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2 Point-set topology
If (X, d) is a metric space, recall we define
By (z) ={ye X :d(z,y) <r}
to be the open balls. We say U C X is open if and only if for all z € U there is r > 0 such that B,.(z) C U.

Definition 1. A topological space is a set X together with 7 C P(X) (whose elements are called open sets)
satisfying

1. ), X er.
2. IfU C 7, then

UU er
3. fU,Ver, thenUNV 7.
FEzxzample 2.
1. The discrete topology is (X, P(X)). This is, in fact, a metric topology.
2. The trivial topology is (X, {0, X }).
3. Suppose (X, <) is a total order. We define the order topology to be generated by

X
L,={yeX:y<uz}
Gy={yeX:y>z}

i.e. the open sets are

U@Le, nGy ) vl L, G,
8

a ¥
4. Let X = C0,1]. Let = € [0,1], a € C, r > 0. Let
Urar ={f €C0,1]: |f(2) —al <7}
U (@i,ai,mi)ii<n} = ﬂ{ Usiarr; 20 <}
We declare unions of the latter to be open. This is the topology for pointwise convergence.
Definition 3. A set C in (X, 7) is closed if and only if X \ C is open.
Definition 4. For a topological space (X, 1), a subset A C X, we define

e the interior of A is the largest open U C A:
A° = JPa)ynr)

e the closure of A is the smallest closed C' D A:

A=({KCX:K2AK et}

Proposition 5.

1. If F is a collection of closed sets, then
NF

1s closed.



2. If F,G are closed, then so is FFUG.
3. For A C X, we have that x € A if and only if for all open U > x, we have U N A # ().
4 A = (A,

Proof.

1. For each F' € F, we have F° is open. So

(NF) =Utre:rer)
NF

is open, and

is closed.
2. (FUG)®=F°NG°is open, so FFUG is closed.

3. Suppose ¢ € X and there is open U > x such that U N A = (). Then U° is closed and A C U°¢. So
ACU¢ and z ¢ A.

Conversely, if # ¢ A, then x € (A)¢. Setting U = (A)¢, we have z € U and UN A C U N A¢ = ().

(AC)°:U{U€T:U0A=@}
_ ay

by previous item. Thus

[0 Proposition 5

Proposition 6. If S C P(X), then there is a smallest topology T containing S given by 0, X and arbitrary
unions of finite intersections of elements of S.

Proof. We check the properties.
1. By construction.
2. A union of unions is itself a union.

3. Well

UGSarnnSan) 0 JTsa0- N Tamy) = JUSaa NN Sain, NTpa 0N T,
«a B a

(Check the set theory, if you don’t believe it.)
J Proposition 6

Definition 7. If S C P(X) generates 7 as above, then S is a subbase of 7. If S C P(X) and every U € 7 is
the union of sets in S, then S is a base for 7.

Ezxample 8.
1. Suppose (X,d) is a metric space. Then { B,.(X):x € X,r > 0} is a base for the metric topology.
2. In the special case of (R, d), we have that {(r,s):7,s € Q} is a base.

Proposition 9. Suppose {7, } is a collection of topologies on X. Then



Tmin = m Ta

[e3

s a topology on X.

Tmax = U Ta

«

s a subbase for a topology on X.
Definition 10. If o, 7 are topologies on X, we say
e o <71if o Cr (0is weaker than 7).

e 0 >7if o D7 (0is stronger than T).

Ezample 11. Let X = C[0,1]. Let 7 be induced by the metric
d(f,9) = IIf — gllc = sup |f(z) — g(z)|
z€[0,1]

Consider the topology o with base the sets
U=U{ (e, airi)i<ny =1 f |1 f(@i) —ail <riyi<n}
We claim that o C 7: Suppose f € U with f(z;) = b;, |b; — a;| < r;. Then we can take
r=minr; — |a; — b
<n

If | f — glloo < 7, then |g(z;) — b;j| < r, and thus |g(z;) — a;| < |g(x;) — bi| + |b; — ;] < 75
Thus o C 7; they are not equal because U # () is always unbounded. Indeed, for

U (@i ai,ri)ii<n}
pick y ¢ {x; : i <n}. Then there is g € C[0, 1] with g(z;) = a; and g(y) is arbitrarily large.
Definition 12.
e (X,7) is separable if and only if there is a countable dense subset. i.e. a countable A such that A = X.

o (X, 1) is first-countable if and only if for each z € X, there is a collection U of open U > z such that
for all open V' > x there is U € U such that U C V.

e (X,7) is second-countable if and only if there is a countable base for the topology.

Ezample 13.

1. If (X, d) is a compact metric space, then X is separable.
2. If (X, d) is any metric space, then X is first-countable.

3. If (X,d) is a separable metric space, then X is second-countable.
Proof. Suppose {z; :i <w} C X is a countable, dense set. Consider
{Bmlﬂ(xn) : m,n<w}

We claim that this is a base for the topology. Let U be open in (X, d). Let « € U. Need to find m,n
such that

x € Ba(x,) CU

Well, there is 7 > 0 such that B,(z) C U. Pick m such that L < Z. By density of {z; :i <n}, we
have some n such that d(z,,z) < % Then

z€Bi(z) C Bz
as desired. O

(£) CB.(z) CU



Definition 14. Suppose (X, 1), (Y, o) are topological spaces. We say f: X — Y is continuous if for all open
V CY, we have f~1(V) is open (in X). We say f is a homeomorphism if f is a bijection and f and f~! are
both continuous. We say f is open if for all open U C X we have that f(U) is open (in Y).

FEzxzample 15.

1. Suppose (X, 1) is a topological space. Consider the sequence of maps

(X, discrete) > (X, 1) % (X, trivial)

1

where f = g = idx. Then f and g are bijective and continuous but f~!, g~' are not continuous.

2. Any f from a discrete space into R is continuous. The only continuous functions from a trivial topology
into R are constant.

3. The map

f+(-1L,)—>R
T tan(%m)
is a homeomorphism.

Definition 16. Suppose (X, 7) is a topological space, (z, : n < w) is a sequence in X. We say (z, : n < w)

converges if and only if for all
UeOx)={Uer:zeU}

there is an NV < w such that for all N < N < w we have z,, € U.
FEzxample 17.

1. X ={a,b}, 7={0,{a},{a,b}}. Then z, — a if and only if z,, is eventually a. On the other hand,
every sequence converges to b. In particular, some sequences converge to a and b.

2. X =100,1)U{a,b} with U C X open if all of the following hold:
e UNJ0,1) is open in the metric topology.
e If a e U or be U, then there is € > 0 such that U D (1 —¢,1).

Then any sequence in [0, 1) that converges to 1 in the metric topology converges to both a and b in 7.

As another example, the sequence
1 1

1-— §,a71— g,a7...
converges to a but not b.
Definition 18. (X, 7) is Hausdorff if for all z # y in X there is open U > z, open V 3 y such that UNV = .
Example 19.
1. Metric spaces are Hausdorff.

2. The prior two examples are not Hausdorff.

Proposition 20. If C(X) (the set of continous maps X — C) separates points (i.e. for x # y there is
f € Co(X) such that f(x) # f(y)), then X is Hausdorff.

Proof. Say x # y. Then there is a continuous f: X — C such that f(x) # f(y), by hypothesis. C is Hausdorft,
so we may find open U > f(z), open V > f(y) such that UNV ={). Then f~*(U) and f~1(V) are open sets
containing z and y, respectively, and f~1(U) N f=1(V) = 0. 0 Proposition 20



2.1 Nets

Main message: sequences are not enough.
Example 21. Let X = N x N. Define 7 by:

e For m+n > 1, the set { (m,n) } is open.
e An open U > (0,0) must have a finite ' C N such that for all n € N\ F, we have
{m<N:(m,n)eU}
is a cofinite subset of N.
Check that this defines a topology.

1. (X,7) is Hausdorff: to house off (m1,n1), (ms2,n2), and (0,0), use
Uo = X \{ (m1,m1), (m2,n2) }
Ur ={(m1,m)}
Uz = { (ma,n2) }

2. (0,0) € X\ {(0,0) } since every non-empty open set has an element besides (0,0).

3. No sequence ((my,ny) : k < w) in X \ {(0,0) } converges to (0,0).

Proof. Suppose z = (myg, ng) is a sequence.

Case 1. Suppose (ny : k < w) is bounded. Then there must be a constant subsequence (ng, : i < w).
Then
U=X\{(m,n):n=np}

is open and contains (0,0). But zy, ¢ U for all i < w. So xx 4 (0,0).

Case 2. Suppose otherwise. Then there is a subsequence (ng, : i < w) such that (ng, : i < w) — oo.
Then
U=X\{ap, :i<w}

is open because only finitely many zx, have ng, = n. But zy, ¢ U for i < w. So x /4 (0,0).

Definition 22. A directed set is a set A with a binary relation < such that

1. A< Aforall A€ A,

2. If A\ < Ay and Ao < A3, then Ay < A3 for all \; € A.

3. Directedness: if A1, Ao € A then there is A3 € A such that A\ < A3 and Ay < A3.
(We do not require antisymmetry; some authors do.)

Definition 23. A net is a function z: A — X (usually written (z) : A € A)). A net converges to x € X if for
all U € O(x) there is \g € A such that z) € U for all A > Ao.

Definition 24. A subnet I' of A is a function ¢: I' — A which is cofinal: for all A\g € A there is 7y € I' such
that p(y) > Ag for all v > 7.

In practice, such ¢ will usually be monotonic.

Ezample 25. We now return to Example 21.



4. There is a net in X \ { 0,0} converging to (0,0). Let A = O((0,0)) ordered by U < V if U O V. This
is clearly a directed set. We then define a net as follows: for U € A, let xy be the smallest element of
U\ {0,0} in the usual well-ordering of N2.

Claim 26. (zy : U € A) — (0,0).
Proof. Suppose V € O((0,0)). If U >V, then U CV,and 2y € U C V. O Claim 26

5. Take the sequence
((0,1),(1,0),(0,2),(1,1),(2,0),...) = (zx : k < w)

This does not converge to (0,0). Define ¢: A — w by ¢(U) =1 if 2y = 2;. This map is cofinal, since if
N <w,wecan V € Asuch that U >V = ¢(U) > N by taking V = X\ {(0,0),x0,...,2n—1 }. So
A is a subnet of the sequence (z, : n < w).

Proposition 27. Suppose A C X. Then x € A if and only if there is a net (x) : A € A) in A converging to
T.

Proof.

(=) Well, € A if and only if UN A # () for all U € O(x). We can make O(z) into a directed set by
reverse containment, as before. Use the axiom of choice to pick zy € U N A for each U € O(x). Then
(xy : U € O(x)) converges to z, since for all V € O(x),if U >V then 2y € U C V.

( <= ) This implies that every U € O(z) contains an element of A.
OO0 Proposition 27

Proposition 28. f: (X,7) — (Y,0) is continuous if and ony if for any net (xx : A € A) — = in X, we have
that (f(zx): A€ A) = f(z) inY.

Proof.

(=) Suppose (z) : A € A) = 2. Let V > f(z) be open. Then U = f~(V) is open, and € U. So
there is A\g € A such that for all A > Xg, we have x\ € U, and thus f(z)) € f(U) C V. Thus
(f(zr): A€ A) = f(z).

(<= ) Suppose [ is not continuous. Then there is V open in Y such that U = f~1(V) is not open, and
thus U€ is not closed. Thus there is x € U such that x € U¢. By the previous proposition, there
isamnet (xx : A € A) in U converging to x. But f(z)) € V¢, so, by previous proposition, we have

flax) # f(x) e V.
0 Proposition 28

Example 29. Not that the sequential characterization of continuity does not apply in general. Consider the
space from before (N2, W). Consider f: (N2, W) — (N2, discrete) given by idy2. Then (z; : i < w) — x if
and only if x # (0,0) and z; = x eventually. Thus (f(x;) : i < w) = f(z). But f is discontinuous, since
F71({0,0}) ={0,0} is not open.

2.2 Axiom of choice

Definition 30. A set A is well-ordered if it has a total order < and every non-empty subset has a least
element. A partial order is reflexive, antisymmetric, and transitive. It is called inductive if every chain
(totally ordered subset) has an upper bound.

Definition 31. The aziom of choice says that if X is a set, then there is a c: 2X \ {0} — X such that
c(A) € A for all A # 0.

Definition 32. The well-ordering principle states that every set can be well-ordered.



Definition 33. Zorn’s lemma states that if every chain in a partial order has an upper bound, then there is
a maximal element. (Note: this doesn’t mean the maximal element is comparable to everything; merely that
no element is larger than it.)

Remark 34. If A is well-ordered, then there is a least element.
Definition 35. An initial segment is

I=Ib)={acA:a<b}
Theorem 36. The following are equivalent:

1. The axiom of choice
2. The well-ordering principle

3. Zorn’s lemma
Proof.
(2) = (1) Place a well-ordering on X; we can then define ¢(4) to be the least element of A.
(3) = (2) Let
W={(F,<p): FCX,<p a well-ordering of F'}
Say (F,<p) < (G,<qg) if F C G and <p=<g |rxF, and F is an initial segment of G. Let

C={(Fa<p): acl}

be a chain, with (Fy, <pg,) < (Fs, <r,) for a < 3. Let

G=|JF.

acl

<a=J <r.

acl
Now, if ) # A C G, we have
A=J@ANnF,) #0
ael

so there is « € I such that AN F, # (); then we have a least a € AN F,. Now, for any b € A, we have
that b € F,, in which case a < b by our choice of a; or that b ¢ F,, in which case b € Fg for some
B > a, so F,, is an initial segment of Fj3, and b > a. So in fact a is the least element of A, and <¢ is
a well-ordering. Then (G, <¢) is an upper bound of C. So W is inductive, and thus has a maximal
element (F, <p) by Zorn’s lemma.

If FF # X, we could pick a € X \ F and define a well-ordering of FU{a} by b < a for all b € F,
contradicting our choice of (F, <) as a maximal element of W. So X = F', and we have a well-ordering
of X.

(1) = (3) Let (P, <) be an inductive partial order. Suppose there is no maximal element. Then for all
x € P, we have that
Uy={yeP:z<y}£0

Then there is f: P — P such that f(z) € U, for all x. Since (P, <) is inductive, we have that for each
chain C, that
Uec ={x € P:xis an upper bound for C } # 0)

Then there is a map

g:{C:Cisachainof P} — P
such that ¢g(C) is an upper bound of C for each chain C. Define h = f o g; then h(C) is strictly greater
than every element of C for all chains C.
Define a well-ordering on P by a; = h(D), a2 = h({a1 }), a3 = h({ a1,az2 }), and so on. Consider subsets
A C P such that



1. (A, <) is a well-ordering.
2. If I G A is an initial segment of A, then the least element of A\ I is h(I).

Call such A a conforming set.

Claim 37. If A, B are two conforming sets, then either A C B or B C A, and it is an initial segment.

Proof. Let H be the set of initial segments common to A and B. Let
J=1\J1I
IeH

be the largest initial segment common to A and B. Then, if both A and B were proper supersets of J,
we would have h(J) € AN B, and J U {h(J) } would be a strictly larger initial segment common to A
and B, a contradiction. O Claim 37

Now, let X be the union of all the conforming sets; then X is well-ordered by <, and each A is an
initial segment. So (X, <) is a maximal conforming set. But X U{ h(X) } is a strictly larger conforming
set, a contradiction.

O Theorem 36

2.3 Compactness

Definition 38. Suppose (X, 7) is a topological space. We say A C X is compact if every open cover of A
has a finite subcover.

Theorem 39. The following are equivalent:

1. X is compact.

2. Every collection of closed sets C with the finite intersection property (that every finite intersection is

non-empty) satisfies

(C#0

3. Every net in X has a convergent subnet.

Proof.

(1) = (2) Suppose {C, : a € I} has the finite intersection property but

() Ca=10

acl

Then {CS : a € I'} is an open cover of X with no finite subcover, a contradiction.

(2) = (3) Let (zx: A€ A)beanet. Forye Ajlet Cy = {xx: A >~} Thengivenany {v1,...,7, } CA,

we some ~ such that ~; < for all 7; then

n
Ty € ﬂ Cy,
i=1
So {C, : v € A} has the finite intersection property, and, by assumption, we have some

T € ﬂCnY

YEA

Let
F={(\U): e AU €eO(x)}



Define an order on T by (A\,U) < (p, V) if A < pand U O V. Want to define ¢: I' — A which is cofinal
such that x,y ) € CxNU. Well, Cx = {xy : v > A} intersects U since x € U. Thus {z : v > A}
also intersects U, since U is open, and there is v > A such that z, € U. Let

YA,U:{x,Y:’yZA}OU#@
By axiom of choice, there is ¢: I' — A such that p(\,U) € Y, u.
Claim 40. (z,0\0): (A U) €T) — .

Proof. If v € O(x), pick Ag arbitrary. Then if (\,U) > (Ao, V), then z 3y € U C V. So (z,0v) :
(A, U) €T') — x, as desired. O Claim 40

To check cofinality, suppose Ag € A. Then (A, U) > A > A if A > XAg. Pick arbitrary Uy € O(z). Then
if (\,U) > (Mo, Up), we have oA\, U) > A.

(83) = (1) Let {U, : @ € A} be an open cover. Suppose there is no finite subcover. Then for each
F Can A, say F={aq,...,an }, we have

Ug, U---UUq, #X
SO
Cp=US, NUS,N---NUS #0

Let A={F C A:|F| <Yy} beordered by F < G if F C G. By axiom of choice, pick zp € C for
each F € A. Then (zp : F € A is a net. By assumption, there is a subnet T" with ¢: T' — A cofinal such
that (z,(,) : v €I') = 2 € X. Thus for all o € A there is 7o € I" such that ¢(v) > {a} if v > 7. ie.
o(y) = F > aif v > 5. Thus

To(y) = 2F € OF 2 Cay =Us

But U¢ is closed. So
T = Lien%x‘m) eUg
and z ¢ U, for any a. But the U, cover X, a contradiction.

O Theorem 39

Proposition 41. Suppose f: (X,7) — (Y,0) is continuous. Suppose C C X is compact. Then f(C) is
compact.

Proof. Let {V, : a € A} be an open cover of f(C). Set U, = f~1(V,); these are open in X by continuity,
and

Uuv.2c

a€cA

Then there is a subcover
CCUy U---UU,,

and thus
F(C) C f(Ua)U---U f(Uny) 2 Vay U---UVq,

0 Proposition 41

Definition 42 (Product topology). Suppose ((X,, 7o) : @ € A) are topological spaces, put a topology on
X =1]] Xa
acA
(whose elements take the form z = (z, : @ € A) where z, € X,) by using the weakest topology such that all

To: X — Xg

T Tq

10



are continuous. i.e. if U C X, is open, then

i U)={zeX:2,cU}=Ux HX/g
BF#a
is open. So if a1,...,a, € A and each U,, open in X,,, then
Uay X Ugy X --- x Uy, X H Xz
ﬁg{o‘l"“’o‘n}

is open, and these sets form a basis for the topology.

I va

a€cA

Remark 43. For U, C X, we have that

is open if U, = X, except finitely often. The converse holds except if some U, = ().
Theorem 44 (Tychonoff). The product of compact spaces is compact.
Proof. Let ((Xa,7a) : @ € A) be compact topological spaces. Let
X =]] Xa
a€cA

Suppose X is not compact; suppose there is an open cover U with no finite subcover. We plan to use Zorn’s
lemma to find a maximal open cover with no finite subcover. The order we use is set inclusion: U <V
if Y C V. We are given that A, the collection of open covers with no finite subcover, is non-empty. Now,
suppose

{Uy 1 €T}

is a chain in A (with T a totally ordered set and o < § in T implies U, < Ug). Let
U= J
a€eT

Then this, too, is an open cover. Furthermore, if ¢/ had a finite subcover X C U; U --- U U, then we could
find a; such that U; € U,,. Letting o be the maximum of the a;, we have that the U; are all in the U, and
are a finite subcover of U, a contradiction. So I/ has no finite subcover, and U € A is an upper bound for

{Uy 1 €T}

Thus by Zorn’s lemma there is a maximal open cover Uy with no finite subcover.
Properties of Uy:

1. If U €e Uy and V C U is open, then V € Uy.
2. If Uy,Us € Uy, then Uy U Uy € Up.
3. If V4, V5 are open with Vi NV, € Uy, then one of Vi and Vs is in Up.

