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1 Preliminaries
We start with chapter 4 of Tent and Ziegler. (Chapters 1-3 are preliminaries.)

Assignments are roughly biweekly. No midterm, but will be a final.

2 Chapter 4

2.1 Partial types
Definition 1. Fix a first-order language L. For any n ≥ 0, by a partial n-type, we mean a set Σ(x1, . . . , xn)
of L-formulae. Note: we don’t require consistency.

Definition 2. We say Σ(x1, . . . , xn) is realized in an L-structure A if there is a = (a1, . . . , an) ∈ An such
that A |= σ(a) for all σ ∈ Σ. We also say a realizes Σ in A; this is denoted A |= Σ(a).

Definition 3. Σ(x1, . . . , xn) is consistent if and only if it is realized in some L-structure.

Remark 4. The compactness theorem tells us that Σ is consistent if and only if every finite subset of Σ is
consistent.

Proof. Suppose Σ(x1, . . . , xn) is finitely consistent. Let L(c1, . . . , cn) = L ∪ { c1, . . . , cn } where ci are new
constant symbols. Let

Σ(c1, . . . , cn) = {σ(c1, . . . , cn) : σ ∈ Σ }

Then this is an L(c1, . . . , cn)-theory. Then since every finite subset of Σ(x1, . . . , xn) is realized in some
L-structure, we have that every finite subset of Σ(c1, . . . , cn) is consistent. Applying compactness, we
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get a model of Σ(c1, . . . , cn): an L(c1, . . . , cn)-structure A′ = (A, a1, . . . , an) realizing Σ(c1, . . . , cn). Then
A |= Σ(a1, . . . , an). Remark 4

Definition 5. Suppose T is an L-theory. Then Σ(x1, . . . , xn) is consistent with T if and only if it is realized
in some model of T .

Remark 6. This occurs if and only if T ∪ Σ(x1, . . . , xn) is consistent.
Remark 7. Σ is consistent with T if and only if every finite subset is.
Question 8. When does T have a model in which Σ is not realized (or is omitted)?

Definition 9. A partial n-type Σ(x1, . . . , xn) is isolated in a theory T if and only if there is an L-formula
φ(x1, . . . , xn) such that

1. φ(x1, . . . , xn) is consistent with T

2. Given A |= T and (a1, . . . , an) ∈ An such that A |= φ(a1, . . . , an), we have A |= Σ(a1, . . . , an).

We then say φ isolates Σ in T .

Remark 10. This is equivalent to requiring

T |= ∀x1 . . . xn(φ(x1, . . . , xn)→ σ(x1, . . . , xn))

for all σ ∈ Σ.
Remark 11. When T is a complete theory, if Σ is isolated in T , then it is realized in every model of T .

Proof. Suppose A |= T . Then since φ(x1, . . . , xn) is consistent and since T is complete, we have

A |= ∃x1 . . . xnφ(x1, . . . , xn)

But then we have a ∈ An such that
A |= φ(a)

Then a realizes Σ. Remark 11

Definition 12. A theory is countable if and only if the language is countable (i.e. has cardinality ≤ ℵ0).

Theorem 13 (Omitting types theorem (4.1.2)). If T is a countable, complete, consistent theory and
Σ(x1, . . . , xn) is not isolated in T , then T has a model omitting Σ(x1, . . . , xn).

Proof. We’ll prove it for n = 1. Consider a partial type Σ(x) that is. Let C be a countably infinite set of new
constant symbols. We wish to construct an L∗-theory T ∗ ⊇ T that is consistent and such that

1. T ∗ is a Henkin theory ; i.e. for any L∗-formula ψ(x) there is c ∈ C such that

T ∗ ⊢ ∃xψ(x)→ ψ(c)

2. For each c ∈ C there is some σ ∈ Σ such that

T ∗ ⊢ ¬σ(c)

Suppose we have such a T ∗. Let A∗ |= T ∗; say A∗ = (A, ac)c∈C . Then A |= T . Let B = { ac : c ∈ C }.
Then Item 1 implies that B is the universe of an elementary substructure B ⪯ A. (It’s not hard to see
that it’s the universe of a substructure; see 2.2.3 in Tent and Ziegler to check that it’s elementary. Proof is
essentially Tarski-Vaught test.) Thus B |= T . Then Item 2 tells us that B omits Σ(x), since if ac ∈ B, then
by Item 2, there is σ ∈ Σ such that

T ∗ |= ¬σ(c)
=⇒ A∗ |= ¬σ(c)
=⇒ A |= ¬σ(ac)
=⇒ B |= ¬σ(ac)
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and thus that ac does not realize Σ(x) in B.
It remains to construct T ∗. We will make T ∗ the union of

T = T0 ⊆ T1 ⊆ T2 ⊆ . . .

of L∗-theories where each Ti+1 is consistent and a finite extension of Ti (i.e. Ti+1 \ Ti is finite). We will take
care of Item 1 in odd steps and Item 2 in even steps. Enumerate C = { ci : i < ω } and the L∗-formulae as
{ψi(x) : i < ω }. Having constructed T2i, in T2i+1 we make sure that Item 1 is true of ψi(x). Choose c ∈ C
that does not appear in T2i nor in ψi(x) and set

T2i+1 = T2i ∪ {∃x(ψi(x)→ ψi(c)) }

Then T2i+1 is consistent since, c being new, we can interpret it in a model of T2i as we wish.
Now construct T2i+2 so that Item 2 holds for ci. Not we can assure T2i+1 is of the form T ∪ { δ } where δ

is an L∗-sentence, since T2i+1 \ T is finite. Write δ = φ(ci, c) where φ(x, y) is an L-formula and c is a tuple
of new constants not including ci. Then Σ(x) is not isolated in T by ∃yφ(x, y); so there is A |= T and a ∈ A
such that

A |= ∃yφ(a, y)

but A |= ¬σ(a) for some σ ∈ Σ. i.e.
{ ∃yφ(x, y),¬σ(x) }

is consistent with T . So T ∪ {φ(x, y),¬σ(x) } is consistent. Thus

T ∪ {φ(ci, c) } ∪ {¬σ(ci) }

is a consistent L∗-theory, as we can interpret ci, c as we like in a model of T . We can thus let

T2i+2 = T2i+1 ∪ {¬σ(ci) } = T ∪ {φ(ci, c) } ∪ {¬σ(ci) }

Theorem 13

Remark 14 (Ed.). I don’t think we need T to be complete for the above direction; just for the equivalence.

2.2 Complete types
Fix a theory T . Fix n ≥ 0.

Definition 15. An n-type (or complete n-type) is a partial n-type p(x1, . . . , xn) that is maximally consistent
with T . We use Sn(T ) to denote the collection of complete n-types of T .

Remark 16. Let p(x1, . . . , xn) be a partial n-type. Then p is an n-type if and only if for all φ(x1, . . . , xn), we
have either φ(x1, . . . , xn) or ¬φ(x1, . . . , xn) is in p.

There is a natural topology on Sn(T ):

Definition 17. We define the Stone topology on Sn(T ) to be the topology whose basic open sets are

[φ] = { p ∈ Sn(T ) : φ ∈ p }

for φ(x1, . . . , xn) an L-formula.

Remark 18. For this to generate a topology, the basic open sets must be closed under finite intersections. In
fact, they are closed under all Boolean combinations:

• [φ] ∩ [ψ] = [φ ∧ ψ]

• [φ] ∪ [ψ] = [φ ∨ ψ]

• Sn(T ) \ [φ] = [¬φ]

• ∅ = [⊥]
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• Sn(T ) = [⊤]

The basic open sets are thus clopen. Thus Sn(T ) is totally disconnected; i.e. the only non-empty connected
sets are the singletons.

Remark 19. [φ] = [ψ] if and only if T ⊢ ∀x1 . . . xn(φ(x1, . . . , xn)↔ ψ(x1, . . . , xn)).

Proof.

(⇐= ) Suppose φ ∈ p. Then by consistency with T and completeness of p, we have ψ ∈ p, and thus that
[φ] ⊆ [ψ]. By symmetry, we get [φ] = [ψ].

( =⇒ ) Suppose T ̸⊢ ∀x(φ(x) ↔ ψ(x)) (where x = (x1, . . . , xn)). Then there is a model of T with a tuple
realizing (say) φ(x) but not ψ(x). i.e. {φ(x),¬ψ(x) } is consistent with T . By a Zorn’s lemma argument,
we can extend it to a complete n-type in T , say p(x1, . . . , xn). Then p ∈ [φ] \ [ψ].

Remark 19

Lemma 20 (4.2.2). Sn(T ) is Hausdorff and compact.

Proof. We check that it’s Hausdorff. Suppose p ̸= q. Thus there is φ ∈ p with φ /∈ q, and thus that ¬φ ∈ q.
But

[φ] ∩ [¬φ] = [φ ∧ ¬φ] = ∅

So we can separate p and q by disjoint open sets.
We check compactness. Suppose

Sn(T ) =
⋃
i∈I

Ui

is an open cover, with each
Ui =

⋃
j

[φij ]

Thus
Sn(T ) =

⋃
i,j

[φij ]

Then
Σ = {¬φij : i, j }

is not consistent with T . Then, by compactness of partial types, we have some finite subset of Σ is inconsistent
with T . Thus

T ⊢ ∀x1 . . . xn(φi0j0(x1, . . . , xn) ∨ · · · ∨ φiℓ,jℓ(x1, . . . , xn))

So

Sn(T ) ⊆
ℓ⋃

k=0

[φik,jk ]

and Sn(T ) is compact. Lemma 20

Remark 21. One could also use the compactness of the Stone topology to check compactness of first-order
logic by taking T to be the empty theory.

Lemma 22 (4.2.3). Every clopen set in Sn(T ) is of the form [φ] for some L-formula φ(x1, . . . , xn).

Proof. We prove the following more general statement.

Claim 23. Suppose C1, C2 are disjoint closed subsets of Sn(T ). Then there is a basic open set separating
them. i.e. there is φ(x1, . . . , xn) such that C1 ⊆ [φ] but C2 ∩ [φ] = ∅.
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Proof. Set F = { [φ] : C1 ⊆ [φ] }. Note then that Sn(T ) = [⊤] ∈ F . If p ∈ C2, then there is [ψ] ∋ p with
[ψ] ∩ C1 = ∅ since C2 ∩ C1 = ∅. (In particular, Cc1 is open and contains p, so there is a basic open subset of
Cc1 containing p.) Note then that [¬ψ] ∈ F and p /∈ [¬ψ].

Thus C2 is covered by the complements of the elements of F . But C2 is closed, and Sn(T ) is compact
and Hausdorff. So C2 is covered by finitely many complements of elements of F ; i.e. we have

[φ1], . . . , [φℓ] ∈ F

such that
ℓ⋂
i=1

[φi] ∩ C2 = ∅

Then [
ℓ∧
i=1

φi

]
=

ℓ⋂
i=1

[φi]

is our desired set, as it contains C1 as a subset. Claim 23

Let C ⊆ Sn(T ) be clopen. Let C1 = C; let C2 = Sn(T ) \ C. Then C1, C2 are closed and disjoint.
By the claim, we then have that they are separated by a basic clopen set, and thus that C is clopen.

Lemma 22

Lemma 24 (4.2.6). An n-type p is isolated in T if and only if p is isolated in Sn(T ). (i.e. { p } is an open
set). In fact, φ isolates p in T if and only if { p } = [φ].

Proof.

( =⇒ ) Suppose φ isolates p. Then
T ⊢ ∀x(φ(x)→ ψ(x))

for each ψ ∈ p. Then comleteness and consistency of p implies that φ ∈ p. Thus p ⊆ [φ]. Suppose
q ∈ Sn(T ) satisfies q ̸= p. Then there is ψ ∈ p with ¬ψ ∈ q. Then {φ,¬ψ } is inconsistent with T , and
thus q /∈ [φ]. So { p } = [φ].

(⇐= ) Suppose p ∈ Sn(T ) is isolated. Then { p } is clopen. So, by the previous lemma (4.2.3), we have that
it is a basic open set, and there is φ such that { p } = [φ]. Let ψ ∈ p. If {φ,¬ψ } were consistent with
T then we can extend it to q to get q ∈ [φ] with q ̸= p, a contradiction. So {φ,¬ψ } is inconsistent
with T . Thus

T ⊢ ∀x(φ(x)→ ψ(x))

and φ isolates p in T .

Lemma 24

2.3 Types over parameters
Definition 25. Suppose A is an L-structure. Suppose B ⊆ A. An n-type over B in A is a maximal set of
L(B)-formulae (where L(B) = L ∪ { b : b ∈ B }) that is finitely satisfiable in A. The set of such is denoted
SA
n (B).

Example 26. Suppose a1, . . . , an ∈ A. We define

tp(a1, . . . , an/B) = tpA(a1, . . . , an/B) = {φ(x1, . . . , xn) an LB-formula : A |= φ(a1, . . . , an) }

These are precisely the realized types in A. Indeed, if p(x1, . . . , xn) ∈ SA
n (B) is realized in A by (a1, . . . , an) ∈

An, then tp(a1, . . . , an/B) ⊇ p(x1, . . . , xn). But by maximality of p, we have

p(x1, . . . , xn) = tp(a1, . . . , an/B)

Remark 27.
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1. If A ⪯ A′ and B ⊆ A, then SA
n (B) = SA′

n (B).

2. If p ∈ SA
n (B), then p is realized in some A′ ⪰ A. To see this, observe that

T = Th(AA) ∪ p(c1, . . . , cn)

is consistent by compactness (where c1, . . . , cn are new constant symbols). Then use PMATH 733, fall
2015 notes, 4.45:

Theorem 28. A embeds elementarily into every model of Th(AA).

Then if C |= T , we have C is of the form

C = (A′
A, a1, . . . , an)

for some A′ ⪰ A, where cCi = ai. Hence (a1, . . . , an) realizes p(x1, . . . , xn) in A′.

3. In fact, there is an elementary extension of A in which all types from SA
n (B) are realized. To see this,

observe that
Th(AA) ∪ { p(cp) : p ∈ SA

n (B) }
is consistent, where for each p ∈ SA

n (B) we let cp be an n-tuple of new constant symbols.

4. SA
n (B) = Sn(Th(AB)) since for partial types, we have finite satisfiability in A is equivalent to consistency

with Th(AB). We can use this to endow the former with a Stone topology.

Theorem 29 (4.2.5). Suppose A,B are L-structures. Suppose A0 ⊆ A, B0 ⊆ B. Suppose f : A0 → B0 is a
partial elementary map; i.e. suppose for any m ≥ 0, any L-formulae φ(x1, . . . , xm) and any a1, . . . , am ∈ A0,
we have

A |= φ(a1, . . . , am) ⇐⇒ B |= φ(f(a1), . . . , f(am))

Then there exists a surjective continuous map

Sn(f) : S
B
n (B0)→ SA

n (A0)

i.e. Stone spaces constitute a contravariant functor

Proof. Suppose x = (x1, . . . , xn). Then every L(A0)-formula in x takes the form φ(x, a) where φ(x, y1, . . . , yℓ)
is an L-formula and a = (a1, . . . , aℓ) ∈ Aℓ0. We can then define f(φ) = φ(x, f(a)) an L(B0)-formula.

For p ∈ SA
n (A0), one could imagine defining

f(p) = { f(φ) : φ ∈ p }

We then have f(p) is a partial type in Th(BB0
), since f is a partial elementary map; however, it may not be

maximal, since f might not be surjective.
For q ∈ SB

n (B0), we instead define

Sn(f)(q) = {φ : φ an L(A0)-formula, f(φ) ∈ q }

Claim 30. Sn(f)(q) ∈ SA
n (A0).

Proof. It’s finitely satisfiable in A since q is finitely satisfiable in B and f is a partial elementary map.
Completeness follows since for all a either φ(x, f(a)) ∈ q or ¬φ(x, f(a)) ∈ q. Claim 30

We now check continuity. Suppose φ(x, a) is an LA0
-formula. Then

Sn(f)
−1([φ(x, a)]) = [φ(x, f(a))]

since given q ∈ SB
n (B0), we have

Sn(f)(q) ∈ [φ(x, a)] ⇐⇒ φ(x, a) ∈ Sn(f)(q)
⇐⇒ φ(x, f(a)) ∈ q
⇐⇒ q ∈ [φ(x, f(a))]
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We now check surjectivity. Given p ∈ SA
n (A0), let q ∈ SB

n (B0) extend f(p). Then

Sn(f)(q) = {φ(x, a) : φ(x, f(a)) ∈ q }
⊇ {φ(x, a) : φ(x, f(a)) ∈ f(p) }
= p

Then Sn(f)(q) ⊇ p, and p is maximal. So Sn(f)(q) = p. Theorem 29

Remark 31.

1. If f : A0 → B0 is a bijective partial elementary map, then p 7→ f(p) is a continuous map SA
n (A0) →

SB
n (B0) and it will be the inverse of Sn(f). So SA

n (A0) is homeomorphic to SB
n (B0).

2. If A = B and A0 ⊆ B0 and f : A0 → B0 is the containment, then

Sn(f) : S
A
n (B0)→ SA

n (A0)

is the restriction map

p(x) 7→ p(x) ↾ A0 = set of formulae in p(x) over A0

So restriction is a continuous, surjective homomorphism.

Some examples:

Remark 32. Suppose T admits quantifier elimination. Suppose A |= T , B ⊆ A, and a, a′ ∈ An. If a and a′
realize the same atomic LB-formulae, then tp(a/B) = tp(a′/B).

Exercise 33. If every type in T is determined by its atomic part, then T admits quantifier elimination.

Example 34. Recall that DLO is the theory of dense linear orderings without endpoints (in the language
L = {< }); further recall that DLO admits quantifier elimination. What are the 1-types? Well, there are
only 2 atomic L-formula: x < x and x = x. But the former is never satisfied, and the latter never is; so

|S1(DLO)| = 1

More interesting in the case of parameters. Suppose (A,<) |= DLO. Let B ⊆ A. What is S1(B)? Well,
there are tp(b/B) for b ∈ B, and there are cuts; i.e. partitions B = L ∪ U such that ℓ < u for all ℓ ∈ L, all
u ∈ U . This is everything: given any p(x) ∈ S1(B) not realized in B, define

Lp = { b ∈ B : p(x) ∈ [b < x] }
Up = { b ∈ B : p(x) ∈ [x < b] }

Which types are isolated in S1(B)? They are

• Those realized in B

• Cuts (L,U) where L = ∅ or has a maximum and U = ∅ or has a minimum.

Example 35. (Q, <) |= DLO. Then
S1(Q) = R ∪ {±∞}

(Not topologically!) In particular, over countable sets, there may be 2ℵ0-many 1-types. (This is, of course,
the maximum number of types in a countable set over a countable theory.)

