Assignment 1—PMATH 930

Christa Hawthorne

What's purple and commutes? An abelian grape.

- 1. I claim that the differential ideals of $(\mathbb{C}[t], \frac{d}{dt})$ are $\{0\}$ and $\mathbb{C}[t]$.
 - (\implies) Suppose we are given a differential ideal I of $(\mathbb{C}[t], \frac{d}{dt})$; suppose $0 \neq f \in I$. If $\deg(f) > 0$ then by hypothesis $0 \neq \frac{df}{dt} \in I$; so there is a non-zero element of I of degree $\deg(f) - 1$. Continuing inductively we may assume $\deg(f) = 0$ (and still $f \neq 0$); so $I \supseteq (f) = \mathbb{C}[t]$, and $I = \mathbb{C}[t]$.

- (\Leftarrow) It is clear that $\{0\}$ and $\mathbb{C}[t]$ are differential ideals.
- 2. (Extension of rings) I first verify the implicit claim that R/I embeds in S/J (since derivations for us require that the codomain contain the domain). Define $\Phi: R \to S/J$ by $r \mapsto r + J$; so Φ is the composition of the quotient map $S \to S/J$ and the inclusion $R \to S$, and is thus a ring homomorphism. But ker $(\Phi) = J \cap R = I$; so by the first isomorphism theorem we get that $\operatorname{Ran}(\Phi) \cong R/I$, and R/I embeds in S/J.
 - (Existence) Define a map $\delta^* \colon R \to S/J$ by $\delta^*(r) = \delta(r) + J$; so $\delta^* = \pi \circ \delta$ is a homomorphism of additive grapes (where $\pi \colon S \to S/J$ is the quotient map). Also by hypothesis we have $\delta^*(I) = \pi(\delta(I)) \subseteq \pi(J) = \{0 + J\}$; so by the universal property of quotients we get a homomorphism of additive grapes $\delta \colon R/I \to S/J$ such that $\delta(r+I) = \delta(r) + J$ for all $r \in R$. Also if $r_1 + I, r_2 + I \in R$ then

$$\delta((r_1+I)(r_2+I)) = \delta(r_1r_2+I) = \delta(r_1r_2) + J = r_1\delta(r_2) + \delta(r_1)r_2 + J = (r_1+I)\delta(r_2+I) + \delta(r_1+I)(r_2+I) + \delta(r_2+I)(r_2+I)(r_2+I) + \delta(r_2+I)(r_2+I)(r_2+I) + \delta(r_2+I)(r_2+I)(r_2+I)(r_2+I) + \delta(r_2+I)(r_2+I)(r_2+I) + \delta(r_2+I)(r_2+I)(r_2+I) + \delta(r_2+I)(r_2+I)(r_2+I) + \delta(r_2+I)(r_2+I)(r_2+I)(r_2+I)(r_2+I) + \delta(r_2+I)(r_$$

(where in the last expression $r_i + I$ is viewed as an element of S/J via the Φ defined above). So δ satisfies the Leibniz rule, and δ is a derivation.

- (Uniqueness) Given two such derivations δ_1, δ_2 by the defining condition they're equal on all of R/I.
- 3. Suppose V = Spec(k[X]/I) where $I = (P_1, \ldots, P_\ell)$ for some $P_1, \ldots, P_\ell \in k[X]$ and $X = (X_1, \ldots, X_n)$. Let $J \subseteq K[X, Y]$ (where $Y = (Y_1, \ldots, Y_n)$) be the ideal generated by $P_j(X)$ and

$$P_j^{\delta}(X) + \sum_{i=1}^n \frac{\partial P_j}{\partial X_i}(X) Y_i$$

as j ranges over $\{1, \ldots, \ell\}$. For each $P \in I$ we can write $P = Q_1 P_1 + \cdots + Q_\ell P_\ell$ for some $Q_1, \ldots, Q_n \in k[X_1, \ldots, X_n]$; then

$$P(X) = \sum_{j=1}^{\ell} Q_i(X) P_i(X) \in J$$

and

$$P^{\delta}(X) + \sum_{i=1}^{n} \frac{\partial P}{\partial X_{i}}(X)Y_{i}$$

$$= \left(\sum_{j=1}^{\ell} Q_{j}P_{j}\right)^{\delta}(X) + \sum_{i=1}^{n} \frac{\partial \sum_{j=1}^{\ell} Q_{i}P_{i}}{\partial X_{j}}(X)Y_{i}$$

