Course notes for PMATH 930

Christa Hawthorne

Lectures by Rahim N. Moosa, Fall 2015

Contents

1	Preliminaries	1
2	Chapter 4 2.1 Partial types 2.2 Complete types	1 1 3
	2.2 Complete types	$5 \\ 8 \\ 12$
3	Chapter 5 3.1 Strong minimality 3.2 Loose ends in strongly minimal theories 3.3 Eschewing the monster model 3.4 Morley rank	14 26 31 32 34
4	Differential fields	41

1 Preliminaries

We start with chapter 4 of Tent and Ziegler. (Chapters 1-3 are preliminaries.) Assignments are roughly biweekly. No midterm, but will be a final.

2 Chapter 4

2.1 Partial types

Definition 1. Fix a first-order language L. For any $n \ge 0$, by a *partial n-type*, we mean a set $\Sigma(x_1, \ldots, x_n)$ of L-formulae. Note: we don't require consistency.

Definition 2. We say $\Sigma(x_1, \ldots, x_n)$ is *realized* in an *L*-structure \mathcal{A} if there is $a = (a_1, \ldots, a_n) \in \mathcal{A}^n$ such that $\mathcal{A} \models \sigma(a)$ for all $\sigma \in \Sigma$. We also say a *realizes* Σ in \mathcal{A} ; this is denoted $\mathcal{A} \models \Sigma(a)$.

Definition 3. $\Sigma(x_1, \ldots, x_n)$ is *consistent* if and only if it is realized in some *L*-structure.

Remark 4. The compactness theorem tells us that Σ is consistent if and only if every finite subset of Σ is consistent.

Proof. Suppose $\Sigma(x_1, \ldots, x_n)$ is finitely consistent. Let $L(c_1, \ldots, c_n) = L \cup \{c_1, \ldots, c_n\}$ where c_i are new constant symbols. Let

$$\Sigma(c_1,\ldots,c_n) = \{ \, \sigma(c_1,\ldots,c_n) : \sigma \in \Sigma \, \}$$

Then this is an $L(c_1, \ldots, c_n)$ -theory. Then since every finite subset of $\Sigma(x_1, \ldots, x_n)$ is realized in some *L*-structure, we have that every finite subset of $\Sigma(c_1, \ldots, c_n)$ is consistent. Applying compactness, we get a model of $\Sigma(c_1, \ldots, c_n)$: an $L(c_1, \ldots, c_n)$ -structure $\mathcal{A}' = (\mathcal{A}, a_1, \ldots, a_n)$ realizing $\Sigma(c_1, \ldots, c_n)$. Then $\mathcal{A} \models \Sigma(a_1, \ldots, a_n)$. \Box Remark 4

Definition 5. Suppose T is an L-theory. Then $\Sigma(x_1, \ldots, x_n)$ is consistent with T if and only if it is realized in some model of T.

Remark 6. This occurs if and only if $T \cup \Sigma(x_1, \ldots, x_n)$ is consistent.

Remark 7. Σ is consistent with T if and only if every finite subset is.

Question 8. When does T have a model in which Σ is not realized (or is *omitted*)?

Definition 9. A partial *n*-type $\Sigma(x_1, \ldots, x_n)$ is *isolated* in a theory *T* if and only if there is an *L*-formula $\varphi(x_1, \ldots, x_n)$ such that

- 1. $\varphi(x_1,\ldots,x_n)$ is consistent with T
- 2. Given $\mathcal{A} \models T$ and $(a_1, \ldots, a_n) \in A^n$ such that $\mathcal{A} \models \varphi(a_1, \ldots, a_n)$, we have $\mathcal{A} \models \Sigma(a_1, \ldots, a_n)$.

We then say φ isolates Σ in T.

Remark 10. This is equivalent to requiring

$$T \models \forall x_1 \dots x_n (\varphi(x_1, \dots, x_n) \to \sigma(x_1, \dots, x_n))$$

for all $\sigma \in \Sigma$.

Remark 11. When T is a complete theory, if Σ is isolated in T, then it is realized in every model of T.

Proof. Suppose $\mathcal{A} \models T$. Then since $\varphi(x_1, \ldots, x_n)$ is consistent and since T is complete, we have

$$\mathcal{A} \models \exists x_1 \dots x_n \varphi(x_1, \dots, x_n)$$

But then we have $a \in A^n$ such that

$$\mathcal{A} \models \varphi(a)$$

Then a realizes Σ .

Definition 12. A *theory* is countable if and only if the language is countable (i.e. has cardinality $\leq \aleph_0$).

Theorem 13 (Omitting types theorem (4.1.2)). If T is a countable, complete, consistent theory and $\Sigma(x_1, \ldots, x_n)$ is not isolated in T, then T has a model omitting $\Sigma(x_1, \ldots, x_n)$.

Proof. We'll prove it for n = 1. Consider a partial type $\Sigma(x)$ that is. Let C be a countably infinite set of new constant symbols. We wish to construct an L^* -theory $T^* \supseteq T$ that is consistent and such that

1. T^* is a Henkin theory; i.e. for any L^* -formula $\psi(x)$ there is $c \in C$ such that

$$T^* \vdash \exists x \psi(x) \to \psi(c)$$

2. For each $c \in C$ there is some $\sigma \in \Sigma$ such that

 $T^* \vdash \neg \sigma(c)$

Suppose we have such a T^* . Let $\mathcal{A}^* \models T^*$; say $\mathcal{A}^* = (\mathcal{A}, a_c)_{c \in C}$. Then $A \models T$. Let $B = \{a_c : c \in C\}$. Then Item 1 implies that B is the universe of an elementary substructure $\mathcal{B} \preceq \mathcal{A}$. (It's not hard to see that it's the universe of a substructure; see 2.2.3 in Tent and Ziegler to check that it's elementary. Proof is essentially Tarski-Vaught test.) Thus $\mathcal{B} \models T$. Then Item 2 tells us that \mathcal{B} omits $\Sigma(x)$, since if $a_c \in \mathcal{B}$, then by Item 2, there is $\sigma \in \Sigma$ such that

$$T^* \models \neg \sigma(c)$$
$$\implies \mathcal{A}^* \models \neg \sigma(c)$$
$$\implies \mathcal{A} \models \neg \sigma(a_c)$$
$$\implies \mathcal{B} \models \neg \sigma(a_c)$$

□ Remark 11

and thus that a_c does not realize $\Sigma(x)$ in \mathcal{B} .

It remains to construct T^* . We will make T^* the union of

$$T = T_0 \subseteq T_1 \subseteq T_2 \subseteq \dots$$

of L^* -theories where each T_{i+1} is consistent and a finite extension of T_i (i.e. $T_{i+1} \setminus T_i$ is finite). We will take care of Item 1 in odd steps and Item 2 in even steps. Enumerate $C = \{c_i : i < \omega\}$ and the L^* -formulae as $\{\psi_i(x) : i < \omega\}$. Having constructed T_{2i} , in T_{2i+1} we make sure that Item 1 is true of $\psi_i(x)$. Choose $c \in C$ that does not appear in T_{2i} nor in $\psi_i(x)$ and set

$$T_{2i+1} = T_{2i} \cup \{ \exists x(\psi_i(x) \to \psi_i(c)) \}$$

Then T_{2i+1} is consistent since, c being new, we can interpret it in a model of T_{2i} as we wish.

Now construct T_{2i+2} so that Item 2 holds for c_i . Not we can assure T_{2i+1} is of the form $T \cup \{\delta\}$ where δ is an L^* -sentence, since $T_{2i+1} \setminus T$ is finite. Write $\delta = \varphi(c_i, \overline{c})$ where $\varphi(x, \overline{y})$ is an L-formula and \overline{c} is a tuple of new constants not including c_i . Then $\Sigma(x)$ is not isolated in T by $\exists \overline{y}\varphi(x, \overline{y})$; so there is $\mathcal{A} \models T$ and $a \in A$ such that

$$\mathcal{A} \models \exists \overline{y} \varphi(a, \overline{y})$$

but $\mathcal{A} \models \neg \sigma(a)$ for some $\sigma \in \Sigma$. i.e.

 $\{ \exists \overline{y} \varphi(x, y), \neg \sigma(x) \}$

is consistent with T. So $T \cup \{\varphi(x, \overline{y}), \neg \sigma(x)\}$ is consistent. Thus

$$T \cup \{\varphi(c_i, \overline{c})\} \cup \{\neg \sigma(c_i)\}$$

is a consistent L^{*}-theory, as we can interpret c_i, \overline{c} as we like in a model of T. We can thus let

$$T_{2i+2} = T_{2i+1} \cup \{ \neg \sigma(c_i) \} = T \cup \{ \varphi(c_i, \bar{c}) \} \cup \{ \neg \sigma(c_i) \}$$

 \Box Theorem 13

Remark 14 (Ed.). I don't think we need T to be complete for the above direction; just for the equivalence.

2.2 Complete types

Fix a theory T. Fix $n \ge 0$.

Definition 15. An *n*-type (or complete *n*-type) is a partial *n*-type $p(x_1, \ldots, x_n)$ that is maximally consistent with *T*. We use $S_n(T)$ to denote the collection of complete *n*-types of *T*.

Remark 16. Let $p(x_1, \ldots, x_n)$ be a partial *n*-type. Then *p* is an *n*-type if and only if for all $\varphi(x_1, \ldots, x_n)$, we have either $\varphi(x_1, \ldots, x_n)$ or $\neg \varphi(x_1, \ldots, x_n)$ is in *p*.

There is a natural topology on $S_n(T)$:

Definition 17. We define the *Stone topology* on $S_n(T)$ to be the topology whose basic open sets are

$$[\varphi] = \{ p \in S_n(T) : \varphi \in p \}$$

for $\varphi(x_1,\ldots,x_n)$ an *L*-formula.

Remark 18. For this to generate a topology, the basic open sets must be closed under finite intersections. In fact, they are closed under all Boolean combinations:

- $[\varphi] \cap [\psi] = [\varphi \land \psi]$
- $\bullet \ [\varphi] \cup [\psi] = [\varphi \vee \psi]$
- $S_n(T) \setminus [\varphi] = [\neg \varphi]$
- $\emptyset = [\bot]$

• $S_n(T) = [\top]$

The basic open sets are thus clopen. Thus $S_n(T)$ is totally disconnected; i.e. the only non-empty connected sets are the singletons.

Remark 19. $[\varphi] = [\psi]$ if and only if $T \vdash \forall x_1 \dots x_n (\varphi(x_1, \dots, x_n) \leftrightarrow \psi(x_1, \dots, x_n)).$

Proof.

- (\Leftarrow) Suppose $\varphi \in p$. Then by consistency with T and completeness of p, we have $\psi \in p$, and thus that $[\varphi] \subseteq [\psi]$. By symmetry, we get $[\varphi] = [\psi]$.
- (\implies) Suppose $T \not\models \forall x(\varphi(x) \leftrightarrow \psi(x))$ (where $x = (x_1, \ldots, x_n)$). Then there is a model of T with a tuple realizing (say) $\varphi(x)$ but not $\psi(x)$. i.e. $\{\varphi(x), \neg \psi(x)\}$ is consistent with T. By a Zorn's lemma argument, we can extend it to a complete *n*-type in T, say $p(x_1, \ldots, x_n)$. Then $p \in [\varphi] \setminus [\psi]$.

 \Box Remark 19

Lemma 20 (4.2.2). $S_n(T)$ is Hausdorff and compact.

Proof. We check that it's Hausdorff. Suppose $p \neq q$. Thus there is $\varphi \in p$ with $\varphi \notin q$, and thus that $\neg \varphi \in q$. But

$$[\varphi] \cap [\neg \varphi] = [\varphi \land \neg \varphi] = \emptyset$$

So we can separate p and q by disjoint open sets.

We check compactness. Suppose

$$S_n(T) = \bigcup_{i \in I} U_i$$

is an open cover, with each

$$U_i = \bigcup_j [\varphi_{ij}]$$

Thus

$$S_n(T) = \bigcup_{i,j} [\varphi_{ij}]$$

Then

is not consistent with T. Then, by compactness of partial types, we have some finite subset of Σ is inconsistent with T. Thus

 $\Sigma = \{ \neg \varphi_{ij} : i, j \}$

$$T \vdash \forall x_1 \dots x_n (\varphi_{i_0 j_0}(x_1, \dots, x_n) \lor \dots \lor \varphi_{i_\ell, j_\ell}(x_1, \dots, x_n))$$

 So

$$S_n(T) \subseteq \bigcup_{k=0}^{\ell} [\varphi_{i_k, j_k}]$$

and $S_n(T)$ is compact.

Remark 21. One could also use the compactness of the Stone topology to check compactness of first-order logic by taking T to be the empty theory.

Lemma 22 (4.2.3). Every clopen set in $S_n(T)$ is of the form $[\varphi]$ for some L-formula $\varphi(x_1, \ldots, x_n)$.

Proof. We prove the following more general statement.

Claim 23. Suppose C_1, C_2 are disjoint closed subsets of $S_n(T)$. Then there is a basic open set separating them. i.e. there is $\varphi(x_1, \ldots, x_n)$ such that $C_1 \subseteq [\varphi]$ but $C_2 \cap [\varphi] = \emptyset$.

 $\Box\,$ Lemma 20

Proof. Set $\mathcal{F} = \{ [\varphi] : C_1 \subseteq [\varphi] \}$. Note then that $S_n(T) = [\top] \in \mathcal{F}$. If $p \in C_2$, then there is $[\psi] \ni p$ with $[\psi] \cap C_1 = \emptyset$ since $C_2 \cap C_1 = \emptyset$. (In particular, C_1^c is open and contains p, so there is a basic open subset of C_1^c containing p.) Note then that $[\neg \psi] \in \mathcal{F}$ and $p \notin [\neg \psi]$.

Thus C_2 is covered by the complements of the elements of \mathcal{F} . But C_2 is closed, and $S_n(T)$ is compact and Hausdorff. So C_2 is covered by finitely many complements of elements of \mathcal{F} ; i.e. we have

$$[\varphi_1],\ldots,[\varphi_\ell]\in\mathcal{F}$$

such that

$$\bigcap_{i=1}^{\ell} [\varphi_i] \cap C_2 = \emptyset$$

Then

$$\left[\bigwedge_{i=1}^{\ell}\varphi_i\right] = \bigcap_{i=1}^{\ell} [\varphi_i]$$

 \Box Claim 23

is our desired set, as it contains C_1 as a subset.

Let $C \subseteq S_n(T)$ be clopen. Let $C_1 = C$; let $C_2 = S_n(T) \setminus C$. Then C_1, C_2 are closed and disjoint. By the claim, we then have that they are separated by a basic clopen set, and thus that C is clopen. \Box Lemma 22

Lemma 24 (4.2.6). An *n*-type *p* is isolated in *T* if and only if *p* is isolated in $S_n(T)$. (i.e. $\{p\}$ is an open set). In fact, φ isolates *p* in *T* if and only if $\{p\} = [\varphi]$.

Proof.

 (\Longrightarrow) Suppose φ isolates p. Then

$$T \vdash \forall x(\varphi(x) \to \psi(x))$$

for each $\psi \in p$. Then comleteness and consistency of p implies that $\varphi \in p$. Thus $p \subseteq [\varphi]$. Suppose $q \in S_n(T)$ satisfies $q \neq p$. Then there is $\psi \in p$ with $\neg \psi \in q$. Then $\{\varphi, \neg \psi\}$ is inconsistent with T, and thus $q \notin [\varphi]$. So $\{p\} = [\varphi]$.

(\Leftarrow) Suppose $p \in S_n(T)$ is isolated. Then $\{p\}$ is clopen. So, by the previous lemma (4.2.3), we have that it is a basic open set, and there is φ such that $\{p\} = [\varphi]$. Let $\psi \in p$. If $\{\varphi, \neg \psi\}$ were consistent with T then we can extend it to q to get $q \in [\varphi]$ with $q \neq p$, a contradiction. So $\{\varphi, \neg \psi\}$ is inconsistent with T. Thus

$$T \vdash \forall x(\varphi(x) \to \psi(x))$$

 \Box Lemma 24

2.3 Types over parameters

and φ isolates p in T.

Definition 25. Suppose \mathcal{A} is an *L*-structure. Suppose $B \subseteq A$. An *n*-type over B in \mathcal{A} is a maximal set of L(B)-formulae (where $L(B) = L \cup \{\underline{b} : b \in B\}$) that is finitely satisfiable in \mathcal{A} . The set of such is denoted $S_n^{\mathcal{A}}(B)$.

Example 26. Suppose $a_1, \ldots, a_n \in A$. We define

$$tp(a_1,\ldots,a_n/B) = tp^{\mathcal{A}}(a_1,\ldots,a_n/B) = \{\varphi(x_1,\ldots,x_n) \text{ an } L_B \text{-formula} : \mathcal{A} \models \varphi(a_1,\ldots,a_n) \}$$

These are precisely the realized types in \mathcal{A} . Indeed, if $p(x_1, \ldots, x_n) \in S_n^{\mathcal{A}}(B)$ is realized in \mathcal{A} by $(a_1, \ldots, a_n) \in A^n$, then $tp(a_1, \ldots, a_n/B) \supseteq p(x_1, \ldots, x_n)$. But by maximality of p, we have

$$p(x_1,\ldots,x_n) = \operatorname{tp}(a_1,\ldots,a_n/B)$$

Remark 27.

- 1. If $\mathcal{A} \preceq \mathcal{A}'$ and $B \subseteq A$, then $S_n^{\mathcal{A}}(B) = S_n^{\mathcal{A}'}(B)$.
- 2. If $p \in S_n^{\mathcal{A}}(B)$, then p is realized in some $\mathcal{A}' \succeq \mathcal{A}$. To see this, observe that

$$T = \operatorname{Th}(\mathcal{A}_A) \cup p(c_1, \dots, c_n)$$

is consistent by compactness (where c_1, \ldots, c_n are new constant symbols). Then use PMATH 733, fall 2015 notes, 4.45:

Theorem 28. \mathcal{A} embeds elementarily into every model of $\text{Th}(\mathcal{A}_A)$.

Then if $\mathcal{C} \models T$, we have \mathcal{C} is of the form

$$\mathcal{C} = (\mathcal{A}'_A, a_1, \dots, a_n)$$

for some $\mathcal{A}' \succeq \mathcal{A}$, where $c_i^{\mathcal{C}} = a_i$. Hence (a_1, \ldots, a_n) realizes $p(x_1, \ldots, x_n)$ in \mathcal{A}' .

3. In fact, there is an elementary extension of \mathcal{A} in which all types from $S_n^{\mathcal{A}}(B)$ are realized. To see this, observe that

$$\operatorname{Th}(\mathcal{A}_A) \cup \{ p(c_p) : p \in S_n^{\mathcal{A}}(B) \}$$

is consistent, where for each $p \in S_n^{\mathcal{A}}(B)$ we let c_p be an *n*-tuple of new constant symbols.

4. $S_n^{\mathcal{A}}(B) = S_n(\operatorname{Th}(\mathcal{A}_B))$ since for partial types, we have finite satisfiability in \mathcal{A} is equivalent to consistency with $\operatorname{Th}(\mathcal{A}_B)$. We can use this to endow the former with a Stone topology.

Theorem 29 (4.2.5). Suppose \mathcal{A}, \mathcal{B} are L-structures. Suppose $A_0 \subseteq A$, $B_0 \subseteq B$. Suppose $f: A_0 \to B_0$ is a partial elementary map; i.e. suppose for any $m \ge 0$, any L-formulae $\varphi(x_1, \ldots, x_m)$ and any $a_1, \ldots, a_m \in A_0$, we have

$$\mathcal{A} \models \varphi(a_1, \dots, a_m) \iff \mathcal{B} \models \varphi(f(a_1), \dots, f(a_m))$$

Then there exists a surjective continuous map

$$S_n(f) \colon S_n^{\mathcal{B}}(B_0) \to S_n^{\mathcal{A}}(A_0)$$

i.e. Stone spaces constitute a contravariant functor

Proof. Suppose $x = (x_1, \ldots, x_n)$. Then every $L(A_0)$ -formula in x takes the form $\varphi(x, a)$ where $\varphi(x, y_1, \ldots, y_\ell)$ is an L-formula and $a = (a_1, \ldots, a_\ell) \in A_0^\ell$. We can then define $f(\varphi) = \varphi(x, f(a))$ an $L(B_0)$ -formula.

For $p \in S_n^{\mathcal{A}}(A_0)$, one could imagine defining

$$f(p) = \{ f(\varphi) : \varphi \in p \}$$

We then have f(p) is a partial type in Th(\mathcal{B}_{B_0}), since f is a partial elementary map; however, it may not be maximal, since f might not be surjective.

For $q \in S_n^{\mathcal{B}}(B_0)$, we instead define

$$S_n(f)(q) = \{ \varphi : \varphi \text{ an } L(A_0) \text{-formula}, f(\varphi) \in q \}$$

Claim 30. $S_n(f)(q) \in S_n^{\mathcal{A}}(A_0).$

Proof. It's finitely satisfiable in \mathcal{A} since q is finitely satisfiable in \mathcal{B} and f is a partial elementary map. Completeness follows since for all a either $\varphi(x, f(a)) \in q$ or $\neg \varphi(x, f(a)) \in q$. \Box Claim 30

We now check continuity. Suppose $\varphi(x, a)$ is an L_{A_0} -formula. Then

$$S_n(f)^{-1}([\varphi(x,a)]) = [\varphi(x,f(a))]$$

since given $q \in S_n^{\mathcal{B}}(B_0)$, we have

$$S_n(f)(q) \in [\varphi(x,a)] \iff \varphi(x,a) \in S_n(f)(q)$$
$$\iff \varphi(x,f(a)) \in q$$
$$\iff q \in [\varphi(x,f(a))]$$

We now check surjectivity. Given $p \in S_n^{\mathcal{A}}(A_0)$, let $q \in S_n^{\mathcal{B}}(B_0)$ extend f(p). Then

$$S_n(f)(q) = \{ \varphi(x, a) : \varphi(x, f(a)) \in q \}$$

$$\supseteq \{ \varphi(x, a) : \varphi(x, f(a)) \in f(p) \}$$

$$= p$$

Then $S_n(f)(q) \supseteq p$, and p is maximal. So $S_n(f)(q) = p$.

Remark 31.

- 1. If $f: A_0 \to B_0$ is a bijective partial elementary map, then $p \mapsto f(p)$ is a continuous map $S_n^{\mathcal{A}}(A_0) \to S_n^{\mathcal{B}}(B_0)$ and it will be the inverse of $S_n(f)$. So $S_n^{\mathcal{A}}(A_0)$ is homeomorphic to $S_n^{\mathcal{B}}(B_0)$.
- 2. If $\mathcal{A} = \mathcal{B}$ and $A_0 \subseteq B_0$ and $f: A_0 \to B_0$ is the containment, then

$$S_n(f): S_n^{\mathcal{A}}(B_0) \to S_n^{\mathcal{A}}(A_0)$$

is the restriction map

 $p(x) \mapsto p(x) \upharpoonright A_0$ = set of formulae in p(x) over A_0

So restriction is a continuous, surjective homomorphism.

Some examples:

Remark 32. Suppose T admits quantifier elimination. Suppose $\mathcal{A} \models T$, $B \subseteq A$, and $a, a' \in A^n$. If a and a' realize the same atomic L_B -formulae, then $\operatorname{tp}(a/B) = \operatorname{tp}(a'/B)$.

Exercise 33. If every type in T is determined by its atomic part, then T admits quantifier elimination.

Example 34. Recall that DLO is the theory of dense linear orderings without endpoints (in the language $L = \{<\}$); further recall that DLO admits quantifier elimination. What are the 1-types? Well, there are only 2 atomic L-formula: x < x and x = x. But the former is never satisfied, and the latter never is; so

 $|S_1(DLO)| = 1$

More interesting in the case of parameters. Suppose $(A, <) \models$ DLO. Let $B \subseteq A$. What is $S_1(B)$? Well, there are tp(b/B) for $b \in B$, and there are *cuts*; i.e. partitions $B = L \cup U$ such that $\ell < u$ for all $\ell \in L$, all $u \in U$. This is everything: given any $p(x) \in S_1(B)$ not realized in B, define

$$L_p = \{ b \in B : p(x) \in [b < x] \}$$
$$U_p = \{ b \in B : p(x) \in [x < b] \}$$

Which types are isolated in $S_1(B)$? They are

- Those realized in B
- Cuts (L, U) where $L = \emptyset$ or has a maximum and $U = \emptyset$ or has a minimum.

Example 35. $(\mathbb{Q}, <) \models \text{DLO}$. Then

$$S_1(\mathbb{Q}) = \mathbb{R} \cup \{\pm \infty\}$$

(Not topologically!) In particular, over countable sets, there may be 2^{\aleph_0} -many 1-types. (This is, of course, the maximum number of types in a countable set over a countable theory.)

Example 36. Recall that ACF is the theory of algebraically closed fields in the language $L = \{0, 1, +, -, \times\}$; further recall that ACF admits quantifier elimination. We'd like to work over subfields of algebraically closed fields as parameter sets. We can, in fact, do this: suppose $K \models ACF$, $A \subseteq K$. Let k be the subfield of K generated by A. Then the restriction map

$$S_n^K(k) \to S_n^K(A)$$

 \Box Theorem 29

is surjective and continuous; it is, in fact, bijective.

The point is that every L_k -formula is equivalent to an L_k -formula. To see this, note that the atomic formulae over k are P(x) = 0 for $P \in k[x_1, \ldots, x_n]$, $x = (x_1, \ldots, x_n)$, and then use the fact that elements of k are of the form f(a) where $f \in \mathbb{Z}(Y_1, \ldots, Y_\ell)$ and $a \in A^\ell$.

