Course notes for PMATH 753

Christa Hawthorne
Lectures by Kenneth R. Davidson, Fall 2015

Contents

1 Preliminaries 1
2 Point-set topology 2
2.1 Nets 6
2.2 Axiom of choice 7
2.3 Compactness 9
3 Banach spaces 13
3.1 General constructions in Banach spaces 16
3.2 More on Hilbert spaces 23
3.3 Some Fourier series 36
3.4 Hahn-Banach theorems 40
4 LCTVSs and weak topologies 45
4.1 Geometric Hahn-Banach theorem 51
5 Operator theory 60
5.1 Hilbert space adjoint 63
5.2 Spectral mapping theorem for rational functions 71
5.3 Compact operators 73
5.3.1 Complemented subspaces 77
6 Compact operators and Fredholm theory 78
6.1 Normal operators on Hilbert space 85
6.2 Invariant subspaces 88

1 Preliminaries

I acknowledge the contributions of Ilia Chtcherbakov, Eric Yau, and Mitchell Haslehurst.
Course outline on learn.
Ken Davidson, MC 5324
TA: Boyu Li, MC 5418
Recommended: A course in functional analysis, by Conway
Supplementary:

- Lax, interesting application, but weird order
- Pederson
- Marcoux's course notes, also weird order

Assignments probably about every two weeks.

2 Point-set topology

If (X, d) is a metric space, recall we define

$$
B_{r}(x)=\{y \in X: d(x, y)<r\}
$$

to be the open balls. We say $U \subseteq X$ is open if and only if for all $x \in U$ there is $r>0$ such that $B_{r}(x) \subseteq U$.
Definition 1. A topological space is a set X together with $\tau \subseteq \mathcal{P}(X)$ (whose elements are called open sets) satisfying

1. $\emptyset, X \in \tau$.
2. If $\mathcal{U} \subseteq \tau$, then

$$
\bigcup \mathcal{U} \in \tau
$$

3. If $U, V \in \tau$, then $U \cap V \in \tau$.

Example 2.

1. The discrete topology is $(X, \mathcal{P}(X))$. This is, in fact, a metric topology.
2. The trivial topology is $(X,\{\emptyset, X\})$.
3. Suppose $(X,<)$ is a total order. We define the order topology to be generated by

$$
\begin{aligned}
X & \\
L_{x} & =\{y \in X: y<x\} \\
G_{x} & =\{y \in X: y>x\}
\end{aligned}
$$

i.e. the open sets are

$$
\bigcup_{\alpha}\left(L_{x_{\alpha}} \cap G_{y_{\alpha}}\right) \cup \bigcup_{\beta} L_{b_{\beta}} \cup \bigcup_{\gamma} G_{c_{\gamma}}
$$

4. Let $X=C[0,1]$. Let $x \in[0,1], a \in \mathbb{C}, r>0$. Let

$$
\begin{aligned}
U_{x, a, r} & =\{f \in C[0,1]:|f(x)-a|<r\} \\
U_{\left\{\left(x_{i}, a_{i}, r_{i}\right): i<n\right\}} & =\bigcap\left\{U_{x_{i}, a_{i}, r_{i}}: i<n\right\}
\end{aligned}
$$

We declare unions of the latter to be open. This is the topology for pointwise convergence.
Definition 3. A set C in (X, τ) is closed if and only if $X \backslash C$ is open.
Definition 4. For a topological space (X, τ), a subset $A \subseteq X$, we define

- the interior of A is the largest open $U \subseteq A$:

$$
A^{\circ}=\bigcup(\mathcal{P}(A) \cap \tau)
$$

- the closure of A is the smallest closed $C \supseteq A$:

$$
\bar{A}=\bigcap\left\{K \subseteq X: K \supseteq A, K^{c} \in \tau\right\}
$$

Proposition 5.

1. If \mathcal{F} is a collection of closed sets, then

$$
\bigcap \mathcal{F}
$$

is closed.
2. If F, G are closed, then so is $F \cup G$.
3. For $A \subseteq X$, we have that $x \in \bar{A}$ if and only if for all open $U \ni x$, we have $U \cap A \neq \emptyset$.
4. $\bar{A}=\left(\left(A^{c}\right)^{\circ}\right)^{c}$.

Proof.

1. For each $F \in \mathcal{F}$, we have F^{c} is open. So

$$
(\bigcap \mathcal{F})^{c}=\bigcup\left\{F^{c}: F \in \mathcal{F}\right\}
$$

is open, and

$$
\bigcap \mathcal{F}
$$

is closed.
2. $(F \cup G)^{c}=F^{c} \cap G^{c}$ is open, so $F \cup G$ is closed.
3. Suppose $x \in X$ and there is open $U \ni x$ such that $U \cap A=\emptyset$. Then U^{c} is closed and $A \subseteq U^{c}$. So $\bar{A} \subseteq U^{c}$, and $x \notin \bar{A}$.
Conversely, if $x \notin \bar{A}$, then $x \in(\bar{A})^{c}$. Setting $U=(\bar{A})^{c}$, we have $x \in U$ and $U \cap A \subseteq U \cap A^{c}=\emptyset$.
4.

$$
\begin{aligned}
\left(A^{c}\right)^{\circ} & =\bigcup\{U \in \tau: U \cap A=\emptyset\} \\
& =(\bar{A})^{c}
\end{aligned}
$$

by previous item. Thus

$$
\left(\left(A^{c}\right)^{\circ}\right)^{c}=\left((\bar{A})^{c}\right)^{c}=\bar{A}
$$

Proposition 6. If $\mathcal{S} \subseteq \mathcal{P}(X)$, then there is a smallest topology τ containing \mathcal{S} given by \emptyset, X and arbitrary unions of finite intersections of elements of \mathcal{S}.

Proof. We check the properties.

1. By construction.
2. A union of unions is itself a union.
3. Well

$$
\bigcup_{\alpha}\left(S_{\alpha, 1} \cap \cdots \cap S_{\alpha, n_{\alpha}}\right) \cap \bigcup_{\beta}\left(T_{\beta, 1} \cap \cdots \cap T_{\beta, m_{\beta}}\right)=\bigcup_{\alpha} \bigcup_{\beta} S_{\alpha, 1} \cap \cdots \cap S_{\alpha, n_{\alpha}} \cap T_{\beta, 1} \cap \cdots \cap T_{\beta, m_{\beta}}
$$

(Check the set theory, if you don't believe it.)

Definition 7. If $\mathcal{S} \subseteq \mathcal{P}(X)$ generates τ as above, then \mathcal{S} is a subbase of τ. If $\mathcal{S} \subseteq \mathcal{P}(X)$ and every $U \in \tau$ is the union of sets in \mathcal{S}, then \mathcal{S} is a base for τ.
Example 8.

1. Suppose (X, d) is a metric space. Then $\left\{B_{r}(X): x \in X, r>0\right\}$ is a base for the metric topology.
2. In the special case of (\mathbb{R}, d), we have that $\{(r, s): r, s \in \mathbb{Q}\}$ is a base.

Proposition 9. Suppose $\left\{\tau_{\alpha}\right\}$ is a collection of topologies on X. Then
1.

$$
\tau_{\min }=\bigcap_{\alpha} \tau_{\alpha}
$$

is a topology on X.
2.

$$
\tau_{\max }=\bigcup_{\alpha} \tau_{\alpha}
$$

is a subbase for a topology on X.
Definition 10. If σ, τ are topologies on X, we say

- $\sigma<\tau$ if $\sigma \subseteq \tau(\sigma$ is weaker than $\tau)$.
- $\sigma>\tau$ if $\sigma \supseteq \tau(\sigma$ is stronger than $\tau)$.

Example 11. Let $X=C[0,1]$. Let τ be induced by the metric

$$
d(f, g)=\|f-g\|_{\infty}=\sup _{x \in[0,1]}|f(x)-g(x)|
$$

Consider the topology σ with base the sets

$$
U=U_{\left\{\left(x_{i}, a_{i}, r_{i}\right): i<n\right\}}=\left\{f:\left|f\left(x_{i}\right)-a_{i}\right|<r_{i}, i<n\right\}
$$

We claim that $\sigma \subseteq \tau$: Suppose $f \in U$ with $f\left(x_{i}\right)=b_{i},\left|b_{i}-a_{i}\right|<r_{i}$. Then we can take

$$
r=\min _{i<n} r_{i}-\left|a_{i}-b_{i}\right|
$$

If $\|f-g\|_{\infty}<r$, then $\left|g\left(x_{i}\right)-b_{i}\right|<r$, and thus $\left|g\left(x_{i}\right)-a_{i}\right|<\left|g\left(x_{i}\right)-b_{i}\right|+\left|b_{i}-a_{i}\right| \leq r_{i}$.
Thus $\sigma \subseteq \tau$; they are not equal because $U \neq \emptyset$ is always unbounded. Indeed, for

$$
U_{\left\{\left(x_{i}, a_{i}, r_{i}\right): i<n\right\}}
$$

pick $y \notin\left\{x_{i}: i<n\right\}$. Then there is $g \in C[0,1]$ with $g\left(x_{i}\right)=a_{i}$ and $g(y)$ is arbitrarily large.

Definition 12.

- (X, τ) is separable if and only if there is a countable dense subset. i.e. a countable A such that $\bar{A}=X$.
- (X, τ) is first-countable if and only if for each $x \in X$, there is a collection \mathcal{U} of open $U \ni x$ such that for all open $V \ni x$ there is $U \in \mathcal{U}$ such that $U \subseteq V$.
- (X, τ) is second-countable if and only if there is a countable base for the topology.

Example 13.

1. If (X, d) is a compact metric space, then X is separable.
2. If (X, d) is any metric space, then X is first-countable.
3. If (X, d) is a separable metric space, then X is second-countable.

Proof. Suppose $\left\{x_{i}: i<\omega\right\} \subseteq X$ is a countable, dense set. Consider

$$
\left\{B_{\frac{1}{m+1}}\left(x_{n}\right): m, n<\omega\right\}
$$

We claim that this is a base for the topology. Let U be open in (X, d). Let $x \in U$. Need to find m, n such that

$$
x \in B_{\frac{1}{m}}\left(x_{n}\right) \subseteq U
$$

Well, there is $r>0$ such that $B_{r}(x) \subseteq U$. Pick m such that $\frac{1}{m}<\frac{r}{2}$. By density of $\left\{x_{i}: i<n\right\}$, we have some n such that $d\left(x_{n}, x\right)<\frac{1}{m}$. Then

$$
x \in B_{\frac{1}{m}}(x) \subseteq B_{\frac{2}{m}}(x) \subseteq B_{r}(x) \subseteq U
$$

as desired.

Definition 14. Suppose $(X, \tau),(Y, \sigma)$ are topological spaces. We say $f: X \rightarrow Y$ is continuous if for all open $V \subseteq Y$, we have $f^{-1}(V)$ is open (in X). We say f is a homeomorphism if f is a bijection and f and f^{-1} are both continuous. We say f is open if for all open $U \subseteq X$ we have that $f(U)$ is open (in Y).

Example 15.

1. Suppose (X, τ) is a topological space. Consider the sequence of maps

$$
(X, \text { discrete }) \xrightarrow{f}(X, \tau) \xrightarrow{g}(X, \text { trivial })
$$

where $f=g=\mathrm{id}_{X}$. Then f and g are bijective and continuous but f^{-1}, g^{-1} are not continuous.
2. Any f from a discrete space into \mathbb{R} is continuous. The only continuous functions from a trivial topology into \mathbb{R} are constant.
3. The map

$$
\begin{aligned}
f:(-1,1) & \rightarrow \mathbb{R} \\
x & \mapsto \tan \left(\frac{\pi}{2} x\right)
\end{aligned}
$$

is a homeomorphism.
Definition 16. Suppose (X, τ) is a topological space, $\left(x_{n}: n<\omega\right)$ is a sequence in X. We say $\left(x_{n}: n<\omega\right)$ converges if and only if for all

$$
U \in \mathcal{O}(x)=\{U \in \tau: x \in U\}
$$

there is an $N<\omega$ such that for all $N \leq N<\omega$ we have $x_{n} \in U$.

Example 17.

1. $X=\{a, b\}, \tau=\{\emptyset,\{a\},\{a, b\}\}$. Then $x_{n} \rightarrow a$ if and only if x_{n} is eventually a. On the other hand, every sequence converges to b. In particular, some sequences converge to a and b.
2. $X=[0,1) \cup\{a, b\}$ with $U \subseteq X$ open if all of the following hold:

- $U \cap[0,1)$ is open in the metric topology.
- If $a \in U$ or $b \in U$, then there is $\varepsilon>0$ such that $U \supseteq(1-\varepsilon, 1)$.

Then any sequence in $[0,1)$ that converges to 1 in the metric topology converges to both a and b in τ. As another example, the sequence

$$
1-\frac{1}{2}, a, 1-\frac{1}{3}, a, \ldots
$$

converges to a but not b.
Definition 18. (X, τ) is Hausdorff if for all $x \neq y$ in X there is open $U \ni x$, open $V \ni y$ such that $U \cap V=\emptyset$.
Example 19.

1. Metric spaces are Hausdorff.
2. The prior two examples are not Hausdorff.

Proposition 20. If $C(X)$ (the set of continous maps $X \rightarrow \mathbb{C}$) separates points (i.e. for $x \neq y$ there is $f \in C_{b}(X)$ such that $\left.f(x) \neq f(y)\right)$, then X is Hausdorff.

Proof. Say $x \neq y$. Then there is a continuous $f: X \rightarrow \mathbb{C}$ such that $f(x) \neq f(y)$, by hypothesis. \mathbb{C} is Hausdorff, so we may find open $U \ni f(x)$, open $V \ni f(y)$ such that $U \cap V=\emptyset$. Then $f^{-1}(U)$ and $f^{-1}(V)$ are open sets containing x and y, respectively, and $f^{-1}(U) \cap f^{-1}(V)=\emptyset$.
\square Proposition 20

2.1 Nets

Main message: sequences are not enough.
Example 21. Let $X=\mathbb{N} \times \mathbb{N}$. Define τ by:

- For $m+n \geq 1$, the set $\{(m, n)\}$ is open.
- An open $U \ni(0,0)$ must have a finite $F \subseteq \mathbb{N}$ such that for all $n \in \mathbb{N} \backslash F$, we have

$$
\{m<\mathbb{N}:(m, n) \in U\}
$$

is a cofinite subset of \mathbb{N}.
Check that this defines a topology.

1. (X, τ) is Hausdorff: to house off $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right)$, and $(0,0)$, use

$$
\begin{aligned}
U_{0} & =X \backslash\left\{\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right)\right\} \\
U_{1} & =\left\{\left(m_{1}, n_{1}\right)\right\} \\
U_{2} & =\left\{\left(m_{2}, n_{2}\right)\right\}
\end{aligned}
$$

2. $(0,0) \in \overline{X \backslash\{(0,0)\}}$ since every non-empty open set has an element besides $(0,0)$.
3. No sequence $\left(\left(m_{k}, n_{k}\right): k<\omega\right)$ in $X \backslash\{(0,0)\}$ converges to $(0,0)$.

Proof. Suppose $x_{k}=\left(m_{k}, n_{k}\right)$ is a sequence.
Case 1. Suppose $\left(n_{k}: k<\omega\right)$ is bounded. Then there must be a constant subsequence $\left(n_{k_{i}}: i<\omega\right)$. Then

$$
U=X \backslash\left\{(m, n): n=n_{0}\right\}
$$

is open and contains $(0,0)$. But $x_{k_{i}} \notin U$ for all $i<\omega$. So $x_{k} \nrightarrow(0,0)$.
Case 2. Suppose otherwise. Then there is a subsequence $\left(n_{k_{i}}: i<\omega\right)$ such that $\left(n_{k_{i}}: i<\omega\right) \rightarrow \infty$. Then

$$
U=X \backslash\left\{x_{k_{i}}: i<\omega\right\}
$$

is open because only finitely many $x_{k_{i}}$ have $n_{k_{i}}=n$. But $x_{k_{i}} \notin U$ for $i<\omega$. So $x_{k} \nrightarrow(0,0)$.

Definition 22. A directed set is a set Λ with a binary relation \leq such that

1. $\lambda \leq \lambda$ for all $\lambda \in \Lambda$.
2. If $\lambda_{1} \leq \lambda_{2}$ and $\lambda_{2} \leq \lambda_{3}$, then $\lambda_{1} \leq \lambda_{3}$ for all $\lambda_{i} \in \Lambda$.
3. Directedness: if $\lambda_{1}, \lambda_{2} \in \Lambda$ then there is $\lambda_{3} \in \Lambda$ such that $\lambda_{1} \leq \lambda_{3}$ and $\lambda_{2} \leq \lambda_{3}$.
(We do not require antisymmetry; some authors do.)
Definition 23. A net is a function $x: \Lambda \rightarrow X$ (usually written $\left(x_{\lambda}: \lambda \in \Lambda\right.$). A net converges to $x \in X$ if for all $U \in \mathcal{O}(x)$ there is $\lambda_{0} \in \Lambda$ such that $x_{\lambda} \in U$ for all $\lambda \geq \lambda_{0}$.
Definition 24. A subnet Γ of Λ is a function $\varphi: \Gamma \rightarrow \Lambda$ which is cofinal: for all $\lambda_{0} \in \Lambda$ there is $\gamma_{0} \in \Gamma$ such that $\varphi(\gamma) \geq \lambda_{0}$ for all $\gamma \geq \gamma_{0}$.

In practice, such φ will usually be monotonic.
Example 25. We now return to Example 21.
4. There is a net in $X \backslash\{0,0\}$ converging to $(0,0)$. Let $\Lambda=\mathcal{O}((0,0))$ ordered by $U \leq V$ if $U \supseteq V$. This is clearly a directed set. We then define a net as follows: for $U \in \Lambda$, let x_{U} be the smallest element of $U \backslash\{0,0\}$ in the usual well-ordering of \mathbb{N}^{2}.

Claim 26. $\left(x_{U}: U \in \Lambda\right) \rightarrow(0,0)$.
Proof. Suppose $V \in \mathcal{O}((0,0))$. If $U \geq V$, then $U \subseteq V$, and $x_{U} \in U \subseteq V$.
Claim 26
5. Take the sequence

$$
((0,1),(1,0),(0,2),(1,1),(2,0), \ldots)=\left(x_{k}: k<\omega\right)
$$

This does not converge to $(0,0)$. Define $\varphi: \Lambda \rightarrow \omega$ by $\varphi(U)=i$ if $x_{U}=x_{i}$. This map is cofinal, since if $N<\omega$, we can $V \in \Lambda$ such that $U \geq V \Longrightarrow \varphi(U) \geq N$ by taking $V=X \backslash\left\{(0,0), x_{0}, \ldots, x_{N-1}\right\}$. So Λ is a subnet of the sequence $\left(x_{n}: n<\omega\right)$.

Proposition 27. Suppose $A \subseteq X$. Then $x \in \bar{A}$ if and only if there is a net $\left(x_{\lambda}: \lambda \in \Lambda\right)$ in A converging to x.

Proof.
(\Longrightarrow) Well, $x \in \bar{A}$ if and only if $U \cap A \neq \emptyset$ for all $U \in \mathcal{O}(x)$. We can make $\mathcal{O}(x)$ into a directed set by reverse containment, as before. Use the axiom of choice to pick $x_{U} \in U \cap A$ for each $U \in \mathcal{O}(x)$. Then ($\left.x_{U}: U \in \mathcal{O}(x)\right)$ converges to x, since for all $V \in \mathcal{O}(x)$, if $U \geq V$ then $x_{U} \in U \subseteq V$.
(\Longleftarrow) This implies that every $U \in \mathcal{O}(x)$ contains an element of A.
Proposition 27
Proposition 28. $f:(X, \tau) \rightarrow(Y, \sigma)$ is continuous if and ony if for any net $\left(x_{\lambda}: \lambda \in \Lambda\right) \rightarrow x$ in X, we have that $\left(f\left(x_{\lambda}\right): \lambda \in \Lambda\right) \rightarrow f(x)$ in Y.

Proof.
(\Longrightarrow) Suppose $\left(x_{\lambda}: \lambda \in \Lambda\right) \rightarrow x$. Let $V \ni f(x)$ be open. Then $U=f^{-1}(V)$ is open, and $x \in U$. So there is $\lambda_{0} \in \Lambda$ such that for all $\lambda \geq \lambda_{0}$, we have $x_{\lambda} \in U$, and thus $f\left(x_{\lambda}\right) \in f(U) \subseteq V$. Thus $\left(f\left(x_{\lambda}\right): \lambda \in \Lambda\right) \rightarrow f(x)$.
(\Longleftarrow) Suppose f is not continuous. Then there is V open in Y such that $U=f^{-1}(V)$ is not open, and thus U^{c} is not closed. Thus there is $x \in U$ such that $x \in \overline{U^{c}}$. By the previous proposition, there is a net $\left(x_{\lambda}: \lambda \in \Lambda\right)$ in U^{c} converging to x. But $f\left(x_{\lambda}\right) \in V^{c}$, so, by previous proposition, we have $f\left(x_{\lambda}\right) \nrightarrow f(x) \in V$.

Proposition 28
Example 29. Not that the sequential characterization of continuity does not apply in general. Consider the space from before $\left(\mathbb{N}^{2}, W\right)$. Consider $f:\left(\mathbb{N}^{2}, W\right) \rightarrow\left(\mathbb{N}^{2}\right.$, discrete) given by id \mathbb{N}^{2}. Then $\left(x_{i}: i<\omega\right) \rightarrow x$ if and only if $x \neq(0,0)$ and $x_{i}=x$ eventually. Thus $\left(f\left(x_{i}\right): i<\omega\right) \rightarrow f(x)$. But f is discontinuous, since $f^{-1}(\{0,0\})=\{0,0\}$ is not open.

2.2 Axiom of choice

Definition 30. A set A is well-ordered if it has a total order $<$ and every non-empty subset has a least element. A partial order is reflexive, antisymmetric, and transitive. It is called inductive if every chain (totally ordered subset) has an upper bound.

Definition 31. The axiom of choice says that if X is a set, then there is a $c: 2^{X} \backslash\{\emptyset\} \rightarrow X$ such that $c(A) \in A$ for all $A \neq \emptyset$.

Definition 32. The well-ordering principle states that every set can be well-ordered.

Definition 33. Zorn's lemma states that if every chain in a partial order has an upper bound, then there is a maximal element. (Note: this doesn't mean the maximal element is comparable to everything; merely that no element is larger than it.)
Remark 34. If A is well-ordered, then there is a least element.
Definition 35. An initial segment is

$$
I=I(b)=\{a \in A: a<b\}
$$

Theorem 36. The following are equivalent:

1. The axiom of choice
2. The well-ordering principle
3. Zorn's lemma

Proof.
$\mathbf{(2)} \Longrightarrow$ (1) Place a well-ordering on X; we can then define $c(A)$ to be the least element of A.
$\mathbf{(3)} \Longrightarrow$ (2) Let

$$
\mathcal{W}=\left\{\left(F,<_{F}\right): F \subseteq X,<_{F} \text { a well-ordering of } F\right\}
$$

Say $\left(F,<_{F}\right) \leq\left(G,<_{G}\right)$ if $F \subseteq G$ and $<_{F}=<\left._{G}\right|_{F \times F}$, and F is an initial segment of G. Let

$$
\mathcal{C}=\left\{\left(F_{\alpha},<_{F_{\alpha}}\right): \alpha \in I\right\}
$$

be a chain, with $\left(F_{\alpha},<_{F_{\alpha}}\right) \leq\left(F_{\beta},<_{F_{\beta}}\right)$ for $\alpha<\beta$. Let

$$
\begin{aligned}
G & =\bigcup_{\alpha \in I} F_{\alpha} \\
<_{G} & =\bigcup_{\alpha \in I}<_{F_{\alpha}}
\end{aligned}
$$

Now, if $\emptyset \neq A \subseteq G$, we have

$$
A=\bigcup_{\alpha \in I}\left(A \cap F_{\alpha}\right) \neq 0
$$

so there is $\alpha \in I$ such that $A \cap F_{\alpha} \neq \emptyset$; then we have a least $a \in A \cap F_{\alpha}$. Now, for any $b \in A$, we have that $b \in F_{\alpha}$, in which case $a \leq b$ by our choice of a; or that $b \notin F_{\alpha}$, in which case $b \in F_{\beta}$ for some $\beta>\alpha$, so F_{α} is an initial segment of F_{β}, and $b>a$. So in fact a is the least element of A, and $<_{G}$ is a well-ordering. Then $\left(G,<_{G}\right)$ is an upper bound of \mathcal{C}. So \mathcal{W} is inductive, and thus has a maximal element $\left(F,<_{F}\right)$ by Zorn's lemma.
If $F \neq X$, we could pick $a \in X \backslash F$ and define a well-ordering of $F \cup\{a\}$ by $b<a$ for all $b \in F$, contradicting our choice of $\left(F,<_{F}\right)$ as a maximal element of \mathcal{W}. So $X=F$, and we have a well-ordering of X.
$(\mathbf{1}) \Longrightarrow(3)$ Let (P, \leq) be an inductive partial order. Suppose there is no maximal element. Then for all $x \in P$, we have that

$$
U_{x}=\{y \in P: x<y\} \neq \emptyset
$$

Then there is $f: P \rightarrow P$ such that $f(x) \in U_{x}$ for all x. Since (P, \leq) is inductive, we have that for each chain \mathcal{C}, that

$$
U_{\mathcal{C}}=\{x \in P: x \text { is an upper bound for } \mathcal{C}\} \neq \emptyset
$$

Then there is a map

$$
g:\{\mathcal{C}: \mathcal{C} \text { is a chain of } P\} \rightarrow P
$$

such that $g(\mathcal{C})$ is an upper bound of \mathcal{C} for each chain \mathcal{C}. Define $h=f \circ g$; then $h(\mathcal{C})$ is strictly greater than every element of \mathcal{C} for all chains \mathcal{C}.
Define a well-ordering on P by $a_{1}=h(\emptyset), a_{2}=h\left(\left\{a_{1}\right\}\right), a_{3}=h\left(\left\{a_{1}, a_{2}\right\}\right)$, and so on. Consider subsets $A \subseteq P$ such that

1. (A, \leq) is a well-ordering.
2. If $I \varsubsetneqq A$ is an initial segment of A, then the least element of $A \backslash I$ is $h(I)$.

Call such A a conforming set.
Claim 37. If A, B are two conforming sets, then either $A \subseteq B$ or $B \subseteq A$, and it is an initial segment.
Proof. Let \mathcal{H} be the set of initial segments common to A and B. Let

$$
J=\bigcup_{I \in \mathcal{H}} I
$$

be the largest initial segment common to A and B. Then, if both A and B were proper supersets of J, we would have $h(J) \in A \cap B$, and $J \cup\{h(J)\}$ would be a strictly larger initial segment common to A and B, a contradiction.

Claim 37
Now, let X be the union of all the conforming sets; then X is well-ordered by \leq, and each A is an initial segment. So (X, \leq) is a maximal conforming set. But $X \cup\{h(X)\}$ is a strictly larger conforming set, a contradiction.

Theorem 36

2.3 Compactness

Definition 38. Suppose (X, τ) is a topological space. We say $A \subseteq X$ is compact if every open cover of A has a finite subcover.

Theorem 39. The following are equivalent:

1. X is compact.
2. Every collection of closed sets \mathcal{C} with the finite intersection property (that every finite intersection is non-empty) satisfies

$$
\bigcap \mathcal{C} \neq \emptyset
$$

3. Every net in X has a convergent subnet.

Proof.
$\mathbf{(1)} \Longrightarrow$ (2) Suppose $\left\{C_{\alpha}: \alpha \in I\right\}$ has the finite intersection property but

$$
\bigcap_{\alpha \in I} C_{\alpha}=\emptyset
$$

Then $\left\{C_{\alpha}^{c}: \alpha \in I\right\}$ is an open cover of X with no finite subcover, a contradiction.
$\mathbf{(2)} \Longrightarrow \mathbf{(3)}$ Let $\left(x_{\lambda}: \lambda \in \Lambda\right)$ be a net. For $\gamma \in \Lambda$, let $C_{\gamma}=\overline{\left\{x_{\lambda}: \lambda \geq \gamma\right\}}$. Then given any $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subseteq \Lambda$, we some γ such that $\gamma_{i} \leq \gamma$ for all i; then

$$
x_{\gamma} \in \bigcap_{i=1}^{n} C_{\gamma_{i}}
$$

So $\left\{C_{\gamma}: \gamma \in \Lambda\right\}$ has the finite intersection property, and, by assumption, we have some

$$
x \in \bigcap_{\gamma \in \Lambda} C_{\gamma}
$$

Let

$$
\Gamma=\{(\lambda, U): \lambda \in \Lambda, U \in \mathcal{O}(x)\}
$$

Define an order on Γ by $(\lambda, U) \leq(\mu, V)$ if $\lambda \leq \mu$ and $U \supseteq V$. Want to define $\varphi: \Gamma \rightarrow \Lambda$ which is cofinal such that $x_{\varphi(\lambda, U)} \in C_{\lambda} \cap U$. Well, $C_{\lambda}=\overline{\left\{x_{\gamma}: \gamma \geq \lambda\right\}}$ intersects U since $x \in U$. Thus $\left\{x_{\gamma}: \gamma \geq \lambda\right\}$ also intersects U, since U is open, and there is $\gamma \geq \lambda$ such that $x_{\gamma} \in U$. Let

$$
Y_{\lambda, U}=\left\{x_{\gamma}: \gamma \geq \lambda\right\} \cap U \neq \emptyset
$$

By axiom of choice, there is $\varphi: \Gamma \rightarrow \Lambda$ such that $\varphi(\lambda, U) \in Y_{\lambda, U}$.
Claim 40. $\left(x_{\varphi(\lambda, U)}:(\lambda, U) \in \Gamma\right) \rightarrow x$.
Proof. If $v \in \mathcal{O}(x)$, pick λ_{0} arbitrary. Then if $(\lambda, U) \geq\left(\lambda_{0}, V\right)$, then $x_{\varphi(\lambda, U)} \in U \subseteq V$. So $\left(x_{\varphi(\lambda, U)}\right.$: $(\lambda, U) \in \Gamma) \rightarrow x$, as desired. Claim 40

To check cofinality, suppose $\lambda_{0} \in \Lambda$. Then $\varphi(\lambda, U) \geq \lambda \geq \lambda_{0}$ if $\lambda \geq \lambda_{0}$. Pick arbitrary $U_{0} \in \mathcal{O}(x)$. Then if $(\lambda, U) \geq\left(\lambda_{0}, U_{0}\right)$, we have $\varphi(\lambda, U) \geq \lambda_{0}$.
(3) \Longrightarrow (1) Let $\left\{U_{\alpha}: \alpha \in A\right\}$ be an open cover. Suppose there is no finite subcover. Then for each $F \subseteq_{\text {fin }} A$, say $F=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, we have

$$
U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}} \neq X
$$

so

$$
C_{F}=U_{\alpha_{1}}^{c} \cap U_{\alpha_{2}}^{c} \cap \cdots \cap U_{\alpha_{n}}^{c} \neq \emptyset
$$

Let $\Lambda=\left\{F \subseteq A:|F|<\aleph_{0}\right\}$ be ordered by $F \leq G$ if $F \subseteq G$. By axiom of choice, pick $x_{F} \in C_{F}$ for each $F \in \Lambda$. Then $\left(x_{F}: F \in \Lambda\right.$ is a net. By assumption, there is a subnet Γ with $\varphi: \Gamma \rightarrow \Lambda$ cofinal such that $\left(x_{\varphi(\gamma)}: \gamma \in \Gamma\right) \rightarrow x \in X$. Thus for all $\alpha \in A$ there is $\gamma_{0} \in \Gamma$ such that $\varphi(\gamma) \geq\{\alpha\}$ if $\gamma \geq \gamma_{0}$. i.e. $\varphi(\gamma)=F \ni \alpha$ if $\gamma \geq \gamma_{0}$. Thus

$$
x_{\varphi(\gamma)}=x_{F} \in C_{F} \supseteq C_{\{\alpha\}}=U_{\alpha}^{c}
$$

But U_{α}^{c} is closed. So

$$
x=\lim _{\gamma \in \Gamma} x_{\varphi(\gamma)} \in U_{\alpha}^{c}
$$

and $x \notin U_{\alpha}$ for any α. But the U_{α} cover X, a contradiction.