Proof. Tt Vi ¢ Uy then Uy U { V1 } has a finite subcover
XCcvuthulUu---UU, =V UuW;

where Wy € Up. If Vo ¢ Uy, then
X CVhaUW,

where W5 € Uy. But then
XC(WVinWa)UW,uUW,

A contradiction. So Vi € Uy or Vo € Uy. O

11



For a € A, let

We =1 U C X, :U open,U X HXBGUO
BFa
If we had
Uwa =X,

then W, is an open cover. Then, since X, is compact, we have a finite subcover
Xo CULU---UU,
So

xcl|lix [[Xs|u---u|Unx ] X5
B#a B#a

Co=(UWa) #0

a contradiction. So

By axiom of choice, there is @ = (2, : @ € A) € X such that z, € C, for all « € A. Now, Uy covers X, so

there is U € U such that x € U. Thus there is a basic open set V' C U with x € V. Then

UV
= (Voy X Vg X oo x V) X H X3
Be{ o, som }
= 71';11(Va1) N 7r;21(Va2) N---N ﬂ';j(Va")
By the third property, there is ig such that
Moy Vauy) = Vauy X [ X5 € Uo
BFaig

and thus
Vo, € Way,

So
Tay, € Va,, C© UW%

contradicting our choice of zq, .
Remark 45. Tychonoff’s theorem implies the axiom of choice.
Proof. Suppose X, are non-empty sets. Define Y,, = X, U {p, } and define 7, on Y, by
Ta ={0,{pa} Xa, Yo }
These are compact because 7 is finite. Thus H
Yo

is compact by Tychonoff’s theorem. Let

Co=m,"(Xa) =Xa x [[ V5
Ba

Then these are closed. For F'={aq,...,ay }, set
Cpr=Cy,N---NC,y,
Pick z; € X,,, because X,,, # 0 for 1 <i < n. Let

x:(m17"'7wn7pﬁ:6¢{a1a"'7an})ECalﬂ"'mCan

O Theorem 44

So { C, } has the finite intersection property. So their intersection contains some x; then x satisfies =, € X,

for all &, and we have a choice function.

12

O Remark 45



Definition 46. (X, ) is normal if points are closed and whenever A, B are closed in X with AN B =0,
then there is open U D A, V O B such that UNV = (.

FEzxample 47.
1. Metric spaces: can set
U={z€ X:d(z,A) <d(z,B)}
V={xeX:dz,B) <d(z,A)}

2. If X is compact and Hausdorff, then X is normal. Given A, B, fix a € A. Suppose b € B. Then, since
X is Hausdorff, there are U, 3 a and V}, 3 b open and disjoint. Then, by compactness

BCV,U---UW, =V,

and
aceUy,N---NU, =U,
Then
AcJu.
acA

Again by compactness, we have
ACU, U---UU,,

and then
BCVy,N---NV,,

Theorem 48 (Urysohn’s lemma). Suppose (X, 7) is normal. Suppose A, B are disjoint closed sets. Then
there is continuous f: X — [0,1] such that f | A=0, f | B=1.

Theorem 49 (Tietze’s extension theorem). Suppose X is normal, A C X is closed, and f: A — R s
continuous. Then there is g: X — R continuous such that g | A= f.

Proof of Theorem 48. By normality, there is open A% D A such that Aié N B = (. Also, we have open

A% 2 T% such that Tgﬂ B = (), and we have open Ai D A such that Ai N AS = (. Continuing this way, we
2

define A, for all dyadic rationals y € (0,1). We then take

infily:z€ A such a y exists
) = BHEe )
1 else

Then this is the desired function. O Theorem 48

3 Banach spaces

Definition 50. Let V be a vector space over F € {R,C}. A norm on V is amap |-||: V — [0, c0) such that
1. for v € V, we have ||v|| = 0 if and only if v =0
2. ||tv]| = |t]||v]| for t € F, v € V (called “positive homogeneous”)
3. v+ w| <|v|| + |lw] for v,w € V.

A normed vector space (V,|-]|) is called a Banach space if it is complete; i.e. every Cauchy sequence
(v, : n €N) (i.e. for all € > 0 there is N € N such that for all n,m > N, we have |lv,, — v,|| < &) converges
(i.e. there is v € V such that ||v, — v|| — 0).

Remark 51. (V,|-||]) is a metric space with d(v,w) = ||v — w||.

13



Ezxample 52.

1. Suppose X is compact, Hausdorff. Consider

C(X)={f: X —C| f continuous }
Cr(X)={f: X = R| f continuous }

with the norm
[ flloo = sup|f(z)| < oo
zeX

Then (f, : n € N) = f if and only if ||f — fn|| = 0, which holds if and only if (f, : n € N) — f
uniformly. But recall that the uniform limit of continuous functions is continuous. So C(X) is complete.

2. For 1 < p < 0o, consider

n=1

Ly =< (ap:neN):alla, €C,|(a,:neN)|, = (Zan”>

loo = {(an :n €N):supla,| = ||(an:n € N)|loo < 00}
neN

L?(0,1) = { f Lebesgue measurable : (/|f|pdm> < o0 }

LP(u) = { f p-measurable : (/|f|pdu) ’ < o0}

Proposition 53 (Holder’s inequality). Forp > 1 and ¢ > 1 with % + % =1 (we allowp =1 and ¢ = 00),
then if f € LP(p), g € LI(p), then

\ / fgdu‘ < 1 lullglls

Proposition 54 (Minkowski’s inequality). For f,g € LP(p), we have || f + gllp < || fllp + lgllp-
Proposition 55. LP(u) is complete.
3. Consider C™][0,1] (the set of continuously n-differentiable functions) with the norm

_ i)
Ifloe = max £

If

for a; € C[0,1], then D is a linear map from C™[0,1] to C[0,1].
4. Hilbert spaces: H together with an inner product
() H> =T

that is linear in z, conjugate-linear in y, and positive-definite. i.e.

(ary + x2,7) a(r1,y) + (2, y)
(m,ay1 +y2) = afz,y1) + (z,52)
(x,x) > 0
(z,2) =0 <= z=0
(y,z) = (z,y)

14



Note that for all t € R, we have

0<(z+ty,z+ty)
= (z,z) + Uz, y) + t{y, z) + [t (y,y)

I believe t = 1 shows that (z,y) = (y, ) given the other axioms. Taking ¢t = 1 also shows the triangle

inequality of ||z|| = (z,z)2.
Taking
_ =y
llyll?
shows the Cauchy-Schwarz inequality: that
(@, )] < [l ||yl

A Hilbert space is a complete inner product space. Examples include fo, L?(u).

. Another example of a Hilbert space. Suppose €2 is an open, connected, bounded subset of C. Let

L3(Q) = {f analytic on Q : || f|* = / |f(2)|2dmy < oo}
Q

If z € Q, there is r such that B,.(z) C Q. Then

/BT(Z) fw)dw = /OT /02Tr f(z + rexp(i0))rdfdr

T 21 .
_ / omr L [ LEErew0) Lo o)dodr
0

27 Jo rexp(if)
_ [T L[ fw)
_/0 QWT%/Cmdwdr
:/ 27r f (2)dr
0
= (mr*)f(2)

by Cauchy’s integral formula. Thus

™ T(Z)
So
P < — [ 1fidm,
™ Br(z)

1
= W/Qm)(mdmz

il
772
If w € Bz (2), then Bz (w) C Q, and
) < AL
4

15



for all w € B (2). Suppose (f, : n € N) is a Cauchy sequence in L2(£2). For w € Bz (z), we have

£a(0) = ()] = |(Fo = i) )
—llfa = ful

Vv

Thus f, [ Bz(2) is uniformly Cauchy; thus (f, : n € N) — f uniformly in Bz (z); thus the limit is

2

analytic in Bz (2).

IN

3.1 General constructions in Banach spaces

Proposition 56. Let X,Y be normed vector spaces over F; let T: X — Y be a linear map. Then the
following are equivalent:

1.

1Tl = sup [[T]y < oo
l=l<1

(T is bounded).
2. T is uniformly continuous.
3. T is continuous.
4. T s continuous at 0.
Proof.
(1) = (2) If||T|| < oo, then

[Tz =Tyl = T(x -yl
<7z =yl

Then for any ¢ > 0 we may let § = 7; then le—yll <d = ||[Tx—Ty| <e.
(2) = (38) = (4) Trivial
(1) = —(4) If

sup ||Ta]| = o
lz]|<1

pick z,, € X such that [|z,[| <1 and || Tz, > n? Let y, = +z,. Then
1
[ynll < = =0
n

and thus y, — 0. But ||Ty,| > n; so Ty, 4 0, and T is not continuous.
0 Proposition 56

Write B(X,Y) for the set of all bounded linear maps from X to Y. Then |T|| is defined; it is, in fact, a

16



norm:

[ =
|7 =0 = Ta =0 for allx
[tT]| = sup [[¢tTz|
llzll<1
= [t] sup [[T]|
llzll<1
E1ITl
1S+T| = sup [[(S+T)x]|
llzll<1
< sup ([|Sz] + [|T=[])
llzll<1

< sup ||Sz| + sup ||Tz|
llzll<1 llzll<1

= IS+l

Proposition 57. Suppose X, Y are normed vector spaces; suppose Y is complete. Then B(X,Y) is a Banach
space.

Proof. Suppose (T, : n € N) is a Cauchy sequence. Then, for € X, if ||z|| < 1, then we have || T,z — Tz|| <
|75 — Tn|l < e for sufficiently large m,n. Thus (T,z : n € N) is Cauchy, uniform on B;(x). Thus 7,, - T
uniformly on B (z). Thus T is linear and uniformly continuous. So it is bounded, and B(X,Y) is complete.

OO0 Proposition 57

Definition 58. We set B(X) = B(X, X). We set X* = B(X,F) to be the dual space of X.
Theorem 59. If1 < p < oo with

1 1

24 =1

p g
then £ = £,.

Proof. Pairing: given a = (a, : n € N) € {, and b= (b, : n € N) € £, we set

wp(a) = b(a) = (a,b) = Zanbn
n=1

(Note that this is the definition of (-,-), and that this is bilinear, rather than sesquilinear.)
Holder’s inequality then yields

lpo(a)] = < llallpbllq

oo
E anby
n=1

So [p(a)l < lallplbllg; and we have [|gp|| < [[blly-

Case 1. Suppose p =1 and g = co. Then ||b||« = sup,,cy|bn|. Letting
en=(0,...,0,1,0,...)
we then have |le, ||, = 1. Then

[spn]l > Stég\sob(en)l = sup|b,| = [[bllcc > [ln]|

Case 2. Take

[bn |

b 1p, 91 1<n< N
a, =
0 n>N

17



Let a = (ay, : n € N). Then

N
lalls = lan|?
n=1
N
— Z|bn|p(q—1)

n;l
= Z|bn|q
|_

1
I3
Without loss of generality we may assume ||b]|, = 1. Then ||al|, < 1. Then

3

IN

N N
wv(@) =D [ba|" M bul = D lbal® — [Ib]l§ = 1
n=1 n=1

Thus [[p]| = [|bllg; thus [[es]| = [|b]]g-
Now let ¢ € £5. Let b, = ¢(en). Let b= (b, : n € N). We know that [¢(a)| < [|¢][||lal|. Note that, as

above, we have
N 7
lall, = (Zlbn|q>
n=1

lellllall, = l¢(a)l
N
Zanbn
N,

1
|2 |77 b
1

And

n=
N

= 2_lbal’
n=1

Thus

N q*%
ol 2 (zw)
n=1

Thus something which immediately implies we’re done.

O Theorem 59

Ezxample 60. Let

coz{a:(al,ag,...):nli_{goanzo}

Set
|all = supla,|
n>1
Then

co={w:co=>C:lp|= sup |p(a)] <oco}
llafl<1

Set e, = (0,...,0,1,0,0,...). For a € ¢y, we then have
N
= 1.

18



Let ¢(ey,) =z, € C; then |x,| < |¢||. Let

G T TN
x| e ]
Then -
| e || = max <1
||
(where
0
0]
is taken to be 0). Then
T T2 TN
P(@N)= Lo+ —2ag++ oy
|21 |2 |z
N
=D o
i=1
< el x|
< el

Let N — oco. Then 0o
(zn:n €Nl =D |2:| < [l

=1

So (zp, : n € N) € £1. Conversely, if z = (z,, : n € N) € {1, define

wr(a) = Z ATy

which then converges absolutely, as
|antn| < [lall|zn|

Then
o0
lpa(a)l < Y llallleal = llall il
n=1
So ¢, is continuous, and ||¢.|| < [|z|l1 < |l¢z]| (as shown above). So ||| = ||z||1- So ¢f = ¢;.

We now look at B(co) and B(cp, loo). If T € B(co, lo), then

and
[tnlloe = supltin| < [T|llen| = 1T
i>1
Then
N N 5
TZ An€n = Z apTe, = Z anty
n=1 n=1 n=1
and

e} N N
. . —
T Z An€n = nh—>120 Z apTe, = nh—>Holo Z an t
n=1 n=1 n=1
where this latter limit exists if T" is continuous. We can think of T as having an oo x co matrix (t;; : ¢ > 1,5 > 1)

with columns ¢,, € o, and
sup||ta e = |||
neN
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Observe that the n'™® entry of T'(ay,as,...) is

o0
E tnja;
j=1

So the linear map

on(a) = (TT,0,) = tn,a;

JjeN
is continuous, where 6, = (0,...,0,1,0,...) € ;. Then
lenll < IT0:llx = (1]

Let 7 = (tn; : j € N) € £1; then ||r, |1 < ||T|.
On the other hand, suppose {r, : n € N} C ¢ satisfies

sup|lrn|l = R < o0
neN

Then T': cg — £~ given by
(T ) = (d,rn) = Zrnjaj
JEN
Then
(T @)l < llalllrnlls < Rlla]

So Ran(T') C £, and ||T|| = R. When do we have T € B(cp)? Need t,, = Te, € ¢o. If each t,, € ¢g, then

N N -
TZaiei = Zai t; €co
=1 =1

Ifd e cp, then

which exists by continuity. But ¢ is closed inside ¢oo. So T@ € ¢o. Thus T € B(cp) if and only if the rows of
T have bounded ¢; norm and the columns of T are in ¢g.

Proposition 61. If X is a Banach space and M C X is a closed subspace, then M is a Banach space.

Proof. For m € M, we have ||m/| s = ||m||x, so M is a normed vector space. Then M is a closed subset of a
complete metric space, and M is complete. O Proposition 61

Ezample 62. Let A(D) the disc algebra be the set of f(z) that are continuous on D and analytic on . Set

1l = lflloc = suplf(2)|
z€D
Clearly A(D) C C(D). For f, € A(D) with (f, : n € N) = f in C(D) (i.e. uniform convergence). Then f is
analytic on D because uniform limits of analytic functions are analytic. Also observe that for f € A(D), the
maximum modulus principle yields

Il = st (2
We can consider A(D) C C(T), where
T={zeC:|z]=1}

Consider R: A(D) — C(T) given by R(f) = f [ T. Then ||[Rf|| = ||f||; i.e. R is an isometry. So R(A(D)) is a
subspace of C(T) with the same norm, same linear structure as A(D). (They are isometrically isomorphic.)
So we can consider A(D) as a subspace of C(T). It is, in fact, closed, as we know it is a complete subspace.
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Interest: Fourier series. For f € C(T), we can set

f(n) = %f(exp(i@)) exp(—ind)do

for n € Z. For f € A(D), we have
e
n=0

Thus has radisu of convergence > 1. Also f is continuous on D, so

= i apr"z" = f(rz)
n=0

satisfies f, — f uniformly. Recall
Theorem 63 (Abel’s theorem). For f € C(T), recall we can write
[~ Z f n)r" exp(2nf)
though this doesn’t always converge. However, if z = rexp(if) for 0 <r < 1, then
Z f n)r"™ exp(ind)
s harmonic on D

Then f,(exp(i6)) — f(exp(if)) uniformly. If f(n) =0 for n <0, then
=Y f(n)z
n=0
is analytic, so f € A(D). Thus

~

AD)={feC(T): f(n)=0forn<0}

—0o0
ﬂ ker ¢,

n=-—1
where ¢, (f) = f(n).
Definition 64 (Quotient spaces). Suppose X is a Banach space, M C X is a closed subspace. Set
X/M={it=x+M:2€X}
be the collection of cosets of X/M with the quotient vector space structure. Define the quotient norm to be
&[] = inf [lz+m]|
meM
Proposition 65. X/M is a Banach space.

Proof. We check that it is a norm:

L. Clearly [[Z]| > 0. If [[Z]| = 0, then there is (m,, : n € N) in M such that ||z +m,| — 0. ie. z+m, — 0.
Butz+m, € x+ M and z + M is closed. So 0 € M and & = 0.

21



2. For t # 0, we have

ltz]| = inf |tz 4+ m]]
meM

inf ||t !
inf [[t(x +m')|

[t inf [z +m/]|
m’'eM

= [t][|]]
3. Note that

li+3l = it llo+y-+m]

inf ||lz4+m+y+n|
m,neM

< inf
< _inf_ (o ml+ iy +nl)

= [lzll + llyl

We now check completeness. Suppose (4, : n € N) is a Cauchy sequence in X/M. Drop to a subsequence
such that ||#,—1 — &,| < 27". Recursively choose y,, € X such that
L gn =@y
2. |yn—1 —yal <277
We pick y1 = 1. Now,
1
L ol = inf o
1> lir = sl = ity — 22—
Pick ms such that

1
[y1 — (@2 + m2)|| < 1

and set yo = x5 + mo. Given y,, note that

and pick m € M such that
1
goer > o — e + )]

Then set y,4+1 = Tpy1 +m.
Then (y, : n € N) is Cauchy in X. So
y= lim y,

n—oo

exists by completeness of X. Check then that &, = y, — ¢. So X/M is complete, and it is a Banach space.
0 Proposition 65

Proposition 66. For a Banach space X, M a proper closed subspace, we have that the map Q: X — X/M
by Qr =& has |Q|| =1 and ker(Q) = M.

Proof. Well,

Q|| = [|]

= inf ||z + m||
meM
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Thus ||Q|| < 1, and @ is continuous. But M # X; so there is 2 € X such that & # 0. Then
[&] = inf flz+m]
meM
For € > 0 there is m € M such that ||z +m|| < ||Z|| + €. Then

1@z +m)| ]

1Rl = .
le+ml =[] +e

which approaches 1 as € — 0. [0 Proposition 66
Observe that kerQ = {z: 2 =0} = M

Example 67. Consider C(X) where X is a compact Hausdorff space. Suppose E C X is closed. Set
I(E)={feC(X): f E=0};this is a closed subspace. Consider C(X)/I(E). For g € C(X), we have

g|| = inf 4 flloo = inf su z)+ f(x)| = su )| = FE
Il = 1nf llg + flloe = inf suplg(z) + f(z)] = suplg(x)| = llg T ]|

Suppose ||g | E|| = 1. Let

h(z) = {zz =1

= |zl >1

2]
Then [[hllcc =1, 80 ||hoglleo=1. Also hog [ E=g. Set f =g—hog e I(E). Then
lg = fll=1lhogll=lg I Ell =1

Thus ||g|| = |lg | E|. We then have the following map g € C(X) — g | E € C(FE) which factors as
g— g€ C(X)/I(E) followed by an isometry. Tietze’s extension theorem then says that R maps onto C'(E).
Thus C(X) = C(...)/I(E) = C(F) something

3.2 More on Hilbert spaces
Definition 68. Suppose H is a Hilbert space; suppose z,y € H. We write L y (z is orthogonal to y) if

(x, y> =0.

Remark 69 (Pythagorean law). In this case we have

lz+y|?=(zx+y,z+y)
= (v, 2) + (z,y) + (¥, z) + (y, )
= |lz)* + |lylI?

Definition 70. We say { e, : a € I} is orthonormal if

1 a=p
s = 6& =
(eases) ? {0 else
Remark 71. If {ey,...,e, } is orthonormal, then
n 3
el = <Zai|2>
i=1

As motivation for our definitions of convergence, note that in R, we have that an infinite sum doesn’t
converge, converges conditionally (in which case rearrangements can converge to anything), or converges
absolutely (in which case it is rearrangement-invariant). In R™ we have a similar situation except that in the
case of conditional convergence, there is an affine subspace of vectors to which it can converge.
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Definition 72. In a Banach space X, a sum
o0
> e
n=1
converges absolutely if

)
n=1

It converges unconditionally if all rearrangements converge to the same sum. It converges conditionally if

n
Yn = g Tk
=1

converges but not unconditionally.

Remark 73. If -
L= Z||:I:n|| <
n=1

then for any € > 0 there is V € N such that

9]
Y llzal > L -
n=1

So
n
Sp = Z ZT;
i=1
are Cauchy, since for n,m > N we have
n
lsn = smll < Y llzill <&
i=m-+1
If

Z T (1)
i=1

is a rearrangement, then there is M such that {1,...,N} C {#(1),...,7(M) }. To look at all rearrangements
at once, let A = { F Cq, N} where F < G if F C G. Set

Sp = E ey

neFl

Then if sp — x, this means that every rearrangement converges to z. In our case, if F,G D {1,..., N } then

lsr —scl < D llaill <e

IEFAG
so it is Cauchy, and thus converges. So absolutely convergent implies unconditionally convergent.

Theorem 74. Suppose H is a Hilbert space with { e, : « € I} is an orthonormal set. Let

M =span{e,:a€l}
Then

1. {eq i a € 1} is linearly independent. Moreover, we have

dist(eq,span{eg: f #a}) =1
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2. Suppose x € H. Let xo = (x,eq). Then

> lzal® < falf?

acl

(This is the Bessel inequality.)

3. If
§:|mo¢|2 < 00
acl
then
Zxaea
acl

converges unconditionally.