Then $S_n^k(k)$ is in bijective correspondence with $\operatorname{Spec}(k[X_1,\ldots,X_n])$, the set of prime ideals in $k[x_1,\ldots,x_n]$. The correspondence is given by

$$p(x) \mapsto I_p = \{ f \in k[X_1, \dots, X_n] : p(x) \in [f(x_1, \dots, x_n)] \}$$

The inverse is given by sending I to the type defined by $f(x) = 0 \iff f \in I$. This, too, is not a topological correspondence, though we think the forward map is continuous.

$\mathbf{2.4}$ Section 4.3

Definition 37. Let κ be an infinite cardinal. We say \mathcal{A} is κ -saturated if all 1-types over sets of size $< \kappa$ are realized.

Remark 38. If \mathcal{A} is infinite, then

$$\Phi(x) = \{ x \neq a : a \in A \}$$

is a partial 1-type over A, and can thus be extended to a complete type over A. So, if \mathcal{A} is κ -saturated, then $\kappa \leq |A|.$

Remark 39. If \mathcal{A} is κ -saturated, then every type in $S_n^{\mathcal{A}}(B)$ for $|B| < \kappa$ is realized in \mathcal{A} , for all $n \ge 1$.

Proof. Apply induction on n. n = 1 is the definition of κ -saturation. Suppose $n > 1, x = (x_1, \ldots, x_n)$, and $p(x) \in S_n^{\mathcal{A}}(B)$, with $|B| < \kappa$. Let $q(x_1, \ldots, x_{n-1})$ be the collection of formulae in p(x) in which x_n does not appear. Then $q \in S_{n-1}^{\mathcal{A}}(B)$. The induction hypothesis then implies that there are $a_1, \ldots, a_{n-1} \in A$ with $\mathcal{A} \models q(a_1, \ldots, a_{n-1})$. Let

$$r(x_n) = \{ \varphi(a_1, \dots, a_{n-1}, x_n) : \varphi \in p \}$$

Claim 40. $r(x_n) \in S_1^{\mathcal{A}}(B \cup \{a_1, \dots, a_{n-1}\}).$

Proof. We first check finite satisfiability. Suppose $\varphi(a_1, \ldots, a_{n-1}, x_n) \in r(x_n)$. So $\varphi(x) \in p(x)$.

$$\exists x_n \varphi(x) \in p(x) \Rightarrow \exists x_n \varphi(x) \in q(x_1, \dots, x_{n-1}) \Rightarrow \mathcal{A} \models \exists x_n \varphi(a_1, \dots, a_{n-1} x_n)$$

So $\varphi(a_1,\ldots,a_{n-1},x_n)$ is satisfiable in \mathcal{A} . But $r(x_n)$ is closed under conjunction. So r(x) is finitely satisfiable in \mathcal{A} .

Completeness of $r(x_n)$ follows from completeness of p.

By κ -saturation there is $b \in A$ such that $\mathcal{A} \models r(b)$ (since $|B \cup \{b_1, \ldots, b_n\}| < \kappa$). Then $(a_1, \ldots, a_{n-1}, b)$ realizes p(x). □ Remark 39

Lemma 41 (4.3.1). Suppose \mathcal{A}, \mathcal{B} are L-structures that are countably infinite and ω -saturated. If $\mathcal{A} \equiv \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Remark 42. In general \equiv does not imply \cong : Lowenheim-Skolem says that structures have arbitrarily large elementary extensions. Even in the same cardinality, \equiv does not imply \cong .

Example 43. $\mathbb{Q}^{\text{alg}} \equiv \mathbb{Q}(t)^{\text{alg}}$ in the language of rings, as ACF₀ is complete. They are both countably infinite,

but they are not isomorphic as the latter has a transcendental element over \mathbb{Q} , and the former does not. In fact, neither of these is ω -saturated. Let $p(x) \in S_1^{\mathbb{Q}^{\text{alg}}}(\mathbb{Q}) = S_1^{\mathbb{Q}^{\text{alg}}}(\emptyset)$ be the type corresponding to $(0) \subseteq \mathbb{Q}[x]$. Then p(x) says $f(x) \neq 0$ for any $f \in \mathbb{Q}[x] \setminus \{0\}$. This is not realized in \mathbb{Q}^{alg} .

For $\mathbb{Q}(t)^{\text{alg}}$, consider $(0) \subseteq \mathbb{Q}(t)[x]$, which corresponds to $q(x) \in S_1^{\mathbb{Q}(t)^{\text{alg}}}(\mathbb{Q}(t)) = S_1^{\mathbb{Q}(t)^{\text{alg}}}(t)$. This is over finitely many parameters but is not realized in $\mathbb{Q}(t)^{\text{alg}}$.

In fact, 4.3.1 implies that ACF₀ has at most one countably ω -saturated model; namely $\mathbb{Q}(t_0, t_1, \dots)^{\text{alg}}$.

 \Box Claim 40

Proof of Lemma 41. Back-and-forth argument, generalizing \aleph_0 -categoricity of DLO. Construct chains of *finite* sets

$$\begin{array}{ccc} A_0 & \stackrel{\subseteq}{\longrightarrow} & A_1 & \stackrel{\subseteq}{\longrightarrow} & \dots \\ & & \downarrow^{f_0} & & \downarrow^{f_1} \\ B_0 & \stackrel{\subseteq}{\longrightarrow} & B_1 & \stackrel{\subseteq}{\longrightarrow} & \dots \end{array}$$

with each f_i a bijective partial elementary map and such that

$$\bigcup_{i} A_{i} = A$$
$$\bigcup_{i} B_{i} = B$$

Then

$$f = \bigcup_i f_i$$

is an isomorphism $\mathcal{A} \cong \mathcal{B}$.

Enumerate

$$A = \{ a_0, a_1, \dots \}$$
$$B = \{ b_0, b_1, \dots \}$$

Recursively construct A_i , B_i , and f_i , making sure at odd stages that

$$\bigcup_i A_i = A$$

and at even stages that

$$\bigcup_i B_i = B$$

Set $A_0 = B_0 = f_0 = \emptyset$. Then f_0 is a partial elementary map since $\mathcal{A} \equiv \mathcal{B}$. Suppose we have constructed

 $f_i \colon A_i \to B_i$

a bijective partial elementary map for i = 2n. Set $A_{i+1} = A_i \cup \{a_n\}$. Let $p(x) = \operatorname{tp}(a_n/A_i)$. Then $f_i(p) \in S_1^{\mathcal{B}}(B_i)$. By ω -saturation of \mathcal{B} there is $b \in B$ such that $\mathcal{B} \models f_i(p)(b)$. Set $B_{i+1} = B_i \cup \{b\}$ and extend f_i to f_{i+1} by $f_{i+1}(a_n) = b$. Check that f_{i+1} is a bijective partial elementary map.

Suppose i = 2n + 1. Set $B_{i+1} = B_i \cup \{b_n\}$. Let $q(x) = \operatorname{tp}(b_n/B_i)$. Then $S_1(f_i)(q) = f_i^{-1}(q) \in S_1^A(A_i)$; this has a realization a by ω -saturation of \mathcal{A} . Set $A_{i+1} = A \cup \{a\}$; extend f_i to f_{i+1} by $f_{i+1}(a) = b_n$. This will then be a bijective partial elementary map. \Box Lemma 41

Definition 44. Recall that for an infinite cardinal κ , we say T is κ -categorical if it has a unique model of size κ .

We are interested in \aleph_0 -categoricity.

Theorem 45 (Ryll-Nardzewski theorem). Suppose T is a countable, complete theory. Then T is \aleph_0 -categorical if and only if for each $n < \omega$ there are only finitely many L-formulae $\varphi(x_1, \ldots, x_n)$ modulo T.

Proof.

(\Leftarrow) By Lemma 41, it suffices to show that every countably infinite model of T is ω -saturated. Let $\mathcal{M} \models T$ be countably infinite. Suppose $A \subseteq M$ is finite, say $A = \{a_1, \ldots, a_n\}$. Then every L(A)-formula in 1 variable is of the form $\varphi(a_1, \ldots, a_n, x)$ where $\varphi(y_1, \ldots, y_n, x)$ is an L-formula. So in $T = \text{Th}(\mathcal{M})$ there are only finitely many L(A)-formulae. So any $p(x) \in S_1^{\mathcal{M}}(A)$ is equivalent to a single L(A)-formula; hence p(x) is realized in \mathcal{M} . So \mathcal{M} is ω -saturated.

 (\Longrightarrow) We begin with a claim.

Claim 46. All n-types are isolated.

Proof. If p(x) is not isolated, then by the omitting types theorem, we have $\mathcal{M} \models T$ omitting p(x). By downward Löwenheim-Skolem, we may assume that \mathcal{M} is countable.

Since $p(x) \in S_n(T)$, it is realized in some $\mathcal{N} \models T$; by downward Löwenheim-Skolem, we may assume \mathcal{N} is countable.

Thus \mathcal{M} has no realization of p(x), and \mathcal{N} does; so $\mathcal{M} \not\cong \mathcal{N}$, contradicting the \aleph_0 -categoricity of T. \Box Claim 46

So $S_n(T)$ is compact, with every point isolated; thus $S_n(T)$ is finite. Thus there are finitely many clopen sets in $S_n(T)$. Thus, by Lemma 22, we have that modulo T there are only finitely many L-formulae in n variables. (Since $[\varphi] = [\psi]$ if and only if $T \models \forall x(\varphi(x) \leftrightarrow \psi(x))$.)

 \Box Theorem 45

Remark 47. The proof of Ryll-Nardzewski shows more. If T is countable and complete, then the following are equivalent:

- T is \aleph_0 -categorical.
- $S_n(T)$ is finite for all $n \ge 0$.
- All countable models are ω -saturated.

We also get

Corollary 48 (4.3.7). Th(\mathcal{A}) is \aleph_0 -categorical if and only if Th(\mathcal{A}_B) is \aleph_0 -categorical for any finite $B \subseteq \mathcal{A}$.

Definition 49. A theory T is small if $S_n(T)$ is countable for all $n < \omega$.

Lemma 50 (4.3.9). T is small if and only if there is a countable, ω -saturated model.

Example 51. ACF₀ is not \aleph_0 -categorical, as remarked before. It is, however, small, since $S_n(ACF_0)$ is in bijection with Spec($\mathbb{Q}[x_1,\ldots,x_n]$), and the latter is countable by the Hilbert basis theorem. We will see in the homework that $\mathbb{Q}(t_1,\ldots)^{\text{alg}}$ is a countable ω -saturated model.

Proof of Lemma 50.

- (\Leftarrow) If $\mathcal{M} \models T$ is ω -saturated, then any type in $S_n(T)$ is realized in \mathcal{M} . But \mathcal{M} is countable; so $|S_n(T)| \leq \aleph_0$.
- (\Longrightarrow) Let $\mathcal{A}_0 \models T$ be countable. Recursively construct an elementary chain of countable models $\mathcal{A} = \mathcal{A}_0 \preceq \mathcal{A}_1 \preceq \ldots$ such that \mathcal{A}_{i+1} realizes every 1-type over finitely many parameters in \mathcal{A}_i .

Claim 52. There are only countably many 1-types over finite sets in A_i ; i.e.

$$\left| \bigcup_{B \subseteq_{\mathrm{fin}} A_i} S_1^{\mathcal{A}_i}(B) \right| \le \aleph_0$$

Proof. Suppose $B \subseteq_{\text{fin}} A_i$.

Claim 53. $Th((\mathcal{A}_i)_B)$ is also small.

Proof. Suppose $q(x_1, \ldots, x_n) \in S_n^{\mathcal{A}_i}(B)$ where $B = \{b_1, \ldots, b_\ell\}$. Then $q(x_1, \ldots, x_n) = p(x_1, \ldots, x_n, b_1, \ldots, b_\ell)$ for some $p(x_1, \ldots, x_n, y_1, \ldots, y_\ell) \in S_{n+\ell}(T)$. \Box Claim 53

This

$$\bigcup_{B\subseteq_{\mathrm{fin}}A_i} S_1^{\mathcal{A}_i}(B)$$

is countable.

 \Box Claim 52

Let this set be $\{p_1, \ldots, p_n\}$. Use downward Löwenheim-Skolem to realize them:

$$\mathcal{A}_i \preceq \mathcal{A}_i^{(1)} \preceq \dots$$

where $\mathcal{A}_{i}^{(j)}$ is countable and realizes p_{j} . Let

$$\mathcal{A}_{i+1} = \bigcup_{j} \mathcal{A}_{i}^{(j)}$$

So $\mathcal{A}_{i+1} \succeq \mathcal{A}_i$ is countable, and satisfies the desired properties. Finally, set

$$\mathcal{A} = \bigcup_i \mathcal{A}_i$$

Then \mathcal{A} is countable, and $\mathcal{A} \models T$ as $\mathcal{A} \succeq \mathcal{A}_0$; furthermore, \mathcal{A} is ω -saturated by construction.

 \Box Lemma 50

Example 54.

- 1. DLO is \aleph_0 -categorical. The unique countable model is $(\mathbb{Q}, <)$; it is then ω -saturated.
- 2. For F a finite field, let $L = \{0, +, -, \lambda_f : f \in F\}$. Let T be the theory of infinite vector spaces over F. Then T is \aleph_0 -categorical, and its unique countable model is

$$F^{\omega} = \oplus_{i < \omega} F$$

which is then ω -saturated.

- 3. Let F be countably infinite; then this doesn't work, as $F \ncong F \times F$. It has a countably ω -saturated model: namely, the one of dimension \aleph_0 . (This follows from the homework problem.) Thus the theory of infinite vector spaces over F is small.
- 4. ACF_0 is not \aleph_0 -categorical, as seen previously, but it is small.
- 5. RCF is not small.

Theorem 55 (Vaught). Suppose T is a countable, complete theory. Then T cannot have precisely 2 countable models.

Proof. If there were such a theory T, it would have to be small, since every type in $S_n(T)$ is realized in some countable model, and there are only 2 countable models; so there are only countably many *n*-types. Furthermore, T is not \aleph_0 -categorical.

Claim 56. Every small theory T that is small and not \aleph_0 -categorical has at least three models.

Proof. By smallness, there is a countable, ω -saturated $\mathcal{A} \models T$. Since T is not \aleph_0 -categorical, Ryll-Nardzewski yields that there is a non-isolated *n*-type $p(x) \in S_n(T)$. By the omitting types theorem and downward Löwenheim-Skolem, we have a countable $\mathcal{B} \models T$ omitting p(x); then $\mathcal{B} \ncong \mathcal{A}$.

Let $a = (a_1, \ldots, a_n) \in A^n$ realize p(x). Then $\text{Th}(\mathcal{A}, a_0, \ldots, a_n)$ is not \aleph_0 -categorical, since $\text{Th}(\mathcal{A}) = T$ is not. (This follows from Ryll-Nardzewski.) Let $(\mathcal{C}, c_1, \ldots, c_n) \equiv (\mathcal{A}, a_1, \ldots, a_n)$ satisfy $(\mathcal{C}, c_1, \ldots, c_n)$ is countable and not ω -saturated. So \mathcal{C} is not ω -saturated. So $\mathcal{C} \ncong \mathcal{A}$. But (c_1, \ldots, c_n) realize p(x); so $\mathcal{C} \ncong \mathcal{B}$. \Box Claim 56

 \Box Theorem 55

2.5 Section 4.5

We assume throughout that T is countable and consistent.

Definition 57. $\mathcal{A} \models T$ is *atomic* if for all $n \in \mathbb{N}$, we have that all the *n*-types over \emptyset realized in \mathcal{A} are isolated.

Remark 58. When T is complete, this says that \mathcal{A} is "minimal" in the sense that it only realizes the types that it has to.

Definition 59. A prime model of T is one which elementarily embeds into every model of T.

Remark 60. This is a "minimum" model with respect to \leq . Remark 61.

- 1. Prime models need not exist.
- 2. Suppose \mathcal{A} is a prime model of T. Then
 - (a) \mathcal{A} is countable since downward Löwenheim-Skolem implies that T has a countable model.
 - (b) \mathcal{A} is atomic since every non-isolated type is omitted in some model of T, and hence in \mathcal{A} .

Theorem 62 (4.5.2). Suppose T is complete. Then a model of T is prime if and only if it is countable and atomic.

Proof.

 (\Longrightarrow) Done.

(\Leftarrow) Suppose $\mathcal{M}_0 \models T$ is countable and atomic. Suppose $\mathcal{M} \models T$. Let \mathcal{F} be the set of all finite partial elementary maps $f: B \to M$ from \mathcal{M}_0 to \mathcal{M} where $B \subseteq_{\text{fin}} \mathcal{M}_0$. Since $\mathcal{M}_0 \equiv \mathcal{M}$ as T is complete, we have that the empty function is in \mathcal{F} . Note also that if $f_0 \subseteq f_1 \subseteq \ldots$ are in \mathcal{F} , then

$$\bigcup_{i\in\mathbb{N}}f_i$$

is a partial elementary map. So, as M_0 is countable, it suffices to show that given $f: B \to M$ in \mathcal{F} and $a \in M_0$, we can extend f to a partial elementary map on $B \cup \{a\}$.

Exercise 63. If \mathcal{A} is an atomic model of T then all n-types over finite sets that are realized in \mathcal{A} are isolated.

Consider p(x) = tp(a/B); this is realized, so the above exercise implies that it is isolated. Thus f(p) is isolated in \mathcal{M} , and it is realized in \mathcal{M} , say by c; we then extend f by $a \mapsto c$. This completes our construction of an elementary embedding $\mathcal{M}_0 \to \mathcal{M}$.

\Box Theorem 62

Remark 64. There is something common in the proofs of 4.3.3 and 4.5.2. In both cases, we had a finite partial elementary map $f: A \to N$ from $\mathcal{M} \to \mathcal{N}$ with $A \subseteq_{\text{fin}} M$ and $a \in M$, and we needed to extend f to $A \cup \{a\}$. This is equivalent to finding a realization of $f(\operatorname{tp}(a/A))$. There are two extreme reasons why this might be possible:

- 1. \mathcal{N} realizes all types over finite sets; i.e. \mathcal{N} is ω -saturated.
- 2. tp(a/A), and hence f(tp(a/A)) are isolated; i.e. \mathcal{M} is atomic.

So prime models and countable ω -saturated models are opposites, but in some ways behave similarly.

Definition 65. An *L*-structure \mathcal{M} is called ω -homogeneous if every finite partial elementary map (i.e. whose domain is finite) $f: A \to M$ from $\mathcal{M} \to \mathcal{M}$ and any $a \in M$, we can extend f to a partial elementary map on $A \cup \{a\}$.

Remark 66. If \mathcal{M} is countable, then ω -homogeneity implies that we can extend f to an automorphism of \mathcal{M} . (\mathcal{M} is strongly ω -homogeneous.) The proof of 4.3.3 shows that ω -saturated structures are ω -homogeneous.

TODO 1. Am I confusing 4.3.1 and 4.3.3?

Remark 67. The proof of Theorem 62 shows that prime models of countable, complete theories are also ω -homogeneous.

Theorem 68 (4.5.3). All prime models are isomorphic.

Proof. We use back-and-forth as in 4.3.3 but using the fact that all the types that need to be realized are isolated because our models are atomic. \Box Theorem 68

What of the existence of prime models?

Remark 69. For T a countable, complete, \aleph_0 -categorical theory, we have that the unique countably infinite $\mathcal{M} \models T$ is prime.

Proof. $S_n(T)$ is finite; so all *n*-types are isolated, and \mathcal{M} is atomic. But \mathcal{M} is countable. So \mathcal{M} is prime. \Box Remark 69

Theorem 70 (4.5.7). A countable, complete theory T has a prime model if and only if the isolated types in $S_n(T)$ are dense for all $n \ge 1$.

Proof.

 (\Longrightarrow) Suppose $\mathcal{M} \models T$ is a prime model. Suppose $[\varphi(x)]$ is a non-empty basic clopen set, where $x = (x_1, \ldots, x_n)$. We need to show that $[\varphi]$ contains an isolated type.

Well, since $[\varphi] \neq \emptyset$, we have that $\varphi(x)$ is consistent with T. So $T \models \exists x(\varphi(x))$, and we have a realization $a = (a_1, \ldots, a_n) \in M^n$ of $\varphi(x)$. Then $\varphi(x) \in \operatorname{tp}(a)$, and $\operatorname{tp}(a) \in [\varphi]$. But $\operatorname{tp}(a)$ is isolated as \mathcal{M} is atomic. So $[\varphi]$ contains an isolated type.

(\Leftarrow) Suppose the isolated types are dense for all $n \ge 1$. Fix n, and consider $\Sigma_n(x)$ where $x = (x_1, \ldots, x_n)$ given by

 $\Sigma_n(x) = \{ \neg \varphi(x) : \varphi(x) \text{ isolates a type in } S_n(T) \}$

Claim 71. Suppose $\mathcal{M} \models T$ omits all the $\Sigma_n(x)$; then every type realized in \mathcal{M} is isolated.

Proof. Suppose $a \in M^n$. Then a does not realize Σ_n , so a realizes $\varphi(x)$ for some $\varphi(x)$ isolating a type q(x). But $\varphi(x) \in \operatorname{tp}(a)$; so $q(x) \subseteq \operatorname{tp}(a)$. So $q = \operatorname{tp}(a)$, and $\operatorname{tp}(a)$ is isolated. \Box Claim 71

Then such an \mathcal{M} is atomic; downward Löwenheim-Skolem then yields a countable atomic model, which is then a prime model. It remains to find \mathcal{M} omitting all Σ_n . We use a generalized form of the omitting types theorem that allows us to simultaneously omit countably many times; we then simply need to show that Σ_n is not isolated.

Let $\psi(x)$ be an *L*-formula consistent with *T*. We need to show that $\psi(x)$ does not isolate Σ_n . Consider $[\psi]$; by hypothesis, it contains an isolated type p(x), say by $\varphi(x)$. Then $\psi(x) \in p(x)$, so $T \vdash \forall x(\varphi(x) \to \psi(x))$. Then, if $\psi(x)$ isolated $\Sigma_n(x)$, then $T \vdash \forall x(\psi(x) \to \neg\psi(x))$ since $\neg\varphi(x) \in \Sigma_n$. So $T \vdash \forall x(\varphi(x) \to \neg\varphi(x))$, contradicting our requirement that an isolating formula must be consistent. So $\psi(x)$ does not isolate Σ_n . So each $\Sigma_n(x)$ is not isolated.

Exercise 72. Generalize the proof of the omitting types theorem to simultaneously omit countably many types. Better yet, generalize the Baire category theorem proof.

 \Box Theorem 70

Definition 73. We say a formula is *complete* if it isolates a type.

Corollary 74. Suppose T is a countable, complete theory. If T is small, then T has a prime model. Thus \aleph_0 -categorical implies smallness, which in turn implies the existence of a prime mode.

Proof. Suppose T has no prime model. Then there is $n \ge 1$ such that the isolated types in $S_n(T)$ are not dense. Then there is an L-formula $\varphi(x_1, \ldots, x_n)$ such that $[\varphi(x)]$ contains no isolated types.

Claim 75. $\varphi(x)$ is not implied by any formula which isolates a type.

Proof. Suppose $\psi(x)$ isolates q(x) and $T \vdash \forall x(\psi(x) \rightarrow \varphi(x))$. Then if $\varphi(x) \notin q(x)$, we would have $\neg \varphi(x) \in q(x)$, and thus $\psi(x) \rightarrow \neg \varphi(x)$, a contradiction. So $\varphi(x) \in q(x)$, and $q \in [\varphi]$, another contradiction.

We now construct a tree of consistent formulae $\{\varphi_s(x_1,\ldots,x_n): s \in 2^{<\omega}\}$ such that

$$T \vdash \forall x_1 \dots x_n (\varphi_s(x_1, \dots, x_n) \leftrightarrow (\varphi_{s^0}(x_1, \dots, x_n) \lor \varphi_{s^1}(x_1, \dots, x_n))$$

•

 $T \vdash \neg \exists x_1 \dots x_n (\varphi_{s^0}(x_1, \dots, x_n \land \varphi_{s^1}(x_1, \dots, x_n)))$

For each $\alpha \in 2^{<\omega}$, let

$$\Sigma_{\alpha}(x) = \{ \varphi_{\alpha \upharpoonright n} : n < \omega \}$$

This is consistent with T as it is a nested sequence of formulae each consistent with T with

 $T \vdash \forall x_1 \dots x_n (\varphi_{a \upharpoonright (n-1)}(x_1, \dots, x_n) \to \varphi_{a \upharpoonright n}(x_1, \dots, x_n)$

Extend Σ_{α} to $p_{\alpha} \in S_n(T)$. If $\alpha \neq \beta$ then $p_{\alpha} \neq p_{\beta}$ because of the second condition. So

 $|S_n(T)| = 2^{\aleph_0}$

and T is not small

Example 76. Let $L = \{P_s : s \in 2^{<\omega}\}$ be a collection of unary predicates. Let T consist of the sentences

- $\forall x(P_{\varepsilon}(x))$
- $\exists^{\infty} x(P_s(x))$
- $\forall x((P_{s^{\circ}0}(x) \lor P_{s^{\circ}1}(x)) \iff P_s(x))$
- $\neg \exists x (P_{S^{\circ}0}(x) \land P_{s^{\circ}1}(x))$

for each $s \in 2^{<\omega}$. Then T is complete and has no prime model. (For this we need to show quantifier elimination.)

3 Chapter 5

We look at \aleph_1 -categorical theories. A useful technique is indiscernible sequences.

