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1 Preliminaries
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2 Point-set topology
If (X, d) is a metric space, recall we define

Br(x) = { y ∈ X : d(x, y) < r }

to be the open balls. We say U ⊆ X is open if and only if for all x ∈ U there is r > 0 such that Br(x) ⊆ U .

Definition 1. A topological space is a set X together with τ ⊆ P(X) (whose elements are called open sets)
satisfying

1. ∅, X ∈ τ .

2. If U ⊆ τ , then ⋃
U ∈ τ

3. If U, V ∈ τ , then U ∩ V ∈ τ .

Example 2.

1. The discrete topology is (X,P(X)). This is, in fact, a metric topology.

2. The trivial topology is (X, { ∅, X }).

3. Suppose (X,<) is a total order. We define the order topology to be generated by

X

Lx = { y ∈ X : y < x }
Gx = { y ∈ X : y > x }

i.e. the open sets are ⋃
α

(Lxα
∩Gyα

) ∪
⋃
β

Lbβ ∪
⋃
γ

Gcγ

4. Let X = C[0, 1]. Let x ∈ [0, 1], a ∈ C, r > 0. Let

Ux,a,r = { f ∈ C[0, 1] : |f(x)− a| < r }
U{ (xi,ai,ri):i<n } =

⋂
{Uxi,ai,ri : i < n }

We declare unions of the latter to be open. This is the topology for pointwise convergence.

Definition 3. A set C in (X, τ) is closed if and only if X \ C is open.

Definition 4. For a topological space (X, τ), a subset A ⊆ X, we define

• the interior of A is the largest open U ⊆ A:

A◦ =
⋃

(P(A) ∩ τ)

• the closure of A is the smallest closed C ⊇ A:

A =
⋂

{K ⊆ X : K ⊇ A,Kc ∈ τ }

Proposition 5.

1. If F is a collection of closed sets, then ⋂
F

is closed.
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2. If F,G are closed, then so is F ∪G.

3. For A ⊆ X, we have that x ∈ A if and only if for all open U ∋ x, we have U ∩A ̸= ∅.

4. A = ((Ac)◦)c.

Proof.

1. For each F ∈ F , we have F c is open. So(⋂
F
)c

=
⋃

{F c : F ∈ F }

is open, and ⋂
F

is closed.

2. (F ∪G)c = F c ∩Gc is open, so F ∪G is closed.

3. Suppose x ∈ X and there is open U ∋ x such that U ∩ A = ∅. Then U c is closed and A ⊆ U c. So
A ⊆ U c, and x /∈ A.

Conversely, if x /∈ A, then x ∈ (A)c. Setting U = (A)c, we have x ∈ U and U ∩A ⊆ U ∩Ac = ∅.

4.

(Ac)◦ =
⋃

{U ∈ τ : U ∩A = ∅ }

= (A)c

by previous item. Thus
((Ac)◦)c = ((A)c)c = A

Proposition 5

Proposition 6. If S ⊆ P(X), then there is a smallest topology τ containing S given by ∅, X and arbitrary
unions of finite intersections of elements of S.

Proof. We check the properties.

1. By construction.

2. A union of unions is itself a union.

3. Well⋃
α

(Sα,1 ∩ · · · ∩ Sα,nα
) ∩
⋃
β

(Tβ,1 ∩ · · · ∩ Tβ,mβ
) =

⋃
α

⋃
β

Sα,1 ∩ · · · ∩ Sα,nα
∩ Tβ,1 ∩ · · · ∩ Tβ,mβ

(Check the set theory, if you don’t believe it.)

Proposition 6

Definition 7. If S ⊆ P(X) generates τ as above, then S is a subbase of τ . If S ⊆ P(X) and every U ∈ τ is
the union of sets in S, then S is a base for τ .

Example 8.

1. Suppose (X, d) is a metric space. Then {Br(X) : x ∈ X, r > 0 } is a base for the metric topology.

2. In the special case of (R, d), we have that { (r, s) : r, s ∈ Q } is a base.

Proposition 9. Suppose { τα } is a collection of topologies on X. Then
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1.
τmin =

⋂
α

τα

is a topology on X.

2.
τmax =

⋃
α

τα

is a subbase for a topology on X.

Definition 10. If σ, τ are topologies on X, we say

• σ < τ if σ ⊆ τ (σ is weaker than τ).

• σ > τ if σ ⊇ τ (σ is stronger than τ).

Example 11. Let X = C[0, 1]. Let τ be induced by the metric

d(f, g) = ∥f − g∥∞ = sup
x∈[0,1]

|f(x)− g(x)|

Consider the topology σ with base the sets

U = U{ (xi,ai,ri):i<n } = { f : |f(xi)− ai| < ri, i < n }

We claim that σ ⊆ τ : Suppose f ∈ U with f(xi) = bi, |bi − ai| < ri. Then we can take

r = min
i<n

ri − |ai − bi|

If ∥f − g∥∞ < r, then |g(xi)− bi| < r, and thus |g(xi)− ai| < |g(xi)− bi|+ |bi − ai| ≤ ri.
Thus σ ⊆ τ ; they are not equal because U ̸= ∅ is always unbounded. Indeed, for

U{ (xi,ai,ri):i<n }

pick y /∈ {xi : i < n }. Then there is g ∈ C[0, 1] with g(xi) = ai and g(y) is arbitrarily large.

Definition 12.

• (X, τ) is separable if and only if there is a countable dense subset. i.e. a countable A such that A = X.

• (X, τ) is first-countable if and only if for each x ∈ X, there is a collection U of open U ∋ x such that
for all open V ∋ x there is U ∈ U such that U ⊆ V .

• (X, τ) is second-countable if and only if there is a countable base for the topology.

Example 13.

1. If (X, d) is a compact metric space, then X is separable.

2. If (X, d) is any metric space, then X is first-countable.

3. If (X, d) is a separable metric space, then X is second-countable.

Proof. Suppose {xi : i < ω } ⊆ X is a countable, dense set. Consider{
B 1

m+1
(xn) : m,n < ω

}
We claim that this is a base for the topology. Let U be open in (X, d). Let x ∈ U . Need to find m,n
such that

x ∈ B 1
m
(xn) ⊆ U

Well, there is r > 0 such that Br(x) ⊆ U . Pick m such that 1
m < r

2 . By density of {xi : i < n }, we
have some n such that d(xn, x) < 1

m . Then

x ∈ B 1
m
(x) ⊆ B 2

m
(x) ⊆ Br(x) ⊆ U

as desired.
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Definition 14. Suppose (X, τ), (Y, σ) are topological spaces. We say f : X → Y is continuous if for all open
V ⊆ Y , we have f−1(V ) is open (in X). We say f is a homeomorphism if f is a bijection and f and f−1 are
both continuous. We say f is open if for all open U ⊆ X we have that f(U) is open (in Y ).

Example 15.

1. Suppose (X, τ) is a topological space. Consider the sequence of maps

(X,discrete) f−→ (X, τ)
g−→ (X, trivial)

where f = g = idX . Then f and g are bijective and continuous but f−1, g−1 are not continuous.

2. Any f from a discrete space into R is continuous. The only continuous functions from a trivial topology
into R are constant.

3. The map

f : (−1, 1) → R

x 7→ tan
(π
2
x
)

is a homeomorphism.

Definition 16. Suppose (X, τ) is a topological space, (xn : n < ω) is a sequence in X. We say (xn : n < ω)
converges if and only if for all

U ∈ O(x) = {U ∈ τ : x ∈ U }

there is an N < ω such that for all N ≤ N < ω we have xn ∈ U .

Example 17.

1. X = { a, b }, τ = { ∅, { a }, { a, b } }. Then xn → a if and only if xn is eventually a. On the other hand,
every sequence converges to b. In particular, some sequences converge to a and b.

2. X = [0, 1) ∪ { a, b } with U ⊆ X open if all of the following hold:

• U ∩ [0, 1) is open in the metric topology.

• If a ∈ U or b ∈ U , then there is ε > 0 such that U ⊇ (1− ε, 1).

Then any sequence in [0, 1) that converges to 1 in the metric topology converges to both a and b in τ .
As another example, the sequence

1− 1

2
, a, 1− 1

3
, a, . . .

converges to a but not b.

Definition 18. (X, τ) is Hausdorff if for all x ̸= y in X there is open U ∋ x, open V ∋ y such that U ∩V = ∅.

Example 19.

1. Metric spaces are Hausdorff.

2. The prior two examples are not Hausdorff.

Proposition 20. If C(X) (the set of continous maps X → C) separates points (i.e. for x ̸= y there is
f ∈ Cb(X) such that f(x) ̸= f(y)), then X is Hausdorff.

Proof. Say x ̸= y. Then there is a continuous f : X → C such that f(x) ̸= f(y), by hypothesis. C is Hausdorff,
so we may find open U ∋ f(x), open V ∋ f(y) such that U ∩ V = ∅. Then f−1(U) and f−1(V ) are open sets
containing x and y, respectively, and f−1(U) ∩ f−1(V ) = ∅. Proposition 20
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2.1 Nets
Main message: sequences are not enough.

Example 21. Let X = N× N. Define τ by:

• For m+ n ≥ 1, the set { (m,n) } is open.

• An open U ∋ (0, 0) must have a finite F ⊆ N such that for all n ∈ N \ F , we have

{m < N : (m,n) ∈ U }

is a cofinite subset of N.

Check that this defines a topology.

1. (X, τ) is Hausdorff: to house off (m1, n1), (m2, n2), and (0, 0), use

U0 = X \ { (m1, n1), (m2, n2) }
U1 = { (m1, n1) }
U2 = { (m2, n2) }

2. (0, 0) ∈ X \ { (0, 0) } since every non-empty open set has an element besides (0, 0).

3. No sequence ((mk, nk) : k < ω) in X \ { (0, 0) } converges to (0, 0).

Proof. Suppose xk = (mk, nk) is a sequence.

Case 1. Suppose (nk : k < ω) is bounded. Then there must be a constant subsequence (nki
: i < ω).

Then
U = X \ { (m,n) : n = n0 }

is open and contains (0, 0). But xki /∈ U for all i < ω. So xk ̸→ (0, 0).

Case 2. Suppose otherwise. Then there is a subsequence (nki : i < ω) such that (nki : i < ω) → ∞.
Then

U = X \ {xki
: i < ω }

is open because only finitely many xki have nki = n. But xki /∈ U for i < ω. So xk ̸→ (0, 0).

Definition 22. A directed set is a set Λ with a binary relation ≤ such that

1. λ ≤ λ for all λ ∈ Λ.

2. If λ1 ≤ λ2 and λ2 ≤ λ3, then λ1 ≤ λ3 for all λi ∈ Λ.

3. Directedness: if λ1, λ2 ∈ Λ then there is λ3 ∈ Λ such that λ1 ≤ λ3 and λ2 ≤ λ3.

(We do not require antisymmetry; some authors do.)

Definition 23. A net is a function x : Λ → X (usually written (xλ : λ ∈ Λ)). A net converges to x ∈ X if for
all U ∈ O(x) there is λ0 ∈ Λ such that xλ ∈ U for all λ ≥ λ0.

Definition 24. A subnet Γ of Λ is a function φ : Γ → Λ which is cofinal : for all λ0 ∈ Λ there is γ0 ∈ Γ such
that φ(γ) ≥ λ0 for all γ ≥ γ0.

In practice, such φ will usually be monotonic.

Example 25. We now return to Example 21.
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4. There is a net in X \ { 0, 0 } converging to (0, 0). Let Λ = O((0, 0)) ordered by U ≤ V if U ⊇ V . This
is clearly a directed set. We then define a net as follows: for U ∈ Λ, let xU be the smallest element of
U \ { 0, 0 } in the usual well-ordering of N2.

Claim 26. (xU : U ∈ Λ) → (0, 0).

Proof. Suppose V ∈ O((0, 0)). If U ≥ V , then U ⊆ V , and xU ∈ U ⊆ V . Claim 26

5. Take the sequence
((0, 1), (1, 0), (0, 2), (1, 1), (2, 0), . . . ) = (xk : k < ω)

This does not converge to (0, 0). Define φ : Λ → ω by φ(U) = i if xU = xi. This map is cofinal, since if
N < ω, we can V ∈ Λ such that U ≥ V =⇒ φ(U) ≥ N by taking V = X \ { (0, 0), x0, . . . , xN−1 }. So
Λ is a subnet of the sequence (xn : n < ω).

Proposition 27. Suppose A ⊆ X. Then x ∈ A if and only if there is a net (xλ : λ ∈ Λ) in A converging to
x.

Proof.

( =⇒ ) Well, x ∈ A if and only if U ∩ A ≠ ∅ for all U ∈ O(x). We can make O(x) into a directed set by
reverse containment, as before. Use the axiom of choice to pick xU ∈ U ∩A for each U ∈ O(x). Then
(xU : U ∈ O(x)) converges to x, since for all V ∈ O(x), if U ≥ V then xU ∈ U ⊆ V .

( ⇐= ) This implies that every U ∈ O(x) contains an element of A.

Proposition 27

Proposition 28. f : (X, τ) → (Y, σ) is continuous if and ony if for any net (xλ : λ ∈ Λ) → x in X, we have
that (f(xλ) : λ ∈ Λ) → f(x) in Y .

Proof.

( =⇒ ) Suppose (xλ : λ ∈ Λ) → x. Let V ∋ f(x) be open. Then U = f−1(V ) is open, and x ∈ U . So
there is λ0 ∈ Λ such that for all λ ≥ λ0, we have xλ ∈ U , and thus f(xλ) ∈ f(U) ⊆ V . Thus
(f(xλ) : λ ∈ Λ) → f(x).

( ⇐= ) Suppose f is not continuous. Then there is V open in Y such that U = f−1(V ) is not open, and
thus U c is not closed. Thus there is x ∈ U such that x ∈ U c. By the previous proposition, there
is a net (xλ : λ ∈ Λ) in U c converging to x. But f(xλ) ∈ V c, so, by previous proposition, we have
f(xλ) ̸→ f(x) ∈ V .

Proposition 28

Example 29. Not that the sequential characterization of continuity does not apply in general. Consider the
space from before (N2,W ). Consider f : (N2,W ) → (N2,discrete) given by idN2 . Then (xi : i < ω) → x if
and only if x ̸= (0, 0) and xi = x eventually. Thus (f(xi) : i < ω) → f(x). But f is discontinuous, since
f−1({ 0, 0 }) = { 0, 0 } is not open.

2.2 Axiom of choice
Definition 30. A set A is well-ordered if it has a total order < and every non-empty subset has a least
element. A partial order is reflexive, antisymmetric, and transitive. It is called inductive if every chain
(totally ordered subset) has an upper bound.

Definition 31. The axiom of choice says that if X is a set, then there is a c : 2X \ { ∅ } → X such that
c(A) ∈ A for all A ̸= ∅.

Definition 32. The well-ordering principle states that every set can be well-ordered.
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Definition 33. Zorn’s lemma states that if every chain in a partial order has an upper bound, then there is
a maximal element. (Note: this doesn’t mean the maximal element is comparable to everything; merely that
no element is larger than it.)

Remark 34. If A is well-ordered, then there is a least element.

Definition 35. An initial segment is

I = I(b) = { a ∈ A : a < b }

Theorem 36. The following are equivalent:

1. The axiom of choice

2. The well-ordering principle

3. Zorn’s lemma

Proof.

(2) =⇒ (1) Place a well-ordering on X; we can then define c(A) to be the least element of A.

(3) =⇒ (2) Let
W = { (F,<F ) : F ⊆ X,<F a well-ordering of F }

Say (F,<F ) ≤ (G,<G) if F ⊆ G and <F=<G |F×F , and F is an initial segment of G. Let

C = { (Fα, <Fα
) : α ∈ I }

be a chain, with (Fα, <Fα
) ≤ (Fβ , <Fβ

) for α < β. Let

G =
⋃
α∈I

Fα

<G =
⋃
α∈I

<Fα

Now, if ∅ ≠ A ⊆ G, we have
A =

⋃
α∈I

(A ∩ Fα) ̸= 0

so there is α ∈ I such that A ∩ Fα ≠ ∅; then we have a least a ∈ A ∩ Fα. Now, for any b ∈ A, we have
that b ∈ Fα, in which case a ≤ b by our choice of a; or that b /∈ Fα, in which case b ∈ Fβ for some
β > α, so Fα is an initial segment of Fβ , and b > a. So in fact a is the least element of A, and <G is
a well-ordering. Then (G,<G) is an upper bound of C. So W is inductive, and thus has a maximal
element (F,<F ) by Zorn’s lemma.
If F ̸= X, we could pick a ∈ X \ F and define a well-ordering of F ∪ { a } by b < a for all b ∈ F ,
contradicting our choice of (F,<F ) as a maximal element of W . So X = F , and we have a well-ordering
of X.

(1) =⇒ (3) Let (P,≤) be an inductive partial order. Suppose there is no maximal element. Then for all
x ∈ P , we have that

Ux = { y ∈ P : x < y } ≠ ∅
Then there is f : P → P such that f(x) ∈ Ux for all x. Since (P,≤) is inductive, we have that for each
chain C, that

UC = {x ∈ P : x is an upper bound for C } ≠ ∅
Then there is a map

g : { C : C is a chain of P } → P

such that g(C) is an upper bound of C for each chain C. Define h = f ◦ g; then h(C) is strictly greater
than every element of C for all chains C.
Define a well-ordering on P by a1 = h(∅), a2 = h({ a1 }), a3 = h({ a1, a2 }), and so on. Consider subsets
A ⊆ P such that
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1. (A,≤) is a well-ordering.
2. If I ⫋ A is an initial segment of A, then the least element of A \ I is h(I).

Call such A a conforming set.

Claim 37. If A,B are two conforming sets, then either A ⊆ B or B ⊆ A, and it is an initial segment.

Proof. Let H be the set of initial segments common to A and B. Let

J =
⋃
I∈H

I

be the largest initial segment common to A and B. Then, if both A and B were proper supersets of J ,
we would have h(J) ∈ A ∩B, and J ∪ {h(J) } would be a strictly larger initial segment common to A
and B, a contradiction. Claim 37

Now, let X be the union of all the conforming sets; then X is well-ordered by ≤, and each A is an
initial segment. So (X,≤) is a maximal conforming set. But X ∪{h(X) } is a strictly larger conforming
set, a contradiction.

Theorem 36

2.3 Compactness
Definition 38. Suppose (X, τ) is a topological space. We say A ⊆ X is compact if every open cover of A
has a finite subcover.

Theorem 39. The following are equivalent:

1. X is compact.

2. Every collection of closed sets C with the finite intersection property (that every finite intersection is
non-empty) satisfies ⋂

C ̸= ∅

3. Every net in X has a convergent subnet.

Proof.

(1) =⇒ (2) Suppose {Cα : α ∈ I } has the finite intersection property but⋂
α∈I

Cα = ∅

Then {Cc
α : α ∈ I } is an open cover of X with no finite subcover, a contradiction.

(2) =⇒ (3) Let (xλ : λ ∈ Λ) be a net. For γ ∈ Λ, let Cγ = {xλ : λ ≥ γ }. Then given any { γ1, . . . , γn } ⊆ Λ,
we some γ such that γi ≤ γ for all i; then

xγ ∈
n⋂

i=1

Cγi

So {Cγ : γ ∈ Λ } has the finite intersection property, and, by assumption, we have some

x ∈
⋂
γ∈Λ

Cγ

Let
Γ = { (λ,U) : λ ∈ Λ, U ∈ O(x) }

9



Define an order on Γ by (λ,U) ≤ (µ, V ) if λ ≤ µ and U ⊇ V . Want to define φ : Γ → Λ which is cofinal
such that xφ(λ,U) ∈ Cλ ∩ U . Well, Cλ = {xγ : γ ≥ λ } intersects U since x ∈ U . Thus {xγ : γ ≥ λ }
also intersects U , since U is open, and there is γ ≥ λ such that xγ ∈ U . Let

Yλ,U = {xγ : γ ≥ λ } ∩ U ̸= ∅

By axiom of choice, there is φ : Γ → Λ such that φ(λ,U) ∈ Yλ,U .

Claim 40. (xφ(λ,U) : (λ,U) ∈ Γ) → x.

Proof. If v ∈ O(x), pick λ0 arbitrary. Then if (λ,U) ≥ (λ0, V ), then xφ(λ,U) ∈ U ⊆ V . So (xφ(λ,U) :
(λ,U) ∈ Γ) → x, as desired. Claim 40

To check cofinality, suppose λ0 ∈ Λ. Then φ(λ,U) ≥ λ ≥ λ0 if λ ≥ λ0. Pick arbitrary U0 ∈ O(x). Then
if (λ,U) ≥ (λ0, U0), we have φ(λ,U) ≥ λ0.

(3) =⇒ (1) Let {Uα : α ∈ A } be an open cover. Suppose there is no finite subcover. Then for each
F ⊆fin A, say F = {α1, . . . , αn }, we have

Uα1 ∪ · · · ∪ Uαn ̸= X

so
CF = U c

α1
∩ U c

α2
∩ · · · ∩ U c

αn
̸= ∅

Let Λ = {F ⊆ A : |F | < ℵ0 } be ordered by F ≤ G if F ⊆ G. By axiom of choice, pick xF ∈ CF for
each F ∈ Λ. Then (xF : F ∈ Λ is a net. By assumption, there is a subnet Γ with φ : Γ → Λ cofinal such
that (xφ(γ) : γ ∈ Γ) → x ∈ X. Thus for all α ∈ A there is γ0 ∈ Γ such that φ(γ) ≥ {α } if γ ≥ γ0. i.e.
φ(γ) = F ∋ α if γ ≥ γ0. Thus

xφ(γ) = xF ∈ CF ⊇ C{α } = U c
α

But U c
α is closed. So

x = lim
γ∈Γ

xφ(γ) ∈ U c
α

and x /∈ Uα for any α. But the Uα cover X, a contradiction.

Theorem 39

Proposition 41. Suppose f : (X, τ) → (Y, σ) is continuous. Suppose C ⊆ X is compact. Then f(C) is
compact.

Proof. Let {Vα : α ∈ A } be an open cover of f(C). Set Uα = f−1(Vα); these are open in X by continuity,
and ⋃

α∈A

Uα ⊇ C

Then there is a subcover
C ⊆ Uα1

∪ · · · ∪ Uαn

and thus
f(C) ⊆ f(Uα1

) ∪ · · · ∪ f(Uαn
) ⊇ Vα1

∪ · · · ∪ Vαn

Proposition 41

Definition 42 (Product topology). Suppose ((Xα, τα) : α ∈ A) are topological spaces, put a topology on

X =
∏
α∈A

Xα

(whose elements take the form x = (xα : α ∈ A) where xα ∈ Xα) by using the weakest topology such that all

πα : X → Xα

x 7→ xα

10



are continuous. i.e. if U ⊆ Xα is open, then

π−1
α (U) = {x ∈ X : xα ∈ U } = U ×

∏
β ̸=α

Xβ

is open. So if α1, . . . , αn ∈ A and each Uαi open in Xαi , then

Uα1 × Uα2 × · · · × Uαn ×
∏

β/∈{α1,...,αn }

Xβ

is open, and these sets form a basis for the topology.

Remark 43. For Uα ⊆ Xα, we have that ∏
α∈A

Uα

is open if Uα = Xα except finitely often. The converse holds except if some Uα = ∅.

Theorem 44 (Tychonoff). The product of compact spaces is compact.

Proof. Let ((Xα, τα) : α ∈ A) be compact topological spaces. Let

X =
∏
α∈A

Xα

Suppose X is not compact; suppose there is an open cover U with no finite subcover. We plan to use Zorn’s
lemma to find a maximal open cover with no finite subcover. The order we use is set inclusion: U ≤ V
if U ⊆ V. We are given that Λ, the collection of open covers with no finite subcover, is non-empty. Now,
suppose

{Uα : α ∈ T }

is a chain in Λ (with T a totally ordered set and α ≤ β in T implies Uα ≤ Uβ). Let

U =
⋃
α∈T

Uα

Then this, too, is an open cover. Furthermore, if U had a finite subcover X ⊆ U1 ∪ · · · ∪ Un, then we could
find αi such that Ui ∈ Uαi . Letting α be the maximum of the αi, we have that the Ui are all in the Uα, and
are a finite subcover of Uα, a contradiction. So U has no finite subcover, and U ∈ Λ is an upper bound for

{Uα : α ∈ T }

Thus by Zorn’s lemma there is a maximal open cover U0 with no finite subcover.
Properties of U0:

1. If U ∈ U0 and V ⊆ U is open, then V ∈ U0.

2. If U1, U2 ∈ U0, then U1 ∪ U2 ∈ U0.

3. If V1, V2 are open with V1 ∩ V2 ∈ U0, then one of V1 and V2 is in U0.

Proof. If V1 /∈ U0 then U0 ∪ {V1 } has a finite subcover

X ⊆ V1 ∪ U1 ∪ U2 ∪ · · · ∪ Un = V1 ∪W1

where W1 ∈ U0. If V2 /∈ U0, then
X ⊆ V2 ∪W2

where W2 ∈ U0. But then
X ⊆ (V1 ∩ V2) ∪W1 ∪W2

A contradiction. So V1 ∈ U0 or V2 ∈ U0.

11



For α ∈ A, let

Wα =

U ⊆ Xα : U open, U ×
∏
β ̸=α

Xβ ∈ U0


If we had ⋃

Wα = Xα

then Wα is an open cover. Then, since Xα is compact, we have a finite subcover

Xα ⊆ U1 ∪ · · · ∪ Un

So

X ⊆

U1 ×
∏
β ̸=α

Xβ

 ∪ · · · ∪

Un ×
∏
β ̸=α

Xβ


a contradiction. So

Cα =
(⋃

Wα

)c
̸= ∅

By axiom of choice, there is x = (xα : α ∈ A) ∈ X such that xα ∈ Cα for all α ∈ A. Now, U0 covers X, so
there is U ∈ U such that x ∈ U . Thus there is a basic open set V ⊆ U with x ∈ V . Then

U0 ∋ V

= (Vα1
× Vα2

× · · · × Vαn
)×

∏
β/∈{α1,...,αn }

Xβ

= π−1
α1

(Vα1
) ∩ π−1

α2
(Vα2

) ∩ · · · ∩ π−1
αn

(Vαn
)

By the third property, there is i0 such that

παi0
(Vαi0

) = Vαi0
×
∏

β ̸=αi0

Xβ ∈ U0

and thus
Vαi0

∈ Wαi0

So
xαi0

∈ Vαi0
⊆
⋃

Wαi0

contradicting our choice of xαi0
. Theorem 44

Remark 45. Tychonoff’s theorem implies the axiom of choice.