Px = Z ToCa

acl

is a continuous linear map H — M with P> = P and | P|| = 1.
5. Px =0 if and only if x L. M.
6. If v € M, then

Proof.
1. 1
dist(ca, span{es - # a}) = inflea — 3 oesl = inf (14 Y lys?)* =1
finite
2. Let F Cgy I, with
P =) Tata
aEF
Then
0l — sl
= (z,z) — 2Re(x, sp) + (sp, sF)
= HCCH2 - 2Re<z<x,maea>) + <Z Ta€a, Z xaea>
acl a€F acF
= ||* —2Re > Talz.ea) + Y TaTa
acel acF
= [ll> = > laal?
acF
So
> lzal® < 2l
acF
and
2 2 2
Tn| = SUup ol < ||lx
> lzal S > lzal® < |

aEF
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Note that )
: = : > —
(araa 20} = Ufasfoal = 1}
n>1
is therefore countable, since each unionand has cardinality

[ES
S 3

n2

= 712||:EH2 < 00

. Suppose

L= Z\xa|2 < o0
Sp = Z Tala

For F Cgy 1, let

acl
Then
sup [|sp|> = sup > |za* = |zal* =1L
Fgfinl FgfinlaeF
Pick Fy such that
> lzal?>L—¢
a€Fy

If F,G D Fy then

HSF—SGH2: Z TaCa — Z TaCo

aEF\G QEG\F
I
a€EFAG
< D lwal? = D fzal
aeFUG ackFy
<L—-(L—¢)
=&

So { sr } is Cauchy, and thus converges unconditionally.
Ezxample 75.

converges unconditionally since

— 00
n2
n=1
but not absolutely since
|1 1
> nenll = > oo
n=1 n=1

. By (2) and (3), if z € H, then (z, : a € I) is square-summable and
Pz = Z ToCo

is well-defined, and further that

1P| = lzal* < Jalf?
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So ||P|| <1 and P is linear; so P is continuous. Let y = Px € span{e, : o € I } = M. Then

(Y, eaq) = li§n<3F7€a> = FlDi?}x}<xaea + Z LBER, Ca
BEF\{a}

Thus
Py = Zxaea =Y
i.e. P(Px) = Px and P2 =P. If y € span{e, : a € I }, say

Y= Zyaea

acF

then yg =0 for 5 ¢ F, and

SG:Zyaea: Z Yala =Y

acG aceGNF
ifGDF.

Pr=0 < (x,eq) =0 for all

— z L Zaaea for all F Cg, I, all (aq:a € F)

acF
— 1M

by continuity. So ker(P) = M=.
If v € H with y = Pxr € M, then x —y = (I — P)x, and

<(E—y,€a> = <.T,€a> - <yaea> =0
foralla. Soz —y L M. Bt z =y + (z — y), and

l[* > lyl* + Il — v

M- is the orthogonal complement of M. We call P the orthogonal projection of H onto M.

6. If y e M,
SF = Z Yaba
acl
then
Isel® =" lyal®
acEF
Then sp — vy, so
Iyll> =1im > fyal® = |yal?
acF

O Theorem 74

Definition 76. An orthonormal basis for a Hilbert space H is an orthonormal set { e, : @ € I } such that

H =span{e,:a €I}

Theorem 77. FEvery Hilbert space has an orthonormal basis.
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Proof. Order all orthonormal sets by inclusion. Suppose

C={&}

with 81 < B2 = &s, C &g, is a chain. Then
e=Jé&s

is a set of vectors. Suppose e, f € £, say e € Eg,, f € Ea,. Say 1 < fa; then e, f € &,, and (e, f) = 0. So
£ is an orthonormal basis, and is an upper bound of C. By Zorn’s lemma, we have that H has a maximal
orthonormal set £ = {ey:a €I}, Let M =span{e,:a €}

Claim 78. M =H.

Proof. Suppose otherwise; suppose we have x ¢ M. Let y = Pz € M; let z = (I — P)x € M*; then z # 0,
and

r=y+z
Let .
TP
Then £ U { e} is orthonormal, contradicting maximality of £. So M = H. O Claim 78

0 Theorem 77
Corollary 79. Fvery closed subspace M of a Hilbert space H is the range of an orthogonal projection.

Proof. M is a Hilbert space so there is an orthonormal basis { e, : a € I} for M. Define

Pz = Z(x, €a)Ca
as before. [0 Corollary 79

Theorem 80. If H is a Hilbert space and p € H* (i.e. ¢ is a continuous linear functional), then there is a
unique y € H such that p(z) = (x,y) and ||yl = |||

Proof. Let { e, : a € I'} be an orthonormal basis for H. Define a, = ¢(e,). For F Cg, I, look at

> azea|| = gl (Z Iaal2> é

w(Z aa6a> = > @plea) = ) _laal* <l

aeF a€F acF acF acF
So
1
2
(Zlaal2> < el
a€cF
and
1
2
sup (D laal® | < lell
FCeinl acF
Define
y:Z@ea
Then

1
2

vl = (Ylaal?)” <l
xr = Zxaea
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For z € H, write



Then
> lzal? = [|z]* < oo
Then

(z,y) = <Z%€a Zyﬂeﬁ>
- lig1<z TaCa Zyﬁeﬁ>

aEF

= li}?n Z TaYao

aEF
= Z ToUe by Cauchy-Schwarz

But

So (x,y) = p(x). Also

lell = sup [p(z)] = sup |(z,y)| < sup [lz[[lyl] = |ly]
el <1 el <1 el <1

by Cauchy-Schwarz. So ||y|| = ||¢|. O Theorem 80
Remark 81. The map ¢ — y is conjugate-linear. So H* is anti-isomorphic to H.

Definition 82. The dimension of H (dim(#)) is the cardinality of an orthonormal basis.

Proposition 83. dim(H) is well-defined.

Proof. Tf dim(H) < oo, then the cardinality of a basis is well-defined. So suppose H is infinite-dimensional.
Suppose {eq :a €1} and { fg: f € J} are orthonormal bases. For all « € I, set

Ba:{ﬁeJ: <ea7fﬁ>7é0}

Then this is countable and non-empty because

1= Jleall® =) leas fo)l?

BeJ

Conversely, for all 8 there is « such that (e, fg) # 0 by the same reasoning. So

J:UBa

acl
Thus
7] < Bal < IR0 = |1]
aecl
Similarly, we have |I| < |J|. So, by Cantor-Bernstein-Schroeder, we have |I| = |J]. O Proposition 83
Definition 84. A unitary is a linear map U: H — K of one Hilbert space onto another such that | Uz|| = ||z||.

Remark 85. This implies
Uz, Uy) = (z,y)

for all x,y € H.
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Proof. If F =R, then
ety zxy) = |z)* £ 2z, y) + [ly|?
= (,y) = |z +ylI* — [l - y?
If F =C, then

_ e+l =z — gl + =+ iy)|* — il — iy]?
<x7y> - 4

0 Remark 85

Ezample 86. L*(T,m) with

2m
112 = 3= | I#(exptio)) s

So

en = exp(inf)

are orthonormal. Then

span{ e, : n € Z} D trig polynomials = C(T) = L?
Ezample 87. (2(Z) has orthonormal basis 6,. Uf = f.

f o~ fexp(ind) ~ (f(n) :n € Z)
is a unitary map.

Definition 88. A subset A of a topological space X is nowhere dense if A has no interior. A subset B of a
complete metric space is said to be of first category if it is the countable union of nowhere dense sets.

Theorem 89 (Baire category theorem). If X is a complete metric space and B C X is of first category,
then X \ B is dense in X.

Sketch. Let U C X be open; suppose « € U. Choose r > 0 such that b,(z) C U. It suffices to find y € b,(x)
such that y ¢ B. Write

(@

B = A,

n=1

with 4,, has no interior. Find z; € br(z) and 1 > 0 such that r; < % and

b?”l(xl) QE: 0

Recursively find 2,11 € b, (z,) such that

brn+1 ((En+1) N An+1 = (Z)

and rp11 < 2. Then (z, : n € N) are Cauchy, and thus converge to x € X; then

T € ﬂ by (27)

neN
and = ¢ B. O Theorem 89

Corollary 90. If U; are dense open subsets of a complete metric space, then

is dense.
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Theorem 91 (Banach-Steinhaus, or uniform boundedness principle). Suppose X,Y are Banach spaces;
suppose A C B(X,Y). Suppose that for all x € X we have that

sup |Az|| = ky < 00
AeA

Then
sup || 4| < oo
AcA

Proof. Let B, ={x € X :k, <n}.
Claim 92. B,, is closed.
Proof. Suppose (z : k € N) in B,, with x — x; suppose A € A. Then
Az = lim | Az < n
So z € B,, and B, is closed. O Claim 92

But -
X=|]JB.
n=1

By Baire category theorem, we then have that there is some ng such that B, has interior; say b.(x¢) C By,
Now, if z € X with [|z|| <1, then g + rz € B,,; but then

0*

A —A
R e
1
< L1 AGzo + o) + 1 Azol)
2y
T

So

2
sup sup ||Az| < LIPS
lzl|<1 A€A r

[0 Theorem 91

Remark 93. We didn’t use that Y is a Banach space. Given Y a normed linear space that’s not complete,
we could always embed Y in its metric closure, which turns out to be a Banach space, and then apply
Banach-Steinhaus.

Corollary 94. Suppose X,Y are Banach spaces; suppose (T,, : n € N) are in B(X,Y) such that

lim T,x
n—oo

which we define to be Tx, exists for allx € X. Then T € B(X,Y).

Proof. Since T,,x — Tz for all x € X, we have that

sup||Tnz|| = ky < 00
n>1

By the uniform boundedness principle, we have

sup||T|| = L < o
n>1

Thus
|T2)l = lim ||T,z] < Lz
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So T is continuous. Also, T is linear, since

T(ax +y) = lim T,(azx +y)
n—oo
= lim (aThz + Tphy)
n—oo
=alx+Ty
SoT € B(X,Y). O Corollary 94

Theorem 95 (Open mapping theorem). Suppose X,Y are Banach spaces. Suppose T € B(X,Y') is surjective.
Then T is open. (That is, for open U C X, we have TU is open.)

Proof. We are given that
Y =TX = | T(ba(X))

n=1

By the Baire category theorem, there is ng € N, ¢ € X, and r > 0 such that
Ty (X)) 2 by(0)

Note then that

= b (0)
and
T(ba (1)) = n%T(bno @)
To
20 ()
So

for some p > 0.

Claim 96. Ife > 0, then

T(br4e(x)) 2 T(b1(x))
Proof. Fix y € Thy(x). Pick zg € X with ||zg] <1 and

ep
720~ ) <
Let yg = Txg; then
5
ly — ol < 5P
So
y—yo € T(bg)
€
= ST ()
€
2 pr(o)
= bz (0)
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Pick z; € X with

€
Joall < 5
such that ep
[Tx1 — (y —yo)ll < T
And again let y; = T'z;. Recursively select z,, 11 € X with
€
[#n41]l < ontt
and p
lom+1 = (W —=yo —y1— - — )l < ont2

where y,+1 = Txp41. Let
o0
T = E Ty
n=0
This converges because

3zl <1+22in —14e
n=0 n=1

and in particular we also get ||z|] <1+ ¢. Then

Tx = i Tx,
n=0

So

So

Let € — 0. Then
T(b1(x)) 2 b,(0)

Let U be open; suppose « € U. Then there is r > 0 such that b,.(z) CU. Let y = T'z. Then
T(U) 2 T(br(2))
=Tz + T(b.(0))
DTx + b% (O)
=b:(0)

So TU is open.

0 Claim 96

[0 Theorem 95

Theorem 97 (Banach isomorphism theorem). If X, Y are Banach spaces and T: X — Y is a continuous

linear bijection then T is an isomorphism. (i.e. T~ is also continuous.)

Proof. T is surjective, so it is open by the open mapping theorem. T is injective, so ! is well-defined and

linear. If U C X is open, then (T-1)~1(U) = T(U) is open. So T~! is continuous.
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Corollary 98. Suppose X,Y are Banach spaces. Suppose T € B(X,Y) is surjective. Then we have the
following commutative diagram

X s Y
X %
X/kerT

and in particular we have T is an isomorphism X/ ker(T) — Y.

Proof. T is continuous so ker(T) is a closed subspace. So X/ker(T) is a Banach space. Define T'(z) = T'z;
this is well-defined since if 1, x5 € &, then x; — x2 € ker(T'), and
TI’Q = TIl + T(I‘Q — 1’1)
=Tx14+0
= Tl‘l
Also

IT|| = sup [T
e <1

= sup [T|

inf,, cker () llz+m||<1

= sup IT (2 +m)]|

inf,, cxer(r) lz+m|| <1

< sup Tz +ml|

infm,Eker(T) Hx-&-m” <1

If ¢ > 0 then there is x +m € & such that
lx+ml|<(1l—e)+e=1

So this yields 7| = |IT||. So T is continuous and bijective. By the Banach isomorphism theorem, we have
that T' is an isomorphism. O Corollary 98

Corollary 99. Suppose X is a Banach space with respect to two different norms ||-||1 and ||-||2. If there is a
constant C' such that
2]z < Cllel

for all x € X, then there is C' such that
1]l < Cllz ]2

forallxz € X.

Proof. Hypothesis says that
idx: (X, []-l1) = (X, [112)

is a continuous, linear bijection; so it is an isomorphism. So
. _ =1
]l = llGdx) " all1 < [lidy"[[llzl2
O Corollary 99

Corollary 100. If X is a finite-dimensional vector space over F € {R,C}, then any two norms on X are
comparable. So the topology with respect to any norm is the usual metric topology in F™.

Proof. Let ||-||1 be some norm on X = F". Fix a basis ey, ..., e,. Define the usual norm on X by

1
n 2
2 i=1

34

n
E Ti€
i=1




Then

n n
Yowe| <Y lwillledh
i=1 i=1

n % n 2
< <Z|x1|2> <Z|ei%> by Cauchy-Schwarz
i=1 i=1
n
S
i=1

so id: (X, ||-]l2) = (X, |I|l1) is a continuous bijection; so it is an isomorphism.
Alternative proof: let S = {z € X : ||z||2 = 1}; then this is compact. So id(S) is compact in (X, [|-||1)-
But 0 ¢ S; so

1

-

=C

2

inf = 0
infllzfly =7 >
So ||z|l1 > r|x||2, and
Izl < el
2 < Zlizlh
O Corollary 100
Definition 101. If T: M C X — Y is linear, the graph of T is

G ={(x,Tx) e XY }

(Note that X @Y is a Banach space with norm ||(, )| = ||lz|| + |ly]| (or (|| + ||y||)2, which produces an
equivalent norm).) T is called closed if G(T) is closed.

Theorem 102 (Closed graph theorem). If T: X — Y is linear (and defined on all of X ) and T is closed,
then T is continuous.

Proof. We have the following commutative diagram

X T Y

where m; and 7y are both continuous. So m; is injective and surjective to X; so 7y 1'is continuous. So
T=m0 Wfl. [0 Theorem 102

Corollary 103. Suppose T: X —'Y is linear; suppose that whenever (x, : n € N) = 0 and (Tz,, : n € N)
converges, we have that (Tx, : n € N) = 0.

Proof. Suppose ((xn, Tx,) :n € N)isin G(T) and converges to (zg,yo) € X @Y. Then (z, —x¢ : n € N) — 0.
So
T(xn —x0) =Ty, — Tz — yo — Txo

By hypothesis, we have yo — Tzg = 0, and y = Txg. So G(T) is closed. O Corollary 103
Ezample 104. Suppose H is a Hllbert space; suppose T: H — H is linear and (T'z,y) = («Ty) for all 2,y € H.
Claim 105. T is continuous.
Proof. Suppose x,, — 0; suppose Tz, = y. Then

Iyl = {y. y) = lim(Twn, y) = lim{wn, Ty) =0

since the z,, — 0. So y = 0. By closed graph theorem, we have that T is continuous. O Claim 105
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Example 106. H = 5. Let

—
o

is continuous with ||D|| = 1. But Ran(D) is not closed as

11
(1, 313 ) ¢ Ran(D)
D is injective and D: 5 — Ran(D) is bijective. Then
G(D™) ={(Dz,z):x €t}

is closed because D is continuous. So D~! is closed but not continuous, as D~*(e,) = ne,, is unbounded.

3.3 Some Fourier series

Definition 107. If f € L'(T), define the Fourier coefficients

A 1 2

fn)=o=[  f(0)exp(—inb)db

27T 0
for n € Z. For N > 0, define
N
Sn(f)= Y J(k)exp(ikf)
k=—N

Remark 108. The functional ¢, (f) = f(n) is continuous on L!(T), and hence is continuous on C(T) and on
LP(T) for 1 < p < oo. So the Sy are also continuous on the above.
Recall also that the trigonometric polynomials

N
{p(Q) = Z ay exp(ikf),a, € C,N > 1 }

k=—N

are dense in C(T) by the Weierstrass theorem. We also have C(T) is dense in LP(T) if 1 < p < oo by Lusin’s
theorem. So the trigonometric polynomials are dense in LP(T) if 1 < p < oo. (We also have that f € L™ is a
bounded pointwise limit of continuous functions.)

Perhaps there is hope, then, that Sy(f) — f in L? or C(T): if
If —pll <e

then
[1Sn(f) = Sn@) < [ISnllllf = pll <ellSnl|

So
1SN (f) = fIl < 1Sn(f) = Sn ()| + [[Snv(p) — pll + [lp = fII < (SNl + DILf = ol

for N > deg(p). The problem is that the ||Sy|| could blow up.
Good news: in L?(T), we have that {exp(inf) : n € Z} is an orthonormal basis for L?(T), and

f(n) = (f, exp(ind))
So Sy is the orthogonal projection onto

spanexp(inf) : —N <n < N
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So [|Sy]| =1 for all N >0, and Sy (f) — f for all f € L*(T). If 1 < p < oo, then

sup ||Snl|B(Lry < o0
N>1

So Sy(f) — fin LP.
Not so nice in L'(T) or C(T). Note, however, that

Sn(f)(0) = Z F(k) exp(ik0)
2m
= Z o / f(t) exp(—ikt)dt exp(ik6)
=5 f(@) ( Z exp(ik(0 — t))dt
0 k=—N
1 2
= o [ DN -0yt
where N
Dy(z) = Z exp(ikx)
k=—N
We estimate ||Dy||1:
N
Dn(6) = Z exp(ik0)
k=—N

_ exp(i(N + 1)8) — exp(—iN0)

exp(id — 1)
oIV +1)0) —ep(-i(N+ 8 2

2 exp(ig) — exp(—ig)
B sin((N + 3)60)
sin(£6)

So Dn(0) = 2N +1; 50 ||Dn|lec = 00 a8 N — co. Also

1D 1 /2“ sin((N + 3)0)
! 2m Jo

i (2)
7 /( 2
2

(N+3)7m |
_2 / 2 de (using the substitution x = <N + 1) 0)
0 x

do

do

0
™

i 2N k+1)Z .
2 (7 sin(x) 2 ( 2 |sin(z)
z d z
/o tr2 /

|
o de
i X i % (k+ 1)5

Y4
3 |
W~ |
3
3
5
+
—

@
=
)

=

g

Q
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Theorem 109. For 6, € [0, 27|, we have that

{f€C(T): Sn(f)(60) = f(o) }
18 of first category.

Proof. It Sn(f)(00) — f(6p), then
{Sn(f)(0o) : N =1}

is bounded. Consider the functional

YN (f) = Sn(f)(bo)

1 27
= [ f(®)D (B — t)at

2 0
We can pick f. € C(T) such that
1 Dn(6p—t) > ¢
fe(t) =4 -1 Dn(fp —t) < —¢

piecewise linear else

But 4
Un ()l = IDx ]| = 5 log(N) = oo
But || f:llec = 1. So

sup [[¢n | = oo
N>1

By the uniform boundedness principle, there is f € C(T) such that |¢n(f)| = oo. In fact, from the proof, we
have that
{f:Sn(f)(8p) is bounded }

is of first category. 0 Theorem 109

Corollary 110.
{feC(T): Sn(f)(0) is bounded for some 6 € QN [0, 27] }

18 of first category.

Theorem 111 (Carleson, 1962). If f € LP(T) for p > 1 (which then contains C(T)) then Sn(f) — f almost
everywhere.

Proposition 112 (Kolmogorov, before 1960). There is f € L*(T) such that Sy (f) diverges almost everywhere.
Theorem 113. The map

A: LYT) = co(Z)

f=f
18 injective and bounded but not surjective.
Proof. Well,
N 1 2w
| =55 [ stexption exo(-in)as
0
1 2
<5 | Iftesp))ias
= Ifll

~

So [|Af]| = suplf(n)| < [ f]]x-
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Lemma 114 (Riemann-Lebesgue lemma). If f € LY(T), then |f(n)| — 0 as n — .

Proof. If £ > 0, pick p a trigonometric polynomial such that ||f — p||s < e. Then

for |n| > deg(p).
So Af € ¢o(Z).
Claim 115. A is injective.
Proof. Suppose f € L'(T); suppose Af = 0. Then
1 2
f(0) exp(—inddf = 0
o

for all n € Z. So
1 27

o [ H@we)d =0

[J Lemma 114

for all trigonometric polynomials. But for g € C’ (T), there exist trigonometric polynomials p,, — ¢ uniformly

with [[pnlles < [|g]lec- So

1 2m 1 2m
=5 | SOw)a8 o [ f0)g(0)as
by Lebesgue dominated convergence theorem. Find bounded g, with
f(9)
% —_
£ (0)]
almost everywhere. Then
1 1 2m
0= o [ 10000 - [T 71

So f = 0 almost everywhere.