Example 36. Recall that ACF is the theory of algebraically closed fields in the language L = { 0, 1,+,−,×};
further recall that ACF admits quantifier elimination. We’d like to work over subfields of algebraically closed
fields as parameter sets. We can, in fact, do this: suppose K |= ACF, A ⊆ K. Let k be the subfield of K
generated by A. Then the restriction map

SKn (k)→ SKn (A)
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is surjective and continuous; it is, in fact, bijective.
The point is that every Lk-formula is equivalent to an LA-formula. To see this, note that the atomic

formulae over k are P (x) = 0 for P ∈ k[x1, . . . , xn], x = (x1, . . . , xn), and then use the fact that elements of
k are of the form f(a) where f ∈ Z(Y1, . . . , Yℓ) and a ∈ Aℓ.

Then Skn(k) is in bijective correspondence with Spec(k[X1, . . . , Xn]), the set of prime ideals in k[x1, . . . , xn].
The correspondence is given by

p(x) 7→ Ip = { f ∈ k[X1, . . . , Xn] : p(x) ∈ [f(x1, . . . , xn)] }

The inverse is given by sending I to the type defined by f(x) = 0 ⇐⇒ f ∈ I. This, too, is not a topological
correspondence, though we think the forward map is continuous.

2.4 Section 4.3
Definition 37. Let κ be an infinite cardinal. We say A is κ-saturated if all 1-types over sets of size < κ are
realized.

Remark 38. If A is infinite, then
Φ(x) = {x ̸= a : a ∈ A }

is a partial 1-type over A, and can thus be extended to a complete type over A. So, if A is κ-saturated, then
κ ≤ |A|.
Remark 39. If A is κ-saturated, then every type in SA

n (B) for |B| < κ is realized in A, for all n ≥ 1.

Proof. Apply induction on n. n = 1 is the definition of κ-saturation. Suppose n > 1, x = (x1, . . . , xn), and
p(x) ∈ SA

n (B), with |B| < κ. Let q(x1, . . . , xn−1) be the collection of formulae in p(x) in which xn does not
appear. Then q ∈ SA

n−1(B). The induction hypothesis then implies that there are a1, . . . , an−1 ∈ A with
A |= q(a1, . . . , an−1). Let

r(xn) = {φ(a1, . . . , an−1, xn) : φ ∈ p }

Claim 40. r(xn) ∈ SA
1 (B ∪ { a1, . . . , an−1 }).

Proof. We first check finite satisfiability. Suppose φ(a1, . . . , an−1, xn) ∈ r(xn). So φ(x) ∈ p(x).

∃xnφ(x) ∈ p(x)
=⇒ ∃xnφ(x) ∈ q(x1, . . . , xn−1)

=⇒ A |= ∃xnφ(a1, . . . , an−1xn)

So φ(a1, . . . , an−1, xn) is satisfiable in A. But r(xn) is closed under conjunction. So r(x) is finitely satisfiable
in A.

Completeness of r(xn) follows from completeness of p. Claim 40

By κ-saturation there is b ∈ A such that A |= r(b) (since |B ∪ { b1, . . . , bn }| < κ). Then (a1, . . . , an−1, b)
realizes p(x). Remark 39

Lemma 41 (4.3.1). Suppose A,B are L-structures that are countably infinite and ω-saturated. If A ≡ B,
then A ∼= B.

Remark 42. In general ≡ does not imply ∼=; Lowenheim-Skolem says that structures have arbitrarily large
elementary extensions. Even in the same cardinality, ≡ does not imply ∼=.

Example 43. Qalg ≡ Q(t)alg in the language of rings, as ACF0 is complete. They are both countably infinite,
but they are not isomorphic as the latter has a transcendental element over Q, and the former does not.

In fact, neither of these is ω-saturated. Let p(x) ∈ SQalg

1 (Q) = SQalg

1 (∅) be the type corresponding to
(0) ⊆ Q[x]. Then p(x) says f(x) ̸= 0 for any f ∈ Q[x] \ { 0 }. This is not realized in Qalg.

For Q(t)alg, consider (0) ⊆ Q(t)[x], which corresponds to q(x) ∈ SQ(t)alg

1 (Q(t)) = S
Q(t)alg

1 (t). This is over
finitely many parameters but is not realized in Q(t)alg.

In fact, 4.3.1 implies that ACF0 has at most one countably ω-saturated model; namely Q(t0, t1, . . . )
alg.
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Proof of Lemma 41. Back-and-forth argument, generalizing ℵ0-categoricity of DLO. Construct chains of
finite sets

A0 A1 . . .

B0 B1 . . .

⊆

f0

⊆

f1

⊆ ⊆

with each fi a bijective partial elementary map and such that⋃
i

Ai = A⋃
i

Bi = B

Then
f =

⋃
i

fi

is an isomorphism A ∼= B.
Enumerate

A = { a0, a1, . . . }
B = { b0, b1, . . . }

Recursively construct Ai, Bi, and fi, making sure at odd stages that⋃
i

Ai = A

and at even stages that ⋃
i

Bi = B

Set A0 = B0 = f0 = ∅. Then f0 is a partial elementary map since A ≡ B.
Suppose we have constructed

fi : Ai → Bi

a bijective partial elementary map for i = 2n. Set Ai+1 = Ai ∪ { an }. Let p(x) = tp(an/Ai). Then
fi(p) ∈ SB

1 (Bi). By ω-saturation of B there is b ∈ B such that B |= fi(p)(b). Set Bi+1 = Bi ∪{ b } and extend
fi to fi+1 by fi+1(an) = b. Check that fi+1 is a bijective partial elementary map.

Suppose i = 2n+ 1. Set Bi+1 = Bi ∪ { bn }. Let q(x) = tp(bn/Bi). Then S1(fi)(q) = f−1
i (q) ∈ SA

1 (Ai);
this has a realization a by ω-saturation of A. Set Ai+1 = A ∪ { a }; extend fi to fi+1 by fi+1(a) = bn. This
will then be a bijective partial elementary map. Lemma 41

Definition 44. Recall that for an infinite cardinal κ, we say T is κ-categorical if it has a unique model of
size κ.

We are interested in ℵ0-categoricity.

Theorem 45 (Ryll-Nardzewski theorem). Suppose T is a countable, complete theory. Then T is ℵ0-categorical
if and only if for each n < ω there are only finitely many L-formulae φ(x1, . . . , xn) modulo T .

Proof.

(⇐= ) By Lemma 41, it suffices to show that every countably infinite model of T is ω-saturated. LetM |= T
be countably infinite. Suppose A ⊆M is finite, say A = { a1, . . . , an }. Then every L(A)-formula in 1
variable is of the form φ(a1, . . . , an, x) where φ(y1, . . . , yn, x) is an L-formula. So in T = Th(M) there
are only finitely many L(A)-formulae. So any p(x) ∈ SM

1 (A) is equivalent to a single L(A)-formula;
hence p(x) is realized inM. So M is ω-saturated.

9



( =⇒ ) We begin with a claim.

Claim 46. All n-types are isolated.

Proof. If p(x) is not isolated, then by the omitting types theorem, we haveM |= T omitting p(x). By
downward Löwenheim-Skolem, we may assume thatM is countable.

Since p(x) ∈ Sn(T ), it is realized in some N |= T ; by downward Löwenheim-Skolem, we may assume N
is countable.

Thus M has no realization of p(x), and N does; so M ̸∼= N , contradicting the ℵ0-categoricity of T .
Claim 46

So Sn(T ) is compact, with every point isolated; thus Sn(T ) is finite. Thus there are finitely many clopen
sets in Sn(T ). Thus, by Lemma 22, we have that modulo T there are only finitely many L-formulae in
n variables. (Since [φ] = [ψ] if and only if T |= ∀x(φ(x)↔ ψ(x)).)

Theorem 45

Remark 47. The proof of Ryll-Nardzewski shows more. If T is countable and complete, then the following
are equivalent:

• T is ℵ0-categorical.

• Sn(T ) is finite for all n ≥ 0.

• All countable models are ω-saturated.

We also get

Corollary 48 (4.3.7). Th(A) is ℵ0-categorical if and only if Th(AB) is ℵ0-categorical for any finite B ⊆ A.

Definition 49. A theory T is small if Sn(T ) is countable for all n < ω.

Lemma 50 (4.3.9). T is small if and only if there is a countable, ω-saturated model.

Example 51. ACF0 is not ℵ0-categorical, as remarked before. It is, however, small, since Sn(ACF0) is in
bijection with Spec(Q[x1, . . . , xn]), and the latter is countable by the Hilbert basis theorem. We will see in
the homework that Q(t1, . . . )

alg is a countable ω-saturated model.

Proof of Lemma 50.

(⇐= ) If M |= T is ω-saturated, then any type in Sn(T ) is realized in M. But M is countable; so
|Sn(T )| ≤ ℵ0.

( =⇒ ) Let A0 |= T be countable. Recursively construct an elementary chain of countable models A = A0 ⪯
A1 ⪯ . . . such that Ai+1 realizes every 1-type over finitely many parameters in Ai.

Claim 52. There are only countably many 1-types over finite sets in Ai; i.e.∣∣∣∣∣∣
⋃

B⊆finAi

SAi
1 (B)

∣∣∣∣∣∣ ≤ ℵ0
Proof. Suppose B ⊆fin Ai.

Claim 53. Th((Ai)B) is also small.

Proof. Suppose q(x1, . . . , xn) ∈ SAi
n (B) whereB = { b1, . . . , bℓ }. Then q(x1, . . . , xn) = p(x1, . . . , xn, b1, . . . , bℓ)

for some p(x1, . . . , xn, y1, . . . , yℓ) ∈ Sn+ℓ(T ). Claim 53

10



This ⋃
B⊆finAi

SAi
1 (B)

is countable. Claim 52

Let this set be { p1, . . . , pn }. Use downward Löwenheim-Skolem to realize them:

Ai ⪯ A(1)
i ⪯ . . .

where A(j)
i is countable and realizes pj . Let

Ai+1 =
⋃
j

A(j)
i

So Ai+1 ⪰ Ai is countable, and satisfies the desired properties. Finally, set

A =
⋃
i

Ai

Then A is countable, and A |= T as A ⪰ A0; furthermore, A is ω-saturated by construction.

Lemma 50

Example 54.

1. DLO is ℵ0-categorical. The unique countable model is (Q, <); it is then ω-saturated.

2. For F a finite field, let L = { 0,+,−, λf : f ∈ F }. Let T be the theory of infinite vector spaces over F .
Then T is ℵ0-categorical, and its unique countable model is

Fω = ⊕i<ωF

which is then ω-saturated.

3. Let F be countably infinite; then this doesn’t work, as F ̸∼= F × F . It has a countably ω-saturated
model: namely, the one of dimension ℵ0. (This follows from the homework problem.) Thus the theory
of infinite vector spaces over F is small.

4. ACF0 is not ℵ0-categorical, as seen previously, but it is small.

5. RCF is not small.

Theorem 55 (Vaught). Suppose T is a countable, complete theory. Then T cannot have precisely 2 countable
models.

Proof. If there were such a theory T , it would have to be small, since every type in Sn(T ) is realized in
some countable model, and there are only 2 countable models; so there are only countably many n-types.
Furthermore, T is not ℵ0-categorical.

Claim 56. Every small theory T that is small and not ℵ0-categorical has at least three models.

Proof. By smallness, there is a countable, ω-saturated A |= T . Since T is not ℵ0-categorical, Ryll-Nardzewski
yields that there is a non-isolated n-type p(x) ∈ Sn(T ). By the omitting types theorem and downward
Löwenheim-Skolem, we have a countable B |= T omitting p(x); then B ̸∼= A.

Let a = (a1, . . . , an) ∈ An realize p(x). Then Th(A, a0, . . . , an) is not ℵ0-categorical, since Th(A) = T
is not. (This follows from Ryll-Nardzewski.) Let (C, c1, . . . , cn) ≡ (A, a1, . . . , an) satisfy (C, c1, . . . , cn) is
countable and not ω-saturated. So C is not ω-saturated. So C ̸∼= A. But (c1, . . . , cn) realize p(x); so C ̸∼= B.

Claim 56

Theorem 55

11



2.5 Section 4.5
We assume throughout that T is countable and consistent.

Definition 57. A |= T is atomic if for all n ∈ N, we have that all the n-types over ∅ realized in A are
isolated.

Remark 58. When T is complete, this says that A is “minimal” in the sense that it only realizes the types
that it has to.

Definition 59. A prime model of T is one which elementarily embeds into every model of T .

Remark 60. This is a “minimum” model with respect to ⪯.

Remark 61.

1. Prime models need not exist.

2. Suppose A is a prime model of T . Then

(a) A is countable since downward Löwenheim-Skolem implies that T has a countable model.

(b) A is atomic since every non-isolated type is omitted in some model of T , and hence in A.

Theorem 62 (4.5.2). Suppose T is complete. Then a model of T is prime if and only if it is countable and
atomic.

Proof.

( =⇒ ) Done.

(⇐= ) Suppose M0 |= T is countable and atomic. Suppose M |= T . Let F be the set of all finite partial
elementary maps f : B →M fromM0 toM where B ⊆fin M0. SinceM0 ≡M as T is complete, we
have that the empty function is in F . Note also that if f0 ⊆ f1 ⊆ . . . are in F , then⋃

i∈N
fi

is a partial elementary map. So, as M0 is countable, it suffices to show that given f : B →M in F and
a ∈M0, we can extend f to a partial elementary map on B ∪ { a }.
Exercise 63. If A is an atomic model of T then all n-types over finite sets that are realized in A are
isolated.

Consider p(x) = tp(a/B); this is realized, so the above exercise implies that it is isolated. Thus f(p)
is isolated in M, and it is realized in M, say by c; we then extend f by a 7→ c. This completes our
construction of an elementary embeddingM0 →M.

Theorem 62

Remark 64. There is something common in the proofs of 4.3.3 and 4.5.2. In both cases, we had a finite
partial elementary map f : A→ N from M→N with A ⊆fin M and a ∈M , and we needed to extend f to
A ∪ { a }. This is equivalent to finding a realization of f(tp(a/A)). There are two extreme reasons why this
might be possible:

1. N realizes all types over finite sets; i.e. N is ω-saturated.

2. tp(a/A), and hence f(tp(a/A)) are isolated; i.e. M is atomic.

So prime models and countable ω-saturated models are opposites, but in some ways behave similarly.

Definition 65. An L-structureM is called ω-homogeneous if every finite partial elementary map (i.e. whose
domain is finite) f : A→M fromM→M and any a ∈M , we can extend f to a partial elementary map on
A ∪ { a }.

12



Remark 66. If M is countable, then ω-homogeneity implies that we can extend f to an automorphism of M.
(M is strongly ω-homogeneous.) The proof of 4.3.3 shows that ω-saturated structures are ω-homogeneous.

TODO 1. Am I confusing 4.3.1 and 4.3.3?

Remark 67. The proof of Theorem 62 shows that prime models of countable, complete theories are also
ω-homogeneous.

Theorem 68 (4.5.3). All prime models are isomorphic.

Proof. We use back-and-forth as in 4.3.3 but using the fact that all the types that need to be realized are
isolated because our models are atomic. Theorem 68

What of the existence of prime models?

Remark 69. For T a countable, complete, ℵ0-categorical theory, we have that the unique countably infinite
M |= T is prime.

Proof. Sn(T ) is finite; so all n-types are isolated, and M is atomic. But M is countable. So M is prime.
Remark 69

Theorem 70 (4.5.7). A countable, complete theory T has a prime model if and only if the isolated types in
Sn(T ) are dense for all n ≥ 1.

Proof.

( =⇒ ) Suppose M |= T is a prime model. Suppose [φ(x)] is a non-empty basic clopen set, where x =
(x1, . . . , xn). We need to show that [φ] contains an isolated type.

Well, since [φ] ̸= ∅, we have that φ(x) is consistent with T . So T |= ∃x(φ(x)), and we have a realization
a = (a1, . . . , an) ∈ Mn of φ(x). Then φ(x) ∈ tp(a), and tp(a) ∈ [φ]. But tp(a) is isolated as M is
atomic. So [φ] contains an isolated type.

(⇐= ) Suppose the isolated types are dense for all n ≥ 1. Fix n, and consider Σn(x) where x = (x1, . . . , xn)
given by

Σn(x) = {¬φ(x) : φ(x) isolates a type in Sn(T ) }

Claim 71. Suppose M |= T omits all the Σn(x); then every type realized in M is isolated.

Proof. Suppose a ∈Mn. Then a does not realize Σn, so a realizes φ(x) for some φ(x) isolating a type
q(x). But φ(x) ∈ tp(a); so q(x) ⊆ tp(a). So q = tp(a), and tp(a) is isolated. Claim 71

Then such an M is atomic; downward Löwenheim-Skolem then yields a countable atomic model, which
is then a prime model. It remains to findM omitting all Σn. We use a generalized form of the omitting
types theorem that allows us to simultaneously omit countably many times; we then simply need to
show that Σn is not isolated.

Let ψ(x) be an L-formula consistent with T . We need to show that ψ(x) does not isolate Σn.
Consider [ψ]; by hypothesis, it contains an isolated type p(x), say by φ(x). Then ψ(x) ∈ p(x), so
T ⊢ ∀x(φ(x) → ψ(x)). Then, if ψ(x) isolated Σn(x), then T ⊢ ∀x(ψ(x) → ¬ψ(x)) since ¬φ(x) ∈ Σn.
So T ⊢ ∀x(φ(x)→ ¬φ(x)), contradicting our requirement that an isolating formula must be consistent.
So ψ(x) does not isolate Σn. So each Σn(x) is not isolated.

Exercise 72. Generalize the proof of the omitting types theorem to simultaneously omit countably many
types. Better yet, generalize the Baire category theorem proof.

Theorem 70

Definition 73. We say a formula is complete if it isolates a type.

Corollary 74. Suppose T is a countable, complete theory. If T is small, then T has a prime model. Thus
ℵ0-categorical implies smallness, which in turn implies the existence of a prime mode.
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Proof. Suppose T has no prime model. Then there is n ≥ 1 such that the isolated types in Sn(T ) are not
dense. Then there is an L-formula φ(x1, . . . , xn) such that [φ(x)] contains no isolated types.

Claim 75. φ(x) is not implied by any formula which isolates a type.

Proof. Suppose ψ(x) isolates q(x) and T ⊢ ∀x(ψ(x) → φ(x)). Then if φ(x) /∈ q(x), we would have
¬φ(x) ∈ q(x), and thus ψ(x)→ ¬φ(x), a contradiction. So φ(x) ∈ q(x), and q ∈ [φ], another contradiction.