Proposition 41. Suppose $f:(X, \tau) \rightarrow(Y, \sigma)$ is continuous. Suppose $C \subseteq X$ is compact. Then $f(C)$ is compact.

Proof. Let $\left\{V_{\alpha}: \alpha \in A\right\}$ be an open cover of $f(C)$. Set $U_{\alpha}=f^{-1}\left(V_{\alpha}\right)$; these are open in X by continuity, and

$$
\bigcup_{\alpha \in A} U_{\alpha} \supseteq C
$$

Then there is a subcover

$$
C \subseteq U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{n}}
$$

and thus

$$
f(C) \subseteq f\left(U_{\alpha_{1}}\right) \cup \cdots \cup f\left(U_{\alpha_{n}}\right) \supseteq V_{\alpha_{1}} \cup \cdots \cup V_{\alpha_{n}}
$$

Definition 42 (Product topology). Suppose $\left(\left(X_{\alpha}, \tau_{\alpha}\right): \alpha \in A\right)$ are topological spaces, put a topology on

$$
X=\prod_{\alpha \in A} X_{\alpha}
$$

(whose elements take the form $x=\left(x_{\alpha}: \alpha \in A\right)$ where $\left.x_{\alpha} \in X_{\alpha}\right)$ by using the weakest topology such that all

$$
\begin{aligned}
\pi_{\alpha}: X & \rightarrow X_{\alpha} \\
x & \mapsto x_{\alpha}
\end{aligned}
$$

are continuous. i.e. if $U \subseteq X_{\alpha}$ is open, then

$$
\pi_{\alpha}^{-1}(U)=\left\{x \in X: x_{\alpha} \in U\right\}=U \times \prod_{\beta \neq \alpha} X_{\beta}
$$

is open. So if $\alpha_{1}, \ldots, \alpha_{n} \in A$ and each $U_{\alpha_{i}}$ open in $X_{\alpha_{i}}$, then

$$
U_{\alpha_{1}} \times U_{\alpha_{2}} \times \cdots \times U_{\alpha_{n}} \times \prod_{\beta \notin\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}} X_{\beta}
$$

is open, and these sets form a basis for the topology.
Remark 43. For $U_{\alpha} \subseteq X_{\alpha}$, we have that

$$
\prod_{\alpha \in A} U_{\alpha}
$$

is open if $U_{\alpha}=X_{\alpha}$ except finitely often. The converse holds except if some $U_{\alpha}=\emptyset$.
Theorem 44 (Tychonoff). The product of compact spaces is compact.
Proof. Let $\left(\left(X_{\alpha}, \tau_{\alpha}\right): \alpha \in A\right)$ be compact topological spaces. Let

$$
X=\prod_{\alpha \in A} X_{\alpha}
$$

Suppose X is not compact; suppose there is an open cover \mathcal{U} with no finite subcover. We plan to use Zorn's lemma to find a maximal open cover with no finite subcover. The order we use is set inclusion: $\mathcal{U} \leq \mathcal{V}$ if $\mathcal{U} \subseteq \mathcal{V}$. We are given that Λ, the collection of open covers with no finite subcover, is non-empty. Now, suppose

$$
\left\{\mathcal{U}_{\alpha}: \alpha \in T\right\}
$$

is a chain in Λ (with T a totally ordered set and $\alpha \leq \beta$ in T implies $\mathcal{U}_{\alpha} \leq \mathcal{U}_{\beta}$). Let

$$
\mathcal{U}=\bigcup_{\alpha \in T} \mathcal{U}_{\alpha}
$$

Then this, too, is an open cover. Furthermore, if \mathcal{U} had a finite subcover $X \subseteq U_{1} \cup \cdots \cup U_{n}$, then we could find α_{i} such that $U_{i} \in \mathcal{U}_{\alpha_{i}}$. Letting α be the maximum of the α_{i}, we have that the U_{i} are all in the \mathcal{U}_{α}, and are a finite subcover of \mathcal{U}_{α}, a contradiction. So \mathcal{U} has no finite subcover, and $\mathcal{U} \in \Lambda$ is an upper bound for

$$
\left\{\mathcal{U}_{\alpha}: \alpha \in T\right\}
$$

Thus by Zorn's lemma there is a maximal open cover \mathcal{U}_{0} with no finite subcover.
Properties of \mathcal{U}_{0} :

1. If $U \in \mathcal{U}_{0}$ and $V \subseteq U$ is open, then $V \in \mathcal{U}_{0}$.
2. If $U_{1}, U_{2} \in \mathcal{U}_{0}$, then $U_{1} \cup U_{2} \in \mathcal{U}_{0}$.
3. If V_{1}, V_{2} are open with $V_{1} \cap V_{2} \in \mathcal{U}_{0}$, then one of V_{1} and V_{2} is in \mathcal{U}_{0}.

Proof. If $V_{1} \notin \mathcal{U}_{0}$ then $\mathcal{U}_{0} \cup\left\{V_{1}\right\}$ has a finite subcover

$$
X \subseteq V_{1} \cup U_{1} \cup U_{2} \cup \cdots \cup U_{n}=V_{1} \cup W_{1}
$$

where $W_{1} \in \mathcal{U}_{0}$. If $V_{2} \notin \mathcal{U}_{0}$, then

$$
X \subseteq V_{2} \cup W_{2}
$$

where $W_{2} \in \mathcal{U}_{0}$. But then

$$
X \subseteq\left(V_{1} \cap V_{2}\right) \cup W_{1} \cup W_{2}
$$

A contradiction. So $V_{1} \in \mathcal{U}_{0}$ or $V_{2} \in \mathcal{U}_{0}$.

For $\alpha \in A$, let

$$
\mathcal{W}_{\alpha}=\left\{U \subseteq X_{\alpha}: U \text { open, } U \times \prod_{\beta \neq \alpha} X_{\beta} \in \mathcal{U}_{0}\right\}
$$

If we had

$$
\bigcup W_{\alpha}=X_{\alpha}
$$

then \mathcal{W}_{α} is an open cover. Then, since X_{α} is compact, we have a finite subcover

$$
X_{\alpha} \subseteq U_{1} \cup \cdots \cup U_{n}
$$

So

$$
X \subseteq\left(U_{1} \times \prod_{\beta \neq \alpha} X_{\beta}\right) \cup \cdots \cup\left(U_{n} \times \prod_{\beta \neq \alpha} X_{\beta}\right)
$$

a contradiction. So

$$
C_{\alpha}=\left(\bigcup \mathcal{W}_{\alpha}\right)^{c} \neq \emptyset
$$

By axiom of choice, there is $x=\left(x_{\alpha}: \alpha \in A\right) \in X$ such that $x_{\alpha} \in C_{\alpha}$ for all $\alpha \in A$. Now, \mathcal{U}_{0} covers X, so there is $U \in \mathcal{U}$ such that $x \in U$. Thus there is a basic open set $V \subseteq U$ with $x \in V$. Then

$$
\begin{aligned}
\mathcal{U}_{0} & \ni V \\
& =\left(V_{\alpha_{1}} \times V_{\alpha_{2}} \times \cdots \times V_{\alpha_{n}}\right) \times \prod_{\beta \notin\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}} X_{\beta} \\
& =\pi_{\alpha_{1}}^{-1}\left(V_{\alpha_{1}}\right) \cap \pi_{\alpha_{2}}^{-1}\left(V_{\alpha_{2}}\right) \cap \cdots \cap \pi_{\alpha_{n}}^{-1}\left(V_{\alpha_{n}}\right)
\end{aligned}
$$

By the third property, there is i_{0} such that

$$
\pi_{\alpha_{i_{0}}}\left(V_{\alpha_{i_{0}}}\right)=V_{\alpha_{i_{0}}} \times \prod_{\beta \neq \alpha_{i_{0}}} X_{\beta} \in \mathcal{U}_{0}
$$

and thus

$$
V_{\alpha_{i_{0}}} \in \mathcal{W}_{\alpha_{i_{0}}}
$$

So

$$
x_{\alpha_{i_{0}}} \in V_{\alpha_{i_{0}}} \subseteq \bigcup \mathcal{W}_{\alpha_{i_{0}}}
$$

contradicting our choice of $x_{\alpha_{i_{0}}}$.
Remark 45. Tychonoff's theorem implies the axiom of choice.
Proof. Suppose X_{α} are non-empty sets. Define $Y_{\alpha}=X_{\alpha} \sqcup\left\{p_{\alpha}\right\}$ and define τ_{α} on Y_{α} by

$$
\tau_{\alpha}=\left\{\emptyset,\left\{p_{\alpha}\right\}, X_{\alpha}, Y_{\alpha}\right\}
$$

These are compact because τ is finite. Thus

$$
\Pi_{y_{a}}
$$

is compact by Tychonoff's theorem. Let

$$
C_{\alpha}=\pi_{\alpha}^{-1}\left(X_{\alpha}\right)=X_{\alpha} \times \prod_{\beta \neq \alpha} Y_{\beta}
$$

Then these are closed. For $F=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, set

$$
C_{F}=C_{\alpha_{1}} \cap \cdots \cap C_{\alpha_{n}}
$$

Pick $x_{i} \in X_{\alpha_{i}}$ because $X_{\alpha_{i}} \neq \emptyset$ for $1 \leq i \leq n$. Let

$$
x=\left(x_{1}, \ldots, x_{n}, p_{\beta}: \beta \notin\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \in C_{\alpha_{1}} \cap \cdots \cap C_{\alpha_{n}}
$$

So $\left\{C_{\alpha}\right\}$ has the finite intersection property. So their intersection contains some x; then x satisfies $x_{\alpha} \in X_{\alpha}$ for all α, and we have a choice function.

Definition 46. (X, τ) is normal if points are closed and whenever A, B are closed in X with $A \cap B=\emptyset$, then there is open $U \supseteq A, V \supseteq B$ such that $U \cap V=\emptyset$.

Example 47.

1. Metric spaces: can set

$$
\begin{aligned}
& U=\{x \in X: d(x, A)<d(x, B)\} \\
& V=\{x \in X: d(x, B)<d(x, A)\}
\end{aligned}
$$

2. If X is compact and Hausdorff, then X is normal. Given A, B, fix $a \in A$. Suppose $b \in B$. Then, since X is Hausdorff, there are $U_{b} \ni a$ and $V_{b} \ni b$ open and disjoint. Then, by compactness

$$
B \subseteq V_{b_{1}} \cup \cdots \cup V_{b_{n}}=V_{a}
$$

and

$$
a \in U_{b_{1}} \cap \cdots \cap U_{b_{n}}=U_{a}
$$

Then

$$
A \subseteq \bigcup_{a \in A} U_{a}
$$

Again by compactness, we have

$$
A \subseteq U_{a_{1}} \cup \cdots \cup U_{a_{n}}
$$

and then

$$
B \subseteq V_{a_{1}} \cap \cdots \cap V_{a_{n}}
$$

Theorem 48 (Urysohn's lemma). Suppose (X, τ) is normal. Suppose A, B are disjoint closed sets. Then there is continuous $f: X \rightarrow[0,1]$ such that $f \upharpoonright A=0, f \upharpoonright B=1$.

Theorem 49 (Tietze's extension theorem). Suppose X is normal, $A \subseteq X$ is closed, and $f: A \rightarrow \mathbb{R}$ is continuous. Then there is $g: X \rightarrow \mathbb{R}$ continuous such that $g \upharpoonright A=f$.

Proof of Theorem 48. By normality, there is open $A_{\frac{1}{2}} \supseteq A$ such that $\overline{A_{\frac{1}{2}}} \cap B=\emptyset$. Also, we have open $A_{\frac{3}{4}} \supseteq \overline{A_{\frac{1}{2}}}$ such that $\overline{A_{\frac{3}{4}}} \cap B=\emptyset$, and we have open $A_{\frac{1}{4}} \supseteq A$ such that $A_{\frac{1}{4}} \cap A_{\frac{1}{2}}^{c}=\emptyset$. Continuing this way, we define A_{y} for all dyadic rationals $y \in(0,1)$. We then take

$$
f(x)= \begin{cases}\inf \left\{y: x \in A_{y}\right\} & \text { such a } y \text { exists } \\ 1 & \text { else }\end{cases}
$$

Then this is the desired function.

3 Banach spaces

Definition 50. Let V be a vector space over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. A norm on V is a map $\|\cdot\|: V \rightarrow[0, \infty)$ such that

1. for $v \in V$, we have $\|v\|=0$ if and only if $v=0$
2. $\|t v\|=|t|\|v\|$ for $t \in \mathbb{F}, v \in V$ (called "positive homogeneous")
3. $\|v+w\| \leq\|v\|+\|w\|$ for $v, w \in V$.

A normed vector space $(V,\|\cdot\|)$ is called a Banach space if it is complete; i.e. every Cauchy sequence $\left(v_{n}: n \in \mathbb{N}\right.$) (i.e. for all $\varepsilon>0$ there is $N \in \mathbb{N}$ such that for all $n, m \geq N$, we have $\left\|v_{m}-v_{n}\right\|<\varepsilon$) converges (i.e. there is $v \in V$ such that $\left\|v_{n}-v\right\| \rightarrow 0$).

Remark 51. $(V,\|\cdot\|)$ is a metric space with $d(v, w)=\|v-w\|$.

Example 52.

1. Suppose X is compact, Hausdorff. Consider

$$
\begin{aligned}
C(X) & =\{f: X \rightarrow \mathbb{C} \mid f \text { continuous }\} \\
C_{\mathbb{R}}(X) & =\{f: X \rightarrow \mathbb{R} \mid f \text { continuous }\}
\end{aligned}
$$

with the norm

$$
\|f\|_{\infty}=\sup _{x \in X}|f(x)|<\infty
$$

Then $\left(f_{n}: n \in \mathbb{N}\right) \rightarrow f$ if and only if $\left\|f-f_{n}\right\| \rightarrow 0$, which holds if and only if $\left(f_{n}: n \in \mathbb{N}\right) \rightarrow f$ uniformly. But recall that the uniform limit of continuous functions is continuous. So $C(X)$ is complete.
2. For $1 \leq p<\infty$, consider

$$
\begin{aligned}
\ell_{p} & =\left\{\left(a_{n}: n \in \mathbb{N}\right): \operatorname{all} a_{n} \in \mathbb{C},\left\|\left(a_{n}: n \in \mathbb{N}\right)\right\|_{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}\right\} \\
\ell_{\infty} & =\left\{\left(a_{n}: n \in \mathbb{N}\right): \sup _{n \in \mathbb{N}}\left|a_{n}\right|=\left\|\left(a_{n}: n \in \mathbb{N}\right)\right\|_{\infty}<\infty\right\} \\
L^{p}(0,1) & =\left\{f \text { Lebesgue measurable }:\left(\int|f|^{p} d m\right)^{\frac{1}{p}}<\infty\right\} \\
L^{p}(\mu) & =\left\{f \mu \text {-measurable }:\left(\int|f|^{p} d \mu\right)^{\frac{1}{p}}<\infty\right\}
\end{aligned}
$$

Proposition 53 (Hölder's inequality). For $p \geq 1$ and $q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$ (we allow $p=1$ and $q=\infty$), then if $f \in L^{p}(\mu), g \in L^{q}(\mu)$, then

$$
\left|\int f g d \mu\right| \leq\|f\|_{p}\|g\|_{q}
$$

Proposition 54 (Minkowski's inequality). For $f, g \in L^{p}(\mu)$, we have $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.
Proposition 55. $L^{p}(\mu)$ is complete.
3. Consider $C^{(n)}[0,1]$ (the set of continuously n-differentiable functions) with the norm

$$
\|f\|_{C^{(n)}}=\max _{0 \leq i \leq n}\left\|f^{(i)}\right\|_{\infty}
$$

If

$$
D f=\sum_{i=0}^{n} a_{i}(x) f^{(i)}(x)
$$

for $a_{i} \in C[0,1]$, then D is a linear map from $C^{(n)}[0,1]$ to $C[0,1]$.
4. Hilbert spaces: \mathcal{H} together with an inner product

$$
\langle\cdot, \cdot\rangle: \mathcal{H}^{2} \rightarrow \mathbb{F}
$$

that is linear in x, conjugate-linear in y, and positive-definite. i.e.

$$
\begin{aligned}
\left\langle a x_{1}+x_{2}, y\right\rangle & =a\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle \\
\left\langle x, a y_{1}+y_{2}\right\rangle & =a\left\langle x, y_{1}\right\rangle+\left\langle x, y_{2}\right\rangle \\
\langle x, x\rangle & \geq 0 \\
\langle x, x\rangle=0 & \Longleftrightarrow x=0 \\
\langle y, x\rangle & =\overline{\langle x, y\rangle}
\end{aligned}
$$

Note that for all $t \in \mathbb{R}$, we have

$$
\begin{aligned}
0 & \leq\langle x+t y, x+t y\rangle \\
& =\langle x, x\rangle+\bar{t}\langle x, y\rangle+t\langle y, x\rangle+|t|^{2}\langle y, y\rangle
\end{aligned}
$$

I believe $t=1$ shows that $\langle x, y\rangle=\overline{\langle y, x\rangle}$ given the other axioms. Taking $t=1$ also shows the triangle inequality of $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$.
Taking

$$
t=\frac{-\langle x, y\rangle}{\|y\|^{2}}
$$

shows the Cauchy-Schwarz inequality: that

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

A Hilbert space is a complete inner product space. Examples include $\ell_{2}, L^{2}(\mu)$.
5. Another example of a Hilbert space. Suppose Ω is an open, connected, bounded subset of \mathbb{C}. Let

$$
L_{a}^{2}(\Omega)=\left\{f \text { analytic on } \Omega:\|f\|^{2}=\int_{\Omega}|f(z)|^{2} d m_{2}<\infty\right\}
$$

If $z \in \Omega$, there is r such that $\overline{B_{r}(z)} \subseteq \Omega$. Then

$$
\begin{aligned}
\int_{\overline{B_{r}(z)}} f(w) d w & =\int_{0}^{r} \int_{0}^{2 \pi} f(z+r \exp (i \theta)) r d \theta d r \\
& =\int_{0}^{r} 2 \pi r \frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f(z+r \exp (i \theta))}{r \exp (i \theta)} r i \exp (i \theta) d \theta d r \\
& =\int_{0}^{r} 2 \pi r \frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} d w d r \\
& =\int_{0}^{r} 2 \pi r f(z) d r \\
& =\left(\pi r^{2}\right) f(z)
\end{aligned}
$$

by Cauchy's integral formula. Thus

$$
f(z)=\frac{1}{\pi r^{2}} \int_{\overline{B_{r}(z)}} f(w) d w
$$

So

$$
\begin{aligned}
|f(z)| & \leq \frac{1}{\pi r^{2}} \int_{\overline{B_{r}(z)}}|f| d m_{2} \\
& =\frac{1}{\pi r^{2}} \int_{\Omega}|f| \chi_{\overline{B_{r}(z)}} d m_{2} \\
& \leq \frac{1}{\pi r^{2}}\|f\|\left(\int_{\overline{B_{r}(z)}} d m_{2}\right)^{\frac{1}{2}} \\
& =\frac{\|f\|}{\sqrt{\pi r^{2}}}
\end{aligned}
$$

If $w \in \overline{B_{\frac{r}{2}}(z)}$, then $\overline{B_{\frac{r}{2}}(w)} \subseteq \Omega$, and

$$
|f(w)| \leq \frac{\|f\|}{\sqrt{\frac{\pi r^{2}}{4}}}
$$

for all $w \in \overline{B_{\frac{r}{2}}(z)}$. Suppose $\left(f_{n}: n \in \mathbb{N}\right)$ is a Cauchy sequence in $L_{a}^{2}(\Omega)$. For $w \in \overline{B_{\frac{r}{2}}(z)}$, we have

$$
\begin{aligned}
\left|f_{n}(w)-f_{m}(w)\right| & =\left|\left(f_{n}-f_{m}\right)(w)\right| \\
& \leq \frac{1}{\sqrt{\frac{\pi r^{2}}{4}}}\left\|f_{n}-f_{m}\right\|
\end{aligned}
$$

Thus $f_{n} \upharpoonright \overline{B_{\frac{r}{2}}(z)}$ is uniformly Cauchy; thus $\left(f_{n}: n \in \mathbb{N}\right) \rightarrow f$ uniformly in $\overline{B_{\frac{r}{2}}(z)}$; thus the limit is analytic in $B_{\frac{r}{2}}(z)$.

3.1 General constructions in Banach spaces

Proposition 56. Let X, Y be normed vector spaces over \mathbb{F}; let $T: X \rightarrow Y$ be a linear map. Then the following are equivalent:
1.

$$
\|T\|=\sup _{\|x\| \leq 1}\|T x\|_{Y}<\infty
$$

(T is bounded).
2. T is uniformly continuous.
3. T is continuous.
4. T is continuous at 0 .

Proof.
$\mathbf{(1)} \Longrightarrow(2)$ If $\|T\|<\infty$, then

$$
\begin{aligned}
\|T x-T y\| & =\|T(x-y)\| \\
& \leq\|T\|\|x-y\|
\end{aligned}
$$

Then for any $\varepsilon>0$ we may let $\delta=\frac{\varepsilon}{\|T\|}$; then $\|x-y\|<\delta \Longrightarrow\|T x-T y\|<\varepsilon$.
$(2) \Longrightarrow(3) \Longrightarrow(4)$ Trivial.
$\neg(1) \Longrightarrow \neg(4)$ If

$$
\sup _{\|x\| \leq 1}\|T x\|=\infty
$$

pick $x_{n} \in X$ such that $\left\|x_{n}\right\| \leq 1$ and $\left\|T x_{n}\right\|>n^{2}$. Let $y_{n}=\frac{1}{n} x_{n}$. Then

$$
\left\|y_{n}\right\| \leq \frac{1}{n} \rightarrow 0
$$

and thus $y_{n} \rightarrow 0$. But $\left\|T y_{n}\right\|>n$; so $T y_{n} \nrightarrow 0$, and T is not continuous.Proposition 56

Write $\mathcal{B}(X, Y)$ for the set of all bounded linear maps from X to Y. Then $\|T\|$ is defined; it is, in fact, a
norm:

$$
\begin{aligned}
\|T\| & \geq 0 \\
\|T\|=0 & \Longrightarrow T x=0 \text { for all } x \\
\|t T\| & =\sup _{\|x\| \leq 1}\|t T x\| \\
& =|t| \sup _{\|x\| \leq 1}\|T x\| \\
& =\mid t\|T\| \\
\|S+T\| & =\sup _{\|x\| \leq 1}\|(S+T) x\| \\
& \leq \sup _{\|x\| \leq 1}(\|S x\|+\|T x\|) \\
& \leq \sup _{\|x\| \leq 1}\|S x\|+\sup _{\|x\| \leq 1}\|T x\| \\
& =\|S\|+\|T\|
\end{aligned}
$$

Proposition 57. Suppose X, Y are normed vector spaces; suppose Y is complete. Then $\mathcal{B}(X, Y)$ is a Banach space.

Proof. Suppose $\left(T_{n}: n \in \mathbb{N}\right)$ is a Cauchy sequence. Then, for $x \in X$, if $\|x\| \leq 1$, then we have $\left\|T_{m} x-T_{n} x\right\| \leq$ $\left\|T_{m}-T_{n}\right\|<\varepsilon$ for sufficiently large m, n. Thus $\left(T_{n} x: n \in \mathbb{N}\right)$ is Cauchy, uniform on $B_{1}(x)$. Thus $T_{n} \rightarrow T$ uniformly on $B_{1}(x)$. Thus T is linear and uniformly continuous. So it is bounded, and $\mathcal{B}(X, Y)$ is complete.

Proposition 57
Definition 58. We set $\mathcal{B}(X)=\mathcal{B}(X, X)$. We set $X^{*}=\mathcal{B}(X, \mathbb{F})$ to be the dual space of X.
Theorem 59. If $1 \leq p<\infty$ with

$$
\frac{1}{p}+\frac{1}{q}=1
$$

then $\ell_{p}^{*}=\ell_{q}$.
Proof. Pairing: given $a=\left(a_{n}: n \in \mathbb{N}\right) \in \ell_{p}$ and $b=\left(b_{n}: n \in \mathbb{N}\right) \in \ell_{q}$, we set

$$
\varphi_{b}(a)=b(a)=\langle a, b\rangle=\sum_{n=1}^{\infty} a_{n} b_{n}
$$

(Note that this is the definition of $\langle\cdot, \cdot\rangle$, and that this is bilinear, rather than sesquilinear.)
Hölder's inequality then yields

$$
\left|\varphi_{b}(a)\right|=\left|\sum_{n=1}^{\infty} a_{n} b_{n}\right| \leq\|a\|_{p}\|b\|_{q}
$$

So $\left|\varphi_{b}(a)\right| \leq\|a\|_{p}\|b\|_{q}$, and we have $\left\|\varphi_{b}\right\| \leq\|b\|_{q}$.
Case 1. Suppose $p=1$ and $q=\infty$. Then $\|b\|_{\infty}=\sup _{n \in \mathbb{N}}\left|b_{n}\right|$. Letting

$$
e_{n}=(0, \ldots, 0,1,0, \ldots)
$$

we then have $\left\|e_{n}\right\|_{p}=1$. Then

$$
\left\|\varphi_{b}\right\| \geq \sup _{n \in \mathbb{N}}\left|\varphi_{b}\left(e_{n}\right)\right|=\sup \left|b_{n}\right|=\|b\|_{\infty} \geq\left\|\varphi_{b}\right\|
$$

Case 2. Take

$$
a_{n}= \begin{cases}\frac{\overline{n_{n}}}{\left|b_{n}\right|}\left|b_{n}\right|^{q-1} & 1 \leq n \leq N \\ 0 & n>N\end{cases}
$$

Let $a=\left(a_{n}: n \in \mathbb{N}\right)$. Then

$$
\begin{aligned}
\|a\|_{p}^{p} & =\sum_{n=1}^{N}\left|a_{n}\right|^{p} \\
& =\sum_{n=1}^{N}\left|b_{n}\right|^{p(q-1)} \\
& =\sum_{n=1}^{N}\left|b_{n}\right|^{q} \\
& \leq\|b\|_{q}^{q}
\end{aligned}
$$

Without loss of generality we may assume $\|b\|_{q}=1$. Then $\|a\|_{p} \leq 1$. Then

$$
\varphi_{b}(a)=\sum_{n=1}^{N}\left|b_{n}\right|^{q-1}\left|b_{n}\right|=\sum_{n=1}^{N}\left|b_{n}\right|^{q} \rightarrow\|b\|_{q}^{q}=1
$$

Thus $\left\|\varphi_{b}\right\| \geq\|b\|_{q}$; thus $\left\|\varphi_{b}\right\|=\|b\|_{q}$.
Now let $\varphi \in \ell_{p}^{*}$. Let $b_{n}=\varphi\left(e_{n}\right)$. Let $b=\left(b_{n}: n \in \mathbb{N}\right)$. We know that $|\varphi(a)| \leq\|\varphi\|\|a\|$. Note that, as above, we have

$$
\|a\|_{p}=\left(\sum_{n=1}^{N}\left|b_{n}\right|^{q}\right)^{\frac{1}{p}}
$$

And

$$
\begin{aligned}
\|\varphi\|\|a\|_{p} & \geq|\varphi(a)| \\
& =\left|\sum_{n=1}^{N} a_{n} b_{n}\right| \\
& =\sum_{n=1}^{N}\left|b_{n}\right|^{q-1}\left|b_{n}\right| \\
& =\sum_{n=1}^{N}\left|b_{n}\right|^{q}
\end{aligned}
$$

Thus

$$
\|\varphi\| \geq\left(\sum_{n=1}^{N}\left|b_{n}\right|^{q}\right)^{q-\frac{1}{p}}
$$

Thus something which immediately implies we're done.