$$= \sum_{j=1}^{\ell} (Q_{j}^{\delta}(X)P_{j}(X) + Q_{j}(X)P_{j}^{\delta}(X)) + \sum_{i=1}^{n} \sum_{j=1}^{\ell} \left(\frac{\partial Q_{i}}{\partial X_{j}}(X)P_{i}(X) + Q_{i}(X)\frac{\partial P_{i}}{\partial X_{j}}(X)\right)Y_{i}$$

$$= \sum_{j=1}^{\ell} Q_{j}^{\delta}(X)\underbrace{P_{j}(X)}_{\in J} + \sum_{i=1}^{n} \sum_{j=1}^{\ell} \frac{\partial Q_{i}}{\partial X_{j}}(X)\underbrace{P_{i}(X)}_{\in J} + \sum_{j=1}^{n} Q_{j}(X)\underbrace{\left(P_{j}^{\delta}(X) + \sum_{i=1}^{n} \frac{\partial P_{i}}{\partial X_{j}}(X)Y_{i}\right)}_{\in J}$$

$$\in J$$

(Here we are using the fact that $(\cdot)^{\delta}$) distributes over sums and $(Q_j P_j)^{\delta} = Q_j^{\delta} P_j + Q_j P_j^{\delta}$; the latter can be easily verified by distributing the polynomial multiplication and verifying the result for single terms.) So J contains, and is thus equal to, the ideal of k[X, Y] generated by P(X) and

$$\sum_{i=1}^{n} \frac{\partial P}{\partial X_i}(X) Y_i$$

as P ranges over I. But this is the defining ideal of τV ; so $\tau V = \text{Spec}(k[X,Y]/\sqrt{J})$, as desired. \Box

4. Suppose K is an existentially closed differential integral domain. Suppose $f, g \in K\{X\}$ with $\operatorname{ord}(f) > \operatorname{ord}(g)$ and $g \neq 0$. Let $n = \operatorname{ord}(f)$; write $f(X) = f^*(X, \delta X, \ldots, \delta^n X)$ for some $f^* \in K[X_0, \ldots, X_n]$. Consider $L = K(t_0, \ldots, t_{n-1})^{\operatorname{alg}}$ where the t_i are indeterminates; then $f^*(t_0, t_1, \ldots, t_{n-1}, y) \in K(t_0, \ldots, t_{n-1})[y]$ is non-constant since $\operatorname{ord}(f) = n$, and thus has a root in $s \in L$. We extend δ to L using Corollary (4) iteratively, and declaring

$$\delta(t_i) = \begin{cases} s & \text{if } i = n - 1\\ t_{i+1} & \text{else} \end{cases}$$

But then

 $f(t_0) = f^*(t_0, \delta t_0, \dots, \delta^{n-1}t_0, \delta^n t_0) = f^*(t_0, t_1, \dots, t_{n-1}, s) = 0$ Write $g(X) = g^*(X, \delta X, \dots, \delta^m X)$ for $g^* \in K[X_0, \dots, X_m]$ and m < n. Then

$$g(t_0) = g^*(t_0, \delta t_0, \dots, \delta^m t_0) = g^*(t_0, t_1, \dots, t_m) \neq 0$$

since the t_i are algebraically independent over K.

So the formula $f(x) = 0 \land g(x) \neq 0$ has a realization in $(L, \delta) \models T$ (where T is the theory of differential integral domains). So by existential closure it has a realization in (K, δ) .

