determine tp(a/L) in the same way.

We need that P (t) ∈ F (a, . . . , δℓa−1a)[t] is still irreducible over L(a, . . . , δℓa−1a)[t]. Since F ⊆ L is an
algebraically closed field, we get that { a1, . . . , δℓa−1a } is algebraically independent over L.

TODO 17. Transition word?

F (x)alg ∩ L(x) = F (x), so irreducible over F (x) implies irreducible over L(x).

But now the same is true of b: if (ℓb, Qb) determine tp(b/F ) then they also determine tp(b/L). But
tp(a/F ) = tp(b/F ); so ℓa = ℓb and Qa = Qb. So tp(b/L) = tp(a/L), as desired. Proposition 5.8

Definition 5.10. Suppose p(x) = tp(a/B) ∈ Sn(B). We define dim(p) = dim(a/B) to be

(trdeg(F (∇ℓa)/F ) : ℓ < ω)

where F = acl(B) and ∇ℓx = (x, δx, . . . , δℓx); we put the lexicographic ordering on these.

Remark 5.11.

1. This doesn’t depend on a |= p(x): by homogeneity if a′ |= p(x) there is σ ∈ AutB(U) such that σ(a) = a′;
so trdeg(F (∇ℓa

′)/F ) = trdeg(F (∇ℓa)/F ) for all ℓ since φ(F ) = F and σ(∇ℓa) = ∇ℓa
′.

2. This is in some sense the wrong definition: it isn’t invariant under definable bijections. Consider
for example B = ∅, so F = Qalg, and consider a ∈ U differentially transcendental over Q. Then
trdeg(F (∇ℓa)/F ) = ℓ + 1; so dim(a) = (1, 2, 3, . . .). But ∇ : U → U × U given by x 7→ (x, δx) is
a definable injection, and a and ∇a are interdefinable (i.e. a ∈ dcl(∇a) and ∇a ∈ dcl(a)). But
∇ℓ(∇a) = ((a, δa), (δa, δa), . . .) so dim(∇a) = (2, 3, 4, . . .).

3. Even more wrongness: using the Blum axioms and saturation we can find an algebraically independent
pair of elements over Q such that δb = δc = 0; then ∇ℓ(b, c) = ((b, c, ), (0, 0), . . .), and so dim(b, c) =
(2, 2, 2, . . .). Then if a is as above we have dim(a) < dim(b, c), which is weird: note for example that
trdeg(F ⟨a⟩/F ) is infinite, whereas trdeg(F ⟨b, c⟩/F ) = 2, so in this sense the first extension is much
larger.

We are interested in how dimension behaves with extensions of types, rather than comparing arbitrary pairs
of types.

Proposition 5.12 (19). Suppose C ⊆ B and a is a tuple.

1. dim(a/C) ≥ dim(a/B).

2. dim(a/C) = dim(a/B) if and only if a |⌣C
B.
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Proof.

1. If F = acl(C) and K = acl(B) then F ⊆ K; so trdeg(F (∇ℓa)/F ) ≥ trdeg(K(∇ℓa)/K).

2. We have a |⌣C
B if and only if F ⟨a⟩alg is algebraically disjoint from K over F ; this occurs if and only if

trdeg(F (∇ℓa)/F ) = trdeg(K(∇ℓa)/K) for all ℓ < ω, i.e. dim(a/C) = dim(a/B). Proposition 5.12

Definition 5.13. Suppose p(x) = tp(a/B) ∈ Sn(B). We say p is finite-dimensional if dim(p) is eventually
constant. In this case we write dim(p) = d.

Remark 5.14. In this case d = trdeg(F ⟨a⟩/F ).

5.1 Back to D-varieties

Suppose k is a differential field. Then an affine algebraic variety over k will be some Zariski-closed k-irreducible
V ⊆ Un, and a regular section on V will be some s : V︸︷︷︸

⊆Un

→ τV︸︷︷︸
⊆U2n

given by s(x) = (x, s1(x), . . . , sn(x)) with

si ∈ k[x].

Definition 5.15. A D-subvariety of (V, s) over k is a subvariety W ⊆ V such that s(W ) ⊆ τW .

(Note that since W ⊆ V we have τW ⊆ τV ; so s ↾W : W → τV always.)
Recall that if δ = 0 on k then τV = TV is the tangent bundle. So we get a definition of sub-vector-field

as well.
Let

Σ(x) = {x ∈ V,∇(x) = s(x) } ∪ {x /∈W :W ⫋ V a proper D-subvariety over k }

(The second formula is equivalent to δ(xi) = si(x).)

Claim 5.16. Σ(x) is a type; i.e. every finite subset has a realization.

Proof. Take proper D-subvarieties W1, . . . ,Wℓ, and let

W =

ℓ⋃
i=1

Wi

Then S(V ) ⊆ τV is a subvariety that projects onto V ; so by the geometric axiom there is a ∈ V such that
∇(a) ∈ s(V ), and thus ∇(a) = s(a). We want a /∈ W . Note that s(W ) ⫋ s(V ) is a proper Zariski-closed
subset; so U = s(V ) \ s(W ) is non-empty Zariski-open (and proper by k-irreducibility of V ) and by remark
following the geometric axiom we can take a /∈W . Claim 5.16

Claim 5.17. Σ(x) determines a unique complete n-type over k.

Proof. Suppose a |= Σ(x); we show that tp(a/k) is determined. By quantifier elimination it suffices to show
that tpL(a, δa, δ

a, . . . /k) is determined. Since s(a) = ∇(a), if we write a = (a1, . . . , an) and s = (id, s1, . . . , sn)
then si(a) = δ(ai). Differentiating we get that δℓ(ai) is a polynomial for all ℓ < ω. So tpL(a, δa, δ

a, . . . /k) is
determined by tpL(a/k).

By quantifier elimination in ACF we get that tpL(a/k) is determined by loc(a/k) (the smallest Zariski-
closed subset of Un containing a). (See Aside 5.18.) It then suffices to show that loc(a/k) = V . Let
W = loc(a/k) ⊆ V ; so W is Zariski closed over k. Is it a D-subvariety? Well s(a) = ∇(a) ∈ τaW , and
“s(x) ∈ τxW” is a Zariski-closed condition over k; i.e. { b ∈W : s(b) ∈ τbW } ⊆W is Zariski-closed over k. So
by definition of W we get W = { b ∈W : s(b) ∈ τbW }. So W is a D-subvariety containing a, and thus since
a |= Σ(x) we get that W is not a proper D-subvariety, and W = V , as desired. Claim 5.17

Aside 5.18 (Types in ACF are determined by their loci). Let W = loc(a/k).

1. k(W ) = k(a).
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Proof. Consider the k-algebra homomorphism φ : k[x1, . . . , xn] → k[a] given by xi 7→ ai. Then ker(φ) ⊇
I(W ) since a ∈W ; so W ⊇ V (ker(φ)) ∋ a, and V (ker(φ)) is a subvariety over k, and by definition of
locus we get that W = V (ker(φ)), and ker(φ) = I(W ). So k[W ] = k[x]/I(W ) = k[a], and k(W ) = k(a).

2. Suppose loc(b/k) =W . Then we get k-algebra isomorphisms

k[a]
∼=−→ k[x]/I(W )

∼=−→ k[b]

a 7→ x+ I(W ) 7→ b

So k(a) ∼= k(b) over k via a map sending a 7→ b; so by quantifier elimination in ACF we get tpL(a/k) =
tpL(b/k).

Definition 5.19. The complete type over k determined by Σ(x) is called the generic type of (V, s) over k. If
a |= Σ(x) we say that a is a generic D-point of (V, s) over k.

Remark 5.20.

1. A generic D-point of (V, s) over k is algebro-gemoetrically a generic point of V over k. i.e. if a is a
generic D-point then loc(a/k) = V (by the proof).

TODO 18. ref

i.e. the generic D-points coincide with the D-points that are algebraically generic.

2. The Zariski-closure of (V, s)♯ is all of V . (The Zariski closure is taken over all varieties, not just those
over k.) So “generically” on V our points are D-points.

Proof. Let W be the Zariski closure of (V, s)♯; so W ⊆ V . In principle W may not be over k. But if
σ ∈ Autk(U) then σ((V, s)♯) = (V, s)♯ since σ ↾ k = id and σ is an Lδ-automorphism; so σ(W ) = W .
So W is Lδ-definable over k.

Fact 5.21. Being L-definable with arbitrary parameters and Lδ-definable over k implies being L-definable
over k.

So W is a subvariety of V over k. But a ∈ (V, s)♯ ⊆W ; so W = V by (a).

3. If b ∈ (V, s)♯ then loc(b/k) is a D-subvariety of V over k.

Proposition 5.22 (20). The generic type of a D-variety (V, s) over a differential field k is finite-dimensional.
In fact it is of dimension dim(V ) (say the Krull dimension of the algebraic variety V ).

Proof. Let a be a generic D-point of (V, s) over k. Then

trdeg(k(∇ℓa)/k) = trdeg(k(a, δa, . . . , δℓa)/k) = trdeg(k(a)/k) = dim(V )

(since ∇(a) = s(a) and since loc(a/k) = V (or alternatively by Aside 5.18)). (One notes that dim(V ) =
trdeg(k(V )/k) in general.) Proposition 5.22

We now prove part of

TODO 19. ref

the previous remark.