Claim 75

We now construct a tree of consistent formulae {φs(x1, . . . , xn) : s ∈ 2<ω } such that

•
T ⊢ ∀x1 . . . xn(φs(x1, . . . , xn)↔ (φsˆ0(x1, . . . , xn) ∨ φsˆ1(x1, . . . , xn))

•
T ⊢ ¬∃x1 . . . xn(φsˆ0(x1, . . . , xn ∧ φsˆ1(x1, . . . , xn))

For each α ∈ 2<ω, let
Σα(x) = {φα↾n : n < ω }

This is consistent with T as it is a nested sequence of formulae each consistent with T with

T ⊢ ∀x1 . . . xn(φa↾(n−1)(x1, . . . , xn)→ φa↾n(x1, . . . , xn)

Extend Σα to pα ∈ Sn(T ). If α ̸= β then pα ̸= pβ because of the second condition. So

|Sn(T )| = 2ℵ0

and T is not small Corollary 74

Example 76. Let L = {Ps : s ∈ 2<ω } be a collection of unary predicates. Let T consist of the sentences

• ∀x(Pε(x))

• ∃∞x(Ps(x)

• ∀x((Psˆ0(x) ∨ Psˆ1(x)) ⇐⇒ Ps(x))

• ¬∃x(PSˆ0(x) ∧ Psˆ1(x))

for each s ∈ 2<ω. Then T is complete and has no prime model. (For this we need to show quantifier
elimination.)

3 Chapter 5
We look at ℵ1-categorical theories. A useful technique is indiscernible sequences.

Definition 77. SupposeM is an L-structure; suppose A ⊆M . Suppose I is an infinite linear ordering. A
sequence of k-tuples (ai : i ∈ I) is indiscernible over A in M if

tp(ai1 , . . . , ain/A) = tp(aj1 , . . . , ajn/A)

for all i1 < · · · < in and j1 < · · · < jn and all n < ω. This is sometimes called order-indiscernible. If we omit
A, we mean A = ∅.

Remark 78. If ai = aj for some i < j, then ai = aj for all i and j.

Definition 79. Suppose I is an infinite linear order. Suppose (ai : i ∈ I) is a sequence of k-tuples in M.
The Ehrenfeucht-Mostowski type is

EM((ai : i ∈ I)/A) = {φ(x1, . . . , xn) : n < ω,φ an L(A)-formula,
M |= φ(ai1 , . . . , ain) for all i1 < · · · < in in I}

14



Remark 80. (ai : i ∈ I) is indiscernible over A if and only if

EM((ai : i ∈ I)/A) =
⋃
n<ω

tp(a0 . . . an−1/A)

(We have to be a bit careful if I ̸⊇ N, but the point is to pick any sequence in I.)

Lemma 81 (Standard lemma). Suppose N is an L-structure; suppose J is an infinite linear ordering.
Suppose (bj : j ∈ S) is a sequence of k-tuples in N . Given an infinite linear ordering I, there exists M≡ N
with an indiscernible sequence (ai : i ∈ I) in M realizing EM((bj : j ∈ J)). That is, if φ(x1, . . . , xn) is true
in N of all (bj1 , . . . , bjn) with j1 < · · · < jn, then φ(x1, . . . , xn) is true of all (equivalently, some) increasing
(ai1 , . . . , ain).

Remark 82.

• We can do this over parameters by working in L(A).

• In particular, if T is a theory with an infinite model, then for any infinite linear ordering I, we have
that there is a model of T with an indiscernible sequence (ai : i ∈ I) with all ai distinct.

Proof. Suppose N |= T is infinite. Let (bi : i < ω) be a sequence of distinct elements of N . Applying
the standard lemma, we get M ≡ N (so M |= T ) and (ai : i ∈ I) is indiscernible. Furthermore, we
have ai ̸= aj for all i < j in I since (x1 ̸= x2) ∈ EM((bj : j < ω)).

The main tool in proving Lemma 81 is the following:

Theorem 83 (Ramsey’s theorem). Suppose A is an infinite set; suppose n < ω. Let [A]n = {B ⊆ A : |B| =
n }. Suppose [A]n = C1 ⊔ · · · ⊔Ck. Then there is infinite B ⊆ A such that [B]n ⊆ Ci for some i ∈ { 1, . . . , k }.

Proof of Lemma 81. We assume k = 1; that is, we are dealing with indiscernible sequences of elements, not
tuples. Let C = (ci : i ∈ I) be new constant symbols. It suffices to prove that the following L(C)-theory is
consistent:

Th(N ) ∪ {φ(ci1 , . . . , cin)↔ φ(ck1 , . . . , ckn) : i1 < · · · < in, k1 < · · · < kn in I, n < ω }
∪ {ψ(ci1 , . . . , cin) : i1 < · · · < in in I, ψ(x1, . . . , xn) ∈ EM((bj : j ∈ J)), n < ω }

We use a compactness argument. We are then given

• N an L-structure

• (bj : j ∈ J) a linearly ordered sequence in N

• Finitely many new constant symbols c1, . . . , cℓ

• ∆(x1, . . . , xn) a finite collection of L-formulae

and we wish to prove that

T = Th(N ) ∪ {ψ(ci1 , . . . , cin) : ψ ∈ EMN
n ((bj : j ∈ J))1 ≤ i1 < · · · < in ≤ ℓ }

∪ {φ(ci1 , . . . , cin)↔ φ(ck1 , . . . , ckn) : φ ∈ ∆(x), 1 ≤ i1 < · · · < in ≤ ℓ, 1 ≤ k1 < · · · < kn ≤ ℓ }

(where EMn is the Ehrenfeucht-Mostowski type restricted to formulae in n free variables).

Case 1. Suppose the bj are distinct. Let B = { bj : j ∈ J }; then this is infinite. Define on [B]n a relation ∼
by b ∼ c if N |= φ(b)↔ φ(c) for all φ ∈ ∆, all increasing enumerations b, c of n-element subsets of B.
This is then an equivalence relation with at most 2|∆|-many classes. Then, by Ramsey’s theorem, there
is B′ = { bj1 , . . . , bjℓ } ⊆ B such that any two increasing n-tuples from B′ realize the same formulae
from ∆. So

(N , bj1 , . . . , bjℓ) |= T
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Case 2. Suppose the bj are not distinct but B is infinite. Then we can throw away the repetitions and apply
the previous case.

Case 3. Suppose B is finite. Then there exists j1 < · · · < jℓ in J such that bj1 = · · · = bjℓ = b. So
(N , b, . . . , b) |= T .

Lemma 81

Lemma 84 (5.1.6). Suppose L is countable; suppose A is an L-structure generated by a well-ordered
indiscernible sequence (ai : i ∈ I). Then for all n ≥ 1, we have that A realizes only countably many n-types
over any countable set.

Proof. Every element of A is of the form t(aα) where t is an n-ary L-term and aα = (aα1
, . . . , aαℓ) ∈ Iℓ.

Suppose B ⊆ A is countable. Let A0 = { ai : ai ∈ B }. Then A0 is countable, and A0 = { ai : i ∈ I0 } for
some I0 ⊆ I.

Note that a type over A0 has a unique extension to A0 ∪B, as every L(A0 ∪B)-formula is equivalent to
some L(A)-formula. So it suffices to count the n-types over A0 realized in A.

Assume n = 1. Let tpA(c/A0) be such a type. Then c ∈ A, so c = t(aα) for some t, α as above. Then
tp(c/A0) is determined by tp(aα, A0) and t. But there are countably many L-terms t; so it suffices to count
the tp(aα/A0). By indiscernibility, we have that tp(aα/A0) is determined by:

• tpqf(α) in the structure (I,<)

• tpqf(αi/I0) in the structure (I,<)

But there are finitely many of the first, and countably many of the second. So there are only countably many
of these. Lemma 84

Corollary 85 (5.1.9). Suppose T is a countable theory with an infinite model. Suppose κ is an infinite
cardinal. Then there is M |= T with |M | = κ such that M realizes only countably many 1-types over any
countable set.

The proof uses Skolemization. Given a language L and an L-theory T , we construct L = L0 ⊆ L1 ⊆ . . .
such that for each quantifier-free Li-formula φ(x, y) with y a single variable, x = (x1, . . . , xn), we let

Li+1 = Li ∪ { fφ(x) : φ(x, y) a quantifier-free Li-formula }

where fφ is an n-ary function symbol. We let

LSkolem =
⋃
i<ω

Li

Let
T ∗ = T ∪ {∀x(∃yφ(x, y)→ φ(x, fφ(x))) : φ(x, y) ∈ LSkolem }

Remark 86 (Properties of T ∗).

• T ∗ admits quantifier elimination.

• Every model of T can be expanded to a model of T ∗.

• T ∗ is a universal theory, as the new axioms are universal and modulo the new axioms we have that T is
quantifier-free.

• T ∗ is countable.

Proof of Corollary 85. Let T ∗ be the Skolemization of T . By the standard lemma, there is M |= T ∗ with an
indiscernible sequence (ai : i < κ) of distinct elements indexed by κ. Let N ∗ = ⟨ai : i < κ⟩ ⊆ M∗. Then
T ∗ is universal, so N ∗ |= T ∗. (Note that N ∗ is only generated by (ai : i < k) as an L∗-structure; not as
an L-structure.) Then, by the previous theorem, we get that N ∗ realizes only countably many types over
countably many parameters. But complete types in N are partial types of N ∗, which can then be extended
to distinct complete types in N ∗. So N realizes only countably many types. Corollary 85
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Definition 87. Suppose κ is an infinite cardinal. Suppose T is a complete theory with infinite models. We
say T is κ-stable if for anyM |= T and any A ⊆M with |A| ≤ κ, we have that |Sn(A)| ≤ κ for all n < ω.

Remark 88. ω-stable implies small.

Example 89. ACF0 are ω-stable, as Sn(A) is in bijection with Spec(Q(A)[x1, . . . , xn]. Thus if |A| ≤ ℵ0, then
|Q(A)| ≤ ℵ0; so |Q(A)[x1, . . . , xn]| ≤ ℵ0, and |Sn(A)| ≤ ℵ0.

Theorem 90 (5.2.2). T is κ-stable if and only if for any M |= T and any A ⊆ M with |A| ≤ κ, we have
|S1(A)| ≤ κ.

Proof. Induction on n. Suppose n ≥ 1. Consider the restriction map π : Sn(A) → S1(A). Let p ∈ S1(A).
Then for some N ⪰ M, we have p = tp(b/A) for some b ∈ N . Note that SM

n (A) = SN
n (A). Then, by

homework the first, we have
π−1(p(x)) ∼= Sn−1(bA)

which has cardinality ≤ κ, by induction hypothesis. Also, by assumption, we have that the image of π has
size ≤ κ. So the fibres and image of π have size ≤ κ. So |Sn(A)| ≤ κ. Theorem 90

Example 91. DLO is small (in fact, ℵ0-categorical) but not ω-stable: SQ
1 (Q) is in bijection with R.

Example 92. The theory of infinite vector spaces over a field F is ω-stable if F is countable.

Theorem 93 (5.2.4). Suppose T is countable and complete and has infinite models. If T is κ-categorical for
κ > ℵ0, then T is ω-stable.

Proof. Suppose T is not ω-stable; we get M |= T and A ⊆ M with |A| ≤ ℵ0 but |S1(A)| > ℵ0. Let
N ⪰M realizes ℵ1-many distinct 1-types over A; say we have bi ∈ N for i < ℵ1 with tp(bi/A) ̸= tp(bj/A)
for i < j < ℵ1. By upward Löwenheim-Skolem, we may assume |N | ≥ κ. By downward Löwenheim-
Skolem, we have N0 ⪯ N with |N0| = κ and A ⊆ N0, bi ∈ N0 for all i < ℵ1. (Possible since κ > ℵ0 and
|A ∪ { bi : i < ℵ1 }| = ℵ1.) So we have a model of size κ realizing ℵ1-many types over a countable set (namely
A). But by Corollary 85, we have B |= T of size κ such that over any countable subset of B, there are only
countably many realized types. So B ̸∼= N0, and T is not κ-categorical. Theorem 93

Assignment 2. Homework 2, due Wednesday October 21, is the following exercises from the book: 4.3.1,
4.3.7, 4.5.1, 5.1.1, and 5.2.2.

From now on, when we say T is a complete theory, it is implied that T has only infinite models.

Theorem 94 (5.2.6). Suppose T is countable and complete. Then the following are equivalent:

1. T is ω-stable.

2. No model M |= T has an infinite binary tree of consistent L(M)-formulae.

3. T is κ-stable for any cardinal κ ≥ ℵ0.

Proof.

(1) =⇒ (2) Let S be such a tree; let A be a countable set of parameters such that all the formulae in S
are over A. (Possible since S is countable.) Each branch is a partial n-type over A that extends to an
element of Sn(A). They are all distinct; so there are 2ℵ0 -many of them. So T is not ω-stable.

(2) =⇒ (3) Suppose T is not κ-stable for some κ ≥ ℵ0. Then we haveM |= T and A ⊆M with |A| ≤ κ
and |S1(A)| > κ. But there are only κ-many L(A)-formulae. So there is an L(A)-formula φ(x) such
that φ(x) is contained in > κ-many distinct 1-types over A. We call such a formula big.

Remark 95. If
Γ = { p ∈ S1(A) : p contains a formula that is not big }

then |Γ| ≤ κ.
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So there are p, q ∈ S1(A) such that p ≠ q, φ(x) ∈ p ∩ q, and every formula in p(x) or in q(x) is big. So
we get φ0(x) and φ1(x) both big such that M |= φ(x)↔ φ0(x) ∨ φ1(x) and M |= ¬∃x(φ0(x) ∧ φ1(x)).
Iterate to get an infinite binary tree of big formulae over A.

(3) =⇒ (1) Clear.

Theorem 94

Recall from Ryll-Nardzewski that ℵ0-categoricity is equivalent to all countable models being ω-saturated.

Theorem 96 (5.2.11). Suppose T is countable, κ an infinite cardinal. Then T is κ-categorical if and only if
all models of size κ are κ-saturated.

We need some lemmata.

Definition 97. An L-structure A is saturated if it is |A|-saturated.

Lemma 98 (5.2.9). Suppose T is countable, complete, and ω-stable. For all κ and all regular λ ≤ κ, we have
that T has a model of size κ that is λ-saturated.

Proof. We try to construct as usual a λ-saturated model. Let M0 |= T , |M0| = κ. Let M1 ⪰ M0 realize
all types in S1(M0). But since ω-stability implies κ-stability, we know that |S1(M0)| = κ. By downward
Löwenheim-Skolem, we may assume that |M1| = κ; now iterate λ-many times, where for limit ordinal β we let

Mβ =
⋃
γ<β

Mγ

We then obtain (Mα : α < λ) an elemntary chain of models of T , all of size κ, such that every type in S1(Mα)
is realized inMα+1. Let

M =
⋃
α<λ

Mα

Then M |= T , and |M | = κ, since λ ≤ κ. Let A ⊆ M satisfy |A| < λ; let p ∈ S1(A). By regularity of λ,
we have that A ⊆ Mα for some α < λ. So p is realized in Mα+1, and hence in M. So M is λ-saturated.

Lemma 98

Proof of Theorem 96.

(⇐= ) Suppose all models of size κ are saturated. In general, if A ≡ B, |A| = |B| = κ, and A and B are
κ-saturated, then A ∼= B. This is proven by a back-and-forth argument as in the case of κ = ω (4.3.3);
the only difference is that the partial elementary maps we must extend have domains of size < κ (rather
than finite). So T is κ-categorical.

( =⇒ ) Suppose T is κ-saturated; let M be the model of T of cardinality κ. We need to show that M is
κ-saturated. If κ = ℵ0, we are done by Ryll-Nardzewski. We may thus assume κ > ℵ0. By Theorem 93,
we have that T is ω-stable. By 5.2.9, we have that T has a model of size κ that is λ-saturated for all
regular λ ≤ κ. So M is λ-saturated for all regular λ ≤ κ.

Case 1. Suppose κ is a successor cardinal. Then κ is regular, and we may take λ = κ to get thatM is
κ-saturated.

Case 2. Suppose κ is a limit cardinal. Let A ⊆M , |A| < κ, p ∈ S1(A). So |a| < λ for some λ < κ. So
|A| < λ+ < κ, and λ+ is regular. SoM is λ+-saturated, so p is realized inM.

Theorem 96

Definition 99. Suppose B is an L-structure; suppose A ⊆ B. We say B is prime over A (or a prime extension
of A) if every partial elementary map A→M extends to an elementary embedding B →M.

Remark 100. B is prime over A if and only if BA is a prime model of Th(BA). (RecallM expands to a model
of Th(BA) if and only if there exists a partial elementary map A→M.)
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Example 101. Suppose (K, 0, 1,+,−,×) |= ACF0; suppose A ⊆ K. Then Q(A)alg is prime over A.

Theorem 102 (5.3.3). Suppose T is countable, complete, and ω-stable. Then, given anyM |= T and A ⊆M ,
there is a model of T that is prime over A.

Proof. We will construct B ⪯M with A ⊆ B such that B has an enumeration (bα : α < λ) with tp(bα/A∪{ bµ :
µ < α }) is isolated. Such a structure is called constructible over A.

Claim 103. Constructible extensions are prime. (Compare to “atomic implies prime”.)

Proof. Suppose f : A→ N is a partial elementary map, where N is any L-structure. We wish to extend f
to B. We do so recursively to all the bµ with µ < α with α < λ. Suppose we have extended f to act on
A ∪ { bµ : µ < α }. Well,

p(x) = tp(bα/A ∪ { bµ : µ < α })

is isolated in B. So f(p) is isolated in N , as f is a partial elementary map; so it is realized in N , say by c.
We then extend f by bα 7→ c. Claim 103

Note that the above claim doesn’t require ω-stability; by contrast, the following claim relies on ω-stability.

Claim 104. For any C ⊆M and any n ≥ 0, we have that the isolated types are dense in Sn(C). (Compare
to “small implies the existence of a prime model”.)

Proof. Suppose C ⊆M ; suppose n ≥ 0. Consider Th(MC). Since T is ω-stable, 5.2.6 yields that there is no
infinite binary tree of consistent L(C)-formulae. Then, by 4.5.9, we have that the isolated types are dense in
Sn(Th(MC)). (Despite how it was done in class, the step above doesn’t need the language to be countable.)
So the isolated types are dense in Sn(C). Claim 104

We now construct the constructible B over A. By Zorn’s lemma, there is B = (bα : α < λ) with
tp(bα/A ∪ { bµ : µ < α }) is isolated and maximal; i.e. whenever a ∈M\B, we have that tp(a/A ∪B) is not
isolated. Clearly A ⊆ B. We wish to prove that B is the universe of an elementary substructure ofM. We
use Tarski-Vaught. Let φ(x) be an L(B)-formula in 1 variable such that M |= ∃xφ(x). We need to show
that there is b ∈ B with M |= φ(b). By the second claim, we have that [φ(x)] contains an isolated type
p(x) ∈ S1(B). Let a ∈ M realize p(x). So tp(a/A ∪ b) = tp(a/B) = p(x) is isolated. Then, by maximality,
we have a ∈ B, and M |= φ(a). So we have constructed our constructible B over A. Then by the first claim,
we have that B is prime over A. Theorem 102

Actually, the proof gave us a constructible model over any subset of a model (if T is ω-stable), not just a
prime one.

Theorem 105 (5.3.6). A constructible extension B over A is atomic over A; i.e. for every n ≥ 0, we have
that every n-type over A realized in B is isolated.

