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1 Preliminaries
Vern Paulsen, MC5318, vpaulsen@uwaterloo.ca

To get in touch: send email, and set up a time. After seminars are decided, he’ll post office hours.
Recommended book: Matrix Analysis, Horn and Johnson
Outline:

• General matrix theory

– Unitary equivalence, similarity

– QR factorization, which we’ll use to prove Jordan canonical form

– Cholesky factorization, Specht invariants

– Partitioned matrices

• Special families

– Hermitian, normal, unitary, positive semidefinite, non-negative matrices

– Circulant matrices

– Majorization

– Eigenvalue interlacing theorems

– Estimates about eigenvalues of sums of Hermitian matrices

Weekly homework assignments of 5-10 problems. (Probably closer to 5.) A bit of discussion is okay, but
the proofs should not all be identical. (He’ll clarify as time goes on.)

Linear algebra Matrix analysis
General fields R or C
Rings and modules Limits, continuity, power series
Basis independent Basis dependent

Inner products, geometry
Assume you know:

• Fields

• Basic properties of R and C

• General theory of vector spaces (bases, dimension, matrix of a linear map, determinants and their
computations, matrix inverses, etc.)

• Analysis: sequences and series, Heine-Borel
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We use F to denote R or C. We use Fm to denote the vector space of m-tuples over F. The canonical
basis of Fm is ei = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the ith position. So

v =

m∑
i=1

xiei

Dot product is given by, for v = (x1, . . . , xm), w = (y1, . . . , ym), we have

v · w = x1y1 + · · ·+ xmym

The inner product is given by
⟨v, w⟩ = x1y1 + · · ·+ xmym

When F = R, they coincide.
We use Mm,n to denote the set of m × n matrices. If we need to specify, we will write Mm,n(R) or

Mm,n(C). In particular, for A ∈ Mm,n, we write

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 = (ai,j)

This forms a vector space in the natural way: Mm,n
∼= Fmn. By the canonical basis for Mm,n, we mean the

matrices Ei,j containing a 1 in the (i, j) entry and a 0 elsewhere.
Every A ∈ Mm,n defines a linear map LA : Fn → Fm given by

LA((x1, . . . , xn)) =

 n∑
j=1

a1jxj , . . . ,

n∑
j=1

amjxj


For A ∈ Mm,n, A = (aij), then A = (aij) ∈ Mm,n. Also At = (aji) ∈ Mn,m. Also A∗ = At = A

t
is the

adjoint or conjugate transpose.
Suppose A ∈ Mm,p, B ∈ Mp,n. Define their product to be (cij) ∈ Mm,n given by

cij =

p∑
k=1

aikbkj

Remark 1.

1. (AB)C = A(BC)

2. (A1 +A2)B = A1B +A2B

3. A(B1 +B2) = AB1 +AB2

4. λ(AB) = (λA)B = A(λB)

5. Using the association Fm ∼= Mm,1, we have LA(v) = Av.

6. Using the association Fm ∼= Mm,1, we have v · w = wtv and ⟨v, w⟩ = w∗v.

Remark 2.

1. If we write A = [C1 | · · · | Cn] for Ci ∈ Mm,1, and if v = (x1, . . . , xn), then

LA(v) = LA

 n∑
j=1

xjej

 =

n∑
j=1

xjLA(ej) ∼=
n∑

j=1

xjCj
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2. Thus range(LA) ∼= span(C1, . . . , Cn).

Remark 3. For A ∈ Mm,p, B ∈ Mp,n, we have

1. Writing

A =


R1

...

Rm


B = [C1 | · · · | Cn]

Then AB = (RiCj).

2. AB = [A · C1 | · · · | A · Cn]

3. Writing
A = [W1 | · · · | Wp]

B =


V1

...

Vp


For Wk ∈ Fm ∼= Mm,1, Vk ∈ Fn ∼= M1,n. Then

AB =

p∑
k=1

wk · vk

called the “outer product”.

Notation 4. We write Mm for Mm,m.

1.1 Determinants
1.1.1 Laplace expansion

For A ∈ Mn, we put det(A) ∈ F. Let Ai,j ∈ Mn−1 be obtained by eliminating the ith row and jth column.
The Laplace expansion is then given by

det(A) =

n∑
j=1

(−1)i+jai,j det(Ai,j) =

n∑
i=1

(−1)i+jai,j det(Ai,j)

for any choice of i, j respectively.

1.1.2 Permutations

σ : { 1, . . . , n } → { 1, . . . , n } bijective. The sign of a permutation: find a way to express σ as a product of
transpositions. The parity modulo 2 of the number of transpositions turns out to be independent of the
expression. We set

sgn(σ) =

{
1 the parity is even
−1 else

i.e. (−1)k where k is the number of transpositions. We can then write

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ(i)
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We also define the permanent of a matrix A is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

This has applications in graph theory, order statistic, symmetric tensor products. In particular,

⟨x1 ∨ · · · ∨ xn, y1 ∨ · · · ∨ yn⟩ = perm(⟨xi, yj⟩)

Proposition 5.

1. det(At) = det(A)

2. det(AB) = det(A) det(B)

3. A is invertible if and only if det(A) ̸= 0

Definition 6. Suppose V1, . . . , Vn,W are vector spaces over F. Then

L :
n×

i=1

Vi → W

is multilinear if it satisfies

1. for all j, all vj , v′j ∈ Vj , we have

L(v1, . . . , vj−1, vj+v′j , vj+1, . . . , vn) = L(v1, . . . , vj−1, vj , vj+1, . . . , vn)+L(v1, . . . , vj−1, v
′
j , vj+1, . . . , vn)

2. for all j, all vj ∈ Vj , and all λ ∈ F, we have

L(v1, . . . , vj−1, λvj , vj+1, . . . , vn) = λL(v1, . . . , vj−1, vj , vj+1, . . . , vn)

If we regard matrices as tuples [C1 | . . . , | Cn] with C1, . . . , Cn ∈ Fn, then

det :
n×

i=1

Fn → F

satisfies

1. det is multilinear

2. If B is obtained from A by transposing two columns then det(B) = (−1) det(A) (alternation)

3. det(In) = 1 (normalization)

Theorem 7. If

L :
n×

i=1

Fn → F

is alternating, multilinear, and normalized, then

L(C1, . . . , Cn) = det([C1 | · · · | Cn])

A similar result holds for rows.

1.1.3 Cramer’s rule and the adjugate

Suppose A ∈ Mn. Then Ai,j ∈ Mn−1, as above. Let

bi,j = (−1)i+j det(Aj,i)

Then B = (bi,j) ∈ Mn is called the adjugate of A.

Theorem 8 (Cramer). BA = AB = det(A)I.
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1.2 Row-reduced echelon forms and elementary matrices
Definition 9. Suppose B ∈ Mm,n. We say B is in RREF if

1. The first non-zero entry in each row is 1. (These are called leading ones.)

2. The first non-zero entry of the (i+ 1)th row is to the right of the first non-zero entry of the ith row.

3. All other entries in a column with a leading one are zero.

4. Rows of all zeroes are at the bottom.

Example 10. 
0 1 ∗ 0 ∗ 0
0 0 0 1 ∗ 0
0 0 0 0 0 1
0 0 0 0 0 0


is in RREF.

Definition 11. If we omit Item 3, we get the definition of row echelon form.

Definition 12. The elementary operations are:

Type I Row interchange

Type II Multiply a row by a scalar

Type III Add a multiple of a row to another row

Theorem 13. Given A ∈ Mm,n, there is a sequence of elementary operations to perform on A yielding B in
RREF. Moreover, this B is unique. The process A → B is referred to as Gauss-Jordan elimination. The
process of reducing to something in REF is referred to ass Gaussian elimination.

Proof. See Hoffman and Kunze. Theorem 13

Definition 14. The elementary matrices are

Type 1 For k ̸= ℓ, let
U(k, ℓ) =

∑
i ̸=k,ℓ

Ei,i + Ek,ℓ + Eℓ,k

Then U(k, ℓ)−1 = U(k, ℓ) = U(ℓ, k), and U(k, ℓ)A corresponds to interchanging the k and ℓ row of A.

Type 2 For λ ̸= 0, let
D(k, λ) =

∑
i ̸=k

Eii + λEkk

Then D(k, λ)−1 = D(k, λ01) and D(k, λ)A corresponds to scaling row k by λ.

Type 3 For k ̸= ℓ and λ ∈ F, let
S(k, ℓ, λ) = I + λEℓ,k

Then S(k, ℓ, λ)−1 = S(k, ℓ,−λ) and S(k, ℓ, λ)A corresponds to adding the k row of A, scaled by λ, to
the ℓ row of A.

Corollary 15. Given A ∈ Mm,n, there is W ∈ Mm that is a product of elementary matrices such that WA
is in RREF; furthermore, this W is unique.

Remark 16. If WA = B as above, then W is invertible, and A = W−1B where W−1 is also a product of
elementary matrices.
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1.3 Rank
Definition 17. For A ∈ Mm,n, we define the column rank of A, denoted rankc(A) is the dimension of the
subspace of Fm spanned by the columns. The row rank, denoted rankr(A), is the dimension of the subspace
of Fn spanned by the rows.

Theorem 18. Let A ∈ Mm,n; let B be the RREF of A. Then

1. rankr(A) = rankr(B)

2. rankc(A) = rankc(B)

3. rankr(B) = rankc(B) are both equal to the number of leading 1s in B.

Corollary 19. rankc(A) = rankr(A), and we henceforth refer to it as rank(A).

Definition 20. Let L : V → W be linear. We define the range of L by

R(L) = {L(v) : v ∈ V }

Then R(L) is a subspace, since L is linear.

Proof of Theorem 18.

1. Recall B = WA where W is a product of elementary matrices. Thus each row of B is a linear
combination of rows of B. Thus

rankr(B) = dim(span(rows of B)) ≤ dim(span(rows of A)) = rankr(A)

But we can apply the same argument to A = W−1B to get rankr(B) ≥ rankr(A). Thus rankr(A) =
rankr(B).

2. Look at LA, LB : Fn → Fm. Write
A = [C1| . . . |Cn]

Then

A

λ1

...
λn

 = λ1C1 + · · ·+ λnCn

Thus R(LA) = span{C1, . . . , Cn }. But B = WA; so R(B) = R(WA) = W (R(A)). But W is invertible;
so we get

rankc(B) = dim(R(B)) = dim(W (R(A))) = dim(R(A)) = rankc(A)

3. Picture

B =

0 . . . 0 1 ∗ ∗ 0 ∗ ∗ 0
0 . . . 0 0 0 0 1 ∗ ∗ 0
0 . . . 0 0 0 0 0 0 0 1


The columns for leading 1’s span the column space and are linearly independent. Thus the dimension
of the column space of B is just the number of leading 1’s.

The non-zero rows are exactly the rows with leading 1’s; these thus span the row space. Furthermore,
since each column containing a leading 1 has exactly one non-zero entry, we have that the rows with
leading 1’s are independent. So they form a basis, and the dimension of the row space is the number of
leading 1’s.

Theorem 18

Remark 21. In general it holds that the rows of CD are linear combinations of the rows of D.

7



1.4 Submatrices
Definition 22. Suppose A ∈ Mm,n. Suppose

α = {α1, . . . , αk }
β = {β1, . . . , βj }

with
1 ≤ α1 < · · · < αk ≤ m

and
1 ≤ β1 < · · · < βj ≤ n

We define A[α, β] ∈ Mk,j by
A[α, β] = (aαi,βj

)

(where A = (aij)). These are the submatrices of A.
Any matrix of the form A[α, α] is said to be a principal submatrix of A.
For |α| = |β|, we call det(A[α, β]) a minor of A.
When α = { 1, . . . , k }, then A[α, α] is called a leading principal submatrix.
When n = m and α = { k, k + 1, . . . , n }, then A[α, α] is a trailing principal submatrix.
The determinant of a leading or trailing principal submatrix is called a leading or trailing principal minor,

respectively.

1.5 Sums of subspaces
Suppose V,W are vector spaces. Consider their Cartesian product V ×W . We can regard it as a vector
space by taking

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

λ(v1, w1) = (λv1, λw1)

This is denoted V ⊕W and is called the direct sum of V and W .

Proposition 23. If { vα : α ∈ A } is a basis for V , {wβ : β ∈ B } is a basis for W (neither necessarily
finite), then

{ (vα, 0) : α ∈ A } ∪ { (0, wβ) : β ∈ B }
is a basis for V ⊕W . Thus dim(V ⊕W ) = dim(V )⊕ dim(W ).

Proof. Suppose (v, w) ∈ V ⊕W . Write

v =
∑
α

λαvα

w =
∑
β

µβwβ

Then
(v, w) =

∑
α

λα(vα, 0) +
∑
β

µβ(0, wβ)

Suppose ∑
α

λα(vα, 0) +
∑
β

µβ(0, wβ) = 0

Then ∑
α

λαvα = 0∑
β

µβwβ = 0

and thus each λα and µβ is 0. Proposition 23
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Example 24. Fm ⊕ Fp contains vectors of the form

((x1, . . . , xm), (y1, . . . , yp)) ≈ (x1, . . . , xm, y1, . . . , yp) ∈ Fm+p

This yields an isomorphism Fm ⊕ Fp ∼= Fm+p.
Conversely, given (x1, . . . , xm, xm+1, . . . , xm+p) ∈ Fm+p, we can partition it after the xm, and regard it

as an element of Fm ⊕ Fp.

1.6 Partitioned matrices
Suppose A ∈ Mm1+m2,n1+n2

. We can then define Aij ∈ Mmi,nj
in the natural way. These can be regarded as

Aij : Fnj → Fmi

Recall that A can be regarded as
A : Fn1+n2 → Fm1+m2

Then

A



x1

...
xn1

xn1+1

...
xn1+n2


=

A11x+A12y

A21x+A22y



Fn1+n2 Fm1+m2

Fn1 ⊕ Fn2 Fm1 ⊕ Fm2

A

∼= ∼=

where the bottom map is given by (
A11 A12

A21 A22

)
Check: for A ∈ Mm1+m2,p1+p2

, B ∈ Mp1+p2,n1+n2
, if

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
where Ai,j ∈ Mmi,pj and Bi,j ∈ Mpi,nj , then

AB =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
On the assignment, we may assume we never deal with 1× 1 matrices. We may use anything asserted in

class.

Definition 25. If we say A ∈ Mm1+···+mk,n1+···+nk
is partitioned, we mean that we can partition A as

Ai,j ∈ Mmi,nj
. We say A is block-diagonal to mean Ai,j = 0 for i ̸= j.

Proposition 26. Suppose A ∈ Mn1+···+nk,n1+···+nk
is block-diagona. Then

det(A) = det(A11) . . . det(Ann)

Proof. Expand by Laplace. Proposition 26
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Suppose

A =

(
a b
c d

)
for a ̸= 0. Recall that

det(A) = ad− bc = a(d− ba−1c)

Proposition 27. Suppose A ∈ Mn1+n2,n1+n2
. If A11 is invertible, then

det(A) = det(A11) det(A22 −A21A
−1
11 A12)

If A22 is invertible, then
det(A) = det(A22) det(A11 −A12A

−1
22 A21)

Proof. (
A11 A12

A21 A22

)
=

(
A11 0
A21 In2

)(
In1

A−1
11 A12

0 A22 −A21A
−1
11 A12

)
and thus

det

(
A11 A12

A21 A22

)
= det

(
A11 0
A21 In2

)
det

(
In1 A−1

11 A12

0 A22 −A21A
−1
11 A12

)
= det(A11) det(A22 −A21A

−1
11 A12)

by taking the Laplace expansion along the identity matrices. Proof of the second fact is similar, using the
factorization (

A11 A12

A21 A22

)
=

(
In1 A12

0 A22

)(
A11 −A12A

−1
22 A21 0

A−1
22 A21 In2

)
Proposition 27

1.7 Euclidean norms and inner products
Suppose x, y ∈ Fn with

x = (x1, . . . , xn)
c

y = (y1, . . . , yn)
c

we set
⟨x, y⟩ = x1y1 + · · ·+ xnyn

Remark 28. ⟨·, ·⟩ : Cn × Cn → C satisfies

⟨x+ x′, y⟩ = ⟨x, y⟩+ ⟨x′, y⟩
⟨x, y + y′⟩ = ⟨x, y⟩+ ⟨x, y′⟩

⟨λx, y⟩ = λ⟨x, y⟩
⟨x, λy⟩ = λ⟨x, y⟩

i.e. ⟨·, ·⟩ is sesquilinear.

Remark 29. In the case F = R, we have ⟨·, ·⟩ is bilinear.

Definition 30. Suppose x, y ∈ Fn. We say x and y are orthogonal (written x ⊥ y) when ⟨x, y⟩ = 0.

Definition 31. Suppose x ∈ Fn. We define the Euclidean 2-norm of x to be

∥x∥2 = ⟨x, x⟩ 1
2

Theorem 32 (Cauchy-Schwarz inequality). |⟨x, y⟩| ≤ ∥x∥2∥y∥2.
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Proof. Well

0 ≤ ⟨t exp(iθ)x+ y, t exp(iθ)x+ y⟩
= t2⟨x, x⟩+ t exp(iθ)⟨x, y⟩+ t exp(−iθ)⟨y, x⟩+ ⟨y, y⟩
= t2∥x∥22 + 2t|⟨x, y⟩|+ ∥y∥22

thus the discriminant is non-positive, and

4|⟨x, y⟩|2 − 4∥x∥22∥y∥22 ≤ 0

Theorem 32

Theorem 33 (Triangle inequality). ∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2.

Proof. Well,

0 ≤ ∥x+ y∥22
= ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
≤ ∥x∥22 + 2∥x∥2∥y∥2 + ∥y∥22
= (∥x∥2 + ∥y∥2)2

Theorem 33

Fact 34. ∥λx∥2 = |λ|∥x∥2.

1.8 Gram-Schmidt orthogonalization process
Definition 35. A set S is orthonormal (o.n.) if it satisfies the following:

• For all u ∈ S we have ∥u∥2 = 1

• For all u ̸= v in S, we have u ⊥ v

Given independent {x1, . . . , xm } ⊆ Fn, Gram-Schmidt yields orthonormal {u1, . . . , um } ⊆ Fn such that

spanu1, . . . , uk = spanx1, . . . , xk

for all 1 ≤ k ≤ n. In particular, we set

u1 =
x1

∥x1∥2

un+1 =
xn+1 −

∑n
i=1⟨xn+1, ui⟩ui

∥xn+1 −
∑n

i=1⟨xn+1, ui⟩ui∥2
It’s not hard to see that the ui satisfy the desired properties.

1.9 Lowden orthogonalization
Gram-Schmidt is numerically unstable; an alternative is Lowden orthogonalization.

Given independent {x1, . . . , xm } ⊆ Fm, consider

inf


m∑
j=1

∥xj − uj∥22 : {u1, . . . , um } orthonormal


Theorem 36 (Lowden). There is a unique orthonormal {u1, . . . , um } attaining this infimum.

Theorem 37. This unique set {u1, . . . , um } is called the Lowden orthogonalization of {x1, . . . , xm }.

Here marks the end of the review.
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2 Eigenvalues, eigenvectors, and spectra
Definition 38. Suppose S is a linear map. Define the nullspace or kernel of S to be

N (S) = {x : Sx = 0 }

Proposition 39. Suppose S ∈ Mn. Then the following are equivalent:

1. There is T such that ST = TS = In

2. det(S) ̸= 0

3. LS : Fn → Fn is injective

4. LS : Fn → Fn is surjective

Proof.

(1) ⇐⇒ (2) Cramer’s rule.

(1) =⇒ (3) Assume S is not injective. Then N (S) ̸= 0. Thus there is x ̸= 0 such that Sx = 0; thus
TS ̸= I.

(3) ⇐⇒ (4) By the rank-nullity theorem: that

dim(R(S)) + dim(N (S)) = n

(3) =⇒ (1) By ((3) ⇐⇒ (4)), we have S is bijective, and is thus invertible.

Proposition 39

We let M−1
n = {S ∈ Mn : S invertible }.

Definition 40. Suppose A ∈ Mn, x ∈ Cn, x ̸= 0, and Ax = λx. We call such an x an eigenvector, and we
call such a λ an eigenvalue. The spectrum of A, denoted σ(A), is the set of all eigenvalues of A. The spectral
radius of A is

ρ(A) = sup{ |λ| : λ ∈ σ(A) }

Proposition 41. Suppose A ∈ Mn. Then

σ(A) = {λ : (A− λI) /∈ M−1
n }

Proof. (A−λI) is not invertible if and only if N (A−λI) ̸= { 0 }, which holds if and only if there is a non-zero
x such that Ax = λx. Proposition 41

Given A ∈ Mn, p(t) = akt
k + · · ·+ a1t+ a0, we can define

p(A) = akA
k + · · ·+ a1A+ a0I

Remark 42. (pq)(A) = p(A)q(A).

Theorem 43 (Spectral mapping theorem). Suppose A ∈ Mn, p a polynomial. Then

σ(p(A)) = { p(λ) : λ ∈ σ(A) } = p(σ(A))

Proof. ⊇ Let λ ∈ σ(A). Then there is x ̸= 0 such that Ax = λx. We then have that Ajx = λjx. Then

(akA
k + · · ·+ a1A+ a0I)x = (akλ

k + · · ·+ a1λ+ a0)x

= p(λ)x

so p(A)x = p(λ)x, and p(λ) ∈ σ(p(A)).

12



⊆ Suppose µ ∈ σ(p(A)). Then there is x ̸= 0 such that p(A)x = µx. Let

q(t) = p(t)− µ = ak

k∏
j=1

(t− µj)

Then
q(A) = ak(A− µ1I) . . . (A− µkI)

and
p(A)− µI = q(A) = ak(A− µ1I) . . . (A− µkI)

But p(A) − µI is not invertible because µ ∈ σ(p(A)). So there is some j0 such that A − µj0 is not
invertible, and thus µj0 ∈ σ(A). Thus

p(µj0)− µ = q(µj0) = 0

and thus
µ = p(µj0) ∈ { p(λ) : λ ∈ σ(A) }

Theorem 43

2.1 The characteristic polynomial
Definition 44. Suppose A ∈ Mn. Then the characteristic polynomial of A is

pA(t) = det(tI −A)

which is then monic of degree n.

Proposition 45. λ ∈ σ(A) ⇐⇒ pA(λ) = 0.

Proof.

λ ∈ σ(A) ⇐⇒ λI −A is singular
⇐⇒ det(λI −A) = 0

⇐⇒ pA(λ) = 0

Proposition 45

Note that λ ∈ σ(A) if and only if N (A− λI) ̸= { 0 }. This space is called the eigenspace for λ.

Definition 46. For λ ∈ σ(A), the geometric multiplicity of λ is the dimension of N (A− λI). The algebraic
multiplicity of λ is the number of times (t− λ) is a factor of pA(t).

Example 47.

A =

(
λ 1
0 λ

)
has geometric multiplicity 1, but

det(tI −A) = (t− λ)2

so it has algebraic multiplicity 2.

Proposition 48. Suppose A ∈ Mn, λ ∈ σ(A). Then the geometric multiplicity of λ is no more than the
algebraic multiplicity of λ.

Remark 49. If B = (bij), then bi,j = ⟨Bej , ei⟩.