Definition 77. Suppose \mathcal{M} is an *L*-structure; suppose $A \subseteq M$. Suppose *I* is an infinite linear ordering. A sequence of *k*-tuples $(a_i : i \in I)$ is *indiscernible over* A *in* \mathcal{M} if

$$tp(a_{i_1}, \ldots, a_{i_n}/A) = tp(a_{j_1}, \ldots, a_{j_n}/A)$$

for all $i_1 < \cdots < i_n$ and $j_1 < \cdots < j_n$ and all $n < \omega$. This is sometimes called *order-indiscernible*. If we omit A, we mean $A = \emptyset$.

Remark 78. If $a_i = a_j$ for some i < j, then $a_i = a_j$ for all i and j.

Definition 79. Suppose I is an infinite linear order. Suppose $(a_i : i \in I)$ is a sequence of k-tuples in \mathcal{M} . The *Ehrenfeucht-Mostowski type* is

$$\operatorname{EM}((a_i : i \in I)/A) = \{\varphi(x_1, \dots, x_n) : n < \omega, \varphi \text{ an } L(A) \text{-formula}, \\ \mathcal{M} \models \varphi(a_{i_1}, \dots, a_{i_n}) \text{ for all } i_1 < \dots < i_n \text{ in } I\}$$

 \Box Corollary 74

Remark 80. $(a_i : i \in I)$ is indiscernible over A if and only if

$$\mathrm{EM}((a_i:i\in I)/A) = \bigcup_{n<\omega} \mathrm{tp}(a_0\dots a_{n-1}/A)$$

(We have to be a bit careful if $I \not\supseteq \mathbb{N}$, but the point is to pick any sequence in I.)

Lemma 81 (Standard lemma). Suppose \mathcal{N} is an L-structure; suppose J is an infinite linear ordering. Suppose $(b_j : j \in S)$ is a sequence of k-tuples in \mathcal{N} . Given an infinite linear ordering I, there exists $\mathcal{M} \equiv \mathcal{N}$ with an indiscernible sequence $(a_i : i \in I)$ in \mathcal{M} realizing $\mathrm{EM}((b_j : j \in J))$. That is, if $\varphi(x_1, \ldots, x_n)$ is true in \mathcal{N} of all $(b_{j_1}, \ldots, b_{j_n})$ with $j_1 < \cdots < j_n$, then $\varphi(x_1, \ldots, x_n)$ is true of all (equivalently, some) increasing $(a_{i_1}, \ldots, a_{i_n})$.

Remark 82.

- We can do this over parameters by working in L(A).
- In particular, if T is a theory with an infinite model, then for any infinite linear ordering I, we have that there is a model of T with an indiscernible sequence $(a_i : i \in I)$ with all a_i distinct.

Proof. Suppose $\mathcal{N} \models T$ is infinite. Let $(b_i : i < \omega)$ be a sequence of distinct elements of N. Applying the standard lemma, we get $\mathcal{M} \equiv \mathcal{N}$ (so $\mathcal{M} \models T$) and $(a_i : i \in I)$ is indiscernible. Furthermore, we have $a_i \neq a_j$ for all i < j in I since $(x_1 \neq x_2) \in \text{EM}((b_j : j < \omega))$.

The main tool in proving Lemma 81 is the following:

Theorem 83 (Ramsey's theorem). Suppose A is an infinite set; suppose $n < \omega$. Let $[A]^n = \{ B \subseteq A : |B| = n \}$. Suppose $[A]^n = C_1 \sqcup \cdots \sqcup C_k$. Then there is infinite $B \subseteq A$ such that $[B]^n \subseteq C_i$ for some $i \in \{1, \ldots, k\}$.

Proof of Lemma 81. We assume k = 1; that is, we are dealing with indiscernible sequences of elements, not tuples. Let $C = (c_i : i \in I)$ be new constant symbols. It suffices to prove that the following L(C)-theory is consistent:

$$Th(\mathcal{N}) \cup \{ \varphi(c_{i_1}, \dots, c_{i_n}) \leftrightarrow \varphi(c_{k_1}, \dots, c_{k_n}) : i_1 < \dots < i_n, k_1 < \dots < k_n \text{ in } I, n < \omega \} \\ \cup \{ \psi(c_{i_1}, \dots, c_{i_n}) : i_1 < \dots < i_n \text{ in } I, \psi(x_1, \dots, x_n) \in EM((b_j : j \in J)), n < \omega \}$$

We use a compactness argument. We are then given

- \mathcal{N} an *L*-structure
- $(b_j : j \in J)$ a linearly ordered sequence in N
- Finitely many new constant symbols c_1, \ldots, c_ℓ
- $\Delta(x_1,\ldots,x_n)$ a finite collection of *L*-formulae

and we wish to prove that

$$T = \operatorname{Th}(\mathcal{N}) \cup \{ \psi(c_{i_1}, \dots, c_{i_n}) : \psi \in \operatorname{EM}_n^{\mathcal{N}}((b_j : j \in J)) | 1 \le i_1 < \dots < i_n \le \ell \}$$
$$\cup \{ \varphi(c_{i_1}, \dots, c_{i_n}) \leftrightarrow \varphi(c_{k_1}, \dots, c_{k_n}) : \varphi \in \Delta(x), 1 \le i_1 < \dots < i_n \le \ell, 1 \le k_1 < \dots < k_n \le \ell \}$$

(where EM_n is the Ehrenfeucht-Mostowski type restricted to formulae in n free variables).

Case 1. Suppose the b_j are distinct. Let $B = \{b_j : j \in J\}$; then this is infinite. Define on $[B]^n$ a relation \sim by $\overline{b} \sim \overline{c}$ if $\mathcal{N} \models \varphi(\overline{b}) \leftrightarrow \varphi(\overline{c})$ for all $\varphi \in \Delta$, all increasing enumerations \overline{b} , \overline{c} of *n*-element subsets of *B*. This is then an equivalence relation with at most $2^{|\Delta|}$ -many classes. Then, by Ramsey's theorem, there is $B' = \{b_{j_1}, \ldots, b_{j_\ell}\} \subseteq B$ such that any two increasing *n*-tuples from B' realize the same formulae from Δ . So

$$(\mathcal{N}, b_{j_1}, \dots, b_{j_\ell}) \models T$$

- Case 2. Suppose the b_j are not distinct but B is infinite. Then we can throw away the repetitions and apply the previous case.
- **Case 3.** Suppose *B* is finite. Then there exists $j_1 < \cdots < j_\ell$ in *J* such that $b_{j_1} = \cdots = b_{j_\ell} = b$. So $(\mathcal{N}, b, \ldots, b) \models T$.

🗆 Lemma 81

Lemma 84 (5.1.6). Suppose L is countable; suppose A is an L-structure generated by a well-ordered indiscernible sequence $(a_i : i \in I)$. Then for all $n \ge 1$, we have that A realizes only countably many n-types over any countable set.

Proof. Every element of A is of the form $t(a^{\alpha})$ where t is an n-ary L-term and $a^{\alpha} = (a_{\alpha_1}, \ldots, a_{\alpha_{\ell}}) \in I^{\ell}$. Suppose $B \subseteq A$ is countable. Let $A_0 = \{a_i : a_i \in B\}$. Then A_0 is countable, and $A_0 = \{a_i : i \in I_0\}$ for some $I_0 \subseteq I$.

Note that a type over A_0 has a unique extension to $A_0 \cup B$, as every $L(A_0 \cup B)$ -formula is equivalent to some L(A)-formula. So it suffices to count the *n*-types over A_0 realized in A.

Assume n = 1. Let $tp^{\mathcal{A}}(c/A_0)$ be such a type. Then $c \in A$, so $c = t(a^{\alpha})$ for some t, α as above. Then $tp(c/A_0)$ is determined by $tp(a^{\alpha}, A_0)$ and t. But there are countably many *L*-terms t; so it suffices to count the $tp(a^{\alpha}/A_0)$. By indiscernibility, we have that $tp(a^{\alpha}/A_0)$ is determined by:

- $tp_{af}(\alpha)$ in the structure (I, <)
- $\operatorname{tp}_{af}(\alpha_i/I_0)$ in the structure (I, <)

But there are finitely many of the first, and countably many of the second. So there are only countably many of these. \Box Lemma 84

Corollary 85 (5.1.9). Suppose T is a countable theory with an infinite model. Suppose κ is an infinite cardinal. Then there is $\mathcal{M} \models T$ with $|\mathcal{M}| = \kappa$ such that \mathcal{M} realizes only countably many 1-types over any countable set.

The proof uses *Skolemization*. Given a language L and an L-theory T, we construct $L = L_0 \subseteq L_1 \subseteq ...$ such that for each quantifier-free L_i -formula $\varphi(x, y)$ with y a single variable, $x = (x_1, ..., x_n)$, we let

$$L_{i+1} = L_i \cup \{ f_{\varphi}(x) : \varphi(x, y) \text{ a quantifier-free } L_i \text{-formula} \}$$

where f_{φ} is an *n*-ary function symbol. We let

$$L_{\text{Skolem}} = \bigcup_{i < \omega} L_i$$

Let

$$T^* = T \cup \{ \forall x (\exists y \varphi(x, y) \to \varphi(x, f_{\varphi}(x))) : \varphi(x, y) \in L_{\text{Skolem}} \}$$

Remark 86 (Properties of T^*).

- T^* admits quantifier elimination.
- Every model of T can be expanded to a model of T^* .
- T^* is a universal theory, as the new axioms are universal and modulo the new axioms we have that T is quantifier-free.
- T^* is countable.

Proof of Corollary 85. Let T^* be the Skolemization of T. By the standard lemma, there is $\mathcal{M} \models T^*$ with an indiscernible sequence $(a_i : i < \kappa)$ of distinct elements indexed by κ . Let $\mathcal{N}^* = \langle a_i : i < \kappa \rangle \subseteq \mathcal{M}^*$. Then T^* is universal, so $\mathcal{N}^* \models T^*$. (Note that \mathcal{N}^* is only generated by $(a_i : i < k)$ as an L^* -structure; not as an L-structure.) Then, by the previous theorem, we get that \mathcal{N}^* realizes only countably many types over countably many parameters. But complete types in \mathcal{N} are partial types of \mathcal{N}^* , which can then be extended to distinct complete types in \mathcal{N}^* . So \mathcal{N} realizes only countably many types.

Definition 87. Suppose κ is an infinite cardinal. Suppose T is a complete theory with infinite models. We say T is κ -stable if for any $\mathcal{M} \models T$ and any $A \subseteq M$ with $|A| \leq \kappa$, we have that $|S_n(A)| \leq \kappa$ for all $n < \omega$.

Remark 88. ω -stable implies small.

Example 89. ACF₀ are ω -stable, as $S_n(A)$ is in bijection with $\text{Spec}(\mathbb{Q}(A)[x_1,\ldots,x_n])$. Thus if $|A| \leq \aleph_0$, then $|\mathbb{Q}(A)| \leq \aleph_0$; so $|\mathbb{Q}(A)[x_1,\ldots,x_n]| \leq \aleph_0$, and $|S_n(A)| \leq \aleph_0$.

Theorem 90 (5.2.2). *T* is κ -stable if and only if for any $\mathcal{M} \models T$ and any $A \subseteq M$ with $|A| \leq \kappa$, we have $|S_1(A)| \leq \kappa$.

Proof. Induction on n. Suppose $n \ge 1$. Consider the restriction map $\pi: S_n(A) \to S_1(A)$. Let $p \in S_1(A)$. Then for some $\mathcal{N} \succeq \mathcal{M}$, we have $p = \operatorname{tp}(b/A)$ for some $b \in N$. Note that $S_n^{\mathcal{M}}(A) = S_n^{\mathcal{N}}(A)$. Then, by homework the first, we have

$$\pi^{-1}(p(x)) \cong S_{n-1}(bA)$$

which has cardinality $\leq \kappa$, by induction hypothesis. Also, by assumption, we have that the image of π has size $\leq \kappa$. So the fibres and image of π have size $\leq \kappa$. So $|S_n(A)| \leq \kappa$. \Box Theorem 90

Example 91. DLO is small (in fact, \aleph_0 -categorical) but not ω -stable: $S_1^{\mathbb{Q}}(\mathbb{Q})$ is in bijection with \mathbb{R} .

Example 92. The theory of infinite vector spaces over a field F is ω -stable if F is countable.

Theorem 93 (5.2.4). Suppose T is countable and complete and has infinite models. If T is κ -categorical for $\kappa > \aleph_0$, then T is ω -stable.

Proof. Suppose T is not ω -stable; we get $\mathcal{M} \models T$ and $A \subseteq M$ with $|A| \leq \aleph_0$ but $|S_1(A)| > \aleph_0$. Let $\mathcal{N} \succeq \mathcal{M}$ realizes \aleph_1 -many distinct 1-types over A; say we have $b_i \in N$ for $i < \aleph_1$ with $\operatorname{tp}(b_i/A) \neq \operatorname{tp}(b_j/A)$ for $i < j < \aleph_1$. By upward Löwenheim-Skolem, we may assume $|\mathcal{N}| \geq \kappa$. By downward Löwenheim-Skolem, we have $\mathcal{N}_0 \preceq \mathcal{N}$ with $|N_0| = \kappa$ and $A \subseteq N_0$, $b_i \in N_0$ for all $i < \aleph_1$. (Possible since $\kappa > \aleph_0$ and $|A \cup \{b_i : i < \aleph_1\}| = \aleph_1$.) So we have a model of size κ realizing \aleph_1 -many types over a countable set (namely A). But by Corollary 85, we have $\mathcal{B} \models T$ of size κ such that over any countable subset of B, there are only countably many realized types. So $\mathcal{B} \ncong \mathcal{N}_0$, and T is not κ -categorical.

Assignment 2. Homework 2, due Wednesday October 21, is the following exercises from the book: 4.3.1, 4.3.7, 4.5.1, 5.1.1, and 5.2.2.

From now on, when we say T is a complete theory, it is implied that T has only infinite models.

Theorem 94 (5.2.6). Suppose T is countable and complete. Then the following are equivalent:

- 1. T is ω -stable.
- 2. No model $\mathcal{M} \models T$ has an infinite binary tree of consistent L(M)-formulae.
- 3. T is κ -stable for any cardinal $\kappa \geq \aleph_0$.

Proof.

- (1) \implies (2) Let S be such a tree; let A be a countable set of parameters such that all the formulae in S are over A. (Possible since S is countable.) Each branch is a partial n-type over A that extends to an element of $S_n(A)$. They are all distinct; so there are 2^{\aleph_0} -many of them. So T is not ω -stable.
- (2) \implies (3) Suppose *T* is not κ -stable for some $\kappa \geq \aleph_0$. Then we have $\mathcal{M} \models T$ and $A \subseteq M$ with $|A| \leq \kappa$ and $|S_1(A)| > \kappa$. But there are only κ -many L(A)-formulae. So there is an L(A)-formula $\varphi(x)$ such that $\varphi(x)$ is contained in $> \kappa$ -many distinct 1-types over *A*. We call such a formula *big*. *Remark* 95. If

 $\Gamma = \{ p \in S_1(A) : p \text{ contains a formula that is not big } \}$

then $|\Gamma| \leq \kappa$.

So there are $p, q \in S_1(A)$ such that $p \neq q$, $\varphi(x) \in p \cap q$, and every formula in p(x) or in q(x) is big. So we get $\varphi_0(x)$ and $\varphi_1(x)$ both big such that $\mathcal{M} \models \varphi(x) \leftrightarrow \varphi_0(x) \lor \varphi_1(x)$ and $\mathcal{M} \models \neg \exists x(\varphi_0(x) \land \varphi_1(x))$. Iterate to get an infinite binary tree of big formulae over A.

(3) \implies (1) Clear.

 \Box Theorem 94

Recall from Ryll-Nardzewski that \aleph_0 -categoricity is equivalent to all countable models being ω -saturated.

Theorem 96 (5.2.11). Suppose T is countable, κ an infinite cardinal. Then T is κ -categorical if and only if all models of size κ are κ -saturated.

We need some lemmata.

Definition 97. An *L*-structure \mathcal{A} is *saturated* if it is $|\mathcal{A}|$ -saturated.

Lemma 98 (5.2.9). Suppose T is countable, complete, and ω -stable. For all κ and all regular $\lambda \leq \kappa$, we have that T has a model of size κ that is λ -saturated.

Proof. We try to construct as usual a λ -saturated model. Let $\mathcal{M}_0 \models T$, $|\mathcal{M}_0| = \kappa$. Let $\mathcal{M}_1 \succeq \mathcal{M}_0$ realize all types in $S_1(\mathcal{M}_0)$. But since ω -stability implies κ -stability, we know that $|S_1(\mathcal{M}_0)| = \kappa$. By downward Löwenheim-Skolem, we may assume that $|\mathcal{M}_1| = \kappa$; now iterate λ -many times, where for limit ordinal β we let

$$\mathcal{M}_{eta} = \bigcup_{\gamma < eta} \mathcal{M}_{\gamma}$$

We then obtain $(\mathcal{M}_{\alpha} : \alpha < \lambda)$ an elemetary chain of models of T, all of size κ , such that every type in $S_1(\mathcal{M}_{\alpha})$ is realized in $\mathcal{M}_{\alpha+1}$. Let

$$\mathcal{M} = igcup_{lpha < \lambda} \mathcal{M}_{lpha}$$

Then $\mathcal{M} \models T$, and $|\mathcal{M}| = \kappa$, since $\lambda \leq \kappa$. Let $A \subseteq M$ satisfy $|\mathcal{A}| < \lambda$; let $p \in S_1(A)$. By regularity of λ , we have that $A \subseteq M_{\alpha}$ for some $\alpha < \lambda$. So p is realized in $\mathcal{M}_{\alpha+1}$, and hence in \mathcal{M} . So \mathcal{M} is λ -saturated. \Box Lemma 98

Proof of Theorem 96.

- (\Leftarrow) Suppose all models of size κ are saturated. In general, if $\mathcal{A} \equiv \mathcal{B}$, $|\mathcal{A}| = |\mathcal{B}| = \kappa$, and \mathcal{A} and \mathcal{B} are κ -saturated, then $\mathcal{A} \cong \mathcal{B}$. This is proven by a back-and-forth argument as in the case of $\kappa = \omega$ (4.3.3); the only difference is that the partial elementary maps we must extend have domains of size $< \kappa$ (rather than finite). So T is κ -categorical.
- (\Longrightarrow) Suppose T is κ -saturated; let \mathcal{M} be the model of T of cardinality κ . We need to show that \mathcal{M} is κ -saturated. If $\kappa = \aleph_0$, we are done by Ryll-Nardzewski. We may thus assume $\kappa > \aleph_0$. By Theorem 93, we have that T is ω -stable. By 5.2.9, we have that T has a model of size κ that is λ -saturated for all regular $\lambda \leq \kappa$. So \mathcal{M} is λ -saturated for all regular $\lambda \leq \kappa$.
 - **Case 1.** Suppose κ is a successor cardinal. Then κ is regular, and we may take $\lambda = \kappa$ to get that \mathcal{M} is κ -saturated.
 - **Case 2.** Suppose κ is a limit cardinal. Let $A \subseteq M$, $|A| < \kappa$, $p \in S_1(A)$. So $|a| < \lambda$ for some $\lambda < \kappa$. So $|A| < \lambda^+ < \kappa$, and λ^+ is regular. So \mathcal{M} is λ^+ -saturated, so p is realized in \mathcal{M} .

 \Box Theorem 96

Definition 99. Suppose \mathcal{B} is an *L*-structure; suppose $A \subseteq B$. We say \mathcal{B} is prime over A (or a prime extension of A) if every partial elementary map $A \to \mathcal{M}$ extends to an elementary embedding $\mathcal{B} \to \mathcal{M}$.

Remark 100. \mathcal{B} is prime over A if and only if \mathcal{B}_A is a prime model of $\text{Th}(\mathcal{B}_A)$. (Recall \mathcal{M} expands to a model of $\text{Th}(\mathcal{B}_A)$ if and only if there exists a partial elementary map $A \to \mathcal{M}$.)

Example 101. Suppose $(K, 0, 1, +, -, \times) \models ACF_0$; suppose $A \subseteq K$. Then $\mathbb{Q}(A)^{alg}$ is prime over A.

Theorem 102 (5.3.3). Suppose T is countable, complete, and ω -stable. Then, given any $\mathcal{M} \models T$ and $A \subseteq M$, there is a model of T that is prime over A.

Proof. We will construct $\mathcal{B} \preceq \mathcal{M}$ with $A \subseteq B$ such that B has an enumeration $(b_{\alpha} : \alpha < \lambda)$ with $\operatorname{tp}(b_{\alpha}/A \cup \{b_{\mu} : \mu < \alpha\})$ is isolated. Such a structure is called *constructible over* A.

Claim 103. Constructible extensions are prime. (Compare to "atomic implies prime".)

Proof. Suppose $f: A \to \mathcal{N}$ is a partial elementary map, where \mathcal{N} is any *L*-structure. We wish to extend f to B. We do so recursively to all the b_{μ} with $\mu < \alpha$ with $\alpha < \lambda$. Suppose we have extended f to act on $A \cup \{b_{\mu} : \mu < \alpha\}$. Well,

$$p(x) = \operatorname{tp}(b_{\alpha}/A \cup \{b_{\mu} : \mu < \alpha\})$$

is isolated in \mathcal{B} . So f(p) is isolated in \mathcal{N} , as f is a partial elementary map; so it is realized in \mathcal{N} , say by c. We then extend f by $b_{\alpha} \mapsto c$. \Box Claim 103

Note that the above claim doesn't require ω -stability; by contrast, the following claim relies on ω -stability.

Claim 104. For any $C \subseteq M$ and any $n \ge 0$, we have that the isolated types are dense in $S_n(C)$. (Compare to "small implies the existence of a prime model".)

Proof. Suppose $C \subseteq M$; suppose $n \ge 0$. Consider $\operatorname{Th}(\mathcal{M}_C)$. Since T is ω -stable, 5.2.6 yields that there is no infinite binary tree of consistent L(C)-formulae. Then, by 4.5.9, we have that the isolated types are dense in $S_n(\operatorname{Th}(\mathcal{M}_C))$. (Despite how it was done in class, the step above doesn't need the language to be countable.) So the isolated types are dense in $S_n(C)$. \Box Claim 104

We now construct the constructible \mathcal{B} over A. By Zorn's lemma, there is $B = (b_{\alpha} : \alpha < \lambda)$ with $\operatorname{tp}(b_{\alpha}/A \cup \{b_{\mu} : \mu < \alpha\})$ is isolated and maximal; i.e. whenever $a \in \mathcal{M} \setminus B$, we have that $\operatorname{tp}(a/A \cup B)$ is not isolated. Clearly $A \subseteq B$. We wish to prove that B is the universe of an elementary substructure of \mathcal{M} . We use Tarski-Vaught. Let $\varphi(x)$ be an L(B)-formula in 1 variable such that $\mathcal{M} \models \exists x \varphi(x)$. We need to show that there is $b \in B$ with $\mathcal{M} \models \varphi(b)$. By the second claim, we have that $[\varphi(x)]$ contains an isolated type $p(x) \in S_1(B)$. Let $a \in M$ realize p(x). So $\operatorname{tp}(a/A \cup b) = \operatorname{tp}(a/B) = p(x)$ is isolated. Then, by maximality, we have $a \in B$, and $\mathcal{M} \models \varphi(a)$. So we have constructed our constructible \mathcal{B} over A. Then by the first claim, we have that B is prime over A.

Actually, the proof gave us a *constructible* model over any subset of a model (if T is ω -stable), not just a prime one.

Theorem 105 (5.3.6). A constructible extension \mathcal{B} over A is atomic over A; i.e. for every $n \ge 0$, we have that every n-type over A realized in \mathcal{B} is isolated.

In fact, "constructible over A" and "atomic over A" are the same; this uses

Lemma 106 (5.3.5). In any L-structure, we have that tp(ab) is isolated if and only if tp(a/b) and tp(b) are isolated.

Proof. (\implies) If $\varphi(x, y)$ isolated tp(ab) then $\varphi(x, b)$ isolates tp(a/b), and $\exists x \varphi(x, y)$ isolates tp(b).

 (\Leftarrow) If $\varphi(x, b)$ isolates $\operatorname{tp}(a/b)$ and $\psi(y)$ isolates $\operatorname{tp}(b)$, then $\varphi(x, y) \wedge \psi(y)$ isolates $\operatorname{tp}(ab)$.

 \Box Lemma 106

Proof of Theorem 105. Suppose $\mathcal{B} = (b_{\alpha} : \alpha < \lambda)$ is a constructible extension of A. Given $b = (b_{\alpha_1}, \ldots, b_{\alpha_n})$ with $\alpha_1 < \cdots < \alpha_n$, we need to show that $\operatorname{tp}(b/A)$ is isolated. Well,

$$\operatorname{tp}(b_{\alpha_n}/A \cup \{b_\mu : \mu < \alpha_n\})$$

is isolated, say by $\varphi(x, c)$ where c is a tuple from $A \cup \{b_{\mu} : \mu < \alpha_n\}$. So

$$\operatorname{tp}(b_{\alpha_n}/A_c \cup \{b_{\alpha_1}, \ldots, b_{\alpha_{n-1}}\})$$

By induction on α_n , we know that $\operatorname{tp}(c, b_{\alpha_1}, \ldots, b_{\alpha_{n-1}}/A)$ is isolated. (Formally, we're doing induction on the highest index α_n .) By 5.3.5 for L(A)-structure, we have

$$\operatorname{tp}((c,(b_{\alpha_1},\ldots,b_{\alpha_{n-1}},b_{\alpha_n})))$$

is isolated. Again by 5.3.5, we have that tp(b/A) is isolated.

Definition 107. A theory T is *totally transcendental* if for every $\mathcal{M} \models T$ there does not exist an infinite binary tree of L(M)-formulae realized in \mathcal{M} . (T may be incomplete, and L may be uncountable.)