Example 60. Let

$$
c_{0}=\left\{a=\left(a_{1}, a_{2}, \ldots\right): \lim _{n \rightarrow \infty} a_{n}=0\right\}
$$

Set

$$
\|a\|=\sup _{n \geq 1}\left|a_{n}\right|
$$

Then

$$
c_{0}^{*}=\left\{\varphi: c_{0} \rightarrow \mathbb{C}:\|\varphi\|=\sup _{\|a\| \leq 1}|\varphi(a)|<\infty\right\}
$$

Set $e_{n}=(0, \ldots, 0,1,0,0, \ldots)$. For $a \in c_{0}$, we then have

$$
a=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} a_{n} e_{n}
$$

Let $\varphi\left(e_{n}\right)=x_{n} \in \mathbb{C}$; then $\left|x_{n}\right| \leq\|\varphi\|$. Let

$$
\vec{a}_{N}=\frac{\overline{x_{1}}}{\left|x_{1}\right|} e_{1}+\frac{\overline{x_{2}}}{\left|x_{2}\right|} e_{2}+\cdots+\frac{\overline{x_{N}}}{\left|x_{N}\right|} e_{N}
$$

Then

$$
\left\|\vec{a}_{N}\right\|=\max \left|\frac{\overline{x_{i}}}{\left|x_{i}\right|}\right| \leq 1
$$

(where

$$
\frac{\overline{0}}{|0|}
$$

is taken to be 0). Then

$$
\begin{aligned}
\varphi\left(\vec{a}_{N}\right) & =\frac{\overline{x_{1}}}{\left|x_{1}\right|} x_{1}+\frac{\overline{x_{2}}}{\left|x_{2}\right|} x_{2}+\cdots+\frac{\overline{x_{N}}}{\left|x_{N}\right|} x_{N} \\
& =\sum_{i=1}^{N}\left|x_{i}\right| \\
& \leq\|\varphi\|\left\|\vec{a}_{N}\right\| \\
& \leq\|\varphi\|
\end{aligned}
$$

Let $N \rightarrow \infty$. Then

$$
\left\|\left(x_{n}: n \in \mathbb{N}\right)\right\|_{1}=\sum_{i=1}^{\infty}\left|x_{i}\right| \leq\|\varphi\|
$$

So $\left(x_{n}: n \in \mathbb{N}\right) \in \ell_{1}$. Conversely, if $x=\left(x_{n}: n \in \mathbb{N}\right) \in \ell_{1}$, define

$$
\varphi_{x}(a)=\sum a_{n} x_{n}
$$

which then converges absolutely, as

$$
\left|a_{n} x_{n}\right| \leq\|a\|\left|x_{n}\right|
$$

Then

$$
\left|\varphi_{x}(a)\right| \leq \sum_{n=1}^{\infty}\|a\|| | x_{n} \mid=\|a\|\|x\|_{1}
$$

So φ_{x} is continuous, and $\left\|\varphi_{x}\right\| \leq\|x\|_{1} \leq\left\|\varphi_{x}\right\|$ (as shown above). So $\left\|\varphi_{x}\right\|=\|x\|_{1}$. So $c_{0}^{*}=\ell_{1}$.
We now look at $\mathcal{B}\left(c_{0}\right)$ and $\mathcal{B}\left(c_{0}, \ell_{\infty}\right)$. If $T \in \mathcal{B}\left(c_{0}, \ell_{\infty}\right)$, then

$$
T E_{n}=t_{n}=\left(\begin{array}{c}
t_{1 n} \\
t_{2 n} \\
\vdots
\end{array}\right)
$$

and

$$
\left\|t_{n}\right\|_{\infty}=\sup _{i \geq 1}\left|t_{i n}\right| \leq\|T\|\left\|e_{n}\right\|=\|T\|
$$

Then

$$
T \sum_{n=1}^{N} a_{n} e_{n}=\sum_{n=1} a_{n} T e_{n}=\sum_{n=1}^{N} a_{n} \overrightarrow{t_{n}}
$$

and

$$
T \sum_{n=1}^{\infty} a_{n} e_{n}=\lim _{n \rightarrow \infty} \sum_{n=1}^{N} a_{n} T e_{n}=\lim _{n \rightarrow \infty} \sum_{n=1}^{N} a_{n} \vec{t}_{n}
$$

where this latter limit exists if T is continuous. We can think of T as having an $\infty \times \infty$ matrix $\left(t_{i j}: i \geq 1, j \geq 1\right)$ with columns $t_{n} \in \ell_{\infty}$ and

$$
\sup _{n \in \mathbb{N}}\left\|t_{n}\right\|_{\infty}=\|T\|
$$

Observe that the $n^{\text {th }}$ entry of $T\left(a_{1}, a_{2}, \ldots\right)$ is

$$
\sum_{j=1}^{\infty} t_{n j} a_{j}
$$

So the linear map

$$
\varphi_{n}(a)=\left\langle T \vec{a}, \delta_{n}\right\rangle=\sum_{j \in \mathbb{N}} t_{n_{j}} a_{j}
$$

is continuous, where $\delta_{n}=(0, \ldots, 0,1,0, \ldots) \in \ell_{1}$. Then

$$
\left\|\varphi_{n}\right\| \leq\|T\|\left\|\delta_{i}\right\|_{1}=\|T\|
$$

Let $\overrightarrow{r_{n}}=\left(t_{n j}: j \in \mathbb{N}\right) \in \ell_{1}$; then $\left\|r_{n}\right\|_{1} \leq\|T\|$.
On the other hand, suppose $\left\{r_{n}: n \in \mathbb{N}\right\} \subseteq \ell_{1}$ satisfies

$$
\sup _{n \in \mathbb{N}}\left\|r_{n}\right\|=R<\infty
$$

Then $T: c_{0} \rightarrow \ell_{\infty}$ given by

$$
(T \vec{a})_{n}=\left\langle\vec{a}, r_{n}\right\rangle=\sum_{j \in \mathbb{N}} r_{n j} a_{j}
$$

Then

$$
\left|(T \vec{a})_{n}\right| \leq\|a\|\left\|r_{n}\right\|_{1} \leq R\|a\|
$$

So $\operatorname{Ran}(T) \subseteq \ell_{\infty}$, and $\|T\|=R$. When do we have $T \in \mathcal{B}\left(c_{0}\right)$? Need $t_{n}=T e_{n} \in c_{0}$. If each $t_{n} \in c_{0}$, then

$$
T \sum_{i=1}^{N} a_{i} e_{i}=\sum_{i=1}^{N} a_{i} \vec{t}_{i} \in c_{0}
$$

If $\vec{a} \in c_{0}$, then

$$
T a=\lim _{N \rightarrow \infty} T \sum_{i=1}^{N} a_{i} e_{i}
$$

which exists by continuity. But c_{0} is closed inside ℓ_{∞}. So $T \vec{a} \in c_{0}$. Thus $T \in \mathcal{B}\left(c_{0}\right)$ if and only if the rows of T have bounded ℓ_{1} norm and the columns of T are in c_{0}.
Proposition 61. If X is a Banach space and $M \subseteq X$ is a closed subspace, then M is a Banach space.
Proof. For $m \in M$, we have $\|m\|_{M}=\|m\|_{X}$, so M is a normed vector space. Then M is a closed subset of a complete metric space, and M is complete.
\square Proposition 61
Example 62. Let $A(\mathbb{D})$ the disc algebra be the set of $f(z)$ that are continuous on $\overline{\mathbb{D}}$ and analytic on \mathbb{D}. Set

$$
\|f\|=\|f\|_{\infty}=\sup _{z \in \overline{\mathbb{D}}}|f(z)|
$$

Clearly $A(\mathbb{D}) \subseteq C(\overline{\mathbb{D}})$. For $f_{n} \in A(\mathbb{D})$ with $\left(f_{n}: n \in \mathbb{N}\right) \rightarrow f$ in $C(\overline{\mathbb{D}})$ (i.e. uniform convergence). Then f is analytic on \mathbb{D} because uniform limits of analytic functions are analytic. Also observe that for $f \in A(\mathbb{D})$, the maximum modulus principle yields

$$
\|f\|_{\infty}=\sup _{|z|=1}|f(z)|
$$

We can consider $A(\mathbb{D}) \subseteq C(\mathbb{T})$, where

$$
\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}
$$

Consider $R: A(\mathbb{D}) \rightarrow C(\mathbb{T})$ given by $R(f)=f \upharpoonright \mathbb{T}$. Then $\|R f\|=\|f\|$; i.e. R is an isometry. So $R(A(\mathbb{D}))$ is a subspace of $C(\mathbb{T})$ with the same norm, same linear structure as $A(\mathbb{D})$. (They are isometrically isomorphic.) So we can consider $A(\mathbb{D})$ as a subspace of $C(\mathbb{T})$. It is, in fact, closed, as we know it is a complete subspace.

Interest: Fourier series. For $f \in C(\mathbb{T})$, we can set

$$
\widehat{f}(n)=\frac{1}{2 \pi} f(\exp (i \theta)) \exp (-i n \theta) d \theta
$$

for $n \in \mathbb{Z}$. For $f \in A(\mathbb{D})$, we have

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

Thus has radisu of convergence ≥ 1. Also f is continuous on $\overline{\mathbb{D}}$, so

$$
f_{r}(z)=\sum_{n=0}^{\infty} a_{n} r^{n} z^{n}=f(r z)
$$

satisfies $f_{r} \rightarrow f$ uniformly. Recall
Theorem 63 (Abel's theorem). For $f \in C(\mathbb{T})$, recall we can write

$$
f \sim \sum_{n=-\infty}^{\infty} \widehat{f}(n) r^{n} \exp (2 n \theta)
$$

though this doesn't always converge. However, if $z=r \exp (i \theta)$ for $0 \leq r<1$, then

$$
f(z)=\sum_{n=-\infty}^{\infty} \widehat{f}(n) r^{n} \exp (i n \theta)
$$

is harmonic on \mathbb{D}
Then $f_{r}(\exp (i \theta)) \rightarrow f(\exp (i \theta))$ uniformly. If $\widehat{f}(n)=0$ for $n<0$, then

$$
f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}
$$

is analytic, so $f \in A(\mathbb{D})$. Thus

$$
\begin{aligned}
A(\mathbb{D}) & =\{f \in C(\mathbb{T}): \widehat{f}(n)=0 \text { for } n<0\} \\
& =\bigcap_{n=-1}^{-\infty} \operatorname{ker} \varphi_{n}
\end{aligned}
$$

where $\varphi_{n}(f)=\widehat{f}(n)$.
Definition 64 (Quotient spaces). Suppose X is a Banach space, $M \subseteq X$ is a closed subspace. Set

$$
X / M=\{\dot{x}=x+M: x \in X\}
$$

be the collection of cosets of X / M with the quotient vector space structure. Define the quotient norm to be

$$
\|\dot{x}\|=\inf _{m \in M}\|x+m\|
$$

Proposition 65. X / M is a Banach space.
Proof. We check that it is a norm:

1. Clearly $\|\dot{x}\| \geq 0$. If $\|\dot{x}\|=0$, then there is $\left(m_{n}: n \in \mathbb{N}\right)$ in M such that $\left\|x+m_{n}\right\| \rightarrow 0$. i.e. $x+m_{n} \rightarrow 0$. But $x+m_{n} \in x+M$ and $x+M$ is closed. So $0 \in M$ and $\dot{x}=\dot{0}$.
2. For $t \neq 0$, we have

$$
\begin{aligned}
\|t \dot{x}\| & =\inf _{m \in M}\|t x+m\| \\
& =\inf _{m^{\prime} \in M}\left\|t\left(x+m^{\prime}\right)\right\| \\
& =\mid t \inf _{m^{\prime} \in M}\left\|x+m^{\prime}\right\| \\
& =|t|\|\dot{x}\|
\end{aligned}
$$

3. Note that

$$
\begin{aligned}
\|\dot{x}+\dot{y}\| & =\inf _{m \in M}\|x+y+m\| \\
& =\inf _{m, n \in M}\|x+m+y+n\| \\
& \leq \inf _{m \in M, n \in M}(\|x+m\|+\|y+n\|) \\
& =\|x\|+\|y\|
\end{aligned}
$$

We now check completeness. Suppose ($\dot{x}_{n}: n \in \mathbb{N}$) is a Cauchy sequence in X / M. Drop to a subsequence such that $\left\|\dot{x}_{n-1}-\dot{x}_{n}\right\|<2^{-n}$. Recursively choose $y_{n} \in X$ such that

1. $\dot{y}_{n}=\dot{x}_{n}$
2. $\left\|y_{n-1}-y_{n}\right\|<2^{-n}$

We pick $y_{1}=x_{1}$. Now,

$$
\frac{1}{4}>\left\|\dot{x}_{1}-\dot{x}_{2}\right\|=\inf _{m \in M}\left\|y_{1}-x_{2}-m\right\|
$$

Pick m_{2} such that

$$
\left\|y_{1}-\left(x_{2}+m_{2}\right)\right\|<\frac{1}{4}
$$

and set $y_{2}=x_{2}+m_{2}$. Given y_{n}, note that

$$
\frac{1}{2^{n+1}}>\left\|\dot{x}_{n}-\dot{x}_{n+1}\right\|=\left\|\dot{y}_{n}-\dot{x}_{n+1}\right\|=\inf _{m \in M}\left\|y_{n}-\left(x_{n+1}+m\right)\right\|
$$

and pick $m \in M$ such that

$$
\frac{1}{2^{n+1}}>\left\|y_{n}-\left(x_{n+1}+m\right)\right\|
$$

Then set $y_{n+1}=x_{n+1}+m$.
Then $\left(y_{n}: n \in \mathbb{N}\right)$ is Cauchy in X. So

$$
y=\lim _{n \rightarrow \infty} y_{n}
$$

exists by completeness of X. Check then that $\dot{x}_{n}=\dot{y}_{n} \rightarrow \dot{y}$. So X / M is complete, and it is a Banach space. \square Proposition 65

Proposition 66. For a Banach space X, M a proper closed subspace, we have that the map $Q: X \rightarrow X / M$ by $Q x=\dot{x}$ has $\|Q\|=1$ and $\operatorname{ker}(Q)=M$.

Proof. Well,

$$
\begin{aligned}
\|Q x\| & =\|\dot{x}\| \\
& =\inf _{m \in M}\|x+m\| \\
& \leq\|x+0\| \\
& =\|x\|
\end{aligned}
$$

Thus $\|Q\| \leq 1$, and Q is continuous. But $M \neq X$; so there is $x \in X$ such that $\dot{x} \neq 0$. Then

$$
\|\dot{x}\|=\inf _{m \in M}\|x+m\|
$$

For $\varepsilon>0$ there is $m \in M$ such that $\|x+m\|<\|\dot{x}\|+\varepsilon$. Then

$$
\|Q\| \geq \frac{\|Q(x+m)\|}{\|x+m\|}>\frac{\|\dot{x}\|}{\|\dot{x}\|+\varepsilon}
$$

which approaches 1 as $\varepsilon \rightarrow 0$.
Observe that $\operatorname{ker} Q=\{x: \dot{x}=\dot{0}\}=M$.
Example 67. Consider $C(X)$ where X is a compact Hausdorff space. Suppose $E \subseteq X$ is closed. Set $I(E)=\{f \in C(X): f \upharpoonright E=0\}$; this is a closed subspace. Consider $C(X) / I(E)$. For $g \in C(X)$, we have

$$
\|\dot{g}\|=\inf _{f \upharpoonright E=0}\|g+f\|_{\infty} \geq \inf _{f \upharpoonright E=0} \sup _{x \in E}|g(x)+f(x)|=\sup _{x \in E}|g(x)|=\|g \upharpoonright E\|
$$

Suppose $\|g \upharpoonright E\|=1$. Let

$$
h(z)= \begin{cases}z & |z| \leq 1 \\ \frac{z}{|z|} & |z|>1\end{cases}
$$

Then $\|h\|_{\infty}=1$, so $\|h \circ g\|_{\infty}=1$. Also $h \circ g \upharpoonright E=g$. Set $f=g-h \circ g \in I(E)$. Then

$$
\|g-f\|=\|h \circ g\|=\|g \upharpoonright E\|=1
$$

Thus $\|g\|=\|g \upharpoonright E\|$. We then have the following map $g \in C(X) \mapsto g \upharpoonright E \in C(E)$ which factors as $g \mapsto \dot{g} \in C(X) / I(E)$ followed by an isometry. Tietze's extension theorem then says that R maps onto $C(E)$. Thus $C(X) \cong C(\ldots) / I(E)=C(E)$ something

3.2 More on Hilbert spaces

Definition 68. Suppose \mathcal{H} is a Hilbert space; suppose $x, y \in \mathcal{H}$. We write $x \perp y$ (x is orthogonal to y) if $\langle x, y\rangle=0$.

Remark 69 (Pythagorean law). In this case we have

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

Definition 70. We say $\left\{e_{\alpha}: \alpha \in I\right\}$ is orthonormal if

$$
\left\langle e_{\alpha}, e_{\beta}\right\rangle=\delta_{\alpha \beta}= \begin{cases}1 & \alpha=\beta \\ 0 & \text { else }\end{cases}
$$

Remark 71. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is orthonormal, then

$$
\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\|=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

As motivation for our definitions of convergence, note that in \mathbb{R}, we have that an infinite sum doesn't converge, converges conditionally (in which case rearrangements can converge to anything), or converges absolutely (in which case it is rearrangement-invariant). In \mathbb{R}^{n} we have a similar situation except that in the case of conditional convergence, there is an affine subspace of vectors to which it can converge.

Definition 72. In a Banach space X, a sum

$$
\sum_{n=1}^{\infty} x_{n}
$$

converges absolutely if

$$
\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty
$$

It converges unconditionally if all rearrangements converge to the same sum. It converges conditionally if

$$
y_{n}=\sum_{i=1}^{n} x_{k}
$$

converges but not unconditionally.
Remark 73. If

$$
L=\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty
$$

then for any $\varepsilon>0$ there is $N \in \mathbb{N}$ such that

$$
\sum_{n=1}^{\infty}\left\|x_{n}\right\|>L-\varepsilon
$$

So

$$
s_{n}=\sum_{i=1}^{n} x_{i}
$$

are Cauchy, since for $n, m \geq N$ we have

$$
\left\|s_{n}-s_{m}\right\| \leq \sum_{i=m+1}^{n}\left\|x_{i}\right\|<\varepsilon
$$

If

$$
\sum_{i=1}^{\infty} x_{\pi(i)}
$$

is a rearrangement, then there is M such that $\{1, \ldots, N\} \subseteq\{\pi(1), \ldots, \pi(M)\}$. To look at all rearrangements at once, let $\Lambda=\left\{F \subseteq_{\text {fin }} \mathbb{N}\right\}$ where $F \leq G$ if $F \subseteq G$. Set

$$
s_{F}=\sum_{n \in F} x_{n}
$$

Then if $s_{F} \rightarrow x$, this means that every rearrangement converges to x. In our case, if $F, G \supseteq\{1, \ldots, N\}$ then

$$
\left\|s_{F}-s_{G}\right\| \leq \sum_{i \in F \triangle G}\left\|x_{i}\right\|<\varepsilon
$$

so it is Cauchy, and thus converges. So absolutely convergent implies unconditionally convergent.
Theorem 74. Suppose \mathcal{H} is a Hilbert space with $\left\{e_{\alpha}: \alpha \in I\right\}$ is an orthonormal set. Let

$$
\mathcal{M}=\overline{\operatorname{span}\left\{e_{\alpha}: \alpha \in I\right\}}
$$

Then

1. $\left\{e_{\alpha}: \alpha \in I\right\}$ is linearly independent. Moreover, we have

$$
\operatorname{dist}\left(e_{\alpha}, \operatorname{span}\left\{e_{\beta}: \beta \neq \alpha\right\}\right)=1
$$

2. Suppose $x \in \mathcal{H}$. Let $x_{\alpha}=\left\langle x, e_{\alpha}\right\rangle$. Then

$$
\sum_{\alpha \in I}\left|x_{\alpha}\right|^{2} \leq\|x\|^{2}
$$

(This is the Bessel inequality.)
3. If

$$
\sum_{\alpha \in I}\left|x_{\alpha}\right|^{2}<\infty
$$

then

$$
\sum_{\alpha \in I} x_{\alpha} e_{\alpha}
$$

converges unconditionally.
4.

$$
P x=\sum_{\alpha \in I} x_{\alpha} e_{\alpha}
$$

is a continuous linear map $\mathcal{H} \rightarrow \mathcal{M}$ with $P^{2}=P$ and $\|P\|=1$.
5. $P x=0$ if and only if $x \perp \mathcal{M}$.
6. If $x \in \mathcal{M}$, then

$$
\|x\|=\left(\sum_{\alpha \in I}\left|x_{\alpha}\right|^{2}\right)^{\frac{1}{2}}
$$

Proof.
1.

$$
\operatorname{dist}\left(e_{\alpha}, \operatorname{span}\left\{e_{\beta}: \beta \neq \alpha\right\}\right)=\inf \left\|e_{\alpha}-\sum_{\text {finite }} y_{\beta} e_{\beta}\right\|=\inf \left(1+\sum\left|y_{\beta}\right|^{2}\right)^{\frac{1}{2}}=1
$$

2. Let $F \subseteq_{\text {fin }} I$, with

$$
s_{F}=\sum_{\alpha \in F} x_{\alpha} e_{\alpha}
$$

Then

$$
\begin{aligned}
0 & \leq\left\|x-s_{F}\right\|^{2} \\
& =\langle x, x\rangle-2 \operatorname{Re}\left\langle x, s_{F}\right\rangle+\left\langle s_{F}, s_{F}\right\rangle \\
& =\|x\|^{2}-2 \operatorname{Re}\left(\sum_{\alpha \in F}\left\langle x, x_{\alpha} e_{\alpha}\right\rangle\right)+\left\langle\sum_{\alpha \in F} x_{\alpha} e_{\alpha}, \sum_{\alpha \in F} x_{\alpha} e_{\alpha}\right\rangle \\
& =\|x\|^{2}-2 \operatorname{Re} \sum_{\alpha \in F} \overline{x_{\alpha}}\left\langle x, e_{\alpha}\right\rangle+\sum_{\alpha \in F} x_{\alpha} \overline{x_{\alpha}} \\
& =\|x\|^{2}-\sum_{\alpha \in F}\left|x_{\alpha}\right|^{2}
\end{aligned}
$$

So

$$
\sum_{\alpha \in F}\left|x_{\alpha}\right|^{2} \leq\|x\|^{2}
$$

and

$$
\sum_{\alpha \in I}\left|x_{\alpha}\right|^{2}=\sup _{F \subseteq \text { fin }} \sum_{\alpha \in F}\left|x_{\alpha}\right|^{2} \leq\|x\|^{2}
$$

Note that

$$
\left\{\alpha: x_{\alpha} \neq 0\right\}=\bigcup_{n \geq 1}\left\{\alpha:\left|x_{\alpha}\right| \geq \frac{1}{n}\right\}
$$

is therefore countable, since each unionand has cardinality

$$
\leq \frac{\|x\|^{2}}{\frac{1}{n^{2}}}=n^{2}\|x\|^{2}<\infty
$$

3. Suppose

$$
L=\sum\left|x_{\alpha}\right|^{2}<\infty
$$

For $F \subseteq_{\text {fin }} I$, let

$$
s_{F}=\sum_{\alpha \in F} x_{\alpha} e_{\alpha}
$$

Then

$$
\sup _{F \subseteq \complement_{\text {fin }} I}\left\|s_{F}\right\|^{2}=\sup _{F \complement_{\text {fin }} I} \sum_{\alpha \in F}\left|x_{\alpha}\right|^{2}=\sum\left|x_{\alpha}\right|^{2}=L
$$

Pick F_{0} such that

$$
\sum_{\alpha \in F_{0}}\left|x_{\alpha}\right|^{2}>L-\varepsilon
$$

If $F, G \supseteq F_{0}$ then

$$
\begin{aligned}
\left\|s_{F}-s_{G}\right\|^{2} & =\left\|\sum_{\alpha \in F \backslash G} x_{\alpha} e_{\alpha}-\sum_{\alpha \in G \backslash F} x_{\alpha} e_{\alpha}\right\|^{2} \\
& =\sum_{\alpha \in F \triangle G}\left|x_{\alpha}\right|^{2} \\
& \leq \sum_{\alpha \in F \cup G}\left|x_{\alpha}\right|^{2}-\sum_{\alpha \in F_{0}}\left|x_{\alpha}\right|^{2} \\
& <L-(L-\varepsilon) \\
& =\varepsilon
\end{aligned}
$$

So $\left\{s_{F}\right\}$ is Cauchy, and thus converges unconditionally.
Example 75.

$$
\sum_{n=1}^{\infty} \frac{1}{n} e_{n}
$$

converges unconditionally since

$$
\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{\frac{1}{2}}<\infty
$$

but not absolutely since

$$
\sum_{n=1}^{\infty}\left\|\frac{1}{n} e_{n}\right\|=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

4. By (2) and (3), if $x \in \mathcal{H}$, then $\left(x_{\alpha}: \alpha \in I\right)$ is square-summable and

$$
P x=\sum_{\alpha} x_{\alpha} e_{\alpha}
$$

is well-defined, and further that

$$
\|P x\|^{2}=\sum\left|x_{\alpha}\right|^{2} \leq\|x\|^{2}
$$

So $\|P\| \leq 1$ and P is linear; so P is continuous. Let $y=P x \in \overline{\operatorname{span}\left\{e_{\alpha}: \alpha \in I\right\}}=\mathcal{M}$. Then

$$
\left\langle y, e_{\alpha}\right\rangle=\lim _{F}\left\langle s_{F}, e_{\alpha}\right\rangle=\lim _{F \supseteq\{\alpha\}}\left\langle x_{\alpha} e_{\alpha}+\sum_{\beta \in F \backslash\{a\}} x_{\beta} e_{\beta}, e_{\alpha}\right\rangle=x_{\alpha}
$$

Thus

$$
P y=\sum x_{\alpha} e_{\alpha}=y
$$

i.e. $P(P x)=P x$ and $P^{2}=P$. If $y \in \operatorname{span}\left\{e_{\alpha}: \alpha \in I\right\}$, say

$$
y=\sum_{\alpha \in F} y_{\alpha} e_{\alpha}
$$

then $y_{\beta}=0$ for $\beta \notin F$, and

$$
s_{G}=\sum_{\alpha \in G} y_{\alpha} e_{\alpha}=\sum_{\alpha \in G \cap F} y_{\alpha} e_{\alpha}=y
$$

if $G \supseteq F$.
5.

$$
\begin{aligned}
P x=0 & \Longleftrightarrow\left\langle x, e_{\alpha}\right\rangle=0 \text { for all } \alpha \\
& \Longleftrightarrow x \perp \sum_{\alpha \in F} a_{\alpha} e_{\alpha} \text { for all } F \subseteq_{\text {fin }} I, \text { all }\left(a_{\alpha}: \alpha \in F\right) \\
& \Longleftrightarrow x \perp \mathcal{M}
\end{aligned}
$$

by continuity. So $\operatorname{ker}(P)=\mathcal{M}^{\perp}$.
If $x \in \mathcal{H}$ with $y=P x \in \mathcal{M}$, then $x-y=(I-P) x$, and

$$
\left\langle x-y, e_{\alpha}\right\rangle=\left\langle x, e_{\alpha}\right\rangle-\left\langle y, e_{\alpha}\right\rangle=0
$$

for all α. So $x-y \perp \mathcal{M}$. But $x=y+(x-y)$, and

$$
\|x\|^{2} \geq\|y\|^{2}+\|x-y\|^{2}
$$

\mathcal{M}^{\perp} is the orthogonal complement of \mathcal{M}. We call P the orthogonal projection of \mathcal{H} onto \mathcal{M}.
6. If $y \in \mathcal{M}$,

$$
s_{F}=\sum_{\alpha \in F} y_{\alpha} e_{\alpha}
$$

then

$$
\left\|s_{F}\right\|^{2}=\sum_{\alpha \in F}\left|y_{\alpha}\right|^{2}
$$

Then $s_{F} \rightarrow y$, so

$$
\|y\|^{2}=\lim \sum_{\alpha \in F}\left|y_{\alpha}\right|^{2}=\sum\left|y_{\alpha}\right|^{2}
$$

Definition 76. An orthonormal basis for a Hilbert space \mathcal{H} is an orthonormal set $\left\{e_{\alpha}: \alpha \in I\right\}$ such that $\mathcal{H}=\overline{\operatorname{span}\left\{e_{\alpha}: \alpha \in I\right\}}$.

Theorem 77. Every Hilbert space has an orthonormal basis.

Proof. Order all orthonormal sets by inclusion. Suppose

$$
\mathcal{C}=\left\{\mathcal{E}_{\beta}\right\}
$$

with $\beta_{1}<\beta_{2} \Longrightarrow \mathcal{E}_{\beta_{1}} \subseteq \mathcal{E}_{\beta_{2}}$ is a chain. Then

$$
\mathcal{E}=\bigcup_{\beta \in \mathcal{C}} \mathcal{E}_{\beta}
$$

is a set of vectors. Suppose $e, f \in \mathcal{E}$, say $e \in \mathcal{E}_{\beta_{1}}, f \in \mathcal{E}_{\beta_{2}}$. Say $\beta_{1} \leq \beta_{2}$; then $e, f \in \mathcal{E}_{\beta_{2}}$, and $\langle e, f\rangle=0$. So \mathcal{E} is an orthonormal basis, and is an upper bound of \mathcal{C}. By Zorn's lemma, we have that \mathcal{H} has a maximal orthonormal set $\mathcal{E}=\left\{e_{\alpha}: \alpha \in I\right\}$. Let $\mathcal{M}=\overline{\operatorname{span}\left\{e_{\alpha}: \alpha \in I\right\}}$.
Claim 78. $\mathcal{M}=\mathcal{H}$.
Proof. Suppose otherwise; suppose we have $x \notin \mathcal{M}$. Let $y=P x \in \mathcal{M}$; let $z=(I-P) x \in \mathcal{M}^{\perp}$; then $z \neq 0$, and

$$
x=y+z
$$

Let

$$
e=\frac{z}{\|z\|}
$$

Then $\mathcal{E} \cup\{e\}$ is orthonormal, contradicting maximality of \mathcal{E}. So $\mathcal{M}=\mathcal{H}$.
Claim 78

Corollary 79. Every closed subspace \mathcal{M} of a Hilbert space \mathcal{H} is the range of an orthogonal projection.
Proof. \mathcal{M} is a Hilbert space so there is an orthonormal basis $\left\{e_{\alpha}: \alpha \in I\right\}$ for \mathcal{M}. Define

$$
P x=\sum\left\langle x, e_{\alpha}\right\rangle e_{\alpha}
$$

as before.
Theorem 80. If \mathcal{H} is a Hilbert space and $\varphi \in \mathcal{H}^{*}$ (i.e. φ is a continuous linear functional), then there is a unique $y \in \mathcal{H}$ such that $\varphi(x)=\langle x, y\rangle$ and $\|y\|=\|\varphi\|$.
Proof. Let $\left\{e_{\alpha}: \alpha \in I\right\}$ be an orthonormal basis for \mathcal{H}. Define $a_{\alpha}=\varphi\left(e_{\alpha}\right)$. For $F \subseteq_{\text {fin }} I$, look at

$$
\varphi\left(\sum_{\alpha \in F} \overline{a_{\alpha}} e_{\alpha}\right)=\sum_{\alpha \in F} \overline{a_{\alpha}} \varphi\left(e_{\alpha}\right)=\sum_{\alpha \in F}\left|a_{\alpha}\right|^{2} \leq\|\varphi\|\left\|\sum_{\alpha \in F} \overline{a_{\alpha}} e_{\alpha}\right\|=\|\varphi\|\left(\sum_{\alpha \in F}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}}
$$

So

$$
\left(\sum_{\alpha \in F}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq\|\varphi\|
$$

and

$$
\sup _{F \subseteq_{\text {fin }} I}\left(\sum_{\alpha \in F}\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq\|\varphi\|
$$

Define

$$
y=\sum \overline{a_{\alpha}} e_{\alpha}
$$

Then

$$
\|y\|=\left(\sum\left|a_{\alpha}\right|^{2}\right)^{\frac{1}{2}} \leq\|\varphi\|
$$

For $x \in \mathcal{H}$, write

$$
x=\sum x_{\alpha} e_{\alpha}
$$

Then

$$
\sum\left|x_{\alpha}\right|^{2}=\|x\|^{2}<\infty
$$

Then

$$
\begin{aligned}
\langle x, y\rangle & =\left\langle\sum x_{\alpha} e_{\alpha}, \sum y_{\beta} e_{\beta}\right\rangle \\
& =\lim _{F}\left\langle\sum_{\alpha \in F} x_{\alpha} e_{\alpha}, \sum y_{\beta} e_{\beta}\right\rangle \\
& =\lim _{F} \sum_{\alpha \in F} x_{\alpha} \overline{y_{\alpha}} \\
& =\sum x_{\alpha} \overline{y_{\alpha}} \text { by Cauchy-Schwarz } \\
& =\sum a_{\alpha} x_{\alpha}
\end{aligned}
$$

But

$$
\varphi(x)=\varphi\left(\sum x_{\alpha} e_{\alpha}\right)=\sum x_{\alpha} \varphi\left(e_{\alpha}\right)=\sum a_{\alpha} x_{\alpha}
$$

So $\langle x, y\rangle=\varphi(x)$. Also

$$
\|\varphi\|=\sup _{\|x\| \leq 1}|\varphi(x)|=\sup _{\|x\| \leq 1}|\langle x, y\rangle| \leq \sup _{\|x\| \leq 1}\|x\|\|y\|=\|y\|
$$

by Cauchy-Schwarz. So $\|y\|=\|\varphi\|$.Theorem 80
Remark 81. The map $\varphi \mapsto y$ is conjugate-linear. So \mathcal{H}^{*} is anti-isomorphic to \mathcal{H}.
Definition 82. The dimension of $\mathcal{H}(\operatorname{dim}(\mathcal{H}))$ is the cardinality of an orthonormal basis.
Proposition 83. $\operatorname{dim}(\mathcal{H})$ is well-defined.
Proof. If $\operatorname{dim}(\mathcal{H})<\infty$, then the cardinality of a basis is well-defined. So suppose \mathcal{H} is infinite-dimensional. Suppose $\left\{e_{\alpha}: \alpha \in I\right\}$ and $\left\{f_{\beta}: \beta \in J\right\}$ are orthonormal bases. For all $\alpha \in I$, set

$$
B_{\alpha}=\left\{\beta \in J:\left\langle e_{\alpha}, f_{\beta}\right\rangle \neq 0\right\}
$$

Then this is countable and non-empty because

$$
1=\left\|e_{\alpha}\right\|^{2}=\sum_{\beta \in J}\left|\left\langle e_{\alpha}, f_{\beta}\right\rangle\right|^{2}
$$

Conversely, for all β there is α such that $\left\langle e_{\alpha}, f_{\beta}\right\rangle \neq 0$ by the same reasoning. So

$$
J=\bigcup_{\alpha \in I} B_{\alpha}
$$

Thus

$$
|J| \leq \sum_{\alpha \in I}\left|B_{\alpha}\right| \leq|I| \aleph_{0}=|I|
$$

Similarly, we have $|I| \leq|J|$. So, by Cantor-Bernstein-Schroeder, we have $|I|=|J|$.Proposition 83

Definition 84. A unitary is a linear map $U: H \rightarrow K$ of one Hilbert space onto another such that $\|U x\|=\|x\|$.
Remark 85. This implies

$$
\langle U x, U y\rangle=\langle x, y\rangle
$$

for all $x, y \in \mathcal{H}$.