13



Proof of Proposition 48. Let k be the geometric multiplicity of λ. Pick v1, . . . , vk a basis for N (λI − A).
Extend to a basis { v1, . . . , vn } for Cn. Let

S = [v1 | · · · | vn] ∈ Mn

Then R(S) = span{ v1, . . . , vn } = Cn, so S is surjective, and thus invertible. Let B = S−1AS. For 1 ≤ j ≤ k,
and for 1 ≤ i ≤ n, note that

bi,j = ⟨S−1ASej , ei⟩
= ⟨S−1Avj , ej⟩
= ⟨S−1(λvj), ei⟩
= λ⟨ej , ei⟩

=

{
λ i = j

0 else

Then

B =



λ 0 . . . 0 | B12

0 λ . . . 0 |
...

...
. . .

... |
0 0 . . . λ |

0 | B22


Then

pB(t) = (t− λ)k det(tI −B22)

so (t− λ)k divides pB(t). But

pB(t) = det(tI −B) = det(S−1(tI −A)S) = det(tI −A) = pA(t)

So (t − λ)k divides pA(t), and the algebraic multiplicity is at least the geometric multiplicity.
Proposition 48

2.2 The elementary symmetric functions
Observe that

(t− λ1) . . . (t− λn) = tn − (λ1 + · · ·+ λn)t
n−1 + (λ1λ2 + λ1λ3 + · · ·+ λn−1λn) + · · ·+ (−1)nλ1 . . . λn

Definition 50. Given n ∈ N and 1 ≤ k ≤ n, we define the kth elementary symmetric function by

Sk(λ1, . . . , λn) =
∑

1≤i1<i2<···<ik≤n

k∏
j=1

λij

Example 51.

S1(λ1, . . . , λn) = λ1 + · · ·+ λn

S2(λ2, . . . , λn) =
∑

1≤i<j≤n

λiλj

...
Sn(λ1, . . . , λn) = λ1 . . . λn

Fact 52.

(t− λ1) . . . (t− λn) =

n∑
k=0

(−1)kSk(λ1, . . . , λn)t
n−k

14



Definition 53. Let A ∈ Mn. Let

Ek(A) =
∑

J⊆{ 1,...,n },|J|=k

det(A(J, J))

i.e. Ek(A) is the sum of all the k × k principal minors of A.

Definition 54. For A ∈ Mn, we define the trace of A to be

tr(A) =

n∑
j=1

ajj

Example 55. E1(A) = tr(A) and En(A) = det(A).

Theorem 56. Let A ∈ Mn. Let (λ1, . . . , λn) be the roots of pA(t) repeated according to their algebraic
multiplicity. Then for 1 ≤ k ≤ n, we have Ek(A) = Sk(λ1, . . . , λn).

Corollary 57. {E1(A), . . . , En(A) } uniquely determines the roots of pA(t).

Notation 58. Given f : (a, b) → C, we can write f(t) = f1(t) + if2(t) for fi : (a, b) → R. We say f is
differentiable at t if f1, f2 are differentiable at t, and we write f ′(t) = f ′

1(t) + if ′
2(t).

Notation 59. For f : (a, b) → Cn, we write

f =

f1
...
fn


is differentiable at t if f1, . . . , fn are differentiable at t. In this case, we write

f ′(t) =

f ′
1(t)
...

f ′
n(t)


Remark 60.

(f1, . . . , fn)
′ = f ′

1f2 . . . fn + f1f
′
2 . . . fn + · · ·+ f1 . . . fn−1f

′
n

Theorem 61. Let

fj =

fij
...

fnj

 : (a, b) → Cn

for 1 ≤ j ≤ n. Assume each fij is differentiable at t for a < t < b. Set g(t) = det((f1 | · · · | fn)). Then g is
differentiable at t and

g′(t) =

n∑
j=1

det((f1 | · · · | fj−1 | f ′
j | fj+1 | · · · | fn))

Proof.

g(t+ h)− g(t) = det((f1(t+ h) | f2(t+ h) | · · · | fn(t+ h)))− det(f1(t) | · · · | fn(t))
= det(f1(t+ h) | · · · | fn(t+ h))− det(f1(t) | f2(t+ h) | · · · | fn(t+ h))

+det(f1(t) | f2(t+ h) | · · · | fn(t+ h))− det(f1(t) | f2(t) | f3(t+ h) | · · · | fn(t+ h))

+det(f1(t) | f2(t) | f3(t+ h) | · · · | fn(t+ h))− . . .

= det(f1(t+ h)− f1(t) | f2(t+ h) | . . . fn(t+ h))

+det(f1(t) | f2(t+ h)− f2(t) | f3(t+ h) | · · · | fn(t+ h) + . . .

=

n∑
j=1

det(f1(t) | · · · | fj−1(t) | fj(t+ h)− fj(t) | fj+1(t+ h) | · · · | fn(t+ h))
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Thus

lim
h→0

g(t+ h)− g(t)

h
= lim

h→0

n∑
j=1

det(f1(t) | · · · | fj−1(t) | fj(t+ h)− fj(t) | fj+1(t+ h) | · · · | fn(t+ h))

=

n∑
j=1

det(f1(t) | · · · | fj−1(t) | f ′
j(t) | fj+1(t) | . . . fn(t))

since det is continuous in its entries. Theorem 61

Proof of Theorem 56.

Notation 62. For J ⊆ { 1, . . . , n }, we set AJ = A(Jc, Jc).
Well,

(−1)nSn(λ1, . . . , λn) = a0

= pA(0)

= det(−A)

= det((−I)A)

= det(−I) det(A)

= (−1)n det(A)

So
Sn(λ1, . . . , λn) = λ1 . . . λn = a0 = det(A) = En(A)

And we have the case k = n.
Also

(01)n−1Sn−1(λ1, . . . , λn) = a1

= p′A(0)

= det(tI −A)′|t=0

But

det(tI −A)′ = det


1 −a12 −a13 . . .
0 t− a22 −a23 . . .
...

...
... . . .

0 −an2 −an3 . . .

+ det


−a11 0 −a13 . . .
t− a21 1 −a23 . . .

...
...

... . . .
−an1 0 −an3 . . .

+ . . .

= det(tIn−1 −A{ 1 }) + det(tIn−1 −A{ 2 }) . . .

Thus

det(tIn −A)′ =

n∑
i=1

det(tIn−1 −A{ i }

and

(−1)n−1Sn−1(λ1, . . . , λn) = p′A(0)

=

n∑
i=1

det(−A{ i })

=

n∑
i=1

(−1)n−1 det(A{ i })

= (−1)n−1En−1(A)

So Sn−1(λ1, . . . , λn) = En−1(A). And we have the case k = n− 1.
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But now
p′′A(0) = 2a2 = 2(−1)n−1Sn−2(λ1, . . . , λn)

and

p′′A(t) =

n∑
i=1

det(tIn−1 −A{ i })
′ =

n∑
i=1

∑
j ̸=i

det(tIn−2 −A{ i,j })

So

p′′A(0) =

n∑
i=1

∑
j ̸=i

det(−A{ i,j }) =

n∑
i=1

∑
j ̸=i

(−1)n−2 det(A{ i,j }) = (−1)n−2 · 2 · En−2(A)

So Sn−2(λ1, . . . , λn) = En−2(λ1, . . . , λn), and we have the case k = n− 2.
In the general case, we have k!ak = p

(k)
A (0). But

p
(k)
A (t) = (k!)

∑
|J|=k

det(tI −AJ)

so
p
(k)
A (0) = (k!)En−k(A)(−1)n−k

Thus Sn−k(λ1, . . . , λn) = En−k(A). Theorem 56

2.3 Moments and Newton’s identities
Definition 63. The kth moment is given by µk = Mk(λ1, . . . , λk) = λk

1 + · · ·+ λk
n.

Remark 64.

S1(λ1, . . . , λn) = λ1 + · · ·+ λn

= M1(λ1, . . . , λn)

= µ1

S1(λ1, . . . , λn)
2 = (λ1 + · · ·+ λn)

2

= λ2
1 + λ2

2 + · · ·+ λ2
n +

∑
i̸=j

λiλj

= µ2 + 2S2(λ1, . . . , λn)

=⇒ µ2 = S2
1 − 2S2

Theorem 65 (Newton’s identities). Suppose p(t) = tn + an−1t
n−1 + · · · + a1t + a0. (Note that ak =

(−1)n−kSn−k.) Then
kan−k + µ1an−k+1 + · · ·+ µkan = 0

for all k ∈ { 1, . . . , n }.

Solving these can get µ in terms of S and vice versa.

2.4 Right multiplication
Suppose A ∈ Mm,n. We typically regard Fk ∼= Mk,1. Then

LA : Fn → Fm

is given by LAx = Ax. If we instead regard Fk ∼= M1,k, then for y = (y1, . . . , yn), we have

yA ∈ M1,n
∼= Fn

So RA : Fm → Fn. Thus A ∈ Mn induces two linear maps

LA, RA : Fn → Fn
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Question 66. What is the deal with σ, eigenvalues, etc.?
Well, observe (yA)t = Atyt. Thus RA

∼= LAt .

Theorem 67. For A ∈ Mn. Then

1. pA(t) = pAt(t).

2. σ(A) = σ(At).

3. For λ ∈ σ(A) = σ(At), the algebraic multiplicities coincide.

4. For λ ∈ σ(A) = σ(At), the geometric multiplicities coincide.

Proof.

1. pAt(t) = det(tI −At) = det((tI −A)t) = det(tI −A) = pA(t).

2. σ(A) = {x ∈ F : pA(x) = 0 } = {x ∈ F; pAt(x) = 0 } = σ(At).

3. Follows as algebraic multiplicity is the number of times t− λ appears as a factor of pA(t) = pAt(t).

4. The geometric multiplicity of λ in A is given by

dim(N (λI −A)) = n− dim(R(λI −A))

= n− rankc(λI −A)

= n− rankr(λI −At)

= n− dim(R(λI −At))

= dim(N (λI −At))

which is just the geometric multiplicity of λ in At.

Theorem 67

2.5 Similarity
Let L : V → V be linear with dim(V ) = n. Let B = { v1, . . . vn } be a basis for V . Recall

L(vj) =

n∑
i=1

bi,jvi

where B = (bi,j) ∈ Mn is the matrix for L with respect to B, denoted B = matB(L). Define S : Fn → V be
given by Sej = vj . Then the following diagram commutes:

V V

Fn Fn

L

S−1

LB

S

For A = (aij) ∈ Mn, a new basis { v1, . . . , vn } for Cn, we have

V V

Fn Fn

LA

S−1

LB

S

where Sej = vj ; we set matB(LA) = LB ; then LA = SLBS
−1. i.e.

A = S−1BS

B = SAS−1

Then
matB(LA) = SAS−1

where S = [v1 | · · · | vn].
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Definition 68. Suppose A,B ∈ Mn. We say B is similar to A if there is S ∈ M−1
n such that B = SAS−1.

We then write B ∼ A.

Remark 69.

1. A = I−1AI. So A ∼ A.

2. If B ∼ A, say B = SAS−1, then A = (S−1)−1B(S−1), so A ∼ B.

3. If C ∼ B and B ∼ A, then C = RBR−1, B = SAS−1, then C = (SR)−1A(SR).

So ∼ is an equivalence relation.

Proposition 70. Suppose B ∼ A. Then

1. pA(t) = pB(t).

2. σ(A) = σ(B).

3. The geometric and algebraic multiplicities of λ ∈ σ(A) = σ(B) coincide.

4. Ek(A) = Ek(B) for 1 ≤ k ≤ n.

Proof.

1. pB(t) = det(tI −B) = det(S(tI −A)S−1) = det(S) det(S−1) det(tI −A) = pA(t).

2. σ(A) is the roots of pA(t) = pB(t), and is thus the roots of pB(t).

3. The algebriac multiplicities are clear, as they have the same characteristic polynomial. For the geometric
multiplicity, note that

dim(N (λI −A)) = dim(N (S(λI −A)S−1))

4. Because Ek(A) is determined by the kth coefficient of pA(t) = pB(t).

Proposition 70

Example 71. A,B ∈ M7 are given by

A =



0 1
0 0

0 1
0 0

0 1 0
0 0 1
0 0 0



B =



0
0 1 0
0 0 1
0 0 0

0 1 0
0 0 1
0 0 0


Then A and B are not similar but pA(t) = pB(t) = t7, σ(A) = σ(B) = { 0 }, the algebraic multiplicities of 0
are both 7, and the geometric multiplicities of 0 are both 3.

Definition 72. D = (dij) ∈ Mn is diagonal if dij = 0 for all i ̸= j. We write D = diag(d11, . . . , dnn). We
say A ∈ Mn is diagonalizable if there is diagonal D and S ∈ M−1

n such that D = SAS−1.

Proposition 73. A ∈ Mn is diagonalizable if and only if there is a basis for Cn of eigenvectors of A.
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Proof.

( =⇒ ) Suppose D = SAS−1, where D = diag(λ1, . . . , λn). Then AS−1 = S−1D. Hence AS−1ej =
S−1Dej = λjS

−1ej , and {S−1e1, . . . , S
−1en } is a basis for Cn of eigenvectors of A.

( ⇐= ) Suppose B = { v1, . . . , vn } is a basis with Avj = λjvj . Then R = [v1 | · · · | vn] is invertible, and
ARej = Avj = λjvj = λjvj = λjRej = RDej . So, if D = diag(λ1, . . . , λn), then R−1AR = D.

Proposition 73

Lemma 74. Suppose A ∈ Mn, B ∈ Mm. Let

C =

(
A 0
0 B

)
∈ Mn+m

Then C is diagonalizable if and only if A and B are.

Proof.

( ⇐= ) Let D1 = SAS−1, D2 = RBR−1. Then (
S 0
0 R

)
diagonalizes C.

( =⇒ ) Suppose

S−1CS =

(
D1 0
0 D2

)
where

S =

(
S11 S12

S21 S22

)
Then

CSej = S

(
D1 0
0 D2

)
ej = Sλjej = λjSej

where
Sej =

(
xj

yj

)
∈ Fn+m

Then (
Axj

Byj

)
= C

(
xj

yj

)
=

(
λxj

λyj

)
So the xi ∈ Fn are all eigenvectors of A, and the yi ∈ Fm are all eigenvectors of B.

Notice, though, that

S =

(
x1 . . . xn+m

y1 . . . yn+m

)
and S is invertible; so rank(S) = n+m. Thus

rankr[x1 | · · · | xn+m] = n

rankr[y1 | · · · | yn+m] = m

and in particular

rankc[x1 | · · · | xn+m] = n

rankc[y1 | · · · | yn+m] = m

Thus some subset of n of the vectors {x1, . . . , xn+m } are linearly independent. This set of n is a basis
for Fn; thus A has a basis of eigenvectors, and A is diagonalizable. Proof that R is diagonalizable is
mutatis mutandis.
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Lemma 74

Proposition 75. Suppose

B =

B1 . . . 0
... . . .

...
0 . . . Bk


with each Bj ∈ Mnj

. Then B is diagonalizable if and only if each Bj is diagonalizable.

Proof. b = 2 was done above. Assume the result holds for k ∈ N; we show the result for k + 1. Assume

B =

B1 . . . 0
... . . .

...
0 . . . Bk+1

 =

(
C 0
0 Bk+1

)

Then B is diagonalizable if and only if C and Bk+1 are, which holds if and only if B1, . . . , Bk and Bk+1 are
by induction. Proposition 75

Definition 76. A set F ⊆ Mn is called simultaneously diagonalizable if there is S ∈ M−1
n such that SAS−1

is diagonal for all A ∈ F . We say F is commuting if for all A,B ∈ F , we have AB = BA.

Theorem 77. Let F ⊆ Mn. Then F is simultaneously diagonalizable if and only if

1. Each A ∈ F is diagonalizable.

2. F is commuting.

Proof. We do the case F = {A,B }.

( =⇒ ) Suppose there is S ∈ M−1
n such that S−1AS and S−1BS are both diagonal. Then

1. A and B were both diagonalizable.

2. Since diagonal matrices commute, we have

S−1ABS = S−1ASS−1BS = S−1BSS−1AS = S−1BAS

and thus
AB = BA

( ⇐= ) Pick S such that S−1AS is diagonal. Write

S−1AS =


λ1In1

0
λ2In2

. . .
0 λkInk


Then AB = BA implies (S−1AS)(S−1BS) = (S−1BS)(S−1AS). Thus, blocking S−1BS ∈ Mn1+···+nk

with Rij ∈ Mni,nj
, we have

(λiRij) = (Rijλj)

So Rij = 0 for i ̸= j. So

S−1BS =

R11 0
. . .

0 Rkk


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But B is diagonalizable. So S−1BS is diagonalizable. So Rii is diagonalizable for each 1 ≤ i ≤ k. Pick
Ti ∈ M−1

ni
such that T−1RiiTi is diagonal. Let

T =

T1 0
. . .

0 Tk


Then T (S−1BS)T is diagonal, and

T−1(S−1AS)T =

T−1
1 0

. . .
0 T−1

k


λ1In1 0

. . .
0 λkInk


T−1

1 0
. . .

0 T−1
k

 = S−1AS

is diagonal. So (ST )−1A(ST ) and (ST )−1B(ST ) are both diagonal.
General case was mumbled about.

Theorem 77

How does AB compare to BA?
Well, if A is invertible, then A−1(AB)A = BA, so AB ∼ BA. So pAB(t) = pBA(t) and σ(AB) = σ(BA).

Example 78.

A =

(
1 1
0 0

)
B =

(
1 0
−1 0

)
Then

AB =

(
0 0
0 0

)
BA =

(
1 1
−1 −1

)
Then AB ̸∼ BA. Also pAB(t) = t2 = pBA(t). So σ(AB) = σ(BA).

Theorem 79. For A ∈ Mm,n, B ∈ Mn,m, we have tnpAB(t) = tmpBA(t).

Corollary 80. If A ∈ Mm,n, B ∈ Mn,m. Then σ(AB) ∪ { 0 } = { 0 } ∪ σ(BA).

Proof of Theorem 79. Observe (
Im A
0 In

)(
Im −A
0 In

)
= Im+n

Now (
Im −A
0 In

)(
AB 0
B 0

)(
Im A
0 In

)
=

(
AB −AB 0

B 0

)(
Im A
0 In

)
=

(
0 0
B BA

)
Thus (

AB 0
B 0

)
∼
(
0 0
B BA

)
So

tnpAB(t) = det

(
tIm −AB 0

−B tIn

)
= det

(
tIm 0
−B tIn −BA

)
= tmpBA(t)

Theorem 79
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2.6 Persistence of eigenvalues
Theorem 81. Suppose A ∈ Mn λ ∈ C, and 1 ≤ k ≤ n. Consider the statements

(a) λ is an eigenvalue of A of geometric multiplicity ≥ k.

(b) For all m > n − k and for all S ⊆ { 1, . . . , n } with |S| = m, we have that λ is an eigenvalue of
Â = A[S, S].

(c) λ is n eigenvalue of algebraic multiplicity ≥ k.

Then (a) =⇒ (b) =⇒ (c).

Proof.

(a) =⇒ (b) Suffices to do the case S = { 1, . . . ,m }. Write

A =

(
Â B
C D

)
Pick v1, . . . , vk linearly independent eigenvectors with Avi = λvi. Say

vi =

(
ui

wi

)
where ui ∈ Cm and wi ∈ Cn−m. Since k > n −m, we have {w1, . . . , wk } is linearly dependent. So
there are αi not all 0 such that

α1w1 + · · ·+ αkwk = 0

Thus
α1v1 + · · ·+ αkvk =

(
u
0

)
and u ̸= 0 since { v1, . . . , vk } is linearly independent. Then

Av =
∑
i

A(αivi)

=
∑
i

αiAvi

=
∑
i

αiλvi

= λv

So (
Â B
C D

)(
u
0

)
=

(
Âu
Cu

)
= λ

(
u
0

)
and Âu = λu.

(b) =⇒ (c)

Lemma 82. Given µ1, . . . , µn such that Sm(µ1, . . . , µn) = 0 for all m > n− k, then at least k of the
µi are 0.

Proof. Well
µ1 . . . µn = Sn(µ1, . . . , µn) = 0

So some µi = 0; say µ1 = 0. Also

0 = Sn−1(µ1, . . . , µn)

= µ2 . . . µn + µ1(µ3 . . . µn + µ2µ4 . . . µn + · · ·+ µ2 . . . µn−1)

= µ2

So there is 2 ≤ i ≤ n such that µi = 0; say µ2 = 0. Continuing as above, we find k distinct i such that
µi = 0. Lemma 82
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Suppose λ is an eigenvalue of A[S, S] for all |S| = m, all m > n− k. Then det(λI −A[S, S]) = 0 for all
such S,m. Look at λI −A. We then have

Em(λI −A) =
∑

|S|=m

det(λI −A[S, S])

= 0

So Sm(λ− λ1, . . . , λ− λn) = 0 for all m > n− k. So there is k distinct i such that λ = λi. So (t− λ)k

is a factor of
n∏

i=1

(t− λi) = pA(t)

Theorem 81

Corollary 83. Suppose A ∈ Mn has dim(N (A)) = k. Then for all m > n− k and all |S| = m, we have that
A[S, S] is not invertible.

Proof. Since dim(N (A)) = k, we have that 0 has geometric multiplicity k; then apply (b).
Corollary 83

3 Unitaries and isometries
Definition 84. A map L : Fn → Fm is called a isometry if for all x ∈ Fn, we have

∥x∥2 = ∥Lx∥2

Remark 85. Suppose L : Fn → Fm is an isometry. Then dist(x, y) = ∥x− y∥2 = ∥Lx− Ly∥2 = dist(Lx,Ly).
We also have N (L) = { 0 }, so L is injective, and m ≥ n.

Theorem 86. Suppose V ∈ Mm,n with m ≥ n. Then the following are equivalent:

1. LV is an isometry.

2. The columns of V are orthonormal.

3. V ∗V = In.

Proof.

(1) =⇒ (2) Let V = [v1 | · · · | vn]. Then

∥vj∥2 = ∥Lvej∥2 = ∥ej∥2 = 1

Take any i ̸= j, and |α| = 1. Then

∥vi + αvj∥2 = ∥LV (ei + αej)∥2 = ∥ei + αej∥2 =
√

1 + |α|2 =
√
2

So

⟨vi + αvj , vi + αvj⟩ = 2

=⇒ ⟨vi, vi⟩+ α⟨vi, vj⟩+ α⟨vj , vi⟩+ ⟨vj , vj⟩ = 2

=⇒ α⟨vi, vj⟩+ α⟨vi, vj⟩ = 0

Pick |α| = 1 so that α⟨vi, vj⟩ = |⟨vi, vj⟩|. Then 2|⟨vi, vj⟩| = 0, and vi ⊥ vj .

(2) =⇒ (3) Write V = [v1 | · · · | vn]. Then

V ∗ =

v∗1
...
v∗n


Then V ∗V = (v∗i vj) = (⟨vj , vi⟩) = In.
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(3) =⇒ (1) Note that

∥LV (x)∥22 = ∥V x∥22
= ⟨V x, V x⟩
= (V x)∗(V x)

= x2V ∗V x

= x∗Ix

= x∗x

= ∥x∥22

Theorem 86

What can be said about the rows of an isometry?
Well, write V ∗ = [r1 | . . . rn]. Then

V =

r∗1
...
r∗n


and

V x =

r∗1x
...

r∗nx

 =

 ⟨x, r1⟩
...