In fact, “constructible over A” and “atomic over A” are the same; this uses

Lemma 106 (5.3.5). In any L-structure, we have that tp(ab) is isolated if and only if tp(a/b) and tp(b) are
isolated.

Proof. ( =⇒ ) If φ(x, y) isolated tp(ab) then φ(x, b) isolates tp(a/b), and ∃xφ(x, y) isolates tp(b).

(⇐= ) If φ(x, b) isolates tp(a/b) and ψ(y) isolates tp(b), then φ(x, y) ∧ ψ(y) isolates tp(ab).
Lemma 106

Proof of Theorem 105. Suppose B = (bα : α < λ) is a constructible extension of A. Given b = (bα1
, . . . , bαn)

with α1 < · · · < αn, we need to show that tp(b/A) is isolated. Well,

tp(bαn/A ∪ { bµ : µ < αn })

is isolated, say by φ(x, c) where c is a tuple from A ∪ { bµ : µ < αn }. So

tp(bαn/Ac ∪ { bα1
, . . . , bαn−1

})
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By induction on αn, we know that tp(c, bα1 , . . . , bαn−1/A) is isolated. (Formally, we’re doing induction on
the highest index αn.) By 5.3.5 for L(A)-structure, we have

tp((c, (bα1 , . . . , bαn−1 , bαn)

is isolated. Again by 5.3.5, we have that tp(b/A) is isolated. Theorem 105

Definition 107. A theory T is totally transcendental if for every M |= T there does not exist an infinite
binary tree of L(M)-formulae realized inM. (T may be incomplete, and L may be uncountable.)

Remark 108. We know that when L is countable and T is complete, then total transcendence is equivalent to
ω-stability.

Rephrasing the previous theorem, we have

Theorem 109. Suppose T is complete and totally transcendental; suppose M |= T and A ⊆M . Then there
exists B ⪯M such that B is a prime extension of A. (This is stronger than the analogous statement in Tent
and Ziegler.)

Remark 110. The proof actually found B ⪯M constructible over A; we saw that this is the atomic over A.

Corollary 111 (3.5.7). Suppose T is complete and totally transcendental. Suppose B |= T , A ⊆ B, and B is
prime over A. Then B is atomic over A.

Proof. We know there is B0 ⪯ B such that B0 is atomic over A. So id : A→ B is a partial elementary map
B0 → B, since B0 ⪯ B. Since B is prime over A, we have that idA extends to an elementary embedding
f : B → B0. So B is isomorphic to A to an elementary substructure of B0. So B is atomic over A.

Corollary 111

Theorem 112 (Lachlan’s theorem). Suppose T is a complete, totally transcendental theory; suppose M |= T
is uncountable. Then M has arbitrarily large elementary extensions which omit any countable partial 1-type
over M that M omits. (i.e. for any κ there is N ⪰M with |N | ≥ κ having the desired property.)

Proof. By iteration, it suffices to show that there is a proper elementary extension ofM omitting all countable
partial types omitted by M.

We call an L(M)-formula φ(x) is large if φ(M) is uncountable. By total transcendentality, there is a
“minimal” large formula: there is large φ0(x) large such that for any L(M)-formula ψ(x), we have either
φ0 ∧ ψ or φ0 ∧ ¬ψ is not large (and hence the other is). Let p(x) = {ψ(x) : φ0 ∧ ψ is large }.

Claim 113. p(x) ∈ S1(M).

Proof. Observe that it is closed under conjunction, since if ψ1(x), ψ2(x) ∈ p(x), then φ0 ∧ψ1 and φ0 ∧ψ2 are
large. So φ0 ∧ ¬ψ1 and φ0 ∧ ¬ψ2 are not large. So φ0 ∧ (¬ψ1 ∨ ¬ψ2) is not large. So φ0 ∧ ψ1 ∧ ψ2 is large.

Furthermore, p(x) is consistent and complete. So p(x) ∈ S1(M). Claim 113

Claim 114. p(x) is not realized in M, but every countable subset of p(x) is realized in M.

Proof. If p(x) were realized, say by a ∈M , then (x = a) ∈ p(x). But φ0∧ (x = a) is not large, a contradiction.
So p(x) is not realized in M .

Suppose Π(x) ⊆ p(x) is countable. For all ψ ∈ Π, we ahve φ0(M) \ψ(M) is countable. So φ0(M) \Π(M)
is countable. So Π(M) is uncountable, and hence non-empty. Claim 114

Let N ⪰M with a ∈ N realizing p(x). By total transcendentality, we may assume that N is atomic over
M ∪ { a }. This N is our desired extension; certainly by the claim, we have that N ̸=M. It then suffices to
show that given b ∈ N , every countable subset of Σ(y) ⊆ tp(b/M) is realized inM. Since N is atomic over
M ∪ { a }, we have that tp(b/M ∪ { a }) is isolated, say by χ(a, y) where χ(x, y) is an L(M)-formula. Let

Π(x) = { ∀y(χ(x, y)→ σ(y)) : σ ∈ Σ } ∪ { ∃yχ(x, y) }
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Then Π(x) ⊆ p(x) is countable as Σ is countable. By the claim, we have Π(x) is realized inM by a′ ∈M .
Let b′ ∈M satisfy

M |= χ(a′, b′)

Then M |= σ(b′) for all σ ∈ Σ, since (∀y(χ(x, y) → σ(y)) ∈ Π(x). So b′ realizes Σ(y) in M.
Theorem 112

Theorem 115 (Downward Morley’s theorem, 5.4.2). Suppose T is countable and κ-categorical for some
uncountable κ. Then T is ℵ1-categorical.

Proof. Suppose T is not ℵ1-categorical. Then there is M |= T with |M | = ℵ1 with M not ℵ1-saturated.
Suppose A ⊆ M is countable with p(x) ∈ S1(A) not realized in M. By 5.2.4, we have that T is ω-stable;
so, by Lachlan’s theorem there is N ⪰ M of cardinality ≥ κ omitting p(x). Since κ ≥ |M |, we may use
downward Löwenheim-Skolem to produce such an N with |N | = κ.

But T is κ-categorical; so N is κ-saturated. But N does not realize p(x) over countably many parameters,
a contradiction. So T is ℵ1-categorical. Theorem 115

(We use here that for infinite κ, κ-categoricity is equivalent to the saturation of all models of size κ.)

Remark 116. The uncountability of M |= T is necessary for Lachlan’s theorem. To see this, note that ACF0

is totally transcendental and complete, and Qalg |= ACF0. The type p(x) saying “x is transcendental” is a
countable type omitted in Qalg. But it is realized in every uncountable N |= ACF0.

For upward Morley’s theorem, we will need more than total transcendentality.

Definition 117. A vaughtian pair for a theory T is a pair of models M≺ N and an L(M)-formula φ(x)
such that

• N ̸=M

• φ(M) is infinite

• φ(M) = φ(N )

Remark 118. If we allowed φ(M) to be finite, then φ(M) = φ(N ) for all elementary extensions N ⪰M.

One way this can happen is if N |= T and ℵ0 ≤ |φ(N )| < |N |.
Aside 119. In a κ-saturated structure, every infinite definable set has cardinality ≥ κ.

Given such φ and N , we can use downward Löwenheim-Skolem to getM⪯ N such that φ(N ) ⊆M and
|M | = |φ(N )| < |N |. Then M ≠ N and φ(M) = φ(N ) ∩M = φ(N ). So this is a vaughtian pair.

Lemma 120 (5.5.3). Suppose T is countable and complete.

1. Every countable model of T has a countable ω-homogeneous elementary extension.

Remark 121. If T is not small, there may not be a countable ω-saturated model; this says that there is
always a countable ω-homogeneous model.

2. If M and N are countable ω-homogeneous models of T structures that realize the same n-types over ∅
for all n, then M∼= N .

Proof.

1. Build it by iterating the following process: suppose M |= T is countable. Let M1 ⪰M realize

{ f(tp(a/A)) : A ⊆fin M,a ∈M,f : A→M a partial elementary map }

But the above set is countable; so by downward Löwenheim-Skolem, we can getM1 to be countable.
We iterate this ℵ0-many times and take unions to get a countable, ω-homogeneous elementary extension.
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2. Perform back-and-forth. Given a partial elementary map M→N , say

f : { a1, . . . , am } → N

We wish to extend it to a ∈M . Let (b1, . . . , bm, b) ∈ Nm+1 realize tp(a1, . . . , am, a) = p(x1, . . . , xn, y).
(Such a realization exists by assumption.) So tp(b1, . . . , bm) = tp(a1, . . . , am) = tp(f(a1, . . . , f9an)) as
f is a partial elementary map. If we define g : { b1, . . . , bm } → N by g(bi) = f(ai), then this a partial
elementary map from N to N . As N is ω-homogeneous, we have that g extends to an automorphism
g : N → N . Then

tp(a1, . . . , am, a) = tp(b1, . . . , bm, b)

= tp(g(b1), . . . , g(bm), g(b))

= tp(f(a1), . . . , f(am), g(b))

i.e. f extends to a partial elementary map on { a1, . . . , am, a } by a 7→ g(b).

Remark 121

Theorem 122 (Vaught’s 2-cardinal theorem). Suppose T is complete and countable. If T has a vaughtian
pair, then it has an ℵ1-sized model with a countable infinite definable set.

Proof.

Claim 123. T has a vaughtian pair where M and N are countable.

Proof. SupposeM≺ N with φ(x) is a vaughtian pair. Define L(P ) = L∪{P } where P is a unary predicate
symbol. View (N ,M) as an L(P )-structure where P is interpreted as M . The facts

• M is the universe of M⪯ N .

• M ≠ N

• φ(M) is infinite

• φ(M) = φ(N )

are part of the L(P )-theory of (N ,M). Applying downward Löwenheim-Skolem, we get (N0,M0) ⪯ (N ,M)
with N0 and M0 countable. We then have that M0 ⪯ N0 is a vaughtian pair for T with φ(x).

Claim 123

Claim 124. T has a countable vaughtian pair with M∼= N and M and N are ω-homogeneous.

Proof. By the previous claim, we haveM0 ≺ N0 a countable vaughtian pair with φ(x). We work in L(P ),
the language of pairs. Let (N0,M0) ⪯ (N ′

0,M
′
0) be countable such that every n-type (over ∅) realized by N0

is realized byM′
0. We do this by taking

Σ = Th(N0,M0)N0
∪ { p(c(p)1 , . . . , c(p)n ) : p(x1, . . . , xn) ∈ Sn(∅) realized in N0 } ∪ {P (c(p)i ) : all c(p)i }

where the c(p)i are new constant symbols. Then Σ is consistent since if ψ(x1, . . . , xn) ∈ tpN0(a1, . . . , an) with
a1, . . . , an ∈ N0, then ∃x1 . . . xnψ(x1, . . . , xn) is in the theory. So there are b1, . . . , bn ∈M0 realizing ψ. Then

A = (N0,M0, b1, . . . , bn) |= Th(N0,M0)N0 ∪ {ψ(c1, . . . , cn) }

(Of course, one needs to check that this generalizes to taking finitely many formulae.) Furthermore, we can
make (N ′

0,M
′
0) countable since N0 only realizes countably many types (since N0 is countable).

Now let (N ′
0,M

′
0) ⪯ (N1,M1) also be countable such that N1 andM1 are ω-homogeneous as L-structures.

We saw how to do this for N ′
0 and M′

0 separately; we then just add Th(N ′
0,M′

0) to the set of sentences we
wish to realize. (As in 5.5.3 (a).)
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We now iterate ℵ0-many times:

(N0,M0) ⪯ (N ′
0,M

′
0) ⪯ (N1,M1) ⪯ (N ′

1,M
′
1) ⪯ (N2,M2) ⪯ . . .

Let (N ,M) be the union of this elementary chain. Then (N ,M) ⪰ (N0,M0), so in particular (N ,M) is a
vaughtian pair with φ(x). We also have that (N ,M) is countable. To see that N andM are ω-homogeneous,
we refer to the non-primed stages:

M =
⋃
i<ω

Mi

N =
⋃
i<ω

Ni

and thus both are ω-homogeneous as the union of ω-homogeneous structures. Finally, sinceM⪯ N , we have
that N realizes every type that M does; conversely, since

M =
⋃
i<ω

M′
i

we have that M realizes every type that N does. So, by 5.5.3 (b), we have M∼= N . Claim 124

Let M≺ N and φ be as in the claim. We build a chain

M0 ⪯M1 ⪯M2 ⪯ . . .

of length ℵ1 such that for all α < ℵ1, we have (Mα+1,Mα) ∼= (N ,M). We let M0 = M and M1 = N .
Having produced Mα, we are then given fα :M→Mα an isomorphism (sinceM∼= N ); we then extend

M Mα

N Mα+1

fα

⪯ ⪯
fα+1

If λ < ℵ1 is a limit ordinal, we let
Mλ =

⋃
α<λ

Mα

But M is ω-homogeneous; so each Mα is as well for each α < λ, and Mλ is ω-homogeneous and countable.
Also, since Mα

∼=M, we have that Mα realizes the same types as M. So Mλ realizes the same types that
M realizes. So, by 5.5.3 (b), we have an isomorphism fλ :M→Mλ.

Having constructed the above chain, let

M =
⋃
α<ℵ1

Mα

ThenM is of cardinality ℵ1 sinceMα ≺Mα+1 (since every (Mα+1,Mα) ∼= (N ,M)). Well, φ(N ) = φ(M)
since we started with a vaughtian pair. Then, again since (Mα+1,Mα) ∼= (N ,M), we have

φ(Mα) = φ(Mα+1)

φ(Mλ) = φ(Mα) for any α < λ

where λ is a limit ordinal. So φ(M) = φ(M0) is countable, as M0 is countable, and infinite as it forms a
vaughtian pair. Theorem 122

Corollary 125 (5.5.4). Suppose T is countable and complete. If T is categorical in some uncountable
cardinality, then T has no vaughtian pair.
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Proof. Suppose κ > ℵ0 and T is κ-categorical. By the downward Morley’s theorem, we have that T is
ℵ1-categorical. So there is only one model of T of size ℵ1, sayM, and it is ℵ1-saturated. Then, by saturation,
we have that every infinite definable set inM is of size ℵ1. Then, by Vaught’s 2-cardinal theorem, we have
that T has no vaughtian pair. Corollary 125

Corollary 126 (5.5.5). Suppose T is countable and complete. Suppose T is categorical in an uncountable
cardinal. Then every model of T over any infinite definable set is prime. More precisely, suppose M |= T ,
A ⊆M , and φ(x) is an L(A)-formula has φ(M) is infinite. Then M is prime over φ(M) ∪A.

Proof. By 5.3.3, there is M0 ⪯ M such that A ∪ φ(M) ⊆ M0 that is a prime extension. But then
φ(M0) = φ(M) ∩M0 = φ(M). (We use that A ⊆M0.) SoM0 ≺M with φ form a vaughtian pair unless
M0 =M. So M is prime over φ(M) ∪A. Corollary 126

Remark 127. The proof used ω-stability to get a prime model, and then the fact that there are no vaughtian
pairs to get that it wasM. The proof then shows that it is the unique prime model over φ(M) ∪A.

Remark 128. Prime models are unique only up to isomorphism. i.e. it is possible in general for there to be
A ⊆M and M≺ N with M ≠ N both prime over A. In some examples, this doesn’t happen:

• In ACF0, the prime model over A ⊆ K is Q(A)alg.

• In VSF , the prime model over A ⊆ V is spanF (A).

Definition 129. SupposeM is an L-structure; suppose A ⊆M .

• An L(A)-formula φ(x) is algebraic if φ(M) is finite.

• We say a ∈M is algebraic over A if it realizes an algebraic formula over A.

• We set acl(A) = { a ∈M : a is algebraic over A }.

• We say A is algebraically closed if A = acl(A).

Remark 130.

• These notions seem to depend on M, but in fact the notion is preserved if you pass to N ⪰ M; i.e.
aclM(A) = aclN (A) for all N ⪰M.

• |acl(A)| ≤ |L|+ |A|+ ℵ0.

Example 131.

1. Suppose K |= ACF with L = { 0, 1,+,−,×}. Suppose A ⊆ K. Then acl(A) = F(A)alg where

F =

{
Q char(K) = 0

Fp char(K) = p

2. Suppose V |= VSF with L = { 0,+ } ∪ {λf : f ∈ F }. Suppose A ⊆ V . Then acl(A) = spanF (A).

3. Let L = ∅; let X be an infinite set; take A ⊆ X. Then acl(A) = A.

Definition 132. A type p(x) ∈ S1(A) is algebraic if it contains an algebraic formula.

Lemma 133. If φ(x) ∈ p(x) ∈ S(A) is algebraic with |φ(M)| minimal over all formulae in p(x), then φ(x)
isolates p(x).

Proof. Take ψ(x) ∈ p(x). Then φ(x)∧ψ(x) ∈ p(x); so |φ(M)| = |(φ∧ψ)(M)| by minimality. So (φ∧ψ)(M) =
φ(M), and φ(M) ⊆ ψ(M). So M |= ∀x(φ(x)→ ψ(x)). So φ(x) isolates p(x). Lemma 133

Definition 134. If p(x) is an algebraic type and φ(x) ∈ p(x) is algebraic such that |φ(M)| is minimal, then
we call |φ(M)| the degree of p(x).
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Corollary 135. Suppose p(x) ∈ S1(A) is algebraic. Then |p(N )| = deg(p) for any N ⪰M.

Proof. p(x) is isolated by some φ(x); so p(N ) = φ(N ) for all N ≥ M; so deg(p) = |φ(M)| = |φ(N )|.
Corollary 135

Remark 136. If p(N ) is finite in all N ⪰M, then p(x) is algebraic.

Proof. Suppose p(x) is not algebraic. Then each φ(x) ∈ p(x) has φ(M) infinite. So

Th(MM ) ∪ {φ(cn) : n < ω,φ(x) ∈ p(x) } ∪ { cn ̸= cm : n < m < ω }

is consistent by compactness and because no formula in p(x) is algebraic. So there is N a model of this
theory; then N ⪰M and p(N ) is infinite. Remark 136

Lemma 137 (5.6.2). Suppose M is an L-structure; suppose A ⊆M . Suppose p ∈ S1(A) is non-algebraic
and B ⊇ A. Then there is a non-algebraic extension of p(x) to S(B).

Proof. Let
q(x) = p(x) ∪ {¬ψ(x) : ψ(x) an algebraic L(B)-formula }

If q(x) were not finitely satisfiable in M, then for some φ(x) ∈ p(x) we have M |= ∀x(φ(x) → ψ(x))
an algebraic L(B)-formula, and φ(x) is algebraic, a contradiction. Extend q(x) to q̂(x) ∈ S1(B); this is
non-algebraic because it contains the negation of every algebraic L(B)-formula. Lemma 137

Lemma 138 (5.6.4). Every partial elementary bijection f : A→ B extends to a partial elementary bijection
f : acl(A)→ acl(B).