Proof. If $\mathbb{F}=\mathbb{R}$, then

$$
\begin{aligned}
\langle x \pm y, x \pm y\rangle & =\|x\|^{2} \pm 2\langle x, y\rangle+\|y\|^{2} \\
\Longrightarrow\langle x, y\rangle & =\|x+y\|^{2}-\|x-y\|^{2}
\end{aligned}
$$

If $\mathbb{F}=\mathbb{C}$, then

$$
\langle x, y\rangle=\frac{\|x+y\|^{2}-\|x-y\|^{2}+\|x+i y\|^{2}-i\|x-i y\|^{2}}{4}
$$

Example 86. $L^{2}(\mathbb{T}, m)$ with

$$
\|f\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(\exp (i \theta))|^{2} d \theta
$$

So

$$
e_{n}=\exp (i n \theta)
$$

are orthonormal. Then

$$
\overline{\operatorname{span}\left\{e_{n}: n \in \mathbb{Z}\right\}} \supseteq \overline{\text { trig polynomials }}=\overline{C(\mathbb{T})}=L^{2}
$$

Example 87. $\ell^{2}(\mathbb{Z})$ has orthonormal basis $\delta_{n} . U f=\hat{f}$.

$$
f \sim \sum \hat{f} \exp (i n \theta) \sim(\hat{f}(n): n \in \mathbb{Z})
$$

is a unitary map.
Definition 88. A subset A of a topological space X is nowhere dense if \bar{A} has no interior. A subset B of a complete metric space is said to be of first category if it is the countable union of nowhere dense sets.

Theorem 89 (Baire category theorem). If X is a complete metric space and $B \subseteq X$ is of first category, then $X \backslash B$ is dense in X.

Sketch. Let $U \subseteq X$ be open; suppose $x \in U$. Choose $r>0$ such that $\overline{b_{r}(x)} \subseteq U$. It suffices to find $y \in \overline{b_{r}(x)}$ such that $y \notin B$. Write

$$
B=\bigcup_{n=1}^{\infty} A_{n}
$$

with $\overline{A_{n}}$ has no interior. Find $x_{1} \in b_{r}(x)$ and $r_{1}>0$ such that $r_{1} \leq \frac{r}{2}$ and

$$
\overline{b_{r_{1}}\left(x_{1}\right)} \cap \overline{A_{1}}=\emptyset
$$

Recursively find $x_{n+1} \in b_{r_{n}}\left(x_{n}\right)$ such that

$$
\overline{b_{r_{n+1}}\left(x_{n+1}\right)} \cap \overline{A_{n+1}}=\emptyset
$$

and $r_{n+1} \leq \frac{r_{n}}{2}$. Then $\left(x_{n}: n \in \mathbb{N}\right)$ are Cauchy, and thus converge to $x \in X$; then

$$
x \in \bigcap_{n \in \mathbb{N}} \overline{b_{r}\left(x_{n}\right)}
$$

and $x \notin B$.
Corollary 90. If U_{i} are dense open subsets of a complete metric space, then

$$
\bigcap_{i=1}^{\infty} U_{i}
$$

is dense.

Theorem 91 (Banach-Steinhaus, or uniform boundedness principle). Suppose X, Y are Banach spaces; suppose $\mathcal{A} \subseteq \mathcal{B}(X, Y)$. Suppose that for all $x \in X$ we have that

$$
\sup _{A \in \mathcal{A}}\|A x\|=k_{x}<\infty
$$

Then

$$
\sup _{A \in \mathcal{A}}\|A\|<\infty
$$

Proof. Let $B_{n}=\left\{x \in X: k_{x} \leq n\right\}$.
Claim 92. B_{n} is closed.
Proof. Suppose $\left(x_{k}: k \in \mathbb{N}\right)$ in B_{n} with $x_{k} \rightarrow x$; suppose $A \in \mathcal{A}$. Then

$$
\|A x\|=\lim _{k \rightarrow \infty}\left\|A x_{k}\right\| \leq n
$$

So $x \in B_{n}$, and B_{n} is closed.Claim 92

But

$$
X=\bigcup_{n=1}^{\infty} B_{n}
$$

By Baire category theorem, we then have that there is some n_{0} such that $B_{n_{0}}$ has interior; say $\overline{b_{r}\left(x_{0}\right)} \subseteq B_{n_{0}}$.
Now, if $x \in X$ with $\|x\| \leq 1$, then $x_{0}+r x \in B_{n_{0}}$; but then

$$
\begin{aligned}
\|A x\| & =\left\|\frac{A\left(x_{0}+r x\right)-A x_{0}}{r}\right\| \\
& \leq \frac{1}{r}\left(\left\|A\left(x_{0}+r x\right)\right\|+\left\|A x_{0}\right\|\right) \\
& \leq \frac{2 n_{0}}{r}
\end{aligned}
$$

So

$$
\sup _{\|x\| \leq 1} \sup _{A \in \mathcal{A}}\|A x\| \leq \frac{2 n_{0}}{r}<\infty
$$

Remark 93. We didn't use that Y is a Banach space. Given Y a normed linear space that's not complete, we could always embed Y in its metric closure, which turns out to be a Banach space, and then apply Banach-Steinhaus.

Corollary 94. Suppose X, Y are Banach spaces; suppose $\left(T_{n}: n \in \mathbb{N}\right)$ are in $\mathcal{B}(X, Y)$ such that

$$
\lim _{n \rightarrow \infty} T_{n} x
$$

which we define to be $T x$, exists for all $x \in X$. Then $T \in \mathcal{B}(X, Y)$.
Proof. Since $T_{n} x \rightarrow T x$ for all $x \in X$, we have that

$$
\sup _{n \geq 1}\left\|T_{n} x\right\|=k_{x}<\infty
$$

By the uniform boundedness principle, we have

$$
\sup _{n \geq 1}\left\|T_{n}\right\|=L<\infty
$$

Thus

$$
\|T x\|=\lim _{n \rightarrow \infty}\left\|T_{n} x\right\| \leq L\|x\|
$$

So T is continuous. Also, T is linear, since

$$
\begin{aligned}
T(a x+y) & =\lim _{n \rightarrow \infty} T_{n}(a x+y) \\
& =\lim _{n \rightarrow \infty}\left(a T_{n} x+T_{n} y\right) \\
& =a T x+T y
\end{aligned}
$$

So $T \in \mathcal{B}(X, Y)$.
Theorem 95 (Open mapping theorem). Suppose X, Y are Banach spaces. Suppose $T \in \mathcal{B}(X, Y)$ is surjective. Then T is open. (That is, for open $U \subseteq X$, we have $T U$ is open.)

Proof. We are given that

$$
Y=T X=\bigcup_{n=1}^{\infty} T\left(b_{n}(X)\right)
$$

By the Baire category theorem, there is $n_{0} \in \mathbb{N}, x_{0} \in X$, and $r>0$ such that

$$
\overline{T\left(b_{n_{0}}(X)\right)} \supseteq b_{r}\left(x_{0}\right)
$$

Note then that

$$
\begin{aligned}
\overline{T\left(b_{1}(x)\right)} & \supseteq \overline{T\left(B_{\frac{1}{2}}(0)\right)}-\overline{T\left(B_{\frac{1}{2}}(0)\right)} \\
& \supseteq b_{\frac{r}{2 n_{0}}}\left(\frac{x_{0}}{2 n_{0}}\right)-b_{\frac{r}{2 n_{0}}}\left(\frac{x_{0}}{2 n_{0}}\right) \\
& =b_{\frac{r}{n_{0}}}(0)
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{T\left(b_{1}(x)\right)} & =\frac{1}{n_{0}} \overline{T\left(b_{n_{0}}(x)\right)} \\
& \supseteq b_{\frac{r}{n_{0}}}\left(\frac{x_{0}}{n_{0}}\right)
\end{aligned}
$$

So

$$
\overline{T\left(b_{1}(X)\right)} \supseteq b_{\rho}(0)
$$

for some $\rho>0$.
Claim 96. If $\varepsilon>0$, then

$$
T\left(b_{1+\varepsilon}(x)\right) \supseteq \overline{T\left(b_{1}(x)\right)}
$$

Proof. Fix $y \in \overline{T b_{1}(x)}$. Pick $x_{0} \in X$ with $\left\|x_{0}\right\| \leq 1$ and

$$
\left\|T x_{0}-y\right\|<\frac{\varepsilon \rho}{2}
$$

Let $y_{0}=T x_{0}$; then

$$
\left\|y-y_{0}\right\|<\frac{\varepsilon}{2} \rho
$$

So

$$
\begin{aligned}
y-y_{0} & \in \overline{T\left(b_{\frac{\varepsilon}{2}}\right)} \\
& =\frac{\varepsilon}{2} \overline{T\left(b_{1}(x)\right)} \\
& \supseteq \frac{\varepsilon}{2} b_{\rho}(0) \\
& =b_{\frac{\varepsilon \rho}{2}}(0)
\end{aligned}
$$

Pick $x_{1} \in X$ with

$$
\left\|x_{1}\right\|<\frac{\varepsilon}{2}
$$

such that

$$
\left\|T x_{1}-\left(y-y_{0}\right)\right\|<\frac{\varepsilon \rho}{4}
$$

And again let $y_{1}=T x_{1}$. Recursively select $x_{n+1} \in X$ with

$$
\left\|x_{n+1}\right\|<\frac{\varepsilon}{2^{n+1}}
$$

and

$$
\left\|y_{n+1}-\left(y-y_{0}-y_{1}-\cdots-y_{n}\right)\right\|<\frac{\varepsilon \rho}{2^{n+2}}
$$

where $y_{n+1}=T x_{n+1}$. Let

$$
x=\sum_{n=0}^{\infty} x_{n}
$$

This converges because

$$
\sum_{n=0}^{\infty}\left\|x_{n}\right\|<1+\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n}}=1+\varepsilon
$$

and in particular we also get $\|x\|<1+\varepsilon$. Then

$$
\begin{aligned}
T x & =\sum_{n=0}^{\infty} T x_{n} \\
& =\sum_{n=0}^{\infty} y_{n} \\
& =\lim _{n \rightarrow \infty} y_{0}+\cdots+y_{n} \\
& =y
\end{aligned}
$$

Claim 96
So

$$
T\left(B_{1+\varepsilon}(x)\right) \supseteq \overline{T\left(b_{1}(x)\right)} \supseteq b_{\rho}(0)
$$

So

$$
T\left(b_{1}(x)\right) \supseteq b_{\frac{\rho}{1+\varepsilon}}(0)
$$

Let $\varepsilon \rightarrow 0$. Then

$$
T\left(b_{1}(x)\right) \supseteq b_{\rho}(0)
$$

Let U be open; suppose $x \in U$. Then there is $r>0$ such that $b_{r}(x) \subseteq U$. Let $y=T x$. Then

$$
\begin{aligned}
T(U) & \supseteq T\left(b_{r}(x)\right) \\
& =T x+T\left(b_{r}(0)\right) \\
& \supseteq T x+b_{\frac{r}{\rho}}(0) \\
& =b_{\frac{r}{\rho}}(0)
\end{aligned}
$$

So $T U$ is open.
Theorem 97 (Banach isomorphism theorem). If X, Y are Banach spaces and $T: X \rightarrow Y$ is a continuous linear bijection then T is an isomorphism. (i.e. T^{-1} is also continuous.)

Proof. T is surjective, so it is open by the open mapping theorem. T is injective, so T^{-1} is well-defined and linear. If $U \subseteq X$ is open, then $\left(T^{-1}\right)^{-1}(U)=T(U)$ is open. So T^{-1} is continuous.Theorem 97

Corollary 98. Suppose X, Y are Banach spaces. Suppose $T \in \mathcal{B}(X, Y)$ is surjective. Then we have the following commutative diagram

and in particular we have \dot{T} is an isomorphism $X / \operatorname{ker}(T) \rightarrow Y$.
Proof. T is continuous so $\operatorname{ker}(T)$ is a closed subspace. So $X / \operatorname{ker}(T)$ is a Banach space. Define $\dot{T}(\dot{x})=T x$; this is well-defined since if $x_{1}, x_{2} \in \dot{x}$, then $x_{1}-x_{2} \in \operatorname{ker}(T)$, and

$$
\begin{aligned}
T x_{2} & =T x_{1}+T\left(x_{2}-x_{1}\right) \\
& =T x_{1}+0 \\
& =T x_{1}
\end{aligned}
$$

Also

$$
\begin{aligned}
\|\dot{T}\| & =\sup _{\|\dot{x}\| \leq 1}\|\dot{T} \dot{x}\| \\
& =\sup _{\inf _{m \in \operatorname{ker}(T)}\|x+m\| \leq 1}\|T x\| \\
& =\sup _{\inf _{m \in \operatorname{ker}(T)}\|x+m\| \leq 1}\|T(x+m)\| \\
& \leq \sup _{\inf _{m \in \operatorname{ker}(T)}\|x+m\| \leq 1}\|T\|\|x+m\|
\end{aligned}
$$

If $\varepsilon>0$ then there is $x+m \in \dot{x}$ such that

$$
\|x+m\|<(1-\varepsilon)+\varepsilon=1
$$

So this yields $\|\dot{T}\|=\|T\|$. So \dot{T} is continuous and bijective. By the Banach isomorphism theorem, we have that \dot{T} is an isomorphism. Corollary 98

Corollary 99. Suppose X is a Banach space with respect to two different norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. If there is a constant C such that

$$
\|x\|_{2} \leq C\|x\|_{1}
$$

for all $x \in X$, then there is C^{\prime} such that

$$
\left\|x_{1}\right\| \leq C^{\prime}\|x\|_{2}
$$

for all $x \in X$.
Proof. Hypothesis says that

$$
\operatorname{id}_{X}:\left(X,\|\cdot\|_{1}\right) \rightarrow\left(X,\|\cdot\|_{2}\right)
$$

is a continuous, linear bijection; so it is an isomorphism. So

$$
\|x\|_{1}=\left\|\left(\mathrm{id}_{X}\right)^{-1} x\right\|_{1} \leq\left\|\operatorname{id}_{X}^{-1}\right\|\|x\|_{2}
$$

Corollary 100. If X is a finite-dimensional vector space over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$, then any two norms on X are comparable. So the topology with respect to any norm is the usual metric topology in \mathbb{F}^{n}.

Proof. Let $\|\cdot\|_{1}$ be some norm on $X=\mathbb{F}^{n}$. Fix a basis e_{1}, \ldots, e_{n}. Define the usual norm on X by

$$
\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

Then

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{1} & \leq \sum_{i=1}^{n}\left|x_{i}\right|\left\|e_{i}\right\|_{1} \\
& \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n}\left\|e_{i}\right\|_{1}^{2}\right)^{\frac{1}{2}} \text { by Cauchy-Schwarz } \\
& =C\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{2}
\end{aligned}
$$

so id: $\left(X,\|\cdot\|_{2}\right) \rightarrow\left(X,\|\cdot\|_{1}\right)$ is a continuous bijection; so it is an isomorphism.
Alternative proof: let $S=\left\{x \in X:\|x\|_{2}=1\right\}$; then this is compact. So $\operatorname{id}(S)$ is compact in $\left(X,\|\cdot\|_{1}\right)$. But $0 \notin S$; so

$$
\inf _{x \in S}\|x\|_{1}=r>0
$$

So $\|x\|_{1} \geq r\|x\|_{2}$, and

$$
\|x\|_{2} \leq \frac{1}{r}\|x\|_{1}
$$

Corollary 100
Definition 101. If $T: M \subseteq X \rightarrow Y$ is linear, the graph of T is

$$
\mathcal{G}(T)=\{(x, T x) \in X \oplus Y\}
$$

(Note that $X \oplus Y$ is a Banach space with norm $\|(x, y)\|=\|x\|+\|y\|\left(\right.$ or $(\|x\|+\|y\|)^{\frac{1}{2}}$, which produces an equivalent norm).) T is called closed if $\mathcal{G}(T)$ is closed.

Theorem 102 (Closed graph theorem). If $T: X \rightarrow Y$ is linear (and defined on all of X) and T is closed, then T is continuous.

Proof. We have the following commutative diagram

where π_{1} and π_{2} are both continuous. So π_{1} is injective and surjective to X; so π_{1}^{-1} is continuous. So $T=\pi_{2} \circ \pi_{1}^{-1}$.
\square Theorem 102
Corollary 103. Suppose $T: X \rightarrow Y$ is linear; suppose that whenever $\left(x_{n}: n \in \mathbb{N}\right) \rightarrow 0$ and $\left(T x_{n}: n \in \mathbb{N}\right)$ converges, we have that $\left(T x_{n}: n \in \mathbb{N}\right) \rightarrow 0$.

Proof. Suppose $\left(\left(x_{n}, T x_{n}\right): n \in \mathbb{N}\right)$ is in $\mathcal{G}(T)$ and converges to $\left(x_{0}, y_{0}\right) \in X \oplus Y$. Then $\left(x_{n}-x_{0}: n \in \mathbb{N}\right) \rightarrow 0$. So

$$
T\left(x_{n}-x_{0}\right)=T x_{n}-T x_{0} \rightarrow y_{0}-T x_{0}
$$

By hypothesis, we have $y_{0}-T x_{0}=0$, and $y=T x_{0}$. So $\mathcal{G}(T)$ is closed.
Example 104. Suppose \mathcal{H} is a HIlbert space; suppose $T: \mathcal{H} \rightarrow \mathcal{H}$ is linear and $\langle T x, y\rangle=\langle x T y\rangle$ for all $x, y \in \mathcal{H}$.
Claim 105. T is continuous.
Proof. Suppose $x_{n} \rightarrow 0$; suppose $T x_{n} \rightarrow y$. Then

$$
\|y\|^{2}=\langle y, y\rangle=\lim \left\langle T x_{n}, y\right\rangle=\lim \left\langle x_{n}, T y\right\rangle=0
$$

since the $x_{n} \rightarrow 0$. So $y=0$. By closed graph theorem, we have that T is continuous.

Example 106. $\mathcal{H}=\ell_{2}$. Let

$$
\begin{gathered}
D\left(\left(x_{n}\right)\right)=\left(\frac{x_{n}}{n}\right)_{n \geq 1} \\
D=\left(\begin{array}{lll}
1 & & 0 \\
& \frac{1}{2} & \\
& & \frac{1}{3}
\end{array}\right)
\end{gathered}
$$

is continuous with $\|D\|=1$. But $\operatorname{Ran}(D)$ is not closed as

$$
\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \notin \operatorname{Ran}(D)
$$

D is injective and $D: \ell_{2} \rightarrow \operatorname{Ran}(D)$ is bijective. Then

$$
\mathcal{G}\left(D^{-1}\right)=\left\{(D x, x): x \in \ell_{2}\right\}
$$

is closed because D is continuous. So D^{-1} is closed but not continuous, as $D^{-1}\left(e_{n}\right)=n e_{n}$ is unbounded.

3.3 Some Fourier series

Definition 107. If $f \in L^{1}(\mathbb{T})$, define the Fourier coefficients

$$
\widehat{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) \exp (-i n \theta) d \theta
$$

for $n \in \mathbb{Z}$. For $N \geq 0$, define

$$
S_{N}(f)=\sum_{k=-N}^{N} \widehat{f}(k) \exp (i k \theta)
$$

Remark 108. The functional $\varphi_{n}(f)=\widehat{f}(n)$ is continuous on $L^{1}(\mathbb{T})$, and hence is continuous on $C(\mathbb{T})$ and on $L^{p}(\mathbb{T})$ for $1<p \leq \infty$. So the S_{N} are also continuous on the above.

Recall also that the trigonometric polynomials

$$
\left\{p(\theta)=\sum_{k=-N}^{N} a_{k} \exp (i k \theta), a_{k} \in \mathbb{C}, N \geq 1\right\}
$$

are dense in $C(\mathbb{T})$ by the Weierstrass theorem. We also have $C(\mathbb{T})$ is dense in $L^{p}(\mathbb{T})$ if $1 \leq p<\infty$ by Lusin's theorem. So the trigonometric polynomials are dense in $L^{p}(\mathbb{T})$ if $1 \leq p<\infty$. (We also have that $f \in L^{\infty}$ is a bounded pointwise limit of continuous functions.)

Perhaps there is hope, then, that $S_{N}(f) \rightarrow f$ in L^{p} or $C(\mathbb{T})$: if

$$
\|f-p\|<\varepsilon
$$

then

$$
\left\|S_{N}(f)-S_{N}(p)\right\| \leq\left\|S_{N}\right\|\|f-p\|<\varepsilon\left\|S_{N}\right\|
$$

So

$$
\left\|S_{N}(f)-f\right\| \leq\left\|S_{N}(f)-S_{N}(p)\right\|+\left\|S_{N}(p)-p\right\|+\|p-f\| \leq\left(\left\|S_{N}\right\|+1\right)\|f-p\|
$$

for $N \geq \operatorname{deg}(p)$. The problem is that the $\left\|S_{N}\right\|$ could blow up.
Good news: in $L^{2}(\mathbb{T})$, we have that $\{\exp (\operatorname{in} \theta): n \in \mathbb{Z}\}$ is an orthonormal basis for $L^{2}(\mathbb{T})$, and

$$
\widehat{f}(n)=\langle f, \exp (i n \theta)\rangle
$$

So S_{N} is the orthogonal projection onto

$$
\operatorname{span} \exp (i n \theta):-N \leq n \leq N
$$

So $\left\|S_{N}\right\|=1$ for all $N \geq 0$, and $S_{N}(f) \rightarrow f$ for all $f \in L^{2}(\mathbb{T})$. If $1<p<\infty$, then

$$
\sup _{N \geq 1}\left\|S_{n}\right\|_{\mathcal{B}\left(L^{p}\right)}<\infty
$$

So $S_{N}(f) \rightarrow f$ in L^{p}.
Not so nice in $L^{1}(\mathbb{T})$ or $C(\mathbb{T})$. Note, however, that

$$
\begin{aligned}
S_{N}(f)(\theta) & =\sum_{n=-N}^{N} \widehat{f}(k) \exp (i k \theta) \\
& =\sum_{n=-N}^{N} \frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \exp (-i k t) d t \exp (i k \theta) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t)\left(\sum_{k=-N}^{N} \exp (i k(\theta-t)) d t\right. \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) D_{N}(\theta-t) d t
\end{aligned}
$$

where

$$
D_{N}(x)=\sum_{k=-N}^{N} \exp (i k x)
$$

We estimate $\left\|D_{N}\right\|_{1}$:

$$
\begin{aligned}
D_{N}(\theta) & =\sum_{k=-N}^{N} \exp (i k \theta) \\
& =\frac{\exp (i(N+1) \theta)-\exp (-i N \theta)}{\exp (i \theta-1)} \\
& =\frac{\exp \left(i\left(N+\frac{1}{2}\right) \theta\right)-\exp \left(-i\left(N+\frac{1}{2}\right) \theta\right)}{2 i} \frac{2 i}{\exp \left(i \frac{\theta}{2}\right)-\exp \left(-i \frac{\theta}{2}\right)} \\
& =\frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{\sin \left(\frac{1}{2} \theta\right)}
\end{aligned}
$$

So $D_{N}(0)=2 N+1$; so $\left\|D_{N}\right\|_{\infty} \rightarrow \infty$ as $N \rightarrow \infty$. Also

$$
\begin{aligned}
\left\|D_{N}\right\|_{1} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{\sin \left(\frac{\theta}{2}\right)}\right| d \theta \\
& \geq \frac{1}{\pi} \int_{0}^{\pi}\left|\frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{\frac{\theta}{2}}\right| d \theta \\
& \left.=\frac{2}{\pi} \int_{0}^{\left(N+\frac{1}{2}\right) \pi} \frac{|\sin (x)|}{x} d x \text { (using the substitution } x=\left(N+\frac{1}{2}\right) \theta\right) \\
& \geq \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\sin (x)}{x} d x+\sum_{k=1}^{2 N} \frac{2}{\pi} \int_{k \frac{\pi}{2}}^{(k+1) \frac{\pi}{2}} \frac{|\sin (x)|}{(k+1) \frac{\pi}{2}} d x \\
& \geq \frac{2}{\pi} \frac{\pi}{4}+\sum_{k=1}^{2 N} \frac{2}{\pi} \frac{2}{\pi} \frac{1}{k+1} \int_{0}^{\frac{\pi}{2}} \sin (x) d x \\
& =\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{k=2}^{2 N+1} \frac{1}{k} \\
& \approx \frac{4}{\pi^{2}} \log (N) \\
& \rightarrow \infty
\end{aligned}
$$

Theorem 109. For $\theta_{0} \in[0,2 \pi]$, we have that

$$
\left\{f \in C(\mathbb{T}): S_{N}(f)\left(\theta_{0}\right) \rightarrow f\left(\theta_{0}\right)\right\}
$$

is of first category.
Proof. If $S_{N}(f)\left(\theta_{0}\right) \rightarrow f\left(\theta_{0}\right)$, then

$$
\left\{S_{N}(f)\left(\theta_{0}\right): N \geq 1\right\}
$$

is bounded. Consider the functional

$$
\begin{aligned}
\psi_{N}(f) & =S_{N}(f)\left(\theta_{0}\right) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) D_{N}\left(\theta_{0}-t\right) d t
\end{aligned}
$$

We can pick $f_{\varepsilon} \in C(\mathbb{T})$ such that

$$
f_{\varepsilon}(t)= \begin{cases}1 & D_{N}\left(\theta_{0}-t\right) \geq \varepsilon \\ -1 & D_{N}\left(\theta_{0}-t\right) \leq-\varepsilon \\ \text { piecewise linear } & \text { else }\end{cases}
$$

But

$$
\left|\psi_{N}\left(f_{\varepsilon}\right)\right| \rightarrow\left\|D_{N}\right\| \approx \frac{4}{\pi^{2}} \log (N) \rightarrow \infty
$$

But $\left\|f_{\varepsilon}\right\|_{\infty}=1$. So

$$
\sup _{N \geq 1}\left\|\psi_{N}\right\|=\infty
$$

By the uniform boundedness principle, there is $f \in C(\mathbb{T})$ such that $\left|\psi_{N}(f)\right| \rightarrow \infty$. In fact, from the proof, we have that

$$
\left\{f: S_{N}(f)\left(\theta_{0}\right) \text { is bounded }\right\}
$$

is of first category.Theorem 109

Corollary 110.

$$
\left\{f \in C(\mathbb{T}): S_{N}(f)(\theta) \text { is bounded for some } \theta \in \mathbb{Q} \cap[0,2 \pi]\right\}
$$

is of first category.
Theorem 111 (Carleson, 1962). If $f \in L^{p}(\mathbb{T})$ for $p>1$ (which then contains $C(\mathbb{T})$) then $S_{N}(f) \rightarrow f$ almost everywhere.

Proposition 112 (Kolmogorov, before 1960). There is $f \in L^{1}(\mathbb{T})$ such that $S_{N}(f)$ diverges almost everywhere.
Theorem 113. The map

$$
\begin{aligned}
\Lambda: L^{1}(\mathbb{T}) & \rightarrow c_{0}(\mathbb{Z}) \\
f & \mapsto \widehat{f}
\end{aligned}
$$

is injective and bounded but not surjective.
Proof. Well,

$$
\begin{aligned}
|\widehat{f}(n)| & =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\exp (i \theta)) \exp (-i n \theta) d \theta\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(\exp (i \theta))| d \theta \\
& =\|f\|_{1}
\end{aligned}
$$

So $\|\Lambda f\|=\sup |\widehat{f}(n)| \leq\|f\|_{1}$.

Lemma 114 (Riemann-Lebesgue lemma). If $f \in L^{1}(\mathbb{T})$, then $|\widehat{f}(n)| \rightarrow 0$ as $n \rightarrow \infty$.
Proof. If $\varepsilon>0$, pick p a trigonometric polynomial such that $\|f-p\|_{1}<\varepsilon$. Then

$$
\begin{aligned}
|\widehat{f}(n)| & =|(\widehat{f-p})(n)+\widehat{p}(n)| \\
& =|(\widehat{f-p})(n)| \\
& \leq\|f-p\|_{1} \\
& <\varepsilon
\end{aligned}
$$

for $|n|>\operatorname{deg}(p)$.Lemma 114

So $\Lambda f \in c_{0}(\mathbb{Z})$.
Claim 115. Λ is injective.
Proof. Suppose $f \in L^{1}(\mathbb{T})$; suppose $\Lambda f=0$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) \exp (-i n \theta d \theta=0
$$

for all $n \in \mathbb{Z}$. So

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) p(\theta) d \theta=0
$$

for all trigonometric polynomials. But for $g \in C(\mathbb{T})$, there exist trigonometric polynomials $p_{n} \rightarrow g$ uniformly with $\left\|p_{n}\right\|_{\infty} \leq\|g\|_{\infty}$. So

$$
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) p_{n}(\theta) d \theta \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) g(\theta) d \theta
$$

by Lebesgue dominated convergence theorem. Find bounded g_{n} with

$$
g_{n} \rightarrow \frac{\overline{f(\theta)}}{|f(\theta)|}
$$

almost everywhere. Then

$$
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) g_{n}(\theta) d \theta \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi}|f| d \theta
$$

So $f=0$ almost everywhere.Claim 115

Claim 116. Λ is not surjective.
Proof. If Λ were surjective, then by the Banach isomorphism theorem Λ would be an isomorphism. So for all $f \in L^{1}(\mathbb{T})$ we would have

$$
\|f\|_{1} \leq C\|\Lambda f\|_{\infty}
$$

But $\left\|D_{N}\right\|_{1} \approx \frac{4}{\pi^{2}} \log (N)$ and $\left\|\Lambda D_{n}\right\|_{\infty}=1$, contradicting the above.Claim 116 Theorem 113

We can do better using the Cesàro means (via Fejér's theorem) or

$$
f(r \exp (i \theta))=\sum_{k=-\infty}^{\infty} r^{|k|} \widehat{f}(k) \exp (i k \theta)
$$

3.4 Hahn-Banach theorems

Definition 117. Suppose X is a vector space over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Suppose $f: X \rightarrow \mathbb{F}$ linear is a functional. A function $p: X \rightarrow \mathbb{R}$ is sublinear if

1. $p(x+y) \leq p(x)+p(y)$
2. $p(t x)=t p(x)$ if $t \geq 0$

Example 118.

1. If X is normed, then $p(x)=\|x\|$ is sublinear.
2. If X has a topology and $U \in \mathcal{O}(0)$, then

$$
\bigcup_{k \geq 1} k U=X
$$

If we further have that U is convex, we can define the Minkowski functional by

$$
p_{U}(x)=\inf \{t>0: x \in t U\}
$$

It is easily seen that $p_{U}(s x)=s p_{U}(x)$ for $s>0$. If $p_{U}(x)=s$ and $p_{U}(y)=t$, then $x \in s^{\prime} U$ if $s^{\prime}>s$ and $y \in t^{\prime} U$ if $t^{\prime}>t$. So

$$
\frac{1}{s^{\prime}} x, \frac{1}{t^{\prime}} y \in U
$$

By convexity of U, we then have that

$$
\frac{x+y}{s^{\prime}+t^{\prime}}=\frac{s^{\prime}}{s^{\prime}+t^{\prime}} \frac{1}{s^{\prime}} x+\frac{t^{\prime}}{s^{\prime}+t^{\prime}} \frac{1}{t^{\prime}} y \in U
$$

So $x+y \in\left(s^{\prime}+t^{\prime}\right) U$, and $p_{U}(x+y) \leq s^{\prime}+t^{\prime}$. Letting $s^{\prime} \rightarrow s, t^{\prime} \rightarrow t$, sublinearity falls out.
Theorem 119. Suppose M_{0} is a real vector subspace of X (where X is a real vector space). Suppose p is a sublinear functional on X. Suppose $f_{0}: M_{0} \rightarrow \mathbb{R}$ is a linear functional. Suppose $f_{0}(m) \leq p(m)$ for all $m \in M_{0}$. Then there is $f: X \rightarrow \mathbb{R}$ linear such that

1. $f \upharpoonright M_{0}=f_{0}$
2. $f(x) \leq p(x)$ for all $x \in X$.