Claim 116. A is not surjective.

O Claim 115

Proof. If A were surjective, then by the Banach isomorphism theorem A would be an isomorphism. So for all

f € LY(T) we would have
£l < ClIASflloo

But || Dy|l1 & 25 log(N) and [|[AD, || = 1, contradicting the above.

We can do better using the Cesaro means (via Fejér’s theorem) or

oo

f(rexp(if)) = Z rI¥ 7 (k) exp(ikf)

k=—o0
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3.4 Hahn-Banach theorems

Definition 117. Suppose X is a vector space over F € {R,C}. Suppose f: X — F linear is a functional. A
function p: X — R is sublinear if

L p(z+y) < p(x) +py)
2. p(tx) =tp(x) ift >0
FEzample 118.
1. If X is normed, then p(x) = ||z| is sublinear.

2. If X has a topology and U € O(0), then

Urw=x

E>1

If we further have that U is convex, we can define the Minkowski functional by
pu(z)=inf{t>0:2€tU}

It is easily seen that py(sz) = spy(x) for s > 0. If py(z) = s and py(y) = ¢, then z € S'U if s’ > s and
yet'Uift' >t. So

1 1
By convexity of U, we then have that
r4+y s 1 1

= — —_— U
s+t s’—i—t’s’ers’—i—t’t’yE

Sox+ye (s +t)U, and py(z+y) < s +t'. Letting s’ — s, ¢ — ¢, sublinearity falls out.

Theorem 119. Suppose My is a real vector subspace of X (where X is a real vector space). Suppose p is
a sublinear functional on X. Suppose fo: My — R is a linear functional. Suppose fo(m) < p(m) for all
m € My. Then there is f: X — R linear such that

1. f I Mo =fo
2. f(x) <px) forallz € X.

Proof. Extending by 1 dimension, if My # X, pick z € X \ My. Let M = My + Rz; try to extend the
definition of fy to f: M — R. In order to set f(z) = a € R, we need

f(m+tx) < p(m+tx)
Ift >0, we get f(m) +tf(z) < p(m+tz); if t <0 we get f(m) — [t|f(z) < p(m — [t|2).
Case 1. Suppose ¢ > 0. Then we need
tf(z) < p(m+tx) — f(m)

p(m + tx) — f(m)
t

a=f(z) <
Case 2. Suppose t < 0. Then we need
f(m) —p(m — [t|z) < [t[f(z) = [t|a
SO

flm) = plm = [tl2) _
o -
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Conversely, if we can find a satisfying the above, then we define f(m + tx) = f(m) + ta to get the desired
extension. We then need

sup f(m) — p(m — sx) <a<  inf p(m +tx) — f(m)

$>0,meMo S t>0,me Mo t

If m" =, then

LHS = sup (f(m') — p(m’ —2))
m’ €My

. ’ - /
RHS = m}g}f% p(m' + ) — f(m')
Claim 120. LHS < RHS.

Proof. Otherwise there is my, mo € M such that

p(ma +z) — f(m2) < f(m1) — p(m1 — z)
and
p(mi +ma) < p(ma + ) + p(m1 — ) < f(m1 +ma) < p(my + ma)

a contradiction. O Claim 120

So we can extend (fo, My) to (f, M) by choosing any a € [LHS, RHS].
We now use Zorn’s lemma. Consider

E={(M,f): My C M asubspace, f: M — R linear, f | My = fo, f(z) < p(z) for all x € M }

We can equip this with the partial order (M, f1) < (Ma, f3) if My C My and fy | M7 = fi. Suppose now
that C = { (M4, fo) : € I} is a chain in £ with I a total order and o < 8 in I implies (M, fa) < (Mg, f3).
Let

M = U M,
a€el

Then M is a vector space containing all of the M,. Let
f= U Ja
acl

Then f is linear and f | M, = f,. So if € M, then there is a € I such that © € M,; then f(z) = fo(z) <
p(z). Also My C M, C M,s0 f | My=fo| My= fo. So (M, f) € € is an upper bound of C.
So, by Zorn’s lemma, we have that £ has a maximal element (M, f).

Claim 121. M = X.

Proof. Otherwise there is z € X \ M. Let M, = M + Ra. By the first part of the proof, we can extend fto
f1 on My with (M, f) < (My, f1), contradicting maximality. O Claim 121

O Theorem 119

Theorem 122 (Hahn-Banach theorem). Suppose X is a Banach space, My C X is a subspace (not neceessarily
closed). Suppose fo € M is a bounded linear functional on My. Then there is f € X* such that f | My = fo

and || £ = |/ foll-
Proof.
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Case 1. Suppose F = R. Define p(z) = || fol|||x]|; thus is positive-homogeneous and satisfies the triangle
inequality, so is sublinear. Also fo(m) < || follllm|| = p(m) for all m € My. So, by the previous theorem,
there is a linear functional f € X* such that f | My = fo and f(z) < p(z) = || foll/l|z|| for all z € X.
Then

—f(@) = f(=2) < p(=x) = | follll]|

SO

=l follll=ll < f (=) < [l follll]l
Le. [f(@)] < [lfollll]l- So [[f[l = Il foll
Case 2. Suppose F = C. Think of X as a vector space over R. Let go(m) = Re(fo(m)) for m € My. Then

go(m) < |fo(m)| < [ folllml]

By the first case, we can extend gg to a continuous real linear functional g: X — R such that g [ My = go
and ||g]| < llgoll < [l foll-
Define f(z) = g(x) 4+ ig(—iz). Then f is continuous and R-linear. Also,

flix) = g(iz) 4 ig(—i(iz))
i(g(x) + (=i)g(iz))
i(g(x) + ig(—iz))

(

~

So f is C-linear. Also, if m € My, then

f(m) = g(m) +ig(—im)
= go(m) +igo(—im)
= Re(fo(m)) + i Re(fo(—im))

= fo(m)
since if fo(m) = a+1b, then fo(—im) = —i(a+1ib) = b—ia. Finally, if z € X, then f(z) = exp(i0)|f(z)];
S0
[f (@) = f(exp(—ib)z)
= Re(f (exp(i0)x))
= g(exp(—if)z)
< llgollllexp(—if)||
< [Ifollll]l
So [IFI < Il foll-

O Theorem 122
Corollary 123. If X is a Banach space with © € X, then there is f € X* such that ||f|| =1 and f(x) = ||z||.
Proof. Define fo on Fz by fo(Az) = A||z||. Then

Alll|
[foll = sup =
ek [[Az]|
We can then extend by the Hahn-Banach theorem. O Corollary 123
Corollary 124. If x € X then
e = sup  [f(z)]
fex= | flI<1
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Proof. Well, |f(z)| < |Ifllllzll < |lz|]. But by the corollary there is f with ||f|| = 1 and f(z) = |||
O Corollary 124

Corollary 125. X* separates points of X.

Proof. Suppose x # y. Then there is f € X* such that f(z) — f(y) = f(x —y) # 0. So f(z) # f(y).
O Corollary 125

Corollary 126. Suppose X is a Banach space with M C X a closed subspace. Suppose x ¢ M. Then there
is f € X* with || f|]| =1 such thatr | M =0 and f(z) = dist(z, M).

Proof. Let q: X — X/M be the quotient map. Then ¢(z) = & # 0. Then

e
il = inf [lo —m] = dist(z, M)

By one of the previous corollaries, there is g € (X/M)* such that ||g|| = 1 and g(&) = ||Z||. Let f = gog;
then [ f[| < [|gllllgll =1-1 =1, and

f(x) = g(&) = [|£]| = dist(z, M)
Furthermore, for m € M, we have f(m) = g(mm) = g(0) = 0. O Corollary 126
If X is a Banach space, there is a natural map X — X** by « — z where Z(f) = f(z).

Proposition 127. The natural map X — X** is isometric.

Proof. Well
[zl = sup  [Z(f)
fex= |fl<1
= sup |f(2)|
fex= |fl<1
= [l
by a previous corollary. L1 Proposition 127

Definition 128. X is reflerive if X = X**; i.e. the natural map above is surjective.

We get chains

and
X* g X*** g X***** g .

Proposition 129. If X # X**, then X* # X***.

Proof. If X # X**  then there is y € X**\ X. By a previous corollary, there is f € X*** such that f | X =0
and f(y) #0. Butifge€ X*and g | X =0, then g =0, and g =0. So f # g for any g € X*. So X* £ X***.
[1 Proposition 129

FEzxzample 130.
1. Suppose H is a Hilbert space. Then H* is H, and H** is H =H. So H is reflexive.

2. Suppose 1 < p < co. Then £ = ¢, for % + % = 1. Then £ = {7 = {;. So £, is reflexive. Similarly for
LP(u) for 1 < p < 0.

3. ¢ =11 and {7 = l; S0 cg is not reflexive.

4. LY0,1)* = L*°(0,1) which is not separable; so L>°(0,1)* is not separable; So L(0,1) is not reflexive.
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5. C[0,1]* = M([0,1]) D L'(0,1) (where M([0,1]) is the set of finite regular complex Borel measures). So
C[0,1]* is not reflexive.
6. If dim(X) < oo then dim(X™*) = dim(X).

Ezample 131 (Banach limits). Weant a map L which takes a bounded sequence & = (z, : n < w) of real
numbers and satisfies

1. liminf z, < L(z) < limsup z,
2. L(x) = L(Sz) where Sz = (p4+1 : n < w). (Translation-invariance.)

This is called a Banach limit. So we'’re looking for a continuous linear functional L on o, g of norm 1. Let
M =spanz — Sz : x € {oo g. We need

LLIM=0
2. If u=(1:n <w), then we need L(u) = 1.
Claim 132. dist(u, M) = 1.

Proof. Well, dist(u, M) < |ju — 0| = 1. Suppose = € lsr satisfies [[u — (z — Sz)|| = 1 —¢ < 1. Write
x = (zn :n < w); then Sz = (p41 : 1 < w). Then v — (z — Sz) = (1 — (zp, — Tpt1) 1 1 < w). So
1—(zp —zpy1) <1—¢;s0

Tngl < Tp—€<Tp1—26 << —nE

So (zp, : n € N) = —oo, contradicting boundedness. O Claim 132

By ome of the corollaries, we then have L € ¢} with ||L|| =1 such that L [ M =0 and L(u) = 1. Thus, for
x € oor We have L(z) — L(Sx) = L(x — Sx) = 0; so L is translation-invariant.

Claim 133. If x € ¢, then L(z) = 0.
Proof. Say x € ¢g. Then S,z = (x4 : 1 € N); so S"x — 0 in £o,. But
r—S"x = (x— Sx) + (Sx — S%x) +-- -+ (S" 'z — S"x)
and each summand is in M; so L(z) = L(S™x) — L(0) = 0. So L(z) = 0. O Claim 133
Take x € {o r; let

a = liminf z,

B = limsup z,,
Write z = y + 2z with o < y,, < S, 2 € ¢g. Then L(z) = L(y) + L(z) = L(y). Let

a+p b—a f—a«
2 E{_ 2 72 ]

Wn = Yn —

Let w = (wyn;n € N). Then

(#37)ors

So 5
—«

L(w)| <l < 25

So 5 5
—a -«

- < L(w) < 5
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So

So we have the desired properties.
Remark 134. We can extend L to L on log by

L(z) = L(Re(z)) + iL(Im(z))
This is translation-invariant, and if

lim z, = 2o
n— oo

then L(z) = Zoo.

4 LCTVSs and weak topologies

Definition 135. A seminorm on a vector space V is a map p: V — [0, 00) such that
1. p(tv) = |tlp(v) for allt e F, allv e V
2. p(v+w) < p(v) + p(w) for all v,w € V (triangle inequality)

Remark 136. This is not necessarily a norm because p(v) =0 =~ v =0 in general.

Definition 137. A locally convex topological vector space (LCTVS) is a vector space X with a family
P ={pa:a €I} of seminorms such that if z € X and p,(z) = 0 for all @ € I, then = 0. Put a topology
on X determined by a subbase

U(:EOarapa) = {x € X :pa(x_xo) < 7’}

Remark 138. U(xo,r,po) is convex because of the triangle inequality: if z,y € U(zo,7,ps) and 0 < t < 1,
then
poz(taj + (1 - t)y) < pa(tx) +po¢((1 - t)y) < |t|T + ‘1 - t‘?“ =r

and tx + (1 - t)y S U(x()a T7p04)'

Remark 139. We have some translation-invariance: U(zo,7,po) = xo + U(0,7,p,), and U is an open
neighbourhood of 0 if and only if g 4+ U is an open neighbourhood of xg.

Theorem 140. Suppose X is a LCTVS.
1. A neighbourhood base at 0 is given by the sets
Upr={z€X :pa(z) <r forallp, € F}
where F' Cgn P and and r > 0.
2. X is Hausdorff.
3. Addition and scalar multiplication are continuous.

4. A net (x5 : 8 € B) converges to xo if and only if po(z — x5) — 0 for all po, € P.

45



Proof.

1. Well,

UF,r: ﬂ U(O,T,pa)
pa€F

is open and contains 0. Suppose F' Cg, P and

U= m U(xa,ra,pa)
acl

is a basic open neighbourhood of 0. Well, 0 € U(z4, 7o, Pa); SO Pa(Za — 0) < 7o. Let
r= glel}}(ra — Pa(Ta))
Claim 141. Up, C U.

Proof. If x € Up,, then po(z) < 7. So

pa(xoz - x) < pa(xoz - 0) +poz(0 - x) < p(ma) +r< pa(xa) + 7o _pa(xa) =Ta

So

T e ﬂ U(xouroupa) =U
acl

and Up, CU. O Claim 141

2. If z # y in X, then there is a such that p,(z —y) =7 > 0. Then

T T
U(ZU, §,pa) N U(% §7poz>

3. We do addition; scalar multiplication is similar. Let A: X x X — X by A(z,y) = z+y. Let U be open
in X. We need to show that A~1(U) is open in the product topology. Suppose (x¢,%o) € A~1(U); then
xo + yo € U. But U is open; so there is F' Cgy P and 7 > 0 such that

(9507110) + UF,T = ﬂ U(xO + y07r7pa> g U
Pa€EF

Claim 142.
(Io + UF,%) X (yo + Upvg) - Ail(U)

Proof. Suppose

Pl — x0) <

N3N 3

Pa(y —yo) <

for all p, € F. Then

Pa((z +y) — (o +10)) < pPal® —20) + Pa(y — yo) < g+ g —pr

O Claim 142

zg = x <= (VF Cgn P)(¥Vr > 0)(360)(VB > Bo)(xs € .+ Urp,)
<= VEVr3py(VB = Bo)(Vpa € F)(palz —xs) <T)
<= Vpa(palz —xp) — 0)
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O Theorem 140
FEzample 143.
1. (X,]|']) @ normed vector space.

2. Let X be a normed vector space. Let Y be a vector subspace of X* (not necessarily closed). Suppose
that for all z # 0 in X, there is ¢ € Y with ¢p(z) # 0. For ¢ € Y, define a seminorm p,,(z) = |p(z)|. 7
is the locally convex topology generated by {p, : ¢ € Y }. (X, 7y) is thus a LCTVS.

In particular, if X is a Banach space, then (X, 7x-) is the weak topology on X. We write x, — x if
and only if ¢p(x,) — ¢(x) for all p € X*.

If X =Y* for a Banach space Y, then (Y*,7y) is the weak-* topology on Y* and f, v, fin Y*if
and only f,(y) — f(y) forally € Y.

Remark 144.

Upyr ={2:|py(x)| <rforpeF}

1 1
{x: <1,<p€F}
r r

UlF
T

Lo(a)

1

)

Proposition 145. Suppose Z a LCTVS; suppose T': Z — (X, 1y) is linear. Then T is continuous if and
only if poT: Z — F is continuous for all p € Y.

Proof.

(=) Note that 7y is the weakest topology that makes all ¢ € Y continuous on (X, 7y). Then poT
is continuous as the composition of continuous functions.

(<= T is continuous if and only if T~!(z + Ur,) is open for all F' Cg, P, all r > 0. But
T Nz +Up,) =T (z) + T 1 (Ur,)
=T @)+ () (poT)" ' (b:(0)

pelF
which is open because all ¢ o T is continuous.

O Proposition 145

3. Suppose X is a Banach space. Then we have the following topologies on B(X):
Weak operator topology In which T, WOT, 7 if and only if o(Tox) — ¢(Tx) for all z € X all
p € X*. For each x € X, each ¢ € X*, define ¥, , € B(X)* by U, ,(T) = ¢(Tx).

Y =span{ V¥, ,:x€ X,pe X"} CB(X)"

(where the span is the algebraic span, not the closed span.) Note that this is not closed.
(B(X)vWOT) = (X7 TY)'

Strong operator topology For z € X, define p,(T) = ||Tz||. Then {p, : © € X } determines the

strong operator topology. We have T, SOT, 7 if and only if Tpyx — Tx for all x € X; so this is

the topology of pointwise convergence.
Theorem 146. Suppose X a LCTVS; suppose f: X — F is linear. The following are equivalent:
1. f is continuous.

2. f is continuous at 0.
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3. ker(f) is closed.
4. There is F = {Day,---3Da, } Can P and C < 0o such that

F@I <O pa(@)
i=1

Proof.
(1) = (2) Trivial.
(2) = B) fF/H0)=X\fYF\{0}). But F\ {0} is open. So f~1(0) = ker(f) is closed.

(3) = (4) Without loss of generality f # 0. Pick 9 € X such that f(z¢) = 1. Pick F Cg, P and r > 0
such that

(zo + Up,) Nker(f) =10
(Possible since ker(f) is closed.) Then

0 ¢ f(xO + UF,T) =1+ f(UFJ')
So —1 ¢ f(Ur,). Note, though, that
Upr{x:pa(z) <rforalaeF}

is balanced; i.e. if x € Up, and X € F satisfies |A| < 1, then Az € Up, (since p(Ax) = |A|p(z) <
p(z) < ). So f(Ur,) is balanced in F. So f(Ur,) is convex and disjoint from { X : |A\| = 1}. So
fUrpy) CD={A:|A <1}. Thusif kp,(z) < r for all p, € F then |f(x)| < 1. In particular, if

Zpa(x) <r
F

then po(z) < r for all p, € F. So |f(z)| < 1. So
1
@] <2 Y pal@
(4) = (1) Suppose zg — x. Then p(zg — ) — 0 for all a. So

[f(2g) = F(@)] = f(2p — )| SO palag —a) = 0
F

So f(xzg) = f(x). So f is continuous.
O Theorem 146

Corollary 147. Suppose f: (X,7y) — F is a linear functional. Then f is continuous if and only if f € Y.
Proof.
(<= Trivial.

(=) Suppose f is continuous on (X, 7y ). Then by the theorem, there are f1,..., f,, € Y such that

f(@)] < CY |fi)]
i=1
In particular, if

x € ﬂ ker(f;)
i=1
then RHS = 0. So f(z) =0. So

ﬂ ker(f;) C ker(f)

=1
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Lemma 148. Suppose X is a vector space. Suppose f1,..., fn are linear functionals (not necessarily
continuous). Suppose

ker(f) 2 ﬂ ker(f;)
i=1
Then f € span{ f1,..., fn }.
Proof. We have
X - X/ iz ker(fi)
f
X/ ker(f)

But we can identify

F: X/ (\ker(fi) = {(fi(z),..., fu(z)) ;2 € X} CF"

i=1
Then .
ker(F) = n ker(f;)
i=1

We can extend fto a linear functional fon F:

Fl(viy..y0n)) = Zaivi

Then B .
fx)=foq(@) = f(F(x)) =Y aifi(z) € span{ f1,..., fn}
i=1
[J Lemma 148
So .
f= Zaifi ey
i=1

O Corollary 147

Remark 149. If we start with Y C X* which is not closed, then
(X,v)" =Y
is not a Banach space.

Lemma 150. Suppose X is a Banach space; suppose Y is a closed subspace of X* which norms X. i.e.

2]l = sup |f ()]
fey

lflI<1

Then if a sequence (x, : n € N) converges in (X, 7y) then

sup||z, || < oo
neN
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Proof. For x € X, define T € Y* by Z(f) = f(z). Since Y is closed, it is a Banach space. But (z, : n €
N) 25 2 says that 7, (f) — 2(f) for all f € Y; so {Z,(f) : n > 1} is bounded for all f. By the uniform
boundedness principle, we have that

sup||Z, || < oo

neN

Since Y norms X, we get [|Z,|| = ||zx]. So

sup||@, || < oo
n>1

O Lemma 150

Ezample 151. Let (¢1,7.,) be 1 with the weak-* topology from ¢; = c¢}. Suppose x, = (z,; : i € N) € (%,

Suppose x,, = (x; : 1 € N). Then e;(z,,) = (Tn,€i) = Tni — (x,€;) = x; (where e; € ¢p). By lemma, we
have

supl|z,|i = M < o0

neN

Conversely, suppose the above two statements hold. Suppose y = (y1,¥2,...) € ¢o; suppose € > 0. Pick N
such that |y;| < e if ¢ > N. Then

oo
i=1
N 00
= Z(ﬂfm —Ti)yi + Z (Tni — 2)y;
i=1 i=N+1
< Nllyll e [, =l + [, — il
i>N
Pick N; such that n > Ny implies
5
Ty, — 24| <
T T Ny
for 1 <i< N. Ten
€
(zn,y) — (z,y)] < N\lyllm + llzn — zllie < e+ ([zallt + [lz]l1)e < (1 +2M)e

So (xn,y) = (z,y) for y € co.
On the other hand, there is an unbounded net converging to 0 in (¢1,7.,). Let A be the set of finite
subsets of ¢y ordered by set inclusion. Then, if F' € A, we have

ﬂ ker(y)

yeF

is a closed subspaces of ¢; of finite codimension. By axiom of choice, we can pick

TF € m ker(y)

yer
such that ||zp| = |F|.
Claim 152. (xp: F € A) = 0 in 7.
Proof. Take y € cg. f F > {yp }, then (zp,y) =0— 0. O Claim 152
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4.1 Geometric Hahn-Banach theorem

Given convex, disjoint A and B, we wish to find some linear functional f separating them; i.e.