5. I discussed this question with Wilson Poulter and Sam Kim.

Suppose $f: K^n \to K$ is a 0-definable function; let $X = (X_1, \ldots, X_n)$. Consider the set of L_{δ} -formulas

$$\Sigma(x) = \{ f(x) \neq F(x) : F \in \mathbb{Q}\langle X \rangle \}$$

I claim that Σ is not a type. Indeed, for any $L \succeq K$ and $a \in L^n$ we have that y = f(a) defines $\{f(a)\}$ over $\{a\}$; so $f(a) \in dcl(a) = \mathbb{Q}\langle a \rangle$, and there is $F(X) \in \mathbb{Q}\langle X \rangle$ such that f(a) = F(a). So Σ isn't realized in any elementary extension, and is thus not a type. So by compactness there are $F_0, \ldots, F_{\ell-1} \in \mathbb{Q}\langle X \rangle$ such that $f(x) \neq F_0(x) \wedge \cdots \wedge f(x) \neq F_{\ell-1}(x)$ isn't realized in K^n ; i.e. for all $a \in K^n$ we have $f(x) \in \{F_i(a) : i < \ell\}$. We then let $D_i \subseteq K^n$ be defined by

$$f(x) = F_i(x) \land \bigwedge_{j < i} f(x) \neq F_j(x)$$

Then the D_i partition K^n and $f \upharpoonright D_i = F_i \upharpoonright D_i$.

6. I discussed this question with Wilson Poulter and Sam Kim.

I claim that $K \models \text{DCF}_0$ is κ -saturated if and only if the following holds:

- (*) Suppose $(F, \delta) \subseteq (K, \delta)$ is a differential subfield with $F = \mathbb{Q}\langle A \rangle$ for some $|A| < \kappa$; suppose (L, δ^*) is a differential field extension of (F, δ) such that either
 - (a) L is a finitely generated field extension of F (i.e. it takes the form $F(a_1, \ldots, a_n)$ for some $a_1, \ldots, a_n \in L$), or
 - (b) $L \cong F\langle X \rangle$ with X a single indeterminate.

Then the inclusion $F \hookrightarrow K$ extends to a δ -embedding $L \hookrightarrow K$. In diagram:

$$(L, \delta^*) \xrightarrow{\subseteq} (K, \delta)$$
$$\subseteq \widehat{f} \xrightarrow{\subseteq} (F, \delta)$$

Remark 1 (Comments on the above condition).

- (a) If $\kappa > \aleph_0$ we can simplify the hypothesis on F to be simply that $|F| < \kappa$.
- (b) A consequence of our condition is the existence of a "differential-algebraically independent" set of size κ , for a suitable definition of differential-algebraic independence; I don't believe the converse holds.
- (c) One might hope that we could get away with only requiring the condition hold for $L = F\langle X \rangle$; i.e. that given any small differential subfield there is $a \in K$ "differentially transcendental" over F. I don't think this is sufficient: I could reduce it to showing that given any prime ideal I of $F[X_0, \ldots, X_n]$ there is $a \in K$ such that $I = \{f \in F[X_0, \ldots, X_n] : f(a, \delta a, \ldots, \delta^n a) = 0\}$, but I couldn't figure out how to do that. Of course one can find a_0, \ldots, a_n such that $I = \{f \in F[X_0, \ldots, X_n] : f(a_0, \ldots, a_n) = 0\}$ by κ -saturation of K as a model of ACF, but I couldn't see how to get $\delta a_i = a_{i+1}$. Alternatively one can pick some realization of your type and use existential closure of K and Noetherianity of $F[x_0, \ldots, x_n]$ to get $a \in K$ such that $I \subseteq \{f \in F[x_0, \ldots, x_n] : f(a, \delta a, \ldots, \delta^n a) = 0\}$, but I'm not seeing how the other containment should follow.

That said I don't have a counterexample for any of this; I'm not sure how one would go about exhibiting a "large" differentially closed field omitting some type. My only thought is the omitting types theorem, but that doesn't produce large models.

Proof.