Proof. Suppose a ∈ acl(A). Then tp(a/A) is algebraic; so f(tp(a/A)) is algebraic, and hence isolated. So it
has a realization in acl(B); we can then extend f by mapping a to said realization. Similarly, we can extend
f to hit any given b ∈ acl(B) by something in acl(A) using f−1. Let f : A′ → B′ be a maximal (with respect
to the domain) partial elementary bijection extending f with A′ ⊆ acl(A) and B′ ⊆ acl(B). Then by the
above arguments, we get A′ = acl(A) and B′ = acl(B). Lemma 138

We can view acl as a closure operator acl : P(M)→ P(M). Properties:

• acl is reflexive: A ⊆ acl(A).

• acl has finite character :
acl(A) =

⋃
A′⊆finA

acl(A′)

since any algebraic formula uses only finitely many parameters from A.

• acl is transitive: acl(acl(A)) = acl(A).

Proof. Suppose c ∈ acl{ b1, . . . , bn } with bi ∈ acl(A). We wish to show c ∈ acl(A). Let φ(x, y1, . . . , yn)
be an L-formula such that φ(x, b1, . . . , bn) witnesses c ∈ acl{ b1, . . . , bn }. Let φi(yi) be an algebraic
L(A)-formula witnessing bi ∈ acl(A). Let

θ(x) = ∃y1 . . . yn

(
n∧
i=1

φi(yi) ∧ φ(x, y1, . . . , yn) ∧ ∃≤kzφ(z, y1, . . . , yn)

)
where k = |φ(M, b1, . . . , bn)|. Then θ(x) holds of c, witnessed by yi = bi and θ(x) is over A and is
algebraic. So c ∈ acl(A).

We can extend the notion of acl to n-space:

Definition 139. We say φ(x1, . . . , xn) is algebraic if φ(M) ⊆Mn is finite. We say a = (a1, . . . , an) ∈Mn

is algebraic over A ⊆M if it realizes an algebraic formula. We write a ∈ acl(A). (Note that this is a slight
abuse of notation, as a ∈Mn and acl(A) ⊆M .)

Exercise 140. a ∈ acl(A) if and only if each ai ∈ acl(A).
So we can talk about algebraic n-types, etc.
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3.1 Strong minimality
Definition 141. Suppose T is a complete theory. Suppose M |= T and φ(x) is an L(M)-formula (with
x = (x1, . . . , xn)). The definable set φ(M) is minimal in M if φ(x) is non-algebraic and for every other
L(M)-formula ψ(x) we have that one of φ∧ψ and φ∧¬ψ is algebraic. i.e. every definable subset of φ(M) is
finite or cofinite.

Definition 142. The L(M)-formula φ(x) is strongly minimal if for every elementary extension N ⪰M, we
have that φ(N ) is minimal in N . In this case we also say that φ(M) is strongly minimal.

Definition 143. The theory T is strongly minimal if and only if the formula “x = x” is strongly minimal in
some M |= T . i.e. The universe M is strongly minimal. (i.e. N is minimal for all N ⪰M).

Example 144.

• The theory of infinite sets in L = ∅ is strongly minimal.

• If F is a field, then VSF is strongly minimal.

• If p is prime or 0, then ACFp is strongly minimal. (Note that if K |= ACFp then K2 is not minimal.)

• Suppose K |= ACFp where p is prime or 0. Suppose C is an irreducible algebraic curve. Then C is
strongly minimal. e.g. Say C = { (x, y) ∈ K2 : y = ax + b } with a ̸= 0. Consider C → K given by
(x, y) 7→ x; this is a definable bijection (i.e. a bijection whose graph is definable).

Exercise 145. Strong minimality is preserved under definable bijections.

Proposition 146. Suppose T is complete and totally transcendental. Suppose M |= T . Then every definable
set in M has a minimal definable subset.

Proof. If φ(M) is not minimal, then it can be split into two infinite, disjoint, definable subsets φ0(M) and
φ1(M). If neither of these is minimal, iterate. Since T is totally transcendental, we have that this process
stops; i.e. there is a minimal definable subset. Proposition 146

Remark 147. Write φ(x) as φ(x, a) where φ(x, y) is an L-formula and a = (a1, . . . , am). Whether φ(x, a) is
strongly minimal depends only on tp(a) ∈ Sm(T ). i.e. If N |= T and b ∈ Nm with tp(b) = tp(a), then φ(x, b)
is strongly minimal if φ(x, a) is. In particular, if m = 0, then strong minimality depends only on φ.

Proof. φ(x, a) is strongly minimal if and only if for any L-formula ψ(x, z) (where z = (z1, . . . , zℓ)), we have
that the set of L(a)-formulae

Σψ(z) = { ∃>kx(φ(x, a) ∧ ψ(x, z)) ∧ ∃>kx(φ(x, a) ∧ ¬ψ(x, z)) : k ∈ N }

has no realization in any N ⪰M.
Aside 148. φ(M) is minimal if and only if for all ψ, we have Σψ is not realized inM.

But this holds if and only if Σψ(z) is not finitely satisfiable inM for any ψ; i.e. for every ψ there is some
kψ such that, if

θψ(y) = ∀z(∃≤kψx(φ(x, y) ∧ ψ(x, z)) ∨ ∃≤kψx(φ(x, y) ∧ ¬ψ(x, z)))

then M |= θψ(a). Then φ(x, a) is strongly minimal if and only if M |= θψ(a) for all ψ; i.e. if and only if
θψ(y) ∈ tp(a) for all ψ. Remark 147

Lemma 149. If M is ω-saturated, then minimal in M implies strongly minimal.

Proof. Suppose φ(x, a) is not strongly minimal; then there is some ψ(x, z) such that Σψ(z) is realized in some
N ⪰M. So Σψ(z) is a partial ℓ-type over a. So Σψ(z) is realized inM by ω-saturation. So, by Aside 148,
we have that φ(M) is not minimal. Lemma 149

Assignment 3. Due Monday November 16. Do 5.2.5, 3.3.1 (prove random graph has quantifier elimination
and is complete) + 5.5.3, 5.6.1, 5.7.3, 5.7.4.
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Definition 150. We say T eliminates ∃∞x quantifier if for every L-formula φ(x, y) where y = (y1, . . . , yn)
there is a bound Nφ ≥ 1 such that for anyM |= T and any a ∈Mn, we have that φ(M, a) is either of size
≤ Nφ or is infinite.

The point is that for every φ there is a formula ψ(y) such that for anyM |= T and any a ∈Mn, we have

M |= ψ(a) ⇐⇒ φ(M, a) is infinite

Thus T |= ∀y(ψ(y)↔ ∃∞x(φ(x, y))). In particular, we take ψ(y) to be

∃x1 . . . xNφ+1

∧
i ̸=j

(xi ̸= xj) ∧ φ(xi)


Lemma 151. If T has no vaughtian pair then T eliminates ∃∞x.

Proof. Fix φ(x, y). Suppose T does not eliminate ∃∞xφ(x, y). Let L∗ = L ∪ {P, c } where P is a unary
predicate symbol and c = (c1, . . . , cn) are new constant symbols with n = |y|. Let

T ∗ = T ∪ { “P is an elementary L-substructure” } ∪ { ∀x(φ(x, c)→ P (x)) } ∪ {P (ci) : i ∈ { 1, . . . , n } }

Note that except for the possibility that φ(x, c) is algebraic, we have that T ∗ is the theory of a vaughtian
pair for T . To actually get a vaughtian pair, we use the theory

S = T ∗ ∪ {∃≥kxφ(x, c) : k ∈ N }

Claim 152. S is consistent.

Proof. We use compactness. For any k there is a model M |= T with a ∈ Mn such that φ(M, a) is finite
of size ≥ k. (Since T does not eliminate ∃∞x(φ(x, y)).) Pick N ≻ M. Since φ(x, a) is algebraic, we
have that φ(N , a) ⊆ M . So (N ,M, a) |= T ∗ ∪ {∃≥kxφ(x, c) }. By compactness, we have S is consistent.

Claim 152

Then any model of S is a vaughtian pair. Lemma 151

Lemma 153. Suppose T is a complete theory that eliminates ∃∞x. Suppose M |= T and φ is an L(M)-
formula with φ(M) minimal. Then φ(x) is strongly minimal.

Proof. If φ(x) were not strongly minimal, then in some N ⪰ M there is some ψ(x, z) and some b ∈ N ℓ

(where ℓ = |z|) such that φ(N ) ∧ ψ(N , b) and φ(N ) ∧ ¬ψ(N , b) are infinite. Then

N |= ∃∞x(φ(x) ∧ ψ(x, b)) ∧ ∃∞x(φ(x) ∧ ¬ψ(x, b))

Since T eliminates ∃∞x, this can be expressed as a first-order statement. So

∃∞x(φ(x) ∧ ψ(x, z)) ∧ ∃∞x(φ(x,∧¬ψ(x, z)))

is realized inM. So φ(M) is not minimal inM. Lemma 153

Exercise 154. If T eliminates ∃∞x for x a single variable then it eliminates ∃∞x for x an n-tuple of variables.

Corollary 155. Suppose T is countable, complete, and uncountably categorical. Then every definable set (in
any model) contains a strongly minimal definable set.

Proof. Fix M |= T ; suppose X ⊆ Mn is definable. By total transcendentality we have that X contains
a minimal definable set Y . Since T has no vaughtian pair, we have that Y is strongly minimal.

Corollary 155

Lemma 156. SupposeM is an L-structure; suppose φ(x) is an L(M)-formula where x = (x1, . . . , xn). Then
φ(M) is minimal if and only if there is a unique p(x) ∈ Sn(M) that is non-algebraic and contains φ(x).

27



Proof.

( =⇒ ) Let
p(x) = {ψ(x) : ψ(x) is an L(M)-formula such that φ ∧ ¬ψ is algebraic }

Then p(x) is complete since φ(M) is minimal, and p(x) is non-algebraic since φ(x) is non-algebraic.
Furthermore, p(x) is clearly the unique such type.

(⇐= ) Suppose φ(M) is not minimal, witnessed by φ ∧ ψ and φ ∧ ¬ψ both non-algebraic. Let

p1(x) = {φ ∧ ψ } ∪ {¬θ : θ an algebraic L(M)-formula }
p2(x) = {φ ∧ ¬ψ } ∪ {¬θ : θ an algebraic L(M)-formula }

Then these are distinct partial types (check), and any completion is non-algebraic and contains φ.

Lemma 156

We view this as saying that φ(x) has a unique “generic” extension.

Corollary 157. Suppose p(x) ∈ Sn(A) is strongly minimal. Then for any N ⪰M and any A ⊆ B ⊆ N , we
have that p(x) has a unique non-algebraic extension to B.

Proof. Existence is by 5.6.2 (does not use strong minimality). Suppose q1(x), q2(x) ∈ Sn(B) are non-algebraic
types extending p(x). Let φ(x) ∈ p(x) be strongly minimal. So φ(N ) is minimal. Let q1(x) ⊆ q̂1(x) ∈ Sn(N)
be non-algebraic; let q2(x) ⊆ q̂2(x) ∈ Sn(N) be non-algebraic (again by 5.6.2). Now φ ∈ q̂1 ∩ q̂2. So, by
lemma applied to φ(N), we have q̂1 = q̂2. So q1 = q2. Corollary 157

Definition 158. We say a type p(x) is strongly minimal if it is non-algebraic and and contains a strongly
minimal formula.

Corollary 159 (5.7.4). Suppose M is an L-structure with A ⊆ M . Suppose p(x) ∈ Sn(A) is strongly
minimal; suppose m > 0. Then there is a unique type over A of an m-tuple (a1, . . . , am) of realizations of
p(x) with ai /∈ acl(Aa1 . . . ai−1) for all i ∈ { 1, . . . ,m }. (i.e. if (b1, . . . , bm) |= p(x) with bi /∈ acl(Ab1 . . . bi−i),
then tp(a1 . . . am/A) = tp(b1 . . . bm/A).)

Recall that an n-tuple is in acl(B) if every coordinate is.

Remark 160. Since p(x) is strongly minimal, we have that there always exist such m-tuples. (We call such an
m-tuple an m-tuple of acl-independent realizations of p(x).) Indeed, take a1 |= p(x) such that a1 /∈ acl(A).
Extend p(x) to a non-algebraic type over Aa1; let a2 realize it. Then a2 |= p(x) and a2 /∈ acl(Aa1).

Proof of Corollary 159. Induction on m. The case m = 1 is simply because p(x) is complete. Suppose then
that m > 1. Suppose (b1, . . . , bm) and (a1, . . . , am) are acl-independent sequences of realizations of p(x).
By the induction hypothesis we have tp(b1 . . . bm−1/A) = tp(a1 . . . am−1/A). Let f : A ∪ { b1, . . . , bm−1 } →
A ∪ { a1, . . . , am−1 } be given by f(bi) = ai and f ↾ A = id; then f is a partial elementary map. Let
q(x) = f(tp(bm/Ab1 . . . bm−1); then q(x) is non-algebraic since bm /∈ acl(Ab1 . . . bm−1) and f is a partial
elementary map. Note that as f ↾ A = id, we have that bm and am both realize p(x). Then q(x) and
tp(am/Aa1 . . . am−1) are both non-algebraic extensions of p(x) to A∪{ a1, . . . , am−1 }; so, by the last corollary,
we have

f(tp(bm/Ab1 . . . bm−1)) = q(x) = tp(am/Aa1 . . . am−1)

So we can extend f to a partial elementary map taking bm to am. So tp(b1 . . . bm/A) = tp(a1 . . . am/A).
Corollary 159

Definition 161. A pregeometry or matroid is a set X together with a function cl : P(X)→ P(X) satisfying

Reflexivity A ⊆ cl(A)

Transitivity cl(cl(A)) = cl(A)
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Finite character
cl(A) =

⋃
A′⊆finA

cl(A′)

Steinitz exchange If a ∈ cl(Ab) \ cl(A) then b ∈ cl(Aa).

Example 162.

• If X is any set, we can set cl(A) = A.

• If F is a field and V is a vector space over F , we can set cl(A) = spanF (A).

• If K is an algebraically closed field, we can set cl(A) = F(A)alg.

In every pregeometry there is a notion of independence:

Definition 163. Suppose (X, cl) is a pregeometry; suppose A ⊆ X. We say C ⊆ X is an independent set
over A if for all c ∈ C we have c /∈ cl(A ∪ (C \ { c })).

Fact 164. Suppose (X, cl) is a pregeometry and A ⊆ X.

1. C ⊆ X is independent over A if and only if given any enumeration C = { cα : α < κ } and any α < κ
we have cα /∈ cl(A ∪ { cβ : β < α }).

2. If C ⊆ X and D ⊆ X are both maximal independent sets over A, then |C| = |D|.

3. C ⊆ X is maximally independent over A if and only if C is independent over A and cl(C) = X.

Proof. The usual proof in linear algebra for span works in pregeometries. Fact 164

Definition 165. We call a maximally independent set C ⊆ X over A a basis for X over A; we set
dim(X) = |C|.

Theorem 166 (5.7.5). Suppose T is a complete theory, φ(x) an L-formula with x = (x1, . . . , xn), and
M |= T . Suppose φ(x) is strongly minimal. Then

cl : P(φ(M))→ P(φ(M))

A 7→ acl(A) ∩ φ(M)

is a pregeometry on φ(M).

Remark 167. If n > 1 and A ⊆Mn, we set

acl(A) = acl({ a ∈M : a is a co-ordinate of some n-tuple in A })

and we write (c1, . . . , cn) ∈ acl(A) ⊆M to mean every ci ∈ acl(A).

Proof of Theorem 166. We have proved the first three axioms for (M, acl); they then follow easily for
(φ(M), cl). It remains to show exchange. Suppose a, b ∈ φ(M) and A ⊆ φ(M). Suppose b /∈ acl(Aa) and
a /∈ acl(A). It remains to show that a /∈ acl(Ab). Let p(x) ∈ Sn(A) be the (unique by 5.7.3) non-algebraic
type containing φ(x). Then a |= p(x) since tp(a/A) is non-algebraic and contains φ(x). Also b |= p(x)
and b /∈ acl(Aa); so (a, b) is an independent pair of realizations of p(x). So its type over A is completely
determined by b /∈ acl(Aa) and a /∈ acl(A).

Now, let N ⪰M such that p(N ). (Possible since p(x) is non-algebraic.) Let q(x) ∈ Sn(Ap(N )) be the
unique non-algebraic extension of p(x). Let K ⪰ N have a realization b′ of q(x). Now, for all a′ ∈ p(N ), we
have that

tp(a′, b′/A) = tp(a, b/A)

since (a′, b′) satisfies b′ /∈ acl(Aa′) and a′ /∈ acl(A). In particular, fixing a′ ∈ p(N ), we have that every element
of p(N ) realizes tp(a′/Ab′); so a′ /∈ acl(Ab′). So a /∈ acl(Ab). Theorem 166
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We thus get notions of independence, basis, and dimension; we use the notation acl-dimφ(M) = dim(φ(M))
in the sense of the above pregeometry.

This extends to parameters simply by working in L(A). We use the notation acl-dimφ(M/A) =
acl-dimφ(MA). Note that the closure operator is now cl(B) = acl(B ∪A) ∩ φ(M).

Lemma 168 (5.7.6). Suppose M,N are L-structures with A ⊆M and A ⊆ N with MA ≡ NA. Let φ(x) be
an A-definable strongly minimal formula (with x is a single variable). Then there exists a bijective partial
elementary map f : A ∪ φ(M)→ A ∪ φ(N ) such that f ↾ A = id if and only if dimφ(M/A) = dimφ(N/A).
(Such a map is called a partial elementary map over A.)

Remark 169. If φ is x = x, i.e. we are in a strongly minimal theory, then this says that models are determined
by dimension.

Proof of Lemma 168.

( =⇒ ) The property of being an acl-basis is preserved by bijective partial elementary maps.

(⇐= ) Let U ⊆ φ(M) and V ⊆ φ(N ) be acl-bases over A of φ(M) and φ(N ), respectively. Let f : A∪U →
A ∪ V be any bijection with f ↾ A = id. (Note that A ∩ U = A ∩ V = ∅, so this is possible.)
5.7.4 then says that each distinct m-tuple from U has the same type over A as its image under
f . Suppose a1, . . . , am ∈ U . Then tp(a1 . . . am/A) says only that a1 /∈ acl(A), a2 /∈ acl(Aa1), . . . ,
am /∈ acl(Aa1 . . . am−1); i.e. f is a partial elementary map. By 5.6.4, we have that f extends to a
partial elementary map acl(A ∪ U)→ acl(A ∪ V ), and thus acl(A ∪ U) ∩ φ(M)→ acl(A ∪ V ) ∩ φ(N );
i.e. cl(U)→ cl(V ), i.e. φ(M)→ φ(N ).

Lemma 168

Remark 170. A better formulation of the statement: there is a bijective partial elementary map f : φ(M)→
φ(N ) in L(A) if and only if dimφ(M/A) = dimφ(N/A).

Consider in particular a strongly minimal theory T ; so we have some M |= T such that (M, acl) is a
pregeometry. Then acl-dim(M) is the dimension of this pregeometry. We see that models of T are determined
up to isomorphism by acl-dim.