Proposition 5.23 (21). Suppose (V, s) is a D-variety over a differential field k. Then (V, s)♯ is Zariski-dense
in V .
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Proof. Let W be the Zariski-closure of (V, s)♯; so W ⊆ V ⊆ Un is Zariski-closed (with arbitrary parameters,
not necessarily from k).

Fact 5.24 (Weil). Every Zariski-closed set has a minimal field of definition F ; i.e.

1. F is a field of definition of W ; i.e. I(W ) ⊆ U [x] is generated by some P1, . . . , Pℓ ∈ F [x].

2. For any L-automorphism σ ∈ Aut(U) if σ(W ) =W then σ ↾F= idF .

Note that this implies that F is the intersection of all fields of definition of W .
Suppose σ ∈ Autk(U) is an Lδ-automorphism. Then σ(V, s)♯ = (V, s)♯; so σ(W ) =W ) and by minimality

we get σ ↾F= id. So by homogeneity we get that F ⊆ dcl(k) = k; so W is over k.
Let a be a generic D-point of (V, s)♯. By earlier remark

TODO 20. ref

we have loc(a/k) = V and a ∈ (V, s)♯ ⊆W . So V ⊆W , and V =W . Proposition 5.23

Theorem 5.25 (22). Suppose k is a differential field and p = tp(a/k) ∈ Sn(k) is finite-dimensional. Then
there is a D-variety (V, s) over k and a generic D-point b of (V, s) over k such that dcl(ka) = dcl(kb).

Remark 5.26. The following are equivalent:

1. dcl(ka) = dcl(kb).

2. k⟨a⟩ = k⟨b⟩.

3. There are k-definable sets a ∈ X ⊆ Un and b ∈ Y ⊆ Um (where n = |x| and m = |b|) and a bijective
k-definable map f : X → Y such that a 7→ b.

Remark 5.27. q = tp(b/k) is the generic type of (V, s) over k.

Proof of Theorem 5.25. Write a = (a1, . . . , an). By finite-dimensionality there is ℓ > 0 such that δℓ(a) ∈
k(a, δa, . . . , δℓ−1a)alg (since trdeg(k⟨a⟩/k) is finite). Now δℓ+1a ∈ k(a, δa, . . . , δℓa), and more generally
k⟨a⟩ = k(a, . . . , δℓa). Let b = (a, δa, . . . , δℓa) ∈ U (ℓ+1)n; let V = loc(b/k) ⊆ U (ℓ+1)n. For i ∈ { 1, . . . , n } write

δℓ+1ai =
Pi(b)

Qi(b)

for Pi, Qi ∈ k[X(0), . . . , X(ℓ)] where X(i) is an n-tuple of variables.
A simplifying assumption: assume Qi = 1 for all i ∈ { 1, . . . , n }. So δℓ+1ai = Pi(b) for all i ∈ { 1, . . . , n }.
Now define s : V → V×U (ℓ+1)n: if x = (x(0), . . . , x(ℓ)) then we send x 7→ (x, x(1), . . . , x(ℓ), P1(x), . . . , Pn(x)).

So s is a regular polynomial map. Also

s(b) = (a, δa, . . . , δℓa, δa, δa, . . . , δℓa, δℓ+1a1, . . . , δ
ℓ+1an︸ ︷︷ ︸

δℓ+1a

) = ∇(a, δa, . . . , δℓa) = ∇(b)

In particular s(b) ∈ τbV ; but this is a Zariski-closed condition and V = loc(b/k), so s(x) ∈ τxV for all x ∈ V .
So s : V → τV is a regular section and (V, s) is a D-variety over k. So b ∈ (V, s)♯ and loc(b/k) = V ; so b is a
generic D-point of (V, s). Also k⟨b⟩ = k⟨a⟩; so a, b are interdefinable over k.

It remains to do the case where some Qi ̸= 1. Write

Q =

n∏
i=1

Qi ∈ k[X(0), . . . , X(ℓ)]

(Note we assume Qi(b) ̸= 0.)
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Claim 5.28.

δ(Q(b) =
P (b)

Q(b)

for some P ∈ k[X(0), . . . , X(ℓ)].

Proof. Indeed, we know δ(Q(b)) is a polynomial in ∇(b) = (b, δb), and

δb = (δa, . . . , δℓa,
P1(b)

Q1(b)
, . . . ,

Pn(b)

Qn(b)︸ ︷︷ ︸
δℓ+1a

)

with δb only appearing linearly. Claim 5.28

Then

δ

(
1

Q(b)

)
=

−P (b)
Q(b)3

Let

b̃ =

(
b,

1

Q(b)

)
and

Ṽ = loc(̃b/k) ⊆ U (ℓ+1)n+1

In coordinates (x, y) we have that Ṽ says x ∈ V and Q(x)y = 1. Also k⟨a⟩ = k⟨̃b⟩. Then

s̃ : Ṽ → Ṽ × U (ℓ+1)n+1

(x, y) 7→
(
x, y, x(1), . . . , x(ℓ), y

QP1

Q1
(x), . . . , y

QPn

Qn
(x),−y3P (x)

)
(where x = (x(0), . . . , x(ℓ))). Then s̃ is a regular section with s̃(̃b) = ∇(̃b), and as before we’re done.

Theorem 5.25

Essentially what we’re doing with Ṽ is writing V \V (Q) as a closed subvariety by adding an extra variable.

5.2 Kolchin topology

Fix a differential field k.

Definition 5.29. Suppose Λ ⊆ k{X} with X = (X1, . . . , Xn). We define V (Λ) = { a ∈ Un : P (a) =
0 for all P ∈ Λ }. We call these the Kolchin-closed subsets of Un over k; these form the closed sets of the
Kolchin topology on Un over k.

Remark 5.30. This refines the Zariski topology on Un over k since k[X] ⊆ k{X}; i.e. Zariski-closed sets are
Kolchin closed.

Example 5.31. Consider the case n = 1. There are many Kolchin closed sets that are proper and infinite; we
have for example that δX = 0 defines the constants C in U , and C = (U , 0)♯ is Zariski-dense in U . Alternatively
note by universality that

(
C(t), d

dt

)
⊆ (U , δ), and consider δx = p(x) for p ∈ k[X].

Aside 5.32. In fact C is an algebraically closed subfield of U .

Definition 5.33. Given V ⊆ Un we define I(V/k) = { f ∈ k{X} : f(a) = 0 for all a ∈ V }.

Remark 5.34. This is then a radical differential ideal of k{X}. In for example the case n = 1 if f(X) =
P (X, δX, . . . , δℓX) ∈ I(V/k) then

δf =

ℓ∑
i=0

∂P

∂X(i)
(X, . . . , δℓX)δi+1X + P δ(X, . . . , δℓX)

So (δf)(a) = δ(f(a)), and thus δf ∈ I(V/k).
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Fact 5.35 (Differential Nullstellensatz). Suppose Λ ⊆ k{X}. Then I(V (Λ)) =
√
[Λ] where [Λ] is the

differential ideal of k{X} generated by Λ.

Fact 5.36. Note that this coincides with the smallest radical differential ideal containing Λ; this is simply
because if I is a differential ideal then so is

√
I. This last seems hard to see though.

Fact 5.37 (Ritt-Raudenbush basis theorem). Every radical differential ideal is finitely generated as a radical
differential ideal. (i.e. if I is a radical differential then I =

√
[Λ] for some finite Λ ⊆ k{X}.)

Note though that not every differential ideal (even if we assume it’s prime) is finitely generated as a
differential ideal.

Corollary 5.38. The Kolchin topology on Un over k is Noetherian.

Definition 5.39. V is an irreducible Kolchin-closed set over k if whenever V =W1 ∪W2 with Wi Kolchin-
closed over k we must have V =W1 or V =W2.

Corollary 5.40. Every Kolchin closed set over k can be written uniquely as an irredundant finite union of
irreducible Kolchin closed sets over k, called its irreducible components.

The proof is just topology. Here “irredundant” means that no component is contained in the union of the
others, and “unique” means up to reordering.

Theorem 5.41 (23). There are natural bijective correspondences

δ-spec(k{X}) Sn(k)
{

irreducible Kolchin-closed
subsets of Un over k

}
Ip p VpΦ

Ψ

where Ip = { f ∈ k{X} : p(x) ⊢ f(x) = 0 } (so Φ is injective by quantifier elimination) and Vp = V (Ip).

Proof.

(Correct codomains) Fix a |= p(x) (so p(x) = tp(a/k)). Then Ip = I({ a }/k) = I(a/k) is a radical
differential ideal and is prime.

Claim 5.42. Vp is the Kolchin-locus of a over k, the smallest Kolchin-closed subset of Un over k
containing a.

Proof. Suppose V (Λ) ∋ a with Λ ⊆ k{X}. Then Λ ⊆ Ip, and thus V (Λ) ⊇ V (Ip) = Vp.
Claim 5.42

So Vp is irreducible. So the claimed codomains of Φ,Ψ are correct.

(Ψ injective) If Vp = Vq then V (Ip) = V (Iq), and thus I(V (Ip)) = I(V (Iq)). So by the differential
Nullstellensatz we get that Ip = Iq, and thus p = q by injectivity of Φ.