⟨x, rm⟩


Definition 87. A set of vectors { r1, . . . , rm } ⊆ Fn is called a Parseval frame for Fn if

∥x∥22 =

m∑
i=1

|⟨x, ri⟩|2

for all x ∈ Fn.

Proposition 88. Suppose { r1, . . . , rm } ⊆ Fn is a Parseval frame if and only if

V =

 r∗1
...
r∗m


is an isometry.

Theorem 89. Let { r1, . . . , rm } ⊆ Fn. Then { r1, . . . , rm } are a Parseval frame if and only if for all x ∈ Fn,
we have that

x =

m∑
i=1

⟨x, ri⟩ri

Proof.

( =⇒ ) Let

V =

 r∗1
...
r∗m


Then V : Fn → Fm is an isometry. Then

V ∗ = [r1 | · · · | rn] : Fm → Fn
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and V ∗ej = rj . Since V is an isometry, we have that

x = Inx

= V ∗V (x)

= V ∗

 ⟨x, r1⟩
...

⟨x, rm⟩


= V ∗

 m∑
j=1

⟨x, rj⟩ej


=

m∑
j=1

⟨x, rj⟩rj

( ⇐= ) Let

V =

 r∗1
...
r∗m


Then

V ∗V x = V ∗

 ⟨x, r1⟩
...

⟨x, rm⟩


=

m∑
j=1

⟨x, rj⟩rj

= x

So V ∗V x = x for all x. So V ∗V = In and V is an isometry. So { r1, . . . , rm } is a Parseval frame.

Theorem 89

Definition 90. A Parseval frame { r1, . . . , rm } ⊆ Fn is called uniform if ∥ri∥ = ∥rj∥ for all i, j ∈ { 1, . . . ,m }.
It is called equiangular if it is uniform and |⟨ri, rj⟩| is constant for all i ̸= j.

Fact 91.

1. For all m ≥ n there exist uniform Parseval frames of size m.

2. Finding the pairs (m,n) such that there is exist equiangular Parseval frames is an area of current
research.

Fact 92 (The case of R).

1. If there is an equiangular Parseval frame then m ≤ n(n+1
2 .

2. There are many n for which there does not exist an
(

n(n+1)
2 , n

)
equiangular Parseval frame. (i.e.

ambient dimension is n, frame size n(n+1)
2 .)

3. (m,n) equiangular Parseval frames exist if and only if there is a completely regular graph on m vertices
with certin parameters that tell the value of n. (I believe Wikipedia knows these as “strongly regular
graphs”.)

Fact 93 (The case of C).

1. If there is an equiangular Parseval frame, then m ≤ n2.
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2. Zauner’s conjecture: for all n there is { r1, . . . , rn2 } an equiangular Parseval frame for Cn.

3. What pairs (m,n) have equiangular Parseval frames? Very little is known.

A closely related problem:

Example 94. If {u1, . . . , un } and { v1, . . . , vn } are both orthonormal bases for Cn, then{
u1√
2
, . . . ,

un√
2
,
v1√
2
, . . . ,

vn√
2

}
is a uniform Parseval frame, since

∥x∥2 =

n∑
i=1

|⟨x, ui⟩|2 =

n∑
i=1

|⟨x, vi⟩|2

so

∥x∥2 =

n∑
i=1

∣∣∣∣〈x, ui√
2

〉∣∣∣∣2 + n∑
i=1

∣∣∣∣〈x, vi√
2

〉∣∣∣∣2
Definition 95. Two orthonormal bases {u1, . . . , un } and { v1, . . . , vn } are called mutually unbiased if
|⟨ui, vj⟩| is constant for i, j ∈ { 1, . . . , n }. It’s not hard to see that the constant is 1√

n
.

Question 96. How many orthonormal bases can there be such that each pair of bases is mutually unbiased?

It is conjectured that the answer is n+ 1; this is known when n = pk for p prime. The question is still
open for n = 6.

Definition 97. A matrix U ∈ Mn is unitary if U∗U = In.

Theorem 98. Suppose U ∈ Mn. Then the following are equivalent:

(a) U is unitary.

(b) U is invertible and U−1 = U∗.

(c) UU∗ = In.

(d) U∗ is unitary.

(e) The columns of U are orthonormal.

(f) The rows of U are orthonormal.

(g) U is an isometry.

Proof.

(a) ⇐⇒ (g) ⇐⇒ (e) By isometry theorem.

(a) =⇒ (b) U∗ is a left inverse of U implies that U∗ is a right inverse of U .

(b) =⇒ (c) If U∗ = U−1 then I = UU−1 = UU∗.

(c) =⇒ (d) I = UU∗ = (U∗)∗U∗, so U∗ is unitary.

(d) =⇒ (f) Since U∗ is unitary, we have that U∗ is an isometry. So the columns of U∗ are orthonormal.
So the rows of U are orthonormal.

(f) =⇒ (d) If the rows of U are orthonormal, then UU∗ = I, and U∗ is unitary.

Theorem 98

Proposition 99. If {u1, . . . , un } is an orthonormal set of vectors, then they are linearly independent.
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Proof. Suppose
α1u1 + · · ·+ αnun = 0

Then

0 = ⟨α1u1 + · · ·+ αnun, α1u1 + · · ·+ αnun⟩

=

n∑
i,j=1

αiαj⟨ui, uj⟩

=

n∑
i=1

|αi|2

so αi = 0 for all i ∈ { 1, . . . , n }. So {u1, . . . , un } is linearly independent. Proposition 99

Hence an orthonormal set of n vectors in Cn is a basis for Cn.
Remark 100.

1. The set of n× n invertible matrices M−1
n is a grape, usually denoted GL(n;F).

2. The subset U(n) ⊆ M−1
n of unitary matrices is a subgrape, since if U, V ∈ U(n), then

(UV )∗(UV ) = V ∗U∗UV = V ∗V = In

and if U ∈ U(n), then U−1 = U∗ ∈ U(n).

When F = R, the unitaries are often called the orthogonal matrices and denoted O(n).

Definition 101. Given matrices A = (ai,j) and B = (bi,j) in Mm,n
∼= Cmn, we can think of

dist(A,B) =

 m∑
i=1

n∑
j=1

|ai,j − bi,j |2


In this metric, given a sequence of matrices Ak = (ai,j(k)) → A = (ai,j) as k → ∞ if and only if each
ai,j(k) → ai,j as k → ∞.

Remark 102. 1
k In ∈ GL(n,F) = M−1

n but 1
k In → 0 /∈ M−1

n . So GL(n,F) is not closed.

Lemma 103.

1. Suppose Uk ∈ Mn are unitary an (Uk : k ∈ N) → U . Then U is unitary. i.e. U(n) is a closed subset of
Mn.

2. U(n) ⊆ Mn is compact.

3. Suppose Uk ∈ Mn are unitary. Then there is a subsequence (Ukj
: j ∈ N) that converges to some

U ∈ Mn (which must then be unitary by part (1)).

Proof.

1. Let Uk = (uij(k)); let U = (uij). We then have that

lim
k→∞

uij(k) = uij

for all i, j. Note also that U∗ = (uji), and that

U∗U =

(
n∑

ℓ=1

uℓ,iuℓ,j

)
=

(
lim
k→∞

n∑
ℓ=1

uℓ,i(k)uℓ,j(k)

)
= In

So U ∈ U(n).
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2. We just showed that U(n) is closed. Also U ∈ U(n) means that the columns are orthonormal. So

∥U∥22 =

n∑
i=1

|uij |2 = n

So U(n) is closed and bounded. So it is compact.

3. Heine-Borel.

Lemma 103

Remark 104.

1. Suppose U ∈ U(n). Then U∗U = I. So

1 = det(U∗U)

= det(U∗) det(U)

= det(U) det(U)

= |det(U)|

2. If U ∈ O(n) then det(U) ∈ {±1 }.

3. We look at R2. The matrix representing a rotation by θ is then

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
Then R(θ) is unitary, and det(R(θ)) = 1. Also, if we have a unitary U with

Ue1 =

(
c
s

)
for some c, s, we know that

Ue2 ⊥
(
c
s

)
and ∥Ue2∥2 = 1; so

Ue2 =

(
±s
∓c

)
We then conclude that

O(2) = {R(θ) : 0 ≤ θ < 2π } ∪
{
R(θ)

(
1 0
0 −1

)
: 0 ≤ θ < 2π

}
and further that the former have determinant 1 while the latter have determinant −1. Finally, note that

R(θ1)R(θ2) = R(θ1 + θ2) = R(θ2)R(θ1)

3.1 Householder transformations
Suppose w ∈ Cn \ { 0 }. Define

Uwx = x− 2

∥w∥22
(ww∗)x

i.e.
Uw = I − 2

∥w∥22
(ww∗)
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to be the Householder transformation of w. Note that

Uw = I − 2

((
w

∥w∥

)(
w

∥w∥

)∗)
In practice, these are normalized for unit vectors.

Given v ∈ Cn, write v = v1 + v2 where v1 ⊥ w and v1 = αw. Then

Uwv = v − 2

(
w

∥w∥
w∗

∥w∥

)
v

= v − 2

〈
v,

w

∥w∥
w

∥w∥

〉
= v1 + v2 − 2

〈
v1,

w

∥w∥

〉
w

∥w∥

= v1 + v2 − 2α

〈
w,

w

∥w∥

〉
w

∥w∥
= v1 + v2 − 2αw

= v1 + v2 − 2v1

= v2 − v1

Geometrically, this corresponds to negating the w component.
Remark 105. U∗

w = Uw; then U∗
wUw = U2

w = I. So Uw is unitary.

3.2 Unitary equivalence
Definition 106. We say A,B ∈ Mn are unitarily equivalent (written A ∼u.e. B) if there is U ∈ U(n) such
that B = U∗AU .

Remark 107.

1. This is an equivalence relation.

2. Since U∗ = U−1, we have that A ∼u.e. B =⇒ A ∼ B.

Proposition 108. Let A,B ∈ Mn. If A ∼u.e. B then
n∑

i,j=1

|aij |2 =

n∑
i,j=1

|bij |2

We prove this using traces.

Proposition 109. Suppose A ∈ Mm,n; suppose B ∈ Mn,m. Then tr(AB) = tr(BA).

Proof. Well,

tr(AB) =

m∑
i=1

n∑
k=1

aikbki

=

n∑
q=1

m∑
ℓ=1

bqℓqℓq

= tr(BA)

Proposition 109

Proposition 110. Suppose A ∈ Mm,n. Then

tr(A∗A) = tr(AA∗) =

m∑
i=1

n∑
j=1

|aij |2
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Proof. Well, A∗ = (aj,i). Then

tr(A∗A) =
∑
i

∑
k

akiaki

=
∑

|ai,j |2

Proposition 110

Proof of Proposition 108. Suppose B = U∗AU . Then∑
i,j

|bij |2 = tr(B∗B)

= tr((U∗A∗U)(U∗AU))

= tr(U∗(A∗AU))

= tr((A∗AU)U∗)

= tr(A∗A)

=
∑
i,j

|ai,j |2

Proposition 108

Example 111. Let

A =

1 1 1
0 2 1
0 0 3


B =

1 0 0
0 2 0
0 0 3


Then A has 3 distinct eigenvalues; so we have a basis of eigenvectors. So A is diagonalizable. So A ∼ B. But∑

|ai,j |2 >
∑

|bi,j |2

so A ̸∼u.e. B.
Example 112 (H. Radjavi). Suppose

A =


λ1 p1

λ2 p2
. . . . . .

λn−1 pn−1

λn


If λi ̸= λj for all i ̸= j and pi > 0 for all i and A′ is another usch matrix with λi = λ′

i, then A ∼u.e. A
′ if and

only if A = A′.

3.3 Specht’s invariants
Let s, t be free non-commuting variables. Given

w(s, t) = sn1tm1 . . . snktmk

where all mi ≥ 0, all ni ≥ 0, and given A,B ∈ Mn, we can set

w(A,B) = An1Bm1 . . . AnkBmk

We also set |w| to be the length of w; i.e.

n1 +m1 + · · ·+ nk +mk
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Theorem 113 (Specht, 1940). Suppose A,B ∈ Mn. Then A ∼u.e. B if and only if tr(w(A,A∗)) =
tr(w(B,B∗)) for all words w.

Proof.

( =⇒ ) Suppose A ∼u.e. B; say B = U∗AU . Then Bk = U∗AkU . Also B∗ = U∗AU ; so (B∗)k = U∗(A∗)kU .
Then

w(B,B∗) = Bn1(B∗)m1 . . . Bnk(B∗)mk

= (U∗An1U)(U∗(A∗)m1U) . . . (U∗AnkU)(U∗(A∗)mkU)

= U∗W (A,A∗)U

So
tr(w(B,B)) = tr(U∗w(A,A∗)U) = tr(w(A,A∗))

( ⇐= )

Lemma 114. Suppose V,W are vector spaces with span{ vα : α ∈ I } = V and span{wα : α ∈ I } = W .
Then there is linear L : V → W with L(vα) = wα for all α ∈ I if and only if whenever

n∑
i=1

λivαi
= 0

we also have
n∑

i=1

λiwαi
= 0

Definition 115. Let A ⊆ Mn; then A is an algebra if

1. A is a vector subspace
2. If x, y ∈ A then xy ∈ A.

It is a ∗-algebra if X ∈ A implies that X∗ ∈ A. If A,B are ∗-algebras, then a map π : A → B is called
a ∗-homomorphism if

1. π is linear
2. π(xy) = π(x)π(y)

3. π(x∗) = π(x)∗

Proposition 116. Let A,B ∈ Mn. Let

A = span{w(A,A∗) : w word }
B = span{w(B,B∗) : w word }

(Then these are ∗-algebras.) If for all words w we have tr(w(A,A∗)) = tr(w(B,B∗)) then there is a
∗-isomorphism π : A → B with π(w(A,A∗)) = w(B,B∗).

Proof. By lemma, there is a linear map π : A → B satisfying the above if and only if
n∑

i=1

wi(A,A∗) = 0 =⇒
n∑

i=1

λiwi(B,B∗) = 0

Well, let

X =

n∑
i=1

λiwi(A,A∗)

Y =

n∑
i=1

λiwi(B,B∗)
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Let X = (xij). Then
X = 0 ⇐⇒

∑
|xij | = 0 ⇐⇒ tr(X∗X) = 0

But
X∗X =

∑
λjλiwj(A,A∗)∗wi(A,A∗)

So

tr(X∗X) =
∑

λjλi tr(wj(A,A∗)∗wi(A,A∗)) =
∑

λjλi tr(wj(B,B∗)∗wi(B,B∗)) = tr(Y ∗Y )

So
X = 0 =⇒ tr(X∗X) = 0 =⇒ tr(Y ∗Y ) = 0 =⇒ Y = 0

So there is a well-defined linear map π with π(w(A,A∗)) = w(B,B∗).

Claim 117. π is a ∗-homomorphism.

Proof. Let

X1 =
∑

λiwi(A,A∗)

X2 =
∑

µℓw̃ℓ(A,A∗)

Then

π(X1X2) = π
(∑

λiµℓwi(A,A∗)w̃ℓ(A,A∗)
)

=
∑

λiµℓπ(wi(A,A∗)w̃ℓ(A,A∗))

=
∑

λiµℓwi(B,B∗)w̃ℓ(B,B∗)

= π(X1)π(X2)

Similarly, it is a ∗-homomorphism. Claim 117

Note that the same proof shows there is ρ : B → A such that ρ(w(B,B∗)) = w(A,A∗); then ρ = π−1.
Proposition 116

Then the ∗-algebra generated by A is ∗-isomorphic to the ∗-algebra generated by B. Wedderburn’s
theorem then yields

A ∼= Mn1
⊕ · · · ⊕Mnk

∼= B

It also yields that since A ⊆ Mn there are multiplicities m1, . . . ,mk such that

A =





A1

. . .
A1

. . .
Ak

. . .
Ak




where Ai shows up mi times. Similarly for B, we get multiplicities m̃1, . . . , m̃k. Since the traces are
equal, we have mi = m̃i; so the ∗-isomorphisms are implemented by a unitary.

Theorem 113

Theorem 118 (Pearcy 1968). Suppose A,B ∈ Mn. Then A ∼u.e. B if and only if tr(w(A,A∗)) = tr(w(B,B∗))

for all |w| ≤ 2n2. (This is 4n
2

words.)
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We use two lemmata.

Lemma 119. Let LA(d) = span{w(A,A∗) : |w| ≤ d }. Suppose LA(d) = LA(d+ 1). Then LA(d) = A.

Proof. Suppose m = d+ 1 + k. Suppose |w| = m. Write w = w1w2 where |w1| = d+ 1 and |w2| = k. Then

w(A,A∗) = w1(A,A∗)w2(A,A∗)

But
w1(A,A∗) =

∑
λℓwℓ(A,A∗)

where |wℓ| = d. So w(A,A∗) is a linear combination of things of length d+ k. So LA(d+ 1+ k) = LA(d+ k).
By induction, we have LA(d+ k) = LA(d) for all k ∈ N, and A = LA(d). Lemma 119

Lemma 120. A = LA(n
2).

Proof. Suppose there does not exist d ≤ n2 with LA(d) = LA(d+ 1). Then { 0 } ⫋ LA(1) ⫋ LA(2) ⫋ . . . ⫋
LA(n

2). So dim(LA(n
2)) ≥ n2. But dim(A) ≤ n2, as A ⊆ Mn. So LA(n

2) = A. Lemma 120

Proof of Theorem 118.

( =⇒ ) Easy.

( ⇐= ) Again, want to show that there is π : A → B with π(w(A,A∗)) = w(B,B∗) well-defined. We know
that A = LA(n

2); for
X =

∑
λiwi(A,A∗)

and
Y =

∑
λiwi(B,B∗)

we now need X = 0 =⇒ Y = 0. But

X = 0 ⇐⇒ tr(X∗X) = 0

⇐⇒
∑

λiλj tr(wj(A,A∗)∗wi(A,A∗))

⇐⇒
∑

λiλj tr(wj(B,B∗)∗wi(B,B∗))

⇐⇒ tr(Y ∗Y ) = 0

⇐⇒ Y = 0

since |wjwi| ≤ 2n2.

Theorem 118

Theorem 121 (Djokovic-Johnson 2007). Suppose A,B ∈ Mn. Then A ∼u.e. B if and only if tr(w(A,A∗)) =
tr(w(B,B∗)) for some set of at most

n

√
2n2

n− 1
+

1

4
+

n

2
− 2

words.

Fact 122. In the case n = 2, it suffices to check the words { s, s2, st }. i.e.

A ∼u.e. B ⇐⇒ tr(A) = tr(B), tr(A2) = tr(B2)), tr(AA∗) = tr(BB∗)

In the case n = 3, it suffices to check

{ s, s2, ts, s3, s2t, s2t2, s2t2st }

In the case n = 4, the paper exhibits 20 words.

Recall now the Householder transformations Uw for w ̸= 0.

34



Lemma 123. Let ∥x∥ = ∥u∥ = 1 with ⟨x, u⟩ ≥ 0 and w = u− x ̸= 0. Then Uwu = x and Uwx = u.

Proof. Draw a picture? Lemma 123

Theorem 124 (Schur). Suppose A ∈ Mn. Suppose λ1, . . . , λn are the roots of pA(t) (in some order). Then
there is a unitary U such that U∗AU = T is upper triangular with diagonal entries tii = λi. Moreover, U can
be taken to be a product of Householder transformations.

Proof. Since λ1 ∈ σ(A), we have that there is u1 ̸= 0 such that Au1 = λ1u1 with ∥u1∥ = 1 and ⟨u1, e1⟩ ≥ 0.
By the lemma, there is w such that Uwu1 = e1 and Uwe1 = u1. But then

⟨U∗
wAUwe1, ei⟩ = ⟨U∗

wAu1, ei⟩
= ⟨U∗

wλ1u1, ei⟩
= λ1⟨U∗

wu1, ei⟩
= λ1⟨e1, ei⟩

=

{
0 i > 1

λ1 else

Then
U∗
wAUw =

(
λ1 ∗
0 A1

)
for A1 ∈ Mn−1. But also

(t− λ1) . . . (t− λn) = pA(t) = pU∗
wAUw(t) = (t− λ1)pA1(t)

So pA1
(t) = (t − λ2) . . . (t − λn). We then repeat for A1 ∈ Mn−1; by induction, we get some product of

unitaries such that U∗AU has the desired form.
For the “moreover”, recall that Householder unitaries are given by

Uw = I − 2

∥w∥2
ww∗

Observe, however, that if w ∈ Cn−1 and

w̃ =

(
0
w1

)
then

Uw̃ = In − 2

∥w̃∥2
w̃w̃∗

= In − 2

∥w∥2

(
0 0
0 w1w

∗
1

)
=

(
1 0
0 In−1 − 2

∥w∥2ww
∗

)
=

(
1 0
0 Uw

)
So we in fact get that the unitaries we conjugated by were Householder transformations. Theorem 124

Corollary 125. Suppose A ∈ Mn; suppose λ1, . . . , λn are the roots of pA(t). Then tr(Ak) = λk
1 + · · ·+ λk

n.

Proof. Pick a unitary U such that

U∗AU =

λ1 ∗ ∗

0
. . . ∗

0 . . . λn



35



then

(U∗AU)k =

λk
1 ∗ ∗

0
. . . ∗

0 . . . λk
n


so

tr(Ak = tr(U∗AkU) = tr((U∗AU)k) = λk
1 + · · ·+ λk

Corollary 125

Remark 126. By Newton’s identities, we can mutually solve for S1(λ1, . . . , λn), . . . , Sn(λ1, . . . , λn) in terms of
µ1, . . . , µn. But also recall that −1)kSk(λ1, . . . , λn) is the kth coefficient of pA(t). So the coefficients of pA(t)
are uniquely determined by the µk = tr(Ak). Hence tr(A), . . . , tr(An) determines pA(t), and thus λ1, . . . , λn.

Theorem 127. Suppose A ∈ Mn; suppose ε > 0. Then there is B ∈ Mn such that ∥A−B∥2 < ε such that
B is invertible and diagonalizable.

Proof. Suppose λ1, . . . , λn are the roots of pA(t). Pick

|εi| <
ε√
n

such that λ1 + ε1, . . . , λn + εn all distinct and non-zero. Then, by Schur’s theorem, we have some U such that

U∗AU = T =

λ1 ∗ ∗

0
. . . ∗

0 0 λn


Let D = diag(ε1, . . . , εn); let R = T +D. Then the roots of pR(t) are λ1 + ε1, . . . , λn + εn. So R is invertible
and diagonal. Let B = URU∗. Then

∥A−B∥22 = tr((A−B)∗(A−B))

= tr((UTU∗ − URU∗)∗(UTU∗ − URU∗))

= tr((U(T −R)U∗)∗(U(T −R)U∗))

= tr(UD∗DU∗)

= tr(D∗D)

=

n∑
i=1

|εi|2 < ε2

and B is invertible and diagonalizable. Theorem 127

Lemma 128. Suppose

R =

(
0 ∗
0 R1

)
S =

(
S1 ∗
0 S2

)
where the blocking is n = k + (n− k) (i.e. R,S1 ∈ Mk) and S2(1, 1) = 0 and S2 is upper triangular. Then

RS =

(
0 ∗
0 x

)
is upper triangular, where the blocking is now n = (k + 1) + (n− (k + 1)).