Theorem 171 (Baldwin-Lachlan). Suppose κ > ℵ0. Suppose T is countable and complete. Then T is
κ-categorical if and only if T is ω-stable and has no vaughtian pairs.

Proof.

( =⇒ ) Done. (5.5.4).

(⇐= ) T is ω-stable; so it is small, and thus has a prime model M0. Then M0 is countable. We also know
that there exists a strongly minimal L(M0)-formula φ(x) with x a single variable. Indeed, by total
transcendentality we have M0 contains a minimal definable set. Since T has no vaughtian pair, we have
that ∃∞x is eliminated; thus minimal implies strongly minimal. LetM1,M2 be κ-sized models. By
primality we may assumeM0 ⪯M1 and M0 ⪯M2.
Now, for each i ∈ { 1, 2 }, we have |φ(Mi)| = κ since T has no vaughtian pairs. Let Bi ⊆ φ(Mi) be an
acl-basis over M0. Then acl(M0 ∪Bi) = φ(Mi) for i ∈ { 1, 2 }. Then

κ = |acl(M0 ∪Bi|
= |M0 ∪Bi| (since L is countable)
≤ |M0|+ |Bi|
= ℵ0 + |Bi|

So |Bi| = κ. So acl-dimφ(Mi/M0) = κ. By the lemma there is a bijective partial elementary map
f : φ(M1) → φ(M2) in the language L(M0). We thus get a bijective partial elementary map in L:
g : M0 ∪ φ(M1)→M0 ∪ φ(M2) with g ↾M0 = id and g ↾ φ(M1) = f . Since T has no vaughtian pairs,
we have that M1 is prime over M0 ∪ φ(M1); then g extends to an elementary embedding M1 →M2.
So M1

∼= g(M1) =M′
2 ⪯M2, and g(M1) contains M0 ∪ φ(M2). So φ(M1) ⊆M ′

2 with M′
2 ⪯M2;

since T has no vaughtian pairs, we have thatM′
2 =M2, and g is an isomorphism.

30



Theorem 171

Corollary 172 (Morley’s theorem). Suppose T is countable and complete; suppose κ > ℵ0. Then T is
κ-categorical if and only if T is ℵ1-categorical.

Final exams: oral, individually scheduled, done before December 17.

3.2 Loose ends in strongly minimal theories
Recall that T is strongly minimal theory if “x = x” is strongly minimal in some (equivalently, any)M |= T ;
in this case, we have (M, acl) is a pregeometry.

Theorem 173. Suppose T is strongly minimal and complete. Then

1. T is κ-categorical for any κ ≥ ℵ0 + |L|.

2. Every infinite κ is the acl-dim of some model of T . The finite cardinals that are possible acl-dim of
models of T form an end segment.

3. If M |= T , then acl-dim(M) is infinite if and only if M is ω-saturated.

4. All models of T are ω-homogeneous.

Proof. We begin with a claim.

Claim 174. Suppose M |= T , A ⊆M is infinite and A = acl(A). Then A is the universe of an elementary
substructure of M.

Proof. Given an L(A)-formula φ(x), we need to show that if φ(M) is non-empty, then there is a ∈ A with
M |= φ(A). If φ(M) is finite, then all its members are in acl(A) = A by definition of algebraic closure. If
φ(M) is infinite, then by strong minimality of T we have that φ(M) is cofinite, and A ∩ φ(M) ̸= ∅ since A
is infinite. Claim 174

1. Suppose κ > ℵ0 + |L|; suppose M1,M2 |= T with |M1| = |M2| = κ. Let Bi ⊆Mi be an acl-basis for
Mi. Then κ = |Mi| = |acl(Bi)| ≤ |Bi| + ℵ0 + |L|. But κ > ℵ0 + |L|; so |Bi| ≥ κ. But Bi ⊆ Mi, so
|Bi| ≤ κ, and |Bi| = κ. So acl-dim(M1) = acl-dim(M2) = κ; so M1

∼=M2. Let f : B1 → B2 be any
bijection; then this is a partial elementary map. Extend f to acl: we may take f : M1 →M2 to be a
bijective partial elementary map, which is then an isomorphism.

2. Suppose κ > ℵ0 + |L|. Let M |= T be of size κ. By the proof of (a) we have that acl-dim(M) = κ.

Suppose ℵ0 ≤ κ ≤ ℵ0 + |L|. Let M |= T with |M | > ℵ0 + L. Then acl-dim(M) = |M | > κ, so we can
find an acl-independent set B ⊆ M of size κ. By the claim, since κ ≥ ℵ0, we have that acl(B) ⪯M.
Then acl-dim((B)) = κ.

SupposeM |= T with acl-dim(M) = n < ω. Let { b1, . . . , bn } be an acl-basis for M . Let N ⪰M; let
c ∈ N \M . Then acl({ b1, . . . , bn } =M), so { b1, . . . , bn, c } is acl-independent. So in (N, acl), we have
acl({ b1, . . . , bn, c }) ⪯ N by the claim, since acl({ b1, . . . , bn, c }) ⊇ M , and thus is infinite. But then
acl-dim(acl({ b1, . . . , bn, c })) = n+ 1.

3. Suppose A ⊆M , |A| < ω, and p ∈ S1(A). If p is algebraic, then it is realized inM as it is isolated. If
p is non-algebraic, then it is the unique non-algegraic type, so any a ∈M \ acl(A) will realize it. So p
will be realized if and only if acl(A) ̸=M . So acl-dim(M) is infinite if and only if M is ω-saturated.

4. Suppose M |= T , f : A → B is a partial elementary map with |A| = |B| < ω. Extend f to
f : acl(A) → acl(B). Let n = acl-dim(acl(A)) = acl-dim(acl(B)). If acl(A) = M , we are done.
If acl(A) ⫋ M , then dim(M) > n; so acl(B) ̸= M . Then if a ∈ M \ acl(A), then p = tp(a/(A)) is
non-algebraic, so f(p) ∈ S1(acl(B)) is non-algebraic, and is thus realized by any b ∈M \ acl(B) ̸= ∅;
we can then extend f by a 7→ b.

Theorem 173
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3.3 Eschewing the monster model
Proposition 175. Suppose κ is an infinite cardinal. Then every L-structure has a κ-saturated elementary
extension.

Proof. Replacing κ by κ+, we may assume κ is regular. SupposeM is an L-structure. We build a chain

M =M0 ⪯M1 ⪯ . . .

of length κ such that Mα+1 is an elementary extension of Mα in which all types over Mα are realized. For
α a limit ordinal, we let

Mα =
⋃
β<α

Mβ

Let
N =

⋃
α<κ

Mα

Then, since κ is regular, we have N ⪰M is κ-saturated. Proposition 175

Remark 176. A more careful proof would show that if |M | ≤ κ, then there is an elementary extension of
M that is κ+-saturated and of size 2κ. If we assume GCH, we would actually get a saturated elementary
extension. Outright saturation is useful because of its strong homogeneity properties, but we don’t wish to
assume GCH.

Theorem 177. Suppose κ is an infinite cardinal. Then every L-structure has an elementary extension that
is κ-saturated and strongly κ-homogeneous.

Proof. Again, we may assume κ is regular. SupposeM is an L-structure; we build a chain

M =M0 ⪯M1 ⪯ . . .

of length κ where Mα+1 is |Mα|+-saturated by iterating the above proposition. At a limit ordinal α, we set

Mα =
⋃
β<α

Mα

Let
N =

⋃
α<κ

Mα

Clearly N is κ-saturated. Let f : A→ N be a partial elementary map with |A| < κ. By regularity we have
that A and f(A) are contained in Mα for some α < κ. So f : A→ f(A) is a partial elementary map from
Mα+1 to itself. We work in Mα+1.

Claim 178. f extends to a partial elementary map fα whose domain and range contain Mα.

Proof. Enumerate Mα \ A and extend f by back-and-forth, using the fact that Mα+1 is |Mα|+-saturated.
Claim 178

Let
f̂ =

⋃
α<κ

fα

Then dom(f̂) ⊇ N and Ran(f̂) ⊇ N . So f̂ is an automorphism of N . Theorem 177

Hereafter, by “a suffiently saturated model”, we mean a structure with sufficiently large saturation and
strong homogeneity.

Theorem 179. Suppose M is κ-saturated and strongly κ-homogeneous. Then

1. (κ+-universality) If N ≡M and |N | ≤ κ, then there is an elementary embedding N →M.
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2. If b, b′ ∈ M and A ⊆ M with |A| < κ, then tp(b/A) = tp(b′/A) if and only if there is f ∈ AutA(M)
with f(b) = b′. (i.e. f is an automorphism of M with f ↾ A = id.)

3. Suppose X ⊆ Mn is definable (over some parameter set). Suppose A ⊆ M with |A| < κ. Then X is
A-definable if and only if X is AutA(M)-invariant.

4. Suppose b ∈Mn, A ⊆M , and |A| < κ. Then the following are equivalent:

(a) b ∈ acl(A).

(b) tp(b/A) has finitely many realizations in M.

(c) The AutA(M)-orbit of b is finite.

5. Suppose b ∈Mn with A ⊆M and |A| < κ. Then the following are equivalent:

(a)
b ∈ dcl(A) = { b′ ∈M : { b′ } is A-definable }

(We say a tuple b is in dcl(A) if every component is; equivalently, if { b } is an A-definable subset
of Mn.)

(b) tp(b/A) has only b as a realization in M.

(c) { b } is the AutA(M)-orbit of b.

Proof.

1. We argue by extending partial elementary maps. Then ∅ → ∅ is a partial elementary map N →M
because N ≡M.

Given a partial elementary map f : A→M with A ⊆ N and |A| < κ, we can extend f to any b ∈ N by
the κ-saturation of M.

If we enumerate N = { aα : α < κ } and set Aα = { aβ : β < α }, then the Aα form a chain with

N =
⋃
α<κ

Aα

and |Aα| < κ. So we get f : N →M an elementary embedding. (At limits, take unions.)

Note that here we didn’t use strong κ-homogeneity; it sufficed to assume κ-saturation.

2. (⇐= ) Clear.

( =⇒ ) If tp(b/A) = tp(b′/A) then the map f : A ∪ { b } → A ∪ { b′ } given by

f(x) =

{
x x ∈ A
b′ x = b

is a partial elementary map. But |A ∪ { b }| < κ. So, by strong homogeneity, we have that f
extends to an automorphism of M.

3. ( =⇒ ) Clear.

(⇐= ) Write X = φ(M, b) for some L-formula φ(x, z) where x = (x1, . . . , xn) and b = (b1, . . . , bm).
Let y = (y1, . . . , yn). Set

Φ(x, y) = {ψ(x)↔ ψ(y) } ∪ {φ(x, b) ∧ ¬(y, b) }

Note that these are formulae over Ab. If Φ(x, y) were finitely realized, then by κ-saturation (since
|Ab| < κ), it would be realized by d, e ∈Mn. So tp(d/A) = tp(e/A) but d ∈ X and e /∈ X. So, by
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(b), we have some f ∈ AutA(M) with f(d) = e, contradicting the AutA(M)-invariance of X. So
Φ(x, y) is not finitely realized in N . So there are L(A)-formulae ψ1, . . . , ψℓ such that

M |= ∀x∀y

((
ℓ∧
i=1

ψi(x)↔ ψi(y)

)
→ (φ(x, b)↔ φ(y, b))

)

But if we partition Mn into finitely many disjoint sets D1, . . . , D2ℓ depending on which ψi are
realized and which are not, then this says that each Dj is either contained in X or disjoint from
X. So X is a finite union of Dj . But each Dj is A-definable. So X is A-definable.

Note that this required both κ-saturation and strong κ-homogeneity.

4. (a) =⇒ (b) Clear.

(b) =⇒ (c) By (2).

(c) =⇒ (a) Let X = { f(b) : f ∈ AutA(M) }. Then X is finite, and hence definable, and X is
AutA(M)-invariant. So, by (3), we have that X is A-definable. But b ∈ X and X is finite; so
b ∈ acl(A).

5. Similar.

Theorem 179

We sometimes say a set X is A-invariant to mean that X is AutA(M)-invariant.
As a general convention, if T is a complete theory, by a “sufficiently saturated model”, we mean a model

U |= T which is κ-saturated and strongly κ-homogeneous for some sufficiently large κ. Once such is fixed, we
have that following additional conventions:

1. All parameter sets are assumed to be in U and of cardinality < κ.

2. Every type p(x) ∈ S(A) is assumed to be over A ⊆ U with |A| < κ; so all types are realized.

3. Every model N |= T is assumed to be of size ≤ κ and an elementary substructure of U .

4. We write |= φ(a) to mean U |= φ(a).

unless explicitly stated otherwise.

3.4 Morley rank
Fix a complete theory T (not necessarily countable); fix a sufficiently saturated model U .

Definition 180. Suppose φ(x) is a formula with parameters where x = (x1, . . . , xn). We recursively define,
for any ordinal α, what it means to say MR(φ) ≥ α:

• MR(φ) ≥ 0 if φ is consistent.

• Given any ordinal α, we say MR(φ) ≥ α+ 1 if there exist formulae ψ0(x), ψ1(x), . . . with parameters
(not necessarily the same parameters as φ) such that

– U |= ∀x(ψi(x)→ φ(x)); i.e. ψi(U) ⊆ φ(U).
– For i ̸= j, we have U |= ∀x(¬(ψi(x) ∧ ψj(x))).
– For all i, we have MR(ψi) ≥ α.

• For β a limit ordinal, we say MR(φ) ≥ β if MR(φ) ≥ α for all α < β.

We now define what it means to say MR(φ) = α.

• If φ is inconsistent, we say MR(φ) = −∞.

• If MR(φ) ≥ α for all ordinals α, we set MR(φ) =∞.
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• If φ is consistent and MR(φ) is not ≥ α for all α, then there exists a maximal ordinal β such that
MR(φ) ≥ β. (To see this, note that if γ is the least ordinal such that MR(φ) ̸≥ γ; by definition, we
have γ is not a limit ordinal, say γ = β + 1, and then β is our desired ordinal.) For this β we define
MR(φ) = β.

If X = φ(U) for some formula φ then we define MR(X) = MR(φ).

Remark 181. If |= ∀x(φ(x)↔ ψ(x)), then MR(φ) = MR(ψ).

Lemma 182. MR(φ) = 0 if and only if φ is algebraic.

Proof.

( =⇒ ) Suppose MR(φ) = 0; then MR(φ) ≥ 0, and φ is consistent. On the other hand, MR(φ) = 0 implies
that MR(φ) ̸≥ 1. So φ(U) does not have infinitely many disjoint, definable subsets of Morley rank ≥ 0;
i.e. φ(U) does not have infinitely many disjoint, non-empty, definable sets. But for a ∈ X = φ(U), we
have that { a } is a non-empty, definable subset. So φ(U) is finite. So φ is algebraic.

(⇐= ) Suppose φ is algebraic. Then φ is consistent, so MR(φ) ≥ 0. If we had MR(φ) ≥ 1, then φ(U) would
have infinitely many disjoint, non-empty, definable subsets, and φ(U) would be infinite, a contradiction.
So MR(φ) ̸≥ 1, and MR(φ) = 0.

Lemma 182

Remark 183. This has to be computed in a sufficiently saturated model. (Actually ℵ1-saturation and strong
ℵ1-homogeneity suffices; possibly ℵ0 works.)

Lemma 184. Suppose φ(x) = ψ(x, a) where ψ(x, y) is an L-formula and a = (a1, . . . , an) ∈ Um. If
a′ |= tp(a), then MR(ψ(x, a′)) = MR(ψ(x, a)). i.e. MR depends only on the type of the parameters.

Proof. We show by induction on α that MR(ψ(x, a)) ≥ α implies MR(ψ(x, a′)) ≥ α.

• Suppose MR(ψ(x, a)) ≥ 0; then |= ∃xψ(x, a), and |= ∃xψ(x, a′), so MR(ψ(x, a′)) ≥ 0.

• Suppose MR(ψ(x, a)) ≥ α+ 1. Then there are ψi(x, bi) where ψi(x, zi) are L-formulae with |zi| = |bi|
such that

– ψi(U , bi) ⊆ ψ(U , a).
– ψi(U , bi) ∩ ψj(U , bj) = ∅ for i ̸= j.

– MR(ψi(U , bi)) ≥ α.

Now, tp(a′) = tp(a), so a′ = f(a) for some f ∈ Aut(U). Then

– ψi(U , f(bi)) ⊆ ψ(U , a′).
– ψi(U , f(bi)) ∩ ψj(U , bj) = ∅ for i ̸= j.

– By the induction hypothesis, since tp(bi) = tp(f(bi)), we have that MR(ψ(U , f(bi))) = MR(ψi(U , bi)) ≥
α.

So MR(ψ(U , a′)) ≥ α+ 1.

• Limit case is easy.

Lemma 184

Lemma 185.

1. If φ→ ψ then MR(φ) ≤ MR(ψ).

2. If MR(φ) = α for α an ordinal, then for any β < α there is a formula ψ → φ such that MR(ψ) = β.

Proof.
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1. Clear.

2. We apply induction on α. The case α = 0 is vacuous.

Suppose α is an ordinal with MR(φ) = α+ 1; suppose β < α+ 1. Then there are (φi : i < ω) implying
φ that are pairwise inconsistent with each MR(φi) ≥ α. If all MR(φi) ≥ α+ 1, then MR(φ) ≥ α+ 1, a
contradiction. So there is some i0 such that MR(φi0) < α+ 1; then MR(φi0) = α. If β = α, then φi0
is our desired ψ. If β < α, the by induction hypothesis there is ψ → φi0 with MR(ψ) = β. But then
ψ → φ, and we have our desired ψ.

The limit case is clear.

Lemma 185

Definition 186. We say φ has Morley rank if MR(φ) is an ordinal.

Corollary 187. If φ has Morley rank, then MR(φ) < (2|L|+ℵ0)+.

Proof. Let
O = {α ordinal : MR(ψ(x)) = α for some ψ(x) }

(This is a set by the axiom of replacement, since the collection of formulae with parameters is a set.) But

|O| ≤ (|L|+ ℵ0)

∣∣∣∣∣⋃
ℓ<ω

Sℓ(T )

∣∣∣∣∣ ≤ 2|L|+ℵ0

as the Morley rank of φ(x, a) depends only on φ and the type of a.
(Note that ψ(x) may have parameters from the big universal domain, so there are too many of them.)
By previous lemma, we have that O is an initial segment of an ordinal. So O is an ordinal with

|O| ≤ 2|L|+ℵ0 . So O < (2|L|+ℵ0)+. So, for every α ∈ O, we have α < (2|L|+ℵ0)+. Corollary 187

Corollary 188. If T is totally transcendental then every consistent formula has Morley rank.