(Φ surjective) Suppose I ⊆ k{X} is a prime differential ideal. Then k ⊆ k{X}/I ⊆ Frac(k{X}/I) ⊆ K |=
DCF0, so by universality we can embedK into U over k. Let a be the image of (X1+I, . . . , Xn+I) ∈ Kn

in U under this embedding; let p = tp(a/k). Then for f ∈ k{X} we have

f ∈ I ⇐⇒ f(x) + I = 0 in k{X}/I ⇐⇒ f(X1 + I, . . . , Xn + I) = 0 in k{X}/I ⇐⇒ f(a) = 0

by the embedding. So I = Ip.

(Ψ surjective) Suppose V ⊆ Un is irreducible Kolchin-closed over k. Let p(x) be the complete type over
k determined by x ∈ V and x /∈ W for any proper Kolchin-closed W ⊆ V over k. (This p is the
generic type of V over k.) Then irreducibility of V implies p is a type, which by quantifier elimination
determines a complete type. One then shows that V = V (Ip) = Vp. Theorem 5.41
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The map from irreducible Kolchin-closed subsets of Un over k to Sn(k) sends X to the Kolchin-generic
type of V over k: the type that says x ∈ X and x /∈ Y for any proper Kolchin-closed Y ⊆ X over k.

Remark 5.43. Quantifier elimination implies that every definable set is Kolchin-constructible (i.e. a Boolean
combination of Kolchin-closed sets).

Suppose (V, s) is a D-variety over k with s = (id, s1, . . . , sn). Then (V, s)♯ is Kolchin-closed: if Λ = { p ∈
k[X] : p(a) = 0 for all a ∈ V } then (V, s)♯ = Vδ(Λ). (So Λ is the algebraic ideal of V ; I think from now on
we use I(X) and V (I) to denote the algebraic operations and Iδ, Vδ to denote the differential ones.)

Proposition 5.44 (24). Suppose (V, s) is a D-variety over k and W ⊆ V is a subvariety over k. Then W is
a D-subvariety if and only if W ∩ (V, s)♯ is Zariski dense in W .

Proof.

( =⇒ ) We have that (W, s ↾W )♯ =W ∩ (V, s)♯ and we have seen that the former is Zariski-dense in W .

( ⇐= ) We have a Zariski-dense set of points inW such that s(a) = ∇(a) ∈ (τW )a, and this is a Zariski-closed
condition; so s(x) ∈ (τW )x for all x ∈W , and W is a D-subvariety. Proposition 5.44

Corollary 5.45 (25). (V, s)♯ is irreducible over k.

Proof. Suppose X ⊆ (V, s)♯ ⊆ Un is Kolchin-closed over k; say X = Vδ(Λ) for Λvmk{X}. For P ∈ Λ write

P = Q(X, δX, . . . , δℓX); consider P̃ ∈ k[X] obtained from P by replacing δXi by si(X) everywhere. Let

Λ̃ = { P̃ : P ∈ Λ }. Then X = V (Λ̃) ∩ (V, s)♯. Now X̃ = V (Λ̃) ∩ V is a Zariski-closed subset of V , and

X = X̃ ∩ (V, s)♯.
What we have shown is that the Kolchin topology on (V, s)♯ is the topology induced by the Zariski

topology. Suppose now that (V, s)♯ = X ∪ Y with X,Y Kolchin-closed over k; let a ∈ (V, s)♯ be a generic

D-point. Say a ∈ X; then X = X̃ ∩ (V, s)♯, so a ∈ X̃, and thus X̃ = V (since loc(a/k) = V ). So X = (V, s)♯.
Corollary 5.45

Remark 5.46. We remarked in the above proof that the Kolchin topology on (V, s)♯ is induced by the Zariski
topology; it follows from this that a ∈ (V, s♯) is D-generic in (V, s) over k if and only if a is Kolchin-generic
in (V, s)♯ over k.

Indeed, suppose a is a D-generic point of (V, s)♯ over k. If a ∈ X ⊆ (V, s)♯ is Kolchin-closed over k then

X = X̃ ∩ (V, s)♯ for some Zariski-closed X̃. But loc(a/k) = V , so X̃ = V , and X = (V, s)♯. Conversely
suppose a ∈ (V, s)♯ is Kolchin-generic over k. Let W = loc(a/k) ⊆ V ; then a ∈W ∩ (V, s)♯, and the latter is

a Kolchin-closed subset of (V, s)♯ over k. So V = (V, s)♯ ⊆W , and W is Zariski-dense in V , and is thus all of
V .

Fact 5.47 (Kolchin irreducibility theorem). In a D-variety (V, s) we have that V is irreducible as a Kolchin-
closed set.

Remark 5.48. (V, s)♯ ⊆ V ⊆ Un can be quite far apart. Indeed if a ∈ (V, s)♯ then trdeg(k⟨a⟩/k) ≤ dim(V )
(since k⟨a⟩ = k(a)) in particular is finite, whereas the geometric axioms for DCF show that there is b ∈ V
such that ∇(b) ∈ τV is generic (taking W = τV in the geometric axiom). But dim(τV ) = 2 dim(V ); so
trdeg(k⟨b⟩/k) ≥ 2 dim(V ). In fact for each ℓ we can iterate to find b ∈ V such that ∇ℓ(b) has transcendence
degree ℓdim(V ) over k. Iterating, we get b ∈ V such that trdeg(k⟨b⟩/k) is infinite.

5.3 Constants

Remark 5.49.

1. We have C = { a ∈ U : δa = 0 } = (U , 0)♯. So C is an irreducible Kolchin closed set over Q with generic
type of dimension 1.

2. C ⊆ U is a subfield.

3. C is algebraically closed. Indeed, if a ∈ Calg, say with minimal polynomial P ∈ C[x], then 0 = δ(P (a)) =
P ′(a)δa; so δa = 0 and a ∈ C.

30



4. The full induced structure on C is that of a pure field; i.e. if D ⊆ Un is definable in U (with parameters)
then D ∩ Cn is a definable set in (C, 0, 1,+,−,×).

Proof. By quantifier elimination it suffices to do this when D is Kolchin-closed over k ⊆ U a subfield.
Note that Cn = (Un, 0)♯. Then X = D ∩ Cn is Kolchin-closed in (Un, 0)♯ implies that X = X̃ ∩ Cn with

X̃ ⊆ Un Zariski-closed over k.

TODO 21. By earlier stuff?

Say X̃ = V (P1, . . . , Pℓ). So X = { a ∈ Cn : P1(a) = · · · = Pℓ(a) = 0 }. So we’re almost done except that
P1, . . . , Pℓ ∈ k[X] and k ̸⊆ C.
How do we get that k ⊆ C?

Fact 5.50 (Definability of types in stable theories). Suppose we have a type p(x) ∈ Sn(C) (note that
C is not small; indeed |C| = |U|). Suppose φ(x, y) is a formula over ∅. Then there is a formula
ψ(y) = dpxφ(x, y) such that for all b ∈ Cn we have φ(x, b) ∈ p(x) if and only if |= dpxφ(x, y); we call
this the φ-definition of p.

Question 5.51. Can this be proven differential-algebraically?

We now have D ⊆ Un definable over k, say defined by φ(a, y) with a ∈ Um. Let p = tp(a/C). Then by
definability of types we get φ(a, y) ∧ (δy = 0) ≡ dpxφ(x, y) ∧ (δy = 0)); but the former defines D ∩ Cn,
and the latter has parameters in C. So we can take D ⊆ Un defined over C and show that D ∩ Cn is
definable in C, 0, 1,+,−,×); but we have already done this.

So algebraic geometry lives on C in U . Given V ⊆ Un Zariski-closed, V should be viewed as an
infinite-dimensional Kolchin-closed set; this is not algebraic geometry in C. To do algebraic geometry in
U : if V ⊆ Un is a variety over k ⊆ C we consider V (C) = (V, 0)♯; this is finite dimensional (of dimension
dim(V )).

Example 5.52. Consider the set X defined by δx = 1; then τU = TV = U × U , so X = (U , 1)♯. Then
X ∩ C = ∅, and moreover X is weakly orthogonal to C: for any a ∈ X and b ∈ Cm we have a |⌣ b. Indeed if
F = acl(b) = Q(b)alg ⊆ C then a /∈ F . Then

dim(a/F ) = (1, 1, 1, . . .)

dim(a/Q) = (1, 1, 1, . . .)

So by

TODO 22. ref

a |⌣Q F and a |⌣ b.

But if we fix a ∈ X we get a map X → C given by b 7→ b − a; this is a definable bijection. (Since
δ(b− a) = δb− δa = 1− 1 = 0.) The point is this bijection is definable over { a }.

Definition 5.53. Suppose X is a definable set. We say X is internal to C if there is a definable bijection
f : X → D ⊆ Cn. (Note that f is allowed to use parameters not used by X.)

We say X is almost internal to C if there is D ⊆ Cn definable and a definable finite-to-one surjection
f : X → D (over some parameters). (Here finite-to-one means each fibre is finite.)

Question 5.54.