Remark 108. We know that when L is countable and T is complete, then total transcendence is equivalent to ω -stability.

Rephrasing the previous theorem, we have

Theorem 109. Suppose T is complete and totally transcendental; suppose $\mathcal{M} \models T$ and $A \subseteq M$. Then there exists $\mathcal{B} \preceq \mathcal{M}$ such that \mathcal{B} is a prime extension of A. (This is stronger than the analogous statement in Tent and Ziegler.)

Remark 110. The proof actually found $\mathcal{B} \preceq \mathcal{M}$ constructible over A; we saw that this is the atomic over A.

Corollary 111 (3.5.7). Suppose T is complete and totally transcendental. Suppose $\mathcal{B} \models T$, $A \subseteq B$, and \mathcal{B} is prime over A. Then \mathcal{B} is atomic over A.

Proof. We know there is $\mathcal{B}_0 \preceq \mathcal{B}$ such that \mathcal{B}_0 is atomic over A. So id: $A \rightarrow \mathcal{B}$ is a partial elementary map $\mathcal{B}_0 \rightarrow \mathcal{B}$, since $\mathcal{B}_0 \preceq \mathcal{B}$. Since \mathcal{B} is prime over A, we have that id_A extends to an elementary embedding $f: \mathcal{B} \rightarrow \mathcal{B}_0$. So \mathcal{B} is isomorphic to A to an elementary substructure of \mathcal{B}_0 . So \mathcal{B} is atomic over A.

Theorem 112 (Lachlan's theorem). Suppose T is a complete, totally transcendental theory; suppose $\mathcal{M} \models T$ is uncountable. Then \mathcal{M} has arbitrarily large elementary extensions which omit any countable partial 1-type over M that \mathcal{M} omits. (i.e. for any κ there is $\mathcal{N} \succeq \mathcal{M}$ with $|N| \ge \kappa$ having the desired property.)

Proof. By iteration, it suffices to show that there is a proper elementary extension of \mathcal{M} omitting all countable partial types omitted by \mathcal{M} .

We call an L(M)-formula $\varphi(x)$ is *large* if $\varphi(\mathcal{M})$ is uncountable. By total transcendentality, there is a "minimal" large formula: there is large $\varphi_0(x)$ large such that for any L(M)-formula $\psi(x)$, we have either $\varphi_0 \wedge \psi$ or $\varphi_0 \wedge \neg \psi$ is not large (and hence the other is). Let $p(x) = \{\psi(x) : \varphi_0 \wedge \psi \text{ is large }\}$.

Claim 113. $p(x) \in S_1(M)$.

Proof. Observe that it is closed under conjunction, since if $\psi_1(x), \psi_2(x) \in p(x)$, then $\varphi_0 \wedge \psi_1$ and $\varphi_0 \wedge \psi_2$ are large. So $\varphi_0 \wedge \neg \psi_1$ and $\varphi_0 \wedge \neg \psi_2$ are not large. So $\varphi_0 \wedge (\neg \psi_1 \vee \neg \psi_2)$ is not large. So $\varphi_0 \wedge \psi_1 \wedge \psi_2$ is large. Furthermore, p(x) is consistent and complete. So $p(x) \in S_1(M)$.

Claim 114. p(x) is not realized in \mathcal{M} , but every countable subset of p(x) is realized in \mathcal{M} .

Proof. If p(x) were realized, say by $a \in M$, then $(x = a) \in p(x)$. But $\varphi_0 \wedge (x = a)$ is not large, a contradiction. So p(x) is not realized in M.

Suppose $\Pi(x) \subseteq p(x)$ is countable. For all $\psi \in \Pi$, we alve $\varphi_0(\mathcal{M}) \setminus \psi(\mathcal{M})$ is countable. So $\varphi_0(\mathcal{M}) \setminus \Pi(\mathcal{M})$ is countable. So $\Pi(\mathcal{M})$ is uncountable, and hence non-empty. \Box Claim 114

Let $\mathcal{N} \succeq \mathcal{M}$ with $a \in N$ realizing p(x). By total transcendentality, we may assume that \mathcal{N} is atomic over $M \cup \{a\}$. This \mathcal{N} is our desired extension; certainly by the claim, we have that $\mathcal{N} \neq \mathcal{M}$. It then suffices to show that given $b \in N$, every countable subset of $\Sigma(y) \subseteq \operatorname{tp}(b/M)$ is realized in \mathcal{M} . Since \mathcal{N} is atomic over $M \cup \{a\}$, we have that $\operatorname{tp}(b/M \cup \{a\})$ is isolated, say by $\chi(a, y)$ where $\chi(x, y)$ is an L(M)-formula. Let

$$\Pi(x) = \{ \forall y(\chi(x,y) \to \sigma(y)) : \sigma \in \Sigma \} \cup \{ \exists y\chi(x,y) \}$$

 \Box Theorem 105

Then $\Pi(x) \subseteq p(x)$ is countable as Σ is countable. By the claim, we have $\Pi(x)$ is realized in \mathcal{M} by $a' \in \mathcal{M}$. Let $b' \in \mathcal{M}$ satisfy

$$\mathcal{M} \models \chi(a', b')$$

Then $\mathcal{M} \models \sigma(b')$ for all $\sigma \in \Sigma$, since $(\forall y(\chi(x,y) \to \sigma(y)) \in \Pi(x))$. So b' realizes $\Sigma(y)$ in \mathcal{M} . \Box Theorem 112

Theorem 115 (Downward Morley's theorem, 5.4.2). Suppose T is countable and κ -categorical for some uncountable κ . Then T is \aleph_1 -categorical.

Proof. Suppose T is not \aleph_1 -categorical. Then there is $\mathcal{M} \models T$ with $|\mathcal{M}| = \aleph_1$ with \mathcal{M} not \aleph_1 -saturated. Suppose $A \subseteq M$ is countable with $p(x) \in S_1(A)$ not realized in \mathcal{M} . By 5.2.4, we have that T is ω -stable; so, by Lachlan's theorem there is $\mathcal{N} \succeq \mathcal{M}$ of cardinality $\geq \kappa$ omitting p(x). Since $\kappa \geq |\mathcal{M}|$, we may use downward Löwenheim-Skolem to produce such an \mathcal{N} with $|\mathcal{N}| = \kappa$.

But T is κ -categorical; so \mathcal{N} is κ -saturated. But \mathcal{N} does not realize p(x) over countably many parameters, a contradiction. So T is \aleph_1 -categorical.

(We use here that for infinite κ , κ -categoricity is equivalent to the saturation of all models of size κ .)

Remark 116. The uncountability of $\mathcal{M} \models T$ is necessary for Lachlan's theorem. To see this, note that ACF_0 is totally transcendental and complete, and $\mathbb{Q}^{alg} \models ACF_0$. The type p(x) saying "x is transcendental" is a countable type omitted in \mathbb{Q}^{alg} . But it is realized in every uncountable $\mathcal{N} \models ACF_0$.

For upward Morley's theorem, we will need more than total transcendentality.

Definition 117. A vaughtian pair for a theory T is a pair of models $\mathcal{M} \prec \mathcal{N}$ and an L(M)-formula $\varphi(x)$ such that

- $\mathcal{N} \neq \mathcal{M}$
- $\varphi(\mathcal{M})$ is infinite
- $\varphi(\mathcal{M}) = \varphi(\mathcal{N})$

Remark 118. If we allowed $\varphi(\mathcal{M})$ to be finite, then $\varphi(\mathcal{M}) = \varphi(\mathcal{N})$ for all elementary extensions $\mathcal{N} \succeq \mathcal{M}$.

One way this can happen is if $\mathcal{N} \models T$ and $\aleph_0 \leq |\varphi(\mathcal{N})| < |N|$.

Aside 119. In a κ -saturated structure, every infinite definable set has cardinality $\geq \kappa$.

Given such φ and \mathcal{N} , we can use downward Löwenheim-Skolem to get $\mathcal{M} \preceq \mathcal{N}$ such that $\varphi(\mathcal{N}) \subseteq \mathcal{M}$ and $|\mathcal{M}| = |\varphi(\mathcal{N})| < |\mathcal{N}|$. Then $\mathcal{M} \neq \mathcal{N}$ and $\varphi(\mathcal{M}) = \varphi(\mathcal{N}) \cap \mathcal{M} = \varphi(\mathcal{N})$. So this is a vaughtian pair.

Lemma 120 (5.5.3). Suppose T is countable and complete.

1. Every countable model of T has a countable ω -homogeneous elementary extension.

Remark 121. If T is not small, there may not be a countable ω -saturated model; this says that there is always a countable ω -homogeneous model.

2. If \mathcal{M} and \mathcal{N} are countable ω -homogeneous models of T structures that realize the same n-types over \emptyset for all n, then $\mathcal{M} \cong \mathcal{N}$.

Proof.

1. Build it by iterating the following process: suppose $\mathcal{M} \models T$ is countable. Let $\mathcal{M}_1 \succeq \mathcal{M}$ realize

 $\{f(\operatorname{tp}(a/A)): A \subseteq_{\operatorname{fin}} M, a \in M, f: A \to \mathcal{M} \text{ a partial elementary map} \}$

But the above set is countable; so by downward Löwenheim-Skolem, we can get \mathcal{M}_1 to be countable. We iterate this \aleph_0 -many times and take unions to get a countable, ω -homogeneous elementary extension. 2. Perform back-and-forth. Given a partial elementary map $\mathcal{M} \to \mathcal{N}$, say

$$f: \{a_1, \ldots, a_m\} \to \mathcal{N}$$

We wish to extend it to $a \in M$. Let $(b_1, \ldots, b_m, b) \in N^{m+1}$ realize $\operatorname{tp}(a_1, \ldots, a_m, a) = p(x_1, \ldots, x_n, y)$. (Such a realization exists by assumption.) So $\operatorname{tp}(b_1, \ldots, b_m) = \operatorname{tp}(a_1, \ldots, a_m) = \operatorname{tp}(f(a_1, \ldots, f9a_n))$ as f is a partial elementary map. If we define $g: \{b_1, \ldots, b_m\} \to \mathcal{N}$ by $g(b_i) = f(a_i)$, then this a partial elementary map from \mathcal{N} to \mathcal{N} . As \mathcal{N} is ω -homogeneous, we have that g extends to an automorphism $g: \mathcal{N} \to \mathcal{N}$. Then

$$tp(a_1, \dots, a_m, a) = tp(b_1, \dots, b_m, b)$$
$$= tp(g(b_1), \dots, g(b_m), g(b))$$
$$= tp(f(a_1), \dots, f(a_m), g(b))$$

i.e. f extends to a partial elementary map on $\{a_1, \ldots, a_m, a\}$ by $a \mapsto g(b)$.

 \Box Remark 121

Theorem 122 (Vaught's 2-cardinal theorem). Suppose T is complete and countable. If T has a vaughtian pair, then it has an \aleph_1 -sized model with a countable infinite definable set.

Proof.

Claim 123. T has a vaughtian pair where \mathcal{M} and \mathcal{N} are countable.

Proof. Suppose $\mathcal{M} \prec \mathcal{N}$ with $\varphi(x)$ is a vaughtian pair. Define $L(P) = L \cup \{P\}$ where P is a unary predicate symbol. View (\mathcal{N}, M) as an L(P)-structure where P is interpreted as M. The facts

- M is the universe of $\mathcal{M} \preceq \mathcal{N}$.
- $\mathcal{M} \neq \mathcal{N}$
- $\varphi(\mathcal{M})$ is infinite
- $\varphi(\mathcal{M}) = \varphi(\mathcal{N})$

are part of the L(P)-theory of (\mathcal{N}, M) . Applying downward Löwenheim-Skolem, we get $(\mathcal{N}_0, M_0) \preceq (\mathcal{N}, M)$ with N_0 and M_0 countable. We then have that $\mathcal{M}_0 \preceq \mathcal{N}_0$ is a vaughtian pair for T with $\varphi(x)$.

Claim 124. T has a countable vaughtian pair with $\mathcal{M} \cong \mathcal{N}$ and \mathcal{M} and \mathcal{N} are ω -homogeneous.

Proof. By the previous claim, we have $\mathcal{M}_0 \prec \mathcal{N}_0$ a countable vaughtian pair with $\varphi(x)$. We work in L(P), the language of pairs. Let $(\mathcal{N}_0, \mathcal{M}_0) \preceq (\mathcal{N}'_0, \mathcal{M}'_0)$ be countable such that every *n*-type (over \emptyset) realized by \mathcal{N}_0 is realized by \mathcal{M}'_0 . We do this by taking

$$\Sigma = \text{Th}(\mathcal{N}_0, M_0)_{N_0} \cup \{ p(c_1^{(p)}, \dots, c_n^{(p)}) : p(x_1, \dots, x_n) \in S_n(\emptyset) \text{ realized in } \mathcal{N}_0 \} \cup \{ P(c_i^{(p)}) : \text{ all } c_i^{(p)} \}$$

where the $c_i^{(p)}$ are new constant symbols. Then Σ is consistent since if $\psi(x_1, \ldots, x_n) \in \operatorname{tp}^{\mathcal{N}_0}(a_1, \ldots, a_n)$ with $a_1, \ldots, a_n \in \mathcal{N}_0$, then $\exists x_1 \ldots x_n \psi(x_1, \ldots, x_n)$ is in the theory. So there are $b_1, \ldots, b_n \in \mathcal{M}_0$ realizing ψ . Then

$$\mathcal{A} = (\mathcal{N}_0, M_0, b_1, \dots, b_n) \models \operatorname{Th}(\mathcal{N}_0, M_0)_{N_0} \cup \{ \psi(c_1, \dots, c_n) \}$$

(Of course, one needs to check that this generalizes to taking finitely many formulae.) Furthermore, we can make $(\mathcal{N}'_0, \mathcal{M}'_0)$ countable since \mathcal{N}_0 only realizes countably many types (since \mathcal{N}_0 is countable).

Now let $(\mathcal{N}'_0, \mathcal{M}'_0) \leq (\mathcal{N}_1, \mathcal{M}_1)$ also be countable such that \mathcal{N}_1 and \mathcal{M}_1 are ω -homogeneous as *L*-structures. We saw how to do this for \mathcal{N}'_0 and \mathcal{M}'_0 separately; we then just add $\operatorname{Th}(\mathcal{N}'_0, \mathcal{M}'_0)$ to the set of sentences we wish to realize. (As in 5.5.3 (a).) We now iterate \aleph_0 -many times:

$$(\mathcal{N}_0, M_0) \preceq (\mathcal{N}'_0, M'_0) \preceq (\mathcal{N}_1, M_1) \preceq (\mathcal{N}'_1, M'_1) \preceq (\mathcal{N}_2, M_2) \preceq \dots$$

Let (\mathcal{N}, M) be the union of this elementary chain. Then $(\mathcal{N}, M) \succeq (\mathcal{N}_0, M_0)$, so in particular (\mathcal{N}, M) is a vaughtian pair with $\varphi(x)$. We also have that (\mathcal{N}, M) is countable. To see that \mathcal{N} and \mathcal{M} are ω -homogeneous, we refer to the non-primed stages:

$$\mathcal{M} = igcup_{i < \omega} \mathcal{M}_i$$
 $\mathcal{N} = igcup_{i < \omega} \mathcal{N}_i$

and thus both are ω -homogeneous as the union of ω -homogeneous structures. Finally, since $\mathcal{M} \preceq \mathcal{N}$, we have that \mathcal{N} realizes every type that \mathcal{M} does; conversely, since

$$\mathcal{M} = \bigcup_{i < \omega} \mathcal{M}'_i$$

we have that \mathcal{M} realizes every type that \mathcal{N} does. So, by 5.5.3 (b), we have $\mathcal{M} \cong \mathcal{N}$. \Box Claim 124

Let $\mathcal{M} \prec \mathcal{N}$ and φ be as in the claim. We build a chain

$$\mathcal{M}_0 \preceq \mathcal{M}_1 \preceq \mathcal{M}_2 \preceq \dots$$

of length \aleph_1 such that for all $\alpha < \aleph_1$, we have $(\mathcal{M}_{\alpha+1}, \mathcal{M}_{\alpha}) \cong (\mathcal{N}, \mathcal{M})$. We let $\mathcal{M}_0 = \mathcal{M}$ and $\mathcal{M}_1 = \mathcal{N}$. Having produced \mathcal{M}_{α} , we are then given $f_{\alpha} \colon \mathcal{M} \to \mathcal{M}_{\alpha}$ an isomorphism (since $\mathcal{M} \cong \mathcal{N}$); we then extend

$$\begin{array}{c} \mathcal{M} \xrightarrow{f_{\alpha}} \mathcal{M}_{\alpha} \\ \downarrow^{\preceq} \qquad \qquad \downarrow^{\preceq} \\ \mathcal{N} \xrightarrow{f_{\alpha+1}} \mathcal{M}_{\alpha+1} \end{array}$$

If $\lambda < \aleph_1$ is a limit ordinal, we let

$$\mathcal{M}_{\lambda} = \bigcup_{lpha < \lambda} \mathcal{M}_{lpha}$$

But \mathcal{M} is ω -homogeneous; so each \mathcal{M}_{α} is as well for each $\alpha < \lambda$, and \mathcal{M}_{λ} is ω -homogeneous and countable. Also, since $\mathcal{M}_{\alpha} \cong \mathcal{M}$, we have that \mathcal{M}_{α} realizes the same types as \mathcal{M} . So \mathcal{M}_{λ} realizes the same types that \mathcal{M} realizes. So, by 5.5.3 (b), we have an isomorphism $f_{\lambda} \colon \mathcal{M} \to \mathcal{M}_{\lambda}$.

Having constructed the above chain, let

$$\overline{\mathcal{M}} = \bigcup_{\alpha < \aleph_1} \mathcal{M}_\alpha$$

Then $\overline{\mathcal{M}}$ is of cardinality \aleph_1 since $\mathcal{M}_{\alpha} \prec \mathcal{M}_{\alpha+1}$ (since every $(\mathcal{M}_{\alpha+1}, M_{\alpha}) \cong (\mathcal{N}, M)$). Well, $\varphi(\mathcal{N}) = \varphi(\mathcal{M})$ since we started with a vaughtian pair. Then, again since $(\mathcal{M}_{\alpha+1}, M_{\alpha}) \cong (\mathcal{N}, M)$, we have

$$\varphi(\mathcal{M}_{\alpha}) = \varphi(\mathcal{M}_{\alpha+1})$$

$$\varphi(\mathcal{M}_{\lambda}) = \varphi(\mathcal{M}_{\alpha}) \text{ for any } \alpha < \lambda$$

where λ is a limit ordinal. So $\varphi(\overline{\mathcal{M}}) = \varphi(\mathcal{M}_0)$ is countable, as \mathcal{M}_0 is countable, and infinite as it forms a vaughtian pair. \Box Theorem 122

Corollary 125 (5.5.4). Suppose T is countable and complete. If T is categorical in some uncountable cardinality, then T has no vaughtian pair.

Proof. Suppose $\kappa > \aleph_0$ and T is κ -categorical. By the downward Morley's theorem, we have that T is \aleph_1 -categorical. So there is only one model of T of size \aleph_1 , say \mathcal{M} , and it is \aleph_1 -saturated. Then, by saturation, we have that every infinite definable set in \mathcal{M} is of size \aleph_1 . Then, by Vaught's 2-cardinal theorem, we have that T has no vaughtian pair. \Box Corollary 125

Corollary 126 (5.5.5). Suppose T is countable and complete. Suppose T is categorical in an uncountable cardinal. Then every model of T over any infinite definable set is prime. More precisely, suppose $\mathcal{M} \models T$, $A \subseteq M$, and $\varphi(x)$ is an L(A)-formula has $\varphi(\mathcal{M})$ is infinite. Then \mathcal{M} is prime over $\varphi(\mathcal{M}) \cup A$.

Proof. By 5.3.3, there is $\mathcal{M}_0 \preceq \mathcal{M}$ such that $A \cup \varphi(\mathcal{M}) \subseteq \mathcal{M}_0$ that is a prime extension. But then $\varphi(\mathcal{M}_0) = \varphi(\mathcal{M}) \cap \mathcal{M}_0 = \varphi(\mathcal{M})$. (We use that $A \subseteq M_0$.) So $\mathcal{M}_0 \prec \mathcal{M}$ with φ form a vaughtian pair unless $\mathcal{M}_0 = \mathcal{M}$. So \mathcal{M} is prime over $\varphi(\mathcal{M}) \cup A$. \Box Corollary 126

Remark 127. The proof used ω -stability to get a prime model, and then the fact that there are no vaughtian pairs to get that it was \mathcal{M} . The proof then shows that it is the *unique* prime model over $\varphi(\mathcal{M}) \cup A$.

Remark 128. Prime models are unique only up to isomorphism. i.e. it is possible in general for there to be $A \subseteq M$ and $\mathcal{M} \prec \mathcal{N}$ with $\mathcal{M} \neq \mathcal{N}$ both prime over A. In some examples, this doesn't happen:

- In ACF₀, the prime model over $A \subseteq K$ is $\mathbb{Q}(A)^{\text{alg}}$.
- In VS_F, the prime model over $A \subseteq V$ is span_F(A).

Definition 129. Suppose \mathcal{M} is an *L*-structure; suppose $A \subseteq M$.

- An L(A)-formula $\varphi(x)$ is algebraic if $\varphi(\mathcal{M})$ is finite.
- We say $a \in M$ is algebraic over A if it realizes an algebraic formula over A.
- We set $\operatorname{acl}(A) = \{ a \in M : a \text{ is algebraic over } A \}.$
- We say A is algebraically closed if $A = \operatorname{acl}(A)$.

Remark 130.

- These notions seem to depend on \mathcal{M} , but in fact the notion is preserved if you pass to $\mathcal{N} \succeq \mathcal{M}$; i.e. $\operatorname{acl}_{\mathcal{M}}(A) = \operatorname{acl}_{\mathcal{N}}(A)$ for all $\mathcal{N} \succeq \mathcal{M}$.
- $|\operatorname{acl}(A)| \le |L| + |A| + \aleph_0.$

Example 131.

1. Suppose $K \models ACF$ with $L = \{0, 1, +, -, \times\}$. Suppose $A \subseteq K$. Then $acl(A) = \mathbb{F}(A)^{alg}$ where

$$\mathbb{F} = \begin{cases} \mathbb{Q} & \operatorname{char}(K) = 0\\ \mathbb{F}_p & \operatorname{char}(K) = p \end{cases}$$

- 2. Suppose $V \models VS_F$ with $L = \{0, +\} \cup \{\lambda_f : f \in F\}$. Suppose $A \subseteq V$. Then $\operatorname{acl}(A) = \operatorname{span}_F(A)$.
- 3. Let $L = \emptyset$; let X be an infinite set; take $A \subseteq X$. Then $\operatorname{acl}(A) = A$.

Definition 132. A type $p(x) \in S_1(A)$ is algebraic if it contains an algebraic formula.

Lemma 133. If $\varphi(x) \in p(x) \in S(A)$ is algebraic with $|\varphi(\mathcal{M})|$ minimal over all formulae in p(x), then $\varphi(x)$ isolates p(x).

Proof. Take $\psi(x) \in p(x)$. Then $\varphi(x) \land \psi(x) \in p(x)$; so $|\varphi(\mathcal{M})| = |(\varphi \land \psi)(\mathcal{M})|$ by minimality. So $(\varphi \land \psi)(\mathcal{M}) = \varphi(\mathcal{M})$, and $\varphi(\mathcal{M}) \subseteq \psi(\mathcal{M})$. So $\mathcal{M} \models \forall x(\varphi(x) \to \psi(x))$. So $\varphi(x)$ isolates p(x).

Definition 134. If p(x) is an algebraic type and $\varphi(x) \in p(x)$ is algebraic such that $|\varphi(\mathcal{M})|$ is minimal, then we call $|\varphi(\mathcal{M})|$ the *degree* of p(x).

Corollary 135. Suppose $p(x) \in S_1(A)$ is algebraic. Then $|p(\mathcal{N})| = \deg(p)$ for any $\mathcal{N} \succeq \mathcal{M}$.

Proof. p(x) is isolated by some $\varphi(x)$; so $p(\mathcal{N}) = \varphi(\mathcal{N})$ for all $\mathcal{N} \ge \mathcal{M}$; so deg $(p) = |\varphi(\mathcal{M})| = |\varphi(\mathcal{N})|$. \Box Corollary 135

Remark 136. If $p(\mathcal{N})$ is finite in all $\mathcal{N} \succeq \mathcal{M}$, then p(x) is algebraic.

Proof. Suppose p(x) is not algebraic. Then each $\varphi(x) \in p(x)$ has $\varphi(\mathcal{M})$ infinite. So

$$\operatorname{Th}(\mathcal{M}_M) \cup \{ \varphi(c_n) : n < \omega, \varphi(x) \in p(x) \} \cup \{ c_n \neq c_m : n < m < \omega \}$$

is consistent by compactness and because no formula in p(x) is algebraic. So there is \mathcal{N} a model of this theory; then $\mathcal{N} \succeq \mathcal{M}$ and $p(\mathcal{N})$ is infinite. \Box Remark 136

Lemma 137 (5.6.2). Suppose \mathcal{M} is an L-structure; suppose $A \subseteq M$. Suppose $p \in S_1(A)$ is non-algebraic and $B \supseteq A$. Then there is a non-algebraic extension of p(x) to S(B).