Proof. Extending by 1 dimension, if $M_{0} \neq X$, pick $x \in X \backslash M_{0}$. Let $M=M_{0}+\mathbb{R} x$; try to extend the definition of f_{0} to $f: M \rightarrow \mathbb{R}$. In order to set $f(x)=a \in \mathbb{R}$, we need

$$
f(m+t x) \leq p(m+t x)
$$

If $t>0$, we get $f(m)+t f(x) \leq p(m+t x)$; if $t<0$ we get $f(m)-|t| f(x) \leq p(m-|t| x)$.
Case 1. Suppose $t>0$. Then we need

$$
\begin{gathered}
t f(x) \leq p(m+t x)-f(m) \\
a=f(x) \leq \frac{p(m+t x)-f(m)}{t}
\end{gathered}
$$

Case 2. Suppose $t<0$. Then we need

$$
f(m)-p(m-|t| x) \leq|t| f(x)=|t| a
$$

so

$$
\frac{f(m)-p(m-|t| x)}{|t|} \leq a
$$

Conversely, if we can find a satisfying the above, then we define $f(m+t x)=f(m)+t a$ to get the desired extension. We then need

$$
\sup _{s \geq 0, m \in M_{0}} \frac{f(m)-p(m-s x)}{s} \leq a \leq \inf _{t \geq 0, m \in M_{0}} \frac{p(m+t x)-f(m)}{t}
$$

If $m^{\prime}=\frac{m}{s}$, then

$$
\begin{aligned}
\mathrm{LHS} & =\sup _{m^{\prime} \in M_{0}}\left(f\left(m^{\prime}\right)-p\left(m^{\prime}-x\right)\right) \\
\mathrm{RHS} & =\inf _{m^{\prime} \in M_{0}} p\left(m^{\prime}+x\right)-f\left(m^{\prime}\right)
\end{aligned}
$$

Claim 120. LHS \leq RHS .
Proof. Otherwise there is $m_{1}, m_{2} \in M$ such that

$$
p\left(m_{2}+x\right)-f\left(m_{2}\right)<f\left(m_{1}\right)-p\left(m_{1}-x\right)
$$

and

$$
p\left(m_{1}+m_{2}\right) \leq p\left(m_{2}+x\right)+p\left(m_{1}-x\right)<f\left(m_{1}+m_{2}\right) \leq p\left(m_{1}+m_{2}\right)
$$

a contradiction.
So we can extend $\left(f_{0}, M_{0}\right)$ to (f, M) by choosing any $a \in[\mathrm{LHS}, \mathrm{RHS}]$.
We now use Zorn's lemma. Consider

$$
\mathcal{E}=\left\{(M, f): M_{0} \subseteq M \text { a subspace, } f: M \rightarrow \mathbb{R} \text { linear, } f \upharpoonright M_{0}=f_{0}, f(x) \leq p(x) \text { for all } x \in M\right\}
$$

We can equip this with the partial order $\left(M_{1}, f_{1}\right) \leq\left(M_{2}, f_{2}\right)$ if $M_{1} \subseteq M_{2}$ and $f_{2} \upharpoonright M_{1}=f_{1}$. Suppose now that $\mathcal{C}=\left\{\left(M_{\alpha}, f_{\alpha}\right): \alpha \in I\right\}$ is a chain in \mathcal{E} with I a total order and $\alpha<\beta$ in I implies $\left(M_{\alpha}, f_{\alpha}\right) \leq\left(M_{\beta}, f_{\beta}\right)$. Let

$$
M=\bigcup_{\alpha \in I} M_{\alpha}
$$

Then M is a vector space containing all of the M_{α}. Let

$$
f=\bigcup_{\alpha \in I} f_{\alpha}
$$

Then f is linear and $f \upharpoonright M_{\alpha}=f_{\alpha}$. So if $x \in M$, then there is $\alpha \in I$ such that $x \in M_{a}$; then $f(x)=f_{\alpha}(x) \leq$ $p(x)$. Also $M_{0} \subseteq M_{\alpha} \subseteq M$, so $f \upharpoonright M_{0}=f_{\alpha} \upharpoonright M_{0}=f_{0}$. So $(M, f) \in \mathcal{E}$ is an upper bound of \mathcal{C}.

So, by Zorn's lemma, we have that \mathcal{E} has a maximal element $(\widetilde{M}, \widetilde{f})$.
Claim 121. $\widetilde{M}=X$.
Proof. Otherwise there is $x \in X \backslash \widetilde{M}$. Let $M_{1}=\widetilde{M}+\mathbb{R} x$. By the first part of the proof, we can extend \widetilde{f} to f_{1} on M_{1} with $(\widetilde{M}, \widetilde{f})<\left(M_{1}, f_{1}\right)$, contradicting maximality.

Claim 121

Theorem 122 (Hahn-Banach theorem). Suppose X is a Banach space, $M_{0} \subseteq X$ is a subspace (not neceessarily closed). Suppose $f_{0} \in M_{0}^{*}$ is a bounded linear functional on M_{0}. Then there is $f \in X^{*}$ such that $f \upharpoonright M_{0}=f_{0}$ and $\|f\|=\left\|f_{0}\right\|$.

Proof.

Case 1. Suppose $\mathbb{F}=\mathbb{R}$. Define $p(x)=\left\|f_{0}\right\|\|x\|$; thus is positive-homogeneous and satisfies the triangle inequality, so is sublinear. Also $f_{0}(m) \leq\left\|f_{0}\right\|\|m\|=p(m)$ for all $m \in M_{0}$. So, by the previous theorem, there is a linear functional $f \in X^{*}$ such that $f \upharpoonright M_{0}=f_{0}$ and $f(x) \leq p(x)=\left\|f_{0}\right\|\|x\|$ for all $x \in X$. Then

$$
-f(x)=f(-x) \leq p(-x)=\left\|f_{0}\right\|\|x\|
$$

so

$$
-\left\|f_{0}\right\|\|x\| \leq f(x) \leq\left\|f_{0}\right\|\|x\|
$$

i.e. $|f(x)| \leq\left\|f_{0}\right\|\|x\|$. So $\|f\|=\left\|f_{0}\right\|$.

Case 2. Suppose $\mathbb{F}=\mathbb{C}$. Think of X as a vector space over \mathbb{R}. Let $g_{0}(m)=\operatorname{Re}\left(f_{0}(m)\right)$ for $m \in M_{0}$. Then

$$
g_{0}(m) \leq\left|f_{0}(m)\right| \leq\left\|f_{0}\right\|\|m\|
$$

By the first case, we can extend g_{0} to a continuous real linear functional $g: X \rightarrow \mathbb{R}$ such that $g \upharpoonright M_{0}=g_{0}$ and $\|g\| \leq\left\|g_{0}\right\| \leq\left\|f_{0}\right\|$.
Define $f(x)=g(x)+i g(-i x)$. Then f is continuous and \mathbb{R}-linear. Also,

$$
\begin{aligned}
f(i x) & =g(i x)+i g(-i(i x)) \\
& =i(g(x)+(-i) g(i x)) \\
& =i(g(x)+i g(-i x)) \\
& =i f(x)
\end{aligned}
$$

So f is \mathbb{C}-linear. Also, if $m \in M_{0}$, then

$$
\begin{aligned}
f(m) & =g(m)+i g(-i m) \\
& =g_{0}(m)+i g_{0}(-i m) \\
& =\operatorname{Re}\left(f_{0}(m)\right)+i \operatorname{Re}\left(f_{0}(-i m)\right) \\
& =f_{0}(m)
\end{aligned}
$$

since if $f_{0}(m)=a+i b$, then $f_{0}(-i m)=-i(a+i b)=b-i a$. Finally, if $x \in X$, then $f(x)=\exp (i \theta)|f(x)|$; so

$$
\begin{aligned}
|f(x)| & =f(\exp (-i \theta) x) \\
& =\operatorname{Re}(f(\exp (i \theta) x)) \\
& =g(\exp (-i \theta) x) \\
& \leq\left\|g_{0}\right\|\|\exp (-i \theta) x\| \\
& \leq\left\|f_{0}\right\|\|x\|
\end{aligned}
$$

So $\|f\| \leq\left\|f_{0}\right\|$.

Corollary 123. If X is a Banach space with $x \in X$, then there is $f \in X^{*}$ such that $\|f\|=1$ and $f(x)=\|x\|$.
Proof. Define f_{0} on $\mathbb{F} x$ by $f_{0}(\lambda x)=\lambda\|x\|$. Then

$$
\left\|f_{0}\right\|=\sup _{\lambda \in \mathbb{F}} \frac{|\lambda\|x\||}{\|\lambda x\|}=1
$$

We can then extend by the Hahn-Banach theorem.
Corollary 124. If $x \in X$ then

$$
\|x\|=\sup _{f \in X^{*},\|f\| \leq 1}|f(x)|
$$

Proof. Well, $|f(x)| \leq\|f\|\|x\| \leq\|x\|$. But by the corollary there is f with $\|f\|=1$ and $f(x)=\|x\|$. Corollary 124

Corollary 125. X^{*} separates points of X.
Proof. Suppose $x \neq y$. Then there is $f \in X^{*}$ such that $f(x)-f(y)=f(x-y) \neq 0$. So $f(x) \neq f(y)$. \square Corollary 125

Corollary 126. Suppose X is a Banach space with $M \subseteq X$ a closed subspace. Suppose $x \notin M$. Then there is $f \in X^{*}$ with $\|f\|=1$ such that $r \upharpoonright M=0$ and $f(x)=\operatorname{dist}(x, M)$.

Proof. Let $q: X \rightarrow X / M$ be the quotient map. Then $q(x)=\dot{x} \neq 0$. Then

$$
\|\dot{x}\|=\inf _{m \in M}\|x-m\|=\operatorname{dist}(x, M)
$$

By one of the previous corollaries, there is $g \in(X / M)^{*}$ such that $\|g\|=1$ and $g(\dot{x})=\|\dot{x}\|$. Let $f=g \circ q$; then $\|f\| \leq\|g\|\|q\|=1 \cdot 1=1$, and

$$
f(x)=g(\dot{x})=\|\dot{x}\|=\operatorname{dist}(x, M)
$$

Furthermore, for $m \in M$, we have $f(m)=g(\dot{m})=g(0)=0$.
If X is a Banach space, there is a natural map $X \rightarrow X^{* *}$ by $x \mapsto \widehat{x}$ where $\widehat{x}(f)=f(x)$.
Proposition 127. The natural map $X \rightarrow X^{* *}$ is isometric.
Proof. Well

$$
\begin{aligned}
\|\widehat{x}\| & =\sup _{f \in X^{*},\|f\| \leq 1}|\widehat{x}(f)| \\
& =\sup _{f \in X^{*},\|f\| \leq 1}|f(x)| \\
& =\|x\|
\end{aligned}
$$

by a previous corollary.
Proposition 127
Definition 128. X is reflexive if $X=X^{* *}$; i.e. the natural map above is surjective.
We get chains

$$
X \subseteq X^{* *} \subseteq X^{* * * *} \subseteq X^{* * * * * *} \subseteq \ldots
$$

and

$$
X^{*} \subseteq X^{* * *} \subseteq X^{* * * * *} \subseteq \ldots
$$

Proposition 129. If $X \neq X^{* *}$, then $X^{*} \neq X^{* * *}$.
Proof. If $X \neq X^{* *}$, then there is $y \in X^{* *} \backslash X$. By a previous corollary, there is $f \in X^{* * *}$ such that $f \upharpoonright X=0$ and $f(y) \neq 0$. But if $g \in X^{*}$ and $g \upharpoonright X=0$, then $g=0$, and $\widehat{g}=0$. So $f \neq \widehat{g}$ for any $g \in X^{*}$. So $X^{*} \neq X^{* * *}$.
\square Proposition 129
Example 130.

1. Suppose \mathcal{H} is a Hilbert space. Then \mathcal{H}^{*} is $\overline{\mathcal{H}}$, and $\mathcal{H}^{* *}$ is $\overline{\overline{\mathcal{H}}}=\mathcal{H}$. So \mathcal{H} is reflexive.
2. Suppose $1<p<\infty$. Then $\ell_{p}^{*}=\ell_{q}$ for $\frac{1}{p}+\frac{1}{q}=1$. Then $\ell_{p}^{* *}=\ell_{q}^{*}=\ell_{p}$. So ℓ_{p} is reflexive. Similarly for $L^{p}(\mu)$ for $1<p<\infty$.
3. $c_{0}^{*}=\ell_{1}$ and $\ell_{1}^{*}=\ell_{\infty}$; so c_{0} is not reflexive.
4. $L^{1}(0,1)^{*}=L^{\infty}(0,1)$ which is not separable; so $L^{\infty}(0,1)^{*}$ is not separable; So $L^{1}(0,1)$ is not reflexive.
5. $C[0,1]^{*}=M([0,1]) \supseteq L^{1}(0,1)$ (where $M([0,1])$ is the set of finite regular complex Borel measures). So $C[0,1]^{*}$ is not reflexive.
6. If $\operatorname{dim}(X)<\infty$ then $\operatorname{dim}\left(X^{*}\right)=\operatorname{dim}(X)$.

Example 131 (Banach limits). Weant a map L which takes a bounded sequence $x=\left(x_{n}: n<\omega\right)$ of real numbers and satisfies

1. $\liminf x_{n} \leq L(x) \leq \limsup x_{n}$
2. $L(x)=L(S x)$ where $S x=\left(x_{n+1}: n<\omega\right)$. (Translation-invariance.)

This is called a Banach limit. So we're looking for a continuous linear functional L on $\ell_{\infty, \mathbb{R}}$ of norm 1 . Let $M=\operatorname{span} x-S x: x \in \ell_{\infty, \mathbb{R}}$. We need

1. $L \upharpoonright M=0$
2. If $u=(1: n<\omega)$, then we need $L(u)=1$.
Claim 132. $\operatorname{dist}(u, M)=1$.
Proof. Well, $\operatorname{dist}(u, M) \leq\|u-0\|=1$. Suppose $x \in \ell_{\infty, \mathbb{R}}$ satisfies $\|u-(x-S x)\|=1-\varepsilon<1$. Write $x=\left(x_{n}: n<\omega\right)$; then $S x=\left(x_{n+1}: n<\omega\right)$. Then $u-(x-S x)=\left(1-\left(x_{n}-x_{n+1}\right): n<\omega\right)$. So $1-\left(x_{n}-x_{n+1}\right) \leq 1-\varepsilon$; so

$$
x_{n+1} \leq x_{n}-\varepsilon \leq x_{n-1}-2 \varepsilon \leq \cdots \leq x_{1}-n \varepsilon
$$

So $\left(x_{n}: n \in \mathbb{N}\right) \rightarrow-\infty$, contradicting boundedness.
Claim 132
By one of the corollaries, we then have $L \in \ell_{\infty, \mathbb{R}}^{*}$ with $\|L\|=1$ such that $L \upharpoonright M=0$ and $L(u)=1$. Thus, for $x \in \ell_{\infty, \mathbb{R}}$ we have $L(x)-L(S x)=L(x-S x)=0$; so L is translation-invariant.

Claim 133. If $x \in c_{0}$, then $L(x)=0$.
Proof. Say $x \in c_{0}$. Then $S_{n} x=\left(x_{n+i}: i \in \mathbb{N}\right) ;$ so $S^{n} x \rightarrow 0$ in ℓ_{∞}. But

$$
x-S^{n} x=(x-S x)+\left(S x-S^{2} x\right)+\cdots+\left(S^{n-1} x-S^{n} x\right)
$$

and each summand is in M; so $L(x)=L\left(S^{n} x\right) \rightarrow L(0)=0$. So $L(x)=0$.
Claim 133
Take $x \in \ell_{\infty, \mathbb{R}}$; let

$$
\begin{aligned}
& \alpha=\liminf x_{n} \\
& \beta=\limsup x_{n}
\end{aligned}
$$

Write $x=y+z$ with $\alpha \leq y_{n} \leq \beta, z \in c_{0}$. Then $L(x)=L(y)+L(z)=L(y)$. Let

$$
w_{n}=y_{n}-\frac{\alpha+\beta}{2} \in\left[-\frac{\beta-\alpha}{2}, \frac{\beta-\alpha}{2}\right]
$$

Let $w=\left(w_{n} ; n \in \mathbb{N}\right)$. Then

$$
y=\left(\frac{\alpha+\beta}{2}\right) u+w
$$

So

$$
|L(w)| \leq\|w\| \leq \frac{\beta-\alpha}{2}
$$

So

$$
-\frac{\beta-\alpha}{2} \leq L(w) \leq \frac{\beta-\alpha}{2}
$$

So

$$
\begin{aligned}
\alpha & =-\frac{\beta-\alpha}{2}+\frac{\beta-\alpha}{2} \\
& \leq L(y) \\
& =L(w)+\left(\frac{\alpha+\beta}{2}\right) L(u) \\
& \leq \frac{\beta-\alpha}{2}+\frac{\alpha+\beta}{2} \\
& =\beta
\end{aligned}
$$

So we have the desired properties.
Remark 134. We can extend L to \widetilde{L} on ℓ_{∞} by

$$
\widetilde{L}(x)=L(\operatorname{Re}(x))+i L(\operatorname{Im}(x))
$$

This is translation-invariant, and if

$$
\lim _{n \rightarrow \infty} x_{n}=x_{\infty}
$$

then $\widetilde{L}(x)=x_{\infty}$.

4 LCTVSs and weak topologies

Definition 135. A seminorm on a vector space V is a map $p: V \rightarrow[0, \infty)$ such that

1. $p(t v)=|t| p(v)$ for all $t \in \mathbb{F}$, all $v \in V$
2. $p(v+w) \leq p(v)+p(w)$ for all $v, w \in V$ (triangle inequality)

Remark 136. This is not necessarily a norm because $p(v)=0 \nRightarrow v=0$ in general.
Definition 137. A locally convex topological vector space (LCTVS) is a vector space X with a family $\mathcal{P}=\left\{p_{\alpha}: \alpha \in I\right\}$ of seminorms such that if $x \in X$ and $p_{\alpha}(x)=0$ for all $\alpha \in I$, then $x=0$. Put a topology on X determined by a subbase

$$
U\left(x_{0}, r, p_{\alpha}\right)=\left\{x \in X: p_{\alpha}\left(x-x_{0}\right)<r\right\}
$$

Remark 138. $U\left(x_{0}, r, p_{\alpha}\right)$ is convex because of the triangle inequality: if $x, y \in U\left(x_{0}, r, p_{\alpha}\right)$ and $0<t<1$, then

$$
p_{\alpha}(t x+(1-t) y) \leq p_{\alpha}(t x)+p_{\alpha}((1-t) y)<|t| r+|1-t| r=r
$$

and $t x+(1-t) y \in U\left(x_{0}, r, p_{\alpha}\right)$.
Remark 139. We have some translation-invariance: $U\left(x_{0}, r, p_{\alpha}\right)=x_{0}+U\left(0, r, p_{\alpha}\right)$, and U is an open neighbourhood of 0 if and only if $x_{0}+U$ is an open neighbourhood of x_{0}.

Theorem 140. Suppose X is a LCTVS.

1. A neighbourhood base at 0 is given by the sets

$$
U_{F, r}=\left\{x \in X: p_{\alpha}(x)<r \text { for all } p_{\alpha} \in F\right\}
$$

where $F \subseteq_{\text {fin }} \mathcal{P}$ and and $r>0$.
2. X is Hausdorff.
3. Addition and scalar multiplication are continuous.
4. A net $\left(x_{\beta}: \beta \in B\right)$ converges to x_{0} if and only if $p_{\alpha}\left(x-x_{\beta}\right) \rightarrow 0$ for all $p_{\alpha} \in \mathcal{P}$.

Proof.

1. Well,

$$
U_{F, r}=\bigcap_{p_{\alpha} \in F} U\left(0, r, p_{\alpha}\right)
$$

is open and contains 0 . Suppose $F \subseteq_{\text {fin }} \mathcal{P}$ and

$$
U=\bigcap_{\alpha \in F} U\left(x_{\alpha}, r_{\alpha}, p_{\alpha}\right)
$$

is a basic open neighbourhood of 0 . Well, $0 \in U\left(x_{\alpha}, r_{\alpha}, p_{\alpha}\right)$, so $p_{\alpha}\left(x_{\alpha}-0\right)<r_{\alpha}$. Let

$$
r=\min _{\alpha \in F}\left(r_{\alpha}-p_{\alpha}\left(x_{\alpha}\right)\right)
$$

Claim 141. $U_{F, r} \subseteq U$.
Proof. If $x \in U_{F, r}$, then $p_{\alpha}(x)<r$. So

$$
p_{\alpha}\left(x_{\alpha}-x\right) \leq p_{\alpha}\left(x_{\alpha}-0\right)+p_{\alpha}(0-x)<p\left(x_{\alpha}\right)+r \leq p_{\alpha}\left(x_{\alpha}\right)+r_{\alpha}-p_{\alpha}\left(x_{\alpha}\right)=r_{\alpha}
$$

So

$$
x \in \bigcap_{\alpha \in F} U\left(x_{\alpha}, r_{\alpha}, p_{\alpha}\right)=U
$$

and $U_{F, r} \subseteq U$.
Claim 141
2. If $x \neq y$ in X, then there is α such that $p_{\alpha}(x-y)=r>0$. Then

$$
U\left(x, \frac{r}{2}, p_{\alpha}\right) \cap U\left(y, \frac{r}{2}, p_{\alpha}\right)
$$

3. We do addition; scalar multiplication is similar. Let $A: X \times X \rightarrow X$ by $A(x, y)=x+y$. Let U be open in X. We need to show that $A^{-1}(U)$ is open in the product topology. Suppose $\left(x_{0}, y_{0}\right) \in A^{-1}(U)$; then $x_{0}+y_{0} \in U$. But U is open; so there is $F \subseteq_{\text {fin }} \mathcal{P}$ and $r>0$ such that

$$
\left(x_{0}, y_{0}\right)+U_{F, r}=\bigcap_{p_{\alpha} \in F} U\left(x_{0}+y_{0}, r, p_{\alpha}\right) \subseteq U
$$

Claim 142.

$$
\left(x_{0}+U_{F, \frac{r}{2}}\right) \times\left(y_{0}+U_{F, \frac{r}{2}}\right) \subseteq A^{-1}(U)
$$

Proof. Suppose

$$
\begin{aligned}
p_{\alpha}\left(x-x_{0}\right) & <\frac{r}{2} \\
p_{\alpha}\left(y-y_{0}\right) & <\frac{r}{2}
\end{aligned}
$$

for all $p_{\alpha} \in F$. Then

$$
p_{\alpha}\left((x+y)-\left(x_{0}+y_{0}\right)\right) \leq p_{\alpha}\left(x-x_{0}\right)+p_{\alpha}\left(y-y_{0}\right)<\frac{r}{2}+\frac{r}{2}=r
$$

Claim 142
4.

$$
\begin{aligned}
x_{\beta} \rightarrow x & \Longleftrightarrow\left(\forall F \subseteq_{\text {fin }} \mathcal{P}\right)(\forall r>0)\left(\exists \beta_{0}\right)\left(\forall \beta \geq \beta_{0}\right)\left(x_{\beta} \in x+U_{F, r}\right) \\
& \Longleftrightarrow \forall F \forall r \exists \beta_{0}\left(\forall \beta \geq \beta_{0}\right)\left(\forall p_{\alpha} \in F\right)\left(p_{\alpha}\left(x-x_{\beta}\right)<r\right) \\
& \Longleftrightarrow \forall p_{\alpha}\left(p_{\alpha}\left(x-x_{\beta}\right) \rightarrow 0\right)
\end{aligned}
$$

Example 143.

1. $(X,\|\cdot\|)$ a normed vector space.
2. Let X be a normed vector space. Let Y be a vector subspace of X^{*} (not necessarily closed). Suppose that for all $x \neq 0$ in X, there is $\varphi \in Y$ with $\varphi(x) \neq 0$. For $\varphi \in Y$, define a seminorm $p_{\varphi}(x)=|\varphi(x)|$. τ_{y} is the locally convex topology generated by $\left\{p_{\varphi}: \varphi \in Y\right\} .\left(X, \tau_{Y}\right)$ is thus a LCTVS.
In particular, if X is a Banach space, then $\left(X, \tau_{X^{*}}\right)$ is the weak topology on X. We write $x_{\alpha} \xrightarrow{w} x$ if and only if $\varphi\left(x_{\alpha}\right) \rightarrow \varphi(x)$ for all $\varphi \in X^{*}$.
If $X=Y^{*}$ for a Banach space Y, then $\left(Y^{*}, \tau_{Y}\right)$ is the weak-* topology on Y^{*} and $f_{\alpha} \xrightarrow{w^{*}} f$ in Y^{*} if and only $f_{\alpha}(y) \rightarrow f(y)$ for all $y \in Y$.
Remark 144.

$$
\begin{aligned}
U_{F, r} & =\left\{x:\left|p_{\varphi}(x)\right|<r \text { for } \varphi \in F\right\} \\
& =\left\{x:\left|\frac{1}{r} \varphi(x)\right|<1, \frac{1}{r} \varphi \in \frac{1}{r} F\right\} \\
& =U_{\frac{1}{r} F, 1}
\end{aligned}
$$

Proposition 145. Suppose Z a LCTVS; suppose $T: Z \rightarrow\left(X, \tau_{Y}\right)$ is linear. Then T is continuous if and only if $\varphi \circ T: Z \rightarrow \mathbb{F}$ is continuous for all $\varphi \in Y$.

Proof.
(\Longrightarrow) Note that τ_{Y} is the weakest topology that makes all $\varphi \in Y$ continuous on $\left(X, \tau_{Y}\right)$. Then $\varphi \circ T$ is continuous as the composition of continuous functions.
$(\Longleftarrow) T$ is continuous if and only if $T^{-1}\left(x+U_{F, r}\right)$ is open for all $F \subseteq_{\text {fin }} \mathcal{P}$, all $r>0$. But

$$
\begin{aligned}
T^{-1}\left(x+U_{F, r}\right) & =T^{-1}(x)+T^{-1}\left(U_{F, r}\right) \\
& =T^{-1}(x)+\bigcap_{\varphi \in F}(\varphi \circ T)^{-1}\left(b_{r}(0)\right)
\end{aligned}
$$

which is open because all $\varphi \circ T$ is continuous.

Proposition 145

3. Suppose X is a Banach space. Then we have the following topologies on $\mathcal{B}(X)$:

Weak operator topology In which $T_{\alpha} \xrightarrow{\text { WOT }} T$ if and only if $\varphi\left(T_{\alpha} x\right) \rightarrow \varphi(T x)$ for all $x \in X$ all $\varphi \in X^{*}$. For each $x \in X$, each $\varphi \in X^{*}$, define $\Psi_{x, \varphi} \in \mathcal{B}(X)^{*}$ by $\Psi_{x, \varphi}(T)=\varphi(T x)$.

$$
Y=\operatorname{span}\left\{\Psi_{x, \varphi}: x \in X, \varphi \in X^{*}\right\} \subseteq \mathcal{B}(X)^{*}
$$

(where the span is the algebraic span, not the closed span.) Note that this is not closed. $(\mathcal{B}(X), \mathrm{WOT})=\left(X, \tau_{Y}\right)$.
Strong operator topology For $x \in X$, define $p_{x}(T)=\|T x\|$. Then $\left\{p_{x}: x \in X\right\}$ determines the strong operator topology. We have $T_{\alpha} \xrightarrow{\text { SOT }} T$ if and only if $T_{\alpha} x \rightarrow T x$ for all $x \in X$; so this is the topology of pointwise convergence.

Theorem 146. Suppose X a LCTVS; suppose $f: X \rightarrow \mathbb{F}$ is linear. The following are equivalent:

1. f is continuous.
2. f is continuous at 0 .
3. $\operatorname{ker}(f)$ is closed.
4. There is $F=\left\{p_{\alpha_{1}}, \ldots, p_{\alpha_{n}}\right\} \subseteq_{\text {fin }} \mathcal{P}$ and $C<\infty$ such that

$$
|f(x)| \leq C \sum_{i=1}^{n} p_{\alpha_{i}}(x)
$$

Proof.
(1) \Longrightarrow (2) Trivial.
(2) \Longrightarrow (3) $f^{-1}(0)=X \backslash f^{-1}(\mathbb{F} \backslash\{0\})$. But $\mathbb{F} \backslash\{0\}$ is open. So $f^{-1}(0)=\operatorname{ker}(f)$ is closed.
$\mathbf{(3)} \Longrightarrow \mathbf{(4)}$ Without loss of generality $f \neq 0$. Pick $x_{0} \in X$ such that $f\left(x_{0}\right)=1$. Pick $F \subseteq_{\text {fin }} \mathcal{P}$ and $r>0$ such that

$$
\left(x_{0}+U_{F, r}\right) \cap \operatorname{ker}(f)=\emptyset
$$

(Possible since $\operatorname{ker}(f)$ is closed.) Then

$$
0 \notin f\left(x_{0}+U_{F, r}\right)=1+f\left(U_{F, r}\right)
$$

So $-1 \notin f\left(U_{F, r}\right)$. Note, though, that

$$
U_{F, r}\left\{x: p_{\alpha}(x)<r \text { for all } \alpha \in F\right\}
$$

is balanced; i.e. if $x \in U_{F, r}$ and $\lambda \in \mathbb{F}$ satisfies $|\lambda| \leq 1$, then $\lambda x \in U_{F, r}($ since $p(\lambda x)=|\lambda| p(x) \leq$ $p(x)<r)$. So $f\left(U_{F, r}\right)$ is balanced in \mathbb{F}. So $f\left(U_{F, r}\right)$ is convex and disjoint from $\{\lambda:|\lambda|=1\}$. So $f\left(U_{F, r}\right) \subseteq \mathbb{D}=\{\lambda:|\lambda|<1\}$. Thus if $k p_{\alpha}(x)<r$ for all $p_{\alpha} \in F$ then $|f(x)|<1$. In particular, if

$$
\sum_{F} p_{\alpha}(x)<r
$$

then $p_{\alpha}(x)<r$ for all $p_{\alpha} \in F$. So $|f(x)|<1$. So

$$
|f(x)| \leq \frac{1}{r} \sum p_{\alpha}(x)
$$

(4) \Longrightarrow (1) Suppose $x_{\beta} \rightarrow x$. Then $p\left(x_{\beta}-x\right) \rightarrow 0$ for all α. So

$$
\left|f\left(x_{\beta}\right)-f(x)\right|=\left|f\left(x_{\beta}-x\right)\right| \leq C \sum_{F} p_{\alpha}\left(x_{\beta}-x\right) \rightarrow 0
$$

So $f\left(x_{\beta}\right) \rightarrow f(x)$. So f is continuous. Theorem 146

Corollary 147. Suppose $f:\left(X, \tau_{Y}\right) \rightarrow \mathbb{F}$ is a linear functional. Then f is continuous if and only if $f \in Y$.
Proof.
(\Longleftarrow) Trivial.
(\Longrightarrow) Suppose f is continuous on $\left(X, \tau_{Y}\right)$. Then by the theorem, there are $f_{1}, \ldots, f_{n} \in Y$ such that

$$
|f(x)| \leq C \sum_{i=1}^{n}\left|f_{i}(x)\right|
$$

In particular, if

$$
x \in \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right)
$$

then RHS $=0$. So $f(x)=0$. So

$$
\bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right) \subseteq \operatorname{ker}(f)
$$

Lemma 148. Suppose X is a vector space. Suppose f_{1}, \ldots, f_{n} are linear functionals (not necessarily continuous). Suppose

$$
\operatorname{ker}(f) \supseteq \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right)
$$

Then $f \in \operatorname{span}\left\{f_{1}, \ldots, f_{n}\right\}$.