Remark 129. If q(t) = qnt
n + · · ·+ q0 and U∗AU = T , then U∗AU = T , so q(T ) = U∗q(A)U .

Theorem 130 (Cayley-Hamilton). Suppose A ∈ Mn. Then pA(A) = 0.
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Proof. Let pA(t) = (t − λ1) . . . (t − λn); apply Schur’s theorem to get U∗AU = T upper triangular with
tii = λi. Then T − λ1I has a 1× 1 block of 0 in the upper-left corner, and T − λ2I has a 0 in the (2, 2) entry.
So, by lemma, we have that (T − λ1I)(T − λ2I) has a 2 × 2 block of 0 in the top-left corner. Proceeding
inductively, we get that (T − λ1I) . . . (T − λkI) has a k × k block of 0 in the top-left corner, and pA(T ) = 0.
But then pA(A) = U∗pA(T )U = 0. Theorem 130

Corollary 131. Suppose A ∈ M−1
n . Then A−1 ∈ span{ I, A, . . . , An−1 }.

Proof. Well,
pA(t) = tn + an−1t

n−1 + · · ·+ a1t+ a0

where a0 = det(A) ̸= 0. Then, by Cayley-Hamilton, we have

0 = (An + an−1A
n−1 + · · ·+ a1A+ a0I)A

−1

so
0 = An−1 + an−1A

n−2 + · · ·+ a1I + a0A
−1

at which point we can solve for A−1. Corollary 131

4 Linear maps on matrices
Suppose A1, . . . , Ar ∈ Mn; suppose B1, . . . , Br ∈ Mm. Then there is L → Mn,m → Mn,m defined by

L(Y ) = A1Y B1 + · · ·+ArY Br

These are called elementary linear maps.

Proposition 132. Suppose A ∈ Mn and B ∈ Mm. Let L(Y ) = AY − Y B. If σ(A) ∩ σ(B) = ∅, then
L : Mn,m → Mn,m is invertible.

Proof. Suppose Y ∈ ker(L); then AY = Y B. So

A2Y = A(AY ) = A(Y B) = Y B2

and inductively AkY = Y Bk. Then for any polynomial p(t), we have p(A)Y = Y p(B). By Cayley-Hamilton,
we have 0 = pA(t)Y = Y pA(B). So

σ(pA(B)) = { pA(λ) : λ ∈ σ(B) }

So 0 /∈ σ(pA(B), and pA(B) is invertible. But 0 = Y pA(B); so 0 = Y . So ker(L) = { 0 }, and L is invertible.
Proposition 132

Corollary 133. Suppose A ∈ Mn, B ∈ Mm, and X ∈ Mn,m. If σ(A) ∩ σ(B) = ∅, then(
A X
0 B

)
∼
(
A 0
0 B

)
Proof. If Y ∈ Mn,m, then (

In Y
0 Im

)−1

=

(
In −Y
0 Im

)
By proposition, we have L(Y ) = AY − Y B is surjective; so there is Y such that AY − Y B = X. But then(

I Y
0 I

)(
A X
0 B

)(
I Y
0 I

)−1

=

(
A X + Y B
0 B

)(
I −Y
0 I

)
=

(
A X + Y B −AY
0 B

)
=

(
A 0
0 B

)
Corollary 133
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Theorem 134. Suppose A ∈ Mn; let pA(t) = (t− λ1)
n1 . . . (t− λk)

nk . Then

A ∼

T1 0
. . .

0 Tk


where each Ti is upper triangular with diagonal entries all equal to λi.

Proof. List eigenvalues as λ1, . . . , λ1, . . . , λk, . . . , λk where λi appears ni times. By Schur, there is a unitary
U such that U∗AU is upper triangular with diagonal entries equal to the above list; then

U∗AU =


T11 T12 . . . T1k

0 T22 . . . T2k

...
. . .

0 . . . Tkk


with each Tii is ni × ni and upper triangular with diagonal entries λi. Blocking off the upper-left block, i.e.
with A = T11 and

B =

T22

. . .
Tkk


the corollary then yields that U∗AU is similar to

T11 0 . . . 0
0 T12

...
. . .

0 0 . . . Tkk


We then proceed by induction. Theorem 134

Definition 135. Let Jk(λ) ∈ Mk be given by

Jk(λ) =


λ 1 0
0 λ 1

. . . . . .
λ 1

0 λ


This is called the elementary Jordan block.

If we want to prove that each A ∈ Mn is similar to a block diagonal matri each of whose blocks is of the
form Jk(λ) then it suffices to prove it for matrices of the form

Ti =

λi ∗
. . .

0 λi


i.e. Ti = λiI +Ni where Ni is strictly upper triangular. If N is strictly upper triangular, we can prove N is
similar to a block diagonal with blocks Jk(0). So T = λiI +N is similar to a block diagonal matrix with
blocks Jk(λi).

Remark 136. If N ∈ Mm is strictly upper triangular, then Nm = 0.

Definition 137. We say N ∈ Mn is nilpotent of there is k such that Nk = 0. The least such k is called the
order of nilpotency.
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Theorem 138. Let N ∈ Mn be nilpotent of order k. Then

N ∼

Jm1(0) 0
. . .

0 Jmr (0)


Furthermore, let ℓi be the number of Jordan blocks of size i (for 1 ≤ i ≤ k); let di = dim(N (N i)). Then

(min{ i, j })

ℓ1
...
ℓk

 =

d1
...
dk


Remark 139. Since we know that (min{ i, j }) is invertible, we get thatℓ1

...
ℓk

 = (min{ i, j })−1

d1
...
dk


So the di determines the Jordan structure.

5 QR factorization and Gram-Schmidt
Recall that if

B = (
−→
b1 | · · · |

−→
bm)

and R = (rij), then

BR =

 m∑
j=1

r1j
−→
bj | . . .


Recall R ∈ Mm,n is called upper triangular when rij = 0 for all i > j.

Theorem 140 (QR). Let A ∈ Mm,n. Then there is upper triangular R ∈ Mm,n and unitary Q ∈ Mm such
that A = QR.

Proof.

Case 1. Suppose m = n and A is invertible. Then

A = (−→a1 | · · · | −→am)

with {−→a1, . . . ,−→am } linearly independent and spanning Cm. Recall that Gram-Schmidt gives us
{−→u1, . . . ,

−→um }. orthonormal such that

span{−→a1, . . . ,−→aj } = span{−→u1, . . . ,
−→uj }

So −→aj ∈ span{−→u1, . . . ,
−→uj }, and

−→aj =

j∑
i=1

rij
−→uj

Set ri,j = 0 for i > j. Since {−→u1, . . . ,
−→um } is orthonormal, we have that Q = (−→u1 | · · · | −→um) is unitary.

Let R = (rij). Then QR = A.
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Case 2. Suppose m = n and A is singular.Then 0 ∈ σ(A). Let

t = min{ |λ| : λ ∈ σ(A), λ ̸= 0 } > 0

Let |εn| < t with εn → 0 and A(n) = A− εnIn is invertible. So A(n) = U(n)R(n). Note that

∥R(n)∥22 = tr(R∗
nRn) = tr(R(n)∗U(n)∗U(n)R(n)) = tr(A(n)∗A(n)

is bounded. So R(n) is bounded. Pick a subsequence such that U(nk) → Q unitary and R(nk) → R
upper triangular. Then

A = lim
k

A(nk) = lim
k

U(nk)R(nk) = QR

Case 3. Suppose m < n. Write A = [A1 | A2] where A1 ∈ Mm, A2 ∈ Mm,n−m. By earlier case A1 = Q1R1

with R1 ∈ Mm,n. Set R2 = Q∗A2. Check

Q[R1 | R2] = [QR1 | QR2] = A

Case 4. Suppose m > n. Let Ã = [A | 0] ∈ Mm. Then Ã = QR where R ∈ Mm. Write R = [R1 | ∗] where
R1 ∈ Mm,n. Check that A = QR1.

Theorem 140

6 Normal and Hermitian
Definition 141. We say a matrix H is Hermitian if H = H∗. We let (Mn)h = {H ∈ Mn : H = H∗ }.

Remark 142. Suppose A ∈ Mn; set

Re(A) =
A+A∗

2

Im(A) =
A−A∗

2i

Then

1. Re(A), Im(A) ∈ (Mn)h

2. A = Re(A) + i Im(A)

3. If A = H + iK for H,K ∈ (Mn)h, then H = Re(A) and K = Im(A).

Proof.

1.

Re(A)∗ =

(
A+A∗

2

)∗

=
A∗ +A

2
= Re(A)

Similarly we have Im(A)∗ = Im(A).

2. Easy.

3. If A = H + iK then

Re(A) =
A+A∗

2
=

H + iK + (H + iK)∗

2
=

H + iK +H − iK

2
= H

and similarly Im(A) = K.

Remark 142

Definition 143. The commutator of X and Y is [X,Y ] = XY − Y X.
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Remark 144. [X,Y ] = 0 if and only if X and Y are commuting.

Definition 145. We say A ∈ Mn is normal if [A,A∗] = 0.

Remark 146. Hermitian and unitary matrices are normal.

Proposition 147. If A is normal an U is unitary, then U∗AU is normal.

Proof.

(U∗AU)∗(U∗AU) = U∗A∗UU∗AU = U∗AA∗U = (U∗AU)(U∗A∗U) = (U∗AU)(U∗AU)∗

Proposition 147

Theorem 148. Suppose A = (aij) ∈ Mn with λ1, . . . , λn the roots of pA(t). Then the following are equivalent:

1. A is normal.

2. [Re(A), Im(A)] = 0.

3. A is unitarily diagonalizable.

4.
n∑

i,j=1

|aij |2 =

n∑
i=1

|λi|2

5. There is an orthonormal basis for Cn of eigenvectors of A.

Proof.

(1) ⇐⇒ (2) Well,

A normal ⇐⇒ A∗A = AA∗

⇐⇒ (Re(A)− i Im(A))(Re(A) + i Im(A)) = (Re(A) + i Im(A))(Re(A)− i Im(A))

⇐⇒ Re(A)2 + Im(A)2 + i(Re(A) Im(A)− Im(A)Re(A)) = Re(A)2 + Im(A)2 + i[Im(A)Re(A)− Re(A) Im(A)]

⇐⇒ Re(A) Im(A) = Im(A)Re(A)

(3) =⇒ (1) Suppose there is unitary U such that U∗AU = D where D is diagonal. Then A = UDU∗ and
D∗D = DD∗ = diag(|λ1|2, . . . , |λn|2). So, by previous proposition, we have that A is normal.

(1) =⇒ (3) By Schur there is a unitary U such that U∗AU = T = (tij) is upper triangular. By proposition,
we have that T is normal. So T ∗T = TT ∗. But

(T ∗T )i,i = |ti,i|2

(TT ∗)i,i =

n∑
j=1

|ti,j |2

So ∑
j>i

|tij |2 = 0

and T is diagonal. So T = diag(λ1, . . . , λn).

(3) =⇒ (4) Suppose U∗AU = D = diag(λ1, . . . , λN ). Then
n∑

i,j=1

|aij |2 = tr(A∗A)

= tr((UDU∗)∗(UDU∗))

= tr(UDD∗U∗)

= tr(DD∗)

=

n∑
i=1

|λi|2
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(4) =⇒ (3) By Schur, we have unitary U such that U∗AU = T is upper triangular with tii = λi. Then∑
|tij |2 = tr(T ∗T ) = tr(A∗A) =

∑
|aij |2 =

∑
|λi|2

So ∑
i̸=j

|tij |2 = 0

So T is diagonal.

(3) ⇐⇒ (5) If U is unitary, then Uei = ui is an orthonormal basis of eigenvectors.

Theorem 148

Corollary 149. The following are equivalent.

1. H = H∗.

2. There is unitary U such that U∗HU = D with real diagonal entries.

3. There is an orthonormal basis of eigenvectors for H with real eigenvalues.

4. H is normal and {λ1, . . . , λn } ⊆ R.

6.1 Hermitian matrices
These show up in a lot of places.

1. Suppose D ⊆ Rn is a domain; suppose f : D → R is C2. Then

∂2

∂xi∂xj
f =

∂2

∂xj∂xi
f

Hence the Hessian

Hf (x) =

(
∂2f

∂xi∂xj
(x)

)
∈ Mn

has Hf (x)
∗ = Hf (x)

t = Hf (x).

2. Let G be a graph on n vertices. Consider the adjacency matrix AG = (aij) where

ai,j =

{
1 (i, j) an edge
0 else

Then A∗
G = At

G = AG.

We stick to C instead of R. The key difference: given

A =

(
a b
−b a

)
for a, b ∈ R, we note that 〈

A

(
x
y

)
,

(
x
y

)〉
= ax2 + by2 + ab(xy − yx)

and A ̸= At. On the other hand, in the case of C, we have the following:

Theorem 150. Suppose A ∈ Mn. Then A = A∗ ⇐⇒ ⟨Av, v⟩ ∈ R for all v ∈ Cn.

Proof.
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( =⇒ ) Well,

⟨Av, v⟩ = v∗Av

= (v∗Av)∗

= v∗A∗v

= v∗Av

= ⟨Av, v⟩

So ⟨Av, v⟩ ∈ R.

( ⇐= ) Note that
⟨Aej , ei⟩ = ai,j

Then
aii = ⟨Aei, ei⟩ ∈ R

Let z ∈ C. Then

R ∋ ⟨A(ek + zeℓ), (ek + zeℓ)⟩ = ak,k + zaℓ,k + zak,ℓ + |z|2aℓ,ℓ

So zaℓ,k + zak,ℓ ∈ R for all z ∈ C. Let aℓ,k = x1 + iy1; let ak,ℓ = x2 + iy2.
Taking z = 1 then yields x1+x2+i(y1+y2) ∈ R. So y2 = −y1. Taking z = i yields −ix1+y1+ix2−y2 ∈ R,
and x1 = x2. So ak,ℓ = x1 − iy1 = aℓ,k. So A = A∗.

Theorem 150

Remark 151. Suppose H = H∗. Then λ1, . . . , λn are real. We always order λ1 ≤ · · · ≤ λn.

Theorem 152 (Rayleigh-Ritz). Suppose A = A∗ ∈ Mn. Then

1. λ1∥x∥22 ≤ ⟨Ax, x⟩ ≤ λn∥x∥22 for all x ∈ C.

2.
λn = max

x̸=0

⟨Ax, x⟩
∥x∥22

= max
∥x∥2=1

⟨Ax, x⟩

3.
λ1 = min

x̸=0

⟨Ax, x⟩
∥x∥22

= min
∥x∥2=1

⟨Ax, x⟩

Proof.

1. We know there is {u1, . . . , un } an orthonormal basis for Cn such that Aui = λiui. Let

x =

n∑
i=1

αiui

Then

∥x∥22 =

n∑
i=1

|αi|2

So

⟨Ax, x⟩ =
〈∑

αiAui,
∑

αiui

〉
=
〈∑

αiλiui,
∑

αiui

〉
=
∑

|αi|2λi

so λ1∥x∥22 ≤ ⟨Ax, x⟩ ≤ λn∥x∥22.
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2. Similar.

3. Similar.

Theorem 152

Corollary 153. Suppose A = A∗ ∈ Mn; suppose x ∈ Cn with ∥x∥ = 1. Let α = ⟨Ax, x⟩. Then A has an
eigenvalue in [α,+∞) and in (−∞, α].

Proof. By Rayleigh-Ritz, we know λ1 ≤ α ≤ λn. Corollary 153

Lemma 154 (Subspace intersection lemma). Suppose V1, V2 are subspaces of W . Then dim(V1 + V2) +
dim(V1 ∩ V2) = dim(V1) + dim(V2).

Proof. Consider L : V1 ⊕ V2 → V1 + V2 given by L(v1, v2) = v1 − v2. Then R(L) = V1 + V2 and N (L) =
{ (v, v) : v ∈ V1 ∩ V2 } ∼= V1 ∩ V2. By rank-nullity, we have

dim(V1 + V2) + dim(V1 ∩ V2) = dim(R(L)) + dim(N (L)) = dim(V1 ⊕ V2) = dim(V1) + dim(V2)

Lemma 154

Corollary 155. If dim(V1) + dim(V2)− dim(V1 + V2) ≥ 1, then V1 ∩ V2 ̸= { 0 }.

Theorem 156 (Courant-Fischer). Let A = A∗ ∈ Mn. Let λ1 ≤ · · · ≤ λn be the roots of pA(t). Suppose
1 ≤ k ≤ n; suppose S ⊆ Cn. Then

1.
λk = min

dim(S)=k
max
x∈S

∥x∥=1

⟨Ax, x⟩

2.
λk = max

dim(S)=n−k+1
min
x∈S

∥x∥=1

⟨Ax, x⟩

Proof. Let Aui = λiui where {u1, . . . , un } is orthonormal.

1. Let S0 = span{u1, . . . , uk }. Suppose x ∈ S0 with ∥x∥ = 1. Then

x =

k∑
i=1

αiui

so
k∑

i=1

|αi|2 = 1

Thus

⟨Ax, x⟩ =

〈
k∑

i=1

αiλiui,

k∑
ij=1

αjuj

〉
=

k∑
i=1

|αi|2λi ≤
k∑

i=1

|αi|2λk = λk

So
λk ≤ min

dim(S)=k
max
x∈S

∥x∥=1

⟨Ax, x⟩

For the other direction, suppose S ⊆ Cn has dim(S) = k. Let S′ = span{uk, . . . , un }. Then
dim(S′) = n− (k − 1) = n− k + 1. So dim(S) + dim(S′) = n+ 1 > dim(Cn) ≥ dim(S + S′), and

dim(S) + dim(S′)− dim(S + S′) ≥ 1
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So S ∩ S′ ̸= { 0 }. Pick x ∈ S ∩ S′ with ∥x∥ = 1. Then

x =

n∑
j=k

αjuj

with
n∑

j=k

|αj |2 = 1

So

⟨Ax, x⟩ =
n∑

j=k

|αj |2λj ≥ λk

So
λk ≤ max

x∈S
∥x∥=1

⟨Ax, x⟩

for all S with dim(S) = k. So
λk ≤ inf

dim(S)=k
max
x∈S

∥x∥=1

⟨Ax, x⟩

But for S0 = span{u1, . . . , uk }, we can show that

max
x∈S

∥x∥≤1

⟨Ax, x⟩ = λk

So the infimum is attained at S0; so we have a minimum.

2. Proof similar; start with S0 = span{uk, . . . , un }.

Theorem 156

Theorem 157. Suppose A = A∗ ∈ Mn; let λ1 ≤ · · · ≤ λn be the roots of pA(t). Let S ⊆ Cn have dim(S) = k.
Suppose c ∈ R satisfies

(a) c ≤ ⟨Ax, x⟩ for all x ∈ S with ∥x∥ = 1. Then c ≤ λn−k+1.

(a’) c < ⟨Ax, x⟩ for all x ∈ S with ∥x∥ = 1. Then c < λn−k+1.

(b) ⟨Ax, x⟩ ≤ c for all x ∈ S with ∥x∥ = 1. Then λk ≤ c.

(b’) ⟨Ax, x⟩ < c for all x ∈ S with ∥x∥ = 1. Then λk < c.

Proof. Let Aui = λiui for {u1, . . . , un } orthonormal.

(a) Let S1 = span{u1, . . . , un−k+1 }. Then

dim(S) + dim(S1)− dim(S + S1) ≥ k + n− k + 1− n ≥ 1

So S ∩ S1 ̸= { 0 }. Pick x ∈ S ∩ S1 with ∥x∥ = 1. Then

x =

n−k+1∑
j=1

αjuj

So

c ≤ ⟨Ax, x⟩ =
n−k+1∑
j=1

|αj |2λj ≤ λn−k+1

(a’) Identical except for the last line.
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(b) Look at −A. This has eigenvalues −λn ≤ · · · ≤ −λ1. Then since ⟨Ax, x⟩ ≤ c, we have −c ≤ ⟨−Ax, x⟩.
Apply (a) to this: so

−c ≤ −λn−k+1(−A) = −λk

So λk ≤ c.

(b’) Similar.

Theorem 157

Notation 158. For A = A∗ ∈ Mn, we let λ1(A) ≤ · · · ≤ λn(A) be the eigenvalues.

Theorem 159 (Weyl). Suppose A = A∗ ∈ Mn and B = B∗ ∈ Mn. Then

1. λi(A+B) ≤ λi+j(A) + λn−j(B) for 0 ≤ j ≤ n− 1 and 1 ≤ i ≤ n, with equality if and only if there is
x ̸= 0 such that

Ax = λi+j(A)x

Bx = λn−j(B)x

(A+B)x = λi(A+B)x

2. λi−j+1(A) + λj(B) ≤ λi(A+B) for 1 ≤ j ≤ i with equality if and only if there is x ̸= 0 such that

Ax = λi−j+1(A)x

Bx = λj(B)x

(A+B)x = λi(A+B)x

Lemma 160 (Second subspace lemma). Suppose S1, . . . , Sk ⊆ Cn are subspaces. Let

δ = dim(S1) + · · ·+ dim(Sk)− (k − 1)n

Then dim(S1 ∩ · · · ∩ Sk) ≥ δ.

Proof. Let

L :

k⊕
i=1

Si →
k−1⊕
i=1

Cn

be L(v1, . . . , vk) = (v1 − v2, v2 − v3, . . . , vk−1 − vk). Then

N (L) = { (v, v, . . . , v) : v ∈ S1 ∩ · · · ∩ Sk }

Then

dim(R(L)) + dim(N (L)) = dim

(
k⊕

i=1

Si

)
=

k∑
i=1

dim(Si)

Hence

dim(N (L)) ≥

(
k∑

i=1

dim(Si)

)
− dim(R(L)) ≥

k∑
i=1

−(k − 1)n = δ

Lemma 160

Proof of Theorem 159.
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1. Let ; let Bvi = λi(B)vi.

Aui = λi(A)ui

Bvi = λi(B)vi

(A+B)zi = λi(A+B)zi

S1 = span{u1, . . . , ui+j }
S2 = span{ v1, . . . , vn−j }
S3 = span{ zi, . . . , zn }

Then

dim(S1) + dim(S2) + dim(S3)− (3− 1)n = i+ j + n− j + n− (i− 1)− 2n

= 2n+ 1− 2n

≥ 1

So dim(S1 ∩ S2 ∩ S3) ≥ 1, and there is x ∈ S1 ∩ S2 ∩ S3 with ∥x∥ = 1. Write

x =

n∑
ℓ=i

αℓzℓ

Then λi(A+B) ≤ ⟨(A+B)x, x⟩ since

(A+B)x =

n∑
ℓ=i

αℓλℓ(A+B)zℓ

and thus

⟨(A+B)x, x⟩ =
n∑

ℓ=1

|αℓ|2λℓ(A+B) ≥ λi(A+B)

Now, x ∈ S1, so we may write

x =

i+j∑
ℓ=1

βℓuℓ

Then

⟨Ax, x⟩ =
i+j∑
ℓ=1

|βℓ|2λℓ(A) ≤ λi+j(A)

Similarly, x ∈ S2, so we may write

x =

n−j∑
ℓ=1

γℓvℓ

So
⟨Bx, x⟩ ≤ λn−j(B)

Putting it all together, we find

λi(A+B) ≤ ⟨(A+B)x, x⟩
= ⟨Ax, x⟩+ ⟨Bx, x⟩
≤ λi+j(A) + λn−j(B)

If equality holds then

λi(A+B) = ⟨(A+B)x, x⟩ = ⟨Ax, x⟩+ ⟨Bx, x⟩ = λi+j(A) + λn−j(B)
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and thus

Ax = λi(A)x

Bx = λn−j(B)x

(A+B)x = λi(A+B)x

(because S1 ∩ S2 ∩ S3 ̸= { 0 }, we have that any x ∈ S1 ∩ S2 ∩ S3 is simultaneously an eigenvector for A,
B, and A+B with the appropriate eigenvalue.)