Proof. Let

 $q(x) = p(x) \cup \{ \neg \psi(x) : \psi(x) \text{ an algebraic } L(B) \text{-formula} \}$

If q(x) were not finitely satisfiable in \mathcal{M} , then for some $\varphi(x) \in p(x)$ we have $\mathcal{M} \models \forall x(\varphi(x) \to \psi(x))$ an algebraic L(B)-formula, and $\varphi(x)$ is algebraic, a contradiction. Extend q(x) to $\hat{q}(x) \in S_1(B)$; this is non-algebraic because it contains the negation of every algebraic L(B)-formula. \Box Lemma 137

Lemma 138 (5.6.4). Every partial elementary bijection $f: A \to B$ extends to a partial elementary bijection $f: \operatorname{acl}(A) \to \operatorname{acl}(B)$.

Proof. Suppose $a \in \operatorname{acl}(A)$. Then $\operatorname{tp}(a/A)$ is algebraic; so $f(\operatorname{tp}(a/A))$ is algebraic, and hence isolated. So it has a realization in $\operatorname{acl}(B)$; we can then extend f by mapping a to said realization. Similarly, we can extend f to hit any given $b \in \operatorname{acl}(B)$ by something in $\operatorname{acl}(A)$ using f^{-1} . Let $f: A' \to B'$ be a maximal (with respect to the domain) partial elementary bijection extending f with $A' \subseteq \operatorname{acl}(A)$ and $B' \subseteq \operatorname{acl}(B)$. Then by the above arguments, we get $A' = \operatorname{acl}(A)$ and $B' = \operatorname{acl}(B)$.

We can view acl as a closure operator acl: $\mathcal{P}(M) \to \mathcal{P}(M)$. Properties:

- acl is reflexive: $A \subseteq \operatorname{acl}(A)$.
- acl has *finite character*:

$$\operatorname{acl}(A) = \bigcup_{A' \subseteq \operatorname{fin} A} \operatorname{acl}(A')$$

since any algebraic formula uses only finitely many parameters from A.

• acl is transitive: $\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$.

Proof. Suppose $c \in \operatorname{acl}\{b_1, \ldots, b_n\}$ with $b_i \in \operatorname{acl}(A)$. We wish to show $c \in \operatorname{acl}(A)$. Let $\varphi(x, y_1, \ldots, y_n)$ be an *L*-formula such that $\varphi(x, b_1, \ldots, b_n)$ witnesses $c \in \operatorname{acl}\{b_1, \ldots, b_n\}$. Let $\varphi_i(y_i)$ be an algebraic L(A)-formula witnessing $b_i \in \operatorname{acl}(A)$. Let

$$\theta(x) = \exists y_1 \dots y_n \left(\bigwedge_{i=1}^n \varphi_i(y_i) \land \varphi(x, y_1, \dots, y_n) \land \exists^{\leq k} z \varphi(z, y_1, \dots, y_n) \right)$$

where $k = |\varphi(\mathcal{M}, b_1, \dots, b_n)|$. Then $\theta(x)$ holds of c, witnessed by $y_i = b_i$ and $\theta(x)$ is over A and is algebraic. So $c \in \operatorname{acl}(A)$.

We can extend the notion of acl to *n*-space:

Definition 139. We say $\varphi(x_1, \ldots, x_n)$ is algebraic if $\varphi(\mathcal{M}) \subseteq M^n$ is finite. We say $a = (a_1, \ldots, a_n) \in M^n$ is algebraic over $A \subseteq M$ if it realizes an algebraic formula. We write $a \in \operatorname{acl}(A)$. (Note that this is a slight abuse of notation, as $a \in M^n$ and $\operatorname{acl}(A) \subseteq M$.)

Exercise 140. $a \in \operatorname{acl}(A)$ if and only if each $a_i \in \operatorname{acl}(A)$.

So we can talk about *algebraic n*-types, etc.

3.1 Strong minimality

Definition 141. Suppose T is a complete theory. Suppose $\mathcal{M} \models T$ and $\varphi(x)$ is an L(M)-formula (with $x = (x_1, \ldots, x_n)$). The definable set $\varphi(M)$ is minimal in \mathcal{M} if $\varphi(x)$ is non-algebraic and for every other L(M)-formula $\psi(x)$ we have that one of $\varphi \land \psi$ and $\varphi \land \neg \psi$ is algebraic. i.e. every definable subset of $\varphi(\mathcal{M})$ is finite or cofinite.

Definition 142. The L(M)-formula $\varphi(x)$ is strongly minimal if for every elementary extension $\mathcal{N} \succeq \mathcal{M}$, we have that $\varphi(\mathcal{N})$ is minimal in \mathcal{N} . In this case we also say that $\varphi(\mathcal{M})$ is strongly minimal.

Definition 143. The theory T is strongly minimal if and only if the formula "x = x" is strongly minimal in some $\mathcal{M} \models T$. i.e. The universe M is strongly minimal. (i.e. N is minimal for all $\mathcal{N} \succeq \mathcal{M}$).

Example 144.

- The theory of infinite sets in $L = \emptyset$ is strongly minimal.
- If F is a field, then VS_F is strongly minimal.
- If p is prime or 0, then ACF_p is strongly minimal. (Note that if $K \models ACF_p$ then K^2 is not minimal.)
- Suppose $K \models ACF_p$ where p is prime or 0. Suppose C is an irreducible algebraic curve. Then C is strongly minimal. e.g. Say $C = \{ (x, y) \in K^2 : y = ax + b \}$ with $a \neq 0$. Consider $C \to K$ given by $(x, y) \mapsto x$; this is a definable bijection (i.e. a bijection whose graph is definable).

Exercise 145. Strong minimality is preserved under definable bijections.

Proposition 146. Suppose T is complete and totally transcendental. Suppose $\mathcal{M} \models T$. Then every definable set in \mathcal{M} has a minimal definable subset.

Proof. If $\varphi(\mathcal{M})$ is not minimal, then it can be split into two infinite, disjoint, definable subsets $\varphi_0(\mathcal{M})$ and $\varphi_1(\mathcal{M})$. If neither of these is minimal, iterate. Since T is totally transcendental, we have that this process stops; i.e. there is a minimal definable subset. \Box Proposition 146

Remark 147. Write $\varphi(x)$ as $\varphi(x, a)$ where $\varphi(x, y)$ is an *L*-formula and $a = (a_1, \ldots, a_m)$. Whether $\varphi(x, a)$ is strongly minimal depends only on $\operatorname{tp}(a) \in S_m(T)$. i.e. If $\mathcal{N} \models T$ and $b \in N^m$ with $\operatorname{tp}(b) = \operatorname{tp}(a)$, then $\varphi(x, b)$ is strongly minimal if $\varphi(x, a)$ is. In particular, if m = 0, then strong minimality depends only on φ .

Proof. $\varphi(x, a)$ is strongly minimal if and only if for any *L*-formula $\psi(x, z)$ (where $z = (z_1, \ldots, z_\ell)$), we have that the set of L(a)-formulae

$$\Sigma_{\psi}(z) = \{ \exists^{>k} x(\varphi(x,a) \land \psi(x,z)) \land \exists^{>k} x(\varphi(x,a) \land \neg \psi(x,z)) : k \in \mathbb{N} \}$$

has no realization in any $\mathcal{N} \succeq \mathcal{M}$.

Aside 148. $\varphi(\mathcal{M})$ is minimal if and only if for all ψ , we have Σ_{ψ} is not realized in \mathcal{M} .

But this holds if and only if $\Sigma_{\psi}(z)$ is not finitely satisfiable in \mathcal{M} for any ψ ; i.e. for every ψ there is some k_{ψ} such that, if

$$\theta_{\psi}(y) = \forall z (\exists^{\leq k_{\psi}} x(\varphi(x, y) \land \psi(x, z)) \lor \exists^{\leq k_{\psi}} x(\varphi(x, y) \land \neg \psi(x, z)))$$

then $\mathcal{M} \models \theta_{\psi}(a)$. Then $\varphi(x, a)$ is strongly minimal if and only if $\mathcal{M} \models \theta_{\psi}(a)$ for all ψ ; i.e. if and only if $\theta_{\psi}(y) \in \operatorname{tp}(a)$ for all ψ .

Lemma 149. If \mathcal{M} is ω -saturated, then minimal in \mathcal{M} implies strongly minimal.

Proof. Suppose $\varphi(x, a)$ is not strongly minimal; then there is some $\psi(x, z)$ such that $\Sigma_{\psi}(z)$ is realized in some $\mathcal{N} \succeq \mathcal{M}$. So $\Sigma_{\psi}(z)$ is a partial ℓ -type over a. So $\Sigma_{\psi}(z)$ is realized in \mathcal{M} by ω -saturation. So, by Aside 148, we have that $\varphi(\mathcal{M})$ is not minimal. \Box Lemma 149

Assignment 3. Due Monday November 16. Do 5.2.5, 3.3.1 (prove random graph has quantifier elimination and is complete) + 5.5.3, 5.6.1, 5.7.3, 5.7.4.

Definition 150. We say T eliminates $\exists^{\infty} x$ quantifier if for every L-formula $\varphi(x, y)$ where $y = (y_1, \ldots, y_n)$ there is a bound $N_{\varphi} \geq 1$ such that for any $\mathcal{M} \models T$ and any $a \in M^n$, we have that $\varphi(\mathcal{M}, a)$ is either of size $\leq N_{\varphi}$ or is infinite.

The point is that for every φ there is a formula $\psi(y)$ such that for any $\mathcal{M} \models T$ and any $a \in M^n$, we have

$$\mathcal{M} \models \psi(a) \iff \varphi(\mathcal{M}, a)$$
 is infinite

Thus $T \models \forall y(\psi(y) \leftrightarrow \exists^{\infty} x(\varphi(x, y)))$. In particular, we take $\psi(y)$ to be

$$\exists x_1 \dots x_{N_{\varphi}+1} \left(\bigwedge_{i \neq j} (x_i \neq x_j) \land \varphi(x_i) \right)$$

Lemma 151. If T has no vaughtian pair then T eliminates $\exists^{\infty} x$.

Proof. Fix $\varphi(x, y)$. Suppose T does not eliminate $\exists^{\infty} x \varphi(x, y)$. Let $L^* = L \cup \{P, c\}$ where P is a unary predicate symbol and $c = (c_1, \ldots, c_n)$ are new constant symbols with n = |y|. Let

 $T^* = T \cup \{ "P \text{ is an elementary } L\text{-substructure"} \} \cup \{ \forall x (\varphi(x, c) \to P(x)) \} \cup \{ P(c_i) : i \in \{1, \dots, n\} \}$

Note that except for the possibility that $\varphi(x, c)$ is algebraic, we have that T^* is the theory of a vaughtian pair for T. To actually get a vaughtian pair, we use the theory

$$S = T^* \cup \{ \exists^{\geq k} x \varphi(x, c) : k \in \mathbb{N} \}$$

Claim 152. S is consistent.

Proof. We use compactness. For any k there is a model $\mathcal{M} \models T$ with $a \in M^n$ such that $\varphi(\mathcal{M}, a)$ is finite of size $\geq k$. (Since T does not eliminate $\exists^{\infty} x(\varphi(x, y))$.) Pick $\mathcal{N} \succ \mathcal{M}$. Since $\varphi(x, a)$ is algebraic, we have that $\varphi(\mathcal{N}, a) \subseteq M$. So $(\mathcal{N}, \mathcal{M}, a) \models T^* \cup \{\exists^{\geq k} x \varphi(x, c)\}$. By compactness, we have S is consistent.

Then any model of S is a vaughtian pair.

Lemma 153. Suppose T is a complete theory that eliminates $\exists^{\infty} x$. Suppose $\mathcal{M} \models T$ and φ is an L(M)-formula with $\varphi(\mathcal{M})$ minimal. Then $\varphi(x)$ is strongly minimal.

Proof. If $\varphi(x)$ were not strongly minimal, then in some $\mathcal{N} \succeq \mathcal{M}$ there is some $\psi(x, z)$ and some $b \in N^{\ell}$ (where $\ell = |z|$) such that $\varphi(\mathcal{N}) \land \psi(\mathcal{N}, b)$ and $\varphi(\mathcal{N}) \land \neg \psi(\mathcal{N}, b)$ are infinite. Then

$$\mathcal{N} \models \exists^{\infty} x(\varphi(x) \land \psi(x,b)) \land \exists^{\infty} x(\varphi(x) \land \neg \psi(x,b))$$

Since T eliminates $\exists^{\infty} x$, this can be expressed as a first-order statement. So

$$\exists^{\infty} x(\varphi(x) \land \psi(x,z)) \land \exists^{\infty} x(\varphi(x, \land \neg \psi(x,z)))$$

is realized in \mathcal{M} . So $\varphi(\mathcal{M})$ is not minimal in \mathcal{M} .

Exercise 154. If T eliminates $\exists^{\infty} x$ for x a single variable then it eliminates $\exists^{\infty} x$ for x an n-tuple of variables.

Corollary 155. Suppose T is countable, complete, and uncountably categorical. Then every definable set (in any model) contains a strongly minimal definable set.

Proof. Fix $\mathcal{M} \models T$; suppose $X \subseteq M^n$ is definable. By total transcendentality we have that X contains a minimal definable set Y. Since T has no vaughtian pair, we have that Y is strongly minimal.

 \Box Corollary 155

Lemma 156. Suppose \mathcal{M} is an L-structure; suppose $\varphi(x)$ is an L(M)-formula where $x = (x_1, \ldots, x_n)$. Then $\varphi(\mathcal{M})$ is minimal if and only if there is a unique $p(x) \in S_n(M)$ that is non-algebraic and contains $\varphi(x)$.

 \Box Lemma 153

 \Box Lemma 151

Proof.

 (\Longrightarrow) Let

 $p(x) = \{ \psi(x) : \psi(x) \text{ is an } L(M) \text{-formula such that } \varphi \land \neg \psi \text{ is algebraic } \}$

Then p(x) is complete since $\varphi(\mathcal{M})$ is minimal, and p(x) is non-algebraic since $\varphi(x)$ is non-algebraic. Furthermore, p(x) is clearly the unique such type.

(\Leftarrow) Suppose $\varphi(\mathcal{M})$ is not minimal, witnessed by $\varphi \wedge \psi$ and $\varphi \wedge \neg \psi$ both non-algebraic. Let

$$p_1(x) = \{ \varphi \land \psi \} \cup \{ \neg \theta : \theta \text{ an algebraic } L(M) \text{-formula} \}$$
$$p_2(x) = \{ \varphi \land \neg \psi \} \cup \{ \neg \theta : \theta \text{ an algebraic } L(M) \text{-formula} \}$$

Then these are distinct partial types (check), and any completion is non-algebraic and contains φ .

 \Box Lemma 156

We view this as saying that $\varphi(x)$ has a unique "generic" extension.

Corollary 157. Suppose $p(x) \in S_n(A)$ is strongly minimal. Then for any $\mathcal{N} \succeq \mathcal{M}$ and any $A \subseteq B \subseteq N$, we have that p(x) has a unique non-algebraic extension to B.

Proof. Existence is by 5.6.2 (does not use strong minimality). Suppose $q_1(x), q_2(x) \in S_n(B)$ are non-algebraic types extending p(x). Let $\varphi(x) \in p(x)$ be strongly minimal. So $\varphi(\mathcal{N})$ is minimal. Let $q_1(x) \subseteq \hat{q}_1(x) \in S_n(N)$ be non-algebraic; let $q_2(x) \subseteq \hat{q}_2(x) \in S_n(N)$ be non-algebraic (again by 5.6.2). Now $\varphi \in \hat{q}_1 \cap \hat{q}_2$. So, by lemma applied to $\varphi(N)$, we have $\hat{q}_1 = \hat{q}_2$. So $q_1 = q_2$.

Definition 158. We say a type p(x) is *strongly minimal* if it is non-algebraic and and contains a strongly minimal formula.

Corollary 159 (5.7.4). Suppose \mathcal{M} is an L-structure with $A \subseteq \mathcal{M}$. Suppose $p(x) \in S_n(A)$ is strongly minimal; suppose m > 0. Then there is a unique type over A of an m-tuple (a_1, \ldots, a_m) of realizations of p(x) with $a_i \notin \operatorname{acl}(Aa_1 \ldots a_{i-1})$ for all $i \in \{1, \ldots, m\}$. (i.e. if $(b_1, \ldots, b_m) \models p(x)$ with $b_i \notin \operatorname{acl}(Ab_1 \ldots b_{i-i})$, then $\operatorname{tp}(a_1 \ldots a_m/A) = \operatorname{tp}(b_1 \ldots b_m/A)$.)

Recall that an *n*-tuple is in $\operatorname{acl}(B)$ if every coordinate is.

Remark 160. Since p(x) is strongly minimal, we have that there always exist such *m*-tuples. (We call such an *m*-tuple an *m*-tuple of acl-independent realizations of p(x).) Indeed, take $a_1 \models p(x)$ such that $a_1 \notin \operatorname{acl}(A)$. Extend p(x) to a non-algebraic type over Aa_1 ; let a_2 realize it. Then $a_2 \models p(x)$ and $a_2 \notin \operatorname{acl}(Aa_1)$.

Proof of Corollary 159. Induction on m. The case m = 1 is simply because p(x) is complete. Suppose then that m > 1. Suppose (b_1, \ldots, b_m) and (a_1, \ldots, a_m) are acl-independent sequences of realizations of p(x). By the induction hypothesis we have $\operatorname{tp}(b_1 \ldots b_{m-1}/A) = \operatorname{tp}(a_1 \ldots a_{m-1}/A)$. Let $f: A \cup \{b_1, \ldots, b_{m-1}\} \to A \cup \{a_1, \ldots, a_{m-1}\}$ be given by $f(b_i) = a_i$ and $f \upharpoonright A = \operatorname{id}$; then f is a partial elementary map. Let $q(x) = f(\operatorname{tp}(b_m/Ab_1 \ldots b_{m-1}))$; then q(x) is non-algebraic since $b_m \notin \operatorname{acl}(Ab_1 \ldots b_{m-1})$ and f is a partial elementary map. Note that as $f \upharpoonright A = \operatorname{id}$, we have that b_m and a_m both realize p(x). Then q(x) and $\operatorname{tp}(a_m/Aa_1 \ldots a_{m-1})$ are both non-algebraic extensions of p(x) to $A \cup \{a_1, \ldots, a_{m-1}\}$; so, by the last corollary, we have

$$f(\operatorname{tp}(b_m/Ab_1\dots b_{m-1})) = q(x) = \operatorname{tp}(a_m/Aa_1\dots a_{m-1})$$

So we can extend f to a partial elementary map taking b_m to a_m . So $tp(b_1 \dots b_m/A) = tp(a_1 \dots a_m/A)$. \Box Corollary 159

Definition 161. A pregeometry or matroid is a set X together with a function $cl: \mathcal{P}(X) \to \mathcal{P}(X)$ satisfying **Reflexivity** $A \subseteq cl(A)$

Transitivity cl(cl(A)) = cl(A)

Finite character

$$\operatorname{cl}(A) = \bigcup_{A' \subseteq_{\operatorname{fin}} A} \operatorname{cl}(A')$$

Steinitz exchange If $a \in cl(Ab) \setminus cl(A)$ then $b \in cl(Aa)$.

Example 162.

- If X is any set, we can set cl(A) = A.
- If F is a field and V is a vector space over F, we can set $cl(A) = span_F(A)$.
- If K is an algebraically closed field, we can set $cl(A) = \mathbb{F}(A)^{alg}$.

In every pregeometry there is a notion of independence:

Definition 163. Suppose (X, cl) is a pregeometry; suppose $A \subseteq X$. We say $C \subseteq X$ is an *independent set* over A if for all $c \in C$ we have $c \notin cl(A \cup (C \setminus \{c\}))$.

Fact 164. Suppose (X, cl) is a pregeometry and $A \subseteq X$.

- 1. $C \subseteq X$ is independent over A if and only if given any enumeration $C = \{c_{\alpha} : \alpha < \kappa\}$ and any $\alpha < \kappa$ we have $c_{\alpha} \notin cl(A \cup \{c_{\beta} : \beta < \alpha\})$.
- 2. If $C \subseteq X$ and $D \subseteq X$ are both maximal independent sets over A, then |C| = |D|.
- 3. $C \subseteq X$ is maximally independent over A if and only if C is independent over A and cl(C) = X.

Proof. The usual proof in linear algebra for span works in pregeometries.

 \Box Fact 164

Definition 165. We call a maximally independent set $C \subseteq X$ over A a basis for X over A; we set $\dim(X) = |C|$.

Theorem 166 (5.7.5). Suppose T is a complete theory, $\varphi(x)$ an L-formula with $x = (x_1, \ldots, x_n)$, and $\mathcal{M} \models T$. Suppose $\varphi(x)$ is strongly minimal. Then

cl:
$$\mathcal{P}(\varphi(\mathcal{M})) \to \mathcal{P}(\varphi(\mathcal{M}))$$

 $A \mapsto \operatorname{acl}(A) \cap \varphi(\mathcal{M})$

is a pregeometry on $\varphi(\mathcal{M})$.

Remark 167. If n > 1 and $A \subseteq M^n$, we set

 $\operatorname{acl}(A) = \operatorname{acl}(\{a \in M : a \text{ is a co-ordinate of some } n \text{-tuple in } A\})$

and we write $(c_1, \ldots, c_n) \in \operatorname{acl}(A) \subseteq M$ to mean every $c_i \in \operatorname{acl}(A)$.

Proof of Theorem 166. We have proved the first three axioms for (M, acl) ; they then follow easily for $(\varphi(\mathcal{M}), \operatorname{cl})$. It remains to show exchange. Suppose $a, b \in \varphi(\mathcal{M})$ and $A \subseteq \varphi(M)$. Suppose $b \notin \operatorname{acl}(Aa)$ and $a \notin \operatorname{acl}(A)$. It remains to show that $a \notin \operatorname{acl}(Ab)$. Let $p(x) \in S_n(A)$ be the (unique by 5.7.3) non-algebraic type containing $\varphi(x)$. Then $a \models p(x)$ since $\operatorname{tp}(a/A)$ is non-algebraic and contains $\varphi(x)$. Also $b \models p(x)$ and $b \notin \operatorname{acl}(Aa)$; so (a, b) is an independent pair of realizations of p(x). So its type over A is completely determined by $b \notin \operatorname{acl}(Aa)$ and $a \notin \operatorname{acl}(A)$.

Now, let $\mathcal{N} \succeq \mathcal{M}$ such that $p(\mathcal{N})$. (Possible since p(x) is non-algebraic.) Let $q(x) \in S_n(Ap(\mathcal{N}))$ be the unique non-algebraic extension of p(x). Let $\mathcal{K} \succeq \mathcal{N}$ have a realization b' of q(x). Now, for all $a' \in p(\mathcal{N})$, we have that

$$\operatorname{tp}(a', b'/A) = \operatorname{tp}(a, b/A)$$

since (a', b') satisfies $b' \notin \operatorname{acl}(Aa')$ and $a' \notin \operatorname{acl}(A)$. In particular, fixing $a' \in p(\mathcal{N})$, we have that every element of $p(\mathcal{N})$ realizes $\operatorname{tp}(a'/Ab')$; so $a' \notin \operatorname{acl}(Ab')$. So $a \notin \operatorname{acl}(Ab)$. \Box Theorem 166

We thus get notions of independence, basis, and dimension; we use the notation $\operatorname{acl-dim}_{\varphi}(\mathcal{M}) = \operatorname{dim}(\varphi(\mathcal{M}))$ in the sense of the above pregeometry.

This extends to parameters simply by working in L(A). We use the notation $\operatorname{acl-dim}_{\varphi}(\mathcal{M}/A) = \operatorname{acl-dim}_{\varphi}(\mathcal{M}_A)$. Note that the closure operator is now $\operatorname{cl}(B) = \operatorname{acl}(B \cup A) \cap \varphi(\mathcal{M})$.

Lemma 168 (5.7.6). Suppose \mathcal{M}, \mathcal{N} are L-structures with $A \subseteq M$ and $A \subseteq N$ with $\mathcal{M}_A \equiv \mathcal{N}_A$. Let $\varphi(x)$ be an A-definable strongly minimal formula (with x is a single variable). Then there exists a bijective partial elementary map $f: A \cup \varphi(\mathcal{M}) \to A \cup \varphi(\mathcal{N})$ such that $f \upharpoonright A = \text{id}$ if and only if $\dim_{\varphi}(\mathcal{M}/A) = \dim_{\varphi}(\mathcal{N}/A)$. (Such a map is called a partial elementary map over A.)

Remark 169. If φ is x = x, i.e. we are in a strongly minimal theory, then this says that models are determined by dimension.

Proof of Lemma 168.

- (\Longrightarrow) The property of being an acl-basis is preserved by bijective partial elementary maps.
- (\Leftarrow) Let $U \subseteq \varphi(\mathcal{M})$ and $V \subseteq \varphi(\mathcal{N})$ be acl-bases over A of $\varphi(\mathcal{M})$ and $\varphi(\mathcal{N})$, respectively. Let $f: A \cup U \to A \cup V$ be any bijection with $f \upharpoonright A = \operatorname{id}$. (Note that $A \cap U = A \cap V = \emptyset$, so this is possible.) 5.7.4 then says that each distinct m-tuple from U has the same type over A as its image under f. Suppose $a_1, \ldots, a_m \in U$. Then $\operatorname{tp}(a_1 \ldots a_m/A)$ says only that $a_1 \notin \operatorname{acl}(A), a_2 \notin \operatorname{acl}(Aa_1), \ldots, a_m \notin \operatorname{acl}(Aa_1 \ldots a_{m-1})$; i.e. f is a partial elementary map. By 5.6.4, we have that f extends to a partial elementary map $\operatorname{acl}(A \cup U) \to \operatorname{acl}(A \cup V)$, and thus $\operatorname{acl}(A \cup U) \cap \varphi(\mathcal{M}) \to \operatorname{acl}(A \cup V) \cap \varphi(\mathcal{N})$; i.e. $\operatorname{cl}(U) \to \operatorname{cl}(V)$, i.e. $\varphi(\mathcal{M}) \to \varphi(\mathcal{N})$.