Proof. Suppose Xα are non-empty sets. Define Yα = Xα ⊔ { pα } and define τα on Yα by

τα = { ∅, { pα }, Xα, Yα }

These are compact because τ is finite. Thus ∏
Yα

is compact by Tychonoff’s theorem. Let

Cα = π−1
α (Xα) = Xα ×

∏
β ̸=α

Yβ

Then these are closed. For F = {α1, . . . , αn }, set

CF = Cα1
∩ · · · ∩ Cαn

Pick xi ∈ Xαi
because Xαi

̸= ∅ for 1 ≤ i ≤ n. Let

x = (x1, . . . , xn, pβ : β /∈ {α1, . . . , αn }) ∈ Cα1
∩ · · · ∩ Cαn

So {Cα } has the finite intersection property. So their intersection contains some x; then x satisfies xα ∈ Xα

for all α, and we have a choice function. Remark 45
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Definition 46. (X, τ) is normal if points are closed and whenever A,B are closed in X with A ∩ B = ∅,
then there is open U ⊇ A, V ⊇ B such that U ∩ V = ∅.

Example 47.

1. Metric spaces: can set

U = {x ∈ X : d(x,A) < d(x,B) }
V = {x ∈ X : d(x,B) < d(x,A) }

2. If X is compact and Hausdorff, then X is normal. Given A,B, fix a ∈ A. Suppose b ∈ B. Then, since
X is Hausdorff, there are Ub ∋ a and Vb ∋ b open and disjoint. Then, by compactness

B ⊆ Vb1 ∪ · · · ∪ Vbn = Va

and
a ∈ Ub1 ∩ · · · ∩ Ubn = Ua

Then
A ⊆

⋃
a∈A

Ua

Again by compactness, we have
A ⊆ Ua1

∪ · · · ∪ Uan

and then
B ⊆ Va1 ∩ · · · ∩ Van

Theorem 48 (Urysohn’s lemma). Suppose (X, τ) is normal. Suppose A,B are disjoint closed sets. Then
there is continuous f : X → [0, 1] such that f ↾ A = 0, f ↾ B = 1.

Theorem 49 (Tietze’s extension theorem). Suppose X is normal, A ⊆ X is closed, and f : A → R is
continuous. Then there is g : X → R continuous such that g ↾ A = f .

Proof of Theorem 48. By normality, there is open A 1
2
⊇ A such that A 1

2
∩ B = ∅. Also, we have open

A 3
4
⊇ A 1

2
such that A 3

4
∩B = ∅, and we have open A 1

4
⊇ A such that A 1

4
∩Ac

1
2

= ∅. Continuing this way, we
define Ay for all dyadic rationals y ∈ (0, 1). We then take

f(x) =

{
inf{ y : x ∈ Ay } such a y exists
1 else

Then this is the desired function. Theorem 48

3 Banach spaces
Definition 50. Let V be a vector space over F ∈ {R,C }. A norm on V is a map ∥·∥ : V → [0,∞) such that

1. for v ∈ V , we have ∥v∥ = 0 if and only if v = 0

2. ∥tv∥ = |t|∥v∥ for t ∈ F, v ∈ V (called “positive homogeneous”)

3. ∥v + w∥ ≤ ∥v∥+ ∥w∥ for v, w ∈ V .

A normed vector space (V, ∥·∥) is called a Banach space if it is complete; i.e. every Cauchy sequence
(vn : n ∈ N) (i.e. for all ε > 0 there is N ∈ N such that for all n,m ≥ N , we have ∥vm − vn∥ < ε) converges
(i.e. there is v ∈ V such that ∥vn − v∥ → 0).

Remark 51. (V, ∥·∥) is a metric space with d(v, w) = ∥v − w∥.
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Example 52.

1. Suppose X is compact, Hausdorff. Consider

C(X) = { f : X → C | f continuous }
CR(X) = { f : X → R | f continuous }

with the norm
∥f∥∞ = sup

x∈X
|f(x)| <∞

Then (fn : n ∈ N) → f if and only if ∥f − fn∥ → 0, which holds if and only if (fn : n ∈ N) → f
uniformly. But recall that the uniform limit of continuous functions is continuous. So C(X) is complete.

2. For 1 ≤ p <∞, consider

ℓp =

 (an : n ∈ N) : allan ∈ C, ∥(an : n ∈ N)∥p =

( ∞∑
n=1

|an|p
) 1

p


ℓ∞ = { (an : n ∈ N) : sup

n∈N
|an| = ∥(an : n ∈ N)∥∞ <∞}

Lp(0, 1) = { f Lebesgue measurable :

(∫
|f |pdm

) 1
p

<∞}

Lp(µ) = { f µ-measurable :

(∫
|f |pdµ

) 1
p

<∞}

Proposition 53 (Hölder’s inequality). For p ≥ 1 and q ≥ 1 with 1
p + 1

q = 1 (we allow p = 1 and q = ∞),
then if f ∈ Lp(µ), g ∈ Lq(µ), then ∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ ∥f∥p∥g∥q

Proposition 54 (Minkowski’s inequality). For f, g ∈ Lp(µ), we have ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Proposition 55. Lp(µ) is complete.

3. Consider C(n)[0, 1] (the set of continuously n-differentiable functions) with the norm

∥f∥C(n) = max
0≤i≤n

∥f (i)∥∞

If

Df =

n∑
i=0

ai(x)f
(i)(x)

for ai ∈ C[0, 1], then D is a linear map from C(n)[0, 1] to C[0, 1].

4. Hilbert spaces: H together with an inner product

⟨·, ·⟩ : H2 → F

that is linear in x, conjugate-linear in y, and positive-definite. i.e.

⟨ax1 + x2, y⟩ = a⟨x1, y⟩+ ⟨x2, y⟩
⟨x, ay1 + y2⟩ = a⟨x, y1⟩+ ⟨x, y2⟩

⟨x, x⟩ ≥ 0

⟨x, x⟩ = 0 ⇐⇒ x = 0

⟨y, x⟩ = ⟨x, y⟩

14



Note that for all t ∈ R, we have

0 ≤ ⟨x+ ty, x+ ty⟩
= ⟨x, x⟩+ t⟨x, y⟩+ t⟨y, x⟩+ |t|2⟨y, y⟩

I believe t = 1 shows that ⟨x, y⟩ = ⟨y, x⟩ given the other axioms. Taking t = 1 also shows the triangle
inequality of ∥x∥ = ⟨x, x⟩ 1

2 .

Taking

t =
−⟨x, y⟩
∥y∥2

shows the Cauchy-Schwarz inequality: that

|⟨x, y⟩| ≤ ∥x∥∥y∥

A Hilbert space is a complete inner product space. Examples include ℓ2, L2(µ).

5. Another example of a Hilbert space. Suppose Ω is an open, connected, bounded subset of C. Let

L2
a(Ω) =

{
f analytic on Ω : ∥f∥2 =

∫
Ω

|f(z)|2dm2 <∞
}

If z ∈ Ω, there is r such that Br(z) ⊆ Ω. Then∫
Br(z)

f(w)dw =

∫ r

0

∫ 2π

0

f(z + r exp(iθ))rdθdr

=

∫ r

0

2πr
1

2πi

∫ 2π

0

f(z + r exp(iθ))

r exp(iθ)
ri exp(iθ)dθdr

=

∫ r

0

2πr
1

2πi

∫
C

f(w)

w − z
dwdr

=

∫ r

0

2πrf(z)dr

= (πr2)f(z)

by Cauchy’s integral formula. Thus

f(z) =
1

πr2

∫
Br(z)

f(w)dw

So

|f(z)| ≤ 1

πr2

∫
Br(z)

|f |dm2

=
1

πr2

∫
Ω

|f |χ
Br(z)

dm2

≤ 1

πr2
∥f∥

(∫
Br(z)

dm2

) 1
2

=
∥f∥√
πr2

If w ∈ B r
2
(z), then B r

2
(w) ⊆ Ω, and

|f(w)| ≤ ∥f∥√
πr2

4
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for all w ∈ B r
2
(z). Suppose (fn : n ∈ N) is a Cauchy sequence in L2

a(Ω). For w ∈ B r
2
(z), we have

|fn(w)− fm(w)| = |(fn − fm)(w)|

≤ 1√
πr2

4

∥fn − fm∥

Thus fn ↾ B r
2
(z) is uniformly Cauchy; thus (fn : n ∈ N) → f uniformly in B r

2
(z); thus the limit is

analytic in B r
2
(z).

3.1 General constructions in Banach spaces
Proposition 56. Let X,Y be normed vector spaces over F; let T : X → Y be a linear map. Then the
following are equivalent:

1.
∥T∥ = sup

∥x∥≤1

∥Tx∥Y <∞

(T is bounded).

2. T is uniformly continuous.

3. T is continuous.

4. T is continuous at 0.

Proof.

(1) =⇒ (2) If ∥T∥ <∞, then

∥Tx− Ty∥ = ∥T (x− y)∥
≤ ∥T∥∥x− y∥

Then for any ε > 0 we may let δ = ε
∥T∥ ; then ∥x− y∥ < δ =⇒ ∥Tx− Ty∥ < ε.

(2) =⇒ (3) =⇒ (4) Trivial.

¬(1) =⇒ ¬(4) If
sup

∥x∥≤1

∥Tx∥ = ∞

pick xn ∈ X such that ∥xn∥ ≤ 1 and ∥Txn∥ > n2. Let yn = 1
nxn. Then

∥yn∥ ≤ 1

n
→ 0

and thus yn → 0. But ∥Tyn∥ > n; so Tyn ̸→ 0, and T is not continuous.

Proposition 56

Write B(X,Y ) for the set of all bounded linear maps from X to Y . Then ∥T∥ is defined; it is, in fact, a
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norm:

∥T∥ ≥ 0

∥T∥ = 0 =⇒ Tx = 0 for allx
∥tT∥ = sup

∥x∥≤1

∥tTx∥

= |t| sup
∥x∥≤1

∥Tx∥

= |t|∥T∥
∥S + T∥ = sup

∥x∥≤1

∥(S + T )x∥

≤ sup
∥x∥≤1

(∥Sx∥+ ∥Tx∥)

≤ sup
∥x∥≤1

∥Sx∥+ sup
∥x∥≤1

∥Tx∥

= ∥S∥+ ∥T∥

Proposition 57. Suppose X, Y are normed vector spaces; suppose Y is complete. Then B(X,Y ) is a Banach
space.

Proof. Suppose (Tn : n ∈ N) is a Cauchy sequence. Then, for x ∈ X, if ∥x∥ ≤ 1, then we have ∥Tmx−Tnx∥ ≤
∥Tm − Tn∥ < ε for sufficiently large m,n. Thus (Tnx : n ∈ N) is Cauchy, uniform on B1(x). Thus Tn → T
uniformly on B1(x). Thus T is linear and uniformly continuous. So it is bounded, and B(X,Y ) is complete.

Proposition 57

Definition 58. We set B(X) = B(X,X). We set X∗ = B(X,F) to be the dual space of X.

Theorem 59. If 1 ≤ p <∞ with
1

p
+

1

q
= 1

then ℓ∗p = ℓq.

Proof. Pairing: given a = (an : n ∈ N) ∈ ℓp and b = (bn : n ∈ N) ∈ ℓq, we set

φb(a) = b(a) = ⟨a, b⟩ =
∞∑

n=1

anbn

(Note that this is the definition of ⟨·, ·⟩, and that this is bilinear, rather than sesquilinear.)
Hölder’s inequality then yields

|φb(a)| =

∣∣∣∣∣
∞∑

n=1

anbn

∣∣∣∣∣ ≤ ∥a∥p∥b∥q

So |φb(a)| ≤ ∥a∥p∥b∥q, and we have ∥φb∥ ≤ ∥b∥q.

Case 1. Suppose p = 1 and q = ∞. Then ∥b∥∞ = supn∈N|bn|. Letting

en = (0, . . . , 0, 1, 0, . . . )

we then have ∥en∥p = 1. Then

∥φb∥ ≥ sup
n∈N

|φb(en)| = sup|bn| = ∥b∥∞ ≥ ∥φb∥

Case 2. Take

an =

{
bn
|bn| |bn|

q−1 1 ≤ n ≤ N

0 n > N
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Let a = (an : n ∈ N). Then

∥a∥pp =

N∑
n=1

|an|p

=

N∑
n=1

|bn|p(q−1)

=

N∑
n=1

|bn|q

≤ ∥b∥qq

Without loss of generality we may assume ∥b∥q = 1. Then ∥a∥p ≤ 1. Then

φb(a) =

N∑
n=1

|bn|q−1|bn| =
N∑

n=1

|bn|q → ∥b∥qq = 1

Thus ∥φb∥ ≥ ∥b∥q; thus ∥φb∥ = ∥b∥q.
Now let φ ∈ ℓ∗p. Let bn = φ(en). Let b = (bn : n ∈ N). We know that |φ(a)| ≤ ∥φ∥∥a∥. Note that, as
above, we have

∥a∥p =

(
N∑

n=1

|bn|q
) 1

p

And

∥φ∥∥a∥p ≥ |φ(a)|

=

∣∣∣∣∣
N∑

n=1

anbn

∣∣∣∣∣
=

N∑
n=1

|bn|q−1|bn|

=

N∑
n=1

|bn|q

Thus

∥φ∥ ≥

(
N∑

n=1

|bn|q
)q− 1

p

Thus something which immediately implies we’re done.

Theorem 59

Example 60. Let
c0 = { a = (a1, a2, . . . ) : lim

n→∞
an = 0 }

Set
∥a∥ = sup

n≥1
|an|

Then
c∗0 = {φ : c0 → C : ∥φ∥ = sup

∥a∥≤1

|φ(a)| <∞}

Set en = (0, . . . , 0, 1, 0, 0, . . . ). For a ∈ c0, we then have

a = lim
N→∞

N∑
n=1

anen
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Let φ(en) = xn ∈ C; then |xn| ≤ ∥φ∥. Let

−→a N =
x1
|x1|

e1 +
x2
|x2|

e2 + · · ·+ xN
|xN |

eN

Then
∥−→a N∥ = max

∣∣∣∣ xi|xi|

∣∣∣∣ ≤ 1

(where
0

|0|
is taken to be 0). Then

φ(−→a N ) =
x1
|x1|

x1 +
x2
|x2|

x2 + · · ·+ xN
|xN |

xN

=

N∑
i=1

|xi|

≤ ∥φ∥∥−→a N∥
≤ ∥φ∥

Let N → ∞. Then

∥(xn : n ∈ N)∥1 =

∞∑
i=1

|xi| ≤ ∥φ∥

So (xn : n ∈ N) ∈ ℓ1. Conversely, if x = (xn : n ∈ N) ∈ ℓ1, define

φx(a) =
∑

anxn

which then converges absolutely, as
|anxn| ≤ ∥a∥|xn|

Then

|φx(a)| ≤
∞∑

n=1

∥a∥|xn| = ∥a∥∥x∥1

So φx is continuous, and ∥φx∥ ≤ ∥x∥1 ≤ ∥φx∥ (as shown above). So ∥φx∥ = ∥x∥1. So c∗0 = ℓ1.
We now look at B(c0) and B(c0, ℓ∞). If T ∈ B(c0, ℓ∞), then

TEn = tn =

t1nt2n
...


and

∥tn∥∞ = sup
i≥1

|tin| ≤ ∥T∥∥en∥ = ∥T∥

Then

T

N∑
n=1

anen =
∑
n=1

anTen =

N∑
n=1

an
−→
tn

and

T

∞∑
n=1

anen = lim
n→∞

N∑
n=1

anTen = lim
n→∞

N∑
n=1

an
−→
t n

where this latter limit exists if T is continuous. We can think of T as having an ∞×∞ matrix (tij : i ≥ 1, j ≥ 1)
with columns tn ∈ ℓ∞ and

sup
n∈N

∥tn∥∞ = ∥T∥
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Observe that the nth entry of T (a1, a2, . . . ) is

∞∑
j=1

tnjaj

So the linear map
φn(a) = ⟨T−→a , δn⟩ =

∑
j∈N

tnj
aj

is continuous, where δn = (0, . . . , 0, 1, 0, . . . ) ∈ ℓ1. Then

∥φn∥ ≤ ∥T∥∥δi∥1 = ∥T∥

Let −→rn = (tnj : j ∈ N) ∈ ℓ1; then ∥rn∥1 ≤ ∥T∥.
On the other hand, suppose { rn : n ∈ N } ⊆ ℓ1 satisfies

sup
n∈N

∥rn∥ = R <∞

Then T : c0 → ℓ∞ given by
(T−→a )n = ⟨−→a , rn⟩ =

∑
j∈N

rnjaj

Then
|(T−→a )n| ≤ ∥a∥∥rn∥1 ≤ R∥a∥

So Ran(T ) ⊆ ℓ∞, and ∥T∥ = R. When do we have T ∈ B(c0)? Need tn = Ten ∈ c0. If each tn ∈ c0, then

T

N∑
i=1

aiei =

N∑
i=1

ai
−→
t i ∈ c0

If −→a ∈ c0, then

Ta = lim
N→∞

T

N∑
i=1

aiei

which exists by continuity. But c0 is closed inside ℓ∞. So T−→a ∈ c0. Thus T ∈ B(c0) if and only if the rows of
T have bounded ℓ1 norm and the columns of T are in c0.

Proposition 61. If X is a Banach space and M ⊆ X is a closed subspace, then M is a Banach space.

Proof. For m ∈M , we have ∥m∥M = ∥m∥X , so M is a normed vector space. Then M is a closed subset of a
complete metric space, and M is complete. Proposition 61

Example 62. Let A(D) the disc algebra be the set of f(z) that are continuous on D and analytic on D. Set

∥f∥ = ∥f∥∞ = sup
z∈D

|f(z)|

Clearly A(D) ⊆ C(D). For fn ∈ A(D) with (fn : n ∈ N) → f in C(D) (i.e. uniform convergence). Then f is
analytic on D because uniform limits of analytic functions are analytic. Also observe that for f ∈ A(D), the
maximum modulus principle yields

∥f∥∞ = sup
|z|=1

|f(z)|

We can consider A(D) ⊆ C(T), where
T = { z ∈ C : |z| = 1 }

Consider R : A(D) → C(T) given by R(f) = f ↾ T. Then ∥Rf∥ = ∥f∥; i.e. R is an isometry. So R(A(D)) is a
subspace of C(T) with the same norm, same linear structure as A(D). (They are isometrically isomorphic.)
So we can consider A(D) as a subspace of C(T). It is, in fact, closed, as we know it is a complete subspace.
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Interest: Fourier series. For f ∈ C(T), we can set

f̂(n) =
1

2π
f(exp(iθ)) exp(−inθ)dθ

for n ∈ Z. For f ∈ A(D), we have

f(z) =

∞∑
n=0

anz
n

Thus has radisu of convergence ≥ 1. Also f is continuous on D, so

fr(z) =

∞∑
n=0

anr
nzn = f(rz)

satisfies fr → f uniformly. Recall

Theorem 63 (Abel’s theorem). For f ∈ C(T), recall we can write

f ∼
∞∑

n=−∞
f̂(n)rn exp(2nθ)

though this doesn’t always converge. However, if z = r exp(iθ) for 0 ≤ r < 1, then

f(z) =

∞∑
n=−∞

f̂(n)rn exp(inθ)

is harmonic on D

Then fr(exp(iθ)) → f(exp(iθ)) uniformly. If f̂(n) = 0 for n < 0, then

f(z) =

∞∑
n=0

f̂(n)zn

is analytic, so f ∈ A(D). Thus

A(D) = { f ∈ C(T) : f̂(n) = 0 for n < 0 }

=

−∞⋂
n=−1

kerφn

where φn(f) = f̂(n).

Definition 64 (Quotient spaces). Suppose X is a Banach space, M ⊆ X is a closed subspace. Set

X/M = { ẋ = x+M : x ∈ X }

be the collection of cosets of X/M with the quotient vector space structure. Define the quotient norm to be

∥ẋ∥ = inf
m∈M

∥x+m∥

Proposition 65. X/M is a Banach space.

Proof. We check that it is a norm:

1. Clearly ∥ẋ∥ ≥ 0. If ∥ẋ∥ = 0, then there is (mn : n ∈ N) in M such that ∥x+mn∥ → 0. i.e. x+mn → 0.
But x+mn ∈ x+M and x+M is closed. So 0 ∈M and ẋ = 0̇.
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2. For t ̸= 0, we have

∥tẋ∥ = inf
m∈M

∥tx+m∥

= inf
m′∈M

∥t(x+m′)∥

= |t| inf
m′∈M

∥x+m′∥

= |t|∥ẋ∥

3. Note that

∥ẋ+ ẏ∥ = inf
m∈M

∥x+ y +m∥

= inf
m,n∈M

∥x+m+ y + n∥

≤ inf
m∈M,n∈M

(∥x+m∥+ ∥y + n∥)

= ∥x∥+ ∥y∥

We now check completeness. Suppose (ẋn : n ∈ N) is a Cauchy sequence in X/M . Drop to a subsequence
such that ∥ẋn−1 − ẋn∥ < 2−n. Recursively choose yn ∈ X such that

1. ẏn = ẋn

2. ∥yn−1 − yn∥ < 2−n

We pick y1 = x1. Now,
1

4
> ∥ẋ1 − ẋ2∥ = inf

m∈M
∥y1 − x2 −m∥

Pick m2 such that
∥y1 − (x2 +m2)∥ <

1

4

and set y2 = x2 +m2. Given yn, note that

1

2n+1
> ∥ẋn − ẋn+1∥ = ∥ẏn − ẋn+1∥ = inf

m∈M
∥yn − (xn+1 +m)∥

and pick m ∈M such that
1

2n+1
> ∥yn − (xn+1 +m)∥

Then set yn+1 = xn+1 +m.
Then (yn : n ∈ N) is Cauchy in X. So

y = lim
n→∞

yn

exists by completeness of X. Check then that ẋn = ẏn → ẏ. So X/M is complete, and it is a Banach space.
Proposition 65

Proposition 66. For a Banach space X, M a proper closed subspace, we have that the map Q : X → X/M
by Qx = ẋ has ∥Q∥ = 1 and ker(Q) =M .

Proof. Well,

∥Qx∥ = ∥ẋ∥
= inf

m∈M
∥x+m∥

≤ ∥x+ 0∥
= ∥x∥
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Thus ∥Q∥ ≤ 1, and Q is continuous. But M ̸= X; so there is x ∈ X such that ẋ ̸= 0. Then

∥ẋ∥ = inf
m∈M

∥x+m∥

For ε > 0 there is m ∈M such that ∥x+m∥ < ∥ẋ∥+ ε. Then

∥Q∥ ≥ ∥Q(x+m)∥
∥x+m∥

>
∥ẋ∥

∥ẋ∥+ ε

which approaches 1 as ε→ 0. Proposition 66

Observe that kerQ = {x : ẋ = 0̇ } =M .

Example 67. Consider C(X) where X is a compact Hausdorff space. Suppose E ⊆ X is closed. Set
I(E) = { f ∈ C(X) : f ↾ E = 0 }; this is a closed subspace. Consider C(X)/I(E). For g ∈ C(X), we have

∥ġ∥ = inf
f↾E=0

∥g + f∥∞ ≥ inf
f↾E=0

sup
x∈E

|g(x) + f(x)| = sup
x∈E

|g(x)| = ∥g ↾ E∥

Suppose ∥g ↾ E∥ = 1. Let

h(z) =

{
z |z| ≤ 1
z
|z| |z| > 1

Then ∥h∥∞ = 1, so ∥h ◦ g∥∞ = 1. Also h ◦ g ↾ E = g. Set f = g − h ◦ g ∈ I(E). Then

∥g − f∥ = ∥h ◦ g∥ = ∥g ↾ E∥ = 1

Thus ∥g∥ = ∥g ↾ E∥. We then have the following map g ∈ C(X) 7→ g ↾ E ∈ C(E) which factors as
g 7→ ġ ∈ C(X)/I(E) followed by an isometry. Tietze’s extension theorem then says that R maps onto C(E).
Thus C(X) ∼= C(...)/I(E) = C(E) something

3.2 More on Hilbert spaces
Definition 68. Suppose H is a Hilbert space; suppose x, y ∈ H. We write x ⊥ y (x is orthogonal to y) if
⟨x, y⟩ = 0.

Remark 69 (Pythagorean law). In this case we have

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
= ∥x∥2 + ∥y∥2

Definition 70. We say { eα : α ∈ I } is orthonormal if

⟨eα, eβ⟩ = δαβ =

{
1 α = β

0 else

Remark 71. If { e1, . . . , en } is orthonormal, then∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥ =

(
n∑

i=1

|ai|2
) 1

2

As motivation for our definitions of convergence, note that in R, we have that an infinite sum doesn’t
converge, converges conditionally (in which case rearrangements can converge to anything), or converges
absolutely (in which case it is rearrangement-invariant). In Rn we have a similar situation except that in the
case of conditional convergence, there is an affine subspace of vectors to which it can converge.
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Definition 72. In a Banach space X, a sum
∞∑

n=1

xn

converges absolutely if
∞∑

n=1

∥xn∥ <∞

It converges unconditionally if all rearrangements converge to the same sum. It converges conditionally if

yn =

n∑
i=1

xk

converges but not unconditionally.

Remark 73. If

L =

∞∑
n=1

∥xn∥ <∞

then for any ε > 0 there is N ∈ N such that

∞∑
n=1

∥xn∥ > L− ε

So

sn =

n∑
i=1

xi

are Cauchy, since for n,m ≥ N we have

∥sn − sm∥ ≤
n∑

i=m+1

∥xi∥ < ε

If
∞∑
i=1

xπ(i)

is a rearrangement, then there is M such that { 1, . . . , N } ⊆ {π(1), . . . , π(M) }. To look at all rearrangements
at once, let Λ = {F ⊆fin N } where F ≤ G if F ⊆ G. Set

sF =
∑
n∈F

xn

Then if sF → x, this means that every rearrangement converges to x. In our case, if F,G ⊇ { 1, . . . , N } then

∥sF − sG∥ ≤
∑

i∈F△G

∥xi∥ < ε

so it is Cauchy, and thus converges. So absolutely convergent implies unconditionally convergent.

Theorem 74. Suppose H is a Hilbert space with { eα : α ∈ I } is an orthonormal set. Let

M = span{ eα : α ∈ I }

Then

1. { eα : α ∈ I } is linearly independent. Moreover, we have

dist(eα, span{ eβ : β ̸= α }) = 1
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2. Suppose x ∈ H. Let xα = ⟨x, eα⟩. Then ∑
α∈I

|xα|2 ≤ ∥x∥2

(This is the Bessel inequality.)

3. If ∑
α∈I

|xα|2 <∞

then ∑
α∈I

xαeα

converges unconditionally.

4.
Px =

∑
α∈I

xαeα

is a continuous linear map H → M with P 2 = P and ∥P∥ = 1.

5. Px = 0 if and only if x ⊥ M.

6. If x ∈ M, then

∥x∥ =

(∑
α∈I

|xα|2
) 1

2

Proof.