AC{z e X :Re(f(x)) <a}
BC{ze X :Re(f(z))>a}

We also want f to be continuous; we then need a topological condition on A and B.

Definition 153. A hyperplane is a set H = {x € X : Re(f(z)) = a } where X is a LCTVS and f is a linear
functional. We are interested in closed hyperplanes, in which we require that f be continuous.

Lemma 154. Suppose X is a LCTVS. Suppose U is open and convex with 0 € U. Recall the Minkowski
functional
pu(z)=inf{r>0:2€rU}

Then py is continuous and {z € X :py(z) <1} =U.

Proof. Since 0 € U and U is convex, if 0 < r < s, then rU C sU. Suppose py(z) = r < 1, then for r < s < 1,
we have x € sU C U. Conversely, if x € U there is € > 0 such that (1 + )z € U (since ¢t — tx is continuous
and 1z € U and U is open; thus {t € R: tx € U } is open in R, and thus contains (1 —¢,1 + ¢) for some
e >0). So

T € U

1+e

SopU(m)Sl—}re<1. So{zeX :py(x)<1}=U.

To see continuity, suppose zy € X; suppose py(xg) = rog € V C R where V is open. Then py(zo) €
(ro —e,ro +¢) CV for some € > 0. Then

p{]l(V) D p,}l(ro —g,ro+¢€)
If z € xo + 5U, then
€
pu () < pu(xo) + pu(r — zo) < pu(xo) + 3

and
5

pu(z) > pu(zo) — pu(r — z0) > pu(zo) — 3
[0 Lemma 154

Theorem 155 (Hyperplane theorem). Suppose X a LCTVS; suppose U C X is open and conver with 0 ¢ U.
Then there is f € X* such that Re(f(x)) > 0 for all x € U. i.e. U is disjoint from the closed hyperplane
H={xze X :Re(f(z))=0}

Proof.

Case 1. Suppose F = R. Pick zg € U. Define V = 2y — U. Then V is open and convex with 0 € V. So py
is a continuous sublinear functional. Define fo on Rxg by fo(tzg) =t for t € R. Now, x¢ ¢ V; so, by
our lemma, we have py (zg) > 1. Then if ¢ > 0, we have fo(txo) =t < tpy(xo) = pv (tzg); if t < 0, then
foltzo) =t <0 < py(txo). So fo < pv on Rxg. Thus there is linear f: X — R such that f(x) < py(z)
for all x € X.

Claim 156. f is continuous.
Proof. Tt suffices to check continuity at 0. But
i 0)={zeX:—r<flx)<rt={reX:flx)<r}n{zeX: f(-z)<r}
ButVC{zeX:f(z)<r}and -V_C{zeX: f(—x)<r} So
FH0(0) 27V N (=)

which is an open neighbourhood of 0. O Claim 156
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Now, if z € U then 29 —z € V50 1 — f(2) = f(zo — 2) <py(xo—2x) < 1 and f(z) > 0.

Case 2. Suppose F = C. Consider X as a real LCTVS. Find f: X — R that is R-linear and continuous such
that f(z) > 0 for all © € U. Define g(z) = f(z) + if(—ix). As before, we have that g is C-linear and
continuous, and Re(g(z)) = f(x). Thus if x € U, we have Re(g(x)) = f(z) > 0.

[0 Theorem 155
We point out some special cases:

Corollary 157. Suppose X is a Banach space; suppose U C X is open and convex with 0 ¢ U. Then there
is f € X* such that Re(f(z)) >0 for allz € U.

Corollary 158. Suppose X is a Banach space; suppose Y is a vector subspace of X* that separates points.
Suppose U C X is convex and Ty -open with 0 ¢ U. Then there is f € Y such that Re(f(x)) > 0 for allxz € U.

Proof. A linear f: X — F is my-continuous if and only if f € Y. O Corollary 158

Theorem 159 (Separation theorem). Suppose X is a LCTVS; suppose A and B are disjoint convex subsets
of X with A open. Then there is f € X* and d € R such that Re(f(b)) < d < Re(f(a)) for allb € B, all
a€A.

Proof. Let
C=A-B=|]J(A-b)
beB

Then C' is open as the union of the open A —b. Also, 0 ¢ C since AN B = (). Finally, C is convex because
t(&l — bl) + (1 — t)(ag — b2) = (ta1 + (1 — t)ag) — (tb1 + (1 — t)bg) cA—-B

By the hyperplane theorem, there is f € X* such that Re(f(a)) — Re(f(b)) = Re(f(c)) > 0 for all c € C. So
Re(f(b)) < Re(f(a)) for all a € A, all b € B. Then

sup Re(f(b)) = d < inf Re(f(a))
beB ac

But A is open; so Re(f(A)) is open in [¢,00). So Re(f(A)) C (¢, 00). O Theorem 159

Corollary 160. If A, B are both open and convex with AN B = (), then there is f € X* and d € R such that
Re(f(b)) < d < Re(f(a)) for alla € A and all b € B.

Ezxample 161. Let X = (¢1,7,,). Let

A:{$€€1Iil‘i:0}
=1

Then A is a norm-closed linear subspace and
01 =(1,0,0,...)¢ A

If 0 # y € ¢p with y = (y1,92, ... ), then we have y,, # 0 for some ng € N. Then if A € C, we have

Then

)\ m (o)
y(xm) = 7(yno - ym) ; A

no

So y(A) = C 3 y(d1). So we have no hope of separation.
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What went wrong? A is not 7.,-closed, because z,, = §; — d, € A with
sup ||z, || = 2
m>0

and z,,, has limit

So T —2 5y ¢ A.

Lemma 162. Suppose X is a LCTVS. Suppose K C X is compact and V 2 K 1is open. Then there is open
U >0 such that K+ U C V.

Proof. For each z € K|, there is a finite set F}, of seminorms and r, > 0 such that U(F,,r,)+x C V. (Recall
that
U(Fp,r2)(x) ={y:ply—x)<rforalpekF,}
=U(Fy,7z)
U(Feyre) ={y:ply) <r, forallpe F,}

are the basic open sets.) Then {z + U(F,, %) : # € K } is an open cover of K so there is a finite subcover

KCl l{x—kU(Fxg)}

3

(2

Let

=1

r= min r;
1<i<n

Suppose y € K. Then there is ig such that y € z;, + U(F;,, % Let U = U(F, 3); then U C U(Fi,r%) for all
i. So

y+U C iy +U(Fig, ) + U(F,3)
C T + U(Fiovrio)
cVv
So K+UCV. 0 Lemma 162

Corollary 163. Suppose X is a LCTVS; suppose A, B C X are closed and convexr, B is compact, and
ANB=10. Then there is f € X* such that

sup Re(f(a)) = a <§ = inf Re(f(b))

Proof. Well, A is open, and B C A°. We may thus pick U such that B+ U C A°. Thus (B+U)N A =0.
Note that B 4 U is convex as

t(by +u1) + (1 —¢)(ba + uz) = (tby + (1 — t)ba) + (tus + (1 — t)us)
Thus, by the separation theorem, there is f € X and « such that
sup Re(f(z)) = o < Re(b+u)
a€cA
for all b € B and all u € U. Since B is compact, this yields that
inf Re(f(3) = § > a

O Corollary 163
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Definition 164. Suppose X is a LCTVS, f € X*, and a € R. Then

Hyo={y:Re(f(y) <a}
is called a closed half-space.

Corollary 165. Suppose X is a LCTVS; suppose A C X. Then

conv(A) = ﬂ Hy o
HfoDA

(where conv(A) is the convex hull of A: the intersection of all convex sets containing A).

Proof. The RHS is closed and convex and contains A; so

conv(A) C ﬂ Hy,
HfoDA

Let x ¢ conv(A). Apply the last result with A = conv(A) and B = { z }, which is compact. Then there is
fo € X* such that

21613 Re(fo(a)) < ap < = Re(fo(z))

Thus A C Hy, o and = ¢ H; 4.050

So

O Corollary 165
Corollary 166. Suppose X is a LCTVS. Then X* separates points.

Proof. Suppose zg,x1 € X have xg # x1. Let

A={z0}
B={z}

Then there is Hy o O A such that z1 ¢ Hy ,. By a previous corollary, we get that there is f € X* such that
Re(f(z0)) = a # Re(f(z1)). O Corollary 166

Proposition 167. Suppose X is a normed linear space.
1. Every norm-closed conver set is weakly closed.
2. Every norm-closed ball in X* is weak-* closed.
Proof.

1. Suppose C C X is norm-closed and convex. Then

C= () Ha

Hy o 2C

But each Hy  is weakly closed. So C' is weakly closed as the intersection of weakly closed sets.
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2. Suppose fo € X*. Then

bro(fo) ={y:lly = foll <7}
={y:|Z(y—fo)|<rforallz e X, |jz| <1}

= N vl - fo)@l<r}

llzll<1
But {y:|(y— fo)(@)] <7} =2"YD,) is closed. So b,,(fo) is closed as the intersection of closed sets.
[0 Proposition 167
FEzxzample 168. Let
A:{x€€1:2zi20}
i=1
Then A is not weak-*-closed. Last time we showed that if f € ¢ then f(A) = C. So conv(A4) = ¢! (where

the closure is taken in the weak-* topology).

Theorem 169 (Goldstine’s theorem). Suppose X is a normed linear space. Then bi(X) is weak-* dense in
by (X**). i.e. The weak-* closure

(GizeX, |z 1) =bi(X™)

Proof. Suppose not. Then there is z** € by (X**) and 2** ¢ A where A is the weak-* closure A = by (X).
Then {z** } = B is compact and convex and A is a convex, weak-*-closed set. So there is f that is weak-*
continuous (i.e. f € X*) such that

sup Re(f(a)) = a < Re(f(2™))

a€A

Then in particular we have

[fll= sup Re(f(z)) <a
z€b1 (X)

Since || f]] < a and z** € b1(X**). So [{f,z™)| < |l=z**||Ifl] < . So Re(f(z**)) < «a, a contradiction.
O Theorem 169

Hence if ¢ € by (X**) then there is a net () : A € A) in X converging to ¢ in the weak-* topology; i.e.
(f(zx): A e A) = y(f) for all f e X*.

Theorem 170 (Banach-Alaoglu). Suppose X is a Banach space. Then the closed unit ball of X* is
weak-*-compact.

Proof. For each x € X, let D, = {z€ C: |z| < |jz| }. Let

D:HDQK

reX

which is compact by Tychonoff’s theorem. Define ®: (b (X*), 7 the weak-* topology) — D by ®(f) = (f(x) :
z e X).

1. ® is injective, since ®(f) = ®(g) if and only if f(z) = g(x) for all ; ie. f=g.
2. ® is continuous: a basic open set in D is given by
U={deD:d(x;) €eU;}
for 1,...,7, € X and U; open in D,,. We need to show ®~1(U) is open in (b;(X*), 7). But
O NU)={f:flz;) €U;forall 1 <i<n}
={f:z(f)eU;forall 1 <i<n}

=& (W)
i=1

which is open as the intersection of open sets.
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3. ®(by(X*)) C D is closed. To see this, we use nets. Take a net (f, : @ € A) in b1 (X*) such that
(P(fa): € A) = d €D. Define f: X - C by

f(@) = dy = lim fa(o)
It’s easy to see that f is linear. For all x, we have

f(z) = lim fo(x)

aEA

and fo(z) € De. So [fa(2)] < [lz]; so |[f(z)| < ||z, and [|f]| < 1. So f € bi(X™). So ®(by(X™)) is
compact.

®: (by(X*),7) — ®(bi(X*)), where the latter is compact; we now show that ®~1: ®(b;(X*)) —
(b1(X™*), ) is continuous. We use nets: let (do : o € A) be a net in ®(b;(X*)) converging to
d € ®(b1(X*)). For each «a, we can find f, € b1 (X*) such that ®(f,) = dq; likewise, we can find
f

S
€ b1(X*) such that d = ®(f). We wish to show that (f, : @ € A) W—k*>f. But (do :v€ A) »dinD
(do:a€A)—>dinD < (do(z) :a€A) > d(z) forall z € X
— (fal@):a€A)— f(z)forallz e X

— (fa:ozeA)W—k*>f

[0 Theorem 170

Corollary 171. If X is a reflexive Banach space then norm-closed, bounded, convex sets in X are weakly
compact.

Proof. Suppose X is reflexive; i.e. X = X+, Suppose A C X is norm-closed, bounded, and convex. Then
Proposition 167 yields that A is weakly closed. By the Banach-Alaoglu, we have that by (X**) = {Z: ||z < 1|| }
is weak-*-compact. So {Z: ||Z < r| } is weak-*-compact. Pick r big enough so that A C {7 : ||Z|| < r}. But
A is then a weak-*-closed subset of a weak-*-compact set. So A is weak-*-compact. O Corollary 171

Corollary 172. Suppose X is a Banach space. Then by(X) is weakly compact if and only if X is reflexive.
Proof.
(<=) Suppose X = X**. Then

~

(b1(X), weak) = (b1 (X), weak-*)
= (b1 (X™"), weak-*)

which is compact by Banach-Alaoglu.

(=) Suppose by (X) is weakly compact. By Goldstine, we have that by (X) is weak-*-dense in by (X**).
But (b1(X), weak-*) = (b1(X), weak) is compact, and thus closed in by (X**). So b1(X) = by (X**).

O Corollary 172

Definition 173. Suppose V is a vector space; suppose K C V is conver. We say that F' C K is a face if for
all z,y € K and all 0 < ¢ < 1 such that tz + (1 —t)y € F, we have z,y € F. We say « € K is an extreme
point if {z} is a face.

Ezample 174.

1. Consider K = { (x,y) € R? : ||(x,y)|| < 1,y > 0}. The x-axis is a face, and the extreme points are all
of the boundary besides the interior of the z-axis.

2. In (R?,]||lec), let K = b;. We then get a square each of whose sides is a face, and whose extreme points
are { (:l:ll, :l:gl) }
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3. Similarly with (R, ||, 00]|).

4. We say (X, ||-||) is strictly convex if whenever

L=zl = llyll =

r+vy
2

we have z = y. If (X, ||-]|) is strictly convex, then the extreme points of by (X) are given by Ext(b1(X)) =
{@: |zl =1}
Proof. If ||z|| =1and z =ty + (1 —t)z for 0 <t < 1 and z € by(X), then 1 = ||z| < t||y|| + (1 — )|z
So |lyll = ||z]| = 1. Then we can find 2’ such that

11,

¥ tpr =7
Soy=2z2'=x. S0 z=u. O

5. Recall from the proof of Minkowski that if 1 < p < oo and

laf” + 1b[" _
=

a+bl|f
2

then a = b. Consider now L? for 1 < p < co. Suppose | f||, = |lg/l, =1 and

2] -

P

ey
0 2 0

[f @I +1g(@)P | f(z)+g(x)|"

2 2

almost everywhere, and f(z) = g(z) almost everywhere. So f = g in LP. So Ext(b1(LP)) = is the unit
sphere, for 1 < p < occ.

6. Ext(b(L')) = 0.

Then
f+glf
2

SO

Proof. Let || f]l1 = 1. Then

/0 VLt =1
/ ()]t

We know that g is continuous and g(0) = 0 and g(1) = 1. Thus there exists sg such that g(sg) = 5. Let

f1(t) = 2f()x(0,50) ()
fa(t) = 2f (1) X[s0,17 (1)

/Ollfl(t)ldt = /OSO 21 f(t)|dt =1
/|f2 )| dt = /2|f()|dt:1

it fa
5 =f

But neither is equal to f. O

Let

Then

and

So |l f1llx = || f2ll1 and
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7. Ext(b(co)) = 0.

Proof. Let x = (x1,22,...,) € cg with ||z|| = 1. Because

lim z, =0
n— 00

we may pick ng such that |z,,| < 1. Let

y:(xl?"‘)mnofl7xn0 +€7x’ﬂ0+17"')
2= (1, s Tno—1,Tng — €, Tng+1s---)
for small €. Then ||z|| = ||y = ||z| =1 and
yt+z —
5 =
but y # x and z # x. O

Lemma 175. Suppose X is a LCTVS and K C X is compact and conver. Suppose f € X* such that
sup{Re(f(z)):x € K} =a. Then FF = {xz € K : Re(f(z)) = o} is a face.

Proof. Suppose © =ty + (1 —t)z for y,z € K. Then
a=tRe(f(y)) + (1 —t)Re(f(2))
So Re(f(y)) = Re(f(2)) =a. Soy,z € F. O Lemma 175

Lemma 176. Suppose X is a LCTVS and K C X is compact and convex. Suppose F' C K is a closed face.
Then F NExt(K) # 0.

Proof. Let F be the collection of all non-empty closed faces F C F ordered by D. Suppose C ={F,}isa
chain in F. Each F, is a closed subset of K, which is compact. So each F, is compact. So

()Fa#0

by the finite intersection property, and this is an upper bound of C. By Zorn’s lemma there is F C F such
taht F' is a minimal closed, non-empty face. Suppose for contradiction that F' had more than one point
Zo,Y0 € F. By separation, we would then have that there is f € X* such that Re(f(yo)) < Re(f(z0)). Let

Fy ={z € F:Re(f(z)) =sup over F}

This is a face by the previous lemma, but yo ¢ Fi, contradicting the minimality of F.SoF = {Z}is an
extreme point. O Lemma 176

Theorem 177 (Krein-Milman). Suppose X is a LOTVS. Suppose § # K C X is compact and convexr. Then
conv(Ext(K)) = K.

Proof.
(C) Clear.
(D) Suppose z¢ € K but zo ¢ conv(Ext(K)). Separate by f € X*. Then
sup{ Re(f(z)) : @ € conv(Ext(K)) } = a < Re(f(z9)) < 8 = sup{ Re(f(z)) : x € K }

But F ={xz € K : Re(f(x)) = 8} is a face and there is extreme y € F. Then Re(f(y)) =8 > a, a
contradiction.

O Theorem 177

58



Corollary 178 (Krein-Milman). The unit ball of X* is the weak-*-closed convex hull of its extreme points.

Proof. b1(X*) = K is closed, convex, and compact in the weak-* topology. The theorem the yields that we
are done. O Corollary 178

Corollary 179. Suppose X is a Banach space. If Ext(b1(X)) = 0, then there does not exist Y such that
X =YY"

Thus ¢y and L' cannot be the dual of any Banach space.
Ezample 180. (C([0,1]),]||lcc)* can be identified with the regular bounded Borel measures.

Ext(b1(M]0,1])) = { exp(i0)d, : x € [0,1] }
(where §,(f) = f(x)). Hence by Krein-Milman we have if 1([0,1]) = 1 then p is a weak-* limit of convex

combinations of exp(i6)J,.

Ezample 181. We exhibit a compact convex set C' in R? such that Ext(C) is not closed. Let Cj be the circle
in R? with (0,0,0) and (0,0,1) diametrically opposite. Let L be the line segment (—1,0,0) to (1,0,0) Let C
be the convex hull of Cy U L. Then Ext(C) = {(£1,0,0) } UCy \ {(0,0,0) }.

Theorem 182 (Stone-Weierstrass). Suppose A is a closed subalgebra of Cr(X) where X is compact and
Hausdorff. Suppose A separates points; i.e. suppose that for all x,y € X with x # y there is f € A such that
f(z) # f(y). Suppose there is g € A such that g(x) > 0 for all z € X. Then A = Cgr(X).

Proof. Suppose for contradiction that A G Cr(X). Then by Hahn-Banach we have that there is ¢ € Cr(X)*
such that ¢ | A =0 and ¢ # 0. Let
K=b(Cr(X))NAt ={peCr(X) 19 A=0,|¢l <1}

Then K is a bounded, convex set in Cr(X)*; so, by the Krein-Milman theorem, we have that b1 (Cgr(X)*) is
weak-*-compact. But At is weak-*-closed, since if (o5 : A € A) is a net in Cg(X)* converging to ¢ in the
weak-* topology and a € A, then

p(a )—;lg}\w( a)=0

So K is weak-*-compact. Again by Krein-Milman, we then have that K has an extreme point ). But then
1) # 0 since i\l T € K, and
_ 1(80 N —@)
2\lell el
So 0 is not extreme, and ¥ # 0.
Now, by the Riesz representation theorem there is a finite real regular Borel measure p such that

£= | sau
for all f € Cr(X).

Claim 183. supp(u) = {zo }. (Here supp(p) ={z € X : |p|(U) >0 for allU € O(z) }.)