□ Lemma 168

Remark 170. A better formulation of the statement: there is a bijective partial elementary map $f: \varphi(\mathcal{M}) \to \varphi(\mathcal{N})$ in L(A) if and only if $\dim_{\varphi}(\mathcal{M}/A) = \dim_{\varphi}(\mathcal{N}/A)$.

Consider in particular a strongly minimal theory T; so we have some $\mathcal{M} \models T$ such that (M, acl) is a pregeometry. Then $\operatorname{acl-dim}(\mathcal{M})$ is the dimension of this pregeometry. We see that models of T are determined up to isomorphism by $\operatorname{acl-dim}$.

Theorem 171 (Baldwin-Lachlan). Suppose $\kappa > \aleph_0$. Suppose T is countable and complete. Then T is κ -categorical if and only if T is ω -stable and has no vaughtian pairs.

Proof.

- (\Longrightarrow) Done. (5.5.4).
- (\Leftarrow) T is ω -stable; so it is small, and thus has a prime model \mathcal{M}_0 . Then \mathcal{M}_0 is countable. We also know that there exists a strongly minimal $L(\mathcal{M}_0)$ -formula $\varphi(x)$ with x a single variable. Indeed, by total transcendentality we have \mathcal{M}_0 contains a minimal definable set. Since T has no vaughtian pair, we have that $\exists^{\infty} x$ is eliminated; thus minimal implies strongly minimal. Let $\mathcal{M}_1, \mathcal{M}_2$ be κ -sized models. By primality we may assume $\mathcal{M}_0 \preceq \mathcal{M}_1$ and $\mathcal{M}_0 \preceq \mathcal{M}_2$.

Now, for each $i \in \{1, 2\}$, we have $|\varphi(\mathcal{M}_i)| = \kappa$ since T has no vaughtian pairs. Let $B_i \subseteq \varphi(\mathcal{M}_i)$ be an acl-basis over M_0 . Then $\operatorname{acl}(M_0 \cup B_i) = \varphi(\mathcal{M}_i)$ for $i \in \{1, 2\}$. Then

$$\kappa = |\operatorname{acl}(M_0 \cup B_i)|$$

= $|M_0 \cup B_i|$ (since *L* is countable)
 $\leq |M_0| + |B_i|$
= $\aleph_0 + |B_i|$

So $|B_i| = \kappa$. So acl-dim $_{\varphi}(\mathcal{M}_i/M_0) = \kappa$. By the lemma there is a bijective partial elementary map $f: \varphi(\mathcal{M}_1) \to \varphi(\mathcal{M}_2)$ in the language $L(M_0)$. We thus get a bijective partial elementary map in L: $g: M_0 \cup \varphi(\mathcal{M}_1) \to M_0 \cup \varphi(\mathcal{M}_2)$ with $g \upharpoonright M_0 = \text{id}$ and $g \upharpoonright \varphi(\mathcal{M}_1) = f$. Since T has no vaughtian pairs, we have that \mathcal{M}_1 is prime over $M_0 \cup \varphi(\mathcal{M}_1)$; then g extends to an elementary embedding $\mathcal{M}_1 \to \mathcal{M}_2$. So $\mathcal{M}_1 \cong g(\mathcal{M}_1) = \mathcal{M}'_2 \preceq \mathcal{M}_2$, and $g(\mathcal{M}_1)$ contains $M_0 \cup \varphi(\mathcal{M}_2)$. So $\varphi(\mathcal{M}_1) \subseteq M'_2$ with $\mathcal{M}'_2 \preceq \mathcal{M}_2$; since T has no vaughtian pairs, we have that $\mathcal{M}'_2 = \mathcal{M}_2$, and g is an isomorphism. **Corollary 172** (Morley's theorem). Suppose T is countable and complete; suppose $\kappa > \aleph_0$. Then T is κ -categorical if and only if T is \aleph_1 -categorical.

Final exams: oral, individually scheduled, done before December 17.

3.2 Loose ends in strongly minimal theories

Recall that T is strongly minimal theory if "x = x" is strongly minimal in some (equivalently, any) $\mathcal{M} \models T$; in this case, we have (M, acl) is a pregeometry.

Theorem 173. Suppose T is strongly minimal and complete. Then

- 1. T is κ -categorical for any $\kappa \geq \aleph_0 + |L|$.
- 2. Every infinite κ is the acl-dim of some model of T. The finite cardinals that are possible acl-dim of models of T form an end segment.
- 3. If $\mathcal{M} \models T$, then $\operatorname{acl-dim}(\mathcal{M})$ is infinite if and only if \mathcal{M} is ω -saturated.
- 4. All models of T are ω -homogeneous.

Proof. We begin with a claim.

Claim 174. Suppose $\mathcal{M} \models T$, $A \subseteq M$ is infinite and $A = \operatorname{acl}(A)$. Then A is the universe of an elementary substructure of \mathcal{M} .

Proof. Given an L(A)-formula $\varphi(x)$, we need to show that if $\varphi(\mathcal{M})$ is non-empty, then there is $a \in A$ with $\mathcal{M} \models \varphi(A)$. If $\varphi(\mathcal{M})$ is finite, then all its members are in $\operatorname{acl}(A) = A$ by definition of algebraic closure. If $\varphi(\mathcal{M})$ is infinite, then by strong minimality of T we have that $\varphi(\mathcal{M})$ is cofinite, and $A \cap \varphi(\mathcal{M}) \neq \emptyset$ since A is infinite. \Box Claim 174

- 1. Suppose $\kappa > \aleph_0 + |L|$; suppose $\mathcal{M}_1, \mathcal{M}_2 \models T$ with $|M_1| = |M_2| = \kappa$. Let $B_i \subseteq M_i$ be an acl-basis for M_i . Then $\kappa = |M_i| = |\operatorname{acl}(B_i)| \le |B_i| + \aleph_0 + |L|$. But $\kappa > \aleph_0 + |L|$; so $|B_i| \ge \kappa$. But $B_i \subseteq M_i$, so $|B_i| \le \kappa$, and $|B_i| = \kappa$. So acl-dim $(\mathcal{M}_1) = \operatorname{acl-dim}(\mathcal{M}_2) = \kappa$; so $\mathcal{M}_1 \cong \mathcal{M}_2$. Let $f : B_1 \to B_2$ be any bijection; then this is a partial elementary map. Extend f to acl: we may take $f : M_1 \to M_2$ to be a bijective partial elementary map, which is then an isomorphism.
- 2. Suppose $\kappa > \aleph_0 + |L|$. Let $\mathcal{M} \models T$ be of size κ . By the proof of (a) we have that $\operatorname{acl-dim}(\mathcal{M}) = \kappa$.
 - Suppose $\aleph_0 \leq \kappa \leq \aleph_0 + |L|$. Let $\mathcal{M} \models T$ with $|\mathcal{M}| > \aleph_0 + L$. Then $\operatorname{acl-dim}(\mathcal{M}) = |\mathcal{M}| > \kappa$, so we can find an acl-independent set $B \subseteq M$ of size κ . By the claim, since $\kappa \geq \aleph_0$, we have that $\operatorname{acl}(B) \preceq \mathcal{M}$. Then $\operatorname{acl-dim}(\mathcal{B})) = \kappa$.

Suppose $\mathcal{M} \models T$ with $\operatorname{acl-dim}(\mathcal{M}) = n < \omega$. Let $\{b_1, \ldots, b_n\}$ be an acl-basis for \mathcal{M} . Let $\mathcal{N} \succeq \mathcal{M}$; let $c \in N \setminus \mathcal{M}$. Then $\operatorname{acl}(\{b_1, \ldots, b_n\} = \mathcal{M})$, so $\{b_1, \ldots, b_n, c\}$ is acl-independent. So in (N, acl) , we have $\operatorname{acl}(\{b_1, \ldots, b_n, c\}) \preceq \mathcal{N}$ by the claim, since $\operatorname{acl}(\{b_1, \ldots, b_n, c\}) \supseteq \mathcal{M}$, and thus is infinite. But then $\operatorname{acl-dim}(\operatorname{acl}(\{b_1, \ldots, b_n, c\})) = n + 1$.

- 3. Suppose $A \subseteq M$, $|A| < \omega$, and $p \in S_1(A)$. If p is algebraic, then it is realized in \mathcal{M} as it is isolated. If p is non-algebraic, then it is the unique non-algebraic type, so any $a \in \mathcal{M} \setminus \operatorname{acl}(A)$ will realize it. So p will be realized if and only if $\operatorname{acl}(A) \neq \mathcal{M}$. So $\operatorname{acl-dim}(\mathcal{M})$ is infinite if and only if \mathcal{M} is ω -saturated.
- 4. Suppose $\mathcal{M} \models T$, $f: A \to B$ is a partial elementary map with $|A| = |B| < \omega$. Extend f to $f: \operatorname{acl}(A) \to \operatorname{acl}(B)$. Let $n = \operatorname{acl-dim}(\operatorname{acl}(A)) = \operatorname{acl-dim}(\operatorname{acl}(B))$. If $\operatorname{acl}(A) = M$, we are done. If $\operatorname{acl}(A) \subsetneqq M$, then $\operatorname{dim}(\mathcal{M}) > n$; so $\operatorname{acl}(B) \neq M$. Then if $a \in M \setminus \operatorname{acl}(A)$, then $p = \operatorname{tp}(a/(\mathcal{A}))$ is non-algebraic, so $f(p) \in S_1(\operatorname{acl}(B))$ is non-algebraic, and is thus realized by any $b \in M \setminus \operatorname{acl}(B) \neq \emptyset$; we can then extend f by $a \mapsto b$.

 \Box Theorem 173

3.3 Eschewing the monster model

Proposition 175. Suppose κ is an infinite cardinal. Then every L-structure has a κ -saturated elementary extension.

Proof. Replacing κ by κ^+ , we may assume κ is regular. Suppose \mathcal{M} is an L-structure. We build a chain

$$\mathcal{M} = \mathcal{M}_0 \preceq \mathcal{M}_1 \preceq \dots$$

of length κ such that $\mathcal{M}_{\alpha+1}$ is an elementary extension of \mathcal{M}_{α} in which all types over \mathcal{M}_{α} are realized. For α a limit ordinal, we let

$$\mathcal{M}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{M}_{\beta}$$

Let

$$\mathcal{N} = \bigcup_{\alpha < \kappa} \mathcal{M}_{\alpha}$$

Then, since κ is regular, we have $\mathcal{N} \succeq \mathcal{M}$ is κ -saturated.

Remark 176. A more careful proof would show that if $|M| \leq \kappa$, then there is an elementary extension of \mathcal{M} that is κ^+ -saturated and of size 2^{κ} . If we assume GCH, we would actually get a saturated elementary extension. Outright saturation is useful because of its strong homogeneity properties, but we don't wish to assume GCH.

Theorem 177. Suppose κ is an infinite cardinal. Then every L-structure has an elementary extension that is κ -saturated and strongly κ -homogeneous.

Proof. Again, we may assume κ is regular. Suppose \mathcal{M} is an L-structure; we build a chain

$$\mathcal{M} = \mathcal{M}_0 \preceq \mathcal{M}_1 \preceq \dots$$

of length κ where $\mathcal{M}_{\alpha+1}$ is $|\mathcal{M}_{\alpha}|^+$ -saturated by iterating the above proposition. At a limit ordinal α , we set

$$\mathcal{M}_{lpha} = \bigcup_{eta < lpha} \mathcal{M}_{lpha}$$

Let

$$\mathcal{N} = \bigcup_{\alpha < \kappa} \mathcal{M}_{\alpha}$$

Clearly \mathcal{N} is κ -saturated. Let $f: A \to N$ be a partial elementary map with $|A| < \kappa$. By regularity we have that A and f(A) are contained in M_{α} for some $\alpha < \kappa$. So $f: A \to f(A)$ is a partial elementary map from $\mathcal{M}_{\alpha+1}$ to itself. We work in $\mathcal{M}_{\alpha+1}$.

Claim 178. f extends to a partial elementary map f_{α} whose domain and range contain M_{α} .

Proof. Enumerate $M_{\alpha} \setminus A$ and extend f by back-and-forth, using the fact that $\mathcal{M}_{\alpha+1}$ is $|\mathcal{M}_{\alpha}|^+$ -saturated. \Box Claim 178

Let

$$\widehat{f} = \bigcup_{\alpha < \kappa} f_{\alpha}$$

Then $\operatorname{dom}(\widehat{f}) \supseteq \mathcal{N}$ and $\operatorname{Ran}(\widehat{f}) \supseteq \mathcal{N}$. So \widehat{f} is an automorphism of \mathcal{N} .

Hereafter, by "a sufficiently saturated model", we mean a structure with sufficiently large saturation and strong homogeneity.

Theorem 179. Suppose \mathcal{M} is κ -saturated and strongly κ -homogeneous. Then

1. (κ^+ -universality) If $\mathcal{N} \equiv \mathcal{M}$ and $|\mathcal{N}| \leq \kappa$, then there is an elementary embedding $\mathcal{N} \to \mathcal{M}$.

 \Box Theorem 177

 \Box Proposition 175

- 2. If $b, b' \in M$ and $A \subseteq M$ with $|A| < \kappa$, then $\operatorname{tp}(b/A) = \operatorname{tp}(b'/A)$ if and only if there is $f \in \operatorname{Aut}_A(\mathcal{M})$ with f(b) = b'. (i.e. f is an automorphism of \mathcal{M} with $f \upharpoonright A = \operatorname{id}$.)
- 3. Suppose $X \subseteq M^n$ is definable (over some parameter set). Suppose $A \subseteq M$ with $|A| < \kappa$. Then X is A-definable if and only if X is $\operatorname{Aut}_A(\mathcal{M})$ -invariant.
- 4. Suppose $b \in M^n$, $A \subseteq M$, and $|A| < \kappa$. Then the following are equivalent:
 - (a) $b \in \operatorname{acl}(A)$.
 - (b) $\operatorname{tp}(b/A)$ has finitely many realizations in \mathcal{M} .
 - (c) The $\operatorname{Aut}_A(\mathcal{M})$ -orbit of b is finite.
- 5. Suppose $b \in M^n$ with $A \subseteq M$ and $|A| < \kappa$. Then the following are equivalent:

(a)

$$b \in \operatorname{dcl}(A) = \{ b' \in M : \{ b' \} \text{ is A-definable} \}$$

(We say a tuple b is in dcl(A) if every component is; equivalently, if $\{b\}$ is an A-definable subset of M^n .)

- (b) tp(b/A) has only b as a realization in \mathcal{M} .
- (c) $\{b\}$ is the Aut_A(\mathcal{M})-orbit of b.

Proof.

1. We argue by extending partial elementary maps. Then $\emptyset \to \emptyset$ is a partial elementary map $\mathcal{N} \to \mathcal{M}$ because $\mathcal{N} \equiv \mathcal{M}$.

Given a partial elementary map $f: A \to M$ with $A \subseteq N$ and $|A| < \kappa$, we can extend f to any $b \in N$ by the κ -saturation of \mathcal{M} .

If we enumerate $N = \{a_{\alpha} : \alpha < \kappa\}$ and set $A_{\alpha} = \{a_{\beta} : \beta < \alpha\}$, then the A_{α} form a chain with

$$N = \bigcup_{\alpha < \kappa} A_{\alpha}$$

and $|A_{\alpha}| < \kappa$. So we get $f: \mathcal{N} \to \mathcal{M}$ an elementary embedding. (At limits, take unions.) Note that here we didn't use strong κ -homogeneity; it sufficed to assume κ -saturation.

2. (\Leftarrow) Clear. (\Longrightarrow) If $\operatorname{tp}(b/A) = \operatorname{tp}(b'/A)$ then the map $f: A \cup \{b\} \to A \cup \{b'\}$ given by

$$f(x) = \begin{cases} x & x \in A \\ b' & x = b \end{cases}$$

is a partial elementary map. But $|A \cup \{b\}| < \kappa$. So, by strong homogeneity, we have that f extends to an automorphism of \mathcal{M} .

- 3. (\Longrightarrow) Clear.
 - (\Leftarrow) Write $X = \varphi(\mathcal{M}, b)$ for some *L*-formula $\varphi(x, z)$ where $x = (x_1, \ldots, x_n)$ and $b = (b_1, \ldots, b_m)$. Let $y = (y_1, \ldots, y_n)$. Set

$$\Phi(x,y) = \{ \psi(x) \leftrightarrow \psi(y) \} \cup \{ \varphi(x,b) \land \neg(y,b) \}$$

Note that these are formulae over Ab. If $\Phi(x, y)$ were finitely realized, then by κ -saturation (since $|Ab| < \kappa$), it would be realized by $d, e \in M^n$. So $\operatorname{tp}(d/A) = \operatorname{tp}(e/A)$ but $d \in X$ and $e \notin X$. So, by

(b), we have some $f \in \operatorname{Aut}_A(\mathcal{M})$ with f(d) = e, contradicting the $\operatorname{Aut}_A(\mathcal{M})$ -invariance of X. So $\Phi(x, y)$ is not finitely realized in \mathcal{N} . So there are L(A)-formulae $\psi_1, \ldots, \psi_\ell$ such that

$$\mathcal{M} \models \forall x \forall y \left(\left(\bigwedge_{i=1}^{\ell} \psi_i(x) \leftrightarrow \psi_i(y) \right) \rightarrow (\varphi(x,b) \leftrightarrow \varphi(y,b)) \right)$$

But if we partition M^n into finitely many disjoint sets D_1, \ldots, D_{2^ℓ} depending on which ψ_i are realized and which are not, then this says that each D_j is either contained in X or disjoint from X. So X is a finite union of D_j . But each D_j is A-definable. So X is A-definable.

Note that this required both κ -saturation and strong κ -homogeneity.

- 4. (a) \implies (b) Clear.
 - (b) \implies (c) By (2).
 - (c) \implies (a) Let $X = \{ f(b) : f \in Aut_A(\mathcal{M}) \}$. Then X is finite, and hence definable, and X is $Aut_A(\mathcal{M})$ -invariant. So, by (3), we have that X is A-definable. But $b \in X$ and X is finite; so $b \in acl(A)$.
- 5. Similar.

 \Box Theorem 179

We sometimes say a set X is A-invariant to mean that X is $\operatorname{Aut}_A(\mathcal{M})$ -invariant.

As a general convention, if T is a complete theory, by a "sufficiently saturated model", we mean a model $\mathcal{U} \models T$ which is κ -saturated and strongly κ -homogeneous for some sufficiently large κ . Once such is fixed, we have that following additional conventions:

- 1. All parameter sets are assumed to be in U and of cardinality $< \kappa$.
- 2. Every type $p(x) \in S(A)$ is assumed to be over $A \subseteq U$ with $|A| < \kappa$; so all types are realized.
- 3. Every model $\mathcal{N} \models T$ is assumed to be of size $\leq \kappa$ and an elementary substructure of U.
- 4. We write $\models \varphi(a)$ to mean $\mathcal{U} \models \varphi(a)$.

unless explicitly stated otherwise.

3.4 Morley rank

Fix a complete theory T (not necessarily countable); fix a sufficiently saturated model \mathcal{U} .

Definition 180. Suppose $\varphi(x)$ is a formula with parameters where $x = (x_1, \ldots, x_n)$. We recursively define, for any ordinal α , what it means to say MR(φ) $\geq \alpha$:

- $MR(\varphi) \ge 0$ if φ is consistent.
- Given any ordinal α , we say MR(φ) $\geq \alpha + 1$ if there exist formulae $\psi_0(x), \psi_1(x), \ldots$ with parameters (not necessarily the same parameters as φ) such that
 - $-\mathcal{U} \models \forall x(\psi_i(x) \to \varphi(x)); \text{ i.e. } \psi_i(\mathcal{U}) \subseteq \varphi(\mathcal{U}).$
 - For $i \neq j$, we have $\mathcal{U} \models \forall x (\neg(\psi_i(x) \land \psi_j(x)))$.
 - For all i, we have $MR(\psi_i) \ge \alpha$.
- For β a limit ordinal, we say $MR(\varphi) \ge \beta$ if $MR(\varphi) \ge \alpha$ for all $\alpha < \beta$.

We now define what it means to say $MR(\varphi) = \alpha$.

- If φ is inconsistent, we say $MR(\varphi) = -\infty$.
- If $MR(\varphi) \ge \alpha$ for all ordinals α , we set $MR(\varphi) = \infty$.

- If φ is consistent and $MR(\varphi)$ is not $\geq \alpha$ for all α , then there exists a maximal ordinal β such that $MR(\varphi) \geq \beta$. (To see this, note that if γ is the least ordinal such that $MR(\varphi) \geq \gamma$; by definition, we have γ is not a limit ordinal, say $\gamma = \beta + 1$, and then β is our desired ordinal.) For this β we define $MR(\varphi) = \beta$.
- If $X = \varphi(\mathcal{U})$ for some formula φ then we define $MR(X) = MR(\varphi)$.

Remark 181. If $\models \forall x(\varphi(x) \leftrightarrow \psi(x))$, then $MR(\varphi) = MR(\psi)$.

Lemma 182. $MR(\varphi) = 0$ if and only if φ is algebraic.

Proof.

- (\implies) Suppose MR(φ) = 0; then MR(φ) \geq 0, and φ is consistent. On the other hand, MR(φ) = 0 implies that MR(φ) \geq 1. So $\varphi(\mathcal{U})$ does not have infinitely many disjoint, definable subsets of Morley rank \geq 0; i.e. $\varphi(\mathcal{U})$ does not have infinitely many disjoint, non-empty, definable sets. But for $a \in X = \varphi(\mathcal{U})$, we have that $\{a\}$ is a non-empty, definable subset. So $\varphi(\mathcal{U})$ is finite. So φ is algebraic.
- (\Leftarrow) Suppose φ is algebraic. Then φ is consistent, so $MR(\varphi) \ge 0$. If we had $MR(\varphi) \ge 1$, then $\varphi(\mathcal{U})$ would have infinitely many disjoint, non-empty, definable subsets, and $\varphi(\mathcal{U})$ would be infinite, a contradiction. So $MR(\varphi) \ge 1$, and $MR(\varphi) = 0$.

 \Box Lemma 182

Remark 183. This has to be computed in a sufficiently saturated model. (Actually \aleph_1 -saturation and strong \aleph_1 -homogeneity suffices; possibly \aleph_0 works.)

Lemma 184. Suppose $\varphi(x) = \psi(x, a)$ where $\psi(x, y)$ is an L-formula and $a = (a_1, \ldots, a_n) \in U^m$. If $a' \models \operatorname{tp}(a)$, then $\operatorname{MR}(\psi(x, a')) = \operatorname{MR}(\psi(x, a))$. i.e. MR depends only on the type of the parameters.

Proof. We show by induction on α that $MR(\psi(x, a)) \ge \alpha$ implies $MR(\psi(x, a')) \ge \alpha$.

- Suppose $MR(\psi(x, a)) \ge 0$; then $\models \exists x \psi(x, a)$, and $\models \exists x \psi(x, a')$, so $MR(\psi(x, a')) \ge 0$.
- Suppose $MR(\psi(x, a)) \ge \alpha + 1$. Then there are $\psi_i(x, b_i)$ where $\psi_i(x, z_i)$ are *L*-formulae with $|z_i| = |b_i|$ such that
 - $-\psi_i(\mathcal{U}, b_i) \subseteq \psi(\mathcal{U}, a).$
 - $-\psi_i(\mathcal{U}, b_i) \cap \psi_j(\mathcal{U}, b_j) = \emptyset$ for $i \neq j$.
 - $-\operatorname{MR}(\psi_i(\mathcal{U}, b_i)) \geq \alpha.$

Now, tp(a') = tp(a), so a' = f(a) for some $f \in Aut(\mathcal{U})$. Then

- $-\psi_i(\mathcal{U}, f(b_i)) \subseteq \psi(\mathcal{U}, a').$
- $\psi_i(\mathcal{U}, f(b_i)) \cap \psi_j(\mathcal{U}, b_j) = \emptyset \text{ for } i \neq j.$
- By the induction hypothesis, since $\operatorname{tp}(b_i) = \operatorname{tp}(f(b_i))$, we have that $\operatorname{MR}(\psi(\mathcal{U}, f(b_i))) = \operatorname{MR}(\psi_i(\mathcal{U}, b_i)) \ge \alpha$.

So $MR(\psi(\mathcal{U}, a')) \ge \alpha + 1$.

• Limit case is easy.

\Box Lemma 184

Lemma 185.

1. If $\varphi \to \psi$ then $MR(\varphi) \leq MR(\psi)$.

2. If $MR(\varphi) = \alpha$ for α an ordinal, then for any $\beta < \alpha$ there is a formula $\psi \to \varphi$ such that $MR(\psi) = \beta$. Proof.

- 1. Clear.
- 2. We apply induction on α . The case $\alpha = 0$ is vacuous.

Suppose α is an ordinal with $\operatorname{MR}(\varphi) = \alpha + 1$; suppose $\beta < \alpha + 1$. Then there are $(\varphi_i : i < \omega)$ implying φ that are pairwise inconsistent with each $\operatorname{MR}(\varphi_i) \ge \alpha$. If all $\operatorname{MR}(\varphi_i) \ge \alpha + 1$, then $\operatorname{MR}(\varphi) \ge \alpha + 1$, a contradiction. So there is some i_0 such that $\operatorname{MR}(\varphi_{i_0}) < \alpha + 1$; then $\operatorname{MR}(\varphi_{i_0}) = \alpha$. If $\beta = \alpha$, then φ_{i_0} is our desired ψ . If $\beta < \alpha$, the by induction hypothesis there is $\psi \to \varphi_{i_0}$ with $\operatorname{MR}(\psi) = \beta$. But then $\psi \to \varphi$, and we have our desired ψ .