1.

dist(eα, span{ eβ : β ̸= α }) = inf∥eα −
∑
finite

yβeβ∥ = inf
(
1 +

∑
|yβ |2

) 1
2

= 1

2. Let F ⊆fin I, with
sF =

∑
α∈F

xαeα

Then

0 ≤ ∥x− sF ∥2

= ⟨x, x⟩ − 2Re⟨x, sF ⟩+ ⟨sF , sF ⟩

= ∥x∥2 − 2Re

(∑
α∈F

⟨x, xαeα⟩

)
+

〈∑
α∈F

xαeα,
∑
α∈F

xαeα

〉
= ∥x∥2 − 2Re

∑
α∈F

xα⟨x, eα⟩+
∑
α∈F

xαxα

= ∥x∥2 −
∑
α∈F

|xα|2

So ∑
α∈F

|xα|2 ≤ ∥x∥2

and ∑
α∈I

|xα|2 = sup
F⊆finI

∑
α∈F

|xα|2 ≤ ∥x∥2
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Note that
{α : xα ̸= 0 } =

⋃
n≥1

{
α : |xα| ≥

1

n

}
is therefore countable, since each unionand has cardinality

≤ ∥x∥2
1
n2

= n2∥x∥2 <∞

3. Suppose
L =

∑
|xα|2 <∞

For F ⊆fin I, let
sF =

∑
α∈F

xαeα

Then
sup

F⊆finI
∥sF ∥2 = sup

F⊆finI

∑
α∈F

|xα|2 =
∑

|xα|2 = L

Pick F0 such that ∑
α∈F0

|xα|2 > L− ε

If F,G ⊇ F0 then

∥sF − sG∥2 =

∥∥∥∥∥∥
∑

α∈F\G

xαeα −
∑

α∈G\F

xαeα

∥∥∥∥∥∥
2

=
∑

α∈F△G

|xα|2

≤
∑

α∈F∪G

|xα|2 −
∑
α∈F0

|xα|2

< L− (L− ε)

= ε

So { sF } is Cauchy, and thus converges unconditionally.

Example 75.
∞∑

n=1

1

n
en

converges unconditionally since ( ∞∑
n=1

1

n2

) 1
2

<∞

but not absolutely since
∞∑

n=1

∥∥∥∥ 1nen
∥∥∥∥ =

∞∑
n=1

1

n
= ∞

4. By (2) and (3), if x ∈ H, then (xα : α ∈ I) is square-summable and

Px =
∑
α

xαeα

is well-defined, and further that
∥Px∥2 =

∑
|xα|2 ≤ ∥x∥2
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So ∥P∥ ≤ 1 and P is linear; so P is continuous. Let y = Px ∈ span{ eα : α ∈ I } = M. Then

⟨y, eα⟩ = lim
F

⟨sF , eα⟩ = lim
F⊇{α }

〈
xαeα +

∑
β∈F\{ a }

xβeβ , eα

〉
= xα

Thus
Py =

∑
xαeα = y

i.e. P (Px) = Px and P 2 = P . If y ∈ span{ eα : α ∈ I }, say

y =
∑
α∈F

yαeα

then yβ = 0 for β /∈ F , and
sG =

∑
α∈G

yαeα =
∑

α∈G∩F

yαeα = y

if G ⊇ F .

5.

Px = 0 ⇐⇒ ⟨x, eα⟩ = 0 for all α

⇐⇒ x ⊥
∑
α∈F

aαeα for all F ⊆fin I, all (aα : α ∈ F )

⇐⇒ x ⊥ M

by continuity. So ker(P ) = M⊥.

If x ∈ H with y = Px ∈ M, then x− y = (I − P )x, and

⟨x− y, eα⟩ = ⟨x, eα⟩ − ⟨y, eα⟩ = 0

for all α. So x− y ⊥ M. But x = y + (x− y), and

∥x∥2 ≥ ∥y∥2 + ∥x− y∥2

M⊥ is the orthogonal complement of M. We call P the orthogonal projection of H onto M.

6. If y ∈ M,
sF =

∑
α∈F

yαeα

then
∥sF ∥2 =

∑
α∈F

|yα|2

Then sF → y, so
∥y∥2 = lim

∑
α∈F

|yα|2 =
∑

|yα|2

Theorem 74

Definition 76. An orthonormal basis for a Hilbert space H is an orthonormal set { eα : α ∈ I } such that
H = span{ eα : α ∈ I }.

Theorem 77. Every Hilbert space has an orthonormal basis.
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Proof. Order all orthonormal sets by inclusion. Suppose

C = { Eβ }

with β1 < β2 =⇒ Eβ1
⊆ Eβ2

is a chain. Then

E =
⋃
β∈C

Eβ

is a set of vectors. Suppose e, f ∈ E , say e ∈ Eβ1 , f ∈ Eβ2 . Say β1 ≤ β2; then e, f ∈ Eβ2 , and ⟨e, f⟩ = 0. So
E is an orthonormal basis, and is an upper bound of C. By Zorn’s lemma, we have that H has a maximal
orthonormal set E = { eα : α ∈ I }. Let M = span{ eα : α ∈ I }.

Claim 78. M = H.

Proof. Suppose otherwise; suppose we have x /∈ M. Let y = Px ∈ M; let z = (I − P )x ∈ M⊥; then z ̸= 0,
and

x = y + z

Let
e =

z

∥z∥
Then E ∪ { e } is orthonormal, contradicting maximality of E . So M = H. Claim 78

Theorem 77

Corollary 79. Every closed subspace M of a Hilbert space H is the range of an orthogonal projection.

Proof. M is a Hilbert space so there is an orthonormal basis { eα : α ∈ I } for M. Define

Px =
∑

⟨x, eα⟩eα

as before. Corollary 79

Theorem 80. If H is a Hilbert space and φ ∈ H∗ (i.e. φ is a continuous linear functional), then there is a
unique y ∈ H such that φ(x) = ⟨x, y⟩ and ∥y∥ = ∥φ∥.

Proof. Let { eα : α ∈ I } be an orthonormal basis for H. Define aα = φ(eα). For F ⊆fin I, look at

φ

(∑
α∈F

aαeα

)
=
∑
α∈F

aαφ(eα) =
∑
α∈F

|aα|2 ≤ ∥φ∥

∥∥∥∥∥∑
α∈F

aαeα

∥∥∥∥∥ = ∥φ∥

(∑
α∈F

|aα|2
) 1

2

So (∑
α∈F

|aα|2
) 1

2

≤ ∥φ∥

and

sup
F⊆finI

(∑
α∈F

|aα|2
) 1

2

≤ ∥φ∥

Define
y =

∑
aαeα

Then

∥y∥ =
(∑

|aα|2
) 1

2 ≤ ∥φ∥

For x ∈ H, write
x =

∑
xαeα
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Then ∑
|xα|2 = ∥x∥2 <∞

Then

⟨x, y⟩ =
〈∑

xαeα,
∑

yβeβ

〉
= lim

F

〈∑
α∈F

xαeα,
∑

yβeβ

〉
= lim

F

∑
α∈F

xαyα

=
∑

xαyα by Cauchy-Schwarz

=
∑

aαxα

But
φ(x) = φ

(∑
xαeα

)
=
∑

xαφ(eα) =
∑

aαxα

So ⟨x, y⟩ = φ(x). Also

∥φ∥ = sup
∥x∥≤1

|φ(x)| = sup
∥x∥≤1

|⟨x, y⟩| ≤ sup
∥x∥≤1

∥x∥∥y∥ = ∥y∥

by Cauchy-Schwarz. So ∥y∥ = ∥φ∥. Theorem 80

Remark 81. The map φ 7→ y is conjugate-linear. So H∗ is anti-isomorphic to H.

Definition 82. The dimension of H (dim(H)) is the cardinality of an orthonormal basis.

Proposition 83. dim(H) is well-defined.

Proof. If dim(H) <∞, then the cardinality of a basis is well-defined. So suppose H is infinite-dimensional.
Suppose { eα : α ∈ I } and { fβ : β ∈ J } are orthonormal bases. For all α ∈ I, set

Bα = {β ∈ J : ⟨eα, fβ⟩ ≠ 0 }

Then this is countable and non-empty because

1 = ∥eα∥2 =
∑
β∈J

|⟨eα, fβ⟩|2

Conversely, for all β there is α such that ⟨eα, fβ⟩ ≠ 0 by the same reasoning. So

J =
⋃
α∈I

Bα

Thus
|J | ≤

∑
α∈I

|Bα| ≤ |I|ℵ0 = |I|

Similarly, we have |I| ≤ |J |. So, by Cantor-Bernstein-Schroeder, we have |I| = |J |. Proposition 83

Definition 84. A unitary is a linear map U : H → K of one Hilbert space onto another such that ∥Ux∥ = ∥x∥.

Remark 85. This implies
⟨Ux,Uy⟩ = ⟨x, y⟩

for all x, y ∈ H.
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Proof. If F = R, then

⟨x± y, x± y⟩ = ∥x∥2 ± 2⟨x, y⟩+ ∥y∥2

=⇒ ⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2

If F = C, then

⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2 + ∥x+ iy∥2 − i∥x− iy∥2

4

Remark 85

Example 86. L2(T,m) with

∥f∥2 =
1

2π

∫ 2π

0

|f(exp(iθ))|2dθ

So
en = exp(inθ)

are orthonormal. Then
span{ en : n ∈ Z } ⊇ trig polynomials = C(T) = L2

Example 87. ℓ2(Z) has orthonormal basis δn. Uf = f̂ .

f ∼
∑

f̂ exp(inθ) ∼ (f̂(n) : n ∈ Z)

is a unitary map.

Definition 88. A subset A of a topological space X is nowhere dense if A has no interior. A subset B of a
complete metric space is said to be of first category if it is the countable union of nowhere dense sets.

Theorem 89 (Baire category theorem). If X is a complete metric space and B ⊆ X is of first category,
then X \B is dense in X.

Sketch. Let U ⊆ X be open; suppose x ∈ U . Choose r > 0 such that br(x) ⊆ U . It suffices to find y ∈ br(x)
such that y /∈ B. Write

B =

∞⋃
n=1

An

with An has no interior. Find x1 ∈ br(x) and r1 > 0 such that r1 ≤ r
2 and

br1(x1) ∩A1 = ∅

Recursively find xn+1 ∈ brn(xn) such that

brn+1(xn+1) ∩An+1 = ∅

and rn+1 ≤ rn
2 . Then (xn : n ∈ N) are Cauchy, and thus converge to x ∈ X; then

x ∈
⋂
n∈N

br(xn)

and x /∈ B. Theorem 89

Corollary 90. If Ui are dense open subsets of a complete metric space, then

∞⋂
i=1

Ui

is dense.
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Theorem 91 (Banach-Steinhaus, or uniform boundedness principle). Suppose X,Y are Banach spaces;
suppose A ⊆ B(X,Y ). Suppose that for all x ∈ X we have that

sup
A∈A

∥Ax∥ = kx <∞

Then
sup
A∈A

∥A∥ <∞

Proof. Let Bn = {x ∈ X : kx ≤ n }.

Claim 92. Bn is closed.

Proof. Suppose (xk : k ∈ N) in Bn with xk → x; suppose A ∈ A. Then

∥Ax∥ = lim
k→∞

∥Axk∥ ≤ n

So x ∈ Bn, and Bn is closed. Claim 92

But

X =

∞⋃
n=1

Bn

By Baire category theorem, we then have that there is some n0 such that Bn0
has interior; say br(x0) ⊆ Bn0

.
Now, if x ∈ X with ∥x∥ ≤ 1, then x0 + rx ∈ Bn0

; but then

∥Ax∥ =

∥∥∥∥A(x0 + rx)−Ax0
r

∥∥∥∥
≤ 1

r
(∥A(x0 + rx)∥+ ∥Ax0∥)

≤ 2n0
r

So
sup

∥x∥≤1

sup
A∈A

∥Ax∥ ≤ 2n0
r

<∞

Theorem 91

Remark 93. We didn’t use that Y is a Banach space. Given Y a normed linear space that’s not complete,
we could always embed Y in its metric closure, which turns out to be a Banach space, and then apply
Banach-Steinhaus.

Corollary 94. Suppose X,Y are Banach spaces; suppose (Tn : n ∈ N) are in B(X,Y ) such that

lim
n→∞

Tnx

which we define to be Tx, exists for all x ∈ X. Then T ∈ B(X,Y ).

Proof. Since Tnx→ Tx for all x ∈ X, we have that

sup
n≥1

∥Tnx∥ = kx <∞

By the uniform boundedness principle, we have

sup
n≥1

∥Tn∥ = L <∞

Thus
∥Tx∥ = lim

n→∞
∥Tnx∥ ≤ L∥x∥
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So T is continuous. Also, T is linear, since

T (ax+ y) = lim
n→∞

Tn(ax+ y)

= lim
n→∞

(aTnx+ Tny)

= aTx+ Ty

So T ∈ B(X,Y ). Corollary 94

Theorem 95 (Open mapping theorem). Suppose X,Y are Banach spaces. Suppose T ∈ B(X,Y ) is surjective.
Then T is open. (That is, for open U ⊆ X, we have TU is open.)

Proof. We are given that

Y = TX =

∞⋃
n=1

T (bn(X))

By the Baire category theorem, there is n0 ∈ N, x0 ∈ X, and r > 0 such that

T (bn0(X)) ⊇ br(x0)

Note then that

T (b1(x)) ⊇ T
(
B 1

2
(0)
)
− T

(
B 1

2
(0)
)

⊇ b r
2n0

(
x0
2n0

)
− b r

2n0

(
x0
2n0

)
= b r

n0
(0)

and

T (b1(x)) =
1

n0
T (bn0(x))

⊇ b r
n0

(
x0
n0

)
So

T (b1(X)) ⊇ bρ(0)

for some ρ > 0.

Claim 96. If ε > 0, then
T (b1+ε(x)) ⊇ T (b1(x))

Proof. Fix y ∈ Tb1(x). Pick x0 ∈ X with ∥x0∥ ≤ 1 and

∥Tx0 − y∥ < ερ

2

Let y0 = Tx0; then
∥y − y0∥ <

ε

2
ρ

So

y − y0 ∈ T (b ε
2
)

=
ε

2
T (b1(x))

⊇ ε

2
bρ(0)

= b ερ
2
(0)
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Pick x1 ∈ X with
∥x1∥ <

ε

2

such that
∥Tx1 − (y − y0)∥ <

ερ

4

And again let y1 = Tx1. Recursively select xn+1 ∈ X with

∥xn+1∥ <
ε

2n+1

and
∥yn+1 − (y − y0 − y1 − · · · − yn)∥ <

ερ

2n+2

where yn+1 = Txn+1. Let

x =

∞∑
n=0

xn

This converges because
∞∑

n=0

∥xn∥ < 1 +

∞∑
n=1

ε

2n
= 1 + ε

and in particular we also get ∥x∥ < 1 + ε. Then

Tx =

∞∑
n=0

Txn

=

∞∑
n=0

yn

= lim
n→∞

y0 + · · ·+ yn

= y

Claim 96

So
T (B1+ε(x)) ⊇ T (b1(x)) ⊇ bρ(0)

So
T (b1(x)) ⊇ b ρ

1+ε
(0)

Let ε→ 0. Then
T (b1(x)) ⊇ bρ(0)

Let U be open; suppose x ∈ U . Then there is r > 0 such that br(x) ⊆ U . Let y = Tx. Then

T (U) ⊇ T (br(x))

= Tx+ T (br(0))

⊇ Tx+ b r
ρ
(0)

= b r
ρ
(0)

So TU is open. Theorem 95

Theorem 97 (Banach isomorphism theorem). If X,Y are Banach spaces and T : X → Y is a continuous
linear bijection then T is an isomorphism. (i.e. T−1 is also continuous.)

Proof. T is surjective, so it is open by the open mapping theorem. T is injective, so T−1 is well-defined and
linear. If U ⊆ X is open, then (T−1)−1(U) = T (U) is open. So T−1 is continuous. Theorem 97

33



Corollary 98. Suppose X,Y are Banach spaces. Suppose T ∈ B(X,Y ) is surjective. Then we have the
following commutative diagram

X Y

X/ kerT

T

q Ṫ

and in particular we have Ṫ is an isomorphism X/ ker(T ) → Y .

Proof. T is continuous so ker(T ) is a closed subspace. So X/ ker(T ) is a Banach space. Define Ṫ (ẋ) = Tx;
this is well-defined since if x1, x2 ∈ ẋ, then x1 − x2 ∈ ker(T ), and

Tx2 = Tx1 + T (x2 − x1)

= Tx1 + 0

= Tx1

Also

∥Ṫ∥ = sup
∥ẋ∥≤1

∥Ṫ ẋ∥

= sup
infm∈ker(T )∥x+m∥≤1

∥Tx∥

= sup
infm∈ker(T )∥x+m∥≤1

∥T (x+m)∥

≤ sup
infm∈ker(T )∥x+m∥≤1

∥T∥∥x+m∥

If ε > 0 then there is x+m ∈ ẋ such that

∥x+m∥ < (1− ε) + ε = 1

So this yields ∥Ṫ∥ = ∥T∥. So Ṫ is continuous and bijective. By the Banach isomorphism theorem, we have
that Ṫ is an isomorphism. Corollary 98

Corollary 99. Suppose X is a Banach space with respect to two different norms ∥·∥1 and ∥·∥2. If there is a
constant C such that

∥x∥2 ≤ C∥x∥1
for all x ∈ X, then there is C ′ such that

∥x1∥ ≤ C ′∥x∥2
for all x ∈ X.

Proof. Hypothesis says that
idX : (X, ∥·∥1) → (X, ∥·∥2)

is a continuous, linear bijection; so it is an isomorphism. So

∥x∥1 = ∥(idX)−1x∥1 ≤ ∥id−1
X ∥∥x∥2

Corollary 99

Corollary 100. If X is a finite-dimensional vector space over F ∈ {R,C }, then any two norms on X are
comparable. So the topology with respect to any norm is the usual metric topology in Fn.

Proof. Let ∥·∥1 be some norm on X = Fn. Fix a basis e1, . . . , en. Define the usual norm on X by∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥
2

=

(
n∑

i=1

|xi|2
) 1

2
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Then ∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥
1

≤
n∑

i=1

|xi|∥ei∥1

≤

(
n∑

i=1

|xi|2
) 1

2
(

n∑
i=1

∥ei∥21

) 1
2

by Cauchy-Schwarz

= C

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥
2

so id : (X, ∥·∥2) → (X, ∥·∥1) is a continuous bijection; so it is an isomorphism.
Alternative proof: let S = {x ∈ X : ∥x∥2 = 1 }; then this is compact. So id(S) is compact in (X, ∥·∥1).

But 0 /∈ S; so
inf
x∈S

∥x∥1 = r > 0

So ∥x∥1 ≥ r∥x∥2, and

∥x∥2 ≤ 1

r
∥x∥1

Corollary 100

Definition 101. If T : M ⊆ X → Y is linear, the graph of T is

G(T ) = { (x, Tx) ∈ X ⊕ Y }

(Note that X ⊕ Y is a Banach space with norm ∥(x, y)∥ = ∥x∥+ ∥y∥ (or (∥x∥+ ∥y∥) 1
2 , which produces an

equivalent norm).) T is called closed if G(T ) is closed.

Theorem 102 (Closed graph theorem). If T : X → Y is linear (and defined on all of X) and T is closed,
then T is continuous.

Proof. We have the following commutative diagram

X Y

G(T )

T

π1

π2

where π1 and π2 are both continuous. So π1 is injective and surjective to X; so π−1
1 is continuous. So

T = π2 ◦ π−1
1 . Theorem 102

Corollary 103. Suppose T : X → Y is linear; suppose that whenever (xn : n ∈ N) → 0 and (Txn : n ∈ N)
converges, we have that (Txn : n ∈ N) → 0.

Proof. Suppose ((xn, Txn) : n ∈ N) is in G(T ) and converges to (x0, y0) ∈ X⊕Y . Then (xn−x0 : n ∈ N) → 0.
So

T (xn − x0) = Txn − Tx0 → y0 − Tx0

By hypothesis, we have y0 − Tx0 = 0, and y = Tx0. So G(T ) is closed. Corollary 103

Example 104. Suppose H is a HIlbert space; suppose T : H → H is linear and ⟨Tx, y⟩ = ⟨xTy⟩ for all x, y ∈ H.

Claim 105. T is continuous.

Proof. Suppose xn → 0; suppose Txn → y. Then

∥y∥2 = ⟨y, y⟩ = lim⟨Txn, y⟩ = lim⟨xn, T y⟩ = 0

since the xn → 0. So y = 0. By closed graph theorem, we have that T is continuous. Claim 105
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Example 106. H = ℓ2. Let
D((xn)) =

(xn
n

)
n≥1

D =


1 0

1
2

1
3

0


is continuous with ∥D∥ = 1. But Ran(D) is not closed as(

1,
1

2
,
1

3
, . . .

)
/∈ Ran(D)

D is injective and D : ℓ2 → Ran(D) is bijective. Then

G(D−1) = { (Dx, x) : x ∈ ℓ2 }

is closed because D is continuous. So D−1 is closed but not continuous, as D−1(en) = nen is unbounded.

3.3 Some Fourier series
Definition 107. If f ∈ L1(T), define the Fourier coefficients

f̂(n) =
1

2π

∫ 2π

0

f(θ) exp(−inθ)dθ

for n ∈ Z. For N ≥ 0, define

SN (f) =

N∑
k=−N

f̂(k) exp(ikθ)

Remark 108. The functional φn(f) = f̂(n) is continuous on L1(T), and hence is continuous on C(T) and on
Lp(T) for 1 < p ≤ ∞. So the SN are also continuous on the above.

Recall also that the trigonometric polynomials{
p(θ) =

N∑
k=−N

ak exp(ikθ), ak ∈ C, N ≥ 1

}

are dense in C(T) by the Weierstrass theorem. We also have C(T) is dense in Lp(T) if 1 ≤ p <∞ by Lusin’s
theorem. So the trigonometric polynomials are dense in Lp(T) if 1 ≤ p <∞. (We also have that f ∈ L∞ is a
bounded pointwise limit of continuous functions.)

Perhaps there is hope, then, that SN (f) → f in Lp or C(T): if

∥f − p∥ < ε

then
∥SN (f)− SN (p)∥ ≤ ∥SN∥∥f − p∥ < ε∥SN∥

So
∥SN (f)− f∥ ≤ ∥SN (f)− SN (p)∥+ ∥SN (p)− p∥+ ∥p− f∥ ≤ (∥SN∥+ 1)∥f − p∥

for N ≥ deg(p). The problem is that the ∥SN∥ could blow up.
Good news: in L2(T), we have that { exp(inθ) : n ∈ Z } is an orthonormal basis for L2(T), and

f̂(n) = ⟨f, exp(inθ)⟩

So SN is the orthogonal projection onto

span exp(inθ) : −N ≤ n ≤ N
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So ∥SN∥ = 1 for all N ≥ 0, and SN (f) → f for all f ∈ L2(T). If 1 < p <∞, then

sup
N≥1

∥Sn∥B(Lp) <∞

So SN (f) → f in Lp.
Not so nice in L1(T) or C(T). Note, however, that

SN (f)(θ) =

N∑
n=−N

f̂(k) exp(ikθ)

=

N∑
n=−N

1

2π

∫ 2π

0

f(t) exp(−ikt)dt exp(ikθ)

=
1

2π

∫ 2π

0

f(t)

(
N∑

k=−N

exp(ik(θ − t)

)
dt

=
1

2π

∫ 2π

0

f(t)DN (θ − t)dt

where

DN (x) =

N∑
k=−N

exp(ikx)

We estimate ∥DN∥1:

DN (θ) =

N∑
k=−N

exp(ikθ)

=
exp(i(N + 1)θ)− exp(−iNθ)

exp(iθ − 1)

=
exp
(
i
(
N + 1

2

)
θ
)
− exp

(
−i
(
N + 1

2

)
θ
)

2i

2i

exp
(
i θ2
)
− exp

(
−i θ2

)
=

sin
((
N + 1

2

)
θ
)

sin
(
1
2θ
)

So DN (0) = 2N + 1; so ∥DN∥∞ → ∞ as N → ∞. Also

∥DN∥1 =
1

2π

∫ 2π

0

∣∣∣∣∣ sin
((
N + 1

2

)
θ
)

sin
(
θ
2

) ∣∣∣∣∣dθ
≥ 1

π

∫ π

0

∣∣∣∣∣ sin
((
N + 1

2

)
θ
)

θ
2

∣∣∣∣∣dθ
=

2

π

∫ (N+ 1
2 )π

0

|sin(x)|
x

dx (using the substitution x =

(
N +

1

2

)
θ)

≥ 2

π

∫ π
2

0

sin(x)

x
dx+

2N∑
k=1

2

π

∫ (k+1)π
2

k π
2

|sin(x)|
(k + 1)π2

dx

≥ 2

π

π

4
+

2N∑
k=1

2

π

2

π

1

k + 1

∫ π
2

0

sin(x)dx

=
1

2
+

4

π2

2N+1∑
k=2

1

k

≈ 4

π2
log(N)

→ ∞
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Theorem 109. For θ0 ∈ [0, 2π], we have that

{ f ∈ C(T) : SN (f)(θ0) → f(θ0) }

is of first category.

Proof. If SN (f)(θ0) → f(θ0), then
{SN (f)(θ0) : N ≥ 1 }

is bounded. Consider the functional

ψN (f) = SN (f)(θ0)

=
1

2π

∫ 2π

0

f(t)DN (θ0 − t)dt

We can pick fε ∈ C(T) such that

fε(t) =


1 DN (θ0 − t) ≥ ε

−1 DN (θ0 − t) ≤ −ε
piecewise linear else

But
|ψN (fε)| → ∥DN∥ ≈ 4

π2
log(N) → ∞

But ∥fε∥∞ = 1. So
sup
N≥1

∥ψN∥ = ∞

By the uniform boundedness principle, there is f ∈ C(T) such that |ψN (f)| → ∞. In fact, from the proof, we
have that

{ f : SN (f)(θ0) is bounded }

is of first category. Theorem 109

Corollary 110.
{ f ∈ C(T) : SN (f)(θ) is bounded for some θ ∈ Q ∩ [0, 2π] }

is of first category.

Theorem 111 (Carleson, 1962). If f ∈ Lp(T) for p > 1 (which then contains C(T)) then SN (f) → f almost
everywhere.

Proposition 112 (Kolmogorov, before 1960). There is f ∈ L1(T) such that SN (f) diverges almost everywhere.

Theorem 113. The map

Λ: L1(T) → c0(Z)
f 7→ f̂

is injective and bounded but not surjective.

Proof. Well, ∣∣∣f̂(n)∣∣∣ = ∣∣∣∣ 12π
∫ 2π

0

f(exp(iθ)) exp(−inθ)dθ
∣∣∣∣

≤ 1

2π

∫ 2π

0

|f(exp(iθ))|dθ

= ∥f∥1

So ∥Λf∥ = sup|f̂(n)| ≤ ∥f∥1.
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Lemma 114 (Riemann-Lebesgue lemma). If f ∈ L1(T), then |f̂(n)| → 0 as n→ ∞.