Conversely, if

Ax = λi(A)x

Bx = λn−j(B)x

(A+B)x = λi(A+B)x

then

λi(A+B) = ⟨(A+B)x, x⟩
= ⟨Ax, x⟩+ ⟨Bx, x⟩
= λi+j(A) + λn−j(B)

2. Substitute −A, −B, −(A+B): let

î = n− i+ 1

ĵ = j − 1

Then

−λi(A+B) = λn−i+1(−A−B)

≤ λî+ĵ(−A) + λn−ĵ(−B)

= λn−i+j(−A) + λn−j+1(−B)

= −λi−j+1(A)− λj(B)

So
λi(A+B) ≥ λi−j+1(A) + λj(B)

Theorem 159

Theorem 161 (Cauchy’s eigenvalue interlacing theorem). Suppose A = A∗ ∈ Mn; let λi = λi(A). Suppose
y ∈ Cn, a ∈ R. Set

Â =

(
A y
y∗ a

)
= Â∗ ∈ Mn+1

Let λ̂i = λi(Â). Then
λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ · · · ≤ λ̂n ≤ λn ≤ λ̂n+1

Proof. Let 1 ≤ k ≤ n. We show λ̂k ≤ λk ≤ λ̂k+1. We identify

Cn =

{(
x
0

)
: x ∈ Cn

}
⊆ Cn+1
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Then

λ̂k = min
S⊆Cn+1

dim(S)=k

max
∥x̂∥=1
x̂∈S

⟨Âx̂, x̂⟩

≤ min
S⊆Cn

dim(S)=k

max
∥x̂∥=1
x̂∈S

x̂=[x|0]t

〈
Â

(
x
0

)
,

(
x
0

)〉

= min
S⊆Cn

dim(S)=k

max
[x|0]t∈S

⟨Ax, x⟩

= λk

= max
S⊆Cn

dim(S)=n−k+1

min
x∈S

∥x∥=1

⟨Ax, x⟩

= max
S⊆Cn

dim(S)=n−k+1

min
[x|0]t∈S
∥[x|0]∥=1

〈
Â

(
x
0

)
,

(
x
0

)〉
≤ max

S⊆Cn+1

dim(S)=(n+1)−(k+1)+1

min
x̂∈S

∥x̂∥=1

⟨Âx̂, x̂⟩

= λ̂k+1

Theorem 161

As a corollary, we get another persistence theorem:

Corollary 162. Suppose A = A∗ ∈ Mn; suppose λ is an eigenvalue of A of geometric multiplicity k. Let

B =

(
A C
C∗ D

)
= B∗ ∈ Mn+(k−1)

Then λ is an eigenvalue of B.

Proof.

Case 1. Suppose k = 2; say λ = λi(A) = λi+1(A). When we go to Â of size (n+ 1)× (n+ 1). Then

λ̂i ≤ λi ≤ λ̂i+1 ≤ λi+1

So λi = λ̂i+1 = λi+1 = λ, and λ is an eigenvalue of Â.

Case 2. Suppose k = 3; say λ = λi = λi+1 = λi+2. For Â, λ is now an eigenvalue of geometric multiplicity

at least 2. So when we go to ̂̂A, we have that λ is still an eigenvalue.

The rest follows by induction. Corollary 162

Theorem 163. Let
µ1 ≤ λ1 ≤ µ2 ≤ λ2 ≤ · · · ≤ µn ≤ λn ≤ µn+1

Then there is A = A∗ ∈ Mn(R), a ∈ R, and yk ≥ 0 for 1 ≤ k ≤ n such that if

Â =

(
A y
y∗ a

)
then λi(Â) = µi and λi(A) = λi.

Proof.
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Case 1. Suppose λ1 < λ2 < · · · < λn. We then let A = diag(λ1, . . . , λn). It remains to construct a and the
yk. Well, we need

λ1 + · · ·+ λn + a = tr(Â) = µ1 + · · ·+ µn+1

We then set a = µ1 + · · ·+ µn+1 − λ1 − · · · − λn. It remains to find the yk. We think of Â as a function
of the yk and compute

pÂ(t) = det

(
tI −A −y
−y∗ t− a

)
= det(tI −A) det((t− a)− (−y)∗(tI −A)−1(−y))

= (t− λ1) . . . (t− λn) det

t− a− (y1, . . . , yn)

(t− λ1)
−1

. . .
(t− λn)

−1


y1

...
yn




= (t− λ1) . . . (t− λn)

(
t− a−

n∑
k=1

y2k(t− λk)
−1

)

= (t− λ1) . . . (t− λn)(t− a)−
n∑

k=1

y2k
∏
j ̸=k

(t− λj)

(with some conditions on invertibility, but since we’re working with polynomials, equality at all but
finitely many points is equivalent to equality.) Set q(t) = (t− µ1) . . . (t− µn+1). We want pÂ(t) = q(t).
Evaluate at λ1, . . . , λn:

pÂ(λk) = −y2k
∏
j ̸=k

(λk − λj)

q(λk) = (λk − µ1) . . . (λk − µk)(λk − µk+1) . . . (λk − µn+1)

if
y2k = − q(λk)∏

j ̸=k(λk − λj)

then pÂ(λk) = q(λk) for 1 ≤ k ≤ n.

Claim 164.
q(λk)∏

j ̸=k(λk − λj)
≤ 0

Hence we can pick

yk =

√
− q(λk)∏

j ̸=k(λk − λj)

Proof. Computing signs on the product based on λ1 < · · · < λn, we find

sgn

∏
j ̸=k

(λk − λi)

 = (−1)n−k

Making a similar computation, we find

sgn(q(λk)) = sgn

(
n+1∏
i=1

(λk − µi)

)
= (−1)n+1−k

Taking the quotient, we find that the claim holds. Claim 164
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Picking yk as in the claim, we get pÂ(λk) = q(λk) for all 1 ≤ k ≤ n. Recall that pA and q are both
monic of degree n+ 1. Also

pÂ(t) = tn+1 − (λ1 + · · ·+ λn + a)tn + . . .

q(t) = tn+1 − (µ1 + · · ·+ µn+1)t
n + . . .

Hence pÂ(t)− q(t) has degree n− 1 and is 0 at n distinct points. (The distinctness is where we use
that the λi are distinct.) So pÂ(t) = q(t).

Case 2. We now consider case where the λi are not necessarily distinct.

Pick λ1(m) < · · · < λn(m) a sequence and µ1(m) ≤ λ1(m) ≤ µ2(m) < · · · ≤ µn+1(m) such that

lim
m→∞

λi(m) = λi

lim
m→∞

µi(m) = µi

By the previous case, for each m there is

Â(m) =


λ1(m)

. . . y(m)
λn(m)

y(m)∗ am


with

am = µ1(m) + · · ·+ µn+1(m)− λ1(m)− · · · − λn(m)

such that pÂ(m)(t) = (t− µ1(m)) . . . (t− µn+1(m)). Now, since

tr(Â(m)∗Â(m)) =

n+1∑
i=1

µi(m)2 ≤
n+1∑
i=1

µ2
i + ε

So the Â(m) is bounded; hence we can pick a convergent subsequence with

lim
j→∞

Â(mj) = Â

Then

Â =


λ1

. . . y
λn

y∗ a


Finally, we have

pÂ(t) = lim
j→∞

det(tI −A(mj))

= lim
j→∞

(t− µ1(mj)) . . . (t− µn+1)

= (t− µ1) . . . (t− µn+1)

Theorem 163

Theorem 165. Let A = A∗ = [aij ] ∈ Mn with 1 ≤ m ≤ n. Then

m∑
i=1

λi(A) ≤
m∑
i=1

aii
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Proof. Write

A =

(
B C
C∗ D

)
where B ∈ Mm. Let A1 ∈ Mn+1 be

A1 =

 a1,m+1

B
...

. . . am+1,m+1


Let A2 ∈ Mn+2 be the next 2 rows and columns, and so on; then An−m = A. We know

λ1(A1) ≤ λ1(B) ≤ λ2(A1) ≤ · · · ≤ λm(A1) ≤ λm(B) ≤ λm+1(A1)

So

λ1(A1) + · · ·+ λm(A1) ≤ λ1(B) + · · ·+ λm(B) =

m∑
i=1

aii

Similarly

A2 =

(
A1

...
. . . am+2,m+2

)
yields that

λ1(A2) + · · ·+ λm(A2) ≤ λ1(A1) + · · ·+ λm(A1) ≤
m∑
i=1

aii

By induction this holds for all Ak, and in particular for An−m = A. Theorem 165

Corollary 166. Suppose A = A∗ = [aij ] ∈ Mn; suppose 1 ≤ m ≤ n. Then

λ1(A) + · · ·+ λm(A) ≤ min
1≤i1<···<im≤n

m∑
j=1

aij ,ij

Proof. Do a permutation Pσ; then P ∗
σAPσ = [bi,j ] where bi,j = aσ(i),σ(j). Then

λ1(A) + · · ·+ λm(A) = λ1(P
∗
σAPσ) + · · ·+ λm(P ∗

σAPσ) ≤
m∑
i=1

bi,i =

m∑
i=1

aσ(i),σ(i)

Corollary 166

Corollary 167. Suppose A = A∗ = [ai,j ] ∈ Mn; suppose 1 ≤ m ≤ n. Then

λ1(A) + · · ·+ λm(A) = min
{u1,...,um } orthonormal

m∑
i=1

⟨Aui, ui⟩

Proof. Given any {u1, . . . , um } orthornormal, pick {um+1, . . . , un } such that {u1, . . . , un } is an orthonormal
basis for Cn. Let U = [u1 | · · · | un] be unitary. Then

(U∗AU)i,i = ⟨(U∗AU)ei, ei⟩ = (e∗iU
∗)AUei = u∗

iAui = ⟨Aui, ui⟩

So

λ1(A) + · · ·+ λm(A) = λ1(U
∗AU) + · · ·+ λm(U∗AU) ≤

m∑
i=1

(U∗AU)i,i =

m∑
i=1

⟨Aui, ui⟩

Thus

λ1(A) + · · ·+ λm(A) ≤ inf
{u1,...,un } orthonormal

m∑
i=1

⟨Aui, ui⟩
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Pick {u1, . . . , un } an orthonormal basis such that Aui = λi(A)ui. For this orthonormal basis , we have

m∑
i=1

⟨Aui, ui⟩ =
m∑
i=1

⟨λi(A)ui, ui⟩ =
m∑
i=1

λi(A)

Corollary 167

Corollary 168. Suppose A = A∗ = [ai,j ] ∈ Mn; suppose 1 ≤ k ≤ n. Then

λn(A) + λn−1(A) + · · ·+ λn−k+1(A) = max
{u1,...,un } orthonormal

k∑
i=1

⟨Aui, ui⟩

Proof. Well,

λn(A) + · · ·+ λn−k+1(A) = −(λ1(−A) + · · ·+ λk(−A))

= −

(
min

{u1,...,uk } orthonormal

k∑
i=1

⟨−Aui, ui⟩

)

= −

(
− max

{u1,...,uk } orthonormal

k∑
i=1

⟨Aui, ui⟩

)

Corollary 168

6.2 Majorization
Definition 169. Suppose x = (x1, . . . , xn) ∈ Rn. Re-order from smallest to largest:

x↑
1 ≤ · · · ≤ x↑

n

Re-order from largest to smallest:
x↓
1 ≥ · · · ≥ x↓

n

Example 170. Suppose x = (1, 2, 1). Then

x↑
1 = 1

x↑
2 = 1

x↑
3 = 2

x↓
1 = 2

x↓
2 = 1

x↓
3 = 1

Example 171. Suppose A = A∗ and λ1, . . . , λn are the roots of pA(t). Then λi(A) = λ↑
i .

Proposition 172. Suppose x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn with

n∑
i=1

xi =

n∑
i=1

yi

Then the following are equivalent:

1. For all 1 ≤ k ≤ n, we have

max
1≤i1<···<ik≤n

k∑
ℓ=1

xiℓ ≥ max
1≤i1<···<ik≤n

k∑
ℓ=1

yiℓ
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2. For all 1 ≤ k ≤ n, we have
k∑

i=1

x↓
i ≥

k∑
i=1

y↓i

3. For all 1 ≤ k ≤ n, we have
k∑

i=1

x↑
i ≤

k∑
i=1

y↑i

4. For all 1 ≤ k ≤ n, we have

min
1≤i1<···<ik≤n

k∑
ℓ=1

xiℓ ≤ min
1≤i1<···<ik≤n

k∑
ℓ=1

yiℓ

Proof. Well

max
1≤i1<···<ik≤n

k∑
ℓ=1

xiℓ =

k∑
ℓ=1

x↓
ℓ

So (1) ⇐⇒ (2). Similarly

min
1≤i1<···<ik≤n

k∑
ℓ=1

xiℓ =

k∑
ℓ=1

x↑
ℓ

So (3) ⇐⇒ (4). Let

S =

n∑
ℓ=1

xℓ =

n∑
i=1

yℓ

Then

k∑
i=1

x↓
i = S −

n−k+1∑
ℓ=1

x↑
ℓ

≥
k∑

i=1

y↓i

= S −
n−k+1∑
ℓ=1

y↑i

So
k∑

i=1

x↓
i ≥

k∑
i=1

y↓i ⇐⇒
n−k+1∑
ℓ=1

x↑
ℓ ≤

n−k+1∑
ℓ=1

y↑ℓ

Proposition 172

Definition 173. Given x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we say that x majorizes y if

n∑
i=1

xi =

n∑
i=1

yi

and any of the 4 equivalent properties occurs.

Theorem 174 (Schur). Suppose A = A∗ = [ai,j ] ∈ Mn. Let λ(A) = (λ1, . . . , λn) be the roots of pA(t); let
d(A) = (a11, . . . , ann). Then λ(A) majorizes d(A).
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Proof. Note that
λ1 + · · ·+ λn = tr(A) = a11 + · · ·+ ann

By the last theorem, for all 1 ≤ m ≤ k we have

λ↑
1 + · · ·+ λ↑

m = λ1(A) + · · ·+ λm(A)

≤ min
1≤i1<···<im≤n

m∑
ℓ=1

aiℓ,iℓ

=

m∑
ℓ=1

a↑ℓ,ℓ

Theorem 174

Hence
k∑

ℓ=1

λ↓
ℓ ≥

k∑
ℓ=1

a↓ℓ,ℓ

7 Positive semidefinite
Definition 175. We say A ∈ Mn is positive semidefinite (written A ≥ 0) if for all x ∈ Cn we have ⟨Ax, x⟩ ≥ 0.
We say A is positive definite (written A > 0) if for all non-zero x ∈ Cn we have ⟨Ax, x⟩ > 0.

Proposition 176.

1. A ≥ 0 if and only if A = A∗ and each λi(A) ≥ 0.

2. A > 0 if and only if A = A∗ and each λi(A) > 0; this occurs if and only if there is δ > 0 such that
⟨Ax, x⟩ ≥ δ whenever ∥x∥ = 1.

Proof.

1. ( =⇒ ) Suppose A ≥ 0. Then ⟨Ax, x⟩ ∈ R for all x; so A = A∗. Fix an eigenvalue λi(A) with eigenvector
ui of unit length. Then Aui = λi(A)ui; so λi(A) = ⟨Aui, ui⟩ ≥ 0.

( ⇐= ) We know there is {u1, . . . , un } an orthonormal basis for Cn of eigenvectors with Aui = λi(A)ui.
Suppose

x =

n∑
i=1

αiui

Then

⟨Ax, x⟩ =

〈∑
i

αiλi(A)ui,
∑
j

αjuj

〉
=
∑
i,j

λi(A)αiαJ

=
∑
i

λi(A)|αi|2 ≥ 0

2. Suppose A > 0. Then A ≥ 0, so A = A∗ and each λi(A) ≥ 0. But if some λi(A) = 0, then

⟨Aui, ui⟩ = λi(A)⟨ui, ui⟩ = 0

a contradiction. So each λi(A) > 0.

Suppose A = A∗ and each λi(A) > 0. Then, as above, we take

x =
∑
i

αiui
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with ∥x∥ = 1; then ∑
i

|αi|2 = 1

Then

⟨Ax, x⟩ =
∑
i

λi(A)|αi|2

≥ λ1(A)
∑
i

|αi|2

= λ1(A)

> 0

In particular, the minimum value of ⟨Ax, x⟩ is δ = λ1(A).

Proposition 176

Lemma 177. Suppose A = A∗ ∈ M−1
n . Then A−1 = (A−1)∗ and the roots of pA−1(t) are λ1(A)−1, . . . , λn(A)−1.

Proof. Note that
I∗ = (A−1A)∗ = A∗(A−1)∗ = A(A−1)∗

So (A−1)∗ = A−1.
If Aui = λi(A)ui, then A−1ui = λi(A)−1ui; thus if {u1, . . . , un } is an orthonormal basis of eigenvectors of

A, then it is also an orthonormal basis of eigenvectors of A−1 with eigenvalues λi(A)−1. Lemma 177

Proposition 178.

1. If A ≥ 0, then A = At ≥ 0.

2. If A > 0, then A = At > 0 and A−1 > 0.

3. If A ≥ 0 and S ⊆ { 1, . . . , n }, then A[S, S] ≥ 0.

4. If A > 0 and S ⊆ { 1, . . . , n }, then A[S, S] > 0.

Proof.

1. Note that

⟨Ax, x⟩ =
n∑

i,j=1

aijxjxi

=

n∑
i,j=1

aijxjxi

= ⟨Ax, x⟩
∈ R

So (A)∗ = A. If {u1, . . . , un } is an orthonormal basis of eigenvectors for A with Aui = λi(A)ui and
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x = (x1, . . . , xn), then

Ax =


∑n

j=1 aijxj

...∑n
j=1 anjxj


= λ

x1

...
xn


=⇒ Ax =


∑n

j=1 a1jxj

...∑n
j=1 anjxj


= λ

x1

...
xn


So if {u1, . . . , un } are eigenvectors with real eigenvalues λ1, . . . , λn, then {u1, . . . , un } is a set of
eigenvectors for A with the same eigenvalues. Thus λi(A) = λi(A) ≥ 0, and A ≥ 0.

2. Same: we get λi(A) = λi(A) > 0 and A−1 = (A−1)∗.

3. Without loss of generality, we have S = { 1, . . . , k }. So

A =

(
A[S, S] B
B∗ C

)
≥ 0

Let x ∈ Ck; let

x̂ =

(
x
0

)
Then

0 ≤ ⟨Ax̂, x̂⟩ = ⟨A[S, S]x, x⟩

So A[S, S] ≥ 0.

4. As above, noting that x ̸= 0 implies that x̂ ̸= 0; thus

0 < ⟨Ax̂, x̂⟩ = ⟨A[S, S]x, x⟩

and A[S, S] > 0.

Proposition 178

Proposition 179. Suppose A ≥ 0 (A > 0). Then Ak ≥ 0 (Ak > 0) for all k ∈ N.

Proof. Note that (Ak)∗ = Ak, and that the eigenvaluse are λi(A)k ≥ 0 (> 0). Proposition 179

Set Ai = A[{ 1, . . . , i }, { 1, . . . , i }].

Theorem 180. Suppose A = A∗ ∈ Mn. Then A > 0 if and only if det(Ai) > 0 for all 1 ≤ i ≤ n.

Example 181. Consider

A = A∗ =

1 0 2
0 0 0
2 0 1


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Then

det(A1) = 1

det(A2) = 0

det(A3) = 0

But 〈
A

 1
0
−1

 ,

 1
0
−1

〉 = −2

So A ̸≥ 0.

Proof of Theorem 180.

( =⇒ ) Suppose A > 0. Then all eigenvalues are positive; so det(Ai) > 0.

( ⇐= ) Note that det(A1) = a11 > 0. The

A2 =

(
a11 a12
a21 a22

)
We now use the eigenvalue interlacing theorem:

λ1(A2) ≤ λ1(A1)a11 ≤ λ2(A2)

So λ2(A2) > 0. Bu tdet(A2) = λ1(A1)λ2(A2) > 0. So λ1(A2) > 0.

Assume 0 < λ1(Ak) < · · · < λk(Ak). Then, by eigenvalue interlacing, we have

λ1(Ak+1) ≤ λ1(Ak) ≤ λ2(Ak+1)

...
λk(Ak+1) ≤ λk(Ak) ≤ λk+1(Ak+1)

So λ2(Ak+1), . . . , λk+1(Ak+1) > 0. But 0 < det(Ak+1) = λi(Ak+1) . . . λk+1(Ak+1). So λ1(Ak+1) > 0.

Theorem 180

Aside 182. Suppose D ⊆ Rn and f : D → R is C2. Suppose x0 ∈ D with

f ′(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
= 0

We set

Hf (x0) =

(
∂2f

∂xi∂xj
(x0)

)
If u ∈ Rn is a unit vector and gu(t) = f(x0 + tu), then g′′u(0) = ⟨Hf (x0)u, u⟩.

Theorem 183. Suppose f ∈ C2(D) and f ′(x0) = 0. If Hf (x0) > 0, then x0 is a local minimum. If
−Hf (x0) > 0, then x0 is a local maximum.

Sketch. If Hf (x0) > 0, then g′′u(0) > 0 for all u; roughly speaking, we then have that x0 is a local minimum
in all directions, we have that x0 is a local minimum. Theorem 183

Since
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

we have that Hf (x0) = Hf (x0)
∗.

Corollary 184. If det(Hf (x0)i) > 0 for all 1 ≤ i ≤ n, then x0 is a local minimum. If (−1)i det(Hf (x0)i) > 0
for all 1 ≤ i ≤ n, then x0 is a local maximum.
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Proposition 185. Suppose A ∈ Mn, C ∈ Mn,m. If A ≥ 0 then C∗AC ≥ 0. In particular, we have C∗C ≥ 0.

Proof. Note that

⟨C∗ACx, x⟩ = (x∗C∗)A(Cx)

= (Cx)∗A(Cx)

= ⟨A(Cx), (Cx)⟩
≥ 0

Proposition 185

Proposition 186. Suppose A ≥ 0 and k ∈ N. Then there is B ≥ 0 such that A = Bk.

Proof. Write A = U∗DU where D = diag(λ1, . . . , λn) where λi = λi(A). Let

D̃ = diag
(
λ

1
k
1 , . . . , λ

1
k
n

)
Let B = U∗D̃U . Then Bk = U∗D̃kU = U∗DU = A. Proposition 186

We write B = A
1
k .

Proposition 187. Suppose A ≥ 0. Then Ax = 0 if and only if ⟨Ax, x⟩ = 0.