Proof. We have

But we can identify

$$
F: X / \bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right) \cong\left\{\left(f_{1}(x), \ldots, f_{n}(x)\right): x \in X\right\} \subseteq \mathbb{F}^{n}
$$

Then

$$
\operatorname{ker}(F)=\bigcap_{i=1}^{n} \operatorname{ker}\left(f_{i}\right)
$$

We can extend \tilde{f} to a linear functional $\tilde{\widetilde{f}}$ on \mathbb{F} :

$$
\widetilde{\widetilde{f}}\left(\left(v_{1}, \ldots, v_{n}\right)\right)=\sum a_{i} v_{i}
$$

Then

$$
f(x)=\widetilde{f} \circ q(x)=\widetilde{\widetilde{f}}(F(x))=\sum_{i=1}^{n} a_{i} f_{i}(x) \in \operatorname{span}\left\{f_{1}, \ldots, f_{n}\right\}
$$

So

$$
f=\sum_{i=1}^{n} a_{i} f_{i} \in Y
$$

Remark 149. If we start with $Y \subseteq X^{*}$ which is not closed, then

$$
\left(X, \tau_{Y}\right)^{*}=Y
$$

is not a Banach space.
Lemma 150. Suppose X is a Banach space; suppose Y is a closed subspace of X^{*} which norms X. i.e.

$$
\|x\|=\sup _{\substack{f \in Y \\\|f\| \leq 1}}|f(x)|
$$

Then if a sequence $\left(x_{n}: n \in \mathbb{N}\right)$ converges in $\left(X, \tau_{Y}\right)$ then

$$
\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<\infty
$$

Proof. For $x \in X$, define $\widehat{x} \in Y^{*}$ by $\widehat{x}(f)=f(x)$. Since Y is closed, it is a Banach space. But $\left(x_{n}: n \in\right.$ $\mathbb{N}) \xrightarrow{\tau_{Y}} x$ says that $\widehat{x_{n}}(f) \rightarrow \widehat{x}(f)$ for all $f \in Y$; so $\left\{\widehat{x_{n}}(f): n \geq 1\right\}$ is bounded for all f. By the uniform boundedness principle, we have that

$$
\sup _{n \in \mathbb{N}}\left\|\widehat{x_{n}}\right\|<\infty
$$

Since Y norms X, we get $\left\|\widehat{x_{n}}\right\|=\left\|x_{n}\right\|$. So

$$
\sup _{n \geq 1}\left\|x_{n}\right\|<\infty
$$

Lemma 150
Example 151. Let $\left(\ell_{1}, \tau_{c_{0}}\right)$ be ℓ_{1} with the weak-* topology from $\ell_{1}=c_{0}^{*}$. Suppose $x_{n}=\left(x_{n i}: i \in \mathbb{N}\right) \in \ell^{1}$. Suppose $x_{n} \xrightarrow{w^{*}} x=\left(x_{i}: i \in \mathbb{N}\right)$. Then $e_{i}\left(x_{n}\right)=\left\langle x_{n}, e_{i}\right\rangle=x_{n i} \rightarrow\left\langle x, e_{i}\right\rangle=x_{i}$ (where $e_{i} \in c_{0}$). By lemma, we have

$$
\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|_{1}=M<\infty
$$

Conversely, suppose the above two statements hold. Suppose $y=\left(y_{1}, y_{2}, \ldots\right) \in c_{0}$; suppose $\varepsilon>0$. Pick N such that $\left|y_{i}\right|<\varepsilon$ if $i>N$. Then

$$
\begin{aligned}
\left|\left\langle x_{n}, y\right\rangle-\langle x, y\rangle\right| & =\left|\sum_{i=1}^{\infty}\left(x_{n i}-x_{i}\right) y_{i}\right| \\
& =\sum_{i=1}^{N}\left(x_{n i}-x_{i}\right) y_{i}+\sum_{i=N+1}^{\infty}\left(x_{n i}-x_{i}\right) y_{i} \\
& \leq N\|y\| \max _{1 \leq i \leq n}\left|x_{n_{i}}-x_{i}\right|+\sum_{i \geq N}\left|x_{n_{i}}-x_{i}\right| \varepsilon
\end{aligned}
$$

Pick N_{2} such that $n \geq N_{2}$ implies

$$
\left|x_{n_{i}}-x_{i}\right|<\frac{\varepsilon}{N\|y\|}
$$

for $1 \leq i \leq N$. Ten

$$
\left|\left\langle x_{n}, y\right\rangle-\langle x, y\rangle\right|<N\|y\| \frac{\varepsilon}{N\|y\|}+\left\|x_{n}-x\right\|_{1} \varepsilon \leq \varepsilon+\left(\left\|x_{n}\right\|_{1}+\|x\|_{1}\right) \varepsilon \leq(1+2 M) \varepsilon
$$

So $\left\langle x_{n}, y\right\rangle \rightarrow\langle x, y\rangle$ for $y \in c_{0}$.
On the other hand, there is an unbounded net converging to 0 in $\left(\ell_{1}, \tau_{c_{0}}\right)$. Let Λ be the set of finite subsets of c_{0} ordered by set inclusion. Then, if $F \in \Lambda$, we have

$$
\bigcap_{y \in F} \operatorname{ker}(y)
$$

is a closed subspaces of ℓ_{1} of finite codimension. By axiom of choice, we can pick

$$
x_{F} \in \bigcap_{y \in F} \operatorname{ker}(y)
$$

such that $\left\|x_{F}\right\|=|F|$.
Claim 152. $\left(x_{F}: F \in \Lambda\right) \rightarrow 0$ in $\tau_{c_{0}}$.
Proof. Take $y \in c_{0}$. If $F \geq\left\{y_{0}\right\}$, then $\left\langle x_{F}, y\right\rangle=0 \rightarrow 0$.
Claim 152

4.1 Geometric Hahn-Banach theorem

Given convex, disjoint A and B, we wish to find some linear functional f separating them; i.e.

$$
\begin{aligned}
& A \subseteq\{x \in X: \operatorname{Re}(f(x)) \leq a\} \\
& B \subseteq\{x \in X: \operatorname{Re}(f(x))>a\}
\end{aligned}
$$

We also want f to be continuous; we then need a topological condition on A and B.
Definition 153. A hyperplane is a set $H=\{x \in X: \operatorname{Re}(f(x))=a\}$ where X is a LCTVS and f is a linear functional. We are interested in closed hyperplanes, in which we require that f be continuous.
Lemma 154. Suppose X is a LCTVS. Suppose U is open and convex with $0 \in U$. Recall the Minkowski functional

$$
p_{U}(x)=\inf \{r>0: x \in r U\}
$$

Then p_{U} is continuous and $\left\{x \in X: p_{U}(x)<1\right\}=U$.
Proof. Since $0 \in U$ and U is convex, if $0<r<s$, then $r U \subseteq s U$. Suppose $p_{U}(x)=r<1$, then for $r<s<1$, we have $x \in s U \subseteq U$. Conversely, if $x \in U$ there is $\varepsilon>0$ such that $(1+\varepsilon) x \in U$ (since $t \mapsto t x$ is continuous and $1 x \in U$ and U is open; thus $\{t \in \mathbb{R}: t x \in U\}$ is open in \mathbb{R}, and thus contains $(1-\varepsilon, 1+\varepsilon)$ for some $\varepsilon>0$). So

$$
x \in \frac{1}{1+\varepsilon} U
$$

So $p_{U}(x) \leq \frac{1}{1+\varepsilon}<1$. So $\left\{x \in X: p_{U}(x) \leq 1\right\}=U$.
To see continuity, suppose $x_{0} \in X$; suppose $p_{U}\left(x_{0}\right)=r_{0} \in V \subseteq \mathbb{R}$ where V is open. Then $p_{U}\left(x_{0}\right) \in$ $\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right) \subseteq V$ for some $\varepsilon>0$. Then

$$
p_{U}^{-1}(V) \supseteq p_{U}^{-1}\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)
$$

If $x \in x_{0}+\frac{\varepsilon}{2} U$, then

$$
p_{U}(x) \leq p_{U}\left(x_{0}\right)+p_{U}\left(x-x_{0}\right)<p_{U}\left(x_{0}\right)+\frac{\varepsilon}{2}
$$

and

$$
p_{U}(x) \geq p_{U}\left(x_{0}\right)-p_{U}\left(x-x_{0}\right)>p_{U}\left(x_{0}\right)-\frac{\varepsilon}{2}
$$

Lemma 154
Theorem 155 (Hyperplane theorem). Suppose X a LCTVS; suppose $U \subseteq X$ is open and convex with $0 \notin U$. Then there is $f \in X^{*}$ such that $\operatorname{Re}(f(x))>0$ for all $x \in U$. i.e. U is disjoint from the closed hyperplane $H=\{x \in X: \operatorname{Re}(f(x))=0\}$

Proof.
Case 1. Suppose $\mathbb{F}=\mathbb{R}$. Pick $x_{0} \in U$. Define $V=x_{0}-U$. Then V is open and convex with $0 \in V$. So p_{V} is a continuous sublinear functional. Define f_{0} on $\mathbb{R} x_{0}$ by $f_{0}\left(t x_{0}\right)=t$ for $t \in \mathbb{R}$. Now, $x_{0} \notin V$; so, by our lemma, we have $p_{V}\left(x_{0}\right) \geq 1$. Then if $t \geq 0$, we have $f_{0}\left(t x_{0}\right)=t \leq t p_{V}\left(x_{0}\right)=p_{V}\left(t x_{0}\right)$; if $t<0$, then $f_{0}\left(t x_{0}\right)=t<0 \leq p_{V}\left(t x_{0}\right)$. So $f_{0} \leq p_{V}$ on $\mathbb{R} x_{0}$. Thus there is linear $f: X \rightarrow \mathbb{R}$ such that $f(x) \leq p_{V}(x)$ for all $x \in X$.

Claim 156. f is continuous.
Proof. It suffices to check continuity at 0 . But

$$
f^{-1}\left(b_{r}(0)\right)=\{x \in X:-r<f(x)<r\}=\{x \in X: f(x)<r\} \cap\{x \in X: f(-x)<r\}
$$

But $V \subseteq\{x \in X: f(x)<r\}$ and $-V \subseteq\{x \in X: f(-x)<r\}$. So

$$
f^{-1}\left(b_{r}(0)\right) \supseteq r V \cap(-r V)
$$

which is an open neighbourhood of 0 .

Now, if $x \in U$ then $x_{0}-x \in V$; so $1-f(x)=f\left(x_{0}-x\right) \leq p_{V}\left(x_{0}-x\right)<1$ and $f(x)>0$.
Case 2. Suppose $\mathbb{F}=\mathbb{C}$. Consider X as a real LCTVS. Find $f: X \rightarrow \mathbb{R}$ that is \mathbb{R}-linear and continuous such that $f(x)>0$ for all $x \in U$. Define $g(x)=f(x)+i f(-i x)$. As before, we have that g is \mathbb{C}-linear and continuous, and $\operatorname{Re}(g(x))=f(x)$. Thus if $x \in U$, we have $\operatorname{Re}(g(x))=f(x)>0$.

Theorem 155
We point out some special cases:
Corollary 157. Suppose X is a Banach space; suppose $U \subseteq X$ is open and convex with $0 \notin U$. Then there is $f \in X^{*}$ such that $\operatorname{Re}(f(x))>0$ for all $x \in U$.

Corollary 158. Suppose X is a Banach space; suppose Y is a vector subspace of X^{*} that separates points. Suppose $U \subseteq X$ is convex and τ_{Y}-open with $0 \notin U$. Then there is $f \in Y$ such that $\operatorname{Re}(f(x))>0$ for all $x \in U$.

Proof. A linear $f: X \rightarrow \mathbb{F}$ is τ_{Y}-continuous if and only if $f \in Y$.
Corollary 158
Theorem 159 (Separation theorem). Suppose X is a LCTVS; suppose A and B are disjoint convex subsets of X with A open. Then there is $f \in X^{*}$ and $d \in \mathbb{R}$ such that $\operatorname{Re}(f(b)) \leq d<\operatorname{Re}(f(a))$ for all $b \in B$, all $a \in A$.

Proof. Let

$$
C=A-B=\bigcup_{b \in B}(A-b)
$$

Then C is open as the union of the open $A-b$. Also, $0 \notin C$ since $A \cap B=\emptyset$. Finally, C is convex because

$$
t\left(a_{1}-b_{1}\right)+(1-t)\left(a_{2}-b_{2}\right)=\left(t a_{1}+(1-t) a_{2}\right)-\left(t b_{1}+(1-t) b_{2}\right) \in A-B
$$

By the hyperplane theorem, there is $f \in X^{*}$ such that $\operatorname{Re}(f(a))-\operatorname{Re}(f(b))=\operatorname{Re}(f(c))>0$ for all $c \in C$. So $\operatorname{Re}(f(b))<\operatorname{Re}(f(a))$ for all $a \in A$, all $b \in B$. Then

$$
\sup _{b \in B} \operatorname{Re}(f(b))=d \leq \inf _{a \in A} \operatorname{Re}(f(a))
$$

But A is open; so $\operatorname{Re}(f(A))$ is open in $[c, \infty)$. So $\operatorname{Re}(f(A)) \subseteq(c, \infty)$.
Theorem 159
Corollary 160. If A, B are both open and convex with $A \cap B=\emptyset$, then there is $f \in X^{*}$ and $d \in \mathbb{R}$ such that $\operatorname{Re}(f(b))<d<\operatorname{Re}(f(a))$ for all $a \in A$ and all $b \in B$.

Example 161. Let $X=\left(\ell_{1}, \tau_{c_{0}}\right)$. Let

$$
A=\left\{x \in \ell_{1}: \sum_{i=1}^{\infty} x_{i}=0\right\}
$$

Then A is a norm-closed linear subspace and

$$
\delta_{1}=(1,0,0, \ldots) \notin A
$$

If $0 \neq y \in c_{0}$ with $y=\left(y_{1}, y_{2}, \ldots\right)$, then we have $y_{n_{0}} \neq 0$ for some $n_{0} \in \mathbb{N}$. Then if $\lambda \in \mathbb{C}$, we have

$$
x_{m}=\frac{\lambda}{y_{n_{0}}}\left(\delta_{n_{0}}-\delta_{m}\right) \in A
$$

Then

$$
y\left(x_{m}\right)=\frac{\lambda}{y_{n_{0}}}\left(y_{n_{0}}-y_{m}\right) \xrightarrow{m \rightarrow \infty} \lambda
$$

So $y(A)=\mathbb{C} \ni y\left(\delta_{1}\right)$. So we have no hope of separation.

What went wrong? A is not $\tau_{c_{0}}$-closed, because $x_{m}=\delta_{1}-\delta_{m} \in A$ with

$$
\sup _{m \geq 0}\left\|x_{m}\right\|=2
$$

and $x_{m_{i}}$ has limit

$$
= \begin{cases}1 & i=1 \\ 0 & \text { else }\end{cases}
$$

So $x_{m} \xrightarrow{\tau_{c_{0}}} \delta_{1} \notin A$.
Lemma 162. Suppose X is a LCTVS. Suppose $K \subseteq X$ is compact and $V \supseteq K$ is open. Then there is open $U \ni 0$ such that $K+U \subseteq V$.
Proof. For each $x \in K$, there is a finite set F_{x} of seminorms and $r_{x}>0$ such that $U\left(F_{x}, r_{x}\right)+x \subseteq V$. (Recall that

$$
\begin{aligned}
U\left(F_{x}, r_{x}\right)(x) & =\left\{y: p(y-x)<r \text { for all } p \in F_{x}\right\} \\
& =U\left(F_{x}, r_{x}\right) \\
U\left(F_{x}, r_{x}\right) & =\left\{y: p(y)<r_{x} \text { for all } p \in F_{x}\right\}
\end{aligned}
$$

are the basic open sets.) Then $\left\{x+U\left(F_{x}, \frac{r_{x}}{2}\right): x \in K\right\}$ is an open cover of K; so there is a finite subcover

$$
K \subseteq \bigcup_{i=1}^{m}\left\{x_{i}+U\left(F_{x_{i}}, \frac{r_{x_{i}}}{2}\right)\right\}
$$

Let

$$
\begin{aligned}
& F=\bigcup_{i=1}^{n} F_{x_{i}} \\
& r=\min _{1 \leq i \leq n} r_{i}
\end{aligned}
$$

Suppose $y \in K$. Then there is i_{0} such that $y \in x_{i_{0}}+U\left(F_{i_{0}}, \frac{r_{i_{0}}}{2}\right.$. Let $U=U\left(F, \frac{r}{2}\right)$; then $U \subseteq U\left(F_{i}, r_{\frac{i}{2}}\right)$ for all i. So

$$
\begin{aligned}
y+U & \subseteq x_{i_{0}}+U\left(F_{i_{0}}, \frac{r_{i_{0}}}{2}\right)+U\left(F, \frac{r}{2}\right) \\
& \subseteq x_{i_{0}}+U\left(F_{i_{0}}, r_{i_{0}}\right) \\
& \subseteq V
\end{aligned}
$$

So $K+U \subseteq V$.Lemma 162

Corollary 163. Suppose X is a LCTVS; suppose $A, B \subseteq X$ are closed and convex, B is compact, and $A \cap B=\emptyset$. Then there is $f \in X^{*}$ such that

$$
\sup _{a \in A} \operatorname{Re}(f(a))=\alpha<\beta=\inf _{b \in B} \operatorname{Re}(f(b))
$$

Proof. Well, A^{c} is open, and $B \subseteq A^{c}$. We may thus pick U such that $B+U \subseteq A^{c}$. Thus $(B+U) \cap A=\emptyset$. Note that $B+U$ is convex as

$$
t\left(b_{1}+u_{1}\right)+(1-t)\left(b_{2}+u_{2}\right)=\left(t b_{1}+(1-t) b_{2}\right)+\left(t u_{1}+(1-t) u_{2}\right)
$$

Thus, by the separation theorem, there is $f \in X$ and α such that

$$
\sup _{a \in A} \operatorname{Re}(f(x))=\alpha<\operatorname{Re}(b+u)
$$

for all $b \in B$ and all $u \in U$. Since B is compact, this yields that

$$
\inf _{b \in B} \operatorname{Re}(f(b))=\beta>\alpha
$$

Definition 164. Suppose X is a LCTVS, $f \in X^{*}$, and $\alpha \in \mathbb{R}$. Then

$$
H_{f, \alpha}=\{y: \operatorname{Re}(f(y)) \leq \alpha\}
$$

is called a closed half-space.
Corollary 165. Suppose X is a LCTVS; suppose $A \subseteq X$. Then

$$
\overline{\operatorname{conv}(A)}=\bigcap_{H_{f, \alpha} \supseteq A} H_{f, \alpha}
$$

(where $\operatorname{conv}(A)$ is the convex hull of A : the intersection of all convex sets containing A).
Proof. The RHS is closed and convex and contains A; so

$$
\overline{\operatorname{conv}(A)} \subseteq \bigcap_{H_{f, \alpha} \supseteq A} H_{f, \alpha}
$$

Let $x \notin \overline{\operatorname{conv}(A)}$. Apply the last result with $\widetilde{A}=\overline{\operatorname{conv}(A)}$ and $\widetilde{B}=\{x\}$, which is compact. Then there is $f_{0} \in X^{*}$ such that

$$
\sup _{a \in A} \operatorname{Re}\left(f_{0}(a)\right) \leq \alpha_{0}<\beta=\operatorname{Re}\left(f_{0}(x)\right)
$$

Thus $A \subseteq H_{f_{0}, \alpha}$ and $x \notin H_{f, \alpha}$.oSo

$$
x \notin \bigcap_{H_{f, \alpha} \supseteq A} H_{f, \alpha}
$$

So

$$
\bigcap_{H_{f, \alpha} \supseteq A} \subseteq \overline{\operatorname{conv}(A)}
$$

Corollary 166. Suppose X is a LCTVS. Then X^{*} separates points.
Proof. Suppose $x_{0}, x_{1} \in X$ have $x_{0} \neq x_{1}$. Let

$$
\begin{aligned}
A & =\left\{x_{0}\right\} \\
B & =\left\{x_{1}\right\}
\end{aligned}
$$

Then there is $H_{f, \alpha} \supseteq A$ such that $x_{1} \notin H_{f, \alpha}$. By a previous corollary, we get that there is $f \in X^{*}$ such that $\operatorname{Re}\left(f\left(x_{0}\right)\right)=\alpha \neq \operatorname{Re}\left(f\left(x_{1}\right)\right)$.Corollary 166

Proposition 167. Suppose X is a normed linear space.

1. Every norm-closed convex set is weakly closed.
2. Every norm-closed ball in X^{*} is weak-* closed.

Proof.

1. Suppose $C \subseteq X$ is norm-closed and convex. Then

$$
C=\bigcap_{H_{f, \alpha} \supseteq C} H_{f, \alpha}
$$

But each $H_{f, \alpha}$ is weakly closed. So C is weakly closed as the intersection of weakly closed sets.
2. Suppose $f_{0} \in X^{*}$. Then

$$
\begin{aligned}
\overline{b_{r_{0}}\left(f_{0}\right)} & =\left\{y:\left\|y-f_{0}\right\| \leq r\right\} \\
& =\left\{y:\left|\widehat{x}\left(y-f_{0}\right)\right| \leq r \text { for all } x \in X,\|x\| \leq 1\right\} \\
& =\bigcap_{\|x\| \leq 1}\left\{y:\left|\left(y-f_{0}\right)(x)\right| \leq r\right\}
\end{aligned}
$$

But $\left\{y:\left|\left(y-f_{0}\right)(x)\right| \leq r\right\}=\widehat{x}^{-1}\left(\overline{\mathbb{D}_{r}}\right)$ is closed. So $\overline{b_{r_{0}}\left(f_{0}\right)}$ is closed as the intersection of closed sets.
Proposition 167
Example 168. Let

$$
A=\left\{x \in \ell^{1}: \sum_{i=1}^{\infty} x_{i}=0\right\}
$$

Then A is not weak-*-closed. Last time we showed that if $f \in c_{0}$ then $f(A)=\mathbb{C}$. So $\overline{\operatorname{conv}(A)}=\ell^{1}$ (where the closure is taken in the weak-* topology).
Theorem 169 (Goldstine's theorem). Suppose X is a normed linear space. Then $b_{1}(X)$ is weak-* dense in $b_{1}\left(X^{* *}\right)$. i.e. The weak-* closure

$$
\overline{\{\widehat{x}: x \in X,\|x\| \leq 1\}}=b_{1}\left(X^{* *}\right)
$$

Proof. Suppose not. Then there is $x^{* *} \in b_{1}\left(X^{* *}\right)$ and $x^{* *} \notin A$ where A is the weak-* closure $A=\overline{b_{1}(X)}$. Then $\left\{x^{* *}\right\}=B$ is compact and convex and A is a convex, weak-*-closed set. So there is f that is weak-* continuous (i.e. $f \in X^{*}$) such that

$$
\sup _{a \in A} \operatorname{Re}(f(a))=\alpha<\operatorname{Re}\left(f\left(x^{* *}\right)\right)
$$

Then in particular we have

$$
\|f\|=\sup _{x \in b_{1}(X)} \operatorname{Re}(f(x)) \leq \alpha
$$

Since $\|f\| \leq \alpha$ and $x^{* *} \in b_{1}\left(X^{* *}\right)$. So $\left|\left\langle f, x^{* *}\right\rangle\right| \leq\left\|x^{* *}\right\|\|f\| \leq \alpha$. So $\operatorname{Re}\left(f\left(x^{* *}\right)\right) \leq \alpha$, a contradiction. Theorem 169

Hence if $\psi \in b_{1}\left(X^{* *}\right)$ then there is a net $\left(x_{\lambda}: \lambda \in \Lambda\right)$ in X converging to ψ in the weak-* topology; i.e. $\left(f\left(x_{\lambda}\right): \lambda \in \Lambda\right) \rightarrow \psi(f)$ for all $f \in X^{*}$.

Theorem 170 (Banach-Alaoglu). Suppose X is a Banach space. Then the closed unit ball of X^{*} is weak- ${ }^{*}$-compact.
Proof. For each $x \in X$, let $\mathbb{D}_{x}=\{z \in \mathbb{C}:|z| \leq\|x\|\}$. Let

$$
\mathcal{D}=\prod_{x \in X} \mathbb{D}_{x}
$$

which is compact by Tychonoff's theorem. Define $\Phi:\left(b_{1}\left(X^{*}\right), \tau\right.$ the weak-* topology $) \rightarrow \mathcal{D}$ by $\Phi(f)=(f(x)$: $x \in X$).

1. Φ is injective, since $\Phi(f)=\Phi(g)$ if and only if $f(x)=g(x)$ for all x; i.e. $f=g$.
2. Φ is continuous: a basic open set in \mathcal{D} is given by

$$
U=\left\{d \in \mathcal{D}: d\left(x_{i}\right) \in U_{i}\right\}
$$

for $x_{1}, \ldots, x_{n} \in X$ and U_{i} open in $\mathbb{D}_{x_{i}}$. We need to show $\Phi^{-1}(U)$ is open in $\left(b_{1}\left(X^{*}\right), \tau\right)$. But

$$
\begin{aligned}
\Phi^{-1}(U) & =\left\{f: f\left(x_{i}\right) \in U_{i} \text { for all } 1 \leq i \leq n\right\} \\
& =\left\{f: \widehat{x}_{i}(f) \in U_{i} \text { for all } 1 \leq i \leq n\right\} \\
& =\bigcap_{i=1}^{n} \widehat{x}_{i}^{-1}\left(U_{i}\right)
\end{aligned}
$$

which is open as the intersection of open sets.
3. $\Phi\left(b_{1}\left(X^{*}\right)\right) \subseteq \mathcal{D}$ is closed. To see this, we use nets. Take a net $\left(f_{\alpha}: \alpha \in \Lambda\right)$ in $b_{1}\left(X^{*}\right)$ such that $\left(\Phi\left(f_{\alpha}\right): \alpha \in \Lambda\right) \rightarrow d \in \mathcal{D}$. Define $f: X \rightarrow \mathbb{C}$ by

$$
f(x)=d_{x}=\lim _{\alpha \in \Lambda} f_{\alpha}(x)
$$

It's easy to see that f is linear. For all x, we have

$$
f(x)=\lim _{\alpha \in \Lambda} f_{\alpha}(x)
$$

and $f_{\alpha}(x) \in \mathbb{D}_{x}$. So $\left|f_{\alpha}(x)\right| \leq\|x\| ;$ so $|f(x)| \leq\|x\|$, and $\|f\| \leq 1$. So $f \in b_{1}\left(X^{*}\right)$. So $\Phi\left(b_{1}\left(X^{*}\right)\right)$ is compact.
4. $\Phi:\left(b_{1}\left(X^{*}\right), \tau\right) \rightarrow \Phi\left(b_{1}\left(X^{*}\right)\right)$, where the latter is compact; we now show that $\Phi^{-1}: \Phi\left(b_{1}\left(X^{*}\right)\right) \rightarrow$ $\left(b_{1}\left(X^{*}\right), \tau\right)$ is continuous. We use nets: let $\left(d_{\alpha}: \alpha \in \Lambda\right)$ be a net in $\Phi\left(b_{1}\left(X^{*}\right)\right)$ converging to $d \in \Phi\left(b_{1}\left(X^{*}\right)\right)$. For each α, we can find $f_{\alpha} \in b_{1}\left(X^{*}\right)$ such that $\Phi\left(f_{\alpha}\right)=d_{\alpha}$; likewise, we can find $f \in b_{1}\left(X^{*}\right)$ such that $d=\Phi(f)$. We wish to show that $\left(f_{\alpha}: \alpha \in \Lambda\right) \xrightarrow{\mathrm{wk}^{*}} f$. But $\left(d_{\alpha}: \alpha \in \Lambda\right) \rightarrow d$ in \mathcal{D}

$$
\begin{aligned}
\left(d_{\alpha}: \alpha \in \Lambda\right) \rightarrow d \text { in } \mathcal{D} & \Longleftrightarrow\left(d_{\alpha}(x): \alpha \in \Lambda\right) \rightarrow d(x) \text { for all } x \in X \\
& \Longleftrightarrow\left(f_{\alpha}(x): \alpha \in \Lambda\right) \rightarrow f(x) \text { for all } x \in X \\
& \Longleftrightarrow\left(f_{\alpha}: \alpha \in \Lambda\right) \xrightarrow{\mathrm{wk}^{*}} f
\end{aligned}
$$

Theorem 170

Corollary 171. If X is a reflexive Banach space then norm-closed, bounded, convex sets in X are weakly compact.
Proof. Suppose X is reflexive; i.e. $\widehat{X}=X^{* *}$. Suppose $A \subseteq X$ is norm-closed, bounded, and convex. Then Proposition 167 yields that A is weakly closed. By the Banach-Alaoglu, we have that $b_{1}\left(X^{* *}\right)=\{\widehat{x}:\|\widehat{x} \leq 1\|\}$ is weak-*-compact. So $\{\widehat{x}:\|\widehat{x} \leq r\|\}$ is weak-*-compact. Pick r big enough so that $A \subseteq\{\widehat{x}:\|\widehat{x}\| \leq r\}$. But A is then a weak-*-closed subset of a weak-*-compact set. So A is weak-*-compact.

Corollary 171
Corollary 172. Suppose X is a Banach space. Then $b_{1}(X)$ is weakly compact if and only if X is reflexive. Proof.
(\Longleftarrow) Suppose $\widehat{X}=X^{* *}$. Then

$$
\begin{aligned}
\left(b_{1}(X), \text { weak }\right) & =\left(b_{1}(\widehat{X}), \text { weak-* }\right) \\
& =\left(b_{1}\left(X^{* *}\right), \text { weak-* }\right)
\end{aligned}
$$

which is compact by Banach-Alaoglu.
(\Longrightarrow) Suppose $b_{1}(X)$ is weakly compact. By Goldstine, we have that $b_{1}(\widehat{X})$ is weak-*-dense in $b_{1}\left(X^{* *}\right)$. But $\left(b_{1}(\widehat{X})\right.$, weak-* $)=\left(b_{1}(X)\right.$, weak $)$ is compact, and thus closed in $b_{1}\left(X^{* *}\right)$. So $b_{1}(\widehat{X})=b_{1}\left(X^{* *}\right)$.

Corollary 172
Definition 173. Suppose V is a vector space; suppose $K \subseteq V$ is convex. We say that $F \subseteq K$ is a face if for all $x, y \in K$ and all $0<t<1$ such that $t x+(1-t) y \in F$, we have $x, y \in F$. We say $x \in K$ is an extreme point if $\{x\}$ is a face.

Example 174.

1. Consider $K=\left\{(x, y) \in \mathbb{R}^{2}:\|(x, y)\| \leq 1, y \geq 0\right\}$. The x-axis is a face, and the extreme points are all of the boundary besides the interior of the x-axis.
2. In $\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$, let $K=b_{1}$. We then get a square each of whose sides is a face, and whose extreme points are $\left\{\left(\pm_{1} 1, \pm_{2} 1\right)\right\}$.
3. Similarly with $\left(\mathbb{R}^{2},\|\cdot, \infty\|\right)$.
4. We say $(X,\|\cdot\|)$ is strictly convex if whenever

$$
1=\|x\|=\|y\|=\left\|\frac{x+y}{2}\right\|
$$

we have $x=y$. If $(X,\|\cdot\|)$ is strictly convex, then the extreme points of $b_{1}(X)$ are given by $\operatorname{Ext}\left(b_{1}(X)\right)=$ $\{x:\|x\|=1\}$.