1. What are the dimension 1 almost C-internal sets? We know δx = t is, and C is as well.

2. What do the dimension 1 sets that are not almost C-internal look like?

Up to interdefinability the dimension 1 sets are (V, s)♯ with dim(V ) = 1; that is, the D-points of D-curves.
We restrict our attention to V = U ; so equations of the form δ(x) = f(x) where f ∈ k[X]. Let’s allow
f ∈ k(X). We restrict to k ⊆ C.
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Fact 5.55 (Kolchin). Suppose X ⊆ U is defined by δx = f(x) where f ∈ k(X) and k ⊆ C. Then X is almost
C-internal if and only if one of the following holds:

1. f = 0

2. 1
f = g′(x) = d

dx (g) for some g ∈ k(X)

3. 1
f = cg′(x)

g(x) for some g ∈ k(X) and c ∈ k.

Example 5.56. Consider δx = x; so f(x) = x and

1

f
=

1

x
=

d
dxx

x

So it defines an almost C-internal set. We can also see this directly: fix 0 ̸= a ∈ X (where X is defined by

δx = x). Consider the map X → C given by x 7→ x
a . Then δ

(
x
a

)
= −xδ(a)

a2 + δx
a = −x

a + x
a = 0.

Example 5.57. Consider f(x) = x3 − x2. Then the fractional decomposition of f is

1

f
=

1

x− 1
− 1

x
− 1

x2

So

1

f
=

d x−1
x

dx
x−1
x

+
d

dx

(
1

x

)
One then checks that this doesn’t fit into the cases of Kolchin’s theorem; so X defined by δx = x3 − x2 is not
almost C-internal.

What do the dimension 1 sets that are not almost C-internal look like?

Theorem 5.58 (Hrushovski). In this case X is ω-categorical; i.e. the theory of the full induced structure on
X is. In this case this means that if A is a finite set then acl(A) ∩X is finite; this is equivalent to saying
that in X2 there are only finitely many Kolchin-closed subsets over k that project cofinitely onto X in both
coordinates.

Ideas: suppose k ⊆ C and X over k has dimension 1 is not almost C-internal; write X = (V, s)♯. Suppose
a is a finite tuple. Then acl(ka) = k⟨a⟩alg.

TODO 23. Transition word?

There are no non-constant differential-rational maps X → C over k⟨a⟩alg. So there are no dominant
D-rational morphisms (V, s) → (U , 0). For general D-varieties (V, s), if there were such F : (V, s) → (U , 0)
and c ∈ k then we would have F−1(c) a D-subvariety of (V, s) of codimension 1.

The converse (for vector fields) is a theorem of Joanolou. Hrushovski generalized this to our setting of
D-varieties over the algebraic closure of a finitely generated differential field over k.

So there are only finitely many D-points in (V, s) over k⟨a⟩alg; so acl(ka) ∩X is finite.

6 Zilber dichotomy

We have discussed a strong dichotomy for 1-dimensional Kolchin-closed sets (in fact in one variable): namely
X is almost C-internal (“has much to do with algebraic geometry in C”) or ω-categorical (“very little induced
structure on X2”).

The Zilber dichotomy generalizes this to n-dimensional Kolchin-closed sets at the cost of weakening
“ω-categorical”. We work towards a proof of this.

Definition 6.1. We say an infinite definable set X is strongly minimal if every definable subset of X is
either finite or cofinite. (Here “definable” means with parameters.)
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This is intended to generalize curves in ACF.
At this point we give up on numbering theorems.

Proposition 6.2. Suppose (V, s) is a D-variety over an algebraically closed differential field k. Let X = (V, s)♯.
Then X is strongly minimal if and only if (V, s) has no proper infinite D-subvarieties over any differential
field L ⊇ k.

Proof. First note that (V, s) is a D-variety over L; i.e. V is still irreducible as a Zariski-closed set over L
(since k is algebraically closed).

By quantifier elimination X is strongly minimal if and only if for any L ⊇ k and Y ⊆ X Kolchin closed
over L we have that Y is finite or all of X. Write Y =W ∩X with W the Zariski closure of Y in V ; so W is
a D-subvariety of V over L.

TODO 24. ref

Then Y is finite if and only if W is, and Y = X if and only if W = X. So X is strongly minimal if and
only if any such W is all of V or finite. Proposition 6.2

Example 6.3. (V, s)♯ with dim(V ) = 1 satisfies the hypothesis of the proposition since V has no proper infinite
subvarieties at all. There are also many strongly minimal (V, s)♯ with dim(V ) > 1.

(Marker) Consider (δ2x = δx
x ) ∧ (δx ̸= 0). Why does this take the desired form? Roughly speaking, we

introduce a variable y for δx, and to express that δx ̸= 0 we introduce a variable z for 1
xy . Formally

speaking our variety is V ⊆ U3 given by xyz = 1, and our section is s(x, y, z) = (x, y, z, y, y2z,−(xy2z+
y2)z2). One then checks that s : V → TV (our variety is over Qalg so this coincides with the prolongation)
and that (V, s)♯ = { (x, δx, 1

xδx ) : x ∈ X } (which in particular is in 0-definable bijection with X). Also
dim(V ) = 2 and (V, s)♯ is strongly minimal. (This is also ω-categorical.)

(Painlevé I) Consider the equation δ2x = 6x2 + t over k = C(t)alg with δ = d
dt . This is (in definable

bijection with) (U2, s)♯ where s(x, y) = (x, y, y, 6x2 + t). It is strongly minimal: this is due to Kolchin,
Nishioka, and Umemura. (This is also ω-categorical.)

(j-function) Satisfies an important order-3 differential equation of the form δ3x = f(x, δx, δ2x) where f is
rational. This gives rise to some (V, s)♯ with dim(V ) = 3; this was recently (2000s, 2010s) shown to
be strongly minimal by Freitag-Scanlon using work of Pila. (This is not ω-categorical but is locally
modular, which we’ll define soon.)

(Manin Kernels) Use the theory of abelian varieties. (These aren’t constructed by explicit equations,
though.) These were studied by Buium and Hrushovski in the 90s, 80s. (This is not ω-categorical.)

The Zilber dichotomy in DCF0: if X = (V, s)♯ is strongly minimal then X is almost C-internal or X is
locally modular.

6.1 Elimination of imaginaries

Definition 6.4. Suppose X is a definable set. A canonical parameter or code for X is a tuple c such that for
all σ ∈ Aut(U) we have σ(X) = X if and only if σ(c) = c.

Example 6.5. In ACF0 with V ⊆ Un Zariski-closed, we have that c is a code for V in (U , 0, 1,+,−,×) if and
only if Q(c) is the minimal field of definition for V . (Note σ(c) = c if and only if σ ↾ Q(c) = id.)

Example 6.6. Every finite set has a code (in any expansion of the theory of fields). Indeed, if X = { a1, . . . , aℓ }
then (x− a1) · · · (x− aℓ) = xℓ + cℓ−1x

ℓ−1 + · · ·+ c1x+ c0 for some c0, . . . , cℓ−1; then c = (c0, . . . , cℓ−1) is a
code for X.

Lemma 6.7. c is a code for X if and only if there is φ(x, y) ∈ Lδ such that φ(x, c) defines X and if d ̸= c
then φ(x, d) does not define X.

Proof.
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( ⇐= ) Suppose σ ∈ Aut(U). Then since σ(X) = X we have φ(x, σ(c)) ≡ φ(x, c), and thus σ(c) = c by
hypothesis.

( =⇒ ) By saturation X is defined over c; say by ψ(x, c) with ψ ∈ Lδ.

Suppose d |= p(y) where p(y) = tp(c), and that ψ(x, d) defines X; then there is σ ∈ Aut(U) such
that σ(c) = d. But then σ(X) is defined by ψ(x, σ(c)) = ψ(x, d), and is thus X; so by hypothesis
c = σ(c) = d.

Consider now the type p(y) ∪ {∀x(ψ(x, y) ↔ ψ(x, c)) } over { c }; we have just shown that this type
entails y = c (by saturation). So by compactness there is θ ∈ p such that

U |= ∀y(θ(y) ∧ (∀x(ψ(x, y) ↔ ψ(x, c))) → y = c)

Let φ(x, y) = ψ(x, y) ∧ θ(y). Then this is our desired formula: φ(x, c) defines X, and if φ(x, d) defines
X then θ(d) holds and ψ(x, d) ≡ ψ(x, c), so by above observation we have c = d. Lemma 6.7

We write c = ⌈X⌉ to mean that c is a canonical parameter for X.

TODO 25. Corners?

Remark 6.8. It follows that for σ ∈ Aut(U) we have σ(⌈X⌉) = ⌈σ(X)⌉.

Proposition 6.9. Kolchin-closed sets have codes.

Proof. We use the Ritt-Raudenbush basis theorem. Suppose Z ⊆ Un is Kolchin-closed over k. Recall by
Ritt-Raudenbush basis theorem that Iδ(Z) = { f ∈ k{X} : f(a) = 0 for all a ∈ Z } (with X = (X1, . . . , Xn))
is radically differentially generated by some f1, . . . , fℓ ∈ k{X}. (Since Ik(Z) is a radical differential ideal.)
Let N = max(ord(f1), . . . , ord(fℓ)); let J = Iδ(Z) ∩ k[X(0), X(1), . . . , X(N)]. Then J is a radical ideal in the
polynomial ring over k in (N + 1)n variables. Then V = V (J) is Zariski closed in U (N+1)n; let F be the
minimal field of definition of V . Then for σ ∈ Aut(U) we have σ ↾ F = id if and only if σ(V ) = V if and only
if Jσ = J (where Jσ = { fσ : f ∈ J } and fσ is f with σ applied to the coefficients). But note that Jσ = J if
and only if Iδ(Z)

σ = Iδ(Z), since Iδ(Z) is radically differentially generated by J . Since Iδ(Z)
σ = Iδ(Z) if

and only if σ(Z) = Z, if we write F = Q(c) then c is a code for Z. Proposition 6.9

Corollary 6.10. Every definable set has a code. (i.e. DCF0 has elimination of imaginaries.)