The limit case is clear.

 \Box Lemma 185

Definition 186. We say φ has Morley rank if MR(φ) is an ordinal.

Corollary 187. If φ has Morley rank, then $MR(\varphi) < (2^{|L|+\aleph_0})^+$.

Proof. Let

$$O = \{ \alpha \text{ ordinal} : MR(\psi(x)) = \alpha \text{ for some } \psi(x) \}$$

(This is a set by the axiom of replacement, since the collection of formulae with parameters is a set.) But

$$|O| \le (|L| + \aleph_0) \left| \bigcup_{\ell < \omega} S_{\ell}(T) \right| \le 2^{|L| + \aleph_0}$$

as the Morley rank of $\varphi(x, a)$ depends only on φ and the type of a.

(Note that $\psi(x)$ may have parameters from the big universal domain, so there are too many of them.) By previous lemma, we have that O is an initial segment of an ordinal. So O is an ordinal with $|O| \leq 2^{|L|+\aleph_0}$. So $O < (2^{|L|+\aleph_0})^+$. So, for every $\alpha \in O$, we have $\alpha < (2^{|L|+\aleph_0})^+$.

Corollary 188. If T is totally transcendental then every consistent formula has Morley rank.

Proof. Suppose $MR(\varphi) = \infty$. Let $\lambda = (2^{|L|+\aleph_0})^+$. Then $MR(\varphi) \ge \lambda + 1$. In particular, there are $\varphi_0 \to \varphi$ and $\varphi_1 \to \varphi$ with $\varphi_0 \land \varphi_1$ inconsistent and $MR(\varphi_0) \ge \lambda$, $MR(\varphi_1) \ge \lambda$. By part (a) of the previous lemma, we may assume $\varphi_0 \land \varphi_1 \leftrightarrow \varphi$; just enlarge φ_0 to make this happen. (In particular, we can take $\varphi_0 = \varphi \land \neg \varphi_1$.) But then by the previous corollary, we have $MR(\varphi_0) = MR(\varphi_1) = \infty$. Iterating, we build an infinite binary tree. So T is not totally transcendental. \Box Corollary 188

Lemma 189. $MR(\varphi \lor \psi) = \max\{MR(\varphi), MR(\psi)\}.$

Proof. It is easily seen that $\operatorname{MR}(\varphi \lor \psi) \ge \max\{\operatorname{MR}(\varphi), \operatorname{MR}(\psi)\}$. For the converse, it suffices to show that if $\operatorname{MR}(\varphi \lor \psi) \ge \alpha + 1$, then $\max(\operatorname{MR}(\varphi), \operatorname{MR}(\psi)) \ge \alpha + 1$. Let $(\theta_i : i < \omega)$ witness $\operatorname{MR}(\varphi \lor \psi) \ge \alpha + 1$. For any i, we have $\theta_i \leftrightarrow (\theta_i \land \varphi) \lor (\theta_i \land \psi)$. By induction hypothesis, we have $\max(\operatorname{MR}(\theta_i \land \varphi), \operatorname{MR}(\theta_i \land \psi)) \ge \alpha$. So either $\operatorname{MR}(\theta_i \land \varphi) \ge \alpha$ or $\operatorname{MR}(\theta_i \land \psi) \ge \alpha$. So at least one of these cases happens infinitely often; say $\operatorname{MR}(\theta_i \land \varphi) \ge \alpha$ for infinitely many i. Then $(\theta_i \land \varphi : i < \omega)$ witnesses that $\operatorname{MR}(\varphi) \ge \alpha + 1$. So $\max(\operatorname{MR}(\varphi), \operatorname{MR}(\psi)) \ge \alpha + 1$. \Box Lemma 189

Definition 190. We say φ and ψ are α -equivalent (for α an ordinal) if $MR((\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)) < \alpha$. (Note that the argument of MR here is the symmetric difference of φ and ψ .)

Exercise 191. This is an equivalence relation.

Proposition 192 (6.7.4). Suppose $MR(\varphi) = \alpha$ an ordinal. Then φ is *T*-equivalent to some $\varphi_1 \lor \varphi_2 \lor \ldots \varphi_d$ where

- $MR(\varphi_i) = \alpha \text{ for each } i \in \{1, \ldots, d\}.$
- $\varphi_1, \ldots, \varphi_d$ are pairwise disjoint.
- Each $\varphi_i(\mathcal{U})$ does not contain two disjoint definable sets of Morley rank α .

Moreover, d is unique, and the decomposition is unique up to α -equivalence.

This $d = MD(\varphi)$ is called the *Morley degree* of φ .

Proof. If $\varphi(\mathcal{U})$ can be split into two disjoint definable subsets of Morley rank α , then do so. Iterate. If we get an infinite tree, it must have an infinite branch; say $\varphi = \psi_0 \leftarrow \psi_1 \leftarrow \ldots$ such that each ψ_i has Morley rank α and $\operatorname{MR}(\psi_i \land \neg \psi_{i+1}) = \alpha$. But then $\psi_0 \land \neg \psi_1, \psi_1 \land \neg \psi_2, \ldots$ witness that $\operatorname{MR}(\varphi) \ge \alpha + 1$, a contradiction.

So the tree is finite. The leaf nodes of this finite tree are the desired $\varphi_1, \ldots, \varphi_d$.

We now verify uniqueness of the decomposition. Suppose $\operatorname{MR}(\varphi) = \alpha$. Suppose $\varphi \leftrightarrow \varphi_1 \vee \cdots \vee \varphi_d$ and $\varphi \leftrightarrow \psi_1 \vee \cdots \vee \psi_\ell$ with each φ_j and ψ_j is of Morley rank α but cannot be split into two definable subsets of Morley rank α . Note that, for fixed i, we have $\psi_i \leftrightarrow (\psi_i \wedge \varphi_1) \vee \cdots \vee (\psi_i \wedge \varphi_d)$; furthermore, the $\psi_i \wedge \varphi_j$ are disjoint and partition $\psi_i(\mathcal{U})$. So there is a unique $1 \leq j_i \leq d$ such that $\operatorname{MR}(\psi_i \wedge \varphi_{j_i}) = \alpha$, and $\operatorname{MR}(\psi_i \wedge \varphi_j) < \alpha$ for $j \neq j_i$. So

$$\psi_i \wedge \neg \varphi_{j_i} = \bigvee_{j \neq j_i} (\psi_i \wedge \varphi_j)$$

So $MR(\psi_i \wedge \neg \varphi_{j_i}) < \alpha$. So ψ_i is α -equivalent to φ_{j_i} , by a symmetric argument. Applying the same argument to φ_{j_i} , we see that $i \mapsto j_i$ is injective; so $\ell \leq d$, and each ψ_i is α -equivalent to φ_{j_i} . By symmetry, we are done.

Notation 193. $(MR, MD)(\varphi) = (MR(\varphi), MD(\varphi))$. We order such pairs by the lexicographical ordering.

Remark 194. φ is strongly minimal if and only if $(MR, MD)(\varphi) = (1, 1)$.

Remark 195. Suppose $MR(\varphi) = \alpha$ is an ordinal; suppose ψ is such that $MR(\varphi \land \psi) = MR(\varphi \land \neg \psi) = \alpha$. Then $MD(\varphi) = MD(\varphi \land \psi) + MD(\varphi \land \neg \psi)$. If, on the other hand, $MR(\varphi \land \neg \psi) < \alpha$, then $MD(\varphi) = MD(\varphi \land \psi)$.

Theorem 196. T is totally transcendental if and only if every consistent formula (with parameters) has Morley rank.

Proof.

- (\Longrightarrow) Done in Corollary 188.
- (\Leftarrow) Suppose T is not totally transcendental; let $(\varphi_j : j \in 2^{<\omega})$ be an infinite binary tree of consistent formulae witnessing this.

Claim 197. If MR(φ_s) = α is an ordinal, then (MR, MD)($\varphi_{s\hat{i}}$) < (MR, MD)(φ_s) for some $i \in \{0, 1\}$.

Proof. Suppose $MR(\varphi_{s0}) = MR(\varphi_{s1}) = \alpha$. Then $MD(\varphi) = MD(\varphi_{s0}) + MD(\varphi_{s1})$. So one of $MD(\varphi_{s0})$ and $MD(\varphi_{s1})$ is $< MD(\varphi_{j})$.

If φ_{ε} has Morley rank, then we find an infinite properly descending sequence of (α_i, d_i) where the α_i are ordinals and $d_i \ge 1$. But this is a well-ordering, a contradiction. So $MR(\varphi_{\varepsilon}) = \infty$.

 \Box Theorem 196

Definition 198. A definable grape (G, x) in T is a definable set $G \subseteq U^n$ with a definable $\times : G \times G \to G$ (i.e. $\Gamma(\times) \subseteq U^{3n}$ is definable) such that (G, \times) is a grape. (Definitions here allow parameters.)

Definition 199. We say (G, \times) is a *totally transcendental grape* if it is definable in a totally transcendental theory.

Corollary 200. A totally transcendental grape satisfies the descending chain condition on definable subgrapes. *i.e.* there does not exist an infinite, properly descending chain of definable subgrapes.

Proof. Suppose (H, \times) is a definable subgrape of (G, \times) .

Claim 201. If MR(H) = MR(G), then G/H is finite and

$$MD(G) = \sum_{i=1}^{\ell} MD(g_i H)$$

where $g_1H, \ldots, g_\ell H$ are the distinct left cosets of H.

Proof. Let $g \in G$. Then the map $H \to gH$ given by $h \mapsto gh$ is a definable bijection using the parameter g. So (MR, MD)(H) = (MR, MD)(gH). In particular, all cosets have Morley rank MR(G). But distinct cosets are disjoint; so we must have finitely many of them, else we would have infinitely many disjoint subsets of G of Morley rank MR(G), a contradiction. Say the distinct cosets are $g_1H, \ldots, g_\ell H$. Then

$$G = \bigsqcup_{i=1}^{\ell} g_i H$$

 So

$$\operatorname{MD}(G) = \sum_{i=1}^{\ell} \operatorname{MD}(g_i H)$$

 \Box Claim 201

So if (H, \times) is a proper definable subgrape of (G, \times) , then (MR, MD)(H) < (MR, MD)(G); the descending chain condition follows. \Box Corollary 200

Example 202. $(\mathbb{Q}, +)$ is totally transcendental, since $(\mathbb{Q}, +) \models \text{TFDAG}$, and the latter is a strongly minimal (and hence totally transcendental) theory. On the other hand, for $(\mathbb{Z}, +)$, let (G, +) be a sufficiently saturated elementary extension. Then

$$\mathbb{Z} > 2\mathbb{Z} > \dots > 2^n \mathbb{Z} > \dots$$

is a definable descending chain that doesn't stabilize. So

 $G > 2G > \ldots$

is a definable descending chain of subgrapes. So (G, +) is not totally transcendental. So $\text{Th}(\mathbb{Z}, +)$ is not totally transcendental.

Definition 203. Suppose $p \in S_n(A)$. We define $MR(p) = \min\{MR(\varphi) : \varphi \in p\}$. If $MR(p) = \alpha$ is an ordinal, then we define $MD(p) = \min\{MD(\varphi) : \varphi \in p, MR(\varphi) = \alpha\}$. If $a \in U^n$, we define (MR, MD)(a/A) = (MR, MD)(tp(a/A)).

Remark 204.

- 1. Algebraic types have Morley rank 0 and Morley degree equal to the number of realizations.
- 2. $p \in S_n(A)$ is strongly minimal if and only if (MR, MD)(p) = (1, 1).

Proposition 205. Suppose $\varphi(x)$ is an L(A)-formula. Then there is $p \in S_n(A)$ such that $\varphi \in p$ and $MR(p) = MR(\varphi)$.

Proof. Consider

 $\Phi(x) = \{\varphi\} \cup \{\neg\psi : \psi \text{ an } L(A) \text{-formula, } \operatorname{MR}(\varphi \land \psi) < \operatorname{MR}(\varphi)\}$

Then Φ is finitely satisfiable since $\varphi(\mathcal{U})$ cannot be contained in a finite union of definable subsets of strictly smaller rank. Extend to a complete type $p \in S_n(A)$. Then $\operatorname{MR}(p) \leq \operatorname{MR}(\varphi)$ by definition. If $\operatorname{MR}(p) < \operatorname{MR}(\varphi)$, then there is $\psi \in p$ with $\operatorname{MR}(\psi) = \operatorname{MR}(p)$. But then $\psi \land \varphi \in p$; so $\operatorname{MR}(\varphi) \leq \operatorname{MR}(\psi \land \varphi) \leq \operatorname{MR}(\psi) = \operatorname{MR}(p) < \operatorname{MR}(\varphi)$, a contradiction.

So $MR(p) = MR(\varphi)$.

Lemma 206 (6.4.1). If $b \in \operatorname{acl}(Aa)$ then $\operatorname{MR}(b/A) \leq \operatorname{MR}(a/A)$.

 \Box Proposition 205

Proof. We may assume that $MR(a/A) = \alpha$ is an ordinal. We prove by induction on α that $MR(b/A) < \alpha$.

For the base case, suppose $\alpha = 0$; then $a \in \operatorname{acl}(A)$ and $b \in \operatorname{acl}(Aa)$. So $b \in \operatorname{acl}(A)$, and $\operatorname{MR}(b/A) = 0$.

Now, for the induction step, suppose $\alpha > 0$; then we have $\varphi(x, y) \in tp(a, b/A)$ such that $\varphi(a, \mathcal{U})$ is finite, say of size d. We can add to $\varphi(x,y)$ so that for all a', we have $|\varphi(a',\mathcal{U})| \leq d$; we do this by replacing $\varphi(x,y)$ with

$$\varphi(x,y) \land \exists^{\leq d} y \varphi(x,y)$$

Let $\psi(x) = \exists y(\varphi(x,y)) \in \operatorname{tp}(a/A)$. Replacing $\varphi(x,y)$ by $\varphi(x,y) \wedge \sigma(x)$ where $\sigma(x) \in \operatorname{tp}(a/A)$ with MR(σ) = MR(a/A), we may assume that $MR(\psi(x)) = MR(a/A) = \alpha$. Let $\chi(y) = \exists x \varphi(x, y) \in tp(b/A)$.

Claim 207. $MR(\chi) \leq \alpha$.

Proof. Suppose $(\chi_i(y) : i < \omega)$ are pairwise disjoint, definable subsets of $\chi(\mathcal{U})$. Let $\psi_i(x) = \exists y(\varphi(x, y) \land \chi_i(y))$. Then each $\psi_i(x) \to \psi(x)$.

Subclaim 208. Some ψ_{i_0} has $MR(\psi_{i_0}) = \beta < \alpha$.

Proof. Suppose $a' \in \psi_i(\mathcal{U}) \cap \psi_j(\mathcal{U})$ where $i \neq j$. Then there are b_1, b_2 with $\varphi(a', b_1)$ and $\varphi(a', b_2)$, where $b_1 \in \chi_1(\mathcal{U})$ and $b_2 \in \chi_2(\mathcal{U})$. But $\chi_i(\mathcal{U}) \cap \chi_i(\mathcal{U}) = \emptyset$. So $b_1 \neq b_2$. So any d+1 distinct members of $\{\psi_i(\mathcal{U}): i < \omega\}$ has empty intersection.

Now, suppose for contradiction that $MR(\psi) = \alpha$ for all $i < \omega$.

Case 1. Suppose $MR(\psi_1 \land \psi_0) < \alpha$, then $MR(\psi_0 \land \neg \psi_1) = \alpha$; replace ψ_0 by $\psi_0 \land \neg \psi_1$, and similarly replace ψ_1 by $\psi_1 \wedge \neg \psi_0$.

Case 2. Suppose MR($\psi_1 \wedge \psi_0$) = α ; replace ψ_0 by $\psi_0 \wedge \psi_1$, and drop ψ_1 .

The second case cannot happen more than d times, since $\psi_0(\mathcal{U}) \wedge \cdots \wedge \psi_{d+1}(\mathcal{U}) = \emptyset$. Iterating this produces an infinite family of disjoint, definable subsets of $\psi(x)$ of Morley rank α , contradicting our assumption that $MR(\psi) = \alpha.$ \Box Subclaim 208

So there is i_0 such that $MR(\psi_{i_0}(x)) = \beta < \alpha$. Let $b' \in \chi_{i_0}(\mathcal{U})$. Find a' such that $\varphi(a', b')$. Then $b' \in \operatorname{acl}(Aa')$ since $|\varphi(a',\mathcal{U})| \leq d$. Then $a' \in \psi_{i_0}(\mathcal{U})$; so $\operatorname{MR}(a'/A) \leq \beta < \alpha$. Then, by the induction hypothesis, we have $MR(b'/A) \leq MR(a'/A) \leq \beta < \alpha$. By the previous proposition, we have that $\chi_{i_0}(\mathcal{U})$ has an element whose Morley rank over A is $MR(\chi_{i_0})$. So $MR(\chi_{i_0}) \leq \beta < \alpha$. \Box Claim 207

So
$$MR(\chi) \leq \alpha$$
.

Thus
$$MR(b/A) \le MR(\chi) = \alpha = MR(a/A)$$
 since $\chi \in tp(b/A)$.

Proposition 209. Suppose $\varphi(x)$ defined over B is strongly minimal. Suppose $a_1, \ldots, a_\ell \in \varphi(\mathcal{U}) \subseteq U^n$. Then $\{a_1,\ldots,a_\ell\}$ are acl-independent over B if and only if $MR(a_1,\ldots,a_\ell/B) = \ell$.

(Recall the pregeometry is given by $(\varphi(\mathcal{U}), \mathrm{cl})$ where $\mathrm{cl}(A) = \mathrm{acl}(AB) \cap \varphi(\mathcal{U})$.)

Proof. We apply induction on ℓ .

Case 1. Suppose $\ell = 1$. Then $\{a\}$ is acl-independent over B if and only if $a \notin acl(B)$, which holds if and only if $MR(a/B) \ge 1$. But $\varphi(x) \in tp(a/B)$ and $MR(\varphi) = 1$. So $MR(a/B) \le 1$. So $\{a\}$ is acl-independent if and only if MR(a/B) = 1.

Case 2. Suppose $\ell > 1$.

 (\Leftarrow) Suppose MR $(a_1 \dots a_\ell/B) = \ell$. Let $\{a_1, \dots, a_m\}$ for $m \leq \ell$ be an acl-basis (i.e. a maximal acl-independent subset) of $\{a_1, \ldots, a_\ell\}$ over B. Then $(a_1, \ldots, a_\ell) \in \operatorname{acl}(Ba_1 \ldots a_m)$. So, by 6.4.1, we have $MR(a_1 \dots a_\ell/B) \leq MR(a_1 \dots a_m/B)$. On the other hand, we have $MR(a_1 \dots a_\ell/B) \geq 0$ $MR(a_1 \dots a_m/B)$ since $m \leq \ell$. To see this, we use the following exercise: *Exercise* 210. Suppose $X \subset U^{n+1}$ is a definable set and $\pi: U^{n+1} \to U^n$ is a coordinate projection, then $MR(\pi X) \leq MR(X)$.

We then note that if $\psi(x_1, \ldots, x_\ell) \in \operatorname{tp}(a_1 \ldots a_\ell/B)$, then $\exists x_{m+1} \ldots \exists x_\ell \psi(x_1, \ldots, x_\ell) \in \operatorname{tp}(a_1 \ldots a_m/B)$, and by the exercise, we have $\operatorname{MR}(\exists x_{m+1} \ldots \exists x_\ell \psi(x_1, \ldots, x_\ell)) \leq \operatorname{MR}(\psi(x_1, \ldots, x_\ell))$; thus $\operatorname{MR}(a_1 \ldots a_\ell/M) \geq \operatorname{MR}(a_1 \ldots a_m/B)$.

So $\operatorname{MR}(a_1 \ldots a_{\ell}/B) = \operatorname{MR}(a_1 \ldots a_m/B)$. Now, if $\{a_1, \ldots, a_{\ell}\}$ were acl-dependent over B, then $m < \ell$, so by the induction hypothesis we have $\operatorname{MR}(a_1 \ldots a_m/B) = m < \ell = \operatorname{MR}(a_1 \ldots a_{\ell}/B)$, a contradiction. So $\{a_1, \ldots, a_{\ell}\}$ is acl-independent.

 (\Longrightarrow) Suppose $\{a_1, \ldots, a_\ell\}$ is acl-independent over B.

Claim 211. $MR(a_1 \dots a_\ell/B) \ge \ell$.

Proof. Let $b_1, b_2, \dots \in \varphi(\mathcal{U}) \setminus \operatorname{acl}(B)$ be distinct. Note that this exists since $\varphi(x)$ has a unique non-algebraic extension $p(x) \in S_n(B)$; we can then take the b_i to be the realizations of p(x). Suppose $\psi(x_1, \dots, x_\ell) \in \operatorname{tp}(a_1 \dots a_\ell/B)$. Let $\psi_i(x_1, \dots, x_\ell) = \psi(x_1, \dots, x_\ell) \wedge (x_1 = b_i)$; then ψ_i is an $L(Bb_i)$ -formula. We also have $\psi_i \to \psi$ and $(\psi_i \wedge \psi_j)(\mathcal{U}) = \emptyset$ for $i \neq j$.

We now compute $MR(\psi_i)$. Fix *i*. Let $c_2, \ldots, c_\ell \in \varphi(\mathcal{U})$ be such that $\{b_i, c_2, \ldots, c_\ell\}$ is aclindependent over *B*. To see that we can do this, note that $b_i \notin acl(B)$. Then the unique nonalgebraic type p(x) over *B* containing $\varphi(x)$ is strongly minimal, so it has a unique non-algebraic extension $p_2(x) \in S_n(Bb_i)$. Let $c_2 \models p_2(x)$; then $c_2 \notin acl(Bb_i)$, so $\{b_i, c_2\}$ is acl-independent over *B*. Now, $p_2(x)$ has a unique non-algebraic extension $p_3(x) \in S_n(Bb_ic_2)$; we proceed inductively.

Now $\{a_1, \ldots, a_\ell\}$ is also acl-independent over B and $\operatorname{tp}(b_i c_2 \ldots c_\ell/B) = \operatorname{tp}(a_1 \ldots a_\ell/B) \ni \psi$. So $\psi_i \in \operatorname{tp}(b_i c_2 \ldots c_\ell/Bb_i)$. So $\operatorname{MR}(\psi_i) \ge \operatorname{MR}(b_1 c_2 \ldots c_\ell/Bb_i) \ge \operatorname{MR}(c_2 \ldots c_\ell/Bb_i) = \ell - 1$ by the induction hypothesis. So $\operatorname{MR}(\psi) \ge \ell$ for all $\psi \in \operatorname{tp}(a_1 \ldots a_\ell/B)$; so $\operatorname{MR}(a_1 \ldots a_\ell/B) \ge \ell$. \Box Claim 211

Claim 212. $MR(a_1 \dots a_\ell / B) \leq \ell$.

Proof. By the previous claim we have $\operatorname{MR}(\varphi(\mathcal{U})^{\ell}) \geq \ell$ since $\operatorname{MR}(a_1 \dots a_{\ell}/B) \geq \ell$ and $(a_1, \dots, a_{\ell}) \in \varphi(\mathcal{U})^{\ell}$. We show that $\operatorname{MR}(\varphi(\mathcal{U})^{\ell}) \leq \ell$. Suppose otherwise; then $\varphi(\mathcal{U})^{\ell}$ has two disjoint definable subsets $X, Y \subseteq \varphi(\mathcal{U})^{\ell}$ over $B' \supseteq B$ with $\operatorname{MR}(X) = \ell = \operatorname{MR}(Y)$. Let $c \in X$ satisfy $\operatorname{MR}(c/B') = \operatorname{MR}(X) \geq \ell$; let $b \in Y$ satisfy $\operatorname{MR}(b/B') = \operatorname{MR}(Y) \geq \ell$. Then by the forward direction of this proposition, if $c = (c_1, \dots, c_{\ell})$ and $b = (b_1, \dots, b_{\ell})$, then $\{c_1, \dots, c_{\ell}\}$ and $\{b_1, \dots, b_{\ell}\}$ are acl-independent over B'. So $\operatorname{tp}(c_1 \dots c_{\ell}/B') = \operatorname{tp}(b_1 \dots b_{\ell}/B')$, contradicting our assumption that $c \in X, b \in Y$, and $X \cap Y = \emptyset$. So $\operatorname{MR}(\varphi(\mathcal{U})^{\ell}) \leq \ell$. \Box Claim 212

So MR
$$(a_1 \dots a_\ell / B) = \ell$$

 \Box Proposition 209

Corollary 213 (6.4.2). If $\varphi(x)$ is strongly minimal over B and $a_1, \ldots, a_m \in \varphi(\mathcal{U})$, then $MR(a_1 \ldots a_n/B) = \operatorname{acl-dim}(\{a_1, \ldots, a_n\}/B)$.

Proof. Let $\{a_1, \ldots, a_\ell\}$ be an acl-basis over B for $\{a_1, \ldots, a_m\}$ with $\ell \leq m$. Then $\operatorname{acl-dim}(\{a_1, \ldots, a_m\}/B) = \ell$. On the other hand, $\operatorname{MR}(a_1, \ldots, a_\ell/B) \leq \operatorname{MR}(a_1 \ldots a_m/B) \leq \operatorname{MR}(a_1 \ldots a_\ell/B)$ since $a_1, \ldots, a_m \in \operatorname{acl}(Ba_1 \ldots a_\ell)$. So $\operatorname{MR}(a_1 \ldots a_m/B) = \operatorname{MR}(a_1 \ldots a_\ell/B) = \ell$ by the previous proposition.

□ Corollary 213

Example 214.