Proof. If supp(p) =Y is not a single point, then there is f € A such that f [ Y is non-constant. Without loss
of generality we may assume that 0 < f(z) < 1 for all z € X; otherwise we add a multiple of g to f to make
it everywhere positive and then scale to get that it’s less than 1; i.e. find ¢, d such that 0 < (%)(m) < 1 for

all z € X. (Note that Cg;f is still non-constant on Y.)
Let py = fu; let uo = (1 — f)p. Then for any h € Cr(X) we have

/hdul /hfd,u

= i) = [ nfdu= [ hap

Then if h € A, we have hf € A, and
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Therefore 11 € A*. Similarly, we get that us € A+. But now

| + lz]) = /X dlm| + /X dlus|
- / fdlul + / (1= f)dlul
X X

— / dlul
X

= ||l

= [l
=1

(We get [[¢]| = 1 since if [|¢|| =7 < 1, then ¢ € K and ¢ = r(1¢) + (1 — 7)0 is not an extreme point.)

g - _ — @ o . :
Observe now that pfay, o £2, € K and p = fdp + (1= f)dp =||pl T T [l z22]| Taot: SO p s not extreme,

and ) is not extreme, a contradiction. O Claim 183

So supp(u) = {x } for some zg € X; so u = +0,,, where &, is the point mass:
1 A
(SI(A) _ HASS
0 z¢ A
But then
0= (o) = [ gdn == [ gib, = £gla0) £ 0

a contradiction. [0 Theorem 182

5 Operator theory

Definition 184. Suppose X and Y are Banach spaces; suppose T € B(X,Y). Then there is a map
T* € B(Y*, X*) called the adjoint (or transpose) of T given by (T*p)(z) = p(Tx) for ¢ € Y* and z € X.

Theorem 185. Suppose X,Y,Z are Banach spaces; suppose T € B(X,Y) and S € B(Y,Z). Then
LT = (T[]
2. T — T* is linear.
3. Iy = Ix~.
4. (ST)* = T*S*.

5. T* is weak-*-weak-*-continuous.

6. T** | X =T.
Proof. For convenience, given ¢ € X* and = € X, we write (z, ) = p(z).
1. Note that
IT*]| = sup
peY”®
llell<1
= sup sup [T")(z)|

peY* xzeX
lell<tllzli<1

= sup sup |T")(z)]
reX peY™
lell<1jje)<1

= sup [Tz
rcX

llzl <1

= |17l

60



by Hahn-Banach.
2. Suppose a,b € F and S,T € B(X,Y). Suppose ¢ € Y* and x € X. Then

((aS +bT)*p)(x) = p((aS + bT)x)
ap(Sx) + bp(Tx)
((aS™ +bT™)p) ()

So T+ T is linear.
3. Suppose ¢ € X*. Then, for x € X, we have
(Ixe)(x) = p(Iz) = p(z) = (Ix-¢)(2)
So Iy = Ix-.
4. Suppose w € Z* and x € X. Then
((ST) w)(z) = w(S(Tx)) = (S"w)(Tx) = (T" 5" w)(x)
So (ST)* =T*S*.

5. Note that T*: Y* — X* is norm-continuous. Suppose now that (1) : A € A) is a net in Y* converging
to 1 in the weak-* topology. The for all z € X we have

(T*x) () = YA(Tx) = (Tx) = (T"Y)(x)

So (Tyx: A€ ) v, T*1), and T* is weak-*-weak-*-continuous

6. Note that T' € B(X,Y) implies that T* € B(Y*, X*) and T** € B(X™*,Y**). Suppose z € X and
1 € Y*. Then .
(T2) () = 2(T™Y) = (T*Y)(x) = P(Tx) = T (y)

which we colloquially interpret to mean 7" | X =T.

O Theorem 185

Let X be an n-dimensional Banach space with n € N; let eq, ..., e, be a basis. Let Y be an m-dimensional
Banach space with m € N; let fi,..., f;,n be a basis. Then X* has dual basis 1, ..., &, where

1 i=y
q(ei):{o i

and similarly Y* has dual basis 61,...,d,,. Let T € B(X,Y). Then T has matrix [¢;;] and

m
Te; = Z tijfi
i=1

Then T* € B(Y*, X*) has matrix [s;;], and

n

T*(Sj = Z Sij5i

=1

But then
sij = (176;)(ei) = 0;(Te;) =t

So the matrix of T is the transpose of that of T™.

Proposition 186. Suppose T: X — Y is linear. Then T is bounded if and only if T is weak-weak-continuous.
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Proof.
(=) Suppose T is bounded; suppose (24 : @ € A) =+ z. Then
P(Tra) = (T"P)(2a) = (T7Y)(x) = ¢(Tx)
So (Tzs : a € A) = T is weak-weak-continuous.

(<= ) Suppose T is weak-weak-continuous. Then 1) o T' is continuous for all ¢ € Y*. So, if ) € Y*, then

sup [¢(T)| = sup (Y o T)(z)| = [[¢ o T < o0

llzll<1 lzll<1

But (¢ o T)(z) = (T*¢)(x); so [|[T*¢Y|| = || o T|| < co. (Notice that T™* is defined even if T is not
bounded.)

Consider {Tz:z € X, ||z]| <1} CY C Y**. We then have

sup [Tz(y)| = sup [¢(Tx)l

recX reX
l=l<1 l=zll<1
=[[¢oT|
< 00
Then by Banach-Steinhaus we have
IT|| = sup [[Tz| = sup [Tz < oo
reX rcX
lzll<1 l=zl<1

So T is bounded.
[0 Proposition 186

Proposition 187. T: Y* — X* is weak-*-weak-*-continuous if and only if there is S € B(X,Y) such that
T=25"

TODO 1. Conditions on T'?
Proof.
(=)
TODO 2. This.
(<= ) Part 5 of the previous theorem.
O TODO 1

Ezample 188. Consider the inclusion map ix: X — X** given by ix(x) = Z. Then % : X** — X* If
® € X*** and = € X, we have i%(®)(z) = ®(ix(z)) = ©(%). So i%(P) = | X.
We also have ix~: X* — X***. Define p = ix~ 0% : X*** — X***; then
p(®) =i (@] X)=d | X € X
Also i% oix«: X* = X*. For ¢ € X* and z € X we have

(ixix-())(x) = (ix-¢)(ix(z)) = P(x)
So i}ix* = Ix+. But then
p? =ix«(i%ix+)ix =ix-ix =p
So p is a projection of norm 1.
=1-1=1

Pl < flixc~ [ lix-
and Ran(p) = Ran(ix+) = X*. So p projects X*** onto X,
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5.1 Hilbert space adjoint

Proposition 189. Suppose H is a Hilbert space and [-,-] is a sesquilinear form which is bounded (i.e.
[z, y]] < Cllz|llyl| for all x,y € H). Then there is a unique B € B(H) such that [x,y] = (x, By).

Proof. Fix y € H. Define ®,(x) = [z,y]; then ®, is a linear functional, and

1®y[l = sup [fz,y]| < Cllyl|
Izl <1

So @, € H*. So there is a unique z, € H such that [z, y] = (z, z,) and ||z,|| = ||Dy]| < C|ly||- Define By = z;
then |B|| < C, and B is bounded.
To see linearity, suppose y1,y2 € H, a,b € F. Then for any = € ‘H we have

(z, Blayr + by2)) = [z, ay1 + bys]
= alz,y1] + blz, yo
=a(x, By1) + b(x, Bys)
= (x,aBy; + bBys)

So
0 = (z, B(Ay1 + by2) — (aBy1 + bBy2))

for all z € H. So B(ayi + by2) = aBy; + bBys, and B is linear. O Proposition 189

Definition 190. If H is a Hilbert space and T' € B(H), then the Hilbert space adjoint of T is T* the unique
element of B(H) such that (T'z,y) = (x,T*y) for all z,y € H.

Remark 191. To see that this exists, define [z,y] = (Tx,y); then by the above proposition there is a unique
B € B(H) such that (T'z,y) = (z, By); then B = T*.

Proposition 192.

17 = 7.

2. (aS +bT)* =aS* +bT*.

3. (ST)* =T*S*.

4. T =T.
Proof. Omitted. O Proposition 192
Ezample 193. Consider L?(0,1) with M, (f) = xf. What is || M,]|? Well,

1
lef2 = / 2| f(2)Pde
So || M| < 1. Define

Then

1 1
||a:n||2=/ |xn\2=/ ndir =
0 -1
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and

1
||Mza:n||2=/ (z n)zdx
1—1

I
w3
/N
—
|
7 N

— 3|
|
S|
~__
w
~—

_n(3_3 .1
“3\n n2 w3

:]_—— —_—
n+3n2

M, is injective since if xf = xg almost everywhere then f = g almost everywhere. But 1 ¢ Ran(M,) because
271 ¢ L?(0,1). So it’s not invertible, but has no kernel. Does it have eigenvalues?

Suppose zf = Af for some A € C. Then (z—\)f = 0 almost everywhere. But z —\ # 0 almost everywhere.
So f = 0. So it has no eigenvalues.

Definition 194. We say T € B(X,Y) is bounded below if there is ¢ > 0 such that ||Tz| > c||z||.
Ezxzample 195.

1.

M, is not bounded below: let

Then |ly,|| = 1 but
1
founl? = [ (@vi?de = n
0

Let D: 1 — {7 be De,, = %en. Then D((z1,x2,23,...)) = (%, %, %,...). Then D is injective but is

not bounded below; it is also not surjective, as (1,3, 5,...) € ¢ but (1,4,%,...) ¢ (%,

14090 bR
Consider H = {5 with orthonormal basis e, e, . ... Consider the shift Se,, = e,+1. Then S((z1, 22, 23,...)) =
(0,21,22,3,...). We have || Sz|| = ||z||, so this is an isometry, and in particular is injective. It is also

therefore bounded below by 1. It is not surjective: Ran(S) = (Cey)t.

We can consider its Hilbert space adjoint S*:

(z,5%) = (Sz,y)
= <(0,1‘1,l‘2, ‘e ), (yl,yg, . )>

[e'S)

Zmnyn+1

n=1

= <({E1, Lo, ... )7 (y27y373/4, cee )>

So S*((y1,y2,Y3,---)) = (Y2,Y3, Y4, ... ). 1.e. S*e; =0 and S*e, 11 = e, for n > 1. Also ker(S*) = Cey,
but S* is surjective.

Now, neither S nor S* is invertible. But
(S*S)(<$1,$2, T3y .. )) = S*(O, T1,X2,T3,.. )
= ((El,.’ﬂg,l'g, . )
So S*S =1. But
(SS*)((ZL'l,QCQ, T3y )) = S(($2,.’E3,1’4, N ))
= (O,IQ,$3,I4, e )

So SS* # I.
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Lemma 196. Suppose T € B(X,Y). Then (ker(T))* = Ran(T*) (where the closure is taken in the weak-*
topology) and ker(T*) = (Ran(T))*.

Proof. We first show ker(T*) = (Ran(T))*. Note that for 1) € Y*, we have
Y € (Ran(T))*t <= (Tx) =0 for all z € X
< (T"¢Y)(z)=0forallz € X
— T =0
<~ 1 € ker(T™)
Now note that (Ran(7*))+ = ker(7**), and
(Ran(T))L ={z € X : 2 L Ran(T™") }
= (ker(T™)) N X
= ker(T)
So (ker(T))* = ((Ran(7*)) )+ which is the weak-*-closure of Ran(7*). O Lemma 196

Remark 197. If T € B(X,Y), then the norm closure of Ran(7T*) may not be weak-*-closed. Consider
D: ¢y = {y by De,, = %en. Then D*: loo — Lo is given by D*((w1,22,73,...)) = (5, %,...). So

co = span{ e1, 6—22, %3, e } C Ran(D*) C ¢

(where here we use the norm closure). So ¢ is the norm-closure of Ran(D*). But by Goldstine we have that
the weak-*-closure of ¢j is £y So the norm-closure of Ran(D*) is not weak-*-closed.

Proposition 198. Suppose T € B(X,Y). Then the following are equivalent:
1. T is invertible
2. T is bijective
3. T is bounded below and has dense range

4. T and T* are bounded below

5. T* is invertible
Proof.
(1) = (2) Trivial.
(2) = (1) Banach isomorphism theorem.
(1) = (8) Suppose T~!'T = Ix. Then
|l = 1T~ (T2)[| < |7~ |17
So .
[Tz|| = =7 llz|
17|
and T is bounded below. Also, T' is surjective; so T" has dense range.
(83) = (2) If z # 0 then ||Tx| > ¢|lz|| > 0; so T is injective. Let y € Y = Ran(T'). Find (z, : n € N) in
X such that (Tx, : n € N) = y. Let y, = Ta,. Then (y, : n € N) converges, and is thus Cauchy. But
1
_ < Z _
|2 — | < CHyn Ym |

Take ¢ > 0. Then there is N € N such that for all n,m > N we have ||y, — ym|| < ce; then for all
n,m > N we have ||z, — zn|| <e. So (z, : n € N) is Cauchy, and thus converges to x. But then

y= lim Tz, =Tx
n—oo

So T is surjective.
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(1) = (5) T is invertible so T~'T = Ix and TT~! = Iy. Taking adjoints, we find that T*(T~1)* =
I = Ix- and (T~Y)*T* = I = Iy-. So (T~1)* = (T%)~!

(5) = (4) Suppose T* is invertible. Then, by previous directions, we have that T* is bounded below and
that T** is inverible and bounded below. But T'= T** | X; so T is bounded below.

(4) = (3) Suppose T and T* are bounded below. Then T is bounded below, and ker(7T*) = {0 }. But by
the lemma we have (Ran(T))+ = ker(T*). So Ran(T) =Y.

[0 Proposition 198
Definition 199. If T € B(X), we define the spectrum of T is
o(T)={ A€ C: A —T is not invertible }

The resolvent of T is p(T) = C\ o(T). The resolvent function R(T,\) = (M — T)~! for A € p(T).
The point spectrum is o,(T) the set of eigenvalues of T ie. 0,(T) = {A : ker(A\I —T) # 0}. The
approximate point spectrum is w(T) = { X : \I — T is not bounded below }. The compression spectrum is
Y(T)={A:Ran(\] - T) # X }.
Remark 200. By proposition we have that o(T') = w(T") U~(T).

We let B(X)~! denote the set of invertible operators in X.

Proposition 201. B(X)™! is open and contains by(Ix).
Proof. If A € B(X) with ||A|| < 1, we wish to show that I — A € by(I) is invertible. Recall that in C if |z] < 1

we have

1

=l4+z+22+...
1—x

Let

BziiA”G&X)

n=0

Zﬂww<§mmw— MH <0

This converges because

Then
u—mBz1m4u—mu+A+~~hM»=gmU—AHUZI
—00

k—o0

By continuity, since I — A commutes with the partial sums, it commutes with B, and B(I—A) = (I—A)B =
So I — A is invertible.
If T € B(X)™! and ||A| < HTilfln then T — A = T(I — T~*A). Then ||[T7A| < |IT7Y|A]l < 1. So
(T—A)t=T-T1A)™'T- So
b1 CB(X)!

=1

So B(X)~! is open. O Proposition 201

Proposition 202. If T € B(X) then p(T) is open and o(T') C b7 (0).
Proof. B(X)™! is open and f: C — B(X) given by f(\) = A — T is norm-continuous. Thus p(T) =
FH(B(X)™1) is open. If [A| > ||T||, then A\ —T = X\(I — A™1T). So

)\_1T H || <1
AT = T
So

(/\I B T)il = A" (I AT 1T -1 Z — i T )\—n-1
n=0

n=0
O Proposition 202
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Proposition 203. The map B(X)™! — B(X)™! given by T+ T~ is continuous.

Proof. Suppose Ty € B(X)™!; suppose [|A|| < Then

1
i
1751l

(To+ A~ = (To(I+ Tyt A) !

—~

So

I(To+A)7 =Tyt = | D (T P A Ty

n=1
oo

oAzt An™izs

n=1
T Al
1= |75 1Al
—0as ||A] =0

IN

So the map is continuous at Tp.
Ezxample 204.
1. Let X = LP(0,1) for 1 < p < co. Let h € L*°(0,1) where
[Plloc = esssup|h| = sup{r:m({z: |h(z)| = r}) >0}
Let My, f = fh for f € LP(0,1). Then

Mg = / (hfPdm

< [Inlrpan
= [AlIZLF I
So ||[Mp| < ||h]le- Let f = xa. Then

o= (f4) = min
1Al = ( / <h|xA>p)’l’ > ( / xA)’l’ — il

What is o(My)? Well, if h, k € L*°(0,1), then

=

and

MMy f = Mpkf =hkf = Mpf

O Proposition 203

We look at the case of h = z. So if A ¢ [0,1] then -1 € L*°(0,1), so (M, — MM .+ =1, and

Aé¢ o(M;). So o(M,) C[0,1].
On the other hand, for € > 0, let f. = X(4—e,k4e) Then

1
1M, 50y = | (2= e ) | < sl =<l
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But this is not bounded below. So i € ¢(M,). Similarly, we have that y € o(M,) for any y € [0, 1].
Consider now arbitrary h € C|0, 1]. We let h([0,1]) = X = Ran(h). If A ¢ Ran(h) then

1
5 € Clo

and
(M, — )\I)M+ =17

so A & o(My). If h(zo) = A, then for all ¢ > 0 there is § > 0 such that h=1(b-(\)) D bs(x); then if
fe = X(zo—s.20+6), We have |Mis el < 7l So o(My) = h([0. 1),
Consider now arbitrary h € L*>°(0,1). Define

essRan(h) = {z € C:m(h™ ' (be(2))) >0 foralle >0}

If A ¢ essRan(h) then there is ¢ > 0 such that m(h=!(b-(2))) = 0. Then

1
< —
€

1
h—2z

almost everywhere, so
(Mh — ZI)Mh% =1

and z ¢ o(My). Conversely, if z € essRan(h), we let f. = Xp-1(s.(z)) # 0. Then [[M_. fo| < el fe]| is
not bounded below, and is thus not invertible. So o(M},) = ess Ran(h).

We consider now the Banach space adjoint to Mj. If f € LP and g € L? (where % + % = 1), then

So the Banach space adjoint M; = M), on L9(0,1). To see the Hilbert space adjoint, note that if
f,g € L*(0,1), then

So Mp Mz = M2 = MzMy. So My, commutes with My, and it is normal.
. Consider the unilateral shift on ¢?: Se, = e, for n > 0. i.e. S((zg,21,...)) = (0,20, 21,...). We
have the backwards shift S*((xo,z1,z2,...)) = (x1,22,...). Then ||S]| =1 = ||5*||; so ¢(S) C D.

S is not invertible because Ran(S) L Cep. So S*ep = 0, and 0 is an eigenvalue of S*. On the other
hand, clearly S has no eigenvalues, since if Sz = Az, then ||z|| = ||Sz|| = || Az|| = |Al||z]|, and || = 1;
but then Axy =0, and Axy = 9 = 0, and so on, so x = 0, a contradiction.

Can we have S*x = Az? We need 11 = Az, for n > 0. i.e.
Ty = ANy = N2p_o=---= A\"aq

So 2 = zo(L, A, A2, ...). So S* (1, A, A2,03,...) = (M A2 A3, M, ..L) = /\(1 A2, ) If |A| < 1, then
2y = (LANZ,...) € f. S0 0y(S*) =D = {A:|\| < 1}. So #(S*) 2 D. So o(5*) =
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Returning to S, note that if [A| < 1, then (S — A\I)* = S* — A is not invertible. So S — Al is not
invertible. If |A < 1|, then

(S = M)z, 2x) = (z,(S* — M)ax) = (2,0) =0
So Ran(S — AI) L Cay; so o(S) =D. If [A| =1, let

1 — =2
n=—7=LXA ..., ,0,0,...
v = )

n—1
1 —i n
Jaall? = = SN =2 =1
=0

n

But )
Sap = —(0, 1,01 ,..., X 23" 0)
n
and L
)\xn = 7(A,1,X,X2, ’Xn_270’ )
n
So .
n—1
S — M)z = —=(—A,0,0,...,0,X" 0,
(8 = ATy = )
So

is not bounded below.

Definition 205. Suppose €2 C C is open and X is a Banach space. Suppose f: Q — X. We say f is strongly
analytic if for all zg € Q there exist xg, x1,x2,...,€ X such that

f(zo +w) = Z Tpw™
n=0

converges uniformly for all |w| < r for all » > 0. We say [ is weakly anaytic if for all ¢ € X* we have that
po f: Q — C is analytic.

Ezercise 206 (Bonus problem). Prove that if f is weakly analytic then it is strongly analytic. Hint:

(o(fatm=sto) yc,)

1. Show

is bounded.
2. Show f is continuous.
3. For n > 0, set
Xy = % OQW (z0 + rexp(if)) exp(—inb)db
(as a Riemann integral).
4. Show

f(zo +w) = Z Tw"
n=0

for |w| <.