Proof. By quantifier elimination any definable set takes the form X = A1 \B1 ∪ · · · ∪Aℓ \Bℓ with A1, . . . , Aℓ

(absolutely) irreducible Kolchin closed sets with Bi ⫋ Ai proper Kolchin-closed subsets with

Ai \Bi ̸⊆
⋃
j ̸=i

Aj \Bj

and this expression is unique up to reordering. Let ai = ⌈Ai⌉ and bi = ⌈Bi⌉. Then for σ ∈ Aut(U) we have
σ(Ai\Bi) = Ai\Bi implies σ(Ai) = Ai since Ai\Bi is Kolchin-dense in Ai. But also σ(Ai\Bi) = σ(Ai)\σ(Bi);
so in this case we have σ(ai) = ai and σ(bi) = bi. So (ai, bi) = ⌈Ai\Bi⌉. Then ⌈{ (a1, b1), . . . , (aℓ, bℓ) }⌉ = ⌈X⌉.
(The former exists as finite sets have codes.) This uses that σ(⌈Ai\Bi⌉) = ⌈σ(Ai)\σ(Bi)⌉. Corollary 6.10

6.2 Minimal types

(These definitions work in any stable theory, though our attention is of course on DCF0.)

Definition 6.11. Suppose p ∈ Sn(A). We say p ∈ Sn(A) is minimal if it is non-algebraic and stationary and
for all B ⊇ A every non-algebraic extension of p to B is free.

Recall that p(x) is algebraic if it has finitely many realizations in U ; equivalently, if a |= p then a ∈ acl(A).
Recall further that p ∈ Sn(A) is stationary if for all B ⊇ A there is a unique free extension of p to B. In
particular, all types over acl(A) are stationary.

So for p non-algebraic and stationary, p is minimal if and only if whenever a |= p with a ̸ |⌣A
B then

a ∈ acl(B). (Note that algebraic extensions of p are certainly not free.)
General note: this coincides with types of U -rank 1.
The following proposition is again specific to DCF0:
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Proposition 6.12. If p is minimal then dim(p) <∞.

We first prove:

Lemma 6.13. If p(x, y) = tp(ab/A) is minimal (where |a| = n and |b| = m) then tp(a/A) is minimal or
algebraic.

Proof. Let r(x) = tp(a/A).

(Stationarity) Suppose a1, a2 |= r with ai |⌣A
B for i ∈ { 1, 2 } and some B ⊇ A. Extend ai to (ai, bi) |= p:

pick σi ∈ AutA(U) such that σi(a) = ai (since ai, a |= r), and set bi = σi(b). By existence of free
extensions there is b′i |= tp(bi/Aai) with b

′
i |⌣Aai

B. Then (ai, b
′
i) still realizes p and (ai, b

′
i) |⌣A

B by

transitivity. Since p is stationary we get that tp((a1, b
′
1)/B) = tp((a2, b

′
2)/B); so tp(a1/B) = tp(a2/B).

(Algebraic or minimal) Suppose r is non-algebraic; we show that r is minimal. Suppose B ⊇ A, a′ |=
r = tp(a/A), and a′ ̸ |⌣A

B. Let σ ∈ AutA(U) be such that σ(a) = a′; let b′ = σ(b). Then (a′, b′) |=
p(x, y), and (a′, b′) ̸ |⌣A

B; so by minimality of p we get that (a′, b′) ∈ acl(B), and in particular that
a′ ∈ acl(B). Lemma 6.13

Proof of Proposition 6.12. Suppose p = tp(a1, . . . , an/k) is not finite-dimensional with k a differential field.
Let m ≤ n be least such that tp(a1, . . . , am/k) is not finite-dimensional. Let L = k⟨a1, . . . , am−1⟩. Then
trdeg(L/k) is finite, by minimality of m. We must then have that am is differentially transcendental over
L; else we would have trdeg(L⟨am⟩/L) finite, and thus trdeg(k⟨a1, . . . , am⟩/k) < ∞, contradicting our
assumption that tp(a1, . . . , am/k) is not finite-dimensional.

So am /∈ L(δam, δ
2am, . . .)

alg = L⟨δam⟩alg = acl(Lδam). So tp(a1, . . . , am/kδam) is non-algebraic. So
(a1, . . . , am) ̸ |⌣k

δam, since δam ∈ acl(ka1, . . . , am) \ acl(k). i.e. tp(a1, . . . , am/kδam) is a non-free non-
algebraic extension tp(a1, . . . , am/k). So tp(a1, . . . , am/k) is not minimal non-algebraic. So by previous
lemma we get tp(a1, . . . , an/k) is not minimal. Proposition 6.12

So we can focus on D-varieties to study minimal types.

Proposition 6.14. Suppose (V, s) is a D-variety over a differential field k = kalg; suppose X = (V, s)♯ is
strongly minimal. Then the generic type of X over k is minimal.

Proof. Let p be the generic type of X over k. (Recall that this says x ∈ (V, s)♯ and the Zariski-locus
loc(a/k) = V .) Then since X is infinite we get that p is non-algebraic. Since k = kalg we get that p is
stationary. Let K ⊇ k be a differential field and q ∈ Sn(K) a non-free extension of p. Let a |= q; so a ̸ |⌣k

K.
So by assignment we get X = Kloc(a/k) ̸= Kloc(a/K) (Kolchin loci); let Y = Kloc(a/K). Then Y ⊆ X is
a proper Kolchin-closed subset, and is thus finite since X is strongly minimal; so q = tp(a/K) is algebraic.

Proposition 6.14

Definition 6.15. We say (V, s) is minimal (or (V, s)♯ is minimal) if the generic type of (V, s)♯ is minimal.

More generally:

Definition 6.16. If X is an irreducible Kolchin-closed set over k we say X is minimal if its generic type
over k is minimal.

We say (essentially) that strongly minimal implies minimal.
Recall: if k = kalg and (V, s) is a D-variety over k, then (V, s)♯ is strongly minimal if and only if (V, s)

has no proper infinite D-subvarieties (over any parameters).
What of minimality? The characterization should be: for any differential field K ⊇ k, there does not exist

a proper infinite D-subvariety W ⊆ V over K with some a ∈W generic in (V, s)♯ over k. (One checks that
this equivalence follows from the above.)

Terminology note: this notion of minimality appears to be unrelated to the notion in Tent and Ziegler
(and in fact came after the definition of strongly minimal).

An exercise (that maybe should have gone in the elimination of imaginaries section):

Exercise 6.17. Suppose X is a Kolchin-closed set over a differential field k. Let L ⊇ k be a differential field
extension. Let X0 be an irreducible component of X over L. Then X0 is defined over L ∩ kalg.
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One uses elimination of imaginaries: we see that ⌈X0⌉ ∈ kalg as it has a finite orbit under Autk(U) (by
the decomposition of X into finitely many irreducible components over L).

Corollary 6.18. If X is irreducible over k and k = kalg then X is irreducible over any L ⊇ k (i.e. absolutely
irreducible).

(The proof is also an exercise.)

Exercise 6.19. Show that p ∈ Sn(k) is stationary if and only if for any a |= p the Kolchin-locus Kloc(a/k) is
absolutely irreducible.

We want to adapt the notion of “almost C-internal” to types, rather than definable sets.

Definition 6.20. Suppose p ∈ Sn(A) is stationary. We say p is orthogonal to C if for any B ⊇ A and any
a |= p with a |⌣A

B (i.e. tp(a/B) is a free extension of p) and any finite tuple c from C, we have a |⌣B
c.

(Equivalently, any free extension of p is weakly orthogonal to the constants.) This is denoted p ⊥ C.

Lemma 6.21. Suppose p is minimal. Then p ̸⊥ C if and only if there is B ⊇ A and a |= p such that a |⌣A
B

and a ∈ acl(Bc) for some finite tuple c from C.

Proof.

( =⇒ ) By hypothesis there is B ⊇ A and c from C such that a |= p, a |⌣A
B, and a ̸ |⌣B

c. So by transitivity
we get a ̸ |⌣A

Bc. So tp(a/Bc) is a non-free extension of tp(a/A) = p. So a ∈ acl(Bc) by minimality.

( ⇐= ) Given such a,B, c we see that a /∈ acl(B) since a |⌣A
B and a /∈ acl(A) since p is non-algebraic. So

a ̸ |⌣B
c; so p ̸⊥ C. Lemma 6.21

(In general (without assuming minimality), the right-hand-side condition is the correct generalization of
“almost C-internal” to types; “C-internal” should be the same thing but with dcl replacing acl. The lemma
then says that for p minimal non-orthogonality coincides with almost internality.)

We restrict our attention to minimal types; since we know these are finite-dimensional, we restrict our
attention to sets of the form (V, s)♯.

TODO 26. The next proposition is a better version of this.

Proposition 6.22. Consider a D-variety (V, s) over k = kalg; let p be the generic type of (V, s)♯. Suppose
p is minimal. Then p ̸⊥ C if and only if there is K = Kalg ⊇ k an extension of differential fields and
f ∈ K(V ) \K such that δf = 0. (i.e. (K(V ))δ ⫌ Kδ).