- 1. Consider the theory T of infinite sets. Suppose $a_1, \ldots, a_m \in U$ with $B \subseteq U$. Then $MR(a_1 \ldots a_m/B) = |\{a_1, \ldots, a_m\} \setminus B|$.
- 2. If $T = VS_F$ with $v_1, \ldots, v_m \in V$ and $B \subseteq V$, then $MR(v_1 \ldots v_m/B) = \dim_F(v_1 \ldots v_m/B)$ is the relative linear dimension.
- 3. If $T = ACF_p$ for p a prime or zero, we have $MR(a_1 \dots a_m/B) = trdeg(\mathbb{F}(B, a_1, \dots, a_m)/\mathbb{F}(B))$.

4 Differential fields

All rings are commutative, have unity, and extend \mathbb{Q} .

Definition 215. A *derivation* on a ring R is an additive function $\delta \colon R \to R$ (i.e. $\delta(a+b) = \delta a + \delta b$) satisfying the Leibniz rule:

$$\delta(ab) = a\delta b + b\delta a$$

We call $(R, 0, 1, +, -, \times, \delta)$ a differential ring. We define the constants of (R, δ) to be the subring $\{x \in R : \delta x = 0\}$. We let DF₀ be the theory of differential fields of characteristic 0.

Example 216. The natural examples are rings of functions:

- $(\mathbb{C}[z], \frac{d}{dz}).$
- $(\mathbb{C}(z), \frac{d}{dz}).$
- The field of meromorphic functions at the origin on \mathbb{C} with $\frac{d}{dz}$.

Remark 217. Modulo DF₀, we have that every quantifier-free L-formula $\varphi(x)$ (with $x = (x_1, \ldots, x_n)$) is equivalent to a finite boolean combination of equations of the form

$$P(x,\delta x,\ldots,\delta^k x)=0$$

where

- $\delta x = (\delta x_1, \dots, \delta x_n)$
- $P \in \mathbb{Z}[X_0, X_1, \dots, X_K]$ with $X_i = (X_{i1}, \dots, X_{in})$.

Definition 218. Suppose (K, δ) is a differential field; suppose $z = (z_1, \ldots, z_n)$ are indeterminates. We set $K\{z\} = K[X_0, X_1, \ldots]$ (with $X_i = (X_{i1}, \ldots, X_{in})$ and where we identify $X_0 = z$) equipped with the derivation $\delta x_i = x_{i+1}$ (extended in the canonical way to all of $K[X_0, \ldots]$ using additivity and the Leibniz rule). A typical element of $K\{z\}$ is of the form $P(z, \delta z, \delta^2 z, \delta^k z)$ for some k. We call $K\{z\}$ the ring of differential polynomials (sometimes abbreviated δ -polynomials).

Aside 219. If $(K, \delta) \models DF_p$, we have $\delta(a^p) = pa^{p-1}\delta a = 0$ for all $a \in K$; so K^p are constants. But K/K^p is a finite extension, so in some sense "most" of the elements are constants. Better to work with Hasse-Schmidt derivations.

Differential algebraic geometry is an expansion of algebraic geometry. Given $P \in K\{z\}$, we set $\operatorname{ord}(P)$ to be the largest k such that $\delta^k z$ appears in P; the differential polynomials of order 0 are then just ordinary polynomials in z.

Where should we look for solutions to differential polynomial equations?

We go to existentially closed differential fields.

Definition 220. $\mathcal{M} \models T$ is *existentially closed* if for any quantifier-free formula $\varphi(x)$ over \mathcal{M} (with $x = (x_1, \ldots, x_n)$) such that φ has a realization in some $\mathcal{N} \models T$ with $\mathcal{M} \subseteq \mathcal{N}$, we have that $\varphi(x)$ has a realization in \mathcal{M} .

Example 221. Algebraically closed fields are precisely the existentially closed fields.

We work in existentially closed differential fields. By last term, a theory has existentially closed models if it is universal-existential; so DF_0 has existentially closed models.

Problem: the definition of existentially closed is too unwieldy, and in particular is not first-order.

Definition 222. A differentially closed field is a differential field (K, δ) such that given any $P, Q \in K\{x\}$ (where x is a single variable) with ord $Q < \operatorname{ord} P$, we have $a \in K$ such that P(a) = 0 and $Q(a) \neq 0$.

Remark 223. This is first-order: we could say something like, for $M \leq N$,

• For all choices of coefficients $(c_{i_0,\ldots,i_n}: i_0 + \cdots + i_n \leq N)$

- For all choices of coefficients $(d_{j_0,\ldots,j_m}: j_0 + \cdots + j_n \leq M)$
- if some $c_{i_0,...,i_n} \neq 0$ with $i_n \neq 0$
- then there exists a such that

$$0 = \sum_{i_0 + \dots + i_n \le N} c_{i_0, \dots, i_n} a^{i_0} (\delta a)^{i_1} \dots (\delta^n a)^{i_n}$$
$$0 \neq \sum_{j_0 + \dots + j_m \le M} d_{j_0, \dots, j_m} a^{j_0} (\delta a)^{j_1} \dots (\delta^m a)^{j_m}$$

Assignment 4. Due Monday December 7, questions 6.1.2, 6.2.2, 6.2.3, 6.4.1.

Lemma 224 (D1). Suppose (R, δ) is a differential ring. Suppose $P(x_1, \ldots, x_n) \in R[x_1, \ldots, x_n]$; suppose $a_1, \ldots, a_n \in R$. Then

$$\delta(P(a_1,\ldots,a_n)) = \sum_{i=1}^n \frac{\partial P}{\partial x_i} \delta a_i + P^{\delta}(a_1,\ldots,a_n)$$

where P^{δ} is obtained from P by applying δ to the coefficients.

Proof. By example. Let $P = cxy \in R[x, y]$ for $c \in R$. Then

$$\begin{split} \delta(P(a,b)) &= \delta(cab) \\ &= \delta(c)ab + c(a\delta b + b\delta a) \\ &= \delta(c)ab + ca\delta(b) + cb\delta(a) \\ &= P^{\delta}(a,b) + c\frac{\partial P}{\partial y}(a,b)\delta(b) + \frac{\partial P}{\partial x}(a,b)\delta(a) \end{split}$$

In general consider $cx_1^{m_1} \dots x_n^{m_n}$. We then apply induction on $m_1 + \dots + m_n$. \Box Lemma 224

Lemma 225 (D2). Suppose (R, δ) is a differential integral domain. Then

- 1. δ extends uniquely to a derivation on K = Frac(R).
- 2. Suppose $L \supseteq K$ is an extension field. Suppose $a_1, \ldots, a_{n-1} \in L$ are algebraically independent over K; suppose $a_n \in L$ has $a_n \in K(a_1, \ldots, a_{n-1})^{\text{alg}}$. Then there is a unique derivation δ on $K(a_1, \ldots, a_n)$ extending δ on K such that $\delta(a_i) = a_{i+1}$ for $i \in \{1, \ldots, n-1\}$.
- 3. δ extends uniquely to K^{alg} .

Proof.

1. We define

$$\delta\left(\frac{a}{b}\right) = \frac{b\delta a - a\delta b}{b^2}$$

for any $a, b \in R$. Check that this is a derivation on K. It is unique as this formula is obtained by the Leibniz rule applied to $\delta(ab^{-1})$.

2. Case 1. Suppose n = 1; we are given $a \in K^{\text{alg}}$, and we wish to extend δ to K(a). Let $P(x) \in K[x]$ be the minimal polynomial of a over K. Then 0 = P(a); so

$$0 = \delta(P(a)) = \frac{\mathrm{d}P}{\mathrm{d}x}(a)\delta a + P^{\delta}(a)$$

by Lemma 224. But $\frac{dP}{dx}$ has strictly smaller degree than P; so $\frac{dP}{dx}(a) \neq 0$, and

$$\delta a = \frac{-P^{\delta}(a)}{\frac{\mathrm{d}P}{\mathrm{d}x}(a)}$$

This proves uniqueness; one checks that this actually defines a derivation on K(a).

Case 2. Suppose n > 1. We set

$$\delta(a_n) = \frac{-\sum_{i=1}^{n-1} \frac{\partial P}{\partial x_i}(a_1, \dots, a_n)\delta a_i + P^{\delta}(a_1, \dots, a_n)}{\frac{\partial P}{\partial x_n}(a_1, \dots, a_n)}$$

where P is obtained as follows: let $Q(x_n) \in K(a_1, \ldots, a_{n-1})[x_n]$ be the minimal polynomial of a_n over $K(a_1, \ldots, a_{n-1})$. Clearing denominators, we get $Q' \in K[a_1, \ldots, a_{n-1}][x_n]$ with $Q'(a_n) = 0$. We then write $Q' = P(a_1, \ldots, a_{n-1}, x_n)$ for some $P \in K[x_1, \ldots, x_n]$; this is our desired P.

3. Iterate the n = 1 case of (2) to extend uniquely all the way to K^{alg} .

 $\Box\,$ Lemma 225

Proposition 226 (D3). Any differential field extends to a differentially closed field.

Proof. Suppose $(K, \delta) \models DF_0$. Given $P, Q \in K\{z\}$ with ord(P) > ord(Q), we want an extension $(F, \delta) \supseteq (K, \delta)$ with $c \in F$ such that P(c) = 0 and $Q(c) \neq 0$. This will suffice by a double-chain-type argument. Take

$$P = f(z, \delta z, \dots, \delta^n z)$$
$$Q = g(z, \delta z, \dots, \delta^m z)$$

where $n = \operatorname{ord}(P) > \operatorname{ord}(Q) = m$ and $f \in K[x_0, \ldots, x_n]$ with x_n appearing and $g \in K[x_0, \ldots, x_m]$ with x_m appearing. Let $a \in K(x_0, \ldots, x_{n-1})$ satisfy $f(x_0, \ldots, x_{n-1}, a) = 0$. (Possible because f is non-constant as an element of $K(x_0, \ldots, x_{n-1})[x_n]$, and thus has a root in $K(x_0, \ldots, x_{n-1})^{\operatorname{alg}}$.) Let $F = K(x_0, \ldots, x_{n-1}, a) \supseteq K$. Then by Lemma 225 part (2), we can extend δ to $K(x_0, \ldots, x_{n-1}, a)$ so that $\delta x_0 = x_1, \ldots, \delta x_{n-1} = a$. So

$$0 = f(x_0, \dots, x_{n-1}, a)$$

= $f(x_0, \delta x_0, \delta^2 x_0, \dots, \delta^{n-1} x_0, \delta^n x_0)$
= $P(x_0)$
 $0 \neq g(x_0, x_1, \dots, x_m)$
= $g(x_0, \delta x_0, \dots, \delta^m x_0)$
= $Q(x_0)$

So $c = x_0 \in F$ works.

 \Box Proposition 226

Theorem 227 (D4). DCF_0 admits quantifier elimination.

Proof. Suppose $(F_i, \delta) \models \text{DCF}_0$ for $i \in \{1, 2\}$. Suppose $(R, \delta) \subseteq (F_i, \delta)$ is a differential subring of F_1 and F_2 . Then (R, δ) extends uniquely to K = Frac(R); we may thus assume that (K, δ) is a differential subfield of (F_i, δ) for $i \in \{1, 2\}$.

Claim 228. It suffices to prove that for any $a \in F_1$ there is an L-embedding of $K\langle a \rangle = K(a, \delta a, \delta^2 a, ...)$ (the differential field generated by a over K) into an elementary extension of (F_2, δ) over K.

Proof. Suppose $\theta(x)$ be a conjunction of literals over K; suppose $a \in F_1$ realizes $\theta(x)$. Then by assumption we have an *L*-embedding $f: (K\langle a \rangle, \delta) \hookrightarrow (\widetilde{F_2}, \delta)$ satisfying

$$\begin{array}{ccc} (K\langle a\rangle, \delta) & \stackrel{f}{\longleftrightarrow} & (\widetilde{F_2}, \delta) \\ & \subseteq \uparrow & \leq \uparrow \\ (K, \delta) & \stackrel{\subseteq}{\longrightarrow} & (F_2, \delta) \end{array}$$

where $(\widetilde{F}_2, \delta) \succeq (F_2, \delta)$. Let $b = f(a) \in \widetilde{F}_2$. Then $f: K\langle a \rangle \to K\langle b \rangle$ is an *L*-isomorphism over *K* with $f(\delta^i a) = \delta^i b$. Then

$$(F_1, \delta) \models \theta(a) \implies (K\langle a \rangle, \delta) \models \theta(a) \text{ (since } \theta \text{ is quantifier-free and } (K\langle a \rangle, \delta) \subseteq (F_1, \delta))$$

$$\implies (K\langle b \rangle, \delta) \models \theta(b) \text{ (since } f \text{ is an } L\text{-isomorphism with } f \upharpoonright K = \text{id and } f(a) = b)$$

$$\implies (\widetilde{F_2}, \delta) \models \theta(b)$$

$$\implies (\widetilde{F_2}, \delta) \models \exists x \theta(x)$$

$$\implies (F_2, \delta) \models \exists x \theta(x) \text{ (since } (F_2, \delta) \preceq (\widetilde{F_2}, \delta))$$

So our more familiar criterion quantifier elimination holds.

 \Box Claim 228

Remark 229. The above can be made into a general criterion for quantifier elimination.

We verify the claimed condition for quantifier elimination.

Case 1. Suppose $\{a, \delta a, \delta^2 a, ...\}$ is algebraically independent in F_1 over K.

Claim 230. For each $Q \in K\{x\} \setminus \{0\}$, there is $b \in F_2$ such that $Q(b) \neq 0$.

Proof. By the axioms there is b such that $\delta^{\operatorname{ord}(Q)+1}x = 0$ and $Q(x) \neq 0$.

Thus $\Phi(x) = \{ Q(x) \neq 0 : Q \in K\{x\}, Q \neq 0 \}$ is finitely realized in (F_2, δ) . Remark 231. Note that

$$\bigwedge_{i=1}^{\ell} (Q_i(b) \neq 0)$$

holds if and only if $(Q_1Q_2\ldots Q_\ell)(b) \neq 0$.

So there is $(\widetilde{F}_2, \delta) \succeq (F_2, \delta)$ and $b \in \widetilde{F}_2$ such that $\models \Phi(b)$; i.e. $\{b, \delta b, \dots\}$ is algebraically independent over K in \widetilde{F}_2 .

Case 2. Suppose $\{a, \delta a, ...\}$ is algebraically dependent in F_1 over K. Then there is $n < \omega$ such that $\{a, \ldots, \delta^{n-1}a\}$ is algebraically independent over K but $\delta^n a \in K(a, \delta a, \ldots, \delta^{n-1}a)^{\text{alg}}$. Let $f(x_0, \ldots, x_n) \in K[x_0, \ldots, x_n]$ be such that $f(a, \delta a, \ldots, \delta^{n-1}a, x_n)$ is a minimal polynomial for $\delta^n a$ over $K(a, \ldots, \delta^{n-1}a)$. We then know that $K\langle a \rangle = K(a, \ldots, \delta^n a)$ by D2 (ii). Let

$$\Phi(x) = \{ f(x, \delta x, \dots, \delta^n x) = 0 \} \cup \{ g(x, \delta x, \dots, \delta^m x) \neq 0 : m < n, g \neq 0 \}$$

Then $\Phi(x)$ is finitely satisfiable in F_2 by the axioms for DCF₀. (Note that $\operatorname{ord}(g_1g_2) \leq \max\{\operatorname{ord}(g_1), \operatorname{ord}(g_2)\}$.) Hence there is some $(\widetilde{F_2}, \delta) \succeq (F_2, \delta)$ and $b \in F_2$ such that $(\widetilde{F_2}, \delta) \models \Phi(b)$. Then $\{b, \delta b, \ldots, \delta^{n-1}b\}$ is algebraically independent. We then get $\alpha \colon K(a, \ldots, \delta^{n-1}a) \to K(b, \ldots, \delta^{n-1}b)$ such that

and $\alpha(\delta^i a) = \delta^i b$. But f is a minimal polynomial of $\delta^n a$ over $K(a, \ldots, \delta^{n-1} a)$, and

$$\alpha(f(a,\ldots,\delta^{n-1}a,x_n)) = f(b,\delta b,\ldots,\delta^{n-1}b,x_n)$$

is a minimal polynomial of $\delta^n b$ over $K(b, \ldots, \delta^{n-1}b)$. So we can extend α to a field isomorphism $\alpha' \colon K\langle a \rangle = K(a, \ldots, \delta^n a) \to K(b, \ldots, \delta^n b) = K\langle b \rangle$ such that $\alpha'(\delta^i a) = \delta^i b$ for $i \leq n$ and $\alpha' \upharpoonright K = \operatorname{id}_K$. So α' is an isomorphism of differential fields. So we have $\alpha' \colon K\langle a \rangle \to K\langle b \rangle \subseteq (\widetilde{F_2}, \delta)$. So we have proven our criterion.

Theorem 232 (D5). DCF₀ is complete.

Proof. $(\mathbb{Z}, 0)$ embeds in every differential field, since $1 = 1 \cdot 1$, so $\delta(1) = 1 \cdot \delta(1) + \delta(1) \cdot 1 = 2\delta(1)$. So $\delta(1) = 0$, and $\delta(n) = 0$ for all $n \in \mathbb{Z}$. But DCF₀ admits quantifier elimination; so any statement is equivalent to a quantifier-free statement, which can then be decided in the image of $(\mathbb{Z}, 0)$. So DCF₀ is complete.

Theorem 233 (D6). DCF₀ is the theory of existentially closed differential fields.

Proof.

- (\Leftarrow) Suppose (F, δ) is existentially closed. By D3 we can extend (F, δ) to $(\tilde{F}, \delta) \models \text{DCF}_0$. But (F, δ) is existentially closed, and $(F, \delta) \subseteq (\tilde{F}, \delta)$; so $(F, \delta) \models \text{DCF}_0$ since DCF_0 is universal-existential. (By checking axioms and using the fact that (F, δ) is existentially closed.)
- (\implies) Suppose $(F, \delta) \models \text{DCF}_0$. Suppose $\theta(x)$ is quantifier-free over F with $(F, \delta) \subseteq (F_1, \delta)$ with $\theta(x)$ realized by $a \in F_1$. Then

$$(F,\delta) \subseteq (F_1,\delta) \subseteq (F,\delta) \models \text{DCF}_0$$

with $(F, \delta) \models \text{DCF}_0$. By quantifier elimination, we have $(F, \delta) \preceq (\widetilde{F_1}, \delta)$. But $\widetilde{F_1} \models \exists x \theta(x)$; so $F \models \exists x \theta(x)$. So (F, δ) is existentially closed.

 \Box Theorem 233

Theorem 234 (D7). DCF₀ is ω -stable.

Proof. Suppose $(K, \delta) \models \text{DCF}_0$ with $A \subseteq K$ countable. We wish to show that $S_1(A)$ is countable. Let $F = \mathbb{Q}\langle A \rangle$ be the differential field generated by A over \mathbb{Q} ; then $F = \mathbb{Q}(\{\delta^i a : i < \omega, a \in A\})$. Then $|F| = \aleph_0$. It suffices to show that $S_1(F)$ is countable.

Let $(\overline{K}, \delta) \succeq (K, \delta)$ be \aleph_1 -saturated. Then $S_1(F) = \{ \operatorname{tp}(a/F) : a \in \overline{K} \}$. By quantifier elimination, we have that $\operatorname{qftp}(q/F) \vdash \operatorname{tp}(a/F)$ for any $a \in \overline{K}$. But $\operatorname{qftp}(a/F) = \operatorname{qftp}_{L_{\operatorname{Ring}}}(a, \delta a, \delta^2 a, \dots / F)$. So it suffices to count $\{ \operatorname{qftp}_{L_{\operatorname{Ring}}}(a, \delta a, \dots / F) : a \in \overline{K} \}$.

Given $a \in \overline{K}$, let

$$n(a/F) = \begin{cases} \text{the least } n < \omega \text{ such that } \delta^n a \in F(a, \dots, \delta^{n-1}a) & \text{such } n \text{ exists} \\ \omega & \text{else} \end{cases}$$

If $n(a/F) = n < \omega$ then set $P_{a/F} \in F[x_0, \ldots, x_n]$ such that $P_{a/F}(a, \ldots, \delta^{n-1}a, x_n)$ is the miimal polynomial of $\delta^n a$ over $F(a, \ldots, \delta^{n-1}a)$.

Suppose $b \in \overline{K}$.

Claim 235. Suppose $n(a/F) = n(b/F) = n < \omega$ and $P_{a/F} = P_{b/F}$. Then $qftp_{L_{Ring}}(a, \delta a, \ldots/F) = qftp_{L_{Ring}}(b, \delta b, \ldots/F)$.

Proof. Note that $\{a, \ldots, \delta^{n-1}a\}$ and $\{b_1, \ldots, \delta^{n-1}b\}$ are both algebraically independent over F. So we have a field isomorphism $f: F(a, \ldots, \delta^{n-1}a) \to F(b, \delta b, \ldots, \delta^{n-1}b)$ such that $f(\delta^i a) = \delta^i b$ and $f \upharpoonright F = \mathrm{id}_F$. Then

$$f(\text{minimal polynomial of } \delta^n a \text{ over } F(a, \dots, \delta^{n-1}a)) = f(P_{a/F}(a, \dots, \delta^{n-1}a, x_n))$$
$$= P_{a/F}(b, \delta b, \dots, \delta^{n-1}b, x_n)$$
$$= P_{b/F}(b, \dots, \delta^{n-1}b, x_n)$$
$$= \text{minimal polynomial of } \delta^n b \text{ over } F(b, \dots, \delta^{n-1}b)$$

Thus we can extend to a field isomorphism $f: F(a, ..., \delta^n a) \to F(b, ..., \delta^n b)$ with $f(\delta^n a) = \delta^n b$. But by D2 (ii), we have $F(a, ..., \delta^n a) = F(a, \delta a, ...)$ and $F(b, ..., \delta^n b) = F(b, \delta b, ...)$. So f witnesses $qftp_{L_{Ring}}(a, \delta a, .../F) = qftp_{L_{Ring}}(b, \delta b, .../F)$. Claim 236. Suppose $n(a/F) = n(b/F) = \omega$. Then $\operatorname{qftp}_{L_{\operatorname{Ring}}}(a, \delta a, \dots/F) = \operatorname{qftp}_{L_{\operatorname{Ring}}}(b, \delta b, \dots/F)$.

Proof. Note that $\{a, \delta a, ...\}$ and $\{b, \delta b, ...\}$ are both algebraically independent over F. So $f: F(a, \delta a, ...) \rightarrow F(b, \delta b, ...)$ given by $f \upharpoonright F = \operatorname{id}_F$ and $f(\delta^i a) = \delta^i b$ is an isomorphism witnessing that $\operatorname{qftp}_{L_{\operatorname{Ring}}}(a, \delta a, .../F) = \operatorname{qftp}_{L_{\operatorname{Ring}}}(b, \delta b, .../F)$.

So
$$|S_1(F)| \leq |\{(n_{a/F}, P_{a/F}) : a \in \overline{K}\}|$$
. But $n_{a/F} \in \mathbb{N}$ and $P_{a/F} \in F[x_0, \dots, x_n]$; so $|S_1(F)| \leq \aleph_0$
 \Box Theorem 234

So DCF_0 is totally transcendental; so the Morley rank of every definable is ordinal-valued.

We work in a sufficiently saturated $(K, \delta) \models \text{DCF}_0$. Let $C = \{x \in K : \delta x = 0\}$ be the field of constants; then C is a definable subset of K.

Claim 237. C is algebraically closed.

Proof. By the axioms K is algebraically closed. Suppose $a \in K$ with $a \in C^{\text{alg}}$. Let P(x) be the minimal polynomial of a over C. Then $\delta(P(a)) = 0$. So

$$\frac{\mathrm{d}p}{\mathrm{d}x}(a)\delta a + P^{\delta}(a) = 0$$

But $P^{\delta}(a) = 0$, and $\frac{\mathrm{d}P}{\mathrm{d}x}(a) \neq 0$. So $\delta a = 0$, and $a \in C$.

Claim 238. MR(C) = 1; in fact, C is a strongly minimal definable set in (K, δ) .

Proof. Suppose $\theta(x)$ is a quantifier-free *L*-formula such that $\theta(K) \subseteq C$. Replace all occurrences of δx in $\theta(x)$ by 0; we then get $\theta(x) \leftrightarrow \varphi(x) \land (\delta x = 0)$ where $\varphi(x)$ is a quantifier-free L_{Ring} -formula. So $\varphi(K)$ is finite or cofinite in *K*. So $\theta(K) = \varphi(K) \cap C$ is finite or cofinite. \Box Claim 238

Claim 239. Let $C_n = \{x \in K : \delta^n x = 0\}$; then C_n is a subgrape of K. Then $MR(C_n) = n$.

Sketch. C_n is actually closed under multiplication by constants; i.e. C_n is a C-vector subspace of K. But by the theory of linear differential equations, we have that every homogeneous linear differential equation of order n has a fundamental system of solutions e_1, \ldots, e_n that are C-linearly independent and such that every other solution is a C-linear combination of these. So $\dim_C(C_n) = n$.

Then the map $C_n \to C^n$ given by $a_1e_1 + \cdots + a_ne_n \mapsto (a_1, \ldots, a_n)$ is a vector space isomorphism definable in (K, δ) between sets in (K, δ) definable over $\{e_1, \ldots, e_n\}$. But Morley rank is preserved by definable bijection, and the Morley rank of a product is the sum of the Morley ranks. So $MR(C_n) = MR(C^n) = n$. \Box Claim 239

So $C = C_1 \leq C_2 \leq \cdots \leq K$. So $MR(K) \geq \omega$.

 \Box Claim 237