- (\Longrightarrow) Suppose K is κ -saturated; suppose we have F, K, L as above.
 - **Case 1.** Suppose $L = F(a_1, \ldots, a_n)$ for $a_1, \ldots, a_n \in L$. Then $\operatorname{tp}(a_1 \cdots a_n/A)$ is a type in DCF₀ over A since it's realized in any differentially closed extension of L. Then by κ -saturation there are $b_1, \ldots, b_n \in K$ such that $\operatorname{tp}(b_1 \cdots b_n/A) = \operatorname{tp}(a_1 \cdots a_n/A)$; then since $F = \mathbb{Q}\langle A \rangle = \operatorname{dcl}(A)$ we get that $\operatorname{tp}(b_1 \cdots b_n/F) = \operatorname{tp}(a_1 \cdots a_n/F)$. So the map $L = F(a_1, \ldots, a_n) \to K$ that fixes F and maps a_i to b_i is a well-defined δ -embedding over F, as desired.
 - **Case 2.** Suppose $L \cong F\langle X \rangle$ for X a single indeterminate. Consider $\{f(x) \neq 0 : 0 \neq f \in F\{X\}\}$. This can be phrased as a set of formulas over A, since F = dcl(A), and it is in fact a type: it is realized for instance in any differentially closed extension of $F\{X\}$. So by κ -saturation it is realized in K, say by a. Then a satisfies no differential polynomials over F; so $F\langle a \rangle \cong F\langle X \rangle$, and the map $F\langle X \rangle \to K$ given by $X \mapsto a$ is a δ -embedding over F, as desired.
- (\Leftarrow) Suppose $A \subseteq K$ has $|A| < \kappa$; let $F = \mathbb{Q}\langle A \rangle$. We will show that every $p \in S_1(F)$ is realized in K. By quantifier elimination it suffices to consider partial types consisting only of literals over F; i.e. formulas of the form f(x) = 0 and their negations, for $f \in F\{X\}$. Suppose $p(x) \vdash f(x) \neq 0$ for all non-zero $f \in F\{X\}$. By hypothesis we get a δ -embedding

Suppose $p(x) \vdash f(x) \neq 0$ for all non-zero $f \in F\{X\}$. By hypothesis we get a δ -embedding $F\{X\} \hookrightarrow K$ over F; then the image of X is a realization of p by quantifier elimination. Suppose

then that $p(x) \vdash f(x) = 0$ for some non-zero $f \in F\{X\}$. Take some realization a of p in some elementary extension of K.

Claim 2. $F\langle a \rangle$ is a finitely generated field extension of F.

Proof. Pick non-zero $f \in F\{X\}$ such that f(a) = 0 and $(\operatorname{ord}(f), \operatorname{deg}(f))$ is minimal in the lexicographic order among such; note that such non-zero f exist by assumption on $p = \operatorname{tp}(a/F)$. Write $f(X) = f^*(X, \delta X, \ldots, \delta^n X)$ for $f^* \in F[X_0, \ldots, X_n]$. By minimality of f and since $\frac{\partial f^*}{\partial X_n}$ is lesser we get that $\frac{\partial f^*}{\partial X_n}(a, \delta a, \ldots, \delta^n a) \neq 0$. I claim that $F\langle a \rangle = F(a, \delta a, \ldots, \delta^n a)$. To see this, we note that

$$0 = \delta(f^*(a, \delta a, \dots, \delta^n a)) = \sum_{i=0}^n \frac{\partial f^*}{\partial X_i}(a, \delta a, \dots, \delta^n a)\delta^{i+1}a + (f^*)^\delta(a, \delta a, \dots, \delta^n a)$$

so since $\frac{\partial f^*}{\partial X_n}(a, \delta a, \dots, \delta^n a) \neq 0$ we get

$$\delta^{n+1}a = \frac{-(f^*)^{\delta}(a,\delta a,\dots,\delta^n a) - \sum_{i=0}^{n-1} \frac{\partial f^*}{\partial X_i}(a,\delta a,\dots,\delta^n a)}{\frac{\partial f^*}{\partial X_n}(a,\delta a,\dots,\delta^n a)}$$

We can then use the quotient rule to write $\delta^{n+k}a$ as a rational function of $a, \delta a, \ldots, \delta^n a$ for $k \geq 1$, since the denominator will always be a power of $\frac{\partial f^*}{\partial X_n}(a, \delta a, \ldots, \delta^n a) \neq 0$. So $\delta^{n+k}a \in F(a, \delta a, \ldots, \delta^n a)$ for all $k \geq 1$; so $F\{a\} = F(a, \delta a, \ldots, \delta^n a)$. \Box Claim 2

Then by the hypothesis we get a δ -embedding $F\langle a \rangle \hookrightarrow K$ over F. Then if b is the image of a under this embedding, we get by quantifier elimination that $p = \operatorname{tp}(a/F) = \operatorname{tp}(b/F)$. So p is realized in K.