Proof. If ε > 0, pick p a trigonometric polynomial such that ∥f − p∥1 < ε. Then∣∣∣f̂(n)∣∣∣ = ∣∣∣ ̂(f − p)(n) + p̂(n)
∣∣∣

=
∣∣∣ ̂(f − p)(n)

∣∣∣
≤ ∥f − p∥1
< ε

for |n| > deg(p). Lemma 114

So Λf ∈ c0(Z).

Claim 115. Λ is injective.

Proof. Suppose f ∈ L1(T); suppose Λf = 0. Then

1

2π

∫ 2π

0

f(θ) exp(−inθdθ = 0

for all n ∈ Z. So
1

2π

∫ 2π

0

f(θ)p(θ)dθ = 0

for all trigonometric polynomials. But for g ∈ C(T), there exist trigonometric polynomials pn → g uniformly
with ∥pn∥∞ ≤ ∥g∥∞. So

0 =
1

2π

∫ 2π

0

f(θ)pn(θ)dθ →
1

2π

∫ 2π

0

f(θ)g(θ)dθ

by Lebesgue dominated convergence theorem. Find bounded gn with

gn → f(θ)

|f(θ)|

almost everywhere. Then

0 =
1

2π

∫ 2π

0

f(θ)gn(θ)dθ →
1

2π

∫ 2π

0

|f |dθ

So f = 0 almost everywhere. Claim 115

Claim 116. Λ is not surjective.

Proof. If Λ were surjective, then by the Banach isomorphism theorem Λ would be an isomorphism. So for all
f ∈ L1(T) we would have

∥f∥1 ≤ C∥Λf∥∞
But ∥DN∥1 ≈ 4

π2 log(N) and ∥ΛDn∥∞ = 1, contradicting the above. Claim 116

Theorem 113

We can do better using the Cesàro means (via Fejér’s theorem) or

f(r exp(iθ)) =

∞∑
k=−∞

r|k|f̂(k) exp(ikθ)
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3.4 Hahn-Banach theorems
Definition 117. Suppose X is a vector space over F ∈ {R,C }. Suppose f : X → F linear is a functional. A
function p : X → R is sublinear if

1. p(x+ y) ≤ p(x) + p(y)

2. p(tx) = tp(x) if t ≥ 0

Example 118.

1. If X is normed, then p(x) = ∥x∥ is sublinear.

2. If X has a topology and U ∈ O(0), then ⋃
k≥1

kU = X

If we further have that U is convex, we can define the Minkowski functional by

pU (x) = inf{ t > 0 : x ∈ tU }

It is easily seen that pU (sx) = spU (x) for s > 0. If pU (x) = s and pU (y) = t, then x ∈ s′U if s′ > s and
y ∈ t′U if t′ > t. So

1

s′
x,

1

t′
y ∈ U

By convexity of U , we then have that

x+ y

s′ + t′
=

s′

s′ + t′
1

s′
x+

t′

s′ + t′
1

t′
y ∈ U

So x+ y ∈ (s′ + t′)U , and pU (x+ y) ≤ s′ + t′. Letting s′ → s, t′ → t, sublinearity falls out.

Theorem 119. Suppose M0 is a real vector subspace of X (where X is a real vector space). Suppose p is
a sublinear functional on X. Suppose f0 : M0 → R is a linear functional. Suppose f0(m) ≤ p(m) for all
m ∈M0. Then there is f : X → R linear such that

1. f ↾M0 = f0

2. f(x) ≤ p(x) for all x ∈ X.

Proof. Extending by 1 dimension, if M0 ̸= X, pick x ∈ X \M0. Let M = M0 + Rx; try to extend the
definition of f0 to f : M → R. In order to set f(x) = a ∈ R, we need

f(m+ tx) ≤ p(m+ tx)

If t > 0, we get f(m) + tf(x) ≤ p(m+ tx); if t < 0 we get f(m)− |t|f(x) ≤ p(m− |t|x).

Case 1. Suppose t > 0. Then we need

tf(x) ≤ p(m+ tx)− f(m)

a = f(x) ≤ p(m+ tx)− f(m)

t

Case 2. Suppose t < 0. Then we need

f(m)− p(m− |t|x) ≤ |t|f(x) = |t|a

so
f(m)− p(m− |t|x)

|t|
≤ a
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Conversely, if we can find a satisfying the above, then we define f(m+ tx) = f(m) + ta to get the desired
extension. We then need

sup
s≥0,m∈M0

f(m)− p(m− sx)

s
≤ a ≤ inf

t≥0,m∈M0

p(m+ tx)− f(m)

t

If m′ = m
s , then

LHS = sup
m′∈M0

(f(m′)− p(m′ − x))

RHS = inf
m′∈M0

p(m′ + x)− f(m′)

Claim 120. LHS ≤ RHS.

Proof. Otherwise there is m1,m2 ∈M such that

p(m2 + x)− f(m2) < f(m1)− p(m1 − x)

and
p(m1 +m2) ≤ p(m2 + x) + p(m1 − x) < f(m1 +m2) ≤ p(m1 +m2)

a contradiction. Claim 120

So we can extend (f0,M0) to (f,M) by choosing any a ∈ [LHS,RHS].
We now use Zorn’s lemma. Consider

E = { (M,f) :M0 ⊆M a subspace, f : M → R linear, f ↾M0 = f0, f(x) ≤ p(x) for all x ∈M }

We can equip this with the partial order (M1, f1) ≤ (M2, f2) if M1 ⊆ M2 and f2 ↾ M1 = f1. Suppose now
that C = { (Mα, fα) : α ∈ I } is a chain in E with I a total order and α < β in I implies (Mα, fα) ≤ (Mβ , fβ).
Let

M =
⋃
α∈I

Mα

Then M is a vector space containing all of the Mα. Let

f =
⋃
α∈I

fα

Then f is linear and f ↾Mα = fα. So if x ∈M , then there is α ∈ I such that x ∈Ma; then f(x) = fα(x) ≤
p(x). Also M0 ⊆Mα ⊆M , so f ↾M0 = fα ↾M0 = f0. So (M,f) ∈ E is an upper bound of C.

So, by Zorn’s lemma, we have that E has a maximal element (M̃, f̃).

Claim 121. M̃ = X.

Proof. Otherwise there is x ∈ X \ M̃ . Let M1 = M̃ + Rx. By the first part of the proof, we can extend f̃ to
f1 on M1 with (M̃, f̃) < (M1, f1), contradicting maximality. Claim 121

Theorem 119

Theorem 122 (Hahn-Banach theorem). Suppose X is a Banach space, M0 ⊆ X is a subspace (not neceessarily
closed). Suppose f0 ∈M∗

0 is a bounded linear functional on M0. Then there is f ∈ X∗ such that f ↾M0 = f0
and ∥f∥ = ∥f0∥.

Proof.
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Case 1. Suppose F = R. Define p(x) = ∥f0∥∥x∥; thus is positive-homogeneous and satisfies the triangle
inequality, so is sublinear. Also f0(m) ≤ ∥f0∥∥m∥ = p(m) for all m ∈M0. So, by the previous theorem,
there is a linear functional f ∈ X∗ such that f ↾ M0 = f0 and f(x) ≤ p(x) = ∥f0∥∥x∥ for all x ∈ X.
Then

−f(x) = f(−x) ≤ p(−x) = ∥f0∥∥x∥

so
−∥f0∥∥x∥ ≤ f(x) ≤ ∥f0∥∥x∥

i.e. |f(x)| ≤ ∥f0∥∥x∥. So ∥f∥ = ∥f0∥.

Case 2. Suppose F = C. Think of X as a vector space over R. Let g0(m) = Re(f0(m)) for m ∈M0. Then

g0(m) ≤ |f0(m)| ≤ ∥f0∥∥m∥

By the first case, we can extend g0 to a continuous real linear functional g : X → R such that g ↾M0 = g0
and ∥g∥ ≤ ∥g0∥ ≤ ∥f0∥.
Define f(x) = g(x) + ig(−ix). Then f is continuous and R-linear. Also,

f(ix) = g(ix) + ig(−i(ix))
= i(g(x) + (−i)g(ix))
= i(g(x) + ig(−ix))
= if(x)

So f is C-linear. Also, if m ∈M0, then

f(m) = g(m) + ig(−im)

= g0(m) + ig0(−im)

= Re(f0(m)) + iRe(f0(−im))

= f0(m)

since if f0(m) = a+ ib, then f0(−im) = −i(a+ ib) = b− ia. Finally, if x ∈ X, then f(x) = exp(iθ)|f(x)|;
so

|f(x)| = f(exp(−iθ)x)
= Re(f(exp(iθ)x))

= g(exp(−iθ)x)
≤ ∥g0∥∥exp(−iθ)x∥
≤ ∥f0∥∥x∥

So ∥f∥ ≤ ∥f0∥.

Theorem 122

Corollary 123. If X is a Banach space with x ∈ X, then there is f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥.

Proof. Define f0 on Fx by f0(λx) = λ∥x∥. Then

∥f0∥ = sup
λ∈F

|λ∥x∥|
∥λx∥

= 1

We can then extend by the Hahn-Banach theorem. Corollary 123

Corollary 124. If x ∈ X then
∥x∥ = sup

f∈X∗,∥f∥≤1

|f(x)|
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Proof. Well, |f(x)| ≤ ∥f∥∥x∥ ≤ ∥x∥. But by the corollary there is f with ∥f∥ = 1 and f(x) = ∥x∥.
Corollary 124

Corollary 125. X∗ separates points of X.

Proof. Suppose x ̸= y. Then there is f ∈ X∗ such that f(x) − f(y) = f(x − y) ̸= 0. So f(x) ̸= f(y).
Corollary 125

Corollary 126. Suppose X is a Banach space with M ⊆ X a closed subspace. Suppose x /∈M . Then there
is f ∈ X∗ with ∥f∥ = 1 such that r ↾M = 0 and f(x) = dist(x,M).

Proof. Let q : X → X/M be the quotient map. Then q(x) = ẋ ̸= 0. Then

∥ẋ∥ = inf
m∈M

∥x−m∥ = dist(x,M)

By one of the previous corollaries, there is g ∈ (X/M)∗ such that ∥g∥ = 1 and g(ẋ) = ∥ẋ∥. Let f = g ◦ q;
then ∥f∥ ≤ ∥g∥∥q∥ = 1 · 1 = 1, and

f(x) = g(ẋ) = ∥ẋ∥ = dist(x,M)

Furthermore, for m ∈M , we have f(m) = g(ṁ) = g(0) = 0. Corollary 126

If X is a Banach space, there is a natural map X → X∗∗ by x 7→ x̂ where x̂(f) = f(x).

Proposition 127. The natural map X → X∗∗ is isometric.

Proof. Well

∥x̂∥ = sup
f∈X∗,∥f∥≤1

|x̂(f)|

= sup
f∈X∗,∥f∥≤1

|f(x)|

= ∥x∥

by a previous corollary. Proposition 127

Definition 128. X is reflexive if X = X∗∗; i.e. the natural map above is surjective.

We get chains
X ⊆ X∗∗ ⊆ X∗∗∗∗ ⊆ X∗∗∗∗∗∗ ⊆ . . .

and
X∗ ⊆ X∗∗∗ ⊆ X∗∗∗∗∗ ⊆ . . .

Proposition 129. If X ̸= X∗∗, then X∗ ̸= X∗∗∗.

Proof. If X ̸= X∗∗, then there is y ∈ X∗∗ \X. By a previous corollary, there is f ∈ X∗∗∗ such that f ↾ X = 0
and f(y) ̸= 0. But if g ∈ X∗ and g ↾ X = 0, then g = 0, and ĝ = 0. So f ̸= ĝ for any g ∈ X∗. So X∗ ≠ X∗∗∗.

Proposition 129

Example 130.

1. Suppose H is a Hilbert space. Then H∗ is H, and H∗∗ is H = H. So H is reflexive.

2. Suppose 1 < p <∞. Then ℓ∗p = ℓq for 1
p + 1

q = 1. Then ℓ∗∗p = ℓ∗q = ℓp. So ℓp is reflexive. Similarly for
Lp(µ) for 1 < p <∞.

3. c∗0 = ℓ1 and ℓ∗1 = ℓ∞; so c0 is not reflexive.

4. L1(0, 1)∗ = L∞(0, 1) which is not separable; so L∞(0, 1)∗ is not separable; So L1(0, 1) is not reflexive.
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5. C[0, 1]∗ =M([0, 1]) ⊇ L1(0, 1) (where M([0, 1]) is the set of finite regular complex Borel measures). So
C[0, 1]∗ is not reflexive.

6. If dim(X) <∞ then dim(X∗) = dim(X).

Example 131 (Banach limits). Weant a map L which takes a bounded sequence x = (xn : n < ω) of real
numbers and satisfies

1. lim inf xn ≤ L(x) ≤ lim supxn

2. L(x) = L(Sx) where Sx = (xn+1 : n < ω). (Translation-invariance.)

This is called a Banach limit. So we’re looking for a continuous linear functional L on ℓ∞,R of norm 1. Let
M = spanx− Sx : x ∈ ℓ∞,R. We need

1. L ↾M = 0

2. If u = (1 : n < ω), then we need L(u) = 1.

Claim 132. dist(u,M) = 1.

Proof. Well, dist(u,M) ≤ ∥u − 0∥ = 1. Suppose x ∈ ℓ∞,R satisfies ∥u − (x − Sx)∥ = 1 − ε < 1. Write
x = (xn : n < ω); then Sx = (xn+1 : n < ω). Then u − (x − Sx) = (1 − (xn − xn+1) : n < ω). So
1− (xn − xn+1) ≤ 1− ε; so

xn+1 ≤ xn − ε ≤ xn−1 − 2ε ≤ · · · ≤ x1 − nε

So (xn : n ∈ N) → −∞, contradicting boundedness. Claim 132

By one of the corollaries, we then have L ∈ ℓ∗∞,R with ∥L∥ = 1 such that L ↾M = 0 and L(u) = 1. Thus, for
x ∈ ℓ∞,R we have L(x)− L(Sx) = L(x− Sx) = 0; so L is translation-invariant.

Claim 133. If x ∈ c0, then L(x) = 0.

Proof. Say x ∈ c0. Then Snx = (xn+i : i ∈ N); so Snx→ 0 in ℓ∞. But

x− Snx = (x− Sx) + (Sx− S2x) + · · ·+ (Sn−1x− Snx)

and each summand is in M ; so L(x) = L(Snx) → L(0) = 0. So L(x) = 0. Claim 133

Take x ∈ ℓ∞,R; let

α = lim inf xn

β = lim supxn

Write x = y + z with α ≤ yn ≤ β, z ∈ c0. Then L(x) = L(y) + L(z) = L(y). Let

wn = yn − α+ β

2
∈
[
−β − α

2
,
β − α

2

]
Let w = (wn;n ∈ N). Then

y =

(
α+ β

2

)
u+ w

So
|L(w)| ≤ ∥w∥ ≤ β − α

2

So
−β − α

2
≤ L(w) ≤ β − α

2
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So

α = −β − α

2
+
β − α

2
≤ L(y)

= L(w) +

(
α+ β

2

)
L(u)

≤ β − α

2
+
α+ β

2
= β

So we have the desired properties.

Remark 134. We can extend L to L̃ on ℓ∞ by

L̃(x) = L(Re(x)) + iL(Im(x))

This is translation-invariant, and if
lim

n→∞
xn = x∞

then L̃(x) = x∞.

4 LCTVSs and weak topologies
Definition 135. A seminorm on a vector space V is a map p : V → [0,∞) such that

1. p(tv) = |t|p(v) for all t ∈ F, all v ∈ V

2. p(v + w) ≤ p(v) + p(w) for all v, w ∈ V (triangle inequality)

Remark 136. This is not necessarily a norm because p(v) = 0 ≠⇒ v = 0 in general.

Definition 137. A locally convex topological vector space (LCTVS) is a vector space X with a family
P = { pα : α ∈ I } of seminorms such that if x ∈ X and pα(x) = 0 for all α ∈ I, then x = 0. Put a topology
on X determined by a subbase

U(x0, r, pα) = {x ∈ X : pα(x− x0) < r }

Remark 138. U(x0, r, pα) is convex because of the triangle inequality: if x, y ∈ U(x0, r, pα) and 0 < t < 1,
then

pα(tx+ (1− t)y) ≤ pα(tx) + pα((1− t)y) < |t|r + |1− t|r = r

and tx+ (1− t)y ∈ U(x0, r, pα).

Remark 139. We have some translation-invariance: U(x0, r, pα) = x0 + U(0, r, pα), and U is an open
neighbourhood of 0 if and only if x0 + U is an open neighbourhood of x0.

Theorem 140. Suppose X is a LCTVS.

1. A neighbourhood base at 0 is given by the sets

UF,r = {x ∈ X : pα(x) < r for all pα ∈ F }

where F ⊆fin P and and r > 0.

2. X is Hausdorff.

3. Addition and scalar multiplication are continuous.

4. A net (xβ : β ∈ B) converges to x0 if and only if pα(x− xβ) → 0 for all pα ∈ P.

45



Proof.

1. Well,
UF,r =

⋂
pα∈F

U(0, r, pα)

is open and contains 0. Suppose F ⊆fin P and

U =
⋂
α∈F

U(xα, rα, pα)

is a basic open neighbourhood of 0. Well, 0 ∈ U(xα, rα, pα), so pα(xα − 0) < rα. Let

r = min
α∈F

(rα − pα(xα))

Claim 141. UF,r ⊆ U .

Proof. If x ∈ UF,r, then pα(x) < r. So

pα(xα − x) ≤ pα(xα − 0) + pα(0− x) < p(xα) + r ≤ pα(xα) + rα − pα(xα) = rα

So
x ∈

⋂
α∈F

U(xα, rα, pα) = U

and UF,r ⊆ U . Claim 141

2. If x ̸= y in X, then there is α such that pα(x− y) = r > 0. Then

U
(
x,
r

2
, pα

)
∩ U

(
y,
r

2
, pα

)
3. We do addition; scalar multiplication is similar. Let A : X ×X → X by A(x, y) = x+ y. Let U be open

in X. We need to show that A−1(U) is open in the product topology. Suppose (x0, y0) ∈ A−1(U); then
x0 + y0 ∈ U . But U is open; so there is F ⊆fin P and r > 0 such that

(x0, y0) + UF,r =
⋂

pα∈F

U(x0 + y0, r, pα) ⊆ U

Claim 142. (
x0 + UF, r2

)
×
(
y0 + UF, r2

)
⊆ A−1(U)

Proof. Suppose

pα(x− x0) <
r

2

pα(y − y0) <
r

2

for all pα ∈ F . Then

pα((x+ y)− (x0 + y0)) ≤ pα(x− x0) + pα(y − y0) <
r

2
+
r

2
= r

Claim 142

4.

xβ → x ⇐⇒ (∀F ⊆fin P)(∀r > 0)(∃β0)(∀β ≥ β0)(xβ ∈ x+ UF,r)

⇐⇒ ∀F∀r∃β0(∀β ≥ β0)(∀pα ∈ F )(pα(x− xβ) < r)

⇐⇒ ∀pα(pα(x− xβ) → 0)
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Theorem 140

Example 143.

1. (X, ∥·∥) a normed vector space.

2. Let X be a normed vector space. Let Y be a vector subspace of X∗ (not necessarily closed). Suppose
that for all x ̸= 0 in X, there is φ ∈ Y with φ(x) ̸= 0. For φ ∈ Y , define a seminorm pφ(x) = |φ(x)|. τy
is the locally convex topology generated by { pφ : φ ∈ Y }. (X, τY ) is thus a LCTVS.

In particular, if X is a Banach space, then (X, τX∗) is the weak topology on X. We write xα
w−→ x if

and only if φ(xα) → φ(x) for all φ ∈ X∗.

If X = Y ∗ for a Banach space Y , then (Y ∗, τY ) is the weak-* topology on Y ∗ and fα
w∗

−−→ f in Y ∗ if
and only fα(y) → f(y) for all y ∈ Y .

Remark 144.

UF,r = {x : |pφ(x)| < r for φ ∈ F }

=

{
x :

∣∣∣∣1rφ(x)
∣∣∣∣ < 1,

1

r
φ ∈ 1

r
F

}
= U 1

rF,1

Proposition 145. Suppose Z a LCTVS; suppose T : Z → (X, τY ) is linear. Then T is continuous if and
only if φ ◦ T : Z → F is continuous for all φ ∈ Y .

Proof.

( =⇒ ) Note that τY is the weakest topology that makes all φ ∈ Y continuous on (X, τY ). Then φ ◦ T
is continuous as the composition of continuous functions.

( ⇐= ) T is continuous if and only if T−1(x+ UF,r) is open for all F ⊆fin P, all r > 0. But

T−1(x+ UF,r) = T−1(x) + T−1(UF,r)

= T−1(x) +
⋂
φ∈F

(φ ◦ T )−1(br(0))

which is open because all φ ◦ T is continuous.

Proposition 145

3. Suppose X is a Banach space. Then we have the following topologies on B(X):

Weak operator topology In which Tα
WOT−−−→ T if and only if φ(Tαx) → φ(Tx) for all x ∈ X all

φ ∈ X∗. For each x ∈ X, each φ ∈ X∗, define Ψx,φ ∈ B(X)∗ by Ψx,φ(T ) = φ(Tx).

Y = span{Ψx,φ : x ∈ X,φ ∈ X∗ } ⊆ B(X)∗

(where the span is the algebraic span, not the closed span.) Note that this is not closed.
(B(X),WOT) = (X, τY ).

Strong operator topology For x ∈ X, define px(T ) = ∥Tx∥. Then { px : x ∈ X } determines the
strong operator topology. We have Tα

SOT−−−→ T if and only if Tαx → Tx for all x ∈ X; so this is
the topology of pointwise convergence.

Theorem 146. Suppose X a LCTVS; suppose f : X → F is linear. The following are equivalent:

1. f is continuous.

2. f is continuous at 0.
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3. ker(f) is closed.

4. There is F = { pα1
, . . . , pαn

} ⊆fin P and C <∞ such that

|f(x)| ≤ C

n∑
i=1

pαi
(x)

Proof.

(1) =⇒ (2) Trivial.

(2) =⇒ (3) f−1(0) = X \ f−1(F \ { 0 }). But F \ { 0 } is open. So f−1(0) = ker(f) is closed.

(3) =⇒ (4) Without loss of generality f ̸= 0. Pick x0 ∈ X such that f(x0) = 1. Pick F ⊆fin P and r > 0
such that

(x0 + UF,r) ∩ ker(f) = ∅
(Possible since ker(f) is closed.) Then

0 /∈ f(x0 + UF,r) = 1 + f(UF,r)

So −1 /∈ f(UF,r). Note, though, that

UF,r{x : pα(x) < r for all α ∈ F }

is balanced ; i.e. if x ∈ UF,r and λ ∈ F satisfies |λ| ≤ 1, then λx ∈ UF,r (since p(λx) = |λ|p(x) ≤
p(x) < r). So f(UF,r) is balanced in F. So f(UF,r) is convex and disjoint from {λ : |λ| = 1 }. So
f(UF,r) ⊆ D = {λ : |λ| < 1 }. Thus if kpα(x) < r for all pα ∈ F then |f(x)| < 1. In particular, if∑

F

pα(x) < r

then pα(x) < r for all pα ∈ F . So |f(x)| < 1. So

|f(x)| ≤ 1

r

∑
pα(x)

(4) =⇒ (1) Suppose xβ → x. Then p(xβ − x) → 0 for all α. So

|f(xβ)− f(x)| = |f(xβ − x)| ≤ C
∑
F

pα(xβ − x) → 0

So f(xβ) → f(x). So f is continuous.

Theorem 146

Corollary 147. Suppose f : (X, τY ) → F is a linear functional. Then f is continuous if and only if f ∈ Y .

Proof.

( ⇐= ) Trivial.

( =⇒ ) Suppose f is continuous on (X, τY ). Then by the theorem, there are f1, . . . , fn ∈ Y such that

|f(x)| ≤ C

n∑
i=1

|fi(x)|

In particular, if

x ∈
n⋂

i=1

ker(fi)

then RHS = 0. So f(x) = 0. So
n⋂

i=1

ker(fi) ⊆ ker(f)
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Lemma 148. Suppose X is a vector space. Suppose f1, . . . , fn are linear functionals (not necessarily
continuous). Suppose

ker(f) ⊇
n⋂

i=1

ker(fi)

Then f ∈ span{ f1, . . . , fn }.

Proof. We have
X X/

⋂n
i=1 ker(fi)

X/ ker(f)

q

f

∃!f̃

But we can identify

F : X/

n⋂
i=1

ker(fi) ∼= { (f1(x), . . . , fn(x)) : x ∈ X } ⊆ Fn

Then

ker(F ) =

n⋂
i=1

ker(fi)

We can extend f̃ to a linear functional ˜̃f on F:

˜̃
f((v1, . . . , vn)) =

∑
aivi

Then

f(x) = f̃ ◦ q(x) = ˜̃f(F (x)) = n∑
i=1

aifi(x) ∈ span{ f1, . . . , fn }

Lemma 148

So

f =

n∑
i=1

aifi ∈ Y

Corollary 147

Remark 149. If we start with Y ⊆ X∗ which is not closed, then

(X, τY )
∗ = Y

is not a Banach space.

Lemma 150. Suppose X is a Banach space; suppose Y is a closed subspace of X∗ which norms X. i.e.

∥x∥ = sup
f∈Y
∥f∥≤1

|f(x)|

Then if a sequence (xn : n ∈ N) converges in (X, τY ) then

sup
n∈N

∥xn∥ <∞
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Proof. For x ∈ X, define x̂ ∈ Y ∗ by x̂(f) = f(x). Since Y is closed, it is a Banach space. But (xn : n ∈
N) τY−−→ x says that x̂n(f) → x̂(f) for all f ∈ Y ; so { x̂n(f) : n ≥ 1 } is bounded for all f . By the uniform
boundedness principle, we have that

sup
n∈N

∥x̂n∥ <∞

Since Y norms X, we get ∥x̂n∥ = ∥xn∥. So

sup
n≥1

∥xn∥ <∞

Lemma 150

Example 151. Let (ℓ1, τc0) be ℓ1 with the weak-* topology from ℓ1 = c∗0. Suppose xn = (xni : i ∈ N) ∈ ℓ1.
Suppose xn

w∗

−−→ x = (xi : i ∈ N). Then ei(xn) = ⟨xn, ei⟩ = xni → ⟨x, ei⟩ = xi (where ei ∈ c0). By lemma, we
have

sup
n∈N

∥xn∥1 =M <∞

Conversely, suppose the above two statements hold. Suppose y = (y1, y2, . . . ) ∈ c0; suppose ε > 0. Pick N
such that |yi| < ε if i > N . Then

|⟨xn, y⟩ − ⟨x, y⟩| =

∣∣∣∣∣
∞∑
i=1

(xni − xi)yi

∣∣∣∣∣
=

N∑
i=1

(xni − xi)yi +

∞∑
i=N+1

(xni − xi)yi

≤ N∥y∥ max
1≤i≤n

|xni
− xi|+

∑
i≥N

|xni
− xi|ε

Pick N2 such that n ≥ N2 implies
|xni

− xi| <
ε

N∥y∥
for 1 ≤ i ≤ N . Ten

|⟨xn, y⟩ − ⟨x, y⟩| < N∥y∥ ε

N∥y∥
+ ∥xn − x∥1ε ≤ ε+ (∥xn∥1 + ∥x∥1)ε ≤ (1 + 2M)ε

So ⟨xn, y⟩ → ⟨x, y⟩ for y ∈ c0.
On the other hand, there is an unbounded net converging to 0 in (ℓ1, τc0). Let Λ be the set of finite

subsets of c0 ordered by set inclusion. Then, if F ∈ Λ, we have⋂
y∈F

ker(y)

is a closed subspaces of ℓ1 of finite codimension. By axiom of choice, we can pick

xF ∈
⋂
y∈F

ker(y)

such that ∥xF ∥ = |F |.