Proof. Suppose MR(φ) = ∞. Let λ = (2|L|+ℵ0)+. Then MR(φ) ≥ λ+ 1. In particular, there are φ0 → φ
and φ1 → φ with φ0 ∧φ1 inconsistent and MR(φ0) ≥ λ, MR(φ1) ≥ λ. By part (a) of the previous lemma, we
may assume φ0 ∧ φ1 ↔ φ; just enlarge φ0 to make this happen. (In particular, we can take φ0 = φ ∧ ¬φ1.)
But then by the previous corollary, we have MR(φ0) = MR(φ1) =∞. Iterating, we build an infinite binary
tree. So T is not totally transcendental. Corollary 188

Lemma 189. MR(φ ∨ ψ) = max{MR(φ),MR(ψ) }.

Proof. It is easily seen that MR(φ∨ ψ) ≥ max{MR(φ),MR(ψ) }. For the converse, it suffices to show that if
MR(φ∨ψ) ≥ α+1, then max(MR(φ),MR(ψ)) ≥ α+1. Let (θi : i < ω) witness MR(φ∨ψ) ≥ α+1. For any i,
we have θi ↔ (θi∧φ)∨(θi∧ψ). By induction hypothesis, we have max(MR(θi∧φ),MR(θi∧ψ)) ≥ α. So either
MR(θi∧φ) ≥ α or MR(θi∧ψ) ≥ α. So at least one of these cases happens infinitely often; say MR(θi∧φ) ≥ α
for infinitely many i. Then (θi ∧ φ : i < ω) witnesses that MR(φ) ≥ α+ 1. So max(MR(φ),MR(ψ)) ≥ α+ 1.

Lemma 189

Definition 190. We say φ and ψ are α-equivalent (for α an ordinal) if MR((φ∧¬ψ)∨ (¬φ∧ψ)) < α. (Note
that the argument of MR here is the symmetric difference of φ and ψ.)

Exercise 191. This is an equivalence relation.

Proposition 192 (6.7.4). Suppose MR(φ) = α an ordinal. Then φ is T -equivalent to some φ1 ∨ φ2 ∨ . . . φd
where

• MR(φi) = α for each i ∈ { 1, . . . , d }.

• φ1, . . . , φd are pairwise disjoint.

• Each φi(U) does not contain two disjoint definable sets of Morley rank α.
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Moreover, d is unique, and the decomposition is unique up to α-equivalence.

This d = MD(φ) is called the Morley degree of φ.

Proof. If φ(U) can be split into two disjoint definable subsets of Morley rank α, then do so. Iterate. If we get
an infinite tree, it must have an infinite branch; say φ = ψ0 ← ψ1 ← . . . such that each ψi has Morley rank α
and MR(ψi ∧ ¬ψi+1) = α. But then ψ0 ∧ ¬ψ1, ψ1 ∧ ¬ψ2, . . . witness that MR(φ) ≥ α+ 1, a contradiction.

So the tree is finite. The leaf nodes of this finite tree are the desired φ1, . . . , φd.
We now verify uniqueness of the decomposition. Suppose MR(φ) = α. Suppose φ ↔ φ1 ∨ · · · ∨ φd

and φ ↔ ψ1 ∨ · · · ∨ ψℓ with each φj and ψj is of Morley rank α but cannot be split into two definable
subsets of Morley rank α. Note that, for fixed i, we have ψi ↔ (ψi ∧ φ1) ∨ · · · ∨ (ψi ∧ φd); furthermore, the
ψi ∧ φj are disjoint and paritition ψi(U). So there is a unique 1 ≤ ji ≤ d such that MR(ψi ∧ φji) = α, and
MR(ψi ∧ φj) < α for j ̸= ji. So

ψi ∧ ¬φji =
∨
j ̸=ji

(ψi ∧ φj)

So MR(ψi ∧¬φji) < α. So ψi is α-equivalent to φji , by a symmetric argument. Applying the same argument
to φji , we see that i 7→ ji is injective; so ℓ ≤ d, and each ψi is α-equivalent to φji . By symmetry, we are
done. Proposition 192

Notation 193. (MR,MD)(φ) = (MR(φ),MD(φ)). We order such pairs by the lexicographical ordering.

Remark 194. φ is strongly minimal if and only if (MR,MD)(φ) = (1, 1).

Remark 195. Suppose MR(φ) = α is an ordinal; suppose ψ is such that MR(φ∧ψ) = MR(φ∧¬ψ) = α. Then
MD(φ) = MD(φ ∧ ψ) +MD(φ ∧ ¬ψ). If, on the other hand, MR(φ ∧ ¬ψ) < α, then MD(φ) = MD(φ ∧ ψ).

Theorem 196. T is totally transcendental if and only if every consistent formula (with parameters) has
Morley rank.

Proof.

( =⇒ ) Done in Corollary 188.

(⇐= ) Suppose T is not totally transcendental; let (φj : j ∈ 2<ω) be an infinite binary tree of consistent
formulae witnessing this.

Claim 197. If MR(φs) = α is an ordinal, then (MR,MD)(φsˆi) < (MR,MD)(φs) for some i ∈ { 0, 1 }.

Proof. Suppose MR(φs0) = MR(φs1) = α. Then MD(φ) = MD(φs0) + MD(φs1). So one of MD(φs0)
and MD(φs1) is < MD(φj). Claim 197

If φε has Morley rank, then we find an infinite properly descending sequence of (αi, di) where the αi
are ordinals and di ≥ 1. But this is a well-ordering, a contradiction. So MR(φε) =∞.

Theorem 196

Definition 198. A definable grape (G, x) in T is a definable set G ⊆ Un with a definable × : G×G→ G
(i.e. Γ(×) ⊆ U3n is definable) such that (G,×) is a grape. (Definitions here allow parameters.)

Definition 199. We say (G,×) is a totally transcendental grape if it is definable in a totally transcendental
theory.

Corollary 200. A totally transcendental grape satisfies the descending chain condition on definable subgrapes.
i.e. there does not exist an infinite, properly descending chain of definable subgrapes.

Proof. Suppose (H,×) is a definable subgrape of (G,×).
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Claim 201. If MR(H) = MR(G), then G/H is finite and

MD(G) =

ℓ∑
i=1

MD(giH)

where g1H, . . . , gℓH are the distinct left cosets of H.

Proof. Let g ∈ G. Then the map H → gH given by h 7→ gh is a definable bijection using the parameter g.
So (MR,MD)(H) = (MR,MD)(gH). In particular, all cosets have Morley rank MR(G). But distinct cosets
are disjoint; so we must have finitely many of them, else we would have infinitely many disjoint subsets of G
of Morley rank MR(G), a contradiction. Say the distinct cosets are g1H, . . . , gℓH. Then

G =

ℓ⊔
i=1

giH

So

MD(G) =

ℓ∑
i=1

MD(giH)

Claim 201

So if (H,×) is a proper definable subgrape of (G,×), then (MR,MD)(H) < (MR,MD)(G); the descending
chain condition follows. Corollary 200

Example 202. (Q,+) is totally transcendental, since (Q,+) |= TFDAG, and the latter is a strongly minimal
(and hence totally transcendental) theory. On the other hand, for (Z,+), let (G,+) be a sufficiently saturated
elementary extension. Then

Z > 2Z > · · · > 2nZ > . . .

is a definable descending chain that doesn’t stabilize. So

G > 2G > . . .

is a definable descending chain of subgrapes. So (G,+) is not totally transcendental. So Th(Z,+) is not
totally transcendental.

Definition 203. Suppose p ∈ Sn(A). We define MR(p) = min{MR(φ) : φ ∈ p }. If MR(p) = α is an
ordinal, then we define MD(p) = min{MD(φ) : φ ∈ p,MR(φ) = α }. If a ∈ Un, we define (MR,MD)(a/A) =
(MR,MD)(tp(a/A)).

Remark 204.

1. Algebraic types have Morley rank 0 and Morley degree equal to the number of realizations.

2. p ∈ Sn(A) is strongly minimal if and only if (MR,MD)(p) = (1, 1).

Proposition 205. Suppose φ(x) is an L(A)-formula. Then there is p ∈ Sn(A) such that φ ∈ p and
MR(p) = MR(φ).

Proof. Consider
Φ(x) = {φ } ∪ {¬ψ : ψ an L(A)-formula, MR(φ ∧ ψ) < MR(φ) }

Then Φ is finitely satisfiable since φ(U) cannot be contained in a finite union of definable subsets of strictly
smaller rank. Extend to a complete type p ∈ Sn(A). Then MR(p) ≤ MR(φ) by definition. If MR(p) < MR(φ),
then there is ψ ∈ p with MR(ψ) = MR(p). But then ψ ∧ φ ∈ p; so MR(φ) ≤ MR(ψ ∧ φ) ≤ MR(ψ) =
MR(p) < MR(φ), a contradiction.

So MR(p) = MR(φ). Proposition 205

Lemma 206 (6.4.1). If b ∈ acl(Aa) then MR(b/A) ≤ MR(a/A).

38



Proof. We may assume that MR(a/A) = α is an ordinal. We prove by induction on α that MR(b/A) ≤ α.
For the base case, suppose α = 0; then a ∈ acl(A) and b ∈ acl(Aa). So b ∈ acl(A), and MR(b/A) = 0.
Now, for the induction step, suppose α > 0; then we have φ(x, y) ∈ tp(a, b/A) such that φ(a,U) is finite,

say of size d. We can add to φ(x, y) so that for all a′, we have |φ(a′,U)| ≤ d; we do this by replacing φ(x, y)
with

φ(x, y) ∧ ∃≤dyφ(x, y)

Let ψ(x) = ∃y(φ(x, y)) ∈ tp(a/A). Replacing φ(x, y) by φ(x, y) ∧ σ(x) where σ(x) ∈ tp(a/A) with MR(σ) =
MR(a/A), we may assume that MR(ψ(x)) = MR(a/A) = α. Let χ(y) = ∃xφ(x, y) ∈ tp(b/A).

Claim 207. MR(χ) ≤ α.

Proof. Suppose (χi(y) : i < ω) are pairwise disjoint, definable subsets of χ(U). Let ψi(x) = ∃y(φ(x, y)∧χi(y)).
Then each ψi(x)→ ψ(x).

Subclaim 208. Some ψi0 has MR(ψi0) = β < α.

Proof. Suppose a′ ∈ ψi(U) ∩ ψj(U) where i ̸= j. Then there are b1, b2 with φ(a′, b1) and φ(a′, b2), where
b1 ∈ χ1(U) and b2 ∈ χ2(U). But χi(U) ∩ χj(U) = ∅. So b1 ̸= b2. So any d + 1 distinct members of
{ψi(U) : i < ω } has empty intersection.

Now, suppose for contradiction that MR(ψ) = α for all i < ω.

Case 1. Suppose MR(ψ1 ∧ ψ0) < α, then MR(ψ0 ∧ ¬ψ1) = α; replace ψ0 by ψ0 ∧ ¬ψ1, and similarly replace
ψ1 by ψ1 ∧ ¬ψ0.

Case 2. Suppose MR(ψ1 ∧ ψ0) = α; replace ψ0 by ψ0 ∧ ψ1, and drop ψ1.

The second case cannot happen more than d times, since ψ0(U) ∧ · · · ∧ ψd+1(U) = ∅. Iterating this produces
an infinite family of disjoint, definable subsets of ψ(x) of Morley rank α, contradicting our assumption that
MR(ψ) = α. Subclaim 208

So there is i0 such that MR(ψi0(x)) = β < α. Let b′ ∈ χi0(U). Find a′ such that φ(a′, b′). Then
b′ ∈ acl(Aa′) since |φ(a′,U)| ≤ d. Then a′ ∈ ψi0(U); so MR(a′/A) ≤ β < α. Then, by the induction
hypothesis, we have MR(b′/A) ≤ MR(a′/A) ≤ β < α. By the previous proposition, we have that χi0(U) has
an element whose Morley rank over A is MR(χi0). So MR(χi0) ≤ β < α.

So MR(χ) ≤ α. Claim 207

Thus MR(b/A) ≤ MR(χ) = α = MR(a/A) since χ ∈ tp(b/A). Lemma 206

Proposition 209. Suppose φ(x) defined over B is strongly minimal. Suppose a1, . . . , aℓ ∈ φ(U) ⊆ Un. Then
{ a1, . . . , aℓ } are acl-independent over B if and only if MR(a1, . . . , aℓ/B) = ℓ.

(Recall the pregeometry is given by (φ(U), cl) where cl(A) = acl(AB) ∩ φ(U).)

Proof. We apply induction on ℓ.

Case 1. Suppose ℓ = 1. Then { a } is acl-independent over B if and only if a /∈ acl(B), which holds if and only
if MR(a/B) ≥ 1. But φ(x) ∈ tp(a/B) and MR(φ) = 1. So MR(a/B) ≤ 1. So { a } is acl-independent if
and only if MR(a/B) = 1.

Case 2. Suppose ℓ > 1.

(⇐= ) Suppose MR(a1 . . . aℓ/B) = ℓ. Let { a1, . . . , am } for m ≤ ℓ be an acl-basis (i.e. a maximal
acl-independent subset) of { a1, . . . , aℓ } over B. Then (a1, . . . , aℓ) ∈ acl(Ba1 . . . am). So, by 6.4.1,
we have MR(a1 . . . aℓ/B) ≤ MR(a1 . . . am/B). On the other hand, we have MR(a1 . . . aℓ/B) ≥
MR(a1 . . . am/B) since m ≤ ℓ. To see this, we use the following exercise:
Exercise 210. Suppose X ⊆ Un+1 is a definable set and π : Un+1 → Un is a coordinate projection,
then MR(πX) ≤ MR(X).
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We then note that if ψ(x1, . . . , xℓ) ∈ tp(a1 . . . aℓ/B), then ∃xm+1 . . . ∃xℓψ(x1, . . . , xℓ) ∈ tp(a1 . . . am/B),
and by the exercise, we have MR(∃xm+1 . . . ∃xℓψ(x1, . . . , xℓ)) ≤ MR(ψ(x1, . . . , xℓ)); thus MR(a1 . . . aℓ/M) ≥
MR(a1 . . . am/B).
So MR(a1 . . . aℓ/B) = MR(a1 . . . am/B). Now, if { a1, . . . , aℓ } were acl-dependent over B, then
m < ℓ, so by the induction hypothesis we have MR(a1 . . . am/B) = m < ℓ = MR(a1 . . . aℓ/B), a
contradiction. So { a1, . . . , aℓ } is acl-independent.

( =⇒ ) Suppose { a1, . . . , aℓ } is acl-independent over B.

Claim 211. MR(a1 . . . aℓ/B) ≥ ℓ.

Proof. Let b1, b2, · · · ∈ φ(U) \ acl(B) be distinct. Note that this exists since φ(x) has a unique
non-algebraic extension p(x) ∈ Sn(B); we can then take the bi to be the realizations of p(x).
Suppose ψ(x1, . . . , xℓ) ∈ tp(a1 . . . aℓ/B). Let ψi(x1, . . . , xℓ) = ψ(x1, . . . , xℓ) ∧ (x1 = bi); then ψi is
an L(Bbi)-formula. We also have ψi → ψ and (ψi ∧ ψj)(U) = ∅ for i ̸= j.
We now compute MR(ψi). Fix i. Let c2, . . . , cℓ ∈ φ(U) be such that { bi, c2, . . . , cℓ } is acl-
independent over B. To see that we can do this, note that bi /∈ acl(B). Then the unique non-
algebraic type p(x) over B containing φ(x) is strongly minimal, so it has a unique non-algebraic
extension p2(x) ∈ Sn(Bbi). Let c2 |= p2(x); then c2 /∈ acl(Bbi), so { bi, c2 } is acl-independent over
B. Now, p2(x) has a unique non-algebraic extension p3(x) ∈ Sn(Bbic2); we proceed inductively.
Now { a1, . . . , aℓ } is also acl-independent over B and tp(bic2 . . . cℓ/B) = tp(a1 . . . aℓ/B) ∋ ψ.
So ψi ∈ tp(bic2 . . . cℓ/Bbi). So MR(ψi) ≥ MR(b1c2 . . . cℓ/Bbi) ≥ MR(c2 . . . cℓ/Bbi) = ℓ − 1 by
the induction hypothesis. So MR(ψ) ≥ ℓ for all ψ ∈ tp(a1 . . . aℓ/B); so MR(a1 . . . aℓ/B) ≥ ℓ.

Claim 211

Claim 212. MR(a1 . . . aℓ/B) ≤ ℓ.

Proof. By the previous claim we have MR(φ(U)ℓ) ≥ ℓ since MR(a1 . . . aℓ/B) ≥ ℓ and (a1, . . . , aℓ) ∈
φ(U)ℓ. We show that MR(φ(U)ℓ) ≤ ℓ. Suppose otherwise; then φ(U)ℓ has two disjoint definable
subsets X,Y ⊆ φ(U)ℓ over B′ ⊇ B with MR(X) = ℓ = MR(Y ). Let c ∈ X satisfy MR(c/B′) =
MR(X) ≥ ℓ; let b ∈ Y satisfy MR(b/B′) = MR(Y ) ≥ ℓ. Then by the forward direction of
this proposition, if c = (c1, . . . , cℓ) and b = (b1, . . . , bℓ), then { c1, . . . , cℓ } and { b1, . . . , bℓ } are
acl-independent over B′. So tp(c1 . . . cℓ/B

′) = tp(b1 . . . bℓ/B
′), contradicting our assumption that

c ∈ X, b ∈ Y , and X ∩ Y = ∅. So MR(φ(U)ℓ) ≤ ℓ. Claim 212

So MR(a1 . . . aℓ/B) = ℓ.

Proposition 209

Corollary 213 (6.4.2). If φ(x) is strongly mimimal over B and a1, . . . , am ∈ φ(U), then MR(a1 . . . an/B) =
acl-dim({ a1, . . . , an }/B).

Proof. Let { a1, . . . , aℓ } be an acl-basis overB for { a1, . . . , am } with ℓ ≤ m. Then acl-dim({ a1, . . . , am }/B) =
ℓ. On the other hand, MR(a1, . . . , aℓ/B) ≤ MR(a1 . . . am/B) ≤ MR(a1 . . . aℓ/B) since a1, . . . , am ∈
acl(Ba1 . . . aℓ). So MR(a1 . . . am/B) = MR(a1 . . . aℓ/B) = ℓ by the previous proposition.

Corollary 213

Example 214.

1. Consider the theory T of infinite sets. Suppose a1, . . . , am ∈ U with B ⊆ U . Then MR(a1 . . . am/B) =
|{ a1, . . . , am } \B|.

2. If T = VSF with v1, . . . , vm ∈ V and B ⊆ V , then MR(v1 . . . vm/B) = dimF (v1 . . . vm/B) is the relative
linear dimension.

3. If T = ACFp for p a prime or zero, we have MR(a1 . . . am/B) = trdeg(F(B, a1, . . . , am)/F(B)).
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4 Differential fields
All rings are commutative, have unity, and extend Q.