(Such an f gives a “D-rational” dominant map (V, s) → (U1, 0).)

Proof.

( ⇐= ) Let a ∈ V be a D-generic point of (V, s) over K; so Kloc(a/K) = (V, s)♯. Also Kloc(a/k) = (V, s)♯

(since a is then generic over k). So by assignment we have a |⌣k
K; also a |= p. Note that a ̸ |⌣K

f(a)
since f /∈ K implies f(a) /∈ K = acl(K) but f(a) ∈ acl(Ka). Also

δ(f(a)) = (δf)(a) = 0

(since ∇a = s(a); one should check this). So f(a) ∈ C. So p ̸⊥ C.

( =⇒ ) Suppose a |= p, L ⊇ k a differential field, and c from C satisfy a |⌣k
L and a ̸ |⌣L

c. Write
c = (c1, . . . , cn) ∈ Cn. Let m ≤ n be least such that a ̸ |⌣Lc1···cm−1

cm (applying transitivity to

L ⊆ Lc1 ⊆ Lc1c2 ⊆ · · · ⊆ Lc). So cm /∈ acl(Lc1 · · · cm−1). So cm is a generic point of C over

K = acl(Lc1 · · · cm−1) = L(c1, . . . , c
alg
m−1). But C is minimal and a ̸ |⌣K

cm; so cm ∈ acl(Ka).

TODO 27. Word?

Since tp(cm/Ka) is a non-free extension of tp(cm/K), we get that the orbit D of cm over AutKa(U) is
finite. Let d = ⌈D⌉. Then d ∈ dcl(Ka) and cm ∈ acl(d); so d /∈ K. Write d = (d1, . . . , dℓ) ∈ Cℓ. Then
d ∈ Cℓ since D ⊆ C by stable embeddedness.
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TODO 28. ?

Say d1 /∈ K. Then d1 ∈ dcl(Ka) = K⟨a⟩ = K(a) = K(V ). But a /∈ acl(K); so by minimality we get
a |⌣k

K. So Kloc(a/K) = (V, s)♯; so a is generic in (V, s) over K. So a is Zariski-generic in V over K.
So K(a) = K(V ). So d1 ∈ K(V ) \K and δ(d1) = 0. So we can take f = d1. Proposition 6.22

An improvement of the previous theorem:

Proposition 6.23. Suppose p is stationary over k; so p is the generic type of some Kolchin-closed absolutely
irreducible X over k. Then p ̸⊥ C if and only if there is a δ-rational dominant map f : X → C over some
L ⊇ k. (Here “dominant” means Kolchin-dominant, which coincides with Zariski-dominant because the
induced structure on C is the pure field structure. But this is a one-dimensional set; so dominant just means
infinite. So this is equivalent to f(a) /∈ acl(L). Note that f is not assumed to be total on X.)

Proof.

( =⇒ ) By non-orthogonality there is K ⊇ k with a |= p and c = (c1, . . . , cℓ) ∈ Cℓ such that a |⌣k
K and

a ̸ |⌣K
c. Let m be least such that a ̸ |⌣Kc1···cm−1

cm; let L = Kc1 · · · cm−1. Then since C is minimal

we get that cm ∈ acl(La) \ acl(L). Let D be the orbit of cm under AutLa(U); let d = ⌈D⌉. Then
d ∈ dcl(La), and

TODO 29. I guess since it’s definable over the set of orbits of cm, which are all constants.

d ∈ CN . Also d /∈ acl(L). So for some coordinate of d, say d1, we have d1 ∈ dcl(La)\acl(L) and d1 ∈ C. So
d1 = f(a) for some δ-rational function f over L. But now a ∈ { a′ ∈ dom(f) : f(a′) ∈ C } = dom(f)∩Y
where Y is Kolchin-closed over L. So a ∈ Y , and X ⊆ Y . So f(X ∩ dom(f)) ⊆ C; so we have a
δ-rational f : X → C, which is dominant since f(a) = d1 /∈ acl(L).

( ⇐= ) Suppose we have L ⊇ k and f : X → C dominant over L. By existence of free extensions there is
a |= p such that a |⌣k

L; so f(a) ∈ C. Then since f is dominant we get that f(a) /∈ acl(L); so f(a) ̸ |⌣L
a

since f(a) ∈ dcl(La). So a ̸ |⌣L
f(a), and p ̸⊥ C. Proposition 6.23

Remark 6.24.

1. If (X = (V, s)♯ then f given on the right-hand side extends to f ∈ L(V ) a (non-differential) rational
function on V , and we have δf = 0 (since (δf)(b) = δ(f(b)) = 0 for any b ∈ X). This is

TODO 30. ref, proposition before last

2. If p is minimal then the f in the right-hand side is finite-to-one on a Kolchin-dense definable subset.
More generally, we have the following:

Lemma 6.25. Say we have Kolchin-closed X over k that is minimal. Then for any L ⊇ k and any
δ-rational f : X → Y over L to any Kolchin-closed Y , either f is (constant or f is finite-to-one (onto
its image)) on a Kolchin-dense definable set of X.

(Note that definable D ⊆ X is Kolchin-dense if and only if there is U ⊆ D ⊆ X such that U is non-empty
and Kolchin-open.)

Proof. Take a ∈ X generic over L; let Z be the absolute Kolchin-closure of f−1(f(a)), which is defined
over L(f(a))alg. By minimality

TODO 31. ref

we get that Z is not proper and infinite. If Z = X we get that f is constant; if Z is finite then f is
finite-to-one on a Kolchin-dense definable set.

TODO 32. Generically?
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Lemma 6.25

TODO 33. Couldn’t we just note that any element of any fibre forks over
uh
the generic type? I guess if it’s not a generic element then it’s already algebraic over L.

6.3 1-based

Definition 6.26. Suppose p ∈ Sn(k) is stationary. We say p is 1-based if for any a1, . . . , an realizing p and
any d ∈ dcl(ka1, . . . , an) and L = Lalg ⊇ k we have

TODO 34. algebraically closed necessary?

⌈Kloc(d/L)⌉ ∈ acl(kd). (Equivalently for any d ∈ dcl(p(U), k).)

(In the general case we would replace “Kolchin locus” with “canonical base”.) For some intuition: write
X = Kloc(d/k) and Y = Kloc(d/L). Let e = ⌈Y ⌉; then Kloc(d/k⟨e⟩) = Kloc(d/L) = Y , so we may assume
L = k⟨e⟩. Then 1-basedness is saying that e ∈ acl(kd); i.e. there are only finitely many conjugates of Y over
kd. The idea is that there are no “rich” families of Kolchin-closed subsets of X passing through the generic
point d.

If p is minimal and d |= p this is vacuous. However we still have to check the case for say d = (a1, a2)
where a1, a2 |= p. Let Z = Kloc(a1/k) = Kloc(a2/k) with a1 |⌣k

a2. Then X = Kloc(d/k) = Z2. But

Y = Kloc(d/⟨a1⟩) ⫋ X via x1 = a1. This is not a counterexample to 1-basedness since the conjugates of Y
don’t go through d.

Example 6.27. Let p be the generic type of C over k; so p says δx = 0 and x /∈ kalg. Then p is not 1-based.
Let m, b ∈ C be algebraically independent. Let Y ⊆ C2 be defined by y = mx+ b (and δx = δy = 0). Then
let d ∈ Y be generic over L := k(mb). (So in terms of the above example our X = C2.)

First note that a1, a2 realize p. Indeed we have trdeg(k(m, b, a1, a2)/k) = 3; so if for some i ∈ { 1, 2 } we
had ai ∈ kalg then since a2 = ma1+b we would have trdeg(k(m, b, a1, a2)/k) = 2, a contradiction. Note as well
that ⌈Y ⌉ = (m, b). Finally we remark that (m, b) /∈ acl(kd) = k(a1, a2)

alg since trdeg(k(a1, a2,m, b)/k) = 3.

In general one can show that for a minimal type one only needs to check the case of two realizations.

Theorem 6.28 (The Zilber dichotomoy for DCF0). If p is a minimal type then either p is 1-based or p ̸⊥ C.

This theorem was done in an unpublished manuscript by Hrushovski-Sokolovich in 1992; it was used to
show the Mordell-Lang conjecture for function fields.

Fact 6.29. For p minimal 1-basedness is equivalent to a separate notion called local modularity.

We will do the proof of Pillay and Pillay-Ziegler from circa 2004. Our proof goes via the canonical base
property.

6.4 Internality (again?)

Definition 6.30. If p ∈ S(k) is stationary we say p is almost C-internal if for some a |= p and L ⊇ k with
a |⌣k

L we have a ∈ acl(LC).

Note the previous definition of almost internality was for strongly minimal definable sets

TODO 35. really?

whereas this is for types.

Exercise 6.31. p is almost C-internal if and only if its Kolchin locus X over k admits a generically finite-to-one
δ-rational map f : X → Cn (over possibly additional parameters).
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Further recall that p ̸⊥ C if and only if there is a dominant δ-rational function f : X → C.

TODO 36. ref

Hence if p is non-algebraic and almost C-internal then p ̸⊥ C. (Just compose the δ-rational map witnessing
almost-internality with a projection.)