Theorem 207. Suppose T € B(X); suppose A\, € p(T). Then
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R(T,A) = R(T, p)

A—p

2. A= R(T, \) is strongly analytic on p(T).

= 7R(Ta )‘)R(Tv .u)

3.
lim R(T,\) =0
| A= o0
Proof.
1. Note that
(R(T, \) = R(T, )\ = T)(ul = T) = (ul = T) = (A = T) = (= )
Multiplying by R(T, \)R(T, ), we see
T,)\) — R(T
RN RO per ay(r )
A—p

2. Note that y R(T.\) — R(T. )

Bl _ ) — )

So

If o € p(T), then

(Mo +w)I = (Aol = T)( Aol —T) " (Mo = T) +wI) = (Aol — T)(I + whol —T) ")

1
If |w\ < T I-—T)=1]| then

R(T, Ao +w) = (NI —T)7! Z too(—(NoI — T)~H)rw™
n=0

which converges uniformly for |w| < r < m

3. Suppose |A| > [|T||. Then
R(T, )

So

IR(T, A)|

— i Tn)\—n—l
n=0

oo

< >l
n=0
ST A

|
1
Al
_ i
1=
_ 1
AL =Tl
—0as |\ — o

IN

Theorem 208. Suppose T € B(X). Then o(T) # 0.
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Proof. If o(T') were empty, then R(T,)) is an entire function. But ||[R(T,A)|| — 0 as |A\| = co. So it is a
bounded, entire function. Take ¢ € B(X)*. Then ¢ o R(T, ) is a bounded, scalar-valued, entire functino.
Thus it is constant by Liouville’s theorem. If R(T, \) were not constant, then by Hahn-Banahc we have ¢
such that ¢ o R(T, \) is not constant, a contradiction. So R(T, \) is constant. But R(T,A) — 0 as |\| = 0.
So R(T,\) = 0. This is absurd. So o(T") # 0. O Theorem 208

Proposition 209. If A € p(T) for T € B(X) and dist(\,o(T)) =r, then ||(A[ —T)7'(| > L.
Proof. Pick \g € o(T) such that |A — Xo| = 7. Now, (Aol — T)(M — T)~?! is not invertible. But
(M =NI+N-=THN -T) =N =AM -=T)"1+1

and by (I) C B(X)™L. So [[(A =AM =T)7| > 1. So [|[(M-T)7 > ﬁ =1 O Proposition 209

Corollary 210. 9o(T) C w(T); i.e. Ao in the boundary of o(T') is an approximate eigenvalue.

Proof. We show Aol — T is not bounded below. Fix ¢ > 0. Pick A € p(T) such that |A — \g| < e. Then
(A —T)7'|| > L. Find « with ||z|| = 1 such that [[(A] — T)"'|| > L. Let y = (A\I — T)~'z. Then
(Aol = T)yll = [[(Ao = Ay + (M = T)y||
< (120 = Myl + 1|
<ellyll +ellyl
= 2|y

So Aol — T is not bounded below. O Corollary 210

5.2 Spectral mapping theorem for rational functions

If p € C[z] is a polynomial, say p(z) =ap + a1z + -+ a,z™ and T € B(X), we define p(T) = agl + a1 T +
asT? + -+ +a,T". The map pr: C[z] — B(X) given by pr(p) = p(T) is a homomorphism. If ¢ € C[z] has
no roots in o(7T'), say q(z) = b(z — f1)(z — B2) ... (2 — Bm), then ¢(T) = b(T — 1I1)(T — B2I) ... (T — B 1) is
invertible. We can then define (%)(t) = p(T)q(T)~* . If we set Rat(c(T)) to be the set of rationa £ such

that ¢ has no roots in o(7T), then pr: Rat(c(T)) — B(X) given by pr (%) = p(T)q(T)~! is well-defined and

a homomorphism.

Theorem 211 (Spectral mapping theorem—rational case). Suppose T' € B(X) and £ € Rat(o(T)), then
o(f(T)) = f(o(T)).
Proof. Write f = £ with ged(p, q) = 1; factor q(2) = b(z — B1) ... (2 — Bm). If A € C, then

alz—a1)...(z —ayp)

fR)-a=2-a=P2 =

q q b(z—pP1)...(z — Bn)
Then f(T)— M = p\(T)q(T)~! is invertible if and only if py(7) is invertible. But p\(T) = a(T —aq1) ... (T —
apT) is invertible if and only if a1,...,a, € p(T). ie.

A€ o(f(T) < f(T)— A is not invertible
pa(T) is not invertible
Ji(a; € o(T))

Ja(a € o(T) Apa(a) =0)
Ja(a € o(T) A fla) = N)
A€ f(o(T))

rreny

0 Theorem 211
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A ¢ f(o(T)), then 28 -A= p(;((zz)) is invertible in Rat(o(T)) as

1 4@
fZ) =X pa2)

So (f(T) — M)~' = q(T)pA(T)~*; so one direction is easy.

Definition 212. If T € B(X), we define the spectral radius of T to be spr(T) = sup{|A|: A € o(T) }.
We know spr(T) < ||T||. Now, if A > ||T||, then

RA\T) =\ -T)" = 1A
n=0

But R(A,T) is analytic on { A : |A| > spr(T) }.

Theorem 213 (Spectral radius formula). We have
. TSR nyt
spr(T) = lim [|T"[| = inf |7
Proof. The spectral mapping theorem shows that o(T™) = o(T)™. Thus spr(T) = spr(T™)x < ||T"|+ for all
n>1. So

kS
n

< i n
spr(T) < inf |7

But R(A,T) is analytic on { A : |A| > spr(T) }. Soif ¢ € B(X)*, then ¢(R(A,T)) is an analytic scalar function
on the same annulus. For |A| > ||T||, we have

o(R(A\T)) =¢ (Z T"/\_"_1> (which converges absolutely)
n=0

= (Ta
n=0

where the latter is sum is the Laurent expansion of ¢(R(A,T)) on {A: |A\| > ||T|| }. This is analytic on a
bigger annulus, namely { X : |\| > spr(T') }. So, by complex analysis, this converges in { A : |A| > spr(T) }. In
particular, if [\| =t > spr(T), then |p(T™")A\"""| = [p(T™)[t—""1 - 0. So

(1))
t"+1

sup < 00

n>0

But this holds for all ¢ € B(X)*. So, by Banach-Steinhaus, we have

mn
sup =C<x

n>0

tn+1

So ||T™||+ < (Ct"t1)w = Cw. So
lim sup||T™||» <t
n—oo
Su
limsup||T"||+ < spr(T)
< inf|| 77+
< Tim inf || 77|
< lim sup||7"|| =
So Lim |77 || # = inf||T™||% = spr(T). O Theorem 213
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5.3 Compact operators

Definition 214. We say T € B(X,Y) is compact if Thy(X) is compact in Y. We write I(X,Y") for the set
of compact operators in B(X,Y); likewise, we write IC(X) for the set of compact operators in B(X).

Ezample 215.

1. If F has finite rank, then it is compact because F'b1(X) C by (Y) N Ran(F') is compact by the
Heine-Borel theorem.

2. Let X =4, for 1 <p < oo. Let (d, : n € N) € {. Let D((x1,22,23,...)) = (dix1,dox2,d3x3,...) a
“diagonal” operator. Then
|D|| = sup|dn|
n>1
Suppose
limsupd,, >0
Say we can find |d,,| > r with ny < nga < .... Then De,, = d,,e,, € Dbi({,), so D is not compact.
Suppose on the other hand that
lim d, =0
n—oo

Claim 216. D is compact.

Proof. Let Dy ((z1,2,...) = (di21,...,dNeyN,0,0,...). Then Dy has rank N and
|D — Dyl = sup|d,| — 0
n>N
So
D= lim Dy
N—o0

The following proposition will show that the compact operators form a closed set, which then proves
the claim. 0 Claim 216

Proposition 217. K(X,Y) is a B(Y)-B(X) bimodule; i.e. for K,L € K(X,Y), Se€ B(Y), and T € B(X),

we have

aK +bL € K(X,Y)
SKT € K(X,Y)

Furthermore, K(X,Y') is norm-closed. In particular, K(X) is a closed ideal of B(X).

Proof. Let C; = Kby (X); let Co = Lby(X). Then Cy,Cs are compact. Consider

FiCiXCo—mY
(c1,¢2) = acy + bey

Then f is continuous, so its image is compact. So aKx + bLx € f(C; x Cq) for all ||z|| < 1. So

(aK +bL)(b1(X)) C f(C1 % Ca)

Now, if S € B(Y), T € B(X), and K € K(X,Y), then

SKTbi(X) € SK|T|by(X) € (ST (X)]]

But this last is the continuous image of a compact set, and is thus compact.
For norm-closure, suppose K,, € K(X,Y) with K,, — K.
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Claim 218. Kby (X) is totally bounded; i.e. for all e > 0 there are y1,...,y, € Kbi(X) such that

n

Kby (X) € | b:(w)
i=1

Proof. Fix € > 0. Pick N such that |[K — Kn| <
Y1, -, Yn wWith y; = Kyx; for ||z;|| < 1 such that

$. Then Knbi(X) is totally bounded, so we may pick

n

Kby (X) € | bz (n)

i=1

Let y} = Kx;. Then
5
lyi = yill = (K = Kn)zill < 3
If [|z]| <1, then
5

1Kz = gl < 2

for some ig. Then

3 S 3
1Kz = gyl < 1Ko = Kall + 1Ky = gl + oo — syl < 5+ 5 + 5 = ¢

So

n

Kby (X) C U be (v;)

So Kby(X) is compact. O Claim 218
[l Proposition 217

Ezample 219. Let D = diag(1,%,1,...) € B(co). Then Db (co) is not closed, since

1 1 11
D((1,1,1,...,0,0,...)) = (1, no) — <1,2,37...> ¢ Ran(D)

Example 220 (Hilbert-Schmidt kernels). Let k(x,y) € L?((0,1)?). Define K € B(L?(0,1)) by
1
(KD)@) = [ ke )y
0
Note k(-,y), k(x,-) € L*(0,1) for almost every z,y. To check boundedness, suppose f € L?(0,1). Then

1
IKfIZ = / K f(2)2da

-/ 1 / b ) F0)dy
</ 1 ( / 1|k<x,y>||f<y>|dy)2d:c

1
. 2 T
< / k()] £12)%d

1 1
e / / k() Pdyde
0 0
— 131K

2
dzx

So [|K|| < [|&]l2-
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Let {e;(z) : i > 1} be an orthonormal basis for L?(0,1). Let { fj(y) : j > 1} be anohter orthonormal
basis for L2(0,1). Then {e;(z)f;(y) : 4,5 > 1} is an orthonormal basis for 2((07 1)?) because

M
{ Z I (@) hin(Y) : gm € L? by € L? }

m=1

is dense in L?((0,1)%). If

(z) = Zaiei(x)
7” Zb fj y

gmhm = Z Z aibjei(x)fj (y)

y) = Z Zaijei(x)ej (v)
IKIE = > layl?

then

Take f;(y) = e;(y). Expand

where

For N < oo, let

N
§ z]ez

HMZ

Then kxy € L?((0,1)?) with ||k — ky|2 — 0. If

Knh(z) = /0 kn (2, y)h(y)dy

then |K — K| = ||k — kx|l2 — 0. So

N N 1
Kvh(@) = 33y /0 e:(w)e; () h(y)dy

i=1j=1
N N
-3 e aglhe
i=1 j=1
So Ran(K ) C span{ej,...,en }. So K is a norm limit of finite rank operators, and is thus compact. The
“matrix of Kn” is given by, if
h1
ho
h= hs
where h; = (h,e;), then
hi
al e aiN h2
Kxh=| :+ "~ 0 h:
anN1 ... AN N N
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Ezample 221 (Volterra operator). Let V € B(L?(0,1)) be

Vh(z) = [ h(y)dy
0
We may take
1 y<z
k(z,y) =
0 y>z

So V' is compact, by the above argument. Then

V2h(z) = / "(Vh)(w)dy

:/();C(/()yh(z)dz)dy
- /0 " h2) / " Ldydz

_ /0 h(z)(xz— 2)dz

Vih(z) = / "(V2h)(y)dy

_ /O"L (/Oy hz)(y — z)dz) dy

Claim 222. N ( ) )
z—y) "
"hiz) = [ h(y)—
Vi) = [ i) ey
Then ( ) .
n T—y)"" 1
= || — . <
v ‘ (n— 1)} X{yf“‘g—m—l)!
Then

. " . 1 B
spr(V) = lim [V < JLH;O(M) =0
Soo(V)C{0}.
Claim 223. V 1is injective.

Proof. Suppose Vh = Ah for XA # 0. Then

i) = [ hdy

But h € L?; so
/ h(y)dy € C[0, 1]
0

So RHS € C]0,1], so LHS € C0,1]. So h € C[0,1], and RHS is C!. So h € C*, so RHS is C?. So h € C*°.
So AW/ (z) = h(zx) by the fundamental theorem of calculus. So h(x) = cexp(z/A) and h(0) = 0; so h = 0.
In the case of A = 0, we have that if VA = 0, then

/ h(y)dy =0
0
for all x € [0,1]. So h = 0 by measure theory. O Claim 223
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Proposition 224. Suppose H is a Hilbert space and K € K(H). Then K is a limit of finite rank operators.

Proof. Note that Kby (H) is compact. Suppose € > 0. Find y; = Ka; with ||2;|| <1 for 1 <i < n such that
{y1,...,Yn } is an e-net for Kby (H). i.e. if ||z|| < 1 then there is ¢ such that ||Kx — y;|| < e. Let P be the
orthogonal projection onto span{ y1,...,y, }. Then PK has rank < n. Then

I(K = PE)(2)]| = [|P* Kz|| = |P*(Kz — )|l <€
for all ||z|| < 1. So |K — PK]|| <e. O Proposition 224
Theorem 225 (Schauder). If K € K(X,Y) then K* € K(Y*, X*).

Proof. Let C = Kbi(X); then C is a compact subset of Y. Define p: Y* — C(C) be p(¢) = ¢ | C. Then
p(b1(Y*)) is closed and bounded (by ||K||) in C(C). It is also equicontinuous since if y1,y2 € C and ¢ € by (Y*)
then |¢o(y1) — (y2)| < |l¢llllyr — y2]- So, by Arzela-Ascoli theorem, we have p(b1(Y*)) is compact.

Claim 226. K*b;(Y*) is compact.

Proof. Suppose @1, @2, € by(Y*). Then for z € b1(X), we have (K*¢;)(z) = ¢;(Kz). But Kz € C; so
(K*p;)(x) = p(p;)(Kz). Letting ¢; = p(g;), we have 1, € p(b1(Y*)) C C(C). So there is a subsequence ¥,

converging to ¢ uniformly in C. So (K*¢;)(z) = ¢;(Kz) — ¢(Kz). i.e. K*p; —» ¥ € X*. Thus K*b(Y) is
compact. So K* is compact. 0 Claim 226

O Theorem 225

5.3.1 Complemented subspaces

Definition 227. Suppose X is a Banach space; suppose ¥ C X is a closed subspace. We say Y is
complemented if there is Z C X a closed subspace such that Y N Z ={0} and Y + Z = X.

Remark 228. If Y is complemented, we can define
T:Y$,1Z—-X

by T'(y,z) =y + z (where @®; denotes that the norm is the 1-norm on the direct sum). Then by hypotheses
we have T is bijective. Also ||y + z|| < ||yl + ||z = |(y, 2)]|, so T is continuous. By the Banach isomorphism
theorem, we get that T is invertible. So X XY @ Z.

We can also define P: Y &1 Z — Y @1 Z by P(y,z) = (y,0). We can then let Q = TPT"!: X = Y;
then Q is a continuous projection. Conversely, if Q = Q? with Ran(Q) =Y, let Z = Ran(I — Q). Then
I-QP2=1-Q.S0r=Qx+(I—-Q)x.SoxzeYNZ. Sox=Qxr=(1-Q)Qx=0.

Lemma 229. There is an uncountable collection { A, : r € R} of subsets of N such that |A, N As| < No if
r £ s.

Proof. Identify N with Q (as they are both countable). For r € R, pick a sequence ¢,; — 7. Then let
A, ={n,;:i>1} where n,; is the natural number corresponding to ¢, ;. [0 Lemma 229

Theorem 230. ¢y is not complemented in L.

Proof. If boo 2 co®Y then Y = ¢ /cg. Take A, as in the lemma. Let y, = [xa,] € foo/co. Then

n
Zaiym = HZ aiXA,, + COH
i=1

But if B; C A,, are pairwise disjoint with |A,, \ B;| < 0o, then this is

;X B. +00’ = max |a;
HZ iXB; 1§i§n‘ d

Claim 231. No continuous, linear T: lo,/co — loo is injective.
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Proof. If Ty, # 0, then there is n, such that (Ty,)(n,) = a. # 0. Then there is n € N such that
S ={r:n, =n,|a,| >¢e} is uncountable. Thus uncountably many |a,| > ¢ > 0. But then

N
T Z WY, | = Z|ai|2
res
> N¢?
Letting N — 0o, we get a contradiction. O Claim 231
O Theorem 230
Proposition 232. If K is a compact, infinite metric space then co is complemented in C(K).

Proof. Pick a sequence z,, € K distinct with z,, = . Let
Sf(x) = f(z) = f(zoo)
the projection of C'(K) onto I(xzg) = { f: f(xo) = 0}. Pick disjoint balls b, (x,) with n > 1; let

ry — dist(z, z,) 0 }

Tn

gn(@) = max{

Let T: I(xzg) — I(xp) be
Tf=> f(zn)gn

n>1

The f(z,) = 0,s0 Tf € C(K). Also P =TS is a projection onto a copy of ¢.

o

an, —. So Ran P = ¢y. O Proposition 232

= maxjan|

Theorem 233. ¢ is not complemented in any dual space. Suppose X* = co @Y. Then X*** = (>* g Y**.
We can consider map £° — ¢y by mapping to > @ Y** = X***_ taking the projection down to X*, and
observing that it will still be in co when we write X* Z ¢y @Y.

Corollary 234. If K is a compact, infinite metric space, then C(K) is not a dual space.

Corollary 235. If X is a compact Hausdorff space and C(X) is a dual space, then the only convergent
sequences in X are eventually constant.

6 Compact operators and Fredholm theory

Lemma 236. If X is a Banach space and V is a closed subspace such that dim(V') < co or dim(X/V') < oo,
then V is complemented.

Proof. Case 1. Suppose dim(V) = n < oco. Then there is a basis vq,...,v, for V, and V* has dual basis
©1,--.,¢n € V* such that ¢;(v;) = J§;;. Extend ¢; to ¢; € X* by Hahn-Banach. Define

P = Zn:v,«pi S B(X)

i=1

SO

Pz = E”: v ()
i=1
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So Ran(P) =V, and if v € V, say
n
v = Z a;V;
i=1
then
n n
Pv = Zviw(vi) = Zaivi =
i=1 i=1
So P = P2 is a projection onto V. So it is complemented.

Case 2. Suppose dim(X/V) =n < oo. Pick a basis @1, ...,&, for X/V. Let ¢: X — X/V be the quotient
map. Pick z; € X such that ¢(z;) = &;. Let W = span{ z1,...,z, }.

Claim 237. V +W = X.

Proof. Suppose x € X with
q(z) = Z a;T;

i=1
Let

n

w = Z a;T;
i=1
and v = z — w. Then
q(v) = g(z) — Zaii‘i =0
i=1

soveV. But x = v+ w. O Claim 237

Claim 238. VNW ={0}.

Proof. For x € VNW, we have ¢g(x) = 0. Since x € W, we have

X = Zaixi
i=1
So .
0=q(x) = ai;
i=1
So each a; = 0. So x = 0. O Claim 238

So V is complemented.
[0 Lemma 236

Notation 239. If V and W are complements in X, we write X = V @ W. (One also sees X = V+W).

Lemma 240 (Key lemma). Suppose K € K(X). Suppose we have closed subspaces Vo G Vi G Va2 & ... and
a; € C such that (K — a;1)(V;) CV;—1. Then

lim Q; = 0
i—00
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We then have (K —o;I)x; =

Proof. Since V; 2 V;_1, we may pick z; € V; with [|z;|| = 1 and dist(z, V;_1) > 3.
0>0forall ke N. If1 </ <k,

yi € Vi_1; so Kx; = ayw; + ;. Suppose ny < ng < ng < ... satisfies |, | >

then
I K2n, — Kz, || = [|an, Tny + (Yn,, — Kzp,) ||

> dist(am, Tny s Vig—1)

> |0‘nk|

- 2

)

>

-2
So Kb;(X) is not compact. O Lemma 240

Theorem 241. If K € K(X) then ker(I — K) is finite-dimensional and Ran(I — K) is closed and has finite
codimension.

Proof. Let B = b;(X)Nker(I — K). If z € B, then Kz = (K —I)x +x =z. So Kb)(X) 2 KB =B is
compact. So null(I — K) = dim(ker(I — K) < co. So N = ker(I — K) has a complement V;s0 X = N & V.
Then (I - K)X = (I — K)V and (I — K) [ V is injective.

Claim 242. (I — K) [ V is bounded below.

Proof. Otherwise there are vy,vs,--- € V with |lv;|| = 1 and |jv; — Kv;|| = ||(I — K)v;|| — 0. But
Kv; € Kbi(X), and the latter is compact. So there is a subsequence (Kuv;, : k € N) — y. Then
v, = (v, — Kv;, ) + Kv;,, = 0+y€V. So

(I -K)y= lim (I —K)v;, =0

k—o0
Soye VNN ={0}. But
lyll = Jim [l | =1
— 00
a contradiction. O Claim 242

So Ran(I — K) = (I — K)V is closed.
Claim 243. X/(I — K)X is finite-dimensional.