Proof.

( =⇒ ) Clear.

( ⇐= ) Write A = B2 where B ≥ 0.

0 = ⟨Ax, x⟩
= x∗B2x

= (Bx)∗(Bx)

= ∥Bx∥2

so Bx = 0 and Ax = B(Bx) = 0.

Proposition 187

7.1 Factorization and decomposition
We already saw that if A ≥ 0, there is B ≥ 0 such that A = B2; then B∗ = B, and A = B2B. This is one
factorization.

Proposition 188. Let A ≥ 0; then A = R∗R with R upper triangular.

Proof. Write A = B∗B as above. Apply the QR theorem to write B = QR where Q is unitary and R is
upper triangular. Then

A = B∗B = (QR)∗(QR) = R∗Q∗QR = R∗R

Proposition 188
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7.1.1 Cholesky factorization

Lemma 189 (Cholesky’s lemma). Let

P =

(
A B
B∗ C

)
= P ∗

with A > 0. Then the following are equivalent:

1. P ≥ 0

2.

P −
(

A
1
2

B∗A
1
2

)(
A

1
2 A− 1

2B
)
≥ 0

3. C −B∗A−1B ≥ 0

Proof.

(2) ⇐⇒ (3) Note that

P −
(

A
1
2

B∗A
1
2

)(
A

1
2 A− 1

2B
)
= P −

(
A B
B∗ B∗A−1B

)
=

(
0 0
0 C −B∗A−1B

)
So

P −
(

A
1
2

B∗A
1
2

)(
A

1
2 A− 1

2B
)
≥ 0

if and only if C −B∗A−1B ≥ 0.

(1) =⇒ (3) Let X = −A−1B. Then since P ≥ 0, we have

0 ≤
(

I 0
X∗ I

)(
A B
B∗ C

)(
I X
0 I

)
=

(
I 0

−B∗A−1 I

)(
A AX +B
B∗ B∗X + C

)
=

(
I 0

−B∗A−1 I

)(
A 0
B∗ C −B∗A−1B

)
=

(
A 0
0 C −B∗A−1B

)
So C −B∗A−1B ≥ 0.

(3) =⇒ (1) Suppose C −B∗A−1B ≥ 0. Then(
A 0
0 C −B∗A−1B

)
≥ 0

So
0 ≤

(
I 0

−X∗ I

)(
A 0
0 C −B∗A−1B

)(
I −X
0 I

)
= P

Lemma 189

Lemma 190. Suppose P = P ∗ = (pij) ∈ Mn satisfies P ≥ 0. If pii = 0 then pij = pji = 0 for all j.
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Proof. Let S = { i, j }. Then since P ≥ 0 we have P [S, S] ≥ 0. But

P [S, S] =

(
pii pij
pji pjj

)
=

(
0 pij
pji pjj

)
so 0 ≤ det(P [S, S]) = −|pij |2; so pij = 0. Lemma 190

This yields Cholesky’s algorithm, a fast way to tell if a Hermitian matrix P is positive semidefinite and, if
it is, find upper triangular T such that P = T ∗T .

Example 191. Let

P =

1 2 3
2 8 7
3 7 11


Decompose P as in Cholesky’s lemma

A = (1)

B =
(
2 3

)
C =

(
8 7
7 11

)
If P ≥ 0, then

P −

1
2
3

(1 2 3
)
= P −

1 2 3
2 4 6
3 6 9


=

0 0 0
0 4 1
0 1 2


Then P ≥ 0 if and only if (

4 1
1 2

)
≥ 0

Again, using Cholesky, this holds if and only if

0 ≤
(
4 1
1 2

)
−
(
4
1

)
4−1

(
4 1

)
=

(
4 1
1 2

)
−
(
4 1
1 1

4

)
=

(
0 0
0 7

4

)

But 7
4 =

(√
7
2

)2
; so P ≥ 0. In general, we get that P ≥ 0 unless at some step the “new” (1, 1)-entry either is

negative or is 0 and some entries in that row and column are non-zero.
Finally, to get T , save the scaled row vectors we subtract by (where we distribute the square root of

middle scalar to both sides), and get

T =

1 2 3
0 2 1

2

0 0
√
7
2


and T ∗T = P . To see that this works in general, recall that if

W =

r1
...
rn


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Then W ∗W = r∗1r1 + · · ·+ r∗nrn. So

T ∗T =

1
2
3

(1 2 3
)
+

0
2
1
2

(0 2 1
2

)
+

 0
0√
7
2

(0 0
√
7
2

)
Remark 192. We saw that if A ∈ Mn has A ≥ 0 then A = R∗R for some R. Let C = R∗; then A = CC∗.
Let C = [C1 | · · · | Cn]; then A = CC∗ = C1C

∗
1 + · · ·+ CnC

∗
n, and we can write A as a sum of positive, rank

1 matrices. The moral is that a factorization A = R∗R corresponds to a decomposition of A into a sum of
poistive, rank 1 matrices.

7.2 Subspaces, orthogonal complements, and projections
Definition 193. Suppose V ⊆ Cn is a subspace. We set V ⊥ = {w ∈ Cn : ⟨w, v⟩ = 0 for all v ∈ V }.

Proposition 194. V ⊥ is a subspace and V ∩ V ⊥ = { 0 }.

Proof. If w1, w2 ∈ V ⊥ and λ ∈ C, then ⟨λw1 + w2, v⟩ = λ⟨w1, v⟩ + ⟨w2, v⟩ = 0 for all v ∈ V ; so λw1 +
w2 ∈ V ⊥, and V ⊥ is a subspace. Furthermore, if w ∈ V ∩ V ⊥, then ∥w∥2 = ⟨w,w⟩ = 0, and w = 0.

Proposition 194

Theorem 195. Let V ⊆ Cn be a subspace with dim(V ) = d. Let { v1, . . . , vd } be an orthonormal basis for
V . Set

P =

d∑
i=1

viv
∗
i

Then

1. P = P 2 = P ∗.

2. R(P ) = V .

3. Pv = v for all v ∈ V .

4. Pw = 0 for all w ∈ V ⊥.

5. (I − P )2 = (I − P )∗ = (I − P ).

6. R(I − P ) = V ⊥.

7. V +V ⊥ = Cn and if w = v1+ v2 = v′1+ v′2 where v1, v
′
1 ∈ V and v2, v

′
2 ∈ V ⊥, then v1 = v′1 and v2 = v′2.

8. If {w1, . . . , wd } is another orthonormal basis for V , then

d∑
i=1

wiw
∗
i P

Proof.

1. Note that

P ∗ =

d∑
i=1

(viv
∗
i )

∗ =

d∑
i=1

v∗∗i v∗i = P

and

P 2 =

d∑
i,j=1

viv
∗
i vjv

∗
j =

d∑
i,j=1

⟨vj , vi⟩viv∗j =

d∑
i=1

viv
∗
i = P
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2. Note that

Pw =

d∑
i=1

viv
∗
i w =

d∑
i=1

⟨w, vi⟩vi ∈ span{ v1, . . . , vd }

So R(P ) ⊆ V . But

Pvj =

d∑
i=1

viv
∗
i vj = vj

So vj ∈ R(P ), and V = span{ v1, . . . , vd } ⊆ R(P ). So R(P ) = V .

3.

4. If w ∈ V ⊥ then

Pw =

d∑
i=1

viv
∗
i w = 0

5. (I − P )∗ = I∗ − P ∗ = I − P , and (I − P )2 = I − P − P + P 2 = I − P .

6. If w ∈ V ⊥, then (I−P )w = w−Pw = w; so if w ∈ V ⊥ then w ∈ R(I−P ). Conversely, if w ∈ R(I−P ),
say w = (I − P )z, then

w = z − Pz = z −
d∑

i=1

⟨z, vi⟩vi

so

⟨w, vj⟩ = ⟨z, vj⟩ −
d∑

i=1

⟨z, vi⟩⟨vi, vj⟩ = ⟨z, vj⟩ − ⟨z, vj⟩ = 0

So w ∈ V ⊥. So R(I − P ) ⊆ V ⊥. So R(I − P ) = V ⊥.

7. Note that
w = (P + (I − P ))w = Pw + (I − P )w ∈ V + V ⊥

Suppose now that w = v1+v2 = v′1+v′2 for v1, v′1 ∈ V and v2, v
′
2 ∈ V ⊥. Then V ∋ v1−v′ = v′2−v2 ∈ V ⊥.

So v1 − v′1 = v′2 − v2 = 0, as V ∩ V ⊥ = { 0 }.

8. Set

Q =

d∑
i=1

wiw
∗
i

Then (1) through (6) hold for Q as well. Thus if w = v1 + v2 for v1 ∈ V and v2 ∈ V ⊥, we have Pw = v1
and Qw = v1; so P = Q.

Theorem 195

Definition 196. The matrix P is called the orthogonal projection onto V .

7.3 Gram matrices
Definition 197. Given w1, . . . , wn ∈ Ck, we define the Gram matrix or Grammian of the vectors is the
n× n matrix G = (gi,j) with gi,j = ⟨wj , wi⟩ = w∗

iwj .

Theorem 198. Suppose w1, . . . , wn ∈ Ck; let W = [w1 | · · · | wn] ∈ Mk,n. Then

1. G = W ∗W , and hence G ≥ 0.

2. G > 0 if and only if {w1, . . . , wn } are linearly independent.

3. rank(G) = rank(W ) = dim(span{w1, . . . , wn }).
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Proof.

1. Clear.

2. Let

x =

λ1

...
λn


Then

⟨Gx, x⟩ = ⟨W ∗Wx, x⟩
= x∗W ∗Wx

= (Wx)∗(Wx)

= ∥Wx∥2

=

∥∥∥∥∥
n∑

i=1

λiwi

∥∥∥∥∥
2

So ⟨Gx, x⟩ > 0 if and only if
n∑

i=1

λiwi ̸= 0

3. Suppose x ∈ N (G). Then Gx = 0, so ⟨Gx, x⟩ = 0, and∥∥∥∥∥
n∑

i=1

λiwi

∥∥∥∥∥ = 0

So

Wx =

n∑
i=1

λiwi = 0

So N (G) ⊆ N (W ).

Conversely, if x ∈ N (W ), then Gx = W ∗Wx = W ∗0 = 0.

So N (G) = N (W ). Then

rank(G) = n− dim(N (G)) = n− dim(N (W )) = rank(W ) = dim(span{w1, . . . , wn })

Theorem 198

7.4 Polar form and singular valued decomposition
Definition 199. Suppose A ∈ Mm,n. We set |A| = (A∗A)

1
2 ; this is called the absolute value of A. The

singular values of A are Si(A) = λ↓
i (|A|) for 1 ≤ i ≤ n.

Lemma 200. Suppose A ∈ Mm,n; suppose x ∈ Cn. Then

1.
∥∥∥|A|x

∥∥∥
2
= ∥Ax∥2.

2. Ax = 0 if and only if |A|x = 0.

Proof.
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1. Note that ∥∥∥|A|x
∥∥∥2 = (|Ax|)∗(|A|x)

= x∗|A|∗|A|x
= x∗A∗Ax

= ∥Ax∥2

2. Follows easily from (1).

Lemma 200

Theorem 201 (Polar decomposition I). Suppose A ∈ Mm,n. Then there is a unique isometry W : R(|A|) →
R(A) such that A = W |A|.

Proof. Note that Ax = W |A|x if and only if W (|A|x) = Ax. We check that this is well-defined. By
Lemma 114, there is linear W with W |A|x = Ax for all x if and only if whenever we have∑

λi(|A|xi) = 0

we also have ∑
λi(Axi) = 0

But ∑
λi|A|xi = |A|

(∑
λixi

)
= 0

so by the lemma we have that ∑
λi(Axi) = A

(∑
λixi

)
= 0

So W exists. But then ∥∥∥W (|A|x)
∥∥∥ = ∥Ax∥ =

∥∥∥|A|x
∥∥∥

So W is an isometry. To check uniqueness, suppose we had V also satisfying the desired properties. Then

V (|A|x) = Ax = W (|A|x)

for all v ∈ R(|A|). So V = W . Theorem 201

Aside 202 (Vandermonde matrices). Suppose λ1, . . . , λk are distinct. Set

V =


1 . . . 1
λ1 . . . λk

λ2
1 . . . λ2

k
...

. . .
...

λk−1
1 . . . λk−1

k


Claim 203. V is invertible.

Proof. Note that σ(V ) = σ(V t). It suffices to show that N (V t) = { 0 }. But

V t

 p0
...

pk−1

 =

p0 + p1λ1 + · · ·+ pk−1λ
k−1
1

...
p0 + p1λk + · · ·+ pk−1λ

k−1
k

 =

p(λ1)
...

p(λk)


So if all the entries are 0, we have p(t) is degree k with k distinct zeroes; so pi = 0 for all i. Claim 203
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Problem: given Avi = λivi with vi ̸= 0 and λ1, . . . , λk distinct, show the vi are linearly independent.
Suppose now that a1v1 + · · ·+ akvk = 0. Applying Ai, we get a1λ

i
1v1 + · · ·+ akλ

i
kvk = 0. Take any w ∈ Cn;

then

w∗(a1v1) + · · ·+ w∗(akvk) = 0

...
λk−1
1 w∗(a1v1) + · · ·+ λk−1

k w∗(akvk) = 0

So 
1 . . . 1
λ1 . . . λk

... . . .
...

λk−1
1 . . . λk−1

k


w∗(a1v1)

...
w∗(akvk)

 = 0

So w∗(ajvj) = 0 for all j and w. So ajvj = 0 for all j, and all aj = 0.

Recall that ∥Ax∥ =
∥∥∥|A|x

∥∥∥, so Ax = 0 if and only if |A|x = 0; i.e. N (A) = N (|A|). We showed there is a
unique isometry W : R(|A|) → R(A) such that A = W |A|. (This is the polar decomposition, analogous to
z = exp(iθ)|z|.)

Theorem 204 (Polar Decomposition II). Suppose A ∈ Mn. Then there is a unitary U such that A = U |A|.

Proof. We know there is a unique isometry W : R(|A|) → R(A) such that A = W |A|; note that both the
domain and the codomain are subset of Cn. So dim(R(A)) = dim(R(|A|)). We also saw that for any subspace
V ⊆ Cn, we have V + V ⊥ = Cn and V ∩ V ⊥ = { 0 }. So dim(V ⊥) = n− dim(V ), and in particular we have
dim(R(A)⊥) = dim(R(|A|)⊥). Let dim(R(A)⊥) = d. Pick { z1, . . . , zd } an orthonormal basis for R(|A|)⊥;
pick { z̃1, . . . , z̃d } an orthonormal basis for R(A)⊥. Every vector in Cn has a unique decomposition |A|x+ z
where |A|x ∈ R(|A|) and z ∈ R(|A|)⊥. We may then find α1, . . . , αd such that z = α1z1 + · · ·+ αdzd. Define
U : Cn → Cn by U(|A|x+ z) = Ax+ α1z̃1 + · · ·+ αdz̃d. Then

∥U(|A|x+ z)∥2 = ∥Ax+ α1z̃1 + · · ·+ αdz̃d∥2

= ∥Ax∥2 + |α1|2 + · · ·+ |αd|2

=
∥∥∥|A|x

∥∥∥2 + ∥α1z1 + · · ·+ αdzd∥2

=
∥∥∥|A|x+ α1z1 + · · ·+ αdzd

∥∥∥2
So U : Cn → Cn is an isometry; so U is a unitary. But U |A|x = U(|Ax|) = Ax; so U |A| = A. So U is our
desired unitary. Theorem 204

Corollary 205. Suppose A ∈ Mn; then there is unitary V such that A = |A∗|V .

Proof. Note that A∗ = U |A∗|; so A = |A∗|U∗. We then set V = U∗. Corollary 205

Corollary 206 (Singular value decomposition I). Suppose A ∈ Mn; let S = diag(S1(A), . . . , Sn(A)). Then
there are isometries U, V such that A = USV .

Proof. Write A = U1|A| as above. Now, |A| ≥ 0, so there is unitary V such that |A| = V ∗SV for some
unitary V . Then A = (U1V

∗)SV , and we have our U = U1V
∗. Corollary 206

Corollary 207 (Singular value decomposition II). Suppose A ∈ Mn. Then there is {u1, . . . , un } and
{ v1, . . . , vn } orthonormal such that

A =

n∑
k=1

Sk(A)ukv
∗
k
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Proof. Write A = USV as above. Write U = [u1 | · · · | un]; then {u1, . . . , un } is orthonormal. Write
V ∗ = [w1 | · · · | wn]; then {w1, . . . , wn } is orthonormal, and

V =

w∗
1
...
w∗

n


So

A = USV

= [u1 | · · · | un]

s1w
∗
1

...
snw

∗
n


=

n∑
k=1

uk(skw
∗
k)

=

n∑
k=1

skukw
∗
k

Corollary 207

7.5 Schur products
Definition 208. Suppose A = [ai,j ] and B = [bi,j ] in Mm,n. We define the Schur (or Hadamard or freshman)
product is A ◦B = [ai,jbi,j ].

Proposition 209.

1. (a) A ◦B = B ◦A
(b) (A ◦B) ◦ C = A ◦ (B ◦ C)

(c) A ◦ (B + C) = A ◦B +A ◦ C
(d) λ(A ◦B) = (λA) ◦B = A ◦ (λB)

So ◦ : Mm,n ×Mm,n → Mm,n is bilinear.

2. If Jm,n is the matrix of all 1, then Jm,n ◦A = A = A ◦ Jm,n.

Theorem 210. Suppose A,B ∈ Mn with A ≥ 0 and B ≥ 0. Then A ◦B ≥ 0.

Proof. Write

A =
∑

xix
∗
i

B =
∑

yiy
∗
i

Then
A ◦B =

∑
i,j

(xix
∗
i ) ◦ (yiy∗i )

So it suffices to prove that given

x =

α1

...
αn


y =

β1

...
βn


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we have (xx∗) ◦ (yy∗) ≥ 0. Let

z =

α1β1

...
αnβn


Then (xx∗) ◦ (yy∗) = (αiαj) ◦ (βiβj) = (αiβαjβj) = zz∗ ≥ 0. Theorem 210

7.6 The positive semidefinite ordering
Given A = A∗ and B = B∗ in Mn, we write A ≥ B (or B ≤ A) if and only if A−B is positive semidefinite.
Similarly, we write A > B or B < A if and only if a−B is positive definite.

Proposition 211. Suppose A = A∗, B = B∗, and C = C∗ in Mn. Then

1. If A ≤ B and B ≤ A, then A = B.

2. If A ≤ B and B ≤ C, then A ≤ C.

3. If A ≤ B then A+ C ≤ B + C.

4. If A ≤ B and X ∈ Mn,m, then X∗AX ≤ X∗BX.

Lemma 212. Suppose A ≥ I. Then I ≥ A−1 > 0.

Proof. Since A = A∗, we may let λ1, . . . , λn be the eigenvalues, and find orthonormal { v1, . . . , vn } such that
Avi = λivi. Then since A ≥ I we have A− I ≥ 0; so λi − 1 = ⟨(λi − 1)vi, vi⟩ = ⟨(A− I)vi, vi⟩ ≥ 0 for all i.
So A−1vi = λ−1

i vi and λ−1
i ≤ 1 for all i. So if

x =
∑

αivi

then

⟨(I −A−1)x, x⟩ =

〈∑
i

(1− λi)
−1αivi,

∑
j

αjvj

〉
=
∑

(1− λi)
−1|αi|2 ≥ 0

Lemma 212

Theorem 213. Suppose A = A∗ and B = B∗ are in Mn.

1. If A ≥ B > 0 then A−1 ≤ B−1.

2. If A ≥ B ≥ 0 then det(A) ≥ det(B) and tr(A) ≥ tr(B).

3. If A ≥ B then λk(A) ≥ λk(B).

Proof.

1. Suppose A ≥ B > 0. Then B− 1
2AB− 1

2 ≥ B− 1
2BB− 1

2 = I; so, by the lemma, we have (B− 1
2A−1B− 1

2 )−1 ≤
I. So A−1 ≤ B− 1

2 IB− 1
2 = B−1.

2. Follows from (3).

3. Recall that b Courant-Fischer, we have

λk(A) = min
dim(S)=k

max
x∈S

∥x∥=1

⟨Ax, x⟩

≥ min
dim(S)=k

max
x∈S

∥x∥=1

⟨Bx, x⟩

= λk(B)
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Theorem 213

Theorem 214. Suppose P ∈ Mn and S ⊆ { 1, . . . , n }. If P > 0, then P−1[S, S] ≥ (P [S, S])−1.

Proof. By permuting, it suffices to check the case S = { 1, . . . , k }. Partition

P =

(
A B
B∗ C

)
where A ∈ Mk. Likewise partition

P−1 =

(
D E
E∗ F

)
Then P−1[S, S] = D. We wish to show that D ≥ A−1. Recall that in Cholesky we showed that if X = −A−1B,
then

P =

(
A B
B∗ C

)
=

(
I 0

−X∗ I

)(
A 0
0 C −B∗A−1B

)(
I −X
0 I

)
So

P−1 =

(
I −X
0 I

)−1(
A 0
0 C −B∗A−1B

)−1(
I 0

−X∗ I

)−1

=

(
I X

0xI

)(
A−1 0
0 (C −B∗A−1B)−1

)(
I 0
X∗ I

)
=

(
I X
0 I

)(
A−1 0

(C −B∗A−1B)−1X∗ (C −B∗A−1B)−1

)
=

(
A−1 +X(C −B∗A−1B)−1X∗ ∗

∗ ∗

)
So D = A−1+X(C−B∗A−1B)−1X∗. But by Cholesky, we have C−B∗AB > 0; so X(C−B∗A−1B)−1X∗ ≥ 0,
and D −A−1 ≥ 0; so D ≥ A−1. Theorem 214

8 Matrix norms
Definition 215. Suppose V is a vector space. We say ∥·∥ : V → R is a norm provided the following hold:

1. ∥v∥ ≥ 0 for all v ∈ V .

2. ∥v∥ = 0 if and only if v = 0.

3. ∥λv∥ = |λ|v

4. ∥v + w∥ ≤ ∥v∥+ ∥w∥.

Given a norm, the function d(v, w) = ∥v − w∥ defines a metric on V .

Example 216.

∥v∥w =

(
n∑

i=1

|vi|2
) 1

2

∥v∥1 =

n∑
i=1

|vi|

∥v∥∞ = max{ |v1|, . . . , |vn| }

Fact 217. When dim(V ) < ∞, all norms are equivalent. i.e. given any two norms ∥·∥1 and ∥·∥2, there are
c1, c2 such that for all v ∈ V we have ∥v∥1 ≤ c2∥v∥2 and ∥v∥2 ≤ c1∥v∥1. Consequently, for any norm, we
have d(vn, 0) = ∥vn∥ → 0 if and only if all components tend to 0.

69



Definition 218. A norm on Mn is called a matrix norm provided ∥AB∥ ≤ ∥A∥∥B∥ for all A,B ∈ Mn

(submultiplicative).

Remark 219. We don’t require that ∥I∥ = 1.