Claim 152. (xF : F ∈ Λ) → 0 in τc0 .

Proof. Take y ∈ c0. If F ≥ { y0 }, then ⟨xF , y⟩ = 0 → 0. Claim 152
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4.1 Geometric Hahn-Banach theorem
Given convex, disjoint A and B, we wish to find some linear functional f separating them; i.e.

A ⊆ {x ∈ X : Re(f(x)) ≤ a }
B ⊆ {x ∈ X : Re(f(x)) > a }

We also want f to be continuous; we then need a topological condition on A and B.

Definition 153. A hyperplane is a set H = {x ∈ X : Re(f(x)) = a } where X is a LCTVS and f is a linear
functional. We are interested in closed hyperplanes, in which we require that f be continuous.

Lemma 154. Suppose X is a LCTVS. Suppose U is open and convex with 0 ∈ U . Recall the Minkowski
functional

pU (x) = inf{ r > 0 : x ∈ rU }
Then pU is continuous and {x ∈ X : pU (x) < 1 } = U .

Proof. Since 0 ∈ U and U is convex, if 0 < r < s, then rU ⊆ sU . Suppose pU (x) = r < 1, then for r < s < 1,
we have x ∈ sU ⊆ U . Conversely, if x ∈ U there is ε > 0 such that (1 + ε)x ∈ U (since t 7→ tx is continuous
and 1x ∈ U and U is open; thus { t ∈ R : tx ∈ U } is open in R, and thus contains (1 − ε, 1 + ε) for some
ε > 0). So

x ∈ 1

1 + ε
U

So pU (x) ≤ 1
1+ε < 1. So {x ∈ X : pU (x) ≤ 1 } = U .

To see continuity, suppose x0 ∈ X; suppose pU (x0) = r0 ∈ V ⊆ R where V is open. Then pU (x0) ∈
(r0 − ε, r0 + ε) ⊆ V for some ε > 0. Then

p−1
U (V ) ⊇ p−1

U (r0 − ε, r0 + ε)

If x ∈ x0 +
ε
2U , then

pU (x) ≤ pU (x0) + pU (x− x0) < pU (x0) +
ε

2

and
pU (x) ≥ pU (x0)− pU (x− x0) > pU (x0)−

ε

2

Lemma 154

Theorem 155 (Hyperplane theorem). Suppose X a LCTVS; suppose U ⊆ X is open and convex with 0 /∈ U .
Then there is f ∈ X∗ such that Re(f(x)) > 0 for all x ∈ U . i.e. U is disjoint from the closed hyperplane
H = {x ∈ X : Re(f(x)) = 0 }

Proof.

Case 1. Suppose F = R. Pick x0 ∈ U . Define V = x0 − U . Then V is open and convex with 0 ∈ V . So pV
is a continuous sublinear functional. Define f0 on Rx0 by f0(tx0) = t for t ∈ R. Now, x0 /∈ V ; so, by
our lemma, we have pV (x0) ≥ 1. Then if t ≥ 0, we have f0(tx0) = t ≤ tpV (x0) = pV (tx0); if t < 0, then
f0(tx0) = t < 0 ≤ pV (tx0). So f0 ≤ pV on Rx0. Thus there is linear f : X → R such that f(x) ≤ pV (x)
for all x ∈ X.

Claim 156. f is continuous.

Proof. It suffices to check continuity at 0. But

f−1(br(0)) = {x ∈ X : −r < f(x) < r } = {x ∈ X : f(x) < r } ∩ {x ∈ X : f(−x) < r }

But V ⊆ {x ∈ X : f(x) < r } and −V ⊆ {x ∈ X : f(−x) < r }. So

f−1(br(0)) ⊇ rV ∩ (−rV )

which is an open neighbourhood of 0. Claim 156

51



Now, if x ∈ U then x0 − x ∈ V ; so 1− f(x) = f(x0 − x) ≤ pV (x0 − x) < 1 and f(x) > 0.

Case 2. Suppose F = C. Consider X as a real LCTVS. Find f : X → R that is R-linear and continuous such
that f(x) > 0 for all x ∈ U . Define g(x) = f(x) + if(−ix). As before, we have that g is C-linear and
continuous, and Re(g(x)) = f(x). Thus if x ∈ U , we have Re(g(x)) = f(x) > 0.

Theorem 155

We point out some special cases:

Corollary 157. Suppose X is a Banach space; suppose U ⊆ X is open and convex with 0 /∈ U . Then there
is f ∈ X∗ such that Re(f(x)) > 0 for all x ∈ U .

Corollary 158. Suppose X is a Banach space; suppose Y is a vector subspace of X∗ that separates points.
Suppose U ⊆ X is convex and τY -open with 0 /∈ U . Then there is f ∈ Y such that Re(f(x)) > 0 for all x ∈ U .

Proof. A linear f : X → F is τY -continuous if and only if f ∈ Y . Corollary 158

Theorem 159 (Separation theorem). Suppose X is a LCTVS; suppose A and B are disjoint convex subsets
of X with A open. Then there is f ∈ X∗ and d ∈ R such that Re(f(b)) ≤ d < Re(f(a)) for all b ∈ B, all
a ∈ A.

Proof. Let
C = A−B =

⋃
b∈B

(A− b)

Then C is open as the union of the open A− b. Also, 0 /∈ C since A ∩B = ∅. Finally, C is convex because

t(a1 − b1) + (1− t)(a2 − b2) = (ta1 + (1− t)a2)− (tb1 + (1− t)b2) ∈ A−B

By the hyperplane theorem, there is f ∈ X∗ such that Re(f(a))− Re(f(b)) = Re(f(c)) > 0 for all c ∈ C. So
Re(f(b)) < Re(f(a)) for all a ∈ A, all b ∈ B. Then

sup
b∈B

Re(f(b)) = d ≤ inf
a∈A

Re(f(a))

But A is open; so Re(f(A)) is open in [c,∞). So Re(f(A)) ⊆ (c,∞). Theorem 159

Corollary 160. If A,B are both open and convex with A∩B = ∅, then there is f ∈ X∗ and d ∈ R such that
Re(f(b)) < d < Re(f(a)) for all a ∈ A and all b ∈ B.

Example 161. Let X = (ℓ1, τc0). Let

A =

{
x ∈ ℓ1 :

∞∑
i=1

xi = 0

}

Then A is a norm-closed linear subspace and

δ1 = (1, 0, 0, . . . ) /∈ A

If 0 ̸= y ∈ c0 with y = (y1, y2, . . . ), then we have yn0
̸= 0 for some n0 ∈ N. Then if λ ∈ C, we have

xm =
λ

yn0

(δn0
− δm) ∈ A

Then
y(xm) =

λ

yn0

(yn0 − ym)
m→∞−−−−→ λ

So y(A) = C ∋ y(δ1). So we have no hope of separation.
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What went wrong? A is not τc0 -closed, because xm = δ1 − δm ∈ A with

sup
m≥0

∥xm∥ = 2

and xmi has limit

=

{
1 i = 1

0 else

So xm
τc0−−→ δ1 /∈ A.

Lemma 162. Suppose X is a LCTVS. Suppose K ⊆ X is compact and V ⊇ K is open. Then there is open
U ∋ 0 such that K + U ⊆ V .

Proof. For each x ∈ K, there is a finite set Fx of seminorms and rx > 0 such that U(Fx, rx) + x ⊆ V . (Recall
that

U(Fx, rx)(x) = { y : p(y − x) < r for all p ∈ Fx }
= U(Fx, rx)

U(Fx, rx) = { y : p(y) < rx for all p ∈ Fx }

are the basic open sets.) Then {x+ U(Fx,
rx
2 ) : x ∈ K } is an open cover of K; so there is a finite subcover

K ⊆
m⋃
i=1

{
xi + U

(
Fxi

,
rxi

2

)}
Let

F =

n⋃
i=1

Fxi

r = min
1≤i≤n

ri

Suppose y ∈ K. Then there is i0 such that y ∈ xi0 +U(Fi0 ,
ri0
2 . Let U = U(F, r2 ); then U ⊆ U(Fi, r i

2
) for all

i. So

y + U ⊆ xi0 + U(Fi0 ,
ri0
2
) + U(F,

r

2
)

⊆ xi0 + U(Fi0 , ri0)

⊆ V

So K + U ⊆ V . Lemma 162

Corollary 163. Suppose X is a LCTVS; suppose A,B ⊆ X are closed and convex, B is compact, and
A ∩B = ∅. Then there is f ∈ X∗ such that

sup
a∈A

Re(f(a)) = α < β = inf
b∈B

Re(f(b))

Proof. Well, Ac is open, and B ⊆ Ac. We may thus pick U such that B + U ⊆ Ac. Thus (B + U) ∩A = ∅.
Note that B + U is convex as

t(b1 + u1) + (1− t)(b2 + u2) = (tb1 + (1− t)b2) + (tu1 + (1− t)u2)

Thus, by the separation theorem, there is f ∈ X and α such that

sup
a∈A

Re(f(x)) = α < Re(b+ u)

for all b ∈ B and all u ∈ U . Since B is compact, this yields that

inf
b∈B

Re(f(b)) = β > α

Corollary 163
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Definition 164. Suppose X is a LCTVS, f ∈ X∗, and α ∈ R. Then

Hf,α = { y : Re(f(y)) ≤ α }

is called a closed half-space.

Corollary 165. Suppose X is a LCTVS; suppose A ⊆ X. Then

conv(A) =
⋂

Hf,α⊇A

Hf,α

(where conv(A) is the convex hull of A: the intersection of all convex sets containing A).

Proof. The RHS is closed and convex and contains A; so

conv(A) ⊆
⋂

Hf,α⊇A

Hf,α

Let x /∈ conv(A). Apply the last result with Ã = conv(A) and B̃ = {x }, which is compact. Then there is
f0 ∈ X∗ such that

sup
a∈A

Re(f0(a)) ≤ α0 < β = Re(f0(x))

Thus A ⊆ Hf0,α and x /∈ Hf,α.oSo
x /∈

⋂
Hf,α⊇A

Hf,α

So ⋂
Hf,α⊇A

⊆ conv(A)

Corollary 165

Corollary 166. Suppose X is a LCTVS. Then X∗ separates points.

Proof. Suppose x0, x1 ∈ X have x0 ̸= x1. Let

A = {x0 }
B = {x1 }

Then there is Hf,α ⊇ A such that x1 /∈ Hf,α. By a previous corollary, we get that there is f ∈ X∗ such that
Re(f(x0)) = α ̸= Re(f(x1)). Corollary 166

Proposition 167. Suppose X is a normed linear space.

1. Every norm-closed convex set is weakly closed.

2. Every norm-closed ball in X∗ is weak-* closed.

Proof.

1. Suppose C ⊆ X is norm-closed and convex. Then

C =
⋂

Hf,α⊇C

Hf,α

But each Hf,α is weakly closed. So C is weakly closed as the intersection of weakly closed sets.
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2. Suppose f0 ∈ X∗. Then

br0(f0) = { y : ∥y − f0∥ ≤ r }
= { y : |x̂(y − f0)| ≤ r for all x ∈ X, ∥x∥ ≤ 1 }
=

⋂
∥x∥≤1

{ y : |(y − f0)(x)| ≤ r }

But { y : |(y − f0)(x)| ≤ r } = x̂−1(Dr) is closed. So br0(f0) is closed as the intersection of closed sets.

Proposition 167

Example 168. Let

A = {x ∈ ℓ1 :

∞∑
i=1

xi = 0 }

Then A is not weak-*-closed. Last time we showed that if f ∈ c0 then f(A) = C. So conv(A) = ℓ1 (where
the closure is taken in the weak-* topology).

Theorem 169 (Goldstine’s theorem). Suppose X is a normed linear space. Then b1(X) is weak-* dense in
b1(X

∗∗). i.e. The weak-* closure
{ x̂ : x ∈ X, ∥x∥ ≤ 1 } = b1(X

∗∗)

Proof. Suppose not. Then there is x∗∗ ∈ b1(X
∗∗) and x∗∗ /∈ A where A is the weak-* closure A = b1(X).

Then {x∗∗ } = B is compact and convex and A is a convex, weak-*-closed set. So there is f that is weak-*
continuous (i.e. f ∈ X∗) such that

sup
a∈A

Re(f(a)) = α < Re(f(x∗∗))

Then in particular we have
∥f∥ = sup

x∈b1(X)

Re(f(x)) ≤ α

Since ∥f∥ ≤ α and x∗∗ ∈ b1(X
∗∗). So |⟨f, x∗∗⟩| ≤ ∥x∗∗∥∥f∥ ≤ α. So Re(f(x∗∗)) ≤ α, a contradiction.

Theorem 169

Hence if ψ ∈ b1(X
∗∗) then there is a net (xλ : λ ∈ Λ) in X converging to ψ in the weak-* topology; i.e.

(f(xλ) : λ ∈ Λ) → ψ(f) for all f ∈ X∗.

Theorem 170 (Banach-Alaoglu). Suppose X is a Banach space. Then the closed unit ball of X∗ is
weak-*-compact.

Proof. For each x ∈ X, let Dx = { z ∈ C : |z| ≤ ∥x∥ }. Let

D =
∏
x∈X

Dx

which is compact by Tychonoff’s theorem. Define Φ: (b1(X
∗), τ the weak-* topology) → D by Φ(f) = (f(x) :

x ∈ X).

1. Φ is injective, since Φ(f) = Φ(g) if and only if f(x) = g(x) for all x; i.e. f = g.

2. Φ is continuous: a basic open set in D is given by

U = { d ∈ D : d(xi) ∈ Ui }

for x1, . . . , xn ∈ X and Ui open in Dxi
. We need to show Φ−1(U) is open in (b1(X

∗), τ). But

Φ−1(U) = { f : f(xi) ∈ Ui for all 1 ≤ i ≤ n }
= { f : x̂i(f) ∈ Ui for all 1 ≤ i ≤ n }

=

n⋂
i=1

x̂i
−1(Ui)

which is open as the intersection of open sets.
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3. Φ(b1(X
∗)) ⊆ D is closed. To see this, we use nets. Take a net (fα : α ∈ Λ) in b1(X

∗) such that
(Φ(fα) : α ∈ Λ) → d ∈ D. Define f : X → C by

f(x) = dx = lim
α∈Λ

fα(x)

It’s easy to see that f is linear. For all x, we have

f(x) = lim
α∈Λ

fα(x)

and fα(x) ∈ Dx. So |fα(x)| ≤ ∥x∥; so |f(x)| ≤ ∥x∥, and ∥f∥ ≤ 1. So f ∈ b1(X
∗). So Φ(b1(X

∗)) is
compact.

4. Φ: (b1(X
∗), τ) → Φ(b1(X

∗)), where the latter is compact; we now show that Φ−1 : Φ(b1(X
∗)) →

(b1(X
∗), τ) is continuous. We use nets: let (dα : α ∈ Λ) be a net in Φ(b1(X

∗)) converging to
d ∈ Φ(b1(X

∗)). For each α, we can find fα ∈ b1(X
∗) such that Φ(fα) = dα; likewise, we can find

f ∈ b1(X
∗) such that d = Φ(f). We wish to show that (fα : α ∈ Λ)

wk∗

−−→ f . But (dα : α ∈ Λ) → d in D

(dα : α ∈ Λ) → d in D ⇐⇒ (dα(x) : α ∈ Λ) → d(x) for all x ∈ X

⇐⇒ (fα(x) : α ∈ Λ) → f(x) for all x ∈ X

⇐⇒ (fα : α ∈ Λ)
wk∗

−−→ f

Theorem 170

Corollary 171. If X is a reflexive Banach space then norm-closed, bounded, convex sets in X are weakly
compact.

Proof. Suppose X is reflexive; i.e. X̂ = X∗∗. Suppose A ⊆ X is norm-closed, bounded, and convex. Then
Proposition 167 yields that A is weakly closed. By the Banach-Alaoglu, we have that b1(X∗∗) = { x̂ : ∥x̂ ≤ 1∥ }
is weak-*-compact. So { x̂ : ∥x̂ ≤ r∥ } is weak-*-compact. Pick r big enough so that A ⊆ { x̂ : ∥x̂∥ ≤ r }. But
A is then a weak-*-closed subset of a weak-*-compact set. So A is weak-*-compact. Corollary 171

Corollary 172. Suppose X is a Banach space. Then b1(X) is weakly compact if and only if X is reflexive.

Proof.

( ⇐= ) Suppose X̂ = X∗∗. Then

(b1(X),weak) = (b1(X̂),weak-*)
= (b1(X

∗∗),weak-*)

which is compact by Banach-Alaoglu.

( =⇒ ) Suppose b1(X) is weakly compact. By Goldstine, we have that b1(X̂) is weak-*-dense in b1(X
∗∗).

But (b1(X̂),weak-*) = (b1(X),weak) is compact, and thus closed in b1(X∗∗). So b1(X̂) = b1(X
∗∗).

Corollary 172

Definition 173. Suppose V is a vector space; suppose K ⊆ V is convex. We say that F ⊆ K is a face if for
all x, y ∈ K and all 0 < t < 1 such that tx+ (1− t)y ∈ F , we have x, y ∈ F . We say x ∈ K is an extreme
point if {x } is a face.

Example 174.

1. Consider K = { (x, y) ∈ R2 : ∥(x, y)∥ ≤ 1, y ≥ 0 }. The x-axis is a face, and the extreme points are all
of the boundary besides the interior of the x-axis.

2. In (R2, ∥·∥∞), let K = b1. We then get a square each of whose sides is a face, and whose extreme points
are { (±11,±21) }.
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3. Similarly with (R2, ∥·,∞∥).

4. We say (X, ∥·∥) is strictly convex if whenever

1 = ∥x∥ = ∥y∥ =

∥∥∥∥x+ y

2

∥∥∥∥
we have x = y. If (X, ∥·∥) is strictly convex, then the extreme points of b1(X) are given by Ext(b1(X)) =
{x : ∥x∥ = 1 }.

Proof. If ∥x∥ = 1 and x = ty + (1− t)z for 0 < t < 1 and z ∈ b1(X), then 1 = ∥x∥ ≤ t∥y∥+ (1− t)∥z∥.
So ∥y∥ = ∥z∥ = 1. Then we can find z′ such that

1

2
y +

1

2
z′ = x

So y = z′ = x. So z = x.

5. Recall from the proof of Minkowski that if 1 < p <∞ and

|a|p + |b|p

2
=

∣∣∣∣a+ b

2

∣∣∣∣p
then a = b. Consider now Lp for 1 < p <∞. Suppose ∥f∥p = ∥g∥p = 1 and∥∥∥∥f + g

2

∥∥∥∥
p

= 1

Then ∫ 1

0

|f |p + |g|p

2
=

∫ 1

0

∣∣∣∣f + g

2

∣∣∣∣p
so

|f(x)|p + |g(x)|p

2
=

∣∣∣∣f(x) + g(x)

2

∣∣∣∣p
almost everywhere, and f(x) = g(x) almost everywhere. So f = g in Lp. So Ext(b1(L

p)) = is the unit
sphere, for 1 < p <∞.

6. Ext(b(L1)) = ∅.

Proof. Let ∥f∥1 = 1. Then ∫ 1

0

|f(t)|dt = 1

Let
g(s) =

∫ s

0

|f(t)|dt

We know that g is continuous and g(0) = 0 and g(1) = 1. Thus there exists s0 such that g(s0) = 1
2 . Let

f1(t) = 2f(t)χ[0,s0)(t)

f2(t) = 2f(t)χ[s0,1](t)

Then ∫ 1

0

|f1(t)|dt =
∫ s0

0

2|f(t)|dt = 1

and ∫ 1

0

|f2(t)|dt =
∫ 1

s0

2|f(t)|dt = 1

So ∥f1∥1 = ∥f2∥1 and
f1 + f2

2
= f

But neither is equal to f .
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7. Ext(b1(c0)) = ∅.

Proof. Let x = (x1, x2, . . . , ) ∈ c0 with ∥x∥ = 1. Because

lim
n→∞

xn = 0

we may pick n0 such that |xn0
| < 1

2 . Let

y = (x1, . . . , xn0−1, xn0
+ ε, xn0+1, . . . )

z = (x1, . . . , xn0−1, xn0
− ε, xn0+1, . . . )

for small ε. Then ∥x∥ = ∥y∥ = ∥z∥ = 1 and

y + z

2
= x

but y ̸= x and z ̸= x.

Lemma 175. Suppose X is a LCTVS and K ⊆ X is compact and convex. Suppose f ∈ X∗ such that
sup{Re(f(x)) : x ∈ K } = α. Then F = {x ∈ K : Re(f(x)) = α } is a face.

Proof. Suppose x = ty + (1− t)z for y, z ∈ K. Then

α = tRe(f(y)) + (1− t)Re(f(z))

So Re(f(y)) = Re(f(z)) = α. So y, z ∈ F . Lemma 175

Lemma 176. Suppose X is a LCTVS and K ⊆ X is compact and convex. Suppose F ⊆ K is a closed face.
Then F ∩ Ext(K) ̸= ∅.

Proof. Let F be the collection of all non-empty closed faces F̃ ⊆ F ordered by ⊇. Suppose C = {Fα } is a
chain in F . Each Fα is a closed subset of K, which is compact. So each Fα is compact. So⋂

α

Fα ̸= ∅

by the finite intersection property, and this is an upper bound of C. By Zorn’s lemma there is F̃ ⊆ F such
taht F̃ is a minimal closed, non-empty face. Suppose for contradiction that F̃ had more than one point
x0, y0 ∈ F . By separation, we would then have that there is f ∈ X∗ such that Re(f(y0)) < Re(f(x0)). Let

F1 = {x ∈ F̃ : Re(f(x)) = sup over F̃ }

This is a face by the previous lemma, but y0 /∈ F1, contradicting the minimality of F̃ . So F̃ = { x̃ } is an
extreme point. Lemma 176

Theorem 177 (Krein-Milman). Suppose X is a LCTVS. Suppose ∅ ≠ K ⊆ X is compact and convex. Then
conv(Ext(K)) = K.

Proof.

(⊆) Clear.

(⊇) Suppose x0 ∈ K but x0 /∈ conv(Ext(K)). Separate by f ∈ X∗. Then

sup{Re(f(x)) : x ∈ conv(Ext(K)) } = α < Re(f(x0)) < β = sup{Re(f(x)) : x ∈ K }

But F = {x ∈ K : Re(f(x)) = β } is a face and there is extreme y ∈ F . Then Re(f(y)) = β > α, a
contradiction.

Theorem 177
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Corollary 178 (Krein-Milman). The unit ball of X∗ is the weak-*-closed convex hull of its extreme points.

Proof. b1(X∗) = K is closed, convex, and compact in the weak-* topology. The theorem the yields that we
are done. Corollary 178

Corollary 179. Suppose X is a Banach space. If Ext(b1(X)) = ∅, then there does not exist Y such that
X = Y ∗.

Thus c0 and L1 cannot be the dual of any Banach space.
Example 180. (C([0, 1]), ∥·∥∞)∗ can be identified with the regular bounded Borel measures.

Ext(b1(M [0, 1])) = { exp(iθ)δx : x ∈ [0, 1] }

(where δx(f) = f(x)). Hence by Krein-Milman we have if µ([0, 1]) = 1 then µ is a weak-* limit of convex
combinations of exp(iθ)δx.
Example 181. We exhibit a compact convex set C in R3 such that Ext(C) is not closed. Let C0 be the circle
in R3 with (0, 0, 0) and (0, 0, 1) diametrically opposite. Let L be the line segment (−1, 0, 0) to (1, 0, 0) Let C
be the convex hull of C0 ∪ L. Then Ext(C) = { (±1, 0, 0) } ∪ C0 \ { (0, 0, 0) }.

Theorem 182 (Stone-Weierstrass). Suppose A is a closed subalgebra of CR(X) where X is compact and
Hausdorff. Suppose A separates points; i.e. suppose that for all x, y ∈ X with x ̸= y there is f ∈ A such that
f(x) ̸= f(y). Suppose there is g ∈ A such that g(x) > 0 for all x ∈ X. Then A = CR(X).

Proof. Suppose for contradiction that A ⫋ CR(X). Then by Hahn-Banach we have that there is φ ∈ CR(X)∗

such that φ ↾ A = 0 and φ ̸= 0. Let

K = b1(CR(X)∗) ∩A⊥ = {φ ∈ CR(X)∗ : φ ↾ A = 0, ∥φ∥ ≤ 1 }

Then K is a bounded, convex set in CR(X)∗; so, by the Krein-Milman theorem, we have that b1(CR(X)∗) is
weak-*-compact. But A⊥ is weak-*-closed, since if (φλ : λ ∈ Λ) is a net in CR(X)∗ converging to φ in the
weak-* topology and a ∈ A, then

φ(a) = lim
λ∈Λ

φλ(a) = 0

So K is weak-*-compact. Again by Krein-Milman, we then have that K has an extreme point ψ. But then
ψ ̸= 0 since ± φ

∥φ∥ ∈ K, and

0 =
1

2

(
φ

∥φ∥
+

−φ
∥φ∥

)
So 0 is not extreme, and ψ ̸= 0.

Now, by the Riesz representation theorem there is a finite real regular Borel measure µ such that

ψ(f) =

∫
fdµ

for all f ∈ CR(X).

Claim 183. supp(µ) = {x0 }. (Here supp(µ) = {x ∈ X : |µ|(U) > 0 for all U ∈ O(x) }.)