Proof. Otherwise, let ¥, = Ran(I — K). We have X/V} is infinite-dimensional, and so contains linearly
independent &1, @9, .... Pick z; € X such that z; + Vo = @;. Let V; = Vo +span{ x1,...,2; }. Then

WwewniG...
with(K — I)V; C Ran(I — K) = Vj C V;_1. By the Key lemma, we have
i1 =0
a contradiction. O Claim 243
O Theorem 241

Definition 244. We say T € B(X,Y) is Fredholm if

e null(7) = dim(ker(T)) < oo.

e Ran(T) is closed.

o dim(Y/TX) < o0.
The index of T is ind(T") = null(T") — dim(Y/TX) € Z.

80



Remark 245.

1. If dim(Y/TX) < oo, then TX is closed. (Exercise; use closed graph theorem.)

2. dim(Y/TX) = null(T*). (Useful for A6; need to prove it to use on assignment, though.)
Example 246.

1. If K € K(X) and X # 0, then A + K is Fredholm.

2. f T € K(X,Y) is invertible, then T is Fredholm and ind(T") = 0.

3. The unilateral shift S € B(¢3) given by S((x1,22,23,...)) = (0,21, 22,23,...). This is an isometry,
injective, and satisfies Ran(S) = (Ce;)*. Also null(S) = 0 and dim(fy/S¥5) = 1. So ind(S) = —1.

4. The backward shift S* is surjective and has ker(S*) = Cey, so 2/ Ran(S*) = {0}. So ind(S*) = 1.

Theorem 247. The set F(X) of all Fredholm operators on X is open in B(X), and ind is a continuous
function (and hence locally constant; so constant on connected components).

Proof. Suppose T' € B(X) is Fredholm. Let N = ker(7"). Choose a complement V so X = N @ V. Let
R = Ran(T); choose a finite-dimensional complement R so X = R@® W. Then ind(T) = dim(N) — dim(W).

The map T e B(V, R) given by TV =Tw is injective and surjective, and hence is invertible by Banach
isomorphism theorem. Suppose S € B(X) and

1
IS =Tl < =

7

Let S: VAW - X =R®W by Sw+w)=Sv+w. Let T: VOW - X =ROW by T(v+w) =Tv+w.
Then 7 is invertible. But )

IS -T) 1V < =

I

5-7

But T is invertible; so S is invertible. So X = S(V & W) = SV & W. (The sum is direct since in general
ifS:VEW = X then X = SV + SW and SV NSW = S(VAW) = 0.) Soker(S)NnV = {0}. So
null(S) < dim(W) = null(T).

Aside 248. Suppose VO W = X with NNV = {0}. We claim that dim(N) < dim(W). Suppose
dim(W) = n with z1,...,2,41 € N linearly independent. Then q: V & W — W given by ¢(v + w) = w has

q(v1),...,q(vny1) are linearly dependent. So there are ay, ..., a,+1 not all 0 such that
n+1
q (Z ai:ri) =0
i=1
But
n+1

i=1
a contradiction.
So SV C Ran(S) = SV + SN. But SV is closed and SN is finite dimensional; so SV + SN is closed.

Aside 249. To see this, suppose Sv,, + Sk, — y where v, € V and k,, € N. Then we have a subsequence
kn, -k € N;so Sk,, = Sk € SN. So Sv,, >y — Sk e SV, as SV is closed. Soy € SN + SV.
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So dim(X/SX) < dim(X/SV) = dim(W) < oo. So it is Fredholm. Let Ng = ker(S). Then VNNg ={0};
so V+Ng is a direct sum of finite codimension. Pick a complement Z so V&N;®Z = X; then (V& Z)®Ng = X.
So V @ Z is complement to ker(S). So S [ (V @ Z) is bounded below. But SX = S(V & Z) =SV & SZ; so

ind(S) = null(S) — dim(X/SX)
= dim(Ng) — dim(X/(SV & 5%))
= dim(Ng) — (dim(X/SV) — dim(S7))
= dim(Ng) — (dim(W) — dim(Z))

= (dim(Ng) + dim(Z)) — dim(W)
= dim(Ny) — dim(W) (since Ng @ Z is a complement to V, as is Nr)

So dim(Nr7) — dim(X/TX) = ind(T). O Theorem 247
Corollary 250. If A # 0 and K € K(X), then ind(A + K) = 0.

Proof. I + A'K is Fredholm. So A + K is Fredholm. So A + tk is Fredholm for 0 < t < 1. So
ind(AI + K) = ind(A\) = 0. O Corollary 250

Corollary 251 (Of proof). Suppose T is Fredholm. Then

lim sup null(S) < null(T")
S—T

Remark 252. It can be strict; consider

ast — 0.
We have K(X) < B(X). So B(X)/K(X) is a Banach space and a ring (in fact, an algebra over C). If
7m: B(X) — B(X)/K(X), then
m(zy) = |w(@)x ()] < |7 (@)= ()]

So this is a Banach algebra.
Theorem 253 (Atkinson). T € B(X) is Fredholm if and only if n(T) € (B(X)/K(X))™*.
Proof.

(=) Suppose T is Fredholm. So if Ny = ker(T'), then N7 is finite-dimensional; so there is a complement
X = Nr @ V. Likewise, if Ry = Ran(T), then Rr has finite codimension; so there is a complement
X = Ry ®W, where W is finite-dimensional. Then T' € B(V, Rr) is invertible. Let S € B(Rr, V) be the
inverse. Define S € B(X) by S(r & w) = Sr, wehere r € Ry and w € W. Then ST(n®v) = S(Tv) = v
for n € Ny and v € V. So ST is a projection onto V with kernel Ny. So I — ST is a projection onto
Nr; so rank(I — ST) = dim(Ny) < oco. So w(S)7(T) = n(I).
On the other side,

(TS)(Tvew)=T(STv) =Tv

So T'S is a projection onto Ry with ker(7'S) = W is finite-dimensional. So rank(I —7'S) = dim(W).
So m(T)w(S) = w(I). So w(T) is invertible.

(<=) Suppose S € B(X) has T € B(X) such that 7(S) = n(T)~!. Then 7(ST) = n(I); so ST = I + K for
some K € K(X). Likewise, 7(T'S) = w(I), so T'S = I+ L for some L € K(X). Then ker(T) C ker(ST) =
ker(I + K) is finite-dimensional, and Ran(7") 2 Ran(7'S) = Ran(I + L) has finite codimension. So
Ran(T) is closed and has finite codimension. So T is Fredholm.

O Theorem 253
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Corollary 254. If T is Fredholm and K € K(X), then T + K is Fredholm and ind(T + K) = ind(T).

Proof. m(T + K) = w(T) is invertible, so T'+ K is Fredholm. But then T' + ¢tK is Fredholm for 0 < ¢ < 1; so
by continuity we have ind(T + K) = ind(T). O Corollary 254

Theorem 255. ind: (B(X)/K(X))~! — Z is a homomorphism.

Proof. Note that if 7(S) = n(T) € (B(X)/K(X))™!, then S —T € K(X),s0 S =T + K for some K € K(X).
But then ind(S) = ind(T). So we can define ind(7w(T")) = ind(T"), and this is well-defined.

Suppose S, T € F(X). Write X = Nr @V =TX & W (where Ny = ker(T) and TX = Ran(T) =TV);
write X = Ng @ U = SX @Y similarly. We need to choose W a bit more carefully to make the proof go
smoothly.

Well, T X + Ng is closed, as T'X is closed and Ny is finite-dimensional. Choose a complement Wy C Ng such
that TX @ Wy = TX 4 Ng; then Ng = (TX N Ng) @ Wy. Let Wy be a complement to (TX + Ng) dW; = X.
Let W=Wy®dW;. Then TX oW =(TX W)W, =TX $ NsdW; = X.

But then

ker(ST) = Np+{x:Tz € N }
=Nr+{veV:Tve NsNTX}
=Nr@ (T V) Y(NsNTX)
since T' | V is injective, and Ny NV ={0}. So (ST) = (T) + dim(Ns N TX).

Now, SX = S(TX & Wy @& Wy) = STX @& SW; (where the sum is direct since if STz = Sw;, then
S(Tx—wy)=0,s0 Tz —w; € Ng;s0w, € TX + Ng, and w; = 0). So

ind(ST) = (ST) — dim(X/STX)
=(T)+dim(Ns NTX) — (dim(X/SX) — dim(SW))
= (T) +dim(Ns N TX) — (dim(X/SX) — dim(Wh))
= (T) — dim(Wp @ W1) + dim(Wy) + dim(Ns N TX) — dim(X/SX)
= (T) — dim(Wy @ W1) + dim(Ng) — dim(X/SX)
= ind(T') + ind(S)
since dim(Wp) +dim(Ns N TX) = dim((Ng N TX) & Wy) = dim(Ng). O Theorem 255

Theorem 256 (Structure of compact operators). Suppose K € K(X) with dim(X) = co. Then
1. 0 € o(K).
a(K)\ {0} C op(K)

o(K) is a finite or countable set with 0 as its only cluster point.

For all A\ € o(K)\ {0} there is ny € N such that

e N(\) =ker((A — K)™) = ker((AM — K)™) if and only if n > ny
e R(\) =Ran((AI — K)™) = Ran((AI — K)™) if and only if n > njy

5. Then X = N(\) @ R(\).

6. If Ey is the projection onto N(\) with kernel R(\), then Ey € { K }".
Aside 257. For A C B(X),weset A’ ={T € B(X): AT =TAfor all Ae A}. We then set A" = (A').

7. 0(K T NA)={ A} and o(K | R(\)) = o(K) \ A\
8 If x#peo(K)\{0}, then ExE, =0.
Proof of Theorem 256.
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2. Take A € o(K)\ {0}. If ker(A] — K) = {0}, then since A\ — K is Fredholm and 0 = ind(A\] — K) =
(M — K) —dim(X/(M — K)X), then we would have AI — K is a bijective map X — X; so \[ — K is
invertible, contradicting our assumption that A\ € o(K). So there is 0 # x € ker(A] — K); so we have
Kz = Az, and X € 0,(K).

4. Fix A€ o(K)\ {0}. Let N; = ker((A — K)*); then
NyC N, C ...

and
Ran(A — K) D Ran((A] — K)?) D ...

Now, if N,, ;% Nyp41 for all n > 1, note that (A] — K)N,,11 € N,. So, by the key lemma, we have

A= lim A=0
n— oo
a contradiction. So there is a least ny such that N,, _; ; Np, = Npy+1.
Now, if n > ny + 1 and x € N, then (A — K)""™ 1z € N,,, 11 = N,,. So (M — K)""'z = 0. So
N,=N,_1=---=N(\).

But 0 = ind((A] — K)™) = dim(N,,) — dim(R,,), where R,, = Ran((A] — K)™). Thus R, = R(\) = R,
if and only if n > n,.

5. Suppose * € X. Then y = (M — K)™z € R(\) = Ran((\] — K)?*). Find z € X such that
(M — K)?™z =y = (A — K)™z. Then

M-K)"(M-K)"z—z)=0

with w = (A — K)™z —x € N(\). But then = —w + (Al — K)™z € N(\) + R(\).

Suppose now that € N(A) N R(A). Then there is y such that @ = (A — K)™ y; then since x € N(X),
we have 0 = (A — K)™x = (M — K)*y. So y € ker((A — K)?™). Soz = (A — K)™y = 0. So
X =N\ & R(N).

6. Let E, be the projection onto N(A) with kernel R(A). Suppose T' € { K }. If z € N(A), then 0 =
(M —K)"x;s0 (M — K)"»Tx =T(A — K)™z =0. So TN(A\) C N(A). Now, if y € R()\), then there
is & such that y = (A — K)™x; then Ty = T(A\] — K)™ 2z = (M — K)™ Tz € R()).
Now, if t = n@y for n € N(A) and y € R(A), then ExTx = Ex(Tn @ Ty) = Tn = TE)z. So
E\T=TE),. So Ey e {K}".

7. In particular, the above yields that N(\) and R()) are invariant for K; so K [ N(\) € B(N()\)). But
N() is finite dimensional, and (A y(x) — (K [ N(X)))™ = (A\I — K)™ | N(A) =0 and (A\] — K)™ ! |
N(A) # 0; so (A — 2)™ is the minimal polynomial of K | N(A\). So o(K [ N(A)) = {A}. Also
(M — K) | R(X) has no kernel (since N(A\) N R(A) ={0}). So the index is 0, and (M — K) [ R()) is
invertible. So A ¢ o(K | R())). So

KE<K[N()\) 0 )

0 K [ R\
> (T - K) | NV 0
’”‘K:(M 0 (uIKHR(A))

is invertible if and only if both diagonal entries are invertible. So o(K) = o(K [ N(A\)) U (K [ R(X)).
But o(K [ N(A)={A},and o(K | R(\)) Co(K)\{A}. Soo(K [ R(\)) =0(K)C{\}, as desired.

3. Suppose (A, : n € N) are distinct points in o(K) \ {0}. Pick z, such that Kz, = A\,x,. Let
V., =span{x1,...,2, }. Then (A, I — K)V,, C V;,_1. By the key lemma, we have
lim A, =0

n—oo

So o(K) is countable with 0 as the only cluster point.
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8. Suppose A\, p € o(K) \ {0} are distinct. Then N(A) N N(u) = {0} since N(u) C R(A\) by decomposition
of K. So E,Ey = 0.

1. f0¢ o(K)={A1,..., A\ }, then

n
X =Ny, &Ny, & &Ny, &R

i=1
by induction. So

U<K I ﬂR(AQ) Co(E)\{A1,...., A+ =0

a contradiction. In fact,

{mﬁmm) —{0)

i=1
though it doesn’t have to be an eigenvalue.

[0 Theorem 256

6.1 Normal operators on Hilbert space
Recall that for T' € B(H), we have a unique T* € B(#) such that (T*z,y) = (x,Ty) for all x,y € H.
Definition 258.

o T € B(H) is self-adjoint it T = T*.

o T € B(H) is positive (written T > 0) if T =T* and (T'z,z) > 0 for all z € H.

e U € B(H) is unitary if U is a surjective isometry. (Equivalently, by assignment 6, if U* = U~1.)

e N € B(H) is normal if NN* = N*N.
Remark 259.

1. On L2(0,1), if f € L>(0,1), then M¢h = fh is bounded. Also

(Mg, h) = (g, Mysh)
= (g, fh)

=/gﬁdx
:/(79)@1%
= <Mfg’h>
So M}‘ = M7 and M*M; = M?Mf = Mmz = MfM7: MfMJ’F. So My is normal.

2. Diagonal operators are normal. Iﬁt {e, : n € N} be an orthonormal basis. Let De,, = d,e,, where
(dn :n €N) € ly. Then D*e, = dye,, and D is normal.

3. f T =T%, then (Tx,z) = (x,Tx) = (Tz,z); so (Tz,z) € R. If F = C, then converse is true:

(Tx,y) = %((Tx +y,x+y) —(T(x—y)z—y) +i{l(z+iy),z+iy) — (T (z —iy),z — iy))

<I7Ty> = <Ty,1?>
= Tyt 2y -+ 2) — Ty — )y — o)+ Ty + i)y + i) — i{T(y — i)y — i)
= <T£E,y>
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since (T'z,z) € R for all z € H.

Note that the converse fails over R: let

We then have (T'z,z) = 0 for all z € R? but

«_ (0 1\ _
(8 D

4. If A € B(H) then A*A > 0, since (A*A)* = A*A** = A*A and (A* Az, z) = (Ax, Az) = ||Ax|]? > 0.
Proposition 260. Suppose N is normal.

. NINz|| = |[N*z|| for all x € H.

~

2. |IN|| = spr(N).
3. ker(N — AI) = ker((N — AI)™) = ker((N — AI)*) for alln >1 and all X € C.
4. ker(N — AI)* = Ran(N — A]).
5. If X # p then ker(N — M) L ker(N — pul).
6. If p € Clz] then
[p(N)[I = sup_|p(A)]
A€o (N)
Proof.
1. Note that
|N*z|* = (N*z, N*z)
= (NN*z,x)
= (N*Nz,x)
= (Nz,Nz)
1INz

2. By (1), we have | N2z| = |[N*(Nz)|| > (N*N,z,2) = ||[Nz||?. So

IN?| = sup |[N?z]| > sup ||[Nz|* = [N
Jall<1 Jeli<1

But [[N2[| < [[N]2. So [[N?]| = [[N]]*. So

. X
|72 = (V1) = vy
So )
sor(N) = tim [N = vy
k—o0
3. Well

z€ker(N—-A) < |[(N=Nz||=0=|[(N —X)"z|
< z €ker(N — AI)*

Also if 2 € ker((N — AI)2"), then
0= (N =AD" z|| > (N — AD)z]|*

So |[(N = Al)z||?" =0, and z € ker(N — AI). So ker((N — A)%) = ker(N — AI).
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4. Note that ker(N — AI)* = Ran(N — AI). Also
Ran(N — A1) = (ker(N — AI)*)* = ker(N — \I)*

(So Ran(N — AI)* = Ran(N — AI).)
5. Suppose A # u. Suppose x € ker(N — AI) and y € ker(N — pul) = ker(N* —il). Then Nz = Az, and
N*y =Ty, so Ny = uy. So
Mz, y) = (Nz,y) = (z, N7y) = (z, 1y) = p(z,y)
But A # p. So {z,y) =0.

6. Well, p(N) is normal. By (2), we have |[p(N)| = spr(p(N)). But o(p(N)) = p(c(N)) by the spectral
mapping theorem. So

[p(N)|I = sup_|p(A)]
A€o (N)

0 Proposition 260
Corollary 261. If N is normal and Fredholm then ind(N) = 0.
Proof. Well, ker(N)1 = Ran(N) and
ind(N) = dim(ker(N)) — dim(#H/ Ran(N))
= dim(ker(N)) — dim((Ran(N)™1))
= dim(ker(N)) — dim(ker(N))

O Corollary 261

Theorem 262 (Spectral theorem for compact normal operators). Suppose N is a compact normal operator
on H. Then H has an orthonormal basis which diagonalizes N .

Proof. From the structure of arbitrary compact operators, we have
o(N)={A1,Ns,...}U{0}
with
lim A\, =0

n—oQ

Then -
\/ ker(N — X\I)™ = ker(N — \;I) = M; = ker(N* = ;1)

n=1

by part (3) of Proposition 260, where \/ denotes the closed span. Note that the M; are finite-dimensional,
and by part (5) of Proposition 260, we have M, 1L M, if m # n. Let

M-,
n=1
Then M is a closed subspace with NM C M and N*M C M. Write H = M @& M=, and write
(N1 0

where Ni;: M — M and Nag: M+ — ML, Then Ny; and Ny are normal, and
« (N7 0
N = ( 0 N2*2>
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and
ON*NNN*(NiklNll_NllNikl 0 )

0 N3yNag — Nog N3,

So Nas is normal, compact, and has no non-zero eigenvalues. So o(Na2) = 0. So || Naz|| = spr(Na2) = 0. So
Nay = 0. So M+ = ker(N). Choose an orthonormal basis for each M;; these are then eigenvectors with
eigenvalue \;. Say €;1,...,¢; ,, are an orthonormal basis for M;. Choose an orthonormal basis {eg; : i < o}
for ker(N) = M=; note that « is possibly infinite (indeed, possibly uncountable).

Notation 263. If 2,y € H, then (xy*)(z) = 2(y*2) = (2, y)x. Write

T
xTr = T2
(23
y = y2
Then
T1Y1 T1Y2
xy* = 1’2% I'Qyi?

If N is compact and normal and {e, : n € N} is an orthonormal basis of eigenvectors which span
M = (ker(N))+; say Ne,, = Ane,. Then

N =" dene;, = diag(A1, Mg, As,...) ©0

n=1

on H=Mae&M*L.
O Theorem 262

6.2 Invariant subspaces

Definition 264. If S C B(X) and M is a closed subspace of X, we say M is invariant for S if sM C M
for all s € S. We write Lat(S) for the set of all S-invariant subspaces of X.

Remark 265. We have {0}, X € Lat(S). If all M, € Lat(.S), then

[ M. € Lat(S)

If we further have that
\/ M, € Lat(S)

then it is called a complete lattice.

Definition 266. If £ is a collection of subspaces, we define
Alg(Ly={AeB(X):AMCMforal M € L}

Remark 267. Alg(L) is an algebra containing I: if AM C M and BM C M, then («¢A+ 8B)M C M and

ABM C AM C M. Furthermore, if A, € Alg(L) with A, WOoT, A, then p(Asz) — ¢(Ax) for all z € X

and all p € X*. If v € M and p € M=+, then
o(Az) =limp(Aqz) =0
Ao Az € M. So Alg(L) is a WOT-closed unital algebra.
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Remark 268. If A is an algebra, we have Alg(Lat(A)) D A; we say A is reflezive if A = Alg(Lat(A)). Note:
this differs from our prior usage.
Simlarly, if £ is a lattice, then Lat(Alg(£)) D L.

Ezxample 269. Recall the Volterra operator

viw = [ s

0

on B(L?*(0,1)). Then
Ny ={f :supp(f) C [¢t, 1]} € Lat(V)

Theorem 270. Lat(V)={N,:0<t<1}.
TODO 3. Last two lectures.
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