Definition 215. A derivation on a ring R is an additive function δ : R→ R (i.e. δ(a+b) = δa+δb) satisfying
the Leibniz rule:

δ(ab) = aδb+ bδa

We call (R, 0, 1,+,−,×, δ) a differential ring. We define the constants of (R, δ) to be the subring {x ∈ R :
δx = 0 }. We let DF0 be the theory of differential fields of characteristic 0.

Example 216. The natural examples are rings of functions:

• (C[z], ddz ).

• (C(z), ddz ).

• The field of meromorphic functions at the origin on C with d
dz .

Remark 217. Modulo DF0, we have that every quantifier-free L-formula φ(x) (with x = (x1, . . . , xn)) is
equivalent to a finite boolean combination of equations of the form

P (x, δx, . . . , δkx) = 0

where

• δx = (δx1, . . . , δxn)

• P ∈ Z[X0, X1, . . . , XK ] with Xi = (Xi1, . . . , Xin).

Definition 218. Suppose (K, δ) is a differential field; suppose z = (z1, . . . , zn) are indeterminates. We
set K{z} = K[X0, X1, . . . ] (with Xi = (Xi1, . . . , Xin) and where we identify X0 = z) equipped with the
derivation δxi = xi+1 (extended in the canonical way to all of K[X0, . . . ] using additivity and the Leibniz
rule). A typical element of K{z} is of the form P (z, δz, δ2z, δkz) for some k. We call K{z} the ring of
differential polynomials (sometimes abbreviated δ-polynomials).

Aside 219. If (K, δ) |= DFp, we have δ(ap) = pap−1δa = 0 for all a ∈ K; so Kp are constants. But K/Kp is
a finite extension, so in some sense “most” of the elements are constants. Better to work with Hasse-Schmidt
derivations.

Differential algebraic geometry is an expansion of algebraic geometry. Given P ∈ K{z}, we set ord(P ) to
be the largest k such that δkz appears in P ; the differential polynomials of order 0 are then just ordinary
polynomials in z.

Where should we look for solutions to differential polynomial equations?
We go to existentially closed differential fields.

Definition 220. M |= T is existentially closed if for any quantifier-free formula φ(x) over M (with
x = (x1, . . . , xn)) such that φ has a realization in some N |= T with M ⊆ N , we have that φ(x) has a
realization in M.

Example 221. Algebraically closed fields are precisely the existentially closed fields.

We work in existentially closed differential fields. By last term, a theory has existentially closed models if
it is universal-existential; so DF0 has existentially closed models.

Problem: the definition of existentially closed is too unwieldy, and in particular is not first-order.

Definition 222. A differentially closed field is a differential field (K, δ) such that given any P,Q ∈ K{x}
(where x is a single variable) with ordQ < ordP , we have a ∈ K such that P (a) = 0 and Q(a) ̸= 0.

Remark 223. This is first-order: we could say something like, for M ≤ N ,

• For all choices of coefficients (ci0,...,in : i0 + · · ·+ in ≤ N)
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• For all choices of coefficients (dj0,...,jm : j0 + · · ·+ jn ≤M)

• if some ci0,...,in ̸= 0 with in ̸= 0

• then there exists a such that

–
0 =

∑
i0+···+in≤N

ci0,...,ina
i0(δa)i1 . . . (δna)in

–
0 ̸=

∑
j0+···+jm≤M

dj0,...,jma
j0(δa)j1 . . . (δma)jm

Assignment 4. Due Monday December 7, questions 6.1.2, 6.2.2, 6.2.3, 6.4.1.

Lemma 224 (D1). Suppose (R, δ) is a differential ring. Suppose P (x1, . . . , xn) ∈ R[x1, . . . , xn]; suppose
a1, . . . , an ∈ R. Then

δ(P (a1, . . . , an)) =

n∑
i=1

∂P

∂xi
δai + P δ(a1, . . . , an)

where P δ is obtained from P by applying δ to the coefficients.

Proof. By example. Let P = cxy ∈ R[x, y] for c ∈ R. Then

δ(P (a, b)) = δ(cab)

= δ(c)ab+ c(aδb+ bδa)

= δ(c)ab+ caδ(b) + cbδ(a)

= P δ(a, b) + c
∂P

∂y
(a, b)δ(b) +

∂P

∂x
(a, b)δ(a)

In general consider cxm1
1 . . . xmnn . We then apply induction on m1 + · · ·+mn. Lemma 224

Lemma 225 (D2). Suppose (R, δ) is a differential integral domain. Then

1. δ extends uniquely to a derivation on K = Frac(R).

2. Suppose L ⊇ K is an extension field. Suppose a1, . . . , an−1 ∈ L are algebraically independent over K;
suppose an ∈ L has an ∈ K(a1, . . . , an−1)

alg. Then there is a unique derivation δ on K(a1, . . . , an)
extending δ on K such that δ(ai) = ai+1 for i ∈ { 1, . . . , n− 1 }.

3. δ extends uniquely to Kalg.

Proof.

1. We define
δ
(a
b

)
=
bδa− aδb

b2

for any a, b ∈ R. Check that this is a derivation on K. It is unique as this formula is obtained by the
Leibniz rule applied to δ(ab−1).

2. Case 1. Suppose n = 1; we are given a ∈ Kalg, and we wish to extend δ to K(a). Let P (x) ∈ K[x] be
the minimal polynomial of a over K. Then 0 = P (a); so

0 = δ(P (a)) =
dP

dx
(a)δa+ P δ(a)

by Lemma 224. But dP
dx has strictly smaller degree than P ; so dP

dx (a) ̸= 0, and

δa =
−P δ(a)
dP
dx (a)

This proves uniqueness; one checks that this actually defines a derivation on K(a).
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Case 2. Suppose n > 1. We set

δ(an) =
−
∑n−1
i=1

∂P
∂xi

(a1, . . . , an)δai + P δ(a1, . . . , an)
∂P
∂xn

(a1, . . . , an)

where P is obtained as follows: let Q(xn) ∈ K(a1, . . . , an−1)[xn] be the minimal polynomial of an
over K(a1, . . . , an−1). Clearing denominators, we get Q′ ∈ K[a1, . . . , an−1][xn] with Q′(an) = 0.
We then write Q′ = P (a1, . . . , an−1, xn) for some P ∈ K[x1, . . . , xn]; this is our desired P .

3. Iterate the n = 1 case of (2) to extend uniquely all the way to Kalg.

Lemma 225

Proposition 226 (D3). Any differential field extends to a differentially closed field.

Proof. Suppose (K, δ) |= DF0. Given P,Q ∈ K{z} with ord(P ) > ord(Q), we want an extension (F, δ) ⊇
(K, δ) with c ∈ F such that P (c) = 0 and Q(c) ̸= 0. This will suffice by a double-chain-type argument. Take

P = f(z, δz, . . . , δnz)

Q = g(z, δz, . . . , δmz)

where n = ord(P ) > ord(Q) = m and f ∈ K[x0, . . . , xn] with xn appearing and g ∈ K[x0, . . . , xm] with xm
appearing. Let a ∈ K(x0, . . . , xn−1) satisfy f(x0, . . . , xn−1, a) = 0. (Possible because f is non-constant as an
element of K(x0, . . . , xn−1)[xn], and thus has a root in K(x0, . . . , xn−1)

alg.) Let F = K(x0, . . . , xn−1, a) ⊇ K.
Then by Lemma 225 part (2), we can extend δ to K(x0, . . . , xn−1, a) so that δx0 = x1, . . . , δxn−1 = a. So

0 = f(x0, . . . , xn−1, a)

= f(x0, δx0, δ
2x0, . . . , δ

n−1x0, δ
nx0)

= P (x0)

0 ̸= g(x0, x1, . . . , xm)

= g(x0, δx0, . . . , δ
mx0)

= Q(x0)

So c = x0 ∈ F works. Proposition 226

Theorem 227 (D4). DCF0 admits quantifier elimination.

Proof. Suppose (Fi, δ) |= DCF0 for i ∈ { 1, 2 }. Suppose (R, δ) ⊆ (Fi, δ) is a differential subring of F1 and F2.
Then (R, δ) extends uniquely to K = Frac(R); we may thus assume that (K, δ) is a differential subfield of
(Fi, δ) for i ∈ { 1, 2 }.

Claim 228. It suffices to prove that for any a ∈ F1 there is an L-embedding of K⟨a⟩ = K(a, δa, δ2a, . . . )
(the differential field generated by a over K) into an elementary extension of (F2, δ) over K.

Proof. Suppose θ(x) be a conjunction of literals over K; suppose a ∈ F1 realizes θ(x). Then by assumption
we have an L-embedding f : (K⟨a⟩, δ) ↪→ (F̃2, δ) satisfying

(K⟨a⟩, δ) (F̃2, δ)

(K, δ) (F2, δ)

f

⊆

⊆

⪯
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where (F̃2, δ) ⪰ (F2, δ). Let b = f(a) ∈ F̃2. Then f : K⟨a⟩ → K⟨b⟩ is an L-isomorphism over K with
f(δia) = δib. Then

(F1, δ) |= θ(a) =⇒ (K⟨a⟩, δ) |= θ(a) (since θ is quantifier-free and (K⟨a⟩, δ) ⊆ (F1, δ))
=⇒ (K⟨b⟩, δ) |= θ(b) (since f is an L-isomorphism with f ↾ K = id and f(a) = b)
=⇒ (F̃2, δ) |= θ(b)

=⇒ (F̃2, δ) |= ∃xθ(x)
=⇒ (F2, δ) |= ∃xθ(x) (since (F2, δ) ⪯ (F̃2, δ))

So our more familiar criterion quantifier elimination holds. Claim 228

Remark 229. The above can be made into a general criterion for quantifier elimination.
We verify the claimed condition for quantifier elimination.

Case 1. Suppose { a, δa, δ2a, . . . } is algebraically independent in F1 over K.

Claim 230. For each Q ∈ K{x} \ { 0 }, there is b ∈ F2 such that Q(b) ̸= 0.

Proof. By the axioms there is b such that δord(Q)+1x = 0 and Q(x) ̸= 0. Claim 230

Thus Φ(x) = {Q(x) ̸= 0 : Q ∈ K{x}, Q ̸= 0 } is finitely realized in (F2, δ).

Remark 231. Note that
ℓ∧
i=1

(Qi(b) ̸= 0)

holds if and only if (Q1Q2 . . . Qℓ)(b) ̸= 0.

So there is (F̃2, δ) ⪰ (F2, δ) and b ∈ F̃2 such that |= Φ(b); i.e. { b, δb, . . . } is algebraically independent
over K in F̃2.

Case 2. Suppose { a, δa, . . . } is algebraically dependent in F1 over K. Then there is n < ω such that
{ a, . . . , δn−1a } is algebraically independent overK but δna ∈ K(a, δa, . . . , δn−1a)alg. Let f(x0, . . . , xn) ∈
K[x0, . . . , xn] be such that f(a, δa, . . . , δn−1a, xn) is a minimal polynomial for δna over K(a, . . . , δn−1a).

We then know that K⟨a⟩ = K(a, . . . , δna) by D2 (ii). Let

Φ(x) = { f(x, δx, . . . , δnx) = 0 } ∪ { g(x, δx, . . . , δmx) ̸= 0 : m < n, g ̸= 0 }

Then Φ(x) is finitely satisfiable in F2 by the axioms for DCF0. (Note that ord(g1g2) ≤ max{ ord(g1), ord(g2) }.)
Hence there is some (F̃2, δ) ⪰ (F2, δ) and b ∈ F2 such that (F̃2, δ) |= Φ(b). Then { b, δb, . . . , δn−1b } is
algebraically independent. We then get α : K(a, . . . , δn−1a)→ K(b, . . . , δn−1b) such that

K(a, . . . , δn−1a) K(b, . . . , δn−1b)

K

α

⊆
⊆

and α(δia) = δib. But f is a minimal polynomial of δna over K(a, . . . , δn−1a), and

α(f(a, . . . , δn−1a, xn)) = f(b, δb, . . . , δn−1b, xn)

is a minimal polynomial of δnb over K(b, . . . , δn−1b). So we can extend α to a field isomorphism
α′ : K⟨a⟩ = K(a, . . . , δna)→ K(b, . . . , δnb) = K⟨b⟩ such that α′(δia) = δib for i ≤ n and α′ ↾ K = idK .
So α′ is an isomorphism of differential fields. So we have α′ : K⟨a⟩ → K⟨b⟩ ⊆ (F̃2, δ). So we have
proven our criterion.

44



Theorem 227

Theorem 232 (D5). DCF0 is complete.

Proof. (Z, 0) embeds in every differential field, since 1 = 1 · 1, so δ(1) = 1 · δ(1) + δ(1) · 1 = 2δ(1). So
δ(1) = 0, and δ(n) = 0 for all n ∈ Z. But DCF0 admits quantifier elimination; so any statement is equivalent
to a quantifier-free statement, which can then be decided in the image of (Z, 0). So DCF0 is complete.

Theorem 232

Theorem 233 (D6). DCF0 is the theory of existentially closed differential fields.

Proof.

(⇐= ) Suppose (F, δ) is existentially closed. By D3 we can extend (F, δ) to (F̃ , δ) |= DCF0. But (F, δ) is
existentially closed, and (F, δ) ⊆ (F̃ , δ); so (F, δ) |= DCF0 since DCF0 is universal-existential. (By
checking axioms and using the fact that (F, δ) is existentially closed.)

( =⇒ ) Suppose (F, δ) |= DCF0. Suppose θ(x) is quantifier-free over F with (F, δ) ⊆ (F1, δ) with θ(x) realized
by a ∈ F1. Then

(F, δ) ⊆ (F1, δ) ⊆ (F̃ , δ) |= DCF0

with (F, δ) |= DCF0. By quantifier elimination, we have (F, δ) ⪯ (F̃1, δ). But F̃1 |= ∃xθ(x); so
F |= ∃xθ(x). So (F, δ) is existentially closed.

Theorem 233

Theorem 234 (D7). DCF0 is ω-stable.

Proof. Suppose (K, δ) |= DCF0 with A ⊆ K countable. We wish to show that S1(A) is countable. Let
F = Q⟨A⟩ be the differential field generated by A over Q; then F = Q({ δia : i < ω, a ∈ A }). Then |F | = ℵ0.
It suffices to show that S1(F ) is countable.

Let (K, δ) ⪰ (K, δ) be ℵ1-saturated. Then S1(F ) = { tp(a/F ) : a ∈ K }. By quantifier elimination, we
have that qftp(q/F ) ⊢ tp(a/F ) for any a ∈ K. But qftp(a/F ) = qftpLRing

(a, δa, δ2a, . . . /F ). So it suffices to
count { qftpLRing

(a, δa, . . . /F ) : a ∈ K }.
Given a ∈ K, let

n(a/F ) =

{
the least n < ω such that δna ∈ F (a, . . . , δn−1a) such n exists
ω else

If n(a/F ) = n < ω then set Pa/F ∈ F [x0, . . . , xn] such that Pa/F (a, . . . , δn−1a, xn) is the miimal polynomial
of δna over F (a, . . . , δn−1a).

Suppose b ∈ K.

Claim 235. Suppose n(a/F ) = n(b/F ) = n < ω and Pa/F = Pb/F . Then qftpLRing
(a, δa, . . . /F ) =

qftpLRing
(b, δb, . . . /F ).

Proof. Note that { a, . . . , δn−1a } and { b1, . . . , δn−1b } are both algebraically independent over F . So we have
a field isomorphism f : F (a, . . . , δn−1a)→ F (b, δb, . . . , δn−1b) such that f(δia) = δib and f ↾ F = idF . Then

f(minimal polynomial of δna over F (a, . . . , δn−1a)) = f(Pa/F (a, . . . , δ
n−1a, xn))

= Pa/F (b, δb, . . . , δ
n−1b, xn)

= Pb/F (b, . . . , δ
n−1b, xn)

= minimal polynomial of δnb over F (b, . . . , δn−1b)

Thus we can extend to a field isomorphism f : F (a, . . . , δna) → F (b, . . . , δnb) with f(δna) = δnb. But
by D2 (ii), we have F (a, . . . , δna) = F (a, δa, . . . ) and F (b, . . . , δnb) = F (b, δb, . . . ). So f witnesses
qftpLRing

(a, δa, . . . /F ) = qftpLRing
(b, δb, . . . /F ). Claim 235
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Claim 236. Suppose n(a/F ) = n(b/F ) = ω. Then qftpLRing
(a, δa, . . . /F ) = qftpLRing

(b, δb, . . . /F ).

Proof. Note that { a, δa, . . . } and { b, δb, . . . } are both algebraically independent over F . So f : F (a, δa, . . . )→
F (b, δb, . . . ) given by f ↾ F = idF and f(δia) = δib is an isomorphism witnessing that qftpLRing

(a, δa, . . . /F ) =
qftpLRing

(b, δb, . . . /F ). Claim 236

So |S1(F )| ≤ |{ (na/F , Pa/F ) : a ∈ K }|. But na/F ∈ N and Pa/F ∈ F [x0, . . . , xn]; so |S1(F )| ≤ ℵ0.
Theorem 234

So DCF0 is totally transcendental; so the Morley rank of every definable is ordinal-valued.
We work in a sufficiently saturated (K, δ) |= DCF0. Let C = {x ∈ K : δx = 0 } be the field of constants;

then C is a definable subset of K.

Claim 237. C is algebraically closed.

Proof. By the axioms K is algebraically closed. Suppose a ∈ K with a ∈ Calg. Let P (x) be the minimal
polynomial of a over C. Then δ(P (a)) = 0. So

dp

dx
(a)δa+ P δ(a) = 0

But P δ(a) = 0, and dP
dx (a) ̸= 0. So δa = 0, and a ∈ C. Claim 237

Claim 238. MR(C) = 1; in fact, C is a strongly minimal definable set in (K, δ).

Proof. Suppose θ(x) is a quantifier-free L-formula such that θ(K) ⊆ C. Replace all occurrences of δx in θ(x)
by 0; we then get θ(x)↔ φ(x) ∧ (δx = 0) where φ(x) is a quantifier-free LRing-formula. So φ(K) is finite or
cofinite in K. So θ(K) = φ(K) ∩ C is finite or cofinite. Claim 238

Claim 239. Let Cn = {x ∈ K : δnx = 0 }; then Cn is a subgrape of K. Then MR(Cn) = n.

Sketch. Cn is actually closed under multiplication by constants; i.e. Cn is a C-vector subspace of K. But by
the theory of linear differential equations, we have that every homogeneous linear differential equation of
order n has a fundamental system of solutions e1, . . . , en that are C-linearly independent and such that every
other solution is a C-linear combination of these. So dimC(Cn) = n.

Then the map Cn → Cn given by a1e1+ · · ·+anen 7→ (a1, . . . , an) is a vector space isomorphism definable
in (K, δ) between sets in (K, δ) definable over { e1, . . . , en }. But Morley rank is preserved by definable
bijection, and the Morley rank of a product is the sum of the Morley ranks. So MR(Cn) = MR(Cn) = n.

Claim 239

So C = C1 ≤ C2 ≤ · · · ≤ K. So MR(K) ≥ ω.
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