Proof. If supp(µ) = Y is not a single point, then there is f ∈ A such that f ↾ Y is non-constant. Without loss
of generality we may assume that 0 < f(x) < 1 for all x ∈ X; otherwise we add a multiple of g to f to make
it everywhere positive and then scale to get that it’s less than 1; i.e. find c, d such that 0 < ( cg+f

d )(x) < 1 for
all x ∈ X. (Note that cg+f

d is still non-constant on Y .)
Let µ1 = fµ; let µ2 = (1− f)µ. Then for any h ∈ CR(X) we have∫

hdµ1 =

∫
hfdµ

Then if h ∈ A, we have hf ∈ A, and

0 = ψ(hf) =

∫
hfdµ =

∫
hdµ1
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Therefore µ1 ∈ A⊥. Similarly, we get that µ2 ∈ A⊥. But now

∥µ1∥+ ∥µ2∥ =

∫
X

d|µ1|+
∫
X

d|µ2|

=

∫
X

fd|µ|+
∫
X

(1− f)d|µ|

=

∫
X

d|µ|

= ∥µ∥
= ∥ψ∥
= 1

(We get ∥ψ∥ = 1 since if ∥ψ∥ = r < 1, then 1
rψ ∈ K and ψ = r( 1rψ) + (1− r)0 is not an extreme point.)

Observe now that µ1

∥µ1∥ ,
µ2

∥µ2∥ ∈ K and µ = fdµ+ (1− f)dµ = ∥µ1∥ µ1

∥µ1∥ + ∥µ2∥ µ2

∥µ2∥ ; so µ is not extreme,
and ψ is not extreme, a contradiction. Claim 183

So supp(µ) = {x0 } for some x0 ∈ X; so µ = ±δx0
, where δx is the point mass:

δx(A) =

{
1 x ∈ A

0 x /∈ A

But then
0 = ψ(g) =

∫
gdµ = ±

∫
gdδx0 = ±g(x0) ̸= 0

a contradiction. Theorem 182

5 Operator theory
Definition 184. Suppose X and Y are Banach spaces; suppose T ∈ B(X,Y ). Then there is a map
T ∗ ∈ B(Y ∗, X∗) called the adjoint (or transpose) of T given by (T ∗φ)(x) = φ(Tx) for φ ∈ Y ∗ and x ∈ X.

Theorem 185. Suppose X,Y, Z are Banach spaces; suppose T ∈ B(X,Y ) and S ∈ B(Y, Z). Then

1. ∥T ∗∥ = ∥T∥.

2. T 7→ T ∗ is linear.

3. I∗X = IX∗ .

4. (ST )∗ = T ∗S∗.

5. T ∗ is weak-*-weak-*-continuous.

6. T ∗∗ ↾ X = T .

Proof. For convenience, given φ ∈ X∗ and x ∈ X, we write ⟨x, φ⟩ = φ(x).

1. Note that

∥T ∗∥ = sup
φ∈Y ∗

∥φ∥≤1

= sup
φ∈Y ∗

∥φ∥≤1

sup
x∈X
∥x∥≤1

|T ∗ψ(x)|

= sup
x∈X
∥x∥≤1

sup
φ∈Y ∗

∥φ∥≤1

|T ∗ψ(x)|

= sup
x∈X
∥x∥≤1

∥Tx∥

= ∥T∥
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by Hahn-Banach.

2. Suppose a, b ∈ F and S, T ∈ B(X,Y ). Suppose φ ∈ Y ∗ and x ∈ X. Then

((aS + bT )∗φ)(x) = φ((aS + bT )x)

= aφ(Sx) + bφ(Tx)

= ((aS∗ + bT ∗)φ)(x)

So T 7→ T ∗ is linear.

3. Suppose φ ∈ X∗. Then, for x ∈ X, we have

(I∗Xφ)(x) = φ(Ix) = φ(x) = (IX∗φ)(x)

So I∗X = IX∗ .

4. Suppose w ∈ Z∗ and x ∈ X. Then

((ST )∗w)(x) = w(S(Tx)) = (S∗w)(Tx) = (T ∗S∗w)(x)

So (ST )∗ = T ∗S∗.

5. Note that T ∗ : Y ∗ → X∗ is norm-continuous. Suppose now that (ψλ : λ ∈ Λ) is a net in Y ∗ converging
to ψ in the weak-* topology. The for all x ∈ X we have

(T ∗ψλ)(x) = ψλ(Tx) → ψ(Tx) = (T ∗ψ)(x)

So (Tψλ : λ ∈ Λ)
w∗

−−→ T ∗ψ, and T ∗ is weak-*-weak-*-continuous

6. Note that T ∈ B(X,Y ) implies that T ∗ ∈ B(Y ∗, X∗) and T ∗∗ ∈ B(X∗∗, Y ∗∗). Suppose x ∈ X and
ψ ∈ Y ∗. Then

(T ∗∗x̂)(ψ) = x̂(T ∗ψ) = (T ∗ψ)(x) = ψ(Tx) = T̂ x(ψ)

which we colloquially interpret to mean T ∗∗ ↾ X = T .

Theorem 185

Let X be an n-dimensional Banach space with n ∈ N; let e1, . . . , en be a basis. Let Y be an m-dimensional
Banach space with m ∈ N; let f1, . . . , fm be a basis. Then X∗ has dual basis ε1, . . . , εn where

εj(ei) =

{
1 i = j

0 i ̸= j

and similarly Y ∗ has dual basis δ1, . . . , δm. Let T ∈ B(X,Y ). Then T has matrix [tij ] and

Tej =

m∑
i=1

tijfi

Then T ∗ ∈ B(Y ∗, X∗) has matrix [sij ], and

T ∗δj =

n∑
i=1

sijεi

But then
sij = (T ∗δj)(ei) = δj(Tei) = tji

So the matrix of T is the transpose of that of T ∗.

Proposition 186. Suppose T : X → Y is linear. Then T is bounded if and only if T is weak-weak-continuous.
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Proof.

( =⇒ ) Suppose T is bounded; suppose (xα : α ∈ Λ)
w−→ x. Then

ψ(Txα) = (T ∗ψ)(xα) → (T ∗ψ)(x) = ψ(Tx)

So (Txα : α ∈ Λ)
w−→ Tx is weak-weak-continuous.

( ⇐= ) Suppose T is weak-weak-continuous. Then ψ ◦ T is continuous for all ψ ∈ Y ∗. So, if ψ ∈ Y ∗, then

sup
∥x∥≤1

|ψ(Tx)| = sup
∥x∥≤1

|(ψ ◦ T )(x)| = ∥ψ ◦ T∥ <∞

But (ψ ◦ T )(x) = (T ∗ψ)(x); so ∥T ∗ψ∥ = ∥ψ ◦ T∥ < ∞. (Notice that T ∗ is defined even if T is not
bounded.)
Consider {Tx : x ∈ X, ∥x∥ ≤ 1 } ⊆ Y ⊆ Y ∗∗. We then have

sup
x∈X
∥x∥≤1

|T̂ x(ψ)| = sup
x∈X
∥x∥≤1

|ψ(Tx)|

= ∥ψ ◦ T∥
<∞

Then by Banach-Steinhaus we have

∥T∥ = sup
x∈X
∥x∥≤1

∥Tx∥ = sup
x∈X
∥x∥≤1

∥T̂ x∥ <∞

So T is bounded.

Proposition 186

Proposition 187. T : Y ∗ → X∗ is weak-*-weak-*-continuous if and only if there is S ∈ B(X,Y ) such that
T = S∗.

TODO 1. Conditions on T?

Proof.

( =⇒ )

TODO 2. This.

( ⇐= ) Part 5 of the previous theorem.

TODO 1

Example 188. Consider the inclusion map iX : X → X∗∗ given by iX(x) = x̂. Then i∗X : X∗∗∗ → X∗. If
Φ ∈ X∗∗∗ and x ∈ X, we have i∗X(Φ)(x) = Φ(iX(x)) = Φ(x̂). So i∗X(Φ) = Φ ↾ X.

We also have iX∗ : X∗ → X∗∗∗. Define p = iX∗ ◦ i∗X : X∗∗∗ → X∗∗∗; then

p(Φ) = ix∗(Φ ↾ X) = Φ̂ ↾ X ∈ X̂∗

Also i∗X ◦ iX∗ : X∗ → X∗. For φ ∈ X∗ and x ∈ X we have

(i∗X iX∗(φ))(x) = (iX∗φ)(iX(x)) = φ̂(x)

So i∗X iX∗ = IX∗ . But then
p2 = iX∗(i∗X iX∗)i∗X = iX∗i∗X = p

So p is a projection of norm 1.
∥p∥ ≤ ∥iX∗∥∥iX∗∥ = 1 · 1 = 1

and Ran(p) = Ran(iX∗) = X̂∗. So p projects X∗∗∗ onto X̂∗.
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5.1 Hilbert space adjoint
Proposition 189. Suppose H is a Hilbert space and [·, ·] is a sesquilinear form which is bounded (i.e.
|[x, y]| ≤ C∥x∥∥y∥ for all x, y ∈ H). Then there is a unique B ∈ B(H) such that [x, y] = ⟨x,By⟩.

Proof. Fix y ∈ H. Define Φy(x) = [x, y]; then Φy is a linear functional, and

∥Φy∥ = sup
∥x∥≤1

|[x, y]| ≤ C∥y∥

So Φy ∈ H∗. So there is a unique zy ∈ H such that [x, y] = ⟨x, zy⟩ and ∥zy∥ = ∥Φy∥ ≤ C∥y∥. Define By = zy;
then ∥B∥ ≤ C, and B is bounded.

To see linearity, suppose y1, y2 ∈ H, a, b ∈ F. Then for any x ∈ H we have

⟨x,B(ay1 + by2)⟩ = [x, ay1 + by2]

= a[x, y1] + b[x, y2]

= a⟨x,By1⟩+ b⟨x,By2⟩
= ⟨x, aBy1 + bBy2⟩

So
0 = ⟨x,B(Ay1 + by2)− (aBy1 + bBy2)⟩

for all x ∈ H. So B(ay1 + by2) = aBy1 + bBy2, and B is linear. Proposition 189

Definition 190. If H is a Hilbert space and T ∈ B(H), then the Hilbert space adjoint of T is T ∗ the unique
element of B(H) such that ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ H.

Remark 191. To see that this exists, define [x, y] = ⟨Tx, y⟩; then by the above proposition there is a unique
B ∈ B(H) such that ⟨Tx, y⟩ = ⟨x,By⟩; then B = T ∗.

Proposition 192.

1. ∥T ∗∥ = ∥T∥.

2. (aS + bT )∗ = aS∗ + bT ∗.

3. (ST )∗ = T ∗S∗.

4. T ∗∗ = T .

Proof. Omitted. Proposition 192

Example 193. Consider L2(0, 1) with Mx(f) = xf . What is ∥Mx∥? Well,

∥xf∥22 =

∫ 1

0

x2|f(x)|2dx

≤
∫ 1

0

|f(x)|2dx

= ∥f∥2

So ∥Mx∥ ≤ 1. Define

χn(x) =

{
0 0 ≤ x ≤ 1− 1

n√
n 1− 1

n ≤ x ≤ 1

Then

∥xn∥2 =

∫ 1

0

|χn|2 =

∫ 1

1− 1
n

ndx = 1
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and

∥Mxxn∥2 =

∫ 1

1− 1
n

(x
√
n)2dx

= (n
x3

3
)|11− 1

n

=
n

3

(
1−

(
1− 1

n

)3
)

=
n

3

(
3

n
− 3

n2
+

1

n3

)
= 1− 3

n
+

1

3n2

Mx is injective since if xf = xg almost everywhere then f = g almost everywhere. But 1 /∈ Ran(Mx) because
x−1 /∈ L2(0, 1). So it’s not invertible, but has no kernel. Does it have eigenvalues?

Suppose xf = λf for some λ ∈ C. Then (x−λ)f = 0 almost everywhere. But x−λ ̸= 0 almost everywhere.
So f = 0. So it has no eigenvalues.

Definition 194. We say T ∈ B(X,Y ) is bounded below if there is c > 0 such that ∥Tx∥ ≥ c∥x∥.

Example 195.

1. Mx is not bounded below: let

yn(x)

{√
n 0 ≤ x ≤ 1

n

0 x > 1
n

Then ∥yn∥ = 1 but

∥xyn∥2 =

∫ 1
n

0

(x
√
n)2dx = n

x3

3
|
1
n
0 =

1

3n2

2. Let D : ℓ1 → ℓ1 be Den = 1
nen. Then D((x1, x2, x3, . . . )) = (x1

1 ,
x2

2 ,
x3

3 , . . . ). Then D is injective but is
not bounded below; it is also not surjective, as (1, 14 ,

1
9 , . . . ) ∈ ℓ1 but (1, 12 ,

1
3 , . . . ) /∈ ℓ1.

3. Consider H = ℓ2 with orthonormal basis e1, e2, . . .. Consider the shift Sen = en+1. Then S((x1, x2, x3, . . . )) =
(0, x1, x2, x3, . . . ). We have ∥Sx∥ = ∥x∥, so this is an isometry, and in particular is injective. It is also
therefore bounded below by 1. It is not surjective: Ran(S) = (Ce1)⊥.
We can consider its Hilbert space adjoint S∗:

⟨x, S∗y⟩ = ⟨Sx, y⟩
= ⟨(0, x1, x2, . . . ), (y1, y2, . . . )⟩

=

∞∑
n=1

xnyn+1

= ⟨(x1, x2, . . . ), (y2, y3, y4, . . . )⟩

So S∗((y1, y2, y3, . . . )) = (y2, y3, y4, . . . ). i.e. S∗e1 = 0 and S∗en+1 = en for n ≥ 1. Also ker(S∗) = Ce1,
but S∗ is surjective.
Now, neither S nor S∗ is invertible. But

(S∗S)((x1, x2, x3, . . . )) = S∗(0, x1, x2, x3, . . . )

= (x1, x2, x3, . . . )

So S∗S = I. But

(SS∗)((x1, x2, x3, . . . )) = S((x2, x3, x4, . . . ))

= (0, x2, x3, x4, . . . )

So SS∗ ̸= I.
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Lemma 196. Suppose T ∈ B(X,Y ). Then (ker(T ))⊥ = Ran(T ∗) (where the closure is taken in the weak-*
topology) and ker(T ∗) = (Ran(T ))⊥.

Proof. We first show ker(T ∗) = (Ran(T ))⊥. Note that for ψ ∈ Y ∗, we have

ψ ∈ (Ran(T ))⊥ ⇐⇒ ψ(Tx) = 0 for all x ∈ X

⇐⇒ (T ∗ψ)(x) = 0 for all x ∈ X

⇐⇒ T ∗ψ = 0

⇐⇒ ψ ∈ ker(T ∗)

Now note that (Ran(T ∗))⊥ = ker(T ∗∗), and

(Ran(T ∗))⊥ = {x ∈ X : x ⊥ Ran(T ∗) }
= (ker(T ∗∗)) ∩X
= ker(T )

So (ker(T ))⊥ = ((Ran(T ∗))⊥)
⊥ which is the weak-*-closure of Ran(T ∗). Lemma 196

Remark 197. If T ∈ B(X,Y ), then the norm closure of Ran(T ∗) may not be weak-*-closed. Consider
D : ℓ1 → ℓ1 by Den = 1

nen. Then D∗ : ℓ∞ → ℓ∞ is given by D∗((x1, x2, x3, . . . )) = (x1

1 ,
x2

2 , . . . ). So

c0 = span
{
e1,

e2
2
,
e3
3
, . . .

}
⊆ Ran(D∗) ⊆ c0

(where here we use the norm closure). So c0 is the norm-closure of Ran(D∗). But by Goldstine we have that
the weak-*-closure of c0 is ℓ∞. So the norm-closure of Ran(D∗) is not weak-*-closed.

Proposition 198. Suppose T ∈ B(X,Y ). Then the following are equivalent:

1. T is invertible

2. T is bijective

3. T is bounded below and has dense range

4. T and T ∗ are bounded below

5. T ∗ is invertible

Proof.

(1) =⇒ (2) Trivial.

(2) =⇒ (1) Banach isomorphism theorem.

(1) =⇒ (3) Suppose T−1T = IX . Then

∥x∥ = ∥T−1(Tx)∥ ≤ ∥T−1∥∥Tx∥

So
∥Tx∥ ≥ 1

∥T−1∥
∥x∥

and T is bounded below. Also, T is surjective; so T has dense range.

(3) =⇒ (2) If x ̸= 0 then ∥Tx∥ ≥ c∥x∥ > 0; so T is injective. Let y ∈ Y = Ran(T ). Find (xn : n ∈ N) in
X such that (Txn : n ∈ N) → y. Let yn = Txn. Then (yn : n ∈ N) converges, and is thus Cauchy. But

∥xn − xm∥ ≤ 1

c
∥yn − ym∥

Take ε > 0. Then there is N ∈ N such that for all n,m ≥ N we have ∥yn − ym∥ < cε; then for all
n,m ≥ N we have ∥xn − xm∥ < ε. So (xn : n ∈ N) is Cauchy, and thus converges to x. But then

y = lim
n→∞

Txn = Tx

So T is surjective.
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(1) =⇒ (5) T is invertible so T−1T = IX and TT−1 = IY . Taking adjoints, we find that T ∗(T−1)∗ =
I∗X = IX∗ and (T−1)∗T ∗ = I∗Y = IY ∗ . So (T−1)∗ = (T ∗)−1.

(5) =⇒ (4) Suppose T ∗ is invertible. Then, by previous directions, we have that T ∗ is bounded below and
that T ∗∗ is inverible and bounded below. But T = T ∗∗ ↾ X; so T is bounded below.

(4) =⇒ (3) Suppose T and T ∗ are bounded below. Then T is bounded below, and ker(T ∗) = { 0 }. But by
the lemma we have (Ran(T ))⊥ = ker(T ∗). So Ran(T ) = Y .

Proposition 198

Definition 199. If T ∈ B(X), we define the spectrum of T is

σ(T ) = {λ ∈ C : λI − T is not invertible }

The resolvent of T is ρ(T ) = C \ σ(T ). The resolvent function R(T, λ) = (λI − T )−1 for λ ∈ ρ(T ).
The point spectrum is σp(T ) the set of eigenvalues of T ; i.e. σp(T ) = {λ : ker(λI − T ) ̸= ∅ }. The
approximate point spectrum is π(T ) = {λ : λI − T is not bounded below }. The compression spectrum is
γ(T ) = {λ : Ran(λI − T ) ̸= X }.

Remark 200. By proposition we have that σ(T ) = π(T ) ∪ γ(T ).
We let B(X)−1 denote the set of invertible operators in X.

Proposition 201. B(X)−1 is open and contains b1(IX).

Proof. If A ∈ B(X) with ∥A∥ ≤ 1, we wish to show that I −A ∈ b1(I) is invertible. Recall that in C if |x| < 1
we have

1

1− x
= 1 + x+ x2 + . . .

Let

B =

∞∑
n=0

An ∈ B(X)

This converges because
∞∑

n=0

∥An∥ ≤
∞∑

n=0

∥A∥n =
1

1− ∥A∥
<∞

Then
(I −A)B = lim

k→∞
((I −A)(I +A+ · · ·+Ak)) = lim

k→∞
(I −Ak+1) = I

By continuity, since I−A commutes with the partial sums, it commutes with B, and B(I−A) = (I−A)B = I.
So I −A is invertible.

If T ∈ B(X)−1 and ∥A∥ < 1
∥T−1∥ then T − A = T (I − T−1A). Then ∥T−1A∥ ≤ ∥T−1∥∥A∥ < 1. So

(T −A)−1 = (I − T−1A)−1T−1. So
b 1

∥T−1∥
⊆ B(X)−1

So B(X)−1 is open. Proposition 201

Proposition 202. If T ∈ B(X) then ρ(T ) is open and σ(T ) ⊆ b∥T∥(0).

Proof. B(X)−1 is open and f : C → B(X) given by f(λ) = λI − T is norm-continuous. Thus ρ(T ) =
f−1(B(X)−1) is open. If |λ| > ∥T∥, then λI − T = λ(I − λ−1T ). So

∥λ−1T∥ =
∥T∥
|λ|

< 1

So

(λI − T )−1 = λ−1(I − λ−1T )−1 = λ−1
∞∑

n=0

(λ−1T )n =

∞∑
n=0

Tnλ−n−1

Proposition 202
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Proposition 203. The map B(X)−1 → B(X)−1 given by T 7→ T−1 is continuous.

Proof. Suppose T0 ∈ B(X)−1; suppose ∥A∥ < 1
∥T−1

0 ∥ . Then

(T0 +A)−1 = (T0(I + T−1
0 A))−1

= (I + T−1
0 A)−1T−1

0

=

∞∑
n=0

(−T−1
0 A)nT−1

0

= T−1
0 +

∞∑
n=1

(−T0A)nT−1
0

So

∥(T0 +A)−1 − T−1
0 ∥ =

∥∥∥∥∥
∞∑

n=1

(−T−1
0 A)nT−1

0

∥∥∥∥∥
≤

∞∑
n=1

(∥T−1
0 ∥∥A∥)n∥T−1

0 ∥

=
∥T−1

0 ∥2∥A∥
1− ∥T−1

0 ∥∥A∥
→ 0 as ∥A∥ → 0

So the map is continuous at T0. Proposition 203

Example 204.

1. Let X = Lp(0, 1) for 1 ≤ p <∞. Let h ∈ L∞(0, 1) where

∥h∥∞ = ess sup|h| = sup{ r : m({x : |h(x)| ≥ r }) > 0 }

Let Mhf = fh for f ∈ Lp(0, 1). Then

∥Mhf∥pp =

∫
|hf |pdm

≤
∫

∥h∥p∞|f |pdm

= ∥h∥p∞∥f∥pp

So ∥Mh∥ ≤ ∥h∥∞. Let f = χA. Then

∥f∥p =

(∫
χp
A

) 1
p

= m(A)
1
p

and

∥fh∥p =

(∫
(|h|χA)

p

) 1
p

≥ r

(∫
χA

) 1
p

= r∥f∥p

What is σ(Mh)? Well, if h, k ∈ L∞(0, 1), then

MhMkf =Mhkf = hkf =Mhkf

We look at the case of h = x. So if λ /∈ [0, 1] then 1
x−λ ∈ L∞(0, 1), so (Mx − λI)M 1

x−λ
= 1, and

λ /∈ σ(Mx). So σ(Mx) ⊆ [0, 1].
On the other hand, for ε > 0, let fε = χ( 1

2−ε, 12+ε). Then

∥Mx− 1
2
fε∥p =

∥∥∥∥(x− 1

2
χ( 1

2−ε, 12+ε)

)∥∥∥∥ < ∥εfε∥p = ε∥fε∥p
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But this is not bounded below. So 1
2 ∈ σ(Mx). Similarly, we have that y ∈ σ(Mx) for any y ∈ [0, 1].

Consider now arbitrary h ∈ C[0, 1]. We let h([0, 1]) = X = Ran(h). If λ /∈ Ran(h) then

1

h− λ
∈ C[0, 1]

and
(Mh − λI)M 1

h−λ
= I

so λ /∈ σ(Mh). If h(x0) = λ, then for all ε > 0 there is δ > 0 such that h−1(bε(λ)) ⊇ bδ(x0); then if
fε = χ(x0−δ,x0+δ), we have ∥Mh−λfε∥p ≤ ε∥fε∥p. So σ(Mh) = h([0, 1]).

Consider now arbitrary h ∈ L∞(0, 1). Define

essRan(h) = { z ∈ C : m(h−1(bε(z))) > 0 for all ε > 0 }

If λ /∈ essRan(h) then there is ε > 0 such that m(h−1(bε(z))) = 0. Then∣∣∣∣ 1

h− z

∣∣∣∣ ≤ 1

ε

almost everywhere, so
(Mh − zI)M 1

h−z
= I

and z /∈ σ(Mh). Conversely, if z ∈ essRan(h), we let fε = χh−1(bε(z)) ≠ 0. Then ∥Mh−zfε∥ ≤ ε∥fε∥ is
not bounded below, and is thus not invertible. So σ(Mh) = essRan(h).

We consider now the Banach space adjoint to Mh. If f ∈ Lp and g ∈ Lq (where 1
p + 1

q = 1), then

⟨Mhf, g⟩ =
∫
hfgdm

=

∫
f(hg)dm

= ⟨f,Mhg⟩

So the Banach space adjoint M∗
h = Mh on Lq(0, 1). To see the Hilbert space adjoint, note that if

f, g ∈ L2(0, 1), then

⟨Mhf, g⟩ =
∫

(hf)gdm

=

∫
f(hg)dm

= ⟨f, hg⟩

So MhMh =M|h|2 =MhMh. So Mh commutes with M∗
h , and it is normal.

2. Consider the unilateral shift on ℓ2: Sen = en+1 for n ≥ 0. i.e. S((x0, x1, . . . )) = (0, x0, x1, . . . ). We
have the backwards shift S∗((x0, x1, x2, . . . )) = (x1, x2, . . . ). Then ∥S∥ = 1 = ∥S∗∥; so σ(S) ⊆ D.

S is not invertible because Ran(S) ⊥ Ce0. So S∗e0 = 0, and 0 is an eigenvalue of S∗. On the other
hand, clearly S has no eigenvalues, since if Sx = λx, then ∥x∥ = ∥Sx∥ = ∥λx∥ = |λ|∥x∥, and |λ| = 1;
but then λx0 = 0, and λx1 = x0 = 0, and so on, so x = 0, a contradiction.

Can we have S∗x = λx? We need xn+1 = λxn for n ≥ 0. i.e.

xn = λxn−1 = λ2xn−2 = · · · = λnx0

So x = x0(1, λ, λ
2, . . . ). So S∗(1, λ, λ2, λ3, . . . ) = (λ, λ2, λ3, λ4, . . . ) = λ(1, λ, λ2, . . . ). If |λ| < 1, then

xλ = (1, λ, λ2, . . . ) ∈ ℓ2. So σp(S∗) = D = {λ : |λ| < 1 }. So σ(S∗) ⊇ D. So σ(S∗) = D.
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Returning to S, note that if |λ| ≤ 1, then (S − λI)∗ = S∗ − λI is not invertible. So S − λI is not
invertible. If |λ < 1|, then

⟨(S − λI)x, xλ⟩ = ⟨x, (S∗ − λI)xλ⟩ = ⟨x, 0⟩ = 0

So Ran(S − λI) ⊥ Cxλ; so σ(S) = D. If |λ| = 1, let

xn =
1√
n
(1, λ, λ

2
, . . . , λ

n−1
, 0, 0, . . . )

∥xn∥2 =
1

n

n−1∑
i=0

|λi|2 =
n

n
= 1

But
Sxn =

1√
n
(0, 1, λ, λ

2
, . . . , λ

n−2
, λ

n−1
, 0)

and
λxn =

1√
n
(λ, 1, λ, λ

2
, . . . , λ

n−2
, 0, . . . )

So
(S − λI)xn =

1√
n
(−λ, 0, 0, . . . , 0, λn−1

, 0, . . . )

So

∥(S − λI)xn∥ =

√
2

n
→ 0

is not bounded below.

Definition 205. Suppose Ω ⊆ C is open and X is a Banach space. Suppose f : Ω → X. We say f is strongly
analytic if for all z0 ∈ Ω there exist x0, x1, x2, . . . ,∈ X such that

f(z0 + w) =

∞∑
n=0

xnw
n

converges uniformly for all |w| ≤ r for all r > 0. We say f is weakly anaytic if for all φ ∈ X∗ we have that
φ ◦ f : Ω → C is analytic.