Example 220. For A ∈ Mn, set

∥A∥2 =
(∑

|ai,j |2
) 1

2

is a matrix norm. To see this, suppose C = AB. Then

|ci,j | =

(∑
k

aikbkj

)2

≤

(
n∑

k=1

|a2ik|

) 1
2
(

n∑
ℓ=1

|b2ℓj |

) 1
2

So

∥C∥22 =
∑
i,j

|ci,j |2

≤
∑
i,j

(∑
k

|ai,k|2
)(∑

ℓ

|bℓ,j |2
)

=

∑
i,k

|a2ik|

∑
j,ℓ

|bℓj |2


= ∥A∥22∥B∥22

Note, however that ∥In∥2 =
√
n.

Example 221. Let

∥A∥1 =

n∑
i,j=1

|aij |

This too is a matrix norm; here we have ∥In∥1 = n.

Example 222. Set
∥A∥∞ = max

i,j
|ai,j |

Let Jn be the n× n matrix of all 1. Then J2
n = nJn. But ∥Jn∥∞ = 1 and n = ∥J2

n∥∞ ̸≤ ∥Jn∥∞∥Jn∥∞.

Example 223. Given any norm ∥·∥ on Cn, we define the induced operator norm on Mn by

~A~ = sup{ ∥Ax∥ : ∥x∥ = 1 }

This is always a matrix norm; here ~I~ = 1.

Example 224. Start with ∥·∥2 on Cn. Set D = diag(λ1, . . . , λn). Then the induced norm of D is

~D~2 = sup{ ∥(λ1x1, . . . , λnxn∥ : ∥(x1, . . . , xn)∥2 = 1 }

So ~D~2 ≥ |λj | for all j; so ~D~2 ≥ max{ |λ1|, . . . , |λn| }. Conversely, we have

∥(λ1x1, . . . , λnxn)∥22 =
∑

|λj |2|xj |2 ≤ max{ |λ1|, . . . , |λn| }
∑

|xj |2

So ~D~2 ≤ max{ |λ1|, . . . , |λn| }. So ~D~2 = max{ |λ1|, . . . , |λn| }.

Proposition 225. Suppose ∥·∥ is any matrix norm on Mn. Then

1. ∥I∥ ≥ 1.

2. If A ∈ M−1
n , then ∥A∥ ≥ ∥I∥

∥A∥ .
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3. For all λ ∈ σ(A), we have |λ| ≤ ρ(A) ≤ ∥A∥.

Proof.

1. I2 = I so ∥I∥ = ∥I2∥ ≤ ∥I∥2; so 1 ≤ ∥I∥.

2. ∥I∥ = ∥AA−1∥ ≤ ∥A∥∥A−1∥.

3. Let λ ∈ σ(A). Then there is non-zero x such that Ax = λx. Pick any y ̸= 0; let X = λy∗. Then
AX = (Ax)y∗ = λX. So

|λ|∥X∥ = ∥λX∥ = ∥AX∥ ≤ ∥A∥∥X∥

So |λ| ≤ ∥A∥. But this holds for all λ ∈ σ(A). So ρ(A) ≤ ∥A∥.

Proposition 225

Theorem 226. Suppose A ∈ Mn. Then ρ(A) = inf{ ∥A∥ : ∥·∥ a matrix norm }.

Proof. By (3) we have ρ(A) = inf{ ∥A∥ : ∥·∥ a matrix norm }. Given any matrix norm ∥·∥ and S ∈ M−1
n ,

define ∥A∥S = ∥S−1AS∥; this is a matrix norm. By Schur there is U unitary such that U∗AU = T = (ti,j) is
upper triangular and tii = λi. Fix r > 0. Let Dr = diag(1, r, . . . , rn−1. Then

D−1
r TDr = (ti,jr

−i+j) =


λ1 rt12 . . . rn+1t1,n

. . . . . .
λn−1 rtn−1,n

0 λn


So S = UDr. then

∥A∥S = ∥D + rT1 + · · ·+ rn−1Tn−1∥
≤ ∥D∥+ r∥T1∥+ · · ·+ rn−1∥Tn−1∥

Given ε > 0, for r small enough, this is ≤ ∥D∥ + ε. But we can do this starting with any matrix
norm; starting with operator norm induced by ∥·∥2, we get ∥D∥ = max{ |λ1|, . . . , |λn| } = ρ(A). So
inf{ ∥A∥ : ∥·∥ a matrix norm } ≤ ρ(A) + ε. Theorem 226

Corollary 227. Suppose A ∈ Mn with ρ(A) < 1. Then Ak → 0 as k → ∞.

Proof. Pick ~·~ a matrix norm such that ρ(A) < ~A~ < 1. Then ~Ak~ ≤ ~A~k → 0. So ~Ak~ → 0, and
Ak → 0. Corollary 227

Theorem 228 (Gelfand). Suppose ~·~ is any matrix norm on Mn; suppose A ∈ Mn. Then

ρ(A) = lim
n

~An~
1
n

Proof. Recall that σ(Ak) = {λk : λ ∈ σ(A) }; so ρ(Ak) = ρ(A)k. So ρ(A)k = ρ(Ak) ≤ ~Ak~, and
ρ(A) ≤ ~Ak~

1
k . Let ε > 0; let r = ρ(A) + ε. Then ρ(Ar ) < 1. So, by our corollary, we have ~(Ar )

k~ → 0. So
there is k0 such that ~(Ar )

k~ < 1 for all k ≥ k0. So ~Ak~ < rk for all k ≥ k0. So ~Ak~
1
k < ρ(A) + ε for all

k ≥ k0. So for all k ≥ k0, we have ∣∣∣~Ak~
1
k − ρ(A)

∣∣∣ < ε

So
lim
k

~Ak~
1
k = ρ(A)

Theorem 228
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8.1 Power series
If

p(z) =

∞∑
k=0

pkz
k

we set
lim sup

k
|pk|

1
k =

1

R

where R is the radius of convergence. Given a matrix A ∈ Mn, consider

p(A) =

∞∑
k=0

pkA
k

Let

Bn =

n∑
k=0

pkA
k

If Bn → B, then we write B = p(A). Recall that (Bn : n ∈ N) converges if and only if {Bn } is Cauchy.

Theorem 229. Suppose

p(z) =

∞∑
p=0

pkz
k

with radius of convergence R > 0. Suppose A ∈ Mn satisfies ρ(A) < R. Then

∞∑
k=0

pkA
k

converges.

Proof. Pick r1, r2 such that ρ(A) < r1 < r2 < R. Then there is k1 such that ~Ak~
1
k < r1 for all k ≥ k1.

Since 1
R < 1

r2
, we have that there is k2 such that

sup{ |pk|
1
k : k ≥ k2 } <

1

r2

So |pk| < 1
rk2

for all k ≥ k2. Let k0 = max{ k1, k2 }. Then for all k ≥ k0 we have

~pkA
k~ = |pk|~Ak~ ≤

(
r1
r2

)k

< 1

Thus for all n,m > k0 we have

~Bn −Bm~ =

‌

‌

‌

‌

‌

n∑
k=m+1

pkA
k

‌

‌

‌

‌

‌

≤
n∑

k=m+1

(
r1
r2

)k

Thus (Bn : n ∈ N) is Cauchy; so (Bn : n ∈ N) converges. Theorem 229

Corollary 230. Suppose A ∈ Mn. If there is a matrix norm ~·~ such that ~I −A~ < 1, then A is invertible.

Proof. We know that
∞∑
k=0

(I −A)k

But

Bn =

n∑
k=0

(I −A)k
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so

ABn = (I − (I −A))Bn

=

n∑
k=0

(I −A)k −
n+1∑
k=1

(I −A)k

= I − (I −A)n+1

→ I

So if

B =

∞∑
k=0

(I −A)k = lim
n

Bn

then
AB = lim

n
ABn = I

Corollary 230

8.2 Gersgorin disks
Suppose A ∈ Mn; write A = D + B with D = diag(a11, . . . , ann) and B has 0 on the diagonal. For each i,
define

R′
i(A) =

∑
j ̸=i

|aij |

Let
Ωi = { z ∈ C : |z − aii| ≤ R′

i(A) }
These are the Gersgorin disks.

Theorem 231. Suppose A = (aij) ∈ Mn. Then

σ(A) ⊆
n⋃

i=1

Ωi

Proof. Suppose λ ∈ σ(A); say Ax = λx for x = (x1, . . . , xn) ̸= 0. Pick p such that |xp| = max{ |x1|, . . . , |xn| } =
∥x∥∞ ̸= 0. Then

λxp =

n∑
j=1

ap,jxj

and
(λ− ap,p)xp =

∑
j ̸=p

ap,jxj

So
|λ− app||xp| ≤

∑
j ̸=p

|ap,j ||xp|

and
|λ− app| ≤ R′

p(A)

So λ ∈ Ωp = { z : |z − app| ≤ R′
p(A) }, and

λ ∈
n⋃

i=1

Ωi

So

σ(A) ⊆
n⋃

i=1

Ωi

Theorem 231
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Let
C ′

j(A) =
∑
i ̸=j

|aij |

Let Ω̃j = { z : |z − ajj | ≤ C ′
j(A) }.

Corollary 232. Suppose A ∈ Mn. Then

σ(A) ⊆

(
n⋃

i=1

Ωi

)
∩

 n⋃
j=1

Ω̃j


Proof. Simply observe that σ(A) = σ(At). Corollary 232

Definition 233. We define the Gersgorin set of A ∈ Mn to be

G(A) =

n⋃
i=1

Ωi

Then the above theorem states that σ(A) ⊆ G(A).

Aside 234 (Some complex analysis). Suppose γ : [0, 1] → C is smooth with γ(0) = γ(1). Let Γ = { γ(t) : 0 ≤
t ≤ 1 }. If Γ does not intersect itself, we can sensibly define

∫
(Γ) and ext(Γ). We then set∫

Γ

f(z)dz =

∫ 1

0

f(γ(t))γ′(t)dt

Recall from complex analysis that if p(z) is a polynomial with p(γ(t)) ̸= 0 for all t ∈ [0, 1], then

1

2πi

∫
Γ

p′(z)

p(z)
dz

is the number of roots of p inside Γ with multiplicities.

Theorem 235. Suppose A = (aij) ∈ Mn; suppose Ω1, . . . ,Ωn are the Gersgorin disks. Suppose

(Ωi1 ∪ · · · ∪ Ωik) ∩

 ⋃
i/∈{ i1,...,ik }

Ωi

 = ∅

Then there are k roots of pA(t) inside Ωi1 ∪ · · · ∪ Ωik .

Proof. Write A = D +B where D = diag(a11, . . . , ann). Define As = D + sB; so A0 = D and A1 = A. Take
a Γ such that Ωi1 ∪ · · · ∪ Ωik ⊆

∫
(Γ) and ⋃

i/∈{ i1,...,ik }

Ωi ⊆ ext(Γ)

Let ps(z) = det(zI −As) = pAs
(z). Let

N(s) =
1

2πi

∫
Γ

p′s(z)

ps(z)
dz

(Since G(As) ⊆ G(A), we know ps(z) ̸= 0 on Γ.) Then N(s) is the number of roots of ps(t) inside Γ. Note,
however, that ps varies continuously with s; so N(s) is a continuous function of s. But N(s) is integer-valued;
so N(s) is constant. So N(0) = N(1). But A0 = D, and pD(z) = (z − a11) . . . (z − ann) has k roots inside Γ.
So N(0) = k. So N(1) = k. But N(1) is the number of roots of pA(z) inside Γ. Thus, by Gersgorin, we’re
done. Theorem 235
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Let D = diag(p1, . . . , pn) with all pi > 0. Then

D−1AD = (aijp
−1
i pj)

and σ(A) = σ(D−1AD) ⊆ G(D−1AD). Then

R′
i =

∑
j ̸=i

p−1
i |aij |vj = p−1

i

∑
j ̸=i

|aij |pj


This yields the following corollary:

Corollary 236. Suppose A ∈ Mn. Then

σ(A) ⊆
⋂

p1,...,pn>0

 n⋃
i=1

 z : |z − aii ≤ p−1
i

∑
j ̸=i

|aij |pj

|




Proof. RHS is ⋂
p1,...,pn

G(D−1
p ADp)

Corollary 236

Aside 237. An ellipse is given by r and foci a, b; it is then

{ z : |z − a|+ |z − b| = r }

An oval of Cassini is analogous:
{ z : |z − a||z − b| = r }

Theorem 238 (Brauer). Suppose A = (aij) ∈ Mn for n ≥ 2. Then

σ(A) ⊆
⋃
i̸=j

{ z : |z − aii||z − ajj | ≤ r′iR
′
j }

where
R′

i =
∑
j ̸=i

|aij |

Fact 239. The union of these ovals is contained in G(A).

Proof of Theorem 238. Suppose λ ∈ σ(A); say Ax = λx for x ̸= 0. Let |xp| = max{ |x1|, . . . , |xn| } ̸= 0. If

max
i ̸=p

|xi| = 0

then x = xpep. So (Ax)p = appxpep = λ(xpep); so λ = app, and λ ∈ RHS.
Assume then that

|xq| = max
i ̸=p

|xi| ≠ 0

Then

λxp =

n∑
j=1

apjxj

So

|(λ− app)xp| =

∣∣∣∣∣∣
∑
j ̸=p

apjxj

∣∣∣∣∣∣ ≤
∑
j ̸=p

|apj ||xq| = |xq|R′
p
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So
|λ− app| ≤

|xq|
|xp|

R′
p

But we also have

λxq =

n∑
j=1

aqjxj

So

|(λ− aqq)xq| =

∣∣∣∣∣∣
∑
j ̸=q

aqjxj

∣∣∣∣∣∣ ≤ |xp|R′
q

So
|λ− aqq| ≤

|xp|
|xq|

R′
q

Putting it all together, we have
|λ− app||λ− aqq| ≤ R′

pR
′
q

so λ ∈ RHS. Theorem 238

Definition 240. A = (aij) is (strictly) diagonally dominant provided

|aii| ≥
∑
j ̸=i

|aij | = R′
i

for diagonally dominant, and
|aii| >

∑
j ̸=i

|aij | = R′
i

for strictly diagonally dominant.

Theorem 241. Suppose A = (aij) is strictly diagonally dominant. Then

1. A ∈ M−1
n .

2. If aii > 0, then σ(A) ⊆ {λ : Re(λ) > 0 }; we call this latter set the right half-plane (RHP).

3. If A = A∗ and al aii > 0, then A is positive definite.

Proof.

1. 0 /∈ G(A) implies 0 /∈ σ(A), since σ(A) ⊆ G(A).

2. Note that G(A) ⊆ RHP.

3. By (1), we have A ∈ M−1
n . Also σ(A) ⊆ RHP. But A = A∗, so σ(A) ⊆ R. So σ(A) ⊆ (0,∞), and A is

positive definite.

Theorem 241

9 Non-negative matrices
Used in combinatorics, probability, and Markov chains.

An application: suppose A = (aij) with aij ∈ N ∪ { 0 }. We interpret this as a directed graph, where aij
is the number of edges from vertex j to vertex i. Then (Ak)i,j is the number of paths of length k from j to i.

Another application: imagine you have states { 1, . . . , n } with p(i | j) the probability of going from state
j to state i. Let P = (p(i | j)). Let

q =

q1
...
qn


where qi ≥ 0 and q1 + · · ·+ qn = 1; we interpret qi as the probability of initially being in state i. Then (Pq)i
is the probability that after one event we are in state i. We can ask whether P kq converges as k → ∞.
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Definition 242. Suppose A = (aij) ∈ Mm,n. We say A is non-negative (0 ⪯ A)) if aij ≥ 0 for all i, j. We
say A is positive (0 ≺ A) if aij > 0 for all i, j. If A,B ∈ Mm,n(R), we write A ⪯ B if bij ≥ aij for all i, j; we
say A ≺ B if bij > aij for all i, j. We write |A|e = (|aij |).

Proposition 243.

1. |aA|e = |a||A|e.

2. |A+B|e ⪯ |A|e + |B|e.

3. If 0 ⪯ A, 0 ⪯ B, a ≥ 0, and b ≥ 0, then 0 ⪯ aA+ bB.

4. If A ⪯ B and C ⪯ D, then A+ C ⪯ B +D.

5. |AB|e ≤ |A|e|B|e.

6. Suppose 0 ⪯ A ⪯ B and 0 ⪯ C ⪯ D. Then AC ⪯ BD.

Proof.

5. Note that

|AB|e =

(∣∣∣∣∣
n∑

k=1

aikbkj

∣∣∣∣∣
)

⪯

(
n∑

k=1

|aik||bkj |

)
= |A|e|B|e

Proposition 243

Proposition 244. Say A ∈ Mn. Then ρ(A) ≤ ρ(|A|e).

Proof. Take

∥B∥2 =
(∑

|bij |2
) 1

2

Then this is a matrix norm, and
∥∥∥|B|e

∥∥∥
2
= ∥B∥2. Also |An|e ⪯ |A|ne . So

∥An∥2 =
∥∥∥|An|e

∥∥∥
2
≤
∥∥∥|A|ne

∥∥∥
2

So

ρ(A) = lim
n
∥An∥

1
n
2 ≤ lim

n

∥∥∥|A|ne
∥∥∥ 1

n

2
= ρ(|A|e)

Proposition 244

Theorem 245. Suppose A,B ∈ Mn. Suppose |A|e ⪯ B. Then ρ(A) ≤ ρ(|A|e) ≤ ρ(B).

Proof. We showed that ρ(A) ≤ ρ(|A|e). But |A|ne ⪯ Bn implies that
∥∥∥|A|ne

∥∥∥
2
≤ ∥Bn∥2. So

ρ(|A|e) = lim
n

∥∥∥|A|ne
∥∥∥ 1

n

2
≤ lim

n
∥Bn∥

1
n
2 = ρ(B)

Theorem 245

Corollary 246. Suppose A ∈ Mn with 0 ⪯ A. Then

1. For all S ⊆ { 1, . . . , n } we have ρ(A[S, S]) ≤ ρ(A).

2. max{ a11, . . . , ann } ≤ ρ(A).
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3. If there is i such that aii ̸= 0, then ρ(A) > 0.

Proof.

1. We may assume A takes the form

A =

(
A[S, S] B

C D

)
But then (

A[S, S] 0
0 0

)
⪯ A

So
ρ(A[S, S]) = ρ

(
A[S, S] 0

0 0

)
≤ ρ(A)

2. Note that aii = A[{ i }, { i }]. So aii = |aii| = ρ(A[{ i }, { i }]) ≤ ρ(A). So max{ a11, . . . , ann } ≤ ρ(A).

3. 0 < max{ a11, . . . , ann } ≤ ρ(A).

Corollary 246

Proposition 247. For x ∈ Cn, let

∥x∥1 =

n∑
j=1

|xj |

∥x∥∞ = max{ |x1|, . . . , |xn| }

Then for A ∈ Mn, the induced operator norms are

~A~1 = max
j

{
n∑

i=1

|aij |

}

~A~∞ = max
i


n∑

j=1

|aij |


Both of these are matrix norms.

Proof. Let ∥x∥1 = 1. Let A = [C1 | · · · | Cn]. Let Ck be a column with ∥Ck∥1 maximum. Then

∥Ax∥1 = ∥x1C1 + · · ·+ xnCn∥
≤ |x1|∥C1∥1 + · · ·+ |xn|∥Cn∥
≤ |x1|∥Ck∥1 + · · ·+ |xn|∥Ck∥1
= ∥Ck∥1

So ~A~1 ≤ max{ ∥C1∥1, . . . , ∥Cn∥1 }. For equality, let x = ek. Then ∥x∥1 = 1 and Ax = Ck. So
~A~1 ≥ ∥Ck∥1 for all k. So ~A~1 ≥ max{ ∥C1∥1, . . . , ∥Cn∥1 }. So~A~1 = max{ ∥C1∥1, . . . , ∥Cn∥1 }.

The case ~·~∞ is similar. Proposition 247

Corollary 248. Suppose A ∈ Mn. Then ρ(A) ≤ min{~A~1,~A~∞ }.

Corollary 249. Suppose A ∈ Mn with 0 ⪯ A.

1. If ∑
j

aij = ~A~∞

for all i, then ρ(A) = ~A~∞.
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2. If ∑
i

aij = ~A~1

for all j, then ρ(A) = ~A~1.

Proof.

1. Let e = (1, . . . , 1)t. Then

(Ae)i =

n∑
j=1

aij = ~A~∞

So Ae = ~A~∞e. So ~A~∞ ∈ σ(A). So ~A~∞ ≤ ρ(A) ≤ ~A~∞. So ~A~∞ = ρ(A).

Remark 250. In this case we have ~A~∞ ≤ ~A~1.

2. Similar: note that etA = ~A~1d
t. So ~A~1 ∈ σ(At) = σ(A). So ~A~ ≤ ρ(A) ≤ ~A~1.

Remark 251. In this case we have ~A~1 ≤ ~A~∞.

Corollary 249

Theorem 252. Suppose A ∈ Mn with 0 ⪯ A. Then

min
i

n∑
j=1

aij ≤ ρ(A) ≤ max
i

n∑
j=1

aij

and

min
j

n∑
i=1

aij ≤ ρ(A) ≤ max
j

n∑
i=1

aij

Proof. The second pair of inequalities follows from the first pair applied to At, since ρ(A) = ρ(At). It remains
to prove the first pair.

Right-hand inequality By Proposition 247, we have

ρ(A) ≤ ~A~1 = max
i

n∑
j=1

|aij |

Alternatively, we can use Gersgorin disks.

Left-hand inequality Let

α = min
i

n∑
j=1

ai,j

If α = 0 then there is nothing to prove. Suppose then that α ̸= 0. Define B ∈ Mn by

bi,j =
α∑n

j=1 aij
ai,j

Then 0 ≤ bi,j ≤ ai,j ; so 0 ⪯ B ⪯ A. So ρ(B) ≤ ρ(A). But

n∑
j=1

bi,j = α

for all i. So, letting e = (1, . . . , 1), we see Be = αe; so α ≤ ρ(B). So α ≤ ρ(A).

Theorem 252
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Corollary 253. Suppose A ∈ Mn with 0 ⪯ A. Then

sup
0≺x

min
i

1

xi

n∑
j=1

aijxj ≤ ρ(A) ≤ inf
0≺x

max
i

1

xi

n∑
j=1

aijxj

and

sup
0≺x

min
j

1

xi

n∑
i=1

aijxi ≤ ρ(A) ≤ inf
0≺x

max
j

1

xj

n∑
i=1

aijxi

Proof. Again, suffices to do the first pair of inequalities. Let D = diag(x1, . . . , xn). Then ρ(D−1AD) = ρ(A).
Apply the above theorem to D−1AD = ( 1

xi
aijxj). Corollary 253

Corollary 254. Suppose 0 ⪯ A and 0 ≺ x. If α, β ≥ 0 satisfy αx ⪯ Ax ⪯ βx, then α ≤ ρ(A) ≤ β.
Furthermore, if αx ≺ Ax ≺ βx, then α < ρ(A) < β.

Proof. For each i we have

αxi ≤
n∑

j=1

aijxj ≤ βxi

and thus

α ≤ 1

xi

n∑
j=1

aijxj ≤ β

The result then follows by the previous corollary. Corollary 254

Corollary 255. Suppose 0 ⪯ A and 0 ≺ x with Ax = λx. Then

1. λ = ρ(A).