Remark 6.32. If p is algebraic then p is almost C-internal, but p ⊥ C.
We have seen

TODO 37. ref

that if p is minimal then p is almost C-internal if and only if p ̸⊥ C.

Theorem 6.33 (Canonical base property for DCF0). Suppose p ∈ S(k) is stationary and finite-dimensional.
Suppose a |= p and L ⊇ k; let e = ⌈Kloc(a/L)⌉. Then tp(e/ acl(ka)) is almost C-internal.

Idea of statement: let X = Kloc(a/k) and Y = Kloc(a/L). As before we may assume L = k⟨e⟩ where
e = ⌈Y ⌉. Then the theorem says that the set of k-conjugates of Y passing through a, while not necessarily
finite as in 1-basedness, does admit a finite-to-one map to Cn. (Here we identify the k-conjugates of Y with
their codes (which coincide with the k-conjugates of e, I guess).)

Note that Y = Ze where

Z = Kloc((e, a)/k)

E = Kloc(e/k)

and we take fibres of the projection Z → E. Note these are all Kolchin-closed over k. So Z → E is a
family of Kolchin-closed subsets of X parametrized by E, and Y is the generic member of this family. Let
Ea = Kloc(e/ acl(ka)) ⊆ E. Essentially, Ea is { e′ ∈ E : a ∈ Ze′ }. (The ⊆ containment is clear; this will be
good enough for our purposes.) Then the theorem says there is a generically finite-to-one δ-rational map
f : Ea → Cn; i.e. up to finite noise we can distinguish between the Ze′ passing through a by f .

Idea of proof: suppose we have Ze and Ze′ that are different. One way to show they’re distinct is to show
they have different “tangent spaces at a”. (These will be Kolchin-tangent spaces; to be defined later. For the
purposes of this idea, denote this T (Ze)a ̸= T (Ze′)a.) Consider the map Φ sending e 7→ T (Ze)a; note T (Ze)a
is a linear subspace of T (X)a. Because our type is finite-dimensional

TODO 38. Over k, not C? Is that enough?

these tangent spaces will be finite-dimensional C-vector spaces. So we can view Φ as a map from Ea

to the Grassmannian of T (X)a; roughly speaking, this is the set of all C-linear subspaces. Of course since
T (X)a ∼= Cm we can view this as the Grassmannian of Cm, which is a subvariety of CN .

So if Ze and Ze′ have different tangents at a then our Φ suffices. What if they share a tangent at a? We
use the “higher Kolchin tangent spaces”. We can similarly get Φ(n)(e) = T (n)(Ze)a ⊆ T (n)(X)a, which we
can view as living in the Grassmanian of T (n)(X)a), which can be viewed as living in CM for large M .

Because all the Ze are from the same family Z, there is some n such that if Ze and Ze′ share an n-tangent
space then they are equal; so Φ(n) is injective. (Much as given a family of polynomials there is a bound on
their degree; hence if the nth derivatives of two elements of the family agree for n less than the degree bound,
then they are equal.)

6.5 The proof of CBP in detail

What are the “higher-order Kolchin tangent spaces”?
Since our types are finite-dimensional we consider X = (V, s)♯ for some D-variety (V, s) over k. If

a ∈ X we let mV,a = { f ∈ U [V ] : f(a) = 0 } ⊆ U [V ] = U [x]/I(V ) be the maximal ideal of a in V ; so
mV,a = (x1 − a1, . . . , xn − an).

Claim 6.34. mV,a is a differential ideal of U [V ].
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Proof. If α ∈ mV,a then α = P (x) + I(V ) for some P ∈ U [x] such that P (a) = 0. Then

δα =


∑
j

∂P

∂xj
(x)sj(x) + P δ(x)︸ ︷︷ ︸

Q(x)

+ I(V )

(where s = (id, s1, . . . , sn)). This is by the definition of δ (induced from s) on U [V ]. We wish to show
Q(a) = 0. Since 0 = P (a) we get

0 = δ(P (a)) =
∑
j

∂P

∂xj
(a)δaj + P δ(a) =

∑
j

∂P

∂xj
(a)sj(a) + P δ(a) = Q(a)

Claim 6.34

Also mm+1
V,a is a differential ideal of U [V ] for ≥ 0. (Indeed in the case m = 1 if α, β ∈ mV,a we have

δ(αβ) = δ(α)β + αδ(β) ∈ m2
V,a.) So δ on U [V ] induces a morphism of additive grapes δ : mV,a/m

m+1
V,a →

mV,a/m
m+1
V,a . Note that mV,a/m

m+1
V,a is a U-vector space.

Claim 6.35. For all λ ∈ U we have δ(λα) = δ(λ)α+ λδ(α).

(This is some kind of Leibniz rule for U -scalar multiplication; such structures are called δ-modules.)

Proof. For α = P (x) +mm+1
V,a we have

δ(λα) = δ(λP+mm+1
V,a ) = δ(λP )+mm+1

V,a = (δ(λ)·P+λδ(P ))+mm+1
V,a = δ(λ)(P+mm+1

V,a )+λδ(P+mm+1
V,a ) = δ(λ)α+λδ(α)

as desired. Claim 6.35

Definition 6.36. The dual to mV,a/m
m+1
V,a is called the mth Jet space of V at a:

Jet(m)
a V := homU (mV,a/m

m+1
V,a ,U)

(Note this is a U-vector space.)

In particular Jet(1)a V = TaV .
Specializing to X = (V, s)♯:

Definition 6.37. Jet(m)
a (X) = { f ∈ Jet(m)

a V : δ(f(α)) = f(δa) for all α ∈ mV,a/m
m+1
V,a } is the mth

differential Jet space of X at a.

Claim 6.38. Jet(m)
a X is a C-vector space.

Proof. Suppose f, g ∈ Jet(m)
a X; so f, g : mV,a/m

m+1
V,a → U . Then

δ((f + g)(α)) = δ(f(α) + g(α)) = δf(α) + δg(α) = f(δα) + g(δα) = (f + g)(δα)

Also if c ∈ C then
δ((cf)(α)) = δ(cf(α)) = cδ(f(α)) = cf(δvα) = (cf)(δα)

Claim 6.38

Claim 6.39. Jet(m)
a X is a finite-dimensional vector space over C. In fact dimC(Jet

(m)
a X) = dimU (Jet

(m)
a V ).
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(Note the latter is finite since mV,a/m
m+1
V,a is spanned by things of the form

n∏
i=1

(xi − ai)
r

where 1 ≤
∑

i ri ≤ m. So in fact there is a C-basis for Jet(m)
a X that is a U-basis for Jet(m)

a V .)
So in fact we get the stronger statement:

Proposition 6.40. There is a finite C-basis for Jet(m)
a X which is also a U-basis for Jet(m)

a V .

Proof. Identify Jet(m)
a V ∼= Uℓ for some ℓ. Then Jet(m)

a X ⊆ Uℓ is the set of solutions to a system of linear
δ-equations

(*) δy = Ay where y =

y1...
yℓ

 and A ∈Mℓ(U).

(One checks this.)

Subclaim 6.41. If y(1), . . . , y(r) are C-linearly independent solutions to (*) then they are U-linearly indepen-
dent.

Proof. Suppose y(1) = a2y
(2) + · · ·+ ary

(r) for a2, . . . , ar ∈ U . Then

0 = δ(y(1))−Ay(1) =

r∑
i=2

(δaiy
(i) + aiδy

(i))−
r∑

i=2

aiAy
(i) =

r∑
i=2

(δaiy
(i) + aiAy

(i))−
r∑

i=2

aiAy
(i) =

r∑
i=2

δaiy
(i)

By induction hypothesis we may assume y(2), . . . , y(r) are U -linearly independent; so δai = 0 for i ∈ { 2, . . . , r }.
So a2, . . . , ar ∈ C, and y(1), . . . , y(r) are C-linearly dependent, a contradiction. Subclaim 6.41

So dimC(Jet
(m)
a X) ≤ dimU (Jet

(m)
a V ).

But by the Blum axioms in Uℓ we can find ℓ-many U -linearly independent solutions to (*); let y(1), . . . , y(ℓ)

be such, and so form a basis for Jet(m)
a V over U . Hence by subclaim they also form a basis for Jet(m)

a X over
C. Proposition 6.40

Let W be a D-subvariety of (V, s) over k. Let Y = (W, s)♯ ⊆ X; suppose a ∈ Y . We get an embedding

Jet(m)
a W ↪→ Jet(m)

a V via the restriction map U [V ] ↠ U [W ] = U [V ]/I(W ), which sends mV,a ↠ mW,a (and
hence mV,a/m

m+1
V,a ↠ mW,a/m

m+1
W,a ).

This induces an inclusion Jet(m)
a Y ⊆ Jet(m)

a X; in fact Jet(m)
a Y = Jet(m)

a X ∩ Jet(m)
a W . In diagram, the

following is a pullback:

Jet(m)
a W Jet(m)

a V

Jet(m)
a Y Jet(m)

a X

We wish to show that ⌈Y ⌉ is C-internal over acl(ka); i.e. ⌈Y ⌉ ∈ dcl(acl(ka), C, b) and ⌈Y ⌉ |⌣ka
b. Let

bm be a C-basis for Jet(m)
a X that is also a U-basis for Jet(m)

a V . Then we get a definable over (k, a, bm)

isomorphism Φ: Jet(m)
a V → Uℓ; furthermore Φ ↾ Jet(m)

a X yields an isomorphism Jet(m)
a X → Cℓ. Also

Jet(m)
a Y ⊆ Jet(m)

a X; so Φ restricts to an isomorphism Jet(m)
a Y → L where L is the image.