Exercise 206 (Bonus problem). Prove that if f is weakly analytic then it is strongly analytic. Hint:

1. Show {
φ

(
f(z0 + w)− f(z0)

w

)
: |w| ≤ r

}
is bounded.

2. Show f is continuous.

3. For n ≥ 0, set

xn =
1

2πi

∫ 2π

0

f(z0 + r exp(iθ)) exp(−inθ)dθ

(as a Riemann integral).

4. Show

f(z0 + w) =

∞∑
n=0

xnw
n

for |w| ≤ r.

Theorem 207. Suppose T ∈ B(X); suppose λ, µ ∈ ρ(T ). Then
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1.
R(T, λ)−R(T, µ)

λ− µ
= −R(T, λ)R(T, µ)

2. λ 7→ R(T, λ) is strongly analytic on ρ(T ).

3.
lim

|λ|→∞
R(T, λ) = 0

Proof.

1. Note that
(R(T, λ)−R(T, µ))(λI − T )(µI − T ) = (µI − T )− (λI − T ) = (µ− λ)I

Multiplying by R(T, λ)R(T, µ), we see

R(T, λ)−R(T, µ)

λ− µ
= −R(T, λ)R(T, µ)

2. Note that
d

dλ
(R(T, λ))|λ=µ = lim

λ→µ

R(T, λ)−R(T, µ)

λ− µ
= −R(T, λ)2

So
d

dλ

(
1

λ− z

)
=

−1

(λ− z)2

If λ0 ∈ ρ(T ), then

(λ0 + w)I = (λ0I − T )(λ0I − T )−1((λ0I − T ) + wI) = (λ0I − T )(I + w(λ0I − T )−1)

If |w| < 1
∥(λ0I−T )−1∥ , then

R(T, λ0 + w) = (λ0I − T )−1
∑
n=0

t∞(−(λ0I − T )−1)nwn

which converges uniformly for |w| ≤ r < 1
∥(λ0I−T )−1∥ .

3. Suppose |λ| > ∥T∥. Then

R(T, λ) =

∞∑
n=0

Tnλ−n−1

So

∥R(T, λ)∥ ≤
∞∑

n=0

∥Tn∥|λ|−n−1

≤
∑

∥T∥n|λ|−n−1

=

1
|λ|

1− ∥T∥
|λ|

=
1

|λ| − ∥T∥
→ 0 as |λ| → ∞

Theorem 207

Theorem 208. Suppose T ∈ B(X). Then σ(T ) ̸= ∅.
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Proof. If σ(T ) were empty, then R(T, λ) is an entire function. But ∥R(T, λ)∥ → 0 as |λ| → ∞. So it is a
bounded, entire function. Take φ ∈ B(X)∗. Then φ ◦ R(T, λ) is a bounded, scalar-valued, entire functino.
Thus it is constant by Liouville’s theorem. If R(T, λ) were not constant, then by Hahn-Banahc we have φ
such that φ ◦R(T, λ) is not constant, a contradiction. So R(T, λ) is constant. But R(T, λ) → 0 as |λ| → ∞.
So R(T, λ) = 0. This is absurd. So σ(T ) ̸= ∅. Theorem 208

Proposition 209. If λ ∈ ρ(T ) for T ∈ B(X) and dist(λ, σ(T )) = r, then ∥(λI − T )−1∥ ≥ 1
r .

Proof. Pick λ0 ∈ σ(T ) such that |λ− λ0| = r. Now, (λ0I − T )(λI − T )−1 is not invertible. But

((λ0 − λ)I + (λI − T ))(λI − T )−1 = (λ0 − λ)(λI − T )−1 + I

and b1(I) ⊆ B(X)−1. So ∥(λ0−λ)(λI−T )−1∥ ≥ 1. So ∥(λI−T )−1∥ ≥ 1
|λ0−λ| =

1
r . Proposition 209

Corollary 210. ∂σ(T ) ⊆ π(T ); i.e. λ0 in the boundary of σ(T ) is an approximate eigenvalue.

Proof. We show λ0I − T is not bounded below. Fix ε > 0. Pick λ ∈ ρ(T ) such that |λ − λ0| < ε. Then
∥(λI − T )−1∥ > 1

ε . Find x with ∥x∥ = 1 such that ∥(λI − T )−1x∥ > 1
ε . Let y = (λI − T )−1x. Then

∥(λ0I − T )y∥ = ∥(λ0 − λ)y + (λI − T )y∥
≤ ∥(λ0 − λ)y∥+ ∥x∥
< ε∥y∥+ ε∥y∥
= 2ε∥y∥

So λ0I − T is not bounded below. Corollary 210

5.2 Spectral mapping theorem for rational functions
If p ∈ C[z] is a polynomial, say p(z) = a0 + a1z + · · ·+ anz

n and T ∈ B(X), we define p(T ) = a0I + a1T +
a2T

2 + · · ·+ anT
n. The map ρT : C[z] → B(X) given by ρT (p) = p(T ) is a homomorphism. If q ∈ C[z] has

no roots in σ(T ), say q(z) = b(z − β1)(z − β2) . . . (z − βm), then q(T ) = b(T − β1I)(T − β2I) . . . (T − βmI) is
invertible. We can then define

(
p
q

)
(t) = p(T )q(T )−1. If we set Rat(σ(T )) to be the set of rationa p

q such

that q has no roots in σ(T ), then ρT : Rat(σ(T )) → B(X) given by ρT
(

p
q

)
= p(T )q(T )−1 is well-defined and

a homomorphism.

Theorem 211 (Spectral mapping theorem—rational case). Suppose T ∈ B(X) and p
q ∈ Rat(σ(T )), then

σ(f(T )) = f(σ(T )).

Proof. Write f = p
q with gcd(p, q) = 1; factor q(z) = b(z − β1) . . . (z − βm). If λ ∈ C, then

f(z)− λ =
p

q
− λ =

pλ
q

=
a(z − α1) . . . (z − αn)

b(z − β1) . . . (z − βn)

Then f(T )−λI = pλ(T )q(T )
−1 is invertible if and only if pλ(T ) is invertible. But pλ(T ) = a(T −α1I) . . . (T −

αnI) is invertible if and only if α1, . . . , αn ∈ ρ(T ). i.e.

λ ∈ σ(f(T )) ⇐⇒ f(T )− λI is not invertible
⇐⇒ pλ(T ) is not invertible
⇐⇒ ∃i(αi ∈ σ(T ))

⇐⇒ ∃α(α ∈ σ(T ) ∧ pλ(α) = 0)

⇐⇒ ∃α(α ∈ σ(T ) ∧ f(α) = λ)

⇐⇒ λ ∈ f(σ(T ))

Theorem 211
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If λ /∈ f(σ(T )), then p(z)
q(z) − λ = pλ(z)

q(z) is invertible in Rat(σ(T )) as

1

f(z)− λ
=

q(z)

pλ(z)

So (f(T )− λI)−1 = q(T )pλ(T )
−1; so one direction is easy.

Definition 212. If T ∈ B(X), we define the spectral radius of T to be spr(T ) = sup{ |λ| : λ ∈ σ(T ) }.

We know spr(T ) ≤ ∥T∥. Now, if λ > ∥T∥, then

R(λ, T ) = (λI − T )−1 =

∞∑
n=0

Tnλ−n−1

But R(λ, T ) is analytic on {λ : |λ| > spr(T ) }.

Theorem 213 (Spectral radius formula). We have

spr(T ) = lim
n→∞

∥Tn∥ 1
n = inf

n≥1
∥Tn∥ 1

n

Proof. The spectral mapping theorem shows that σ(Tn) = σ(T )n. Thus spr(T ) = spr(Tn)
1
n ≤ ∥Tn∥ 1

n for all
n ≥ 1. So

spr(T ) ≤ inf
n≥1

∥Tn∥ 1
n

But R(λ, T ) is analytic on {λ : |λ| > spr(T ) }. So if φ ∈ B(X)∗, then φ(R(λ, T )) is an analytic scalar function
on the same annulus. For |λ| > ∥T∥, we have

φ(R(λ, T )) = φ

( ∞∑
n=0

Tnλ−n−1

)
(which converges absolutely)

=

∞∑
n=0

φ(Tn)λ−n−1

where the latter is sum is the Laurent expansion of φ(R(λ, T )) on {λ : |λ| > ∥T∥ }. This is analytic on a
bigger annulus, namely {λ : |λ| > spr(T ) }. So, by complex analysis, this converges in {λ : |λ| > spr(T ) }. In
particular, if |λ| = t > spr(T ), then |φ(Tn)λ−n−1| = |φ(Tn)|t−n−1 → 0. So

sup
n≥0

|φ(Tn)|
tn+1

<∞

But this holds for all φ ∈ B(X)∗. So, by Banach-Steinhaus, we have

sup
n≥0

∥∥∥∥ Tn

tn+1

∥∥∥∥ = C <∞

So ∥Tn∥ 1
n ≤ (Ctn+1)

1
n = C

1
n . So

lim sup
n→∞

∥Tn∥ 1
n ≤ t

Su

lim sup∥Tn∥ 1
n ≤ spr(T )

≤ inf∥Tn∥ 1
n

≤ lim inf∥Tn∥ 1
n

≤ lim sup∥Tn∥ 1
n

So lim∥Tn∥ 1
n = inf∥Tn∥ 1

n = spr(T ). Theorem 213
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5.3 Compact operators
Definition 214. We say T ∈ B(X,Y ) is compact if Tb1(X) is compact in Y . We write K(X,Y ) for the set
of compact operators in B(X,Y ); likewise, we write K(X) for the set of compact operators in B(X).

Example 215.

1. If F has finite rank, then it is compact because Fb1(X) ⊆ b∥F∥(Y ) ∩ Ran(F ) is compact by the
Heine-Borel theorem.

2. Let X = ℓp for 1 ≤ p < ∞. Let (dn : n ∈ N) ∈ ℓ∞. Let D((x1, x2, x3, . . . )) = (d1x1, d2x2, d3x3, . . . ) a
“diagonal” operator. Then

∥D∥ = sup
n≥1

|dn|

Suppose
lim sup dn > 0

Say we can find |dni
| ≥ r with n1 < n2 < . . .. Then Deni

= dni
eni

∈ Db1(ℓp), so D is not compact.

Suppose on the other hand that
lim
n→∞

dn = 0

Claim 216. D is compact.

Proof. Let DN ((x1, x2, . . . ) = (d1x1, . . . , dNxN , 0, 0, . . . ). Then DN has rank N and

∥D −DN∥ = sup
n>N

|dn| → 0

So
D = lim

N→∞
DN

The following proposition will show that the compact operators form a closed set, which then proves
the claim. Claim 216

Proposition 217. K(X,Y ) is a B(Y )-B(X) bimodule; i.e. for K,L ∈ K(X,Y ), S ∈ B(Y ), and T ∈ B(X),
we have

aK + bL ∈ K(X,Y )

SKT ∈ K(X,Y )

Furthermore, K(X,Y ) is norm-closed. In particular, K(X) is a closed ideal of B(X).

Proof. Let C1 = Kb1(X); let C2 = Lb1(X). Then C1, C2 are compact. Consider

f : C1 × C2 → Y

(c1, c2) 7→ ac1 + bc2

Then f is continuous, so its image is compact. So aKx+ bLx ∈ f(C1 × C2) for all ∥x∥ ≤ 1. So

(aK + bL)(b1(X)) ⊆ f(C1 × C2)

Now, if S ∈ B(Y ), T ∈ B(X), and K ∈ K(X,Y ), then

SKTb1(X) ⊆ SK∥T∥b1(X) ⊆ (S∥T∥)∥Kb1(X)∥

But this last is the continuous image of a compact set, and is thus compact.
For norm-closure, suppose Kn ∈ K(X,Y ) with Kn → K.
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Claim 218. Kb1(X) is totally bounded; i.e. for all ε > 0 there are y1, . . . , yn ∈ Kb1(X) such that

Kb1(X) ⊆
n⋃

i=1

bε(yi)

Proof. Fix ε > 0. Pick N such that ∥K −KN∥ < ε
3 . Then KNb1(X) is totally bounded, so we may pick

y1, . . . , yn with yi = KNxi for ∥xi∥ ≤ 1 such that

KNb1(X) ⊆
n⋃

i=1

b ε
3
(yi)

Let y′i = Kxi. Then
∥y′i − yi∥ = ∥(K −KN )xi∥ <

ε

3

If ∥x∥ ≤ 1, then
∥KNx− yi0∥ <

ε

3

for some i0. Then

∥Kx− y′i0∥ ≤ ∥Kx−KNx∥+ ∥KNx− yi0∥+ ∥yi0 − y′i0∥ <
ε

3
+
ε

3
+
ε

3
= ε

So

Kb1(X) ⊆
n⋃

i=1

bε(y
′
i)

So Kb1(X) is compact. Claim 218

Proposition 217

Example 219. Let D = diag(1, 12 ,
1
3 , . . . ) ∈ B(c0). Then Db1(c0) is not closed, since

D((1, 1, 1, . . . , 0, 0, . . . )) =

(
1,

1

2
, . . . ,

1

n
, 0, . . .

)
→
(
1,

1

2
,
1

3
, . . .

)
/∈ Ran(D)

Example 220 (Hilbert-Schmidt kernels). Let k(x, y) ∈ L2((0, 1)2). Define K ∈ B(L2(0, 1)) by

(Kf)(x) =

∫ 1

0

k(x, y)f(y)dy

Note k(·, y), k(x, ·) ∈ L2(0, 1) for almost every x, y. To check boundedness, suppose f ∈ L2(0, 1). Then

∥Kf∥22 =

∫ 1

0

|Kf(x)|2dx

=

∫ 1

0

∣∣∣∣∫ 1

0

k(x, y)f(y)dy

∣∣∣∣2dx
≤
∫ 1

0

(∫ 1

0

|k(x, y)||f(y)|dy
)2

dx

≤
∫ 1

0

(∥k(x, ·)∥2∥f∥2)2dx

= ∥f∥22
∫ 1

0

∫ 1

0

|k(x, y)|2dydx

= ∥f∥22∥k∥22

So ∥K∥ ≤ ∥k∥2.
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Let { ei(x) : i ≥ 1 } be an orthonormal basis for L2(0, 1). Let { fj(y) : j ≥ 1 } be anohter orthonormal
basis for L2(0, 1). Then { ei(x)fj(y) : i, j ≥ 1 } is an orthonormal basis for L2((0, 1)2) because{

M∑
m=1

gm(x)hm(y) : gm ∈ L2, hm ∈ L2

}

is dense in L2((0, 1)2). If

gm(x) =
∑

aiei(x)

hm(y) =
∑

bjfj(y)

then
gmhm =

∑∑
aibjei(x)fj(y)

Take fj(y) = ej(y). Expand
k(x, y) =

∑∑
aijei(x)ej(y)

where
∥k∥22 =

∑∑
|aij |2

For N <∞, let

kN (x, y) =

N∑
i=1

N∑
j=1

aijei(x)ej(y)

Then kN ∈ L2((0, 1)2) with ∥k − kN∥2 → 0. If

KNh(x) =

∫ 1

0

kN (x, y)h(y)dy

then ∥K −KN∥ = ∥k − kN∥2 → 0. So

KNh(x) =

N∑
i=1

N∑
j=1

aij

∫ 1

0

ei(x)ej(y)h(y)dy

=

N∑
i=1

ei(x)

N∑
j=1

aij⟨h, ej⟩

So Ran(KN ) ⊆ span{ e1, . . . , eN }. So K is a norm limit of finite rank operators, and is thus compact. The
“matrix of KN ” is given by, if

h =


h1
h2
h3
...


where hi = ⟨h, ei⟩, then

KNh =


a11 . . . a1N
...

. . .
... 0

aN1 . . . aNN

0 0





h1
h2
...
hN
hN+1

...
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Example 221 (Volterra operator). Let V ∈ B(L2(0, 1)) be

V h(x) =

∫ x

0

h(y)dy

We may take

k(x, y) =

{
1 y ≤ x

0 y > x

So V is compact, by the above argument. Then

V 2h(x) =

∫ x

0

(V h)(y)dy

=

∫ x

0

(∫ y

0

h(z)dz

)
dy

=

∫ x

0

h(z)

∫ x

z

1dydz

=

∫ x

0

h(z)(x− z)dz

V 3h(x) =

∫ x

0

(V 2h)(y)dy

=

∫ x

0

(∫ y

0

h(z)(y − z)dz

)
dy

=

∫ x

0

h(z)

∫ y

z

(y − z)dydz

=

∫ x

0

h(z)
x− z)2

2
dz

Claim 222.

V nh(x) =

∫ x

0

h(y)
(x− y)n−1

(n− 1)!
dy

Then

∥V n∥ =

∥∥∥∥ (x− y)n−1

(n− 1)!
χ{ y≤x }

∥∥∥∥
2

≤ 1

(n− 1)!

Then

spr(V ) = lim
n→∞

∥V n∥ 1
n ≤ lim

n→∞

(
1

(n− 1)!

) 1
n

= 0

So σ(V ) ⊆ { 0 }.

Claim 223. V is injective.

Proof. Suppose V h = λh for λ ̸= 0. Then

λh(x) =

∫ x

0

h(y)dy

But h ∈ L2; so ∫ x

0

h(y)dy ∈ C[0, 1]

So RHS ∈ C[0, 1], so LHS ∈ C[0, 1]. So h ∈ C[0, 1], and RHS is C1. So h ∈ C1, so RHS is C2. So h ∈ C∞.
So λh′(x) = h(x) by the fundamental theorem of calculus. So h(x) = c exp(x/λ) and h(0) = 0; so h = 0.

In the case of λ = 0, we have that if V h = 0, then∫ x

0

h(y)dy = 0

for all x ∈ [0, 1]. So h = 0 by measure theory. Claim 223
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Proposition 224. Suppose H is a Hilbert space and K ∈ K(H). Then K is a limit of finite rank operators.

Proof. Note that Kb1(H) is compact. Suppose ε > 0. Find y1 = Kxi with ∥xi∥ ≤ 1 for 1 ≤ i ≤ n such that
{ y1, . . . , yn } is an ε-net for Kb1(H). i.e. if ∥x∥ ≤ 1 then there is i such that ∥Kx− yi∥ < ε. Let P be the
orthogonal projection onto span{ y1, . . . , yn }. Then PK has rank ≤ n. Then

∥(K − PK)(x)∥ = ∥P⊥Kx∥ = ∥P⊥(Kx− yi)∥ < ε

for all ∥x∥ ≤ 1. So ∥K − PK∥ ≤ ε. Proposition 224

Theorem 225 (Schauder). If K ∈ K(X,Y ) then K∗ ∈ K(Y ∗, X∗).

Proof. Let C = Kb1(X); then C is a compact subset of Y . Define ρ : Y ∗ → C(C) be ρ(φ) = φ ↾ C. Then
ρ(b1(Y ∗)) is closed and bounded (by ∥K∥) in C(C). It is also equicontinuous since if y1, y2 ∈ C and φ ∈ b1(Y ∗)
then |φ(y1)− φ(y2)| ≤ ∥φ∥∥y1 − y2∥. So, by Arzela-Ascoli theorem, we have ρ(b1(Y ∗)) is compact.

Claim 226. K∗b1(Y ∗) is compact.

Proof. Suppose φ1, φ2, · · · ∈ b1(Y ∗). Then for x ∈ b1(X), we have (K∗φi)(x) = φi(Kx). But Kx ∈ C; so
(K∗φi)(x) = ρ(φi)(Kx). Letting ψi = ρ(φi), we have ψi ∈ ρ(b1(Y ∗)) ⊆ C(C). So there is a subsequence ψni

converging to ψ uniformly in C. So (K∗φi)(x) = φi(Kx) → ψ(Kx). i.e. K∗φi → Ψ ∈ X∗. Thus K∗b1(Y ) is
compact. So K∗ is compact. Claim 226

Theorem 225

5.3.1 Complemented subspaces

Definition 227. Suppose X is a Banach space; suppose Y ⊆ X is a closed subspace. We say Y is
complemented if there is Z ⊆ X a closed subspace such that Y ∩ Z = { 0 } and Y + Z = X.

Remark 228. If Y is complemented, we can define

T : Y ⊕1 Z → X

by T (y, z) = y + z (where ⊕1 denotes that the norm is the 1-norm on the direct sum). Then by hypotheses
we have T is bijective. Also ∥y + z∥ ≤ ∥y∥+ ∥z∥ = ∥(y, z)∥, so T is continuous. By the Banach isomorphism
theorem, we get that T is invertible. So X ∼= Y ⊕ Z.

We can also define P : Y ⊕1 Z → Y ⊕1 Z by P (y, z) = (y, 0). We can then let Q = TPT−1 : X → Y ;
then Q is a continuous projection. Conversely, if Q = Q2 with Ran(Q) = Y , let Z = Ran(I − Q). Then
(I −Q)2 = I −Q. So x = Qx+ (I −Q)x. So x ∈ Y ∩ Z. So x = Qx = (1−Q)Qx = 0.

Lemma 229. There is an uncountable collection {Ar : r ∈ R } of subsets of N such that |Ar ∩As| < ℵ0 if
r ̸= s.

Proof. Identify N with Q (as they are both countable). For r ∈ R, pick a sequence qr,i → r. Then let
Ar = {nr,i : i ≥ 1 } where nr,i is the natural number corresponding to qr,i. Lemma 229

Theorem 230. c0 is not complemented in ℓ∞.

Proof. If ℓ∞ ∼= c0 ⊕ Y then Y ∼= ℓ∞/c0. Take Ar as in the lemma. Let yr = [χAr ] ∈ ℓ∞/c0. Then∥∥∥∥∥
n∑

i=1

aiyri

∥∥∥∥∥ =
∥∥∥∑ aiχAri

+ c0

∥∥∥
But if Bi ⊆ Ari are pairwise disjoint with |Ari \Bi| <∞, then this is∥∥∥∑ aiχBi + c0

∥∥∥ = max
1≤i≤n

|ai|

Claim 231. No continuous, linear T : ℓ∞/c0 → ℓ∞ is injective.
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Proof. If Tyr ̸= 0, then there is nr such that (Tyr)(nr) = αr ̸= 0. Then there is n ∈ N such that
S = { r : nr = n, |αr| ≥ ε } is uncountable. Thus uncountably many |αr| ≥ ε > 0. But then

T

 N∑
i=1
ri∈S

αiyri

 =
∑

|αi|2

> Nε2

Letting N → ∞, we get a contradiction. Claim 231

Theorem 230

Proposition 232. If K is a compact, infinite metric space then c0 is complemented in C(K).

Proof. Pick a sequence xn ∈ K distinct with xn → x∞. Let

Sf(x) = f(x)− f(x∞)

the projection of C(K) onto I(x0) = { f : f(x0) = 0 }. Pick disjoint balls brn(xn) with n ≥ 1; let

gn(x) = max

{
rn − dist(x, xn)

rn
, 0

}
Let T : I(x0) → I(x0) be

Tf =
∑
n≥1

f(xn)gn

The f(xn) → 0, so Tf ∈ C(K). Also P = TS is a projection onto a copy of c0.∥∥∥∑ angn

∥∥∥ = max
n≥1

|an|

an →. So RanP ∼= c0. Proposition 232

Theorem 233. c0 is not complemented in any dual space. Suppose X∗ ∼= c0 ⊕ Y . Then X∗∗∗ ∼= ℓ∞ ⊕ Y ∗∗.
We can consider map ℓ∞ → c0 by mapping to ℓ∞ ⊕ Y ∗∗ ∼= X∗∗∗, taking the projection down to X∗, and
observing that it will still be in c0 when we write X∗ ∼= c0 ⊕ Y .

Corollary 234. If K is a compact, infinite metric space, then C(K) is not a dual space.

Corollary 235. If X is a compact Hausdorff space and C(X) is a dual space, then the only convergent
sequences in X are eventually constant.

6 Compact operators and Fredholm theory
Lemma 236. If X is a Banach space and V is a closed subspace such that dim(V ) <∞ or dim(X/V ) <∞,
then V is complemented.

Proof. Case 1. Suppose dim(V ) = n < ∞. Then there is a basis v1, . . . , vn for V , and V ∗ has dual basis
φ1, . . . , φn ∈ V ∗ such that φi(vj) = δij . Extend φi to φ̃i ∈ X∗ by Hahn-Banach. Define

P =

n∑
i=1

viφi ∈ B(X)

so

Px =

n∑
i=1

viφi(x)
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So Ran(P ) = V , and if v ∈ V , say

v =

n∑
i=1

aivi

then

Pv =

n∑
i=1

viφi(vi) =

n∑
i=1

aivi = v

So P = P 2 is a projection onto V . So it is complemented.

Case 2. Suppose dim(X/V ) = n <∞. Pick a basis ẋ1, . . . , ẋn for X/V . Let q : X → X/V be the quotient
map. Pick xi ∈ X such that q(xi) = ẋi. Let W = span{x1, . . . , xn }.

Claim 237. V +W = X.

Proof. Suppose x ∈ X with

q(x) =

n∑
i=1

aiẋi

Let

w =

n∑
i=1

aixi

and v = x− w. Then

q(v) = q(x)−
n∑

i=1

aiẋi = 0

so v ∈ V . But x = v + w. Claim 237

Claim 238. V ∩W = { 0 }.

Proof. For x ∈ V ∩W , we have q(x) = 0. Since x ∈W , we have

x =

n∑
i=1

aixi

So

0 = q(x) =

n∑
i=1

aiẋi

So each ai = 0. So x = 0. Claim 238

So V is complemented.
Lemma 236

Notation 239. If V and W are complements in X, we write X = V ⊕W . (One also sees X = V +̇W ).

Lemma 240 (Key lemma). Suppose K ∈ K(X). Suppose we have closed subspaces V0 ⫋ V1 ⫋ V2 ⫋ . . . and
αi ∈ C such that (K − αiI)(Vi) ⊆ Vi−1. Then

lim
i→∞

αi = 0
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Proof. Since Vi ⫌ Vi−1, we may pick xi ∈ Vi with ∥xi∥ = 1 and dist(x, Vi−1) ≥ 1
2 . We then have (K−αiI)xi =

yi ∈ Vi−1; so Kxi = αixi + yi. Suppose n1 < n2 < n3 < . . . satisfies |αnk
| ≥ δ > 0 for all k ∈ N. If 1 ≤ ℓ < k,

then

∥Kxnk
−Kxnℓ

∥ = ∥αnk
xnk

+ (ynk
−Kxnℓ

)∥
≥ dist(αnk

xnk
, Vnk−1)

≥ |αnk
|

2

≥ δ

2

So Kb1(X) is not compact. Lemma 240

Theorem 241. If K ∈ K(X) then ker(I −K) is finite-dimensional and Ran(I −K) is closed and has finite
codimension.