2.

max
x≻0

min
i

1

xi

n∑
j=1

aijxj = ρ(A) = min
x≻0

max
i

1

xi

n∑
j=1

aijxj

Proof. 1. λx = Ax, so λx ⪯ Ax ⪯ λx. So, by the previous corollary, we have λ ≤ ρ(A) ≤ λ, and λ = ρ(A).

2. For all i we have

λxi =

n∑
j=1

aijxj

So

λ =
1

xi

n∑
j=1

aijxj

for all i, The result then follows.
Corollary 255

Theorem 256. Suppose 0 ⪯ A. Then there is 0 ≺ x such that Ax = ρ(A)x.

Proof. We know ρ(A) > 0. Also, if 0 ⪯ x with x ̸= 0, then 0 ≺ Ax. So if 0 ⪯ x and Ax = ρ(A)x, then 0 ≺ x.
Let λ ∈ σ(A) satisfy |λ| = ρ(A). So there is y ̸= 0 such that Ay = λy. Let x = |y|e. Then

(Ax)i =

n∑
j=1

aij |yj | > 0

So 0 ≺ Ax. But we also have

(Ax)i = (A|y|e)i =
n∑

j=1

aij |yj | ≥

∣∣∣∣∣∣
n∑

j=1

aijyj

∣∣∣∣∣∣ = |λyi| = |λ||yi| = |λ|xi = ρ(A)xi
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So |λ|x ⪯ Ax, and ρ(A)x ⪯ Ax. Now, let w = Ax− ρ(A)x. If w = 0, the theorem is proven. Assume then
that w ̸= 0. But 0 ≺ Aw = A(Ax)− ρ(A)(Ax); so ρ(A)(Ax) ≺ A(Ax). If we then let α = ρ(A) and apply
Corollary 254, we get that α < ρ(A), a contradiction. So w = 0, and Ax = ρ(A)x. Theorem 256

Remark 257. The proof showed that if Ay = λy with |λ| = ρ(A) and x = |y|e, then Ax = ρ(A)x.

Theorem 258 (Perron). Suppose A ∈ Mn with 0 ≺ A. Then there is a unique x = (x1, . . . , xn) such that

• Each xi ≥ 0.

• x1 + · · ·+ xn = 1.

• Ax = ρ(A)x.

Proof. By above there is x̃ = (x̃1, . . . , x̃n) with each x̃i ≥ 0 and Ax̃ = ρ(A)x̃ such that if r = x̃1 + · · ·+ x̃n

and x = 1
r x̃ then Ax = ρ(A)x. So there exists one such vector.

Suppose now that y = (y1, . . . , yn) satisfies each yi ≥ 0, y1 + · · ·+ yn = 1, and Ay = ρ(A)y. Let

β = min
i

yix
−1
i

Then each yi − βxi ≥ 0; so, if w = y − βx, then w ≥ 0, and one entry of w is 0. Then, if we had w ̸= 0, we
have 0 ≺ Aw = Ay − βAx = ρ(A)(y − βx) = ρ(A)w, contradicting our statement that w has 0 as an entry.
So w = 0, and y = βx. So 1 = y1 + · · ·+ yn = β(x1 + · · ·+ xn) = β. So y = x. Theorem 258

Corollary 259. Suppose 0 ≺ A. Then ρ(A) is a root of pA(t) of geometric multiplicity exactly 1.

Proof. Follows from theorem above. Corollary 259

Question 260 (Challenge). What about the algebraic multiplicity?
Solution:

Theorem 261 (1.4.12). Suppose A ∈ Mn, λ ∈ C, x ̸= 0, y ̸= 0, Ax = λx, and y∗A = λy∗.

1. If λ has algebraic multiplicity 1, then y∗x ̸= 0.

2. Assume λ has geometric mult 1. Then it has algebraic multiplicity 1 if and only if y∗x ̸= 0.

Proof.

1. By Schur, we have

Ã = U∗AU =

(
λ ∗
0 B

)
and x = e1. Suppose y∗x = y∗e1 = 0; then y∗ = (0, ỹ∗). Then

(0, λỹ) = λy∗ = y∗Ã = (0, ỹ)

(
λ ∗
0 B

)
= (0, ỹB)

so λ ∈ σ(B). So (t− λ) | pB(t). So (t− λ)2 | pA(t) = (t− λ)pB(t). So λ has algebraic multiplicity > 1.

2.

( =⇒ ) By (1).
( ⇐= ) Show p′A(λ) = γy∗x for γ ≠ 0; this uses the adjugate. Thus, if pA(t) = (t − λ)2q(t), then

p′A(λ) = 0; so (t− λ) only occurs to the first power in pA(t).

Theorem 261

Definition 262. Suppose 0 ≺ A. We proved that there is a unique x = (x1, . . . , xn) with each xi > 0
and x1 + · · · + xn = 1 such that Ax = ρ(A)x. This vector is called the right Perron vector for A. Since
ytA = ρ(A)yt if and only if Aty = ρ(A)yt, we know there is y = (y1, . . . , yn) with each yi > 0 such that
ytA = ρ(A)yt. Thus there is a unique y = (y1, . . . , yn) such that

81



1. ytA = ρ(A)yt

2. yi > 0 for all i

3. y1x1 + · · ·+ ynxn = 1

This is called the left Perron vector for A.

Corollary 263. Suppose 0 ≺ A. Then ρ(A) is of algebraic multiplicity 1.

Proof. We know ρ(A) is of geometric multiplicity 1. Apply 1.4.12, part (2). Corollary 263

This solves Question 260.

Theorem 264 (Perron). Suppose A ∈ Mn with 0 ≺ A. Then

1. ρ(A) > 0

2. ρ(A) is an eigenvalue of geometric multiplicity one.

3. There is a unique x = (x1, . . . , xn) with each xi > 0 and x1 + · · ·+ xm = 1 such that Ax = ρ(A)x.

4. There is a unique y = (y1, . . . , yn) with each yi > 0 and y1 + · · ·+ yn = 1 such that ytA = ρ(A)yt.

5. For all λ ∈ σ(A) with λ ̸= ρ(A) we have |λ| < ρ(A).

Proof.

(1)-(3) Done already.

(4) Apply (3) to At.

(5) Suppose λ ∈ σ(A) with |λ| = ρ(A) and λ ̸= ρ(A). Pick x ̸= 0 such that Ax = λx. Then ρ(A)|x|e =
|λx|e = |Ax|e ⪯ A|x|e. Let w = A|x|e − ρ(A)|x|e ⪰ 0. If w ≠ 0 then 0 ≺ Aw = A(A|x|e)− ρ(A)A|x|e;
so ρ(A)(A|x|e) ≺ A(A|x|e); so ρ(A) < ρ(A) by a previous theorem, a contradiction. So w = 0 and
A|x|e = ρ(A)|x|e. Returning to the inequality, we find

ρ(A)|x|e = |λx|e = |Ax|e ≤ A|x|e = ρ(A)|x|e

So |Ax| = A|x|, and ∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣ =
n∑

j=1

aij |xj |

So the xj are all collinear in C; so there is θ such that exp(iθ)xj = |xj | for all j. But then

ρ(A) exp(iθ)x = ρ(A)|x|
= A|x|
= A(exp(iθ)x)

= exp(iθ)Ax

= exp(iθ)λx

So ρ(A) = λ, contradicting our assumption that ρ(A) ̸= λ. So ρ(A) = λ.

Theorem 264

Theorem 265. Suppose A ∈ Mn with 0 ⪯ A. Then ρ(A) is an eigenvalue of A with a non-negative
eigenvector.
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Proof. Let Jn ∈ Mn be the matrix of all ones; set Ak = A + 1
kJn. So 0 ≺ Ak. So, by Perron’s theorem

there is xk = (x1k, . . . , xnk) with xjk ≥ 0 and x1k + · · ·+ xnk = 1 such that Akxk = ρ(Ak)xk. These come
from a bounded set; thus there is kℓ such that (xkℓ

: ℓ ∈ N) → y = (y1, . . . , yn). Then each yj ≥ 0 and
y1 + · · ·+ yn = 1. Furthermore, we have (Akℓ

: ℓ ∈ N) → A; so

Ay = lim
ℓ→∞

Akℓ
xkℓ

= lim
ℓ→∞

ρ(Akℓ
)xkℓ

So
lim
ℓ→∞

ρ(Akℓ
) = µ ≥ 0

and Ay = µy. So 0 ≤ µ ≤ ρ(A). But A ⪯ Ak; so ρ(A) ≤ ρ(Ak), and

ρ(A) ≤ lim
ℓ→∞

ρ(Akℓ
) = µ

So µ = ρ(A), and Ay = µy for y ⪰ 0. Theorem 265

9.1 Irreducible non-negative matrices
Definition 266. A matrix A ∈ Mn is reducible if there is a permutation matrix P such that

P tAP =

(
B C
0 D

)
where B ∈ Mr. We say A is irreducible if A is not reducible.

Definition 267. Given a vertex set { 1, . . . , n } and a non-empty E ⊆ { 1, . . . , n } × { 1, . . . , n }, we think of
there being a path of length 1 from i to j if and only if (i, j) ∈ E. This is what we mean by a directed graph
(with loops).

Definition 268. Suppose A ∈ Mn with 0 ⪯ A. We define Γ(A), the directed graph of A, to have n vertices
set and edge set E = { (i, j) : ai,j ̸= 0 }.

Definition 269. Given a directed graph Γ with edge set E, we say that there is a path of length k from i to
j if there is (i, i1), (i1, i2), . . . , (ik−2, ik−1), (ik−1, j) ∈ E. We say that Γ is path-connected if given any i and j
there is a path from i to j.

Proposition 270. Suppose 0 ⪯ A. Then (Am)i,j ̸= 0 if and only if there is a path of length m from i to j in
Γ(A).

Proof. We apply induction on m. Assume the proposition holds for m. Then (Am+1)i,j ̸= 0 if and only if
there is k such that (Am)i,k ≠ 0 and Ak,j ̸= 0. By the induction hypothesis, this holds if and only if there is
k and a path of length m from i to k and a path of length 1 from k to j; but this is just the definition of
there being a path of length m from i to j.

So, by induction, the proposition holds. Proposition 270

Proposition 271. Suppose Γ is a directed graph on n vertices. If there is a path from i to j with i ̸= j, then
there is a directed path of length ≤ n− 1 from i to j.

Proof. Suppose you have a longer path. Then it passes through some vertex twice. Then you can shorten it.
Proposition 271

Theorem 272. Suppose A ∈ Mn with 0 ⪯ A. Then the following are equivalent:

1. A is irreducible.

2. Γ(A) is path-connected.

3. 0 ≺ (I +A)n−1.

Proof.
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(3) =⇒ (1) Suppose A is reducible. Then, after permutation, we have

A =

(
B X
0 C

)
So

(I +A)n−1 =

(
I +B X

0 I + C)n−1

)
=

(
(I +B)n−1 ∗

0 (I + C)n−1

)
and (3) fails.

(1) =⇒ (2) Suppose Γ(A) is not path-connected. After renumbering, we can say that there is no path
from n to 1. Renumbering, let { 2, . . . , r } be the vertices with a path to 1; let { r + 1, . . . , n } be the
vertices with no path to 1. Suppose for contradiction that ai,j ̸= 0 for some r + 1 ≤ i ≤ n and some
1 ≤ j ≤ r. Then there is a path from i to j. But there is a path from j to 1. So there is a path from i
to 1, a contradiction. So ai,j = 0 whenever r + 1 ≤ i ≤ n and 1 ≤ j ≤ r. So

P tAP =

(
∗ ∗
0 ∗

)
so A is reducible.

(2) =⇒ (3) For all i ̸= j we know there is m ≤ n− 1 and a path of length m from i to j. So (Am)i,j ̸= 0.
So I +A+A2 + · · ·+An−1 ≻ 0. So (I +A)n−1 = I +

(
n
1

)
A+

(
n
2

)
A2 + · · ·+An−1 ≻ 0.

Theorem 272

Theorem 273 (Perron-Frobenius). Suppose n ≥ 2; suppose A ∈ Mn is irreducible with 0 ⪯ A. Then:

1. ρ(A) > 0.

2. ρ(A) is an eigenvalue of algebraic multiplicity 1.

3. There is a unique x = (x1, . . . , xn) ∈ Rn with x1 + · · · + xm = 1 such that Ax = ρ(A)x. Moreover,
0 ≺ x.

4. There is a unique y ∈ Rn with y · x = 1 and yTA = ρ(A)yT . Moreover, 0 ≺ y.

Proof.

1. We know

min
i

n∑
j=1

aij ≤ ρ(A)

If this minimum is 0, then one row is all 0; we permute so that this is the last row. Then

P tAP =

(
∗ ∗
0 0

)
so A is reducible, a contradiction. So

min
i

n∑
j=1

aij ̸= 0

So 0 < ρ(A).

2. Since 0 ⪯ A, we have that there is 0 ⪯ x with x ̸= 0 such that Ax = ρ(A)x. So

(I +A)n−1x = (1 + ρ(A))n−1x

But
ρ((I +A)n−1) = sup{ |(1 + λ)n−1| : λ ∈ σ(A) } = (1 + ρ(A))n−1
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But A is irreducible; so 0 ≺ (I +A)n−1. So x is the Perron vector and (1 + ρ(A))n−1 is an eigenvalue
of algebraic multiplicity 1 for (I +A)n−1.

Suppose for contradiction that ρ(A) has algebraic multiplicity ≥ 2 for A. Then, by Schur, we have

U∗AU =


ρ(A) ∗ ∗ ∗

ρ(A) ∗ ∗
∗ ∗

0
. . .

 = T

is upper triangular. But then

U∗(I +A)n−1U = (I + T )n−1 =


(1 + ρ(A))n−1 ∗ ∗ ∗

(1 + ρ(A))n−1 ∗ ∗
∗ ∗

0
. . .


So (1 + ρ(A))n−1 is of algebraic multiplicity at leats 2 in (I +A)n−1, contradicting Perron’s theorem.
So ρ(A) has algebraic multiplicity 1 in A.

3. We know ρ(A) has algebraic multiplicity 1; so ρ(A) is of geometric multplicity 1. So the ρ(A) eigenspace
is 1-dimensional. So Aw = ρ(A)w implies w = αx, where x is obtained as in (2). So there is a unique
multiple to make the coordinates add to 1.

4. Well, (I +AT )n−1 = ((I +A)n−1)T . So AT is irreducible. Applying (2) and (3) to AT , we get that the
dimension of the eigenspace for ρ(A) is also 1 for AT , and that AT ỹ = ρ(A)ỹ has one solution given by
the Perron vector for AT ; so 0 ≺ ỹ and any vector w satisfying ATw = ρ(A)w satisfies w = αỹ. Pick
the unique α such that (αỹ) · x = 1; let y = αỹ.

Theorem 273

9.2 Stochastic and doubly stochastic matrices
Definition 274. We say A ∈ Mn is (row-)stochastic if 0 ⪯ A and

n∑
j=1

aij = 1

for all i. We say A is column-stochastic if 0 ⪯ A and

n∑
i=1

aij = 1

for all j. We say A is doubly stochastic if it is row-stochastic and column-stochastic.

Remark 275. Let e = (1, . . . , 1). Then

1. A is row-stochastic if and only if 0 ⪯ A and Ae = e.

2. A is column-stochastic if and only if 0 ⪯ A and eTA = eT .

3. A is doubly stochastic if and only if 0 ⪯ A, Ae = e, and eTA = eT .

4. Suppose A1, A2 are stochastic (in one of the three senses). Suppose t1 + t2 = 1 with 0 ≤ t1 and 0 ≤ t2.
Then t1A1 + t2A2 is stochastic in the same sense.

5. The set of stochastic matrices (in any of the three senses) is convex and compact.
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6. Every permutation matrix Pσ is doubly stochastic.

Lemma 276. Suppose A = (aij) ∈ Mn is doubly stochastic with A ̸= I. Then there is a permutation
σ : { 1, . . . , n } → { 1, . . . , n } such that a1,σ(1) . . . an,σ(n) > 0.

Proof. Suppose otherwise. Let (bi,j) = tI −A. Then

pA(t) = det((bij))

=
∑
σ

sgn(σ)

n∏
i=1

bi,σ(i)

= (t− a11) . . . (t− ann) +
∑
σ ̸=id

sgn(σ)

n∏
i=1

bi,σ(i)

For fixed σ, we have
n∏

i=1

bi,σ(i) =
∏

σ(i)=i

(t− aii) ·
∏

σ(i) ̸=i

which is 0, since we may preapply a permutation to A so that the diagonal entries of A are non-zero.
Then pA(t) = (t − a11) . . . (t − ann). But A is stochastic; so 1 is an eigenvalue. So there is i such that

aii = 1; say a11 = 1. Then

A =

(
1 0
0 A1

)
Then A1 is doubly stochastic. Similarly, we find i with 2 ≤ i ≤ n such that aii = 1. Iterating, we find A = I.

Lemma 276

Lemma 277. Suppose A = (aij) ∈ Mn is doubly stochastic. If at most n entries of A are non-zero, then A
is a permutation matrix.

Proof. If A = I, then we are done. Suppose then that A ̸= I. Then there is σ such that a1,σ(1) . . . an,σ(n) > 0.
This is already n non-zero entries. So the only non-zero entries of A are ai,σ(i). So A has exactly one non-zero
entry in each row and column. So ai,σ(i) = 1 for all i, and A is a permutation matrix. Lemma 277

Theorem 278 (Birkhoff). Suppose A ∈ Mn. Then A is doubly stochastic if and only if there are permutations
P1, . . . , PN and ti ≥ 0 with t1 + · · · + tN = 1 such that A = t1P1 + · · · + tNPN . Moreover, one may take
N ≤ n2 − n+ 1.

Proof.

( ⇐= ) Clear.

( =⇒ ) If A = I, then we are done. Suppose then that A ≠ I. Pick σ such that a1,σ(1) . . . an,σ(n) ≠ 0. Let
α1 = min{ a1,σ(1), . . . , an,σ(n) }. Then

A1 =
1

1− α1
A− α1Pσ1

is doubly stochastic with A = α1Pσ1
+ (1− α1)A1, and A1 is 0 in at least 1 entry. If A1 = I, then we

are done. Else there is σ2 such that a′1,σ2(1)
. . . a′n,σ2(n)

> 0. Then A1 − α2Pσ2
⪰ 0. Then

A2 =
1

1− α2
(A1 − α2Pσ2

)

is doubly stochastic with A1 = α2Pσ2
+ (1− α2)A2; so

A = α1Pσ1 + α2(1− α1)Pσ2 + (1− α2)(1− α1)A2

Also A2 is 0 in at least 2 entries. Continuing N times, we find

A = α1Pσ1 + · · ·+ αN−1PσN−1
+ βAN−1

Then AN−1 is doubly stochastic and has N − 1 entries of 0. If N − 1 ≥ n2 − n, then N ≥ n2 − n+ 1,
so AN−1 is a permutation matrix, and we’re done.
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Theorem 278

Theorem 279 (Birkhoff). The premutation matrices are the extreme points of the convex set of doubly
stochastic matrices.

Remark 280. Closed convex sets in finite dimensions are always the convex hull of their extreme points.

Proof of Theorem 279.

( =⇒ ) Suppose P is a permutation matrix; we wish to prove that P is an extreme point. Suppose
P = tA+ (1− t)B for 0 < t < 1 with A,B doubly stochastic. Then pij = taij + (1− t)bij with 0 ⪯ A
and 0 ⪯ B. So if pij = 0, then aij = bij = 0. So A and B are non-zero for at most 1 entry in each row
and column. Hence A = B = P .

( ⇐= ) Suppose A is doubly stochastic and not a permutation matrix. We wish to show that A is not an
extreme point; i.e. there are A+ and A− such that A = 1

2A+ + 1
2A− with A+ ̸= A and A− ̸= A.

Since A is not a permutation matrix, there is some row i1 such that A is non-zero in 2 entries of
the i1 row; say ai1,j1 ̸= 0 and ai1,j2 ̸= 0; then 0 < ai1,j1 < 1 and 0 < ai1,j2 < 1. Now, in the j2
column there must be another non-zero entry; say 0 < ai2,j2 < 1. Continue until we return to an
entry in column j1; we get (i1, j1), (i1, j2), (i2, j2), . . . , (ik, j1), with all of these entries in (0, 1). Let
B = E(i1,j1) − E(i1,j2) + E(i2,j2) − . . ..

Claim 281. Each row and column of B sums to 0.

Proof. Picture. Claim 281

Let α = min{ ai1,j1 , . . . , aik,j1 } > 0. Let

A1 = A− αB

A2 = A+ αB

Then each row and column of A1, A2 still sums to 1. By our choice of α we have 0 ⪯ A and 0 ⪯ A2. So
A1 and A2 are doubly stochastic. But A = 1

2A1 +
1
2A2. So A is not extreme.

Theorem 279

Corollary 282. Suppose A ≠ I is doubly stochastic. Then there is a permutation σ ̸= id such that
a1,σ(1) . . . an,σ(n) > 0.

Proof. By the theorem and the remark, we have

A = t1Pσ1
+ · · ·+ tmPσm

where each ti > 0 and t1 + · · ·+ tm = 1. Since A ̸= I there is at least one σi0 ̸= id. So ai,σi0
(i) ≥ ti0 · 1 > 0.

So a1,σi0
(1) . . . an,σi0

(n) > 0. Corollary 282

10 Matroids
Definition 283 (H. Whitney (1935)). Suppose X is a (finite) set. A matroid on X is a I ⊆ P(X) satisfying

1. ∅ ∈ I.

2. If B ∈ I and A ⊆ B then A ∈ I.

3. If A,B ∈ I and |A| < |B| then there is b ∈ B \A such that A ∪ { b } ∈ I.
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Example 284. Suppose V is a vector space with X ⊆ V . Given A ⊆ X, we define A ∈ I if A is linearly
independent. Then I is a matroid on X. (1) and (2) are clear; to see (3), note that

dim(span(A)) = |A| < |B| = dim(span(B))

So there is b ∈ B such that b /∈ span(A), in which case A ∪ { b } is linearly independent .

Definition 285. Suppose I is a matroid on X; suppose E ⊆ X. We define rank(E) = max{ |A| : A ⊆ E,A ∈
I }.

Example 286. Continuing the previous example, we have dim(span(E)) is the maximum cardinality of a
linearly independent subset of E, which is just rank(E).

Theorem 287 (Horn 1955, Rado 1962). Suppose V is a vector space with X ⊆ V . Then X can be partitioned
into k linearly indepdendent subsets if and only if for all finite E ⊆ X we have

|E|
dim(span(E))

≤ k

Much later, the same theorem was proven by Rado and collaborators for arbitrary matroids, where
dim(span(E)) is replaced by rank(E).

Proof.

( =⇒ ) Suppose X = A1 ∪ · · · ∪ Ak where the Ai are pairwise disjoint and linearly independent. Suppose
E ⊆ X. Then

E = (E ∩A1) ∪ · · · ∪ (E ∩Ak)

where the E ∩Ai are linearly independent. So dim(span(E ∩Ai)) = |E ∩Ai|. So

|E| =
k∑

i=1

|E ∩Ai|

=

k∑
i=1

dim(span(E ∩Ai))

≤
k∑

i=1

dim(span(E))

= k dim(span(E))

So
|E|

dim(span(E))
≤ k

Theorem 287

TODO 1. Last lecture.
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