For ease of thinking, we identify

Jet(m)
a V = Uℓ

Jet(m)
a X = Cℓ

Jet(m)
a Y = L

Let cm be a C-basis for Jet(m)
a Y ; so we view cm as a tuple from Cℓ. We will argue that ⌈Y ⌉ ∈ dcl(k, a, bm, cm)m<ω.

It suffices to show:
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Proposition 6.42. Suppose k = kalg and L = Lalg. Suppose (V, s) is a D-variety; suppose W1,W2 are
D-subvarieties of V (all absolutely irreducible) and Yi := (Wi, s)

♯ ⊆ X = (V, s)♯; suppose a ∈ Y1 ∩ Y2. If

Jet(m)
a Y1 = Jet(m)

a Y2 for all m then Y1 = Y2.

This suffices because then any σ ∈ Aut(U) that fixes k, a, bm, cm for all m will fix Y setwise, and hence
will fix ⌈Y ⌉ pointwise.

We also need that bm |⌣ka
⌈Y ⌉; but we can retroactively have chosen bm to satisfy this. (All we require

of the bm is that it be a C-basis for Jet(m)
a V . So given any choice of bm we can choose b̃m |⌣ka

⌈Y ⌉ with

tp(bm/ka) = tp(b̃m/ka); then b̃m is also a C-basis for Jet(m)
a X and a U -basis for Jet(m)

a V . So we can replace

bm by b̃m.)

Proof. First observe the following:

Claim 6.43. If Jet(m)
a W1 = Jet(m)

a W2 for all m then W1 =W2. (Note W1,W2 are absolutely irreducible as
varieties over k = kalg.)

Proof. Work in U [V ] ⊇ I(W1), I(W2). It suffices to show that I(W1) ⊆ I(W2) (by symmetry). Suppose then

that P ∈ I(W1) ⊆ U [V ]. If f ∈ Jet(m)
a W1, so f : mW1,a/m

m+1
W1,a

→ U , then f(P ) = 0 since f is viewed in

Jet(m)
a V by f ◦ ι∗ (where ι : U [V ] → U [W1] is induced by the inclusion map ι : W1 ↪→ V ).
Suppose P /∈ I(W2); then by Noetherianity we have⋂

m

mm+1
V,a = (0)

and likewise with W1,W2. So ⋂
m

(mm+1
V,a + I(W2) = I(W2)

(by the map U [V ] → U [V ]/I(W2) = U [W2]). So P /∈ mm+1
V,a + I(W2) for some m; so there is f ∈ Jet(m)

a W2

such that f(P ) ̸= 0. Claim 6.43

Lemma 6.44. If (V, s) is a D-variety and a ∈ (V, s)♯ = X. Then Jet(m)
a X is Zariski-dense in Jet(m)

a V .
(Here Zariski-dense means over any set of parameters.)

Proof. Let b be a U -basis for Jet(m)
a V and a C-basis for Jet(m)

a X. Then we get an isomorphism Φb as follows:

Jet(m)
a V Uℓ

Jet(m)
a X Cℓ

Φb

∼=

⊆

∼=

⊆

Then Cℓ = (Uℓ, 0)♯ and hence is Zariski-dense in Uℓ. Lemma 6.44

We now prove our proposition. Taking Zariski closures in Jet(m)
a V , we get Jet(m)

a W1 = Jet(m)
a W2 for all

m. So by claim we get W1 =W2, and hence Y1 = Y2. Proposition 6.42

We are now ready to state and prove the canonical base property.

Theorem 6.45 (CBP). Suppose k = kalg; suppose p ∈ S(k) is finite-dimensional and a |= p. Then for any
L ⊇ k with Lalg = L we have tp(⌈Kloc(a/L)⌉/ acl(ka)) is C-internal.

Proof. We may assume Kloc(a/k) = (V, s)♯ =: X and Kloc(a/L) = (W, s)♯ =: Y .

TODO 39. Something about finite-dimensionality implying it’s the generic type of a Kolchin-closed set?
Maybe up to definable bijection? Maybe Proposition (20) or Theorem (22).

Let e = ⌈Y ⌉. For each m let bm be
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(*) a U-basis for Jet(m)
a V that is also a C-basis for Jet(m)

a X

such that (b1, . . . , bm) |⌣ka
e. (Possible since (*) is part of tp(b1 · · · bm/ka).)

Let cm be a U-basis for Jet(m)
a W that is also a C-basis for Jet(m)

a Y . We get

Jet(m)
a W Jet(m)

a V Uℓm

Jet(m)
a Y Jet(m)

a X Cℓm

⊆ Φbm

∼=

⊆

⊆

⊆

∼=

⊆

where ℓm = dim(Jet(m)
a V ). Note Φbm(cm) lies in C.

Claim 6.46. e ∈ dcl(ka, bm,Φbm(cm))m≥1.

Proof. Fix σ ∈ Aut(U) such that σ ↾ (k, a, bm,Φbm(cm))m≥1. Then (V, s)σ = (V σ, sσ) = (V, s) since V, s are
over k; so Xσ = X. Also Wσ ⊆ V is a D-subvariety (over σ(L)), and Y σ = (Wσ, s)♯.

(Jet(m)
a X)σ = Jet(m)

a X is also preserved, whereas (Jet(m)
a Y )σ = Jet

(m)
σ(a) Y

σ = Jet(m)
a Y σ. But σ(Φbm(cm)) =

Φbm(cm) and σ(bm) = bm; so σ(cm) = cm. But cm is a C-basis for Jet(m)
a Y ; so (Jet(m)

a Y )σ = Jet(m)
a Y .

So Jet(m)
a Y σ = Jet(m)

a Y for all m. So by above we get Y σ = Y . But e = ⌈Y ⌉; so σ(e) = e.
Claim 6.46

So there is m ≥ 1 such that e ∈ dcl(k, a, b1, . . . , bm,Φb1(c1), . . . ,Φbm(cm)). But each Φbi(ci) ∈ C and
e |⌣ka

b1 · · · bm. So tp(e/ acl(ka)) is C-internal.

TODO 40. See remark after 6.21

Theorem 6.45

6.6 . . . and back to the Zilber Dichotomy in DCF0

Aside 6.47. There is some kind of “analysis” of finite-dimensional types that “decomposes” a finite-dimensional
type in some way into a finite set of minimal types. This is the usual motivation for studying minimal types.

Theorem 6.48. Suppose k = kalg and p ∈ S(k) is minimal. Then either p is 1-based or p ̸⊥ C.

Proof. Suppose p is not 1-based; so there are

• a1, . . . , an |= p

• d ∈ dcl(ka1 · · · an)

• L = Lalg ⊇ k

such that ⌈Kloc(d/L)⌉ /∈ acl(kd).
Note that p minimal implies p is finite-dimensional.

TODO 41. ref

Hence q = tp(d/k) is also finite-dimensional (since k⟨d⟩ ⊆ k⟨a1, . . . , ad⟩ and each k⟨ai⟩ has finite
transcendence degree over k as ai |= p). So we can apply CBP to q: we get that tp(e/ acl(kd)) is C-internal
(but non-algebraic).

Claim 6.49. e ∈ dcl(k, b1, . . . , bℓ) for some b1, . . . , bℓ |= p.

Proof. We use the following general proposition:

Proposition 6.50. Suppose q ∈ S(k) and d |= q; suppose L = Lalg ⊇ k. Suppose Kloc(d/k) = (V, s)♯ and
Kloc(d/L) = (W, s)♯ where W ⊆ V is a subvariety. Let e = ⌈(W, s)♯⌉. Then
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1. k⟨e⟩ = k⟨minimal field of definition of W ⟩.

2. e ∈ dcl(kd1, . . . , dℓ) where d1, . . . , dℓ |= q.

Proof. 1. Done orally.

2. Consider W ∩ q(U) (the generic points of W ), which is relatively definable in q(U); then by stable
embeddedness (or stable definability, if you want) it is relatively definable using some parameters
d1, . . . , dℓ ∈ q(U). Then e ∈ dcl(kd1 · · · dℓ).

Proposition 6.50

Claim 6.49

By internality there is B ⊇ acl(kd) and e |⌣kd
B and c ∈ C such that e ∈ dcl(Bc). Since e /∈ acl(kd),

e /∈ acl(B), we get e ̸ |⌣B
c. So (b1, . . . , bℓ)B ̸ |⌣ c. Let (bi1 , . . . , bis) be a subtuple of (b1, . . . , bℓ) that is

independent over B (i.e. for all j we have bij |⌣k
Bbi1 · · · bij−1

) and acl(Bbi1 · · · bis) = acl(Bb1 · · · bℓ). (Note
that since p is minimal we get that bij |⌣k

Bbi1 · · · bij−1
if and only if bij /∈ acl(Bbi1 · · · bij−1

).)
By transitivity and symmetry, for some j we get that bij ̸ |⌣Bbi1 ···bij−1

c. But bij |⌣k
Bbi1 · · · bij−1

; so

p ̸⊥ C. Theorem 6.48
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