Proof. Let B = b1(X) ∩ ker(I −K). If x ∈ B, then Kx = (K − I)x + x = x. So Kb1(X) ⊇ KB = B is
compact. So null(I −K) = dim(ker(I −K) <∞. So N = ker(I −K) has a complement V ; so X = N ⊕ V .
Then (I −K)X = (I −K)V and (I −K) ↾ V is injective.

Claim 242. (I −K) ↾ V is bounded below.

Proof. Otherwise there are v1, v2, · · · ∈ V with ∥vi∥ = 1 and ∥vi − Kvi∥ = ∥(I − K)vi∥ → 0. But
Kvi ∈ Kb1(X), and the latter is compact. So there is a subsequence (Kvik : k ∈ N) → y. Then
vik = (vik −Kvik) +Kvik → 0 + y ∈ V . So

(I −K)y = lim
k→∞

(I −K)vik = 0

So y ∈ V ∩N = { 0 }. But
∥y∥ = lim

k→∞
∥vik∥ = 1

a contradiction. Claim 242

So Ran(I −K) = (I −K)V is closed.

Claim 243. X/(I −K)X is finite-dimensional.

Proof. Otherwise, let V0 = Ran(I − K). We have X/V0 is infinite-dimensional, and so contains linearly
independent ẋ1, ẋ2, . . .. Pick xi ∈ X such that xi + V0 = ẋi. Let Vi = V0 + span{x1, . . . , xi }. Then

V0 ⫋ V1 ⫋ . . .

with(K − I)Vi ⊆ Ran(I −K) = V0 ⊆ Vi−1. By the Key lemma, we have

lim
i→∞

1 = 0

a contradiction. Claim 243

Theorem 241

Definition 244. We say T ∈ B(X,Y ) is Fredholm if

• null(T ) = dim(ker(T )) <∞.

• Ran(T ) is closed.

• dim(Y/TX) <∞.

The index of T is ind(T ) = null(T )− dim(Y/TX) ∈ Z.
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Remark 245.

1. If dim(Y/TX) <∞, then TX is closed. (Exercise; use closed graph theorem.)

2. dim(Y/TX) = null(T ∗). (Useful for A6; need to prove it to use on assignment, though.)

Example 246.

1. If K ∈ K(X) and λ ̸= 0, then λI +K is Fredholm.

2. If T ∈ K(X,Y ) is invertible, then T is Fredholm and ind(T ) = 0.

3. The unilateral shift S ∈ B(ℓ2) given by S((x1, x2, x3, . . . )) = (0, x1, x2, x3, . . . ). This is an isometry,
injective, and satisfies Ran(S) = (Ce1)⊥. Also null(S) = 0 and dim(ℓ2/Sℓ2) = 1. So ind(S) = −1.

4. The backward shift S∗ is surjective and has ker(S∗) = Ce1, so ℓ2/Ran(S∗) = { 0 }. So ind(S∗) = 1.

Theorem 247. The set F(X) of all Fredholm operators on X is open in B(X), and ind is a continuous
function (and hence locally constant; so constant on connected components).

Proof. Suppose T ∈ B(X) is Fredholm. Let N = ker(T ). Choose a complement V so X = N ⊕ V . Let
R = Ran(T ); choose a finite-dimensional complement R so X = R⊕W . Then ind(T ) = dim(N)− dim(W ).

The map T̃ ∈ B(V,R) given by T̃ V = Tv is injective and surjective, and hence is invertible by Banach
isomorphism theorem. Suppose S ∈ B(X) and

∥S − T∥ < 1∥∥∥T̃−1
∥∥∥

Let ˜̃S : V ⊕W → X = R⊕W by ˜̃S(v +w) = Sv +w. Let ˜̃T : V ⊕W → X = R⊕W by ˜̃T (v +w) = Tv +w.

Then ˜̃T is invertible. But ∥∥∥∥˜̃S − ˜̃T∥∥∥∥ = ∥(S − T ) ↾ V ∥ < 1∥∥∥∥˜̃T−1
∥∥∥∥

But ˜̃T is invertible; so ˜̃S is invertible. So X =
˜̃
S(V ⊕W ) = SV ⊕W . (The sum is direct since in general

if S : V ⊕W → X then X = SV + SW and SV ∩ SW = S(V ∩W ) = 0.) So ker(S) ∩ V = { 0 }. So
null(S) ≤ dim(W ) = null(T ).
Aside 248. Suppose V ⊕ W = X with N ∩ V = { 0 }. We claim that dim(N) ≤ dim(W ). Suppose
dim(W ) = n with x1, . . . , xn+1 ∈ N linearly independent. Then q : V ⊕W →W given by q(v + w) = w has
q(v1), . . . , q(vn+1) are linearly dependent. So there are a1, . . . , an+1 not all 0 such that

q

(
n+1∑
i=1

aixi

)
= 0

But
n+1∑
i=1

aixi ∈ V ∩N \ { 0 }

a contradiction.
So SV ⊆ Ran(S) = SV + SN . But SV is closed and SN is finite dimensional; so SV + SN is closed.

Aside 249. To see this, suppose Svn + Skn → y where vn ∈ V and kn ∈ N . Then we have a subsequence
kni

→ k ∈ N ; so Skni
→ Sk ∈ SN . So Svn → y − Sk ∈ SV , as SV is closed. So y ∈ SN + SV .
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So dim(X/SX) ≤ dim(X/SV ) = dim(W ) <∞. So it is Fredholm. Let NS = ker(S). Then V ∩NS = { 0 };
so V+NS is a direct sum of finite codimension. Pick a complement Z so V⊕Ns⊕Z = X; then (V⊕Z)⊕NS = X.
So V ⊕ Z is complement to ker(S). So S ↾ (V ⊕ Z) is bounded below. But SX = S(V ⊕ Z) = SV ⊕ SZ; so

ind(S) = null(S)− dim(X/SX)

= dim(NS)− dim(X/(SV ⊕ SZ))

= dim(NS)− (dim(X/SV )− dim(SZ))

= dim(NS)− (dim(W )− dim(Z))

= (dim(NS) + dim(Z))− dim(W )

= dim(NT )− dim(W ) (since NS ⊕ Z is a complement to V , as is NT )

So dim(NT )− dim(X/TX) = ind(T ). Theorem 247

Corollary 250. If λ ̸= 0 and K ∈ K(X), then ind(λI +K) = 0.

Proof. I + λ−1K is Fredholm. So λI + K is Fredholm. So λI + tk is Fredholm for 0 ≤ t ≤ 1. So
ind(λI +K) = ind(λI) = 0. Corollary 250

Corollary 251 (Of proof). Suppose T is Fredholm. Then

lim sup
S→T

null(S) ≤ null(T )

Remark 252. It can be strict; consider 
t

1
1

. . .


as t→ 0.

We have K(X) ◁ B(X). So B(X)/K(X) is a Banach space and a ring (in fact, an algebra over C). If
π : B(X) → B(X)/K(X), then

π(xy) = ∥π(x)π(y)∥ ≤ ∥π(x)∥∥π(y)∥

So this is a Banach algebra.

Theorem 253 (Atkinson). T ∈ B(X) is Fredholm if and only if π(T ) ∈ (B(X)/K(X))−1.

Proof.

( =⇒ ) Suppose T is Fredholm. So if NT = ker(T ), then NT is finite-dimensional; so there is a complement
X = NT ⊕ V . Likewise, if RT = Ran(T ), then RT has finite codimension; so there is a complement
X = RT ⊕W , where W is finite-dimensional. Then T̃ ∈ B(V,RT ) is invertible. Let S̃ ∈ B(RT , V ) be the
inverse. Define S ∈ B(X) by S(r⊕w) = S̃r, wehere r ∈ RT and w ∈W . Then ST (n⊕ v) = S(Tv) = v
for n ∈ NT and v ∈ V . So ST is a projection onto V with kernel NT . So I − ST is a projection onto
NT ; so rank(I − ST ) = dim(NT ) <∞. So π(S)π(T ) = π(I).

On the other side,
(TS)(Tv ⊕ w) = T (STv) = Tv

So TS is a projection onto RT with ker(TS) = W is finite-dimensional. So rank(I − TS) = dim(W ).
So π(T )π(S) = π(I). So π(T ) is invertible.

( ⇐= ) Suppose S ∈ B(X) has T ∈ B(X) such that π(S) = π(T )−1. Then π(ST ) = π(I); so ST = I +K for
some K ∈ K(X). Likewise, π(TS) = π(I), so TS = I+L for some L ∈ K(X). Then ker(T ) ⊆ ker(ST ) =
ker(I +K) is finite-dimensional, and Ran(T ) ⊇ Ran(TS) = Ran(I + L) has finite codimension. So
Ran(T ) is closed and has finite codimension. So T is Fredholm.

Theorem 253
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Corollary 254. If T is Fredholm and K ∈ K(X), then T +K is Fredholm and ind(T +K) = ind(T ).

Proof. π(T +K) = π(T ) is invertible, so T +K is Fredholm. But then T + tK is Fredholm for 0 ≤ t ≤ 1; so
by continuity we have ind(T +K) = ind(T ). Corollary 254

Theorem 255. ind: (B(X)/K(X))−1 → Z is a homomorphism.

Proof. Note that if π(S) = π(T ) ∈ (B(X)/K(X))−1, then S − T ∈ K(X), so S = T +K for some K ∈ K(X).
But then ind(S) = ind(T ). So we can define ind(π(T )) = ind(T ), and this is well-defined.

Suppose S, T ∈ F(X). Write X = NT ⊕ V = TX ⊕W (where NT = ker(T ) and TX = Ran(T ) = TV );
write X = NS ⊕ U = SX ⊕ Y similarly. We need to choose W a bit more carefully to make the proof go
smoothly.

Well, TX+NS is closed, as TX is closed and NS is finite-dimensional. Choose a complementW0 ⊆ NS such
that TX ⊕W0 = TX +NS ; then NS = (TX ∩NS)⊕W0. Let W1 be a complement to (TX +NS)⊕W1 = X.
Let W =W0 ⊕W1. Then TX ⊕W = (TX ⊕W0)⊕W1 = TX ⊕NS ⊕W1 = X.

But then

ker(ST ) = NT + {x : Tx ∈ Ns }
= NT + { v ∈ V : Tv ∈ NS ∩ TX }
= NT ⊕ (T ↾ V )−1(NS ∩ TX)

since T ↾ V is injective, and NT ∩ V = { 0 }. So (ST ) = (T ) + dim(NS ∩ TX).
Now, SX = S(TX ⊕W0 ⊕W1) = STX ⊕ SW1 (where the sum is direct since if STx = Sw1, then

S(Tx− w1) = 0, so Tx− w1 ∈ NS ; so w1 ∈ TX +NS , and w1 = 0). So

ind(ST ) = (ST )− dim(X/STX)

= (T ) + dim(NS ∩ TX)− (dim(X/SX)− dim(SW1))

= (T ) + dim(NS ∩ TX)− (dim(X/SX)− dim(W1))

= (T )− dim(W0 ⊕W1) + dim(W0) + dim(NS ∩ TX)− dim(X/SX)

= (T )− dim(W0 ⊕W1) + dim(NS)− dim(X/SX)

= ind(T ) + ind(S)

since dim(W0) + dim(NS ∩ TX) = dim((NS ∩ TX)⊕W0) = dim(NS). Theorem 255

Theorem 256 (Structure of compact operators). Suppose K ∈ K(X) with dim(X) = ∞. Then

1. 0 ∈ σ(K).

2. σ(K) \ { 0 } ⊆ σp(K)

3. σ(K) is a finite or countable set with 0 as its only cluster point.

4. For all λ ∈ σ(K) \ { 0 } there is nλ ∈ N such that

• N(λ) = ker((λI −K)nλ) = ker((λI −K)n) if and only if n ≥ nλ

• R(λ) = Ran((λI −K)nλ) = Ran((λI −K)n) if and only if n ≥ nλ

5. Then X = N(λ)⊕R(λ).

6. If Eλ is the projection onto N(λ) with kernel R(λ), then Eλ ∈ {K }′′.
Aside 257. For A ⊆ B(X), we set A′ = {T ∈ B(X) : AT = TA for all A ∈ A}. We then set A′′ = (A′)′.

7. σ(K ↾ N(λ)) = {λ } and σ(K ↾ R(λ)) = σ(K) \ λ.

8. If λ ̸= µ ∈ σ(K) \ { 0 }, then EλEµ = 0.

Proof of Theorem 256.
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2. Take λ ∈ σ(K) \ { 0 }. If ker(λI −K) = { 0 }, then since λI −K is Fredholm and 0 = ind(λI −K) =
(λI −K)− dim(X/(λI −K)X), then we would have λI −K is a bijective map X → X; so λI −K is
invertible, contradicting our assumption that λ ∈ σ(K). So there is 0 ̸= x ∈ ker(λI −K); so we have
Kx = λx, and λ ∈ σp(K).

4. Fix λ ∈ σ(K) \ { 0 }. Let Ni = ker((λI −K)i); then

N1 ⊆ N2 ⊆ . . .

and
Ran(λI −K) ⊇ Ran((λI −K)2) ⊇ . . .

Now, if Nn ⫋ Nn+1 for all n ≥ 1, note that (λI −K)Nn+1 ⊆ Nn. So, by the key lemma, we have

λ = lim
n→∞

λ = 0

a contradiction. So there is a least nλ such that Nnλ−1 ⫋ Nnλ
= Nnλ+1.

Now, if n ≥ nλ + 1 and x ∈ Nn, then (λI −K)n−nλ−1x ∈ Nnλ+1 = Nnλ
. So (λI −K)n−1x = 0. So

Nn = Nn−1 = · · · = N(λ).
But 0 = ind((λI −K)n) = dim(Nn)− dim(Rn), where Rn = Ran((λI −K)n). Thus Rn = R(λ) = Rnλ

if and only if n ≥ nλ.

5. Suppose x ∈ X. Then y = (λI − K)nλx ∈ R(λ) = Ran((λI − K)2nλ). Find z ∈ X such that
(λI −K)2nλz = y = (λI −K)nλx. Then

(λI −K)nλ((λI −K)nλz − x) = 0

with w = (λI −K)nλz − x ∈ N(λ). But then x = −w + (λI −K)nλz ∈ N(λ) +R(λ).
Suppose now that x ∈ N(λ) ∩R(λ). Then there is y such that x = (λI −K)nλy; then since x ∈ N(λ),
we have 0 = (λI −K)nλx = (λI −K)2nλy. So y ∈ ker((λI −K)2nλ). So x = (λI −K)nλy = 0. So
X = N(λ)⊕R(λ).

6. Let Eλ be the projection onto N(λ) with kernel R(λ). Suppose T ∈ {K }′. If x ∈ N(λ), then 0 =
(λI −K)nλx; so (λI −K)nλTx = T (λI −K)nλx = 0. So TN(λ) ⊆ N(λ). Now, if y ∈ R(λ), then there
is x such that y = (λI −K)nλx; then Ty = T (λI −K)nλx = (λI −K)nλTx ∈ R(λ).
Now, if x = n ⊕ y for n ∈ N(λ) and y ∈ R(λ), then EλTx = Eλ(Tn ⊕ Ty) = Tn = TEλx. So
EλT = TEλ. So Eλ ∈ {K }′′.

7. In particular, the above yields that N(λ) and R(λ) are invariant for K; so K ↾ N(λ) ∈ B(N(λ)). But
N(λ) is finite dimensional, and (λIN(λ) − (K ↾ N(λ)))nλ = (λI −K)nλ ↾ N(λ) = 0 and (λI −K)nλ−1 ↾
N(λ) ̸= 0; so (λ − z)nλ is the minimal polynomial of K ↾ N(λ). So σ(K ↾ N(λ)) = {λ }. Also
(λI −K) ↾ R(λ) has no kernel (since N(λ) ∩R(λ) = { 0 }). So the index is 0, and (λI −K) ↾ R(λ) is
invertible. So λ /∈ σ(K ↾ R(λ)). So

K ∼=
(
K ↾ N(λ) 0

0 K ↾ R(λ)

)
So

µI −K =

(
(µI −K) ↾ N(λ) 0

0 (µI −K) ↾ R(λ)

)
is invertible if and only if both diagonal entries are invertible. So σ(K) = σ(K ↾ N(λ)) ∪ σ(K ↾ R(λ)).
But σ(K ↾ N(λ)) = {λ }, and σ(K ↾ R(λ)) ⊆ σ(K) \ {λ }. So σ(K ↾ R(λ)) = σ(K) ⊆ {λ }, as desired.

3. Suppose (λn : n ∈ N) are distinct points in σ(K) \ { 0 }. Pick xn such that Kxn = λnxn. Let
Vn = span{x1, . . . , xn }. Then (λnI −K)Vn ⊆ Vn−1. By the key lemma, we have

lim
n→∞

λn = 0

So σ(K) is countable with 0 as the only cluster point.
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8. Suppose λ, µ ∈ σ(K) \ { 0 } are distinct. Then N(λ) ∩N(µ) = { 0 } since N(µ) ⊆ R(λ) by decomposition
of K. So EµEλ = 0.

1. If 0 /∈ σ(K) = {λ1, . . . , λn }, then

X = Nλ1 ⊕Nλ2 ⊕ · · · ⊕Nλn ⊕
n⋂

i=1

R(λi)

by induction. So

σ

(
K ↾

n⋂
i=1

R(λi)

)
⊆ σ(K) \ {λ1, . . . , λn } = ∅

a contradiction. In fact,

σ

(
K ↾

n⋂
i=1

R(λi)

)
= { 0 }

though it doesn’t have to be an eigenvalue.

Theorem 256

6.1 Normal operators on Hilbert space
Recall that for T ∈ B(H), we have a unique T ∗ ∈ B(H) such that ⟨T ∗x, y⟩ = ⟨x, Ty⟩ for all x, y ∈ H.

Definition 258.

• T ∈ B(H) is self-adjoint if T = T ∗.

• T ∈ B(H) is positive (written T ≥ 0) if T = T ∗ and ⟨Tx, x⟩ ≥ 0 for all x ∈ H.

• U ∈ B(H) is unitary if U is a surjective isometry. (Equivalently, by assignment 6, if U∗ = U−1.)

• N ∈ B(H) is normal if NN∗ = N∗N .

Remark 259.

1. On L2(0, 1), if f ∈ L∞(0, 1), then Mfh = fh is bounded. Also

⟨M∗
f g, h⟩ = ⟨g,Mfh⟩

= ⟨g, fh⟩

=

∫
gfhdx

=

∫
(fg)hdx

= ⟨Mfg, h⟩

So M∗
f =Mf and M∗Mf =MfMf =M|f |2 =MfMf =MfM

∗
f . So Mf is normal.

2. Diagonal operators are normal. Let { en : n ∈ N } be an orthonormal basis. Let Den = dnen where
(dn : n ∈ N) ∈ ℓ∞. Then D∗en = dnen, and D is normal.

3. If T = T ∗, then ⟨Tx, x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩; so ⟨Tx, x⟩ ∈ R. If F = C, then converse is true:

⟨Tx, y⟩ = 1

4
(⟨Tx+ y, x+ y⟩ − ⟨T (x− y), x− y⟩+ i⟨T (x+ iy), x+ iy⟩ − i⟨T (x− iy), x− iy⟩)

⟨x, Ty⟩ = ⟨Ty, x⟩

=
1

4
(⟨Ty + x, y + x⟩ − ⟨T (y − x), y − x⟩+ i⟨T (y + ix), y + ix⟩ − i⟨T (y − ix), y − ix⟩)

= ⟨Tx, y⟩
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since ⟨Tz, z⟩ ∈ R for all z ∈ H.
Note that the converse fails over R: let

T =

(
0 −1
1 0

)
We then have ⟨Tx, x⟩ = 0 for all x ∈ R2 but

T ∗ =

(
0 1
−1 0

)
= −T

4. If A ∈ B(H) then A∗A ≥ 0, since (A∗A)∗ = A∗A∗∗ = A∗A and ⟨A∗Ax, x⟩ = ⟨Ax,Ax⟩ = ∥Ax∥2 ≥ 0.

Proposition 260. Suppose N is normal.

1. ∥Nx∥ = ∥N∗x∥ for all x ∈ H.

2. ∥N∥ = spr(N).

3. ker(N − λI) = ker((N − λI)n) = ker((N − λI)∗) for all n ≥ 1 and all λ ∈ C.

4. ker(N − λI)⊥ = Ran(N − λI).

5. If λ ̸= µ then ker(N − λI) ⊥ ker(N − µI).

6. If p ∈ C[z] then
∥p(N)∥ = sup

λ∈σ(N)

|p(λ)|

Proof.

1. Note that

∥N∗x∥2 = ⟨N∗x,N∗x⟩
= ⟨NN∗x, x⟩
= ⟨N∗Nx, x⟩
= ⟨Nx,Nx⟩
= ∥Nx∥2

2. By (1), we have ∥N2x∥ = ∥N∗(Nx)∥ ≥ ⟨N∗N, x, x⟩ = ∥Nx∥2. So

∥N2∥ = sup
∥x∥≤1

∥N2x∥ ≥ sup
∥x∥≤1

∥Nx∥2 = ∥N∥2

But ∥N2∥ ≤ ∥N∥2. So ∥N2∥ = ∥N∥2. So∥∥∥N2k
∥∥∥ 1

2k

=
(
∥N∥2

k
) 1

2k

= ∥N∥

So

spr(N) = lim
k→∞

∥∥∥N2k
∥∥∥ 1

2k

= ∥N∥

3. Well

x ∈ ker(N − λI) ⇐⇒ ∥(N − λ)x∥ = 0 = ∥(N − λ)∗x∥
⇐⇒ x ∈ ker(N − λI)∗

Also if x ∈ ker((N − λI)2
k

), then

0 = ∥(N − λI)2
k

x∥ ≥ ∥(N − λI)x∥2
k

So ∥(N − λI)x∥2k = 0, and x ∈ ker(N − λI). So ker((N − λI)2k) = ker(N − λI).
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4. Note that ker(N − λI)⊥ = Ran(N − λI). Also

Ran(N − λI) = (ker(N − λI)∗)⊥ = ker(N − λI)⊥

(So Ran(N − λI)∗ = Ran(N − λI).)

5. Suppose λ ≠ µ. Suppose x ∈ ker(N − λI) and y ∈ ker(N − µI) = ker(N∗ − µI). Then Nx = λx, and
N∗y = µy, so Ny = µy. So

λ⟨x, y⟩ = ⟨Nx, y⟩ = ⟨x,N∗y⟩ = ⟨x, µy⟩ = µ⟨x, y⟩

But λ ̸= µ. So ⟨x, y⟩ = 0.

6. Well, p(N) is normal. By (2), we have ∥p(N)∥ = spr(p(N)). But σ(p(N)) = p(σ(N)) by the spectral
mapping theorem. So

∥p(N)∥ = sup
λ∈σ(N)

|p(λ)|

Proposition 260

Corollary 261. If N is normal and Fredholm then ind(N) = 0.

Proof. Well, ker(N)⊥ = Ran(N) and

ind(N) = dim(ker(N))− dim(H/Ran(N))

= dim(ker(N))− dim((Ran(N)⊥))

= dim(ker(N))− dim(ker(N))

= 0

Corollary 261

Theorem 262 (Spectral theorem for compact normal operators). Suppose N is a compact normal operator
on H. Then H has an orthonormal basis which diagonalizes N .

Proof. From the structure of arbitrary compact operators, we have

σ(N) = {λ1, λ2, . . . } ∪ { 0 }

with
lim

n→∞
λn = 0

Then
∞∨

n=1

ker(N − λiI)
n = ker(N − λiI) =Mi = ker(N∗ − λiI)

by part (3) of Proposition 260, where
∨

denotes the closed span. Note that the Mi are finite-dimensional,
and by part (5) of Proposition 260, we have Mm ⊥Mn if m ̸= n. Let

M =

∞⊕
n=1

Mn

Then M is a closed subspace with NM ⊆ M and N∗M ⊆ M. Write H = M⊕M⊥, and write

N =

(
N11 0
0 N22

)
where N11 : M → M and N22 : M⊥ → M⊥. Then N11 and N22 are normal, and

N∗ =

(
N∗

11 0
0 N∗

22

)
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and
0 = N∗N −NN∗ =

(
N∗

11N11 −N11N
∗
11 0

0 N∗
22N22 −N22N

∗
22

)
So N22 is normal, compact, and has no non-zero eigenvalues. So σ(N22) = 0. So ∥N22∥ = spr(N22) = 0. So
N22 = 0. So M⊥ = ker(N). Choose an orthonormal basis for each Mi; these are then eigenvectors with
eigenvalue λi. Say ei,1, . . . , ei,ni

are an orthonormal basis for Mi. Choose an orthonormal basis { e0,i : i < α }
for ker(N) = M⊥; note that α is possibly infinite (indeed, possibly uncountable).

Notation 263. If x, y ∈ H, then (xy∗)(z) = z(y∗z) = ⟨z, y⟩x. Write

x =

x1x2
...


y =

y1y2
...


Then

xy∗ =

x1y1 x1y2 . . .
x2y1 x2y2 . . .

...
...

. . .


If N is compact and normal and { en : n ∈ N } is an orthonormal basis of eigenvectors which span
M = (ker(N))⊥; say Nen = λnen. Then

N =

∞∑
n=1

λene
∗
n = diag(λ1, λ2, λ3, . . . )⊕ 0

on H = M⊕M⊥.

Theorem 262

6.2 Invariant subspaces
Definition 264. If S ⊆ B(X) and M is a closed subspace of X, we say M is invariant for S if sM ⊆ M
for all s ∈ S. We write Lat(S) for the set of all S-invariant subspaces of X.

Remark 265. We have { 0 }, X ∈ Lat(S). If all Mα ∈ Lat(S), then⋂
α

Mα ∈ Lat(S)

If we further have that ∨
α

Mα ∈ Lat(S)

then it is called a complete lattice.

Definition 266. If L is a collection of subspaces, we define

Alg(L) = {A ∈ B(X) : AM ⊆M for all M ∈ L}

Remark 267. Alg(L) is an algebra containing I: if AM ⊆ M and BM ⊆ M , then (αA+ βB)M ⊆ M and
ABM ⊆ AM ⊆ M . Furthermore, if Aα ∈ Alg(L) with Aα

WOT−−−→ A, then φ(Aαx) → φ(Ax) for all x ∈ X
and all φ ∈ X∗. If x ∈M and φ ∈M⊥, then

φ(Ax) = limφ(Aαx) = 0

Ao Ax ∈M . So Alg(L) is a WOT-closed unital algebra.
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Remark 268. If A is an algebra, we have Alg(Lat(A)) ⊇ A; we say A is reflexive if A = Alg(Lat(A)). Note:
this differs from our prior usage.

Simlarly, if L is a lattice, then Lat(Alg(L)) ⊇ L.

Example 269. Recall the Volterra operator

V f(x) =

∫ x

0

f(t)dt

on B(L2(0, 1)). Then
Nt = { f : supp(f) ⊆ [t, 1] } ∈ Lat(V )

Theorem 270. Lat(V ) = {Nt : 0 ≤ t ≤ 1 }.

TODO 3. Last two lectures.
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