Proof. If $\|x\|=1$ and $x=t y+(1-t) z$ for $0<t<1$ and $z \in b_{1}(X)$, then $1=\|x\| \leq t\|y\|+(1-t)\|z\|$. So $\|y\|=\|z\|=1$. Then we can find z^{\prime} such that

$$
\frac{1}{2} y+\frac{1}{2} z^{\prime}=x
$$

So $y=z^{\prime}=x$. So $z=x$.
5. Recall from the proof of Minkowski that if $1<p<\infty$ and

$$
\frac{|a|^{p}+|b|^{p}}{2}=\left|\frac{a+b}{2}\right|^{p}
$$

then $a=b$. Consider now L^{p} for $1<p<\infty$. Suppose $\|f\|_{p}=\|g\|_{p}=1$ and

$$
\left\|\frac{f+g}{2}\right\|_{p}=1
$$

Then

$$
\int_{0}^{1} \frac{|f|^{p}+|g|^{p}}{2}=\int_{0}^{1}\left|\frac{f+g}{2}\right|^{p}
$$

so

$$
\frac{|f(x)|^{p}+|g(x)|^{p}}{2}=\left|\frac{f(x)+g(x)}{2}\right|^{p}
$$

almost everywhere, and $f(x)=g(x)$ almost everywhere. So $f=g$ in L^{p}. So $\operatorname{Ext}\left(b_{1}\left(L^{p}\right)\right)=$ is the unit sphere, for $1<p<\infty$.
6. $\operatorname{Ext}\left(b\left(L^{1}\right)\right)=\emptyset$.

Proof. Let $\|f\|_{1}=1$. Then

$$
\int_{0}^{1}|f(t)| d t=1
$$

Let

$$
g(s)=\int_{0}^{s}|f(t)| d t
$$

We know that g is continuous and $g(0)=0$ and $g(1)=1$. Thus there exists s_{0} such that $g\left(s_{0}\right)=\frac{1}{2}$. Let

$$
\begin{aligned}
& f_{1}(t)=2 f(t) \chi_{\left[0, s_{0}\right)}(t) \\
& f_{2}(t)=2 f(t) \chi_{\left[s_{0}, 1\right]}(t)
\end{aligned}
$$

Then

$$
\int_{0}^{1}\left|f_{1}(t)\right| d t=\int_{0}^{s_{0}} 2|f(t)| d t=1
$$

and

$$
\int_{0}^{1}\left|f_{2}(t)\right| d t=\int_{s_{0}}^{1} 2|f(t)| d t=1
$$

So $\left\|f_{1}\right\|_{1}=\left\|f_{2}\right\|_{1}$ and

$$
\frac{f_{1}+f_{2}}{2}=f
$$

But neither is equal to f.
7. $\operatorname{Ext}\left(b_{1}\left(c_{0}\right)\right)=\emptyset$.

Proof. Let $x=\left(x_{1}, x_{2}, \ldots,\right) \in c_{0}$ with $\|x\|=1$. Because

$$
\lim _{n \rightarrow \infty} x_{n}=0
$$

we may pick n_{0} such that $\left|x_{n_{0}}\right|<\frac{1}{2}$. Let

$$
\begin{aligned}
& y=\left(x_{1}, \ldots, x_{n_{0}-1}, x_{n_{0}}+\varepsilon, x_{n_{0}+1}, \ldots\right) \\
& z=\left(x_{1}, \ldots, x_{n_{0}-1}, x_{n_{0}}-\varepsilon, x_{n_{0}+1}, \ldots\right)
\end{aligned}
$$

for small ε. Then $\|x\|=\|y\|=\|z\|=1$ and

$$
\frac{y+z}{2}=x
$$

but $y \neq x$ and $z \neq x$.
Lemma 175. Suppose X is a LCTVS and $K \subseteq X$ is compact and convex. Suppose $f \in X^{*}$ such that $\sup \{\operatorname{Re}(f(x)): x \in K\}=\alpha$. Then $F=\{x \in K: \operatorname{Re}(f(x))=\alpha\}$ is a face.

Proof. Suppose $x=t y+(1-t) z$ for $y, z \in K$. Then

$$
\alpha=t \operatorname{Re}(f(y))+(1-t) \operatorname{Re}(f(z))
$$

So $\operatorname{Re}(f(y))=\operatorname{Re}(f(z))=\alpha$. So $y, z \in F$. Lemma 175

Lemma 176. Suppose X is a LCTVS and $K \subseteq X$ is compact and convex. Suppose $F \subseteq K$ is a closed face. Then $F \cap \operatorname{Ext}(K) \neq \emptyset$.

Proof. Let \mathcal{F} be the collection of all non-empty closed faces $\widetilde{F} \subseteq F$ ordered by \supseteq. Suppose $\mathcal{C}=\left\{F_{\alpha}\right\}$ is a chain in \mathcal{F}. Each F_{α} is a closed subset of K, which is compact. So each F_{α} is compact. So

$$
\bigcap_{\alpha} F_{\alpha} \neq \emptyset
$$

by the finite intersection property, and this is an upper bound of \mathcal{C}. By Zorn's lemma there is $\widetilde{F} \subseteq F$ such taht \widetilde{F} is a minimal closed, non-empty face. Suppose for contradiction that \widetilde{F} had more than one point $x_{0}, y_{0} \in F$. By separation, we would then have that there is $f \in X^{*}$ such that $\operatorname{Re}\left(f\left(y_{0}\right)\right)<\operatorname{Re}\left(f\left(x_{0}\right)\right)$. Let

$$
F_{1}=\{x \in \widetilde{F}: \operatorname{Re}(f(x))=\text { sup over } \widetilde{F}\}
$$

This is a face by the previous lemma, but $y_{0} \notin F_{1}$, contradicting the minimality of \widetilde{F}. So $\widetilde{F}=\{\widetilde{x}\}$ is an extreme point.
\square Lemma 176
Theorem 177 (Krein-Milman). Suppose X is a LCTVS. Suppose $\emptyset \neq K \subseteq X$ is compact and convex. Then $\overline{\operatorname{conv}(\operatorname{Ext}(K))}=K$.

Proof.
(\subseteq) Clear.
(\supseteq) Suppose $x_{0} \in K$ but $x_{0} \notin \overline{\operatorname{conv}(\operatorname{Ext}(K))}$. Separate by $f \in X^{*}$. Then

$$
\sup \{\operatorname{Re}(f(x)): x \in \overline{\operatorname{conv}(\operatorname{Ext}(K))}\}=\alpha<\operatorname{Re}\left(f\left(x_{0}\right)\right)<\beta=\sup \{\operatorname{Re}(f(x)): x \in K\}
$$

But $F=\{x \in K: \operatorname{Re}(f(x))=\beta\}$ is a face and there is extreme $y \in F$. Then $\operatorname{Re}(f(y))=\beta>\alpha$, a contradiction.

Corollary 178 (Krein-Milman). The unit ball of X^{*} is the weak-*-closed convex hull of its extreme points.
Proof. $b_{1}\left(X^{*}\right)=K$ is closed, convex, and compact in the weak-* topology. The theorem the yields that we are done.

Corollary 178
Corollary 179. Suppose X is a Banach space. If $\operatorname{Ext}\left(b_{1}(X)\right)=\emptyset$, then there does not exist Y such that $X=Y^{*}$.

Thus c_{0} and L^{1} cannot be the dual of any Banach space.
Example 180. $\left(C([0,1]),\|\cdot\|_{\infty}\right)^{*}$ can be identified with the regular bounded Borel measures.

$$
\operatorname{Ext}\left(b_{1}(M[0,1])\right)=\left\{\exp (i \theta) \delta_{x}: x \in[0,1]\right\}
$$

(where $\delta_{x}(f)=f(x)$). Hence by Krein-Milman we have if $\mu([0,1])=1$ then μ is a weak-* limit of convex combinations of $\exp (i \theta) \delta_{x}$.
Example 181. We exhibit a compact convex set C in \mathbb{R}^{3} such that $\operatorname{Ext}(C)$ is not closed. Let C_{0} be the circle in \mathbb{R}^{3} with $(0,0,0)$ and $(0,0,1)$ diametrically opposite. Let L be the line segment $(-1,0,0)$ to $(1,0,0)$ Let C be the convex hull of $C_{0} \cup L$. Then $\operatorname{Ext}(C)=\{(\pm 1,0,0)\} \cup C_{0} \backslash\{(0,0,0)\}$.
Theorem 182 (Stone-Weierstrass). Suppose A is a closed subalgebra of $C_{\mathbb{R}}(X)$ where X is compact and Hausdorff. Suppose A separates points; i.e. suppose that for all $x, y \in X$ with $x \neq y$ there is $f \in A$ such that $f(x) \neq f(y)$. Suppose there is $g \in A$ such that $g(x)>0$ for all $x \in X$. Then $A=C_{\mathbb{R}}(X)$.
Proof. Suppose for contradiction that $A \varsubsetneqq C_{\mathbb{R}}(X)$. Then by Hahn-Banach we have that there is $\varphi \in C_{\mathbb{R}}(X)^{*}$ such that $\varphi \upharpoonright A=0$ and $\varphi \neq 0$. Let

$$
K=b_{1}\left(C_{\mathbb{R}}(X)^{*}\right) \cap A^{\perp}=\left\{\varphi \in C_{\mathbb{R}}(X)^{*}: \varphi \upharpoonright A=0,\|\varphi\| \leq 1\right\}
$$

Then K is a bounded, convex set in $C_{\mathbb{R}}(X)^{*}$; so, by the Krein-Milman theorem, we have that $b_{1}\left(C_{\mathbb{R}}(X)^{*}\right)$ is weak-*-compact. But A^{\perp} is weak-*-closed, since if $\left(\varphi_{\lambda}: \lambda \in \Lambda\right)$ is a net in $C_{\mathbb{R}}(X)^{*}$ converging to φ in the weak-* topology and $a \in A$, then

$$
\varphi(a)=\lim _{\lambda \in \Lambda} \varphi_{\lambda}(a)=0
$$

So K is weak-*-compact. Again by Krein-Milman, we then have that K has an extreme point ψ. But then $\psi \neq 0$ since $\pm \frac{\varphi}{\|\varphi\|} \in K$, and

$$
0=\frac{1}{2}\left(\frac{\varphi}{\|\varphi\|}+\frac{-\varphi}{\|\varphi\|}\right)
$$

So 0 is not extreme, and $\psi \neq 0$.
Now, by the Riesz representation theorem there is a finite real regular Borel measure μ such that

$$
\psi(f)=\int f d \mu
$$

for all $f \in C_{\mathbb{R}}(X)$.
Claim 183. $\operatorname{supp}(\mu)=\left\{x_{0}\right\}$. (Here $\operatorname{supp}(\mu)=\{x \in X:|\mu|(U)>0$ for all $U \in \mathcal{O}(x)\}$.)
Proof. If $\operatorname{supp}(\mu)=Y$ is not a single point, then there is $f \in A$ such that $f \upharpoonright Y$ is non-constant. Without loss of generality we may assume that $0<f(x)<1$ for all $x \in X$; otherwise we add a multiple of g to f to make it everywhere positive and then scale to get that it's less than 1 ; i.e. find c, d such that $0<\left(\frac{c g+f}{d}\right)(x)<1$ for all $x \in X$. (Note that $\frac{c g+f}{d}$ is still non-constant on Y.)

Let $\mu_{1}=f \mu$; let $\mu_{2}=(1-f) \mu$. Then for any $h \in C_{\mathbb{R}}(X)$ we have

$$
\int h d \mu_{1}=\int h f d \mu
$$

Then if $h \in A$, we have $h f \in A$, and

$$
0=\psi(h f)=\int h f d \mu=\int h d \mu_{1}
$$

Therefore $\mu_{1} \in A^{\perp}$. Similarly, we get that $\mu_{2} \in A^{\perp}$. But now

$$
\begin{aligned}
\left\|\mu_{1}\right\|+\left\|\mu_{2}\right\| & =\int_{X} d\left|\mu_{1}\right|+\int_{X} d\left|\mu_{2}\right| \\
& =\int_{X} f d|\mu|+\int_{X}(1-f) d|\mu| \\
& =\int_{X} d|\mu| \\
& =\|\mu\| \\
& =\|\psi\| \\
& =1
\end{aligned}
$$

(We get $\|\psi\|=1$ since if $\|\psi\|=r<1$, then $\frac{1}{r} \psi \in K$ and $\psi=r\left(\frac{1}{r} \psi\right)+(1-r) 0$ is not an extreme point.)
Observe now that $\frac{\mu_{1}}{\left\|\mu_{1}\right\|}, \frac{\mu_{2}}{\left\|\mu_{2}\right\|} \in K$ and $\mu=f d \mu+(1-f) d \mu=\left\|\mu_{1}\right\| \frac{\mu_{1}}{\left\|\mu_{1}\right\|}+\left\|\mu_{2}\right\| \frac{\mu_{2}}{\left\|\mu_{2}\right\|}$; so μ is not extreme, and ψ is not extreme, a contradiction.

Claim 183
So $\operatorname{supp}(\mu)=\left\{x_{0}\right\}$ for some $x_{0} \in X$; so $\mu= \pm \delta_{x_{0}}$, where δ_{x} is the point mass:

$$
\delta_{x}(A)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

But then

$$
0=\psi(g)=\int g d \mu= \pm \int g d \delta_{x_{0}}= \pm g\left(x_{0}\right) \neq 0
$$

a contradiction.Theorem 182

5 Operator theory

Definition 184. Suppose X and Y are Banach spaces; suppose $T \in \mathcal{B}(X, Y)$. Then there is a map $T^{*} \in \mathcal{B}\left(Y^{*}, X^{*}\right)$ called the adjoint (or transpose) of T given by $\left(T^{*} \varphi\right)(x)=\varphi(T x)$ for $\varphi \in Y^{*}$ and $x \in X$.

Theorem 185. Suppose X, Y, Z are Banach spaces; suppose $T \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(Y, Z)$. Then

1. $\left\|T^{*}\right\|=\|T\|$.
2. $T \mapsto T^{*}$ is linear.
3. $I_{X}^{*}=I_{X^{*}}$.
4. $(S T)^{*}=T^{*} S^{*}$.
5. T^{*} is weak-*-weak-*-continuous.
6. $T^{* *} \upharpoonright X=T$.

Proof. For convenience, given $\varphi \in X^{*}$ and $x \in X$, we write $\langle x, \varphi\rangle=\varphi(x)$.

1. Note that

$$
\begin{aligned}
&\left\|T^{*}\right\|=\sup _{\substack{\varphi \in Y^{*} \\
\|\varphi\| \leq 1}} \\
&=\sup _{\substack{\varphi \in Y^{*}}} \sup _{x \in X}\left|T^{*} \psi(x)\right| \\
&=\sup _{\substack{x \in X \\
\|x\| \leq 1}} \sup _{\substack{ \\
\| \in Y^{*}}}\left|T^{*} \psi(x)\right| \\
&=\sup _{x \in X}\|T x\| \\
&\|x\| \leq 1 \\
&=\|T\|
\end{aligned}
$$

by Hahn-Banach.
2. Suppose $a, b \in \mathbb{F}$ and $S, T \in \mathcal{B}(X, Y)$. Suppose $\varphi \in Y^{*}$ and $x \in X$. Then

$$
\begin{aligned}
\left((a S+b T)^{*} \varphi\right)(x) & =\varphi((a S+b T) x) \\
& =a \varphi(S x)+b \varphi(T x) \\
& =\left(\left(a S^{*}+b T^{*}\right) \varphi\right)(x)
\end{aligned}
$$

So $T \mapsto T^{*}$ is linear.
3. Suppose $\varphi \in X^{*}$. Then, for $x \in X$, we have

$$
\left(I_{X}^{*} \varphi\right)(x)=\varphi(I x)=\varphi(x)=\left(I_{X^{*}} \varphi\right)(x)
$$

So $I_{X}^{*}=I_{X^{*}}$.
4. Suppose $w \in Z^{*}$ and $x \in X$. Then

$$
\left((S T)^{*} w\right)(x)=w(S(T x))=\left(S^{*} w\right)(T x)=\left(T^{*} S^{*} w\right)(x)
$$

So $(S T)^{*}=T^{*} S^{*}$.
5. Note that $T^{*}: Y^{*} \rightarrow X^{*}$ is norm-continuous. Suppose now that $\left(\psi_{\lambda}: \lambda \in \Lambda\right)$ is a net in Y^{*} converging to ψ in the weak-* topology. The for all $x \in X$ we have

$$
\left(T^{*} \psi_{\lambda}\right)(x)=\psi_{\lambda}(T x) \rightarrow \psi(T x)=\left(T^{*} \psi\right)(x)
$$

So $\left(T \psi_{\lambda}: \lambda \in \Lambda\right) \xrightarrow{w^{*}} T^{*} \psi$, and T^{*} is weak-*-weak-*-continuous
6. Note that $T \in \mathcal{B}(X, Y)$ implies that $T^{*} \in B\left(Y^{*}, X^{*}\right)$ and $T^{* *} \in B\left(X^{* *}, Y^{* *}\right)$. Suppose $x \in X$ and $\psi \in Y^{*}$. Then

$$
\left(T^{* *} \widehat{x}\right)(\psi)=\widehat{x}\left(T^{*} \psi\right)=\left(T^{*} \psi\right)(x)=\psi(T x)=\widehat{T x}(\psi)
$$

which we colloquially interpret to mean $T^{* *} \upharpoonright X=T$.

Let X be an n-dimensional Banach space with $n \in \mathbb{N}$; let e_{1}, \ldots, e_{n} be a basis. Let Y be an m-dimensional Banach space with $m \in \mathbb{N}$; let f_{1}, \ldots, f_{m} be a basis. Then X^{*} has dual basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$ where

$$
\varepsilon_{j}\left(e_{i}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and similarly Y^{*} has dual basis $\delta_{1}, \ldots, \delta_{m}$. Let $T \in \mathcal{B}(X, Y)$. Then T has matrix $\left[t_{i j}\right]$ and

$$
T e_{j}=\sum_{i=1}^{m} t_{i j} f_{i}
$$

Then $T^{*} \in \mathcal{B}\left(Y^{*}, X^{*}\right)$ has matrix $\left[s_{i j}\right]$, and

$$
T^{*} \delta_{j}=\sum_{i=1}^{n} s_{i j} \varepsilon_{i}
$$

But then

$$
s_{i j}=\left(T^{*} \delta_{j}\right)\left(e_{i}\right)=\delta_{j}\left(T e_{i}\right)=t_{j i}
$$

So the matrix of T is the transpose of that of T^{*}.
Proposition 186. Suppose $T: X \rightarrow Y$ is linear. Then T is bounded if and only if T is weak-weak-continuous.

Proof.
(\Longrightarrow) Suppose T is bounded; suppose $\left(x_{\alpha}: \alpha \in \Lambda\right) \xrightarrow{w} x$. Then

$$
\psi\left(T x_{\alpha}\right)=\left(T^{*} \psi\right)\left(x_{\alpha}\right) \rightarrow\left(T^{*} \psi\right)(x)=\psi(T x)
$$

So $\left(T x_{\alpha}: \alpha \in \Lambda\right) \xrightarrow{w} T x$ is weak-weak-continuous.
(\Longleftarrow) Suppose T is weak-weak-continuous. Then $\psi \circ T$ is continuous for all $\psi \in Y^{*}$. So, if $\psi \in Y^{*}$, then

$$
\sup _{\|x\| \leq 1}|\psi(T x)|=\sup _{\|x\| \leq 1}|(\psi \circ T)(x)|=\|\psi \circ T\|<\infty
$$

But $(\psi \circ T)(x)=\left(T^{*} \psi\right)(x)$; so $\left\|T^{*} \psi\right\|=\|\psi \circ T\|<\infty$. (Notice that T^{*} is defined even if T is not bounded.)
Consider $\{T x: x \in X,\|x\| \leq 1\} \subseteq Y \subseteq Y^{* *}$. We then have

$$
\begin{aligned}
\sup _{\substack{x \in X \\
\|x\| \leq 1}}|\widehat{T x}(\psi)| & =\sup _{\substack{x \in X \\
\|x\| \leq 1}}|\psi(T x)| \\
& =\|\psi \circ T\| \\
& <\infty
\end{aligned}
$$

Then by Banach-Steinhaus we have

$$
\|T\|=\sup _{\substack{x \in X \\\|x\| \leq 1}}\|T x\|=\sup _{\substack{x \in X \\\|x\| \leq 1}}\|\widehat{T x}\|<\infty
$$

So T is bounded.
Proposition 186
Proposition 187. $T: Y^{*} \rightarrow X^{*}$ is weak-*-weak-*-continuous if and only if there is $S \in \mathcal{B}(X, Y)$ such that $T=S^{*}$.
TODO 1. Conditions on T?
Proof.
(\Longrightarrow)
TODO 2. This.
(\Longleftarrow) Part 5 of the previous theorem.
TODO 1
Example 188. Consider the inclusion map $i_{X}: X \rightarrow X^{* *}$ given by $i_{X}(x)=\widehat{x}$. Then $i_{X}^{*}: X^{* * *} \rightarrow X^{*}$. If $\Phi \in X^{* * *}$ and $x \in X$, we have $i_{X}^{*}(\Phi)(x)=\Phi\left(i_{X}(x)\right)=\Phi(\widehat{x})$. So $i_{X}^{*}(\Phi)=\Phi \upharpoonright X$.

We also have $i_{X^{*}}: X^{*} \rightarrow X^{* * *}$. Define $p=i_{X^{*}} \circ i_{X}^{*}: X^{* * *} \rightarrow X^{* * *}$; then

$$
p(\Phi)=i_{x^{*}}(\Phi \upharpoonright X)=\widehat{\Phi \upharpoonright X} \in \widehat{X^{*}}
$$

Also $i_{X}^{*} \circ i_{X^{*}}: X^{*} \rightarrow X^{*}$. For $\varphi \in X^{*}$ and $x \in X$ we have

$$
\left(i_{X}^{*} i_{X^{*}}(\varphi)\right)(x)=\left(i_{X *} \varphi\right)\left(i_{X}(x)\right)=\widehat{\varphi}(x)
$$

So $i_{X}^{*} i_{X^{*}}=I_{X^{*}}$. But then

$$
p^{2}=i_{X^{*}}\left(i_{X}^{*} i_{X^{*}}\right) i_{X}^{*}=i_{X^{*}} i_{X}^{*}=p
$$

So p is a projection of norm 1 .

$$
\|p\| \leq\left\|i_{X^{*}}\right\|\left\|i_{X^{*}}\right\|=1 \cdot 1=1
$$

and $\operatorname{Ran}(p)=\operatorname{Ran}\left(i_{X^{*}}\right)=\widehat{X^{*}}$. So p projects $X^{* * *}$ onto $\widehat{X^{*}}$.

5.1 Hilbert space adjoint

Proposition 189. Suppose \mathcal{H} is a Hilbert space and $[\cdot, \cdot]$ is a sesquilinear form which is bounded (i.e. $|[x, y]| \leq C\|x\|\|y\|$ for all $x, y \in \mathcal{H})$. Then there is a unique $B \in \mathcal{B}(\mathcal{H})$ such that $[x, y]=\langle x, B y\rangle$.

Proof. Fix $y \in \mathcal{H}$. Define $\Phi_{y}(x)=[x, y]$; then Φ_{y} is a linear functional, and

$$
\left\|\Phi_{y}\right\|=\sup _{\|x\| \leq 1}|[x, y]| \leq C\|y\|
$$

So $\Phi_{y} \in \mathcal{H}^{*}$. So there is a unique $z_{y} \in \mathcal{H}$ such that $[x, y]=\left\langle x, z_{y}\right\rangle$ and $\left\|z_{y}\right\|=\left\|\Phi_{y}\right\| \leq C\|y\|$. Define $B y=z_{y}$; then $\|B\| \leq C$, and B is bounded.

To see linearity, suppose $y_{1}, y_{2} \in \mathcal{H}, a, b \in \mathbb{F}$. Then for any $x \in \mathcal{H}$ we have

$$
\begin{aligned}
\left\langle x, B\left(a y_{1}+b y_{2}\right)\right\rangle & =\left[x, a y_{1}+b y_{2}\right] \\
& =\bar{a}\left[x, y_{1}\right]+\bar{b}\left[x, y_{2}\right] \\
& =\bar{a}\left\langle x, B y_{1}\right\rangle+\bar{b}\left\langle x, B y_{2}\right\rangle \\
& =\left\langle x, a B y_{1}+b B y_{2}\right\rangle
\end{aligned}
$$

So

$$
0=\left\langle x, B\left(A y_{1}+b y_{2}\right)-\left(a B y_{1}+b B y_{2}\right)\right\rangle
$$

for all $x \in \mathcal{H}$. So $B\left(a y_{1}+b y_{2}\right)=a B y_{1}+b B y_{2}$, and B is linear.
Proposition 189
Definition 190. If \mathcal{H} is a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$, then the Hilbert space adjoint of T is T^{*} the unique element of $\mathcal{B}(\mathcal{H})$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in \mathcal{H}$.

Remark 191. To see that this exists, define $[x, y]=\langle T x, y\rangle$; then by the above proposition there is a unique $B \in \mathcal{B}(\mathcal{H})$ such that $\langle T x, y\rangle=\langle x, B y\rangle$; then $B=T^{*}$.

Proposition 192.

1. $\left\|T^{*}\right\|=\|T\|$.
2. $(a S+b T)^{*}=\bar{a} S^{*}+\bar{b} T^{*}$.
3. $(S T)^{*}=T^{*} S^{*}$.
4. $T^{* *}=T$.

Proof. Omitted.
Example 193. Consider $L^{2}(0,1)$ with $M_{x}(f)=x f$. What is $\left\|M_{x}\right\|$? Well,

$$
\begin{aligned}
\|x f\|_{2}^{2} & =\int_{0}^{1} x^{2}|f(x)|^{2} d x \\
& \leq \int_{0}^{1}|f(x)|^{2} d x \\
& =\|f\|^{2}
\end{aligned}
$$

So $\left\|M_{x}\right\| \leq 1$. Define

$$
\chi_{n}(x)= \begin{cases}0 & 0 \leq x \leq 1-\frac{1}{n} \\ \sqrt{n} & 1-\frac{1}{n} \leq x \leq 1\end{cases}
$$

Then

$$
\left\|x_{n}\right\|^{2}=\int_{0}^{1}\left|\chi_{n}\right|^{2}=\int_{1-\frac{1}{n}}^{1} n d x=1
$$

and

$$
\begin{aligned}
\left\|M_{x} x_{n}\right\|^{2} & =\int_{1-\frac{1}{n}}^{1}(x \sqrt{n})^{2} d x \\
& =\left.\left(n \frac{x^{3}}{3}\right)\right|_{1-\frac{1}{n}} ^{1} \\
& =\frac{n}{3}\left(1-\left(1-\frac{1}{n}\right)^{3}\right) \\
& =\frac{n}{3}\left(\frac{3}{n}-\frac{3}{n^{2}}+\frac{1}{n^{3}}\right) \\
& =1-\frac{3}{n}+\frac{1}{3 n^{2}}
\end{aligned}
$$

M_{x} is injective since if $x f=x g$ almost everywhere then $f=g$ almost everywhere. But $1 \notin \operatorname{Ran}\left(M_{x}\right)$ because $x^{-1} \notin L^{2}(0,1)$. So it's not invertible, but has no kernel. Does it have eigenvalues?

Suppose $x f=\lambda f$ for some $\lambda \in \mathbb{C}$. Then $(x-\lambda) f=0$ almost everywhere. But $x-\lambda \neq 0$ almost everywhere. So $f=0$. So it has no eigenvalues.
Definition 194. We say $T \in \mathcal{B}(X, Y)$ is bounded below if there is $c>0$ such that $\|T x\| \geq c\|x\|$.
Example 195.

1. M_{x} is not bounded below: let

$$
y_{n}(x) \begin{cases}\sqrt{n} & 0 \leq x \leq \frac{1}{n} \\ 0 & x>\frac{1}{n}\end{cases}
$$

Then $\left\|y_{n}\right\|=1$ but

$$
\left\|x y_{n}\right\|^{2}=\int_{0}^{\frac{1}{n}}(x \sqrt{n})^{2} d x=\left.n \frac{x^{3}}{3}\right|_{0} ^{\frac{1}{n}}=\frac{1}{3 n^{2}}
$$

2. Let $D: \ell_{1} \rightarrow \ell_{1}$ be $D e_{n}=\frac{1}{n} e_{n}$. Then $D\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(\frac{x_{1}}{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)$. Then D is injective but is not bounded below; it is also not surjective, as $\left(1, \frac{1}{4}, \frac{1}{9}, \ldots\right) \in \ell^{1}$ but $\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \notin \ell^{1}$.
3. Consider $\mathcal{H}=\ell_{2}$ with orthonormal basis e_{1}, e_{2}, \ldots. Consider the shift $S e_{n}=e_{n+1}$. Then $S\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=$ $\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$. We have $\|S x\|=\|x\|$, so this is an isometry, and in particular is injective. It is also therefore bounded below by 1 . It is not surjective: $\operatorname{Ran}(S)=\left(\mathbb{C} e_{1}\right)^{\perp}$.
We can consider its Hilbert space adjoint S^{*} :

$$
\begin{aligned}
\left\langle x, S^{*} y\right\rangle & =\langle S x, y\rangle \\
& =\left\langle\left(0, x_{1}, x_{2}, \ldots\right),\left(y_{1}, y_{2}, \ldots\right)\right\rangle \\
& =\sum_{n=1}^{\infty} x_{n} \overline{y_{n+1}} \\
& =\left\langle\left(x_{1}, x_{2}, \ldots\right),\left(y_{2}, y_{3}, y_{4}, \ldots\right)\right\rangle
\end{aligned}
$$

So $S^{*}\left(\left(y_{1}, y_{2}, y_{3}, \ldots\right)\right)=\left(y_{2}, y_{3}, y_{4}, \ldots\right)$. i.e. $S^{*} e_{1}=0$ and $S^{*} e_{n+1}=e_{n}$ for $n \geq 1$. Also $\operatorname{ker}\left(S^{*}\right)=\mathbb{C} e_{1}$, but S^{*} is surjective.
Now, neither S nor S^{*} is invertible. But

$$
\begin{aligned}
\left(S^{*} S\right)\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right) & =S^{*}\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) \\
& =\left(x_{1}, x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

So $S^{*} S=I$. But

$$
\begin{aligned}
\left(S S^{*}\right)\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right) & =S\left(\left(x_{2}, x_{3}, x_{4}, \ldots\right)\right) \\
& =\left(0, x_{2}, x_{3}, x_{4}, \ldots\right)
\end{aligned}
$$

So $S S^{*} \neq I$.

Lemma 196. Suppose $T \in \mathcal{B}(X, Y)$. Then $(\operatorname{ker}(T))^{\perp}=\overline{\operatorname{Ran}\left(T^{*}\right)}$ (where the closure is taken in the weak-* topology) and $\operatorname{ker}\left(T^{*}\right)=(\operatorname{Ran}(T))^{\perp}$.
Proof. We first show $\operatorname{ker}\left(T^{*}\right)=(\operatorname{Ran}(T))^{\perp}$. Note that for $\psi \in Y^{*}$, we have

$$
\begin{aligned}
\psi \in(\operatorname{Ran}(T))^{\perp} & \Longleftrightarrow \psi(T x)=0 \text { for all } x \in X \\
& \Longleftrightarrow\left(T^{*} \psi\right)(x)=0 \text { for all } x \in X \\
& \Longleftrightarrow T^{*} \psi=0 \\
& \Longleftrightarrow \psi \in \operatorname{ker}\left(T^{*}\right)
\end{aligned}
$$

Now note that $\left(\operatorname{Ran}\left(T^{*}\right)\right)^{\perp}=\operatorname{ker}\left(T^{* *}\right)$, and

$$
\begin{aligned}
\left(\operatorname{Ran}\left(T^{*}\right)\right)_{\perp} & =\left\{x \in X: x \perp \operatorname{Ran}\left(T^{*}\right)\right\} \\
& =\left(\operatorname{ker}\left(T^{* *}\right)\right) \cap X \\
& =\operatorname{ker}(T)
\end{aligned}
$$

So $(\operatorname{ker}(T))^{\perp}=\left(\left(\operatorname{Ran}\left(T^{*}\right)\right)_{\perp}\right)^{\perp}$ which is the weak-*-closure of $\operatorname{Ran}\left(T^{*}\right)$.
Lemma 196
Remark 197. If $T \in \mathcal{B}(X, Y)$, then the norm closure of $\operatorname{Ran}\left(T^{*}\right)$ may not be weak-*-closed. Consider $D: \ell_{1} \rightarrow \ell_{1}$ by $D e_{n}=\frac{1}{n} e_{n}$. Then $D^{*}: \ell_{\infty} \rightarrow \ell_{\infty}$ is given by $D^{*}\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(\frac{x_{1}}{1}, \frac{x_{2}}{2}, \ldots\right)$. So

$$
c_{0}=\operatorname{span}\left\{e_{1}, \frac{e_{2}}{2}, \frac{e_{3}}{3}, \ldots\right\} \subseteq \overline{\operatorname{Ran}\left(D^{*}\right)} \subseteq c_{0}
$$

(where here we use the norm closure). So c_{0} is the norm-closure of $\operatorname{Ran}\left(D^{*}\right)$. But by Goldstine we have that the weak-*-closure of c_{0} is ℓ_{∞}. So the norm-closure of $\operatorname{Ran}\left(D^{*}\right)$ is not weak-*-closed.
Proposition 198. Suppose $T \in \mathcal{B}(X, Y)$. Then the following are equivalent:

1. T is invertible
2. T is bijective
3. T is bounded below and has dense range
4. T and T^{*} are bounded below
5. T^{*} is invertible

Proof.
(1) \Longrightarrow (2) Trivial.
$\mathbf{(2)} \Longrightarrow$ (1) Banach isomorphism theorem.
$\mathbf{(1)} \Longrightarrow(3)$ Suppose $T^{-1} T=I_{X}$. Then

$$
\|x\|=\left\|T^{-1}(T x)\right\| \leq\left\|T^{-1}\right\|\|T x\|
$$

So

$$
\|T x\| \geq \frac{1}{\left\|T^{-1}\right\|}\|x\|
$$

and T is bounded below. Also, T is surjective; so T has dense range.
$\mathbf{(3)} \Longrightarrow$ (2) If $x \neq 0$ then $\|T x\| \geq c\|x\|>0$; so T is injective. Let $y \in Y=\overline{\operatorname{Ran}(T)}$. Find $\left(x_{n}: n \in \mathbb{N}\right)$ in X such that $\left(T x_{n}: n \in \mathbb{N}\right) \rightarrow y$. Let $y_{n}=T x_{n}$. Then $\left(y_{n}: n \in \mathbb{N}\right)$ converges, and is thus Cauchy. But

$$
\left\|x_{n}-x_{m}\right\| \leq \frac{1}{c}\left\|y_{n}-y_{m}\right\|
$$

Take $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have $\left\|y_{n}-y_{m}\right\|<c \varepsilon$; then for all $n, m \geq N$ we have $\left\|x_{n}-x_{m}\right\|<\varepsilon$. So $\left(x_{n}: n \in \mathbb{N}\right)$ is Cauchy, and thus converges to x. But then

$$
y=\lim _{n \rightarrow \infty} T x_{n}=T x
$$

So T is surjective.
$\mathbf{(1)} \Longrightarrow$ (5) T is invertible so $T^{-1} T=I_{X}$ and $T T^{-1}=I_{Y}$. Taking adjoints, we find that $T^{*}\left(T^{-1}\right)^{*}=$ $I_{X}^{*}=I_{X^{*}}$ and $\left(T^{-1}\right)^{*} T^{*}=I_{Y}^{*}=I_{Y^{*}}$. So $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$.
$\mathbf{(5)} \Longrightarrow(4)$ Suppose T^{*} is invertible. Then, by previous directions, we have that T^{*} is bounded below and that $T^{* *}$ is inverible and bounded below. But $T=T^{* *} \upharpoonright X$; so T is bounded below.
$\mathbf{(4)} \Longrightarrow \mathbf{(3)}$ Suppose T and T^{*} are bounded below. Then T is bounded below, and $\operatorname{ker}\left(T^{*}\right)=\{0\}$. But by the lemma we have $(\operatorname{Ran}(T))^{\perp}=\operatorname{ker}\left(T^{*}\right)$. So $\overline{\operatorname{Ran}(T)}=Y$.

Proposition 198
Definition 199. If $T \in \mathcal{B}(X)$, we define the spectrum of T is

$$
\sigma(T)=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not invertible }\}
$$

The resolvent of T is $\rho(T)=\mathbb{C} \backslash \sigma(T)$. The resolvent function $R(T, \lambda)=(\lambda I-T)^{-1}$ for $\lambda \in \rho(T)$. The point spectrum is $\sigma_{p}(T)$ the set of eigenvalues of T; i.e. $\sigma_{p}(T)=\{\lambda: \operatorname{ker}(\lambda I-T) \neq \emptyset\}$. The approximate point spectrum is $\pi(T)=\{\lambda: \lambda I-T$ is not bounded below $\}$. The compression spectrum is $\gamma(T)=\{\lambda: \overline{\operatorname{Ran}(\lambda I-T)} \neq X\}$.
Remark 200. By proposition we have that $\sigma(T)=\pi(T) \cup \gamma(T)$.
We let $\mathcal{B}(X)^{-1}$ denote the set of invertible operators in X.
Proposition 201. $B(X)^{-1}$ is open and contains $b_{1}\left(I_{X}\right)$.
Proof. If $A \in \mathcal{B}(X)$ with $\|A\| \leq 1$, we wish to show that $I-A \in b_{1}(I)$ is invertible. Recall that in \mathbb{C} if $|x|<1$ we have

$$
\frac{1}{1-x}=1+x+x^{2}+\ldots
$$

Let

$$
B=\sum_{n=0}^{\infty} A^{n} \in \mathcal{B}(X)
$$

This converges because

$$
\sum_{n=0}^{\infty}\left\|A^{n}\right\| \leq \sum_{n=0}^{\infty}\|A\|^{n}=\frac{1}{1-\|A\|}<\infty
$$

Then

$$
(I-A) B=\lim _{k \rightarrow \infty}\left((I-A)\left(I+A+\cdots+A^{k}\right)\right)=\lim _{k \rightarrow \infty}\left(I-A^{k+1}\right)=I
$$

By continuity, since $I-A$ commutes with the partial sums, it commutes with B, and $B(I-A)=(I-A) B=I$. So $I-A$ is invertible.

If $T \in \mathcal{B}(X)^{-1}$ and $\|A\|<\frac{1}{\left\|T^{-1}\right\|}$ then $T-A=T\left(I-T^{-1} A\right)$. Then $\left\|T^{-1} A\right\| \leq\left\|T^{-1}\right\|\|A\|<1$. So $(T-A)^{-1}=\left(I-T^{-1} A\right)^{-1} T^{-1}$. So

$$
b_{\frac{1}{\left\|T^{-1}\right\|}} \subseteq B(X)^{-1}
$$

So $B(X)^{-1}$ is open.
Proposition 201
Proposition 202. If $T \in \mathcal{B}(X)$ then $\rho(T)$ is open and $\sigma(T) \subseteq \overline{b_{\|T\|}(0)}$.
Proof. $\mathcal{B}(X)^{-1}$ is open and $f: \mathbb{C} \rightarrow \mathcal{B}(X)$ given by $f(\lambda)=\lambda I-T$ is norm-continuous. Thus $\rho(T)=$ $f^{-1}\left(\mathcal{B}(X)^{-1}\right)$ is open. If $|\lambda|>\|T\|$, then $\lambda I-T=\lambda\left(I-\lambda^{-1} T\right)$. So

$$
\left\|\lambda^{-1} T\right\|=\frac{\|T\|}{|\lambda|}<1
$$

So

$$
(\lambda I-T)^{-1}=\lambda^{-1}\left(I-\lambda^{-1} T\right)^{-1}=\lambda^{-1} \sum_{n=0}^{\infty}\left(\lambda^{-1} T\right)^{n}=\sum_{n=0}^{\infty} T^{n} \lambda^{-n-1}
$$

Proposition 203. The map $\mathcal{B}(X)^{-1} \rightarrow \mathcal{B}(X)^{-1}$ given by $T \mapsto T^{-1}$ is continuous.
Proof. Suppose $T_{0} \in \mathcal{B}(X)^{-1} ;$ suppose $\|A\|<\frac{1}{\left\|T_{0}^{-1}\right\|}$. Then

$$
\begin{aligned}
\left(T_{0}+A\right)^{-1} & =\left(T_{0}\left(I+T_{0}^{-1} A\right)\right)^{-1} \\
& =\left(I+T_{0}^{-1} A\right)^{-1} T_{0}^{-1} \\
& =\sum_{n=0}^{\infty}\left(-T_{0}^{-1} A\right)^{n} T_{0}^{-1} \\
& =T_{0}^{-1}+\sum_{n=1}^{\infty}\left(-T_{0} A\right)^{n} T_{0}^{-1}
\end{aligned}
$$

So

$$
\begin{aligned}
\left\|\left(T_{0}+A\right)^{-1}-T_{0}^{-1}\right\| & =\left\|\sum_{n=1}^{\infty}\left(-T_{0}^{-1} A\right)^{n} T_{0}^{-1}\right\| \\
& \leq \sum_{n=1}^{\infty}\left(\left\|T_{0}^{-1}\right\|\|A\|\right)^{n}\left\|T_{0}^{-1}\right\| \\
& =\frac{\left\|T_{0}^{-1}\right\|^{2}\|A\|}{1-\left\|T_{0}^{-1}\right\|\|A\|} \\
& \rightarrow 0 \text { as }\|A\| \rightarrow 0
\end{aligned}
$$

So the map is continuous at T_{0}.
Example 204.

1. Let $X=L^{p}(0,1)$ for $1 \leq p<\infty$. Let $h \in L^{\infty}(0,1)$ where

$$
\|h\|_{\infty}=\operatorname{ess} \sup |h|=\sup \{r: m(\{x:|h(x)| \geq r\})>0\}
$$

Let $M_{h} f=f h$ for $f \in L^{p}(0,1)$. Then

$$
\begin{aligned}
\left\|M_{h} f\right\|_{p}^{p} & =\int|h f|^{p} d m \\
& \leq \int\|h\|_{\infty}^{p}|f|^{p} d m \\
& =\|h\|_{\infty}^{p}\|f\|_{p}^{p}
\end{aligned}
$$

So $\left\|M_{h}\right\| \leq\|h\|_{\infty}$. Let $f=\chi_{A}$. Then

$$
\|f\|_{p}=\left(\int \chi_{A}^{p}\right)^{\frac{1}{p}}=m(A)^{\frac{1}{p}}
$$

and

$$
\|f h\|_{p}=\left(\int\left(|h| \chi_{A}\right)^{p}\right)^{\frac{1}{p}} \geq r\left(\int \chi_{A}\right)^{\frac{1}{p}}=r\|f\|_{p}
$$

What is $\sigma\left(M_{h}\right)$? Well, if $h, k \in L^{\infty}(0,1)$, then

$$
M_{h} M_{k} f=M_{h} k f=h k f=M_{h k} f
$$

We look at the case of $h=x$. So if $\lambda \notin[0,1]$ then $\frac{1}{x-\lambda} \in L^{\infty}(0,1)$, so $\left(M_{x}-\lambda I\right) M_{\frac{1}{x-\lambda}}=1$, and $\lambda \notin \sigma\left(M_{x}\right)$. So $\sigma\left(M_{x}\right) \subseteq[0,1]$.
On the other hand, for $\varepsilon>0$, let $f_{\varepsilon}=\chi_{\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right)}$. Then

$$
\left\|M_{x-\frac{1}{2}} f_{\varepsilon}\right\|_{p}=\left\|\left(x-\frac{1}{2} \chi_{\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right)}\right)\right\|<\left\|\varepsilon f_{\varepsilon}\right\|_{p}=\varepsilon\left\|f_{\varepsilon}\right\|_{p}
$$

But this is not bounded below. So $\frac{1}{2} \in \sigma\left(M_{x}\right)$. Similarly, we have that $y \in \sigma\left(M_{x}\right)$ for any $y \in[0,1]$. Consider now arbitrary $h \in C[0,1]$. We let $h([0,1])=X=\operatorname{Ran}(h)$. If $\lambda \notin \operatorname{Ran}(h)$ then

$$
\frac{1}{h-\lambda} \in C[0,1]
$$

and

$$
\left(M_{h}-\lambda I\right) M_{\frac{1}{h-\lambda}}=I
$$

so $\lambda \notin \sigma\left(M_{h}\right)$. If $h\left(x_{0}\right)=\lambda$, then for all $\varepsilon>0$ there is $\delta>0$ such that $h^{-1}\left(b_{\varepsilon}(\lambda)\right) \supseteq b_{\delta}\left(x_{0}\right)$; then if $f_{\varepsilon}=\chi_{\left(x_{0}-\delta, x_{0}+\delta\right)}$, we have $\left\|M_{h-\lambda} f_{\varepsilon}\right\|_{p} \leq \varepsilon\left\|f_{\varepsilon}\right\|_{p}$. So $\sigma\left(M_{h}\right)=h([0,1])$.
Consider now arbitrary $h \in L^{\infty}(0,1)$. Define

$$
\operatorname{ess} \operatorname{Ran}(h)=\left\{z \in \mathbb{C}: m\left(h^{-1}\left(b_{\varepsilon}(z)\right)\right)>0 \text { for all } \varepsilon>0\right\}
$$

If $\lambda \notin \operatorname{ess} \operatorname{Ran}(h)$ then there is $\varepsilon>0$ such that $m\left(h^{-1}\left(b_{\varepsilon}(z)\right)\right)=0$. Then

$$
\left|\frac{1}{h-z}\right| \leq \frac{1}{\varepsilon}
$$

almost everywhere, so

$$
\left(M_{h}-z I\right) M_{\frac{1}{h-z}}=I
$$

and $z \notin \sigma\left(M_{h}\right)$. Conversely, if $z \in \operatorname{ess} \operatorname{Ran}(h)$, we let $f_{\varepsilon}=\chi_{h^{-1}\left(b_{\varepsilon}(z)\right)} \neq 0$. Then $\left\|M_{h-z} f_{\varepsilon}\right\| \leq \varepsilon\left\|f_{\varepsilon}\right\|$ is not bounded below, and is thus not invertible. So $\sigma\left(M_{h}\right)=\operatorname{ess} \operatorname{Ran}(h)$.
We consider now the Banach space adjoint to M_{h}. If $f \in L^{p}$ and $g \in L^{q}$ (where $\frac{1}{p}+\frac{1}{q}=1$), then

$$
\begin{aligned}
\left\langle M_{h} f, g\right\rangle & =\int h f g d m \\
& =\int f(h g) d m \\
& =\left\langle f, M_{h} g\right\rangle
\end{aligned}
$$

So the Banach space adjoint $M_{h}^{*}=M_{h}$ on $L^{q}(0,1)$. To see the Hilbert space adjoint, note that if $f, g \in L^{2}(0,1)$, then

$$
\begin{aligned}
\left\langle M_{h} f, g\right\rangle & =\int(h f) \bar{g} d m \\
& =\int f \overline{(\bar{h} g)} d m \\
& =\langle f, \bar{h} g\rangle
\end{aligned}
$$

So $M_{h} M_{\bar{h}}=M_{|h|^{2}}=M_{\bar{h}} M_{h}$. So M_{h} commutes with M_{h}^{*}, and it is normal.
2. Consider the unilateral shift on $\ell^{2}: S e_{n}=e_{n+1}$ for $n \geq 0$. i.e. $S\left(\left(x_{0}, x_{1}, \ldots\right)\right)=\left(0, x_{0}, x_{1}, \ldots\right)$. We have the backwards shift $S^{*}\left(\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)=\left(x_{1}, x_{2}, \ldots\right)$. Then $\|S\|=1=\left\|S^{*}\right\|$; so $\sigma(S) \subseteq \mathbb{D}$.
S is not invertible because $\operatorname{Ran}(S) \perp \mathbb{C} e_{0}$. So $S^{*} e_{0}=0$, and 0 is an eigenvalue of S^{*}. On the other hand, clearly S has no eigenvalues, since if $S x=\lambda x$, then $\|x\|=\|S x\|=\|\lambda x\|=|\lambda|\|x\|$, and $|\lambda|=1$; but then $\lambda x_{0}=0$, and $\lambda x_{1}=x_{0}=0$, and so on, so $x=0$, a contradiction.
Can we have $S^{*} x=\lambda x$? We need $x_{n+1}=\lambda x_{n}$ for $n \geq 0$. i.e.

$$
x_{n}=\lambda x_{n-1}=\lambda^{2} x_{n-2}=\cdots=\lambda^{n} x_{0}
$$

So $x=x_{0}\left(1, \lambda, \lambda^{2}, \ldots\right)$. So $S^{*}\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right)=\left(\lambda, \lambda^{2}, \lambda^{3}, \lambda^{4}, \ldots\right)=\lambda\left(1, \lambda, \lambda^{2}, \ldots\right)$. If $|\lambda|<1$, then $x_{\lambda}=\left(1, \lambda, \lambda^{2}, \ldots\right) \in \ell_{2}$. So $\sigma_{p}\left(S^{*}\right)=\mathbb{D}=\{\lambda:|\lambda|<1\}$. So $\sigma\left(S^{*}\right) \supseteq \overline{\mathbb{D}}$. So $\sigma\left(S^{*}\right)=\overline{\mathbb{D}}$.

Returning to S, note that if $|\lambda| \leq 1$, then $(S-\lambda I)^{*}=S^{*}-\overline{\lambda I}$ is not invertible. So $S-\lambda I$ is not invertible. If $|\lambda<1|$, then

$$
\left\langle(S-\lambda I) x, x_{\bar{\lambda}}\right\rangle=\left\langle x,\left(S^{*}-\bar{\lambda} I\right) x_{\bar{\lambda}}\right\rangle=\langle x, 0\rangle=0
$$

So $\operatorname{Ran}(S-\lambda I) \perp \mathbb{C} x_{\bar{\lambda}}$; so $\sigma(S)=\overline{\mathbb{D}}$. If $|\lambda|=1$, let

$$
\begin{gathered}
x_{n}=\frac{1}{\sqrt{n}}\left(1, \bar{\lambda}, \bar{\lambda}^{2}, \ldots, \bar{\lambda}^{n-1}, 0,0, \ldots\right) \\
\left\|x_{n}\right\|^{2}=\frac{1}{n} \sum_{i=0}^{n-1}\left|\bar{\lambda}^{i}\right|^{2}=\frac{n}{n}=1
\end{gathered}
$$

But

$$
S x_{n}=\frac{1}{\sqrt{n}}\left(0,1, \bar{\lambda}, \bar{\lambda}^{2}, \ldots, \bar{\lambda}^{n-2}, \bar{\lambda}^{n-1}, 0\right)
$$

and

$$
\lambda x_{n}=\frac{1}{\sqrt{n}}\left(\lambda, 1, \bar{\lambda}, \bar{\lambda}^{2}, \ldots, \bar{\lambda}^{n-2}, 0, \ldots\right)
$$

So

$$
(S-\lambda I) x_{n}=\frac{1}{\sqrt{n}}\left(-\lambda, 0,0, \ldots, 0, \bar{\lambda}^{n-1}, 0, \ldots\right)
$$

So

$$
\left\|(S-\lambda I) x_{n}\right\|=\sqrt{\frac{2}{n}} \rightarrow 0
$$

is not bounded below.
Definition 205. Suppose $\Omega \subseteq \mathbb{C}$ is open and X is a Banach space. Suppose $f: \Omega \rightarrow X$. We say f is strongly analytic if for all $z_{0} \in \Omega$ there exist $x_{0}, x_{1}, x_{2}, \ldots, \in X$ such that

$$
f\left(z_{0}+w\right)=\sum_{n=0}^{\infty} x_{n} w^{n}
$$

converges uniformly for all $|w| \leq r$ for all $r>0$. We say f is weakly anaytic if for all $\varphi \in X^{*}$ we have that $\varphi \circ f: \Omega \rightarrow \mathbb{C}$ is analytic.

Exercise 206 (Bonus problem). Prove that if f is weakly analytic then it is strongly analytic. Hint:

1. Show

$$
\left\{\varphi\left(\frac{f\left(z_{0}+w\right)-f\left(z_{0}\right)}{w}\right):|w| \leq r\right\}
$$

is bounded.
2. Show f is continuous.
3. For $n \geq 0$, set

$$
x_{n}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} f\left(z_{0}+r \exp (i \theta)\right) \exp (-i n \theta) d \theta
$$

(as a Riemann integral).
4. Show

$$
f\left(z_{0}+w\right)=\sum_{n=0}^{\infty} x_{n} w^{n}
$$

for $|w| \leq r$.
Theorem 207. Suppose $T \in \mathcal{B}(X)$; suppose $\lambda, \mu \in \rho(T)$. Then
1.

$$
\frac{R(T, \lambda)-R(T, \mu)}{\lambda-\mu}=-R(T, \lambda) R(T, \mu)
$$

2. $\lambda \mapsto R(T, \lambda)$ is strongly analytic on $\rho(T)$.
3.

$$
\lim _{|\lambda| \rightarrow \infty} R(T, \lambda)=0
$$

Proof.

1. Note that

$$
(R(T, \lambda)-R(T, \mu))(\lambda I-T)(\mu I-T)=(\mu I-T)-(\lambda I-T)=(\mu-\lambda) I
$$

Multiplying by $R(T, \lambda) R(T, \mu)$, we see

$$
\frac{R(T, \lambda)-R(T, \mu)}{\lambda-\mu}=-R(T, \lambda) R(T, \mu)
$$

2. Note that

$$
\left.\frac{d}{d \lambda}(R(T, \lambda))\right|_{\lambda=\mu}=\lim _{\lambda \rightarrow \mu} \frac{R(T, \lambda)-R(T, \mu)}{\lambda-\mu}=-R(T, \lambda)^{2}
$$

So

$$
\frac{d}{d \lambda}\left(\frac{1}{\lambda-z}\right)=\frac{-1}{(\lambda-z)^{2}}
$$

If $\lambda_{0} \in \rho(T)$, then

$$
\left(\lambda_{0}+w\right) I=\left(\lambda_{0} I-T\right)\left(\lambda_{0} I-T\right)^{-1}\left(\left(\lambda_{0} I-T\right)+w I\right)=\left(\lambda_{0} I-T\right)\left(I+w\left(\lambda_{0} I-T\right)^{-1}\right)
$$

If $|w|<\frac{1}{\left\|\left(\lambda_{0} I-T\right)^{-1}\right\|}$, then

$$
R\left(T, \lambda_{0}+w\right)=\left(\lambda_{0} I-T\right)^{-1} \sum_{n=0} t \infty\left(-\left(\lambda_{0} I-T\right)^{-1}\right)^{n} w^{n}
$$

which converges uniformly for $|w| \leq r<\frac{1}{\left\|\left(\lambda_{0} I-T\right)^{-1}\right\|}$.
3. Suppose $|\lambda|>\|T\|$. Then

$$
R(T, \lambda)=\sum_{n=0}^{\infty} T^{n} \lambda^{-n-1}
$$

So

$$
\begin{aligned}
\|R(T, \lambda)\| & \leq \sum_{n=0}^{\infty}\left\|T^{n}\right\||\lambda|^{-n-1} \\
& \leq \sum\|T\|^{n}|\lambda|^{-n-1} \\
& =\frac{\frac{1}{|\lambda|}}{1-\frac{\|T\|}{|\lambda|}} \\
& =\frac{1}{|\lambda|-\|T\|} \\
& \rightarrow 0 \text { as }|\lambda| \rightarrow \infty
\end{aligned}
$$

Theorem 208. Suppose $T \in \mathcal{B}(X)$. Then $\sigma(T) \neq \emptyset$.

Proof. If $\sigma(T)$ were empty, then $R(T, \lambda)$ is an entire function. But $\|R(T, \lambda)\| \rightarrow 0$ as $|\lambda| \rightarrow \infty$. So it is a bounded, entire function. Take $\varphi \in \mathcal{B}(X)^{*}$. Then $\varphi \circ R(T, \lambda)$ is a bounded, scalar-valued, entire functino. Thus it is constant by Liouville's theorem. If $R(T, \lambda)$ were not constant, then by Hahn-Banahc we have φ such that $\varphi \circ R(T, \lambda)$ is not constant, a contradiction. So $R(T, \lambda)$ is constant. But $R(T, \lambda) \rightarrow 0$ as $|\lambda| \rightarrow \infty$. So $R(T, \lambda)=0$. This is absurd. So $\sigma(T) \neq \emptyset$.
\square Theorem 208
Proposition 209. If $\lambda \in \rho(T)$ for $T \in \mathcal{B}(X)$ and $\operatorname{dist}(\lambda, \sigma(T))=r$, then $\left\|(\lambda I-T)^{-1}\right\| \geq \frac{1}{r}$.
Proof. Pick $\lambda_{0} \in \sigma(T)$ such that $\left|\lambda-\lambda_{0}\right|=r$. Now, $\left(\lambda_{0} I-T\right)(\lambda I-T)^{-1}$ is not invertible. But

$$
\left(\left(\lambda_{0}-\lambda\right) I+(\lambda I-T)\right)(\lambda I-T)^{-1}=\left(\lambda_{0}-\lambda\right)(\lambda I-T)^{-1}+I
$$

and $b_{1}(I) \subseteq \mathcal{B}(X)^{-1}$. So $\left\|\left(\lambda_{0}-\lambda\right)(\lambda I-T)^{-1}\right\| \geq 1$. So $\left\|(\lambda I-T)^{-1}\right\| \geq \frac{1}{\left|\lambda_{0}-\lambda\right|}=\frac{1}{r}$.
Proposition 209
Corollary 210. $\partial \sigma(T) \subseteq \pi(T)$; i.e. λ_{0} in the boundary of $\sigma(T)$ is an approximate eigenvalue.
Proof. We show $\lambda_{0} I-T$ is not bounded below. Fix $\varepsilon>0$. Pick $\lambda \in \rho(T)$ such that $\left|\lambda-\lambda_{0}\right|<\varepsilon$. Then $\left\|(\lambda I-T)^{-1}\right\|>\frac{1}{\varepsilon}$. Find x with $\|x\|=1$ such that $\left\|(\lambda I-T)^{-1} x\right\|>\frac{1}{\varepsilon}$. Let $y=(\lambda I-T)^{-1} x$. Then

$$
\begin{aligned}
\left\|\left(\lambda_{0} I-T\right) y\right\| & =\left\|\left(\lambda_{0}-\lambda\right) y+(\lambda I-T) y\right\| \\
& \leq\left\|\left(\lambda_{0}-\lambda\right) y\right\|+\|x\| \\
& <\varepsilon\|y\|+\varepsilon\|y\| \\
& =2 \varepsilon\|y\|
\end{aligned}
$$

So $\lambda_{0} I-T$ is not bounded below.
Corollary 210

5.2 Spectral mapping theorem for rational functions

If $p \in \mathbb{C}[z]$ is a polynomial, say $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ and $T \in \mathcal{B}(X)$, we define $p(T)=a_{0} I+a_{1} T+$ $a_{2} T^{2}+\cdots+a_{n} T^{n}$. The map $\rho_{T}: \mathbb{C}[z] \rightarrow \mathcal{B}(X)$ given by $\rho_{T}(p)=p(T)$ is a homomorphism. If $q \in \mathbb{C}[z]$ has no roots in $\sigma(T)$, say $q(z)=b\left(z-\beta_{1}\right)\left(z-\beta_{2}\right) \ldots\left(z-\beta_{m}\right)$, then $q(T)=b\left(T-\beta_{1} I\right)\left(T-\beta_{2} I\right) \ldots\left(T-\beta_{m} I\right)$ is invertible. We can then define $\left(\frac{p}{q}\right)(t)=p(T) q(T)^{-1}$. If we set $\operatorname{Rat}(\sigma(T))$ to be the set of rationa $\frac{p}{q}$ such that q has no roots in $\sigma(T)$, then $\rho_{T}: \operatorname{Rat}(\sigma(T)) \rightarrow \mathcal{B}(X)$ given by $\rho_{T}\left(\frac{p}{q}\right)=p(T) q(T)^{-1}$ is well-defined and a homomorphism.

Theorem 211 (Spectral mapping theorem—rational case). Suppose $T \in \mathcal{B}(X)$ and $\frac{p}{q} \in \operatorname{Rat}(\sigma(T))$, then $\sigma(f(T))=f(\sigma(T))$.

Proof. Write $f=\frac{p}{q}$ with $\operatorname{gcd}(p, q)=1$; factor $q(z)=b\left(z-\beta_{1}\right) \ldots\left(z-\beta_{m}\right)$. If $\lambda \in \mathbb{C}$, then

$$
f(z)-\lambda=\frac{p}{q}-\lambda=\frac{p_{\lambda}}{q}=\frac{a\left(z-\alpha_{1}\right) \ldots\left(z-\alpha_{n}\right)}{b\left(z-\beta_{1}\right) \ldots\left(z-\beta_{n}\right)}
$$

Then $f(T)-\lambda I=p_{\lambda}(T) q(T)^{-1}$ is invertible if and only if $p_{\lambda}(T)$ is invertible. But $p_{\lambda}(T)=a\left(T-\alpha_{1} I\right) \ldots(T-$ $\left.\alpha_{n} I\right)$ is invertible if and only if $\alpha_{1}, \ldots, \alpha_{n} \in \rho(T)$. i.e.

$$
\begin{aligned}
\lambda \in \sigma(f(T)) & \Longleftrightarrow f(T)-\lambda I \text { is not invertible } \\
& \Longleftrightarrow p_{\lambda}(T) \text { is not invertible } \\
& \Longleftrightarrow \exists i\left(\alpha_{i} \in \sigma(T)\right) \\
& \Longleftrightarrow \exists \alpha\left(\alpha \in \sigma(T) \wedge p_{\lambda}(\alpha)=0\right) \\
& \Longleftrightarrow \exists \alpha(\alpha \in \sigma(T) \wedge f(\alpha)=\lambda) \\
& \Longleftrightarrow \lambda \in f(\sigma(T))
\end{aligned}
$$

If $\lambda \notin f(\sigma(T))$, then $\frac{p(z)}{q(z)}-\lambda=\frac{p_{\lambda}(z)}{q(z)}$ is invertible in $\operatorname{Rat}(\sigma(T))$ as

$$
\frac{1}{f(z)-\lambda}=\frac{q(z)}{p_{\lambda}(z)}
$$

So $(f(T)-\lambda I)^{-1}=q(T) p_{\lambda}(T)^{-1}$; so one direction is easy.
Definition 212. If $T \in \mathcal{B}(X)$, we define the spectral radius of T to be $\operatorname{spr}(T)=\sup \{|\lambda|: \lambda \in \sigma(T)\}$.
We know $\operatorname{spr}(T) \leq\|T\|$. Now, if $\lambda>\|T\|$, then

$$
R(\lambda, T)=(\lambda I-T)^{-1}=\sum_{n=0}^{\infty} T^{n} \lambda^{-n-1}
$$

But $R(\lambda, T)$ is analytic on $\{\lambda:|\lambda|>\operatorname{spr}(T)\}$.
Theorem 213 (Spectral radius formula). We have

$$
\operatorname{spr}(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}=\inf _{n \geq 1}\left\|T^{n}\right\|^{\frac{1}{n}}
$$

Proof. The spectral mapping theorem shows that $\sigma\left(T^{n}\right)=\sigma(T)^{n}$. Thus $\operatorname{spr}(T)=\operatorname{spr}\left(T^{n}\right)^{\frac{1}{n}} \leq\left\|T^{n}\right\|^{\frac{1}{n}}$ for all $n \geq 1$. So

$$
\operatorname{spr}(T) \leq \inf _{n \geq 1}\left\|T^{n}\right\|^{\frac{1}{n}}
$$

But $R(\lambda, T)$ is analytic on $\{\lambda:|\lambda|>\operatorname{spr}(T)\}$. So if $\varphi \in \mathcal{B}(X)^{*}$, then $\varphi(R(\lambda, T))$ is an analytic scalar function on the same annulus. For $|\lambda|>\|T\|$, we have

$$
\begin{aligned}
\varphi(R(\lambda, T)) & =\varphi\left(\sum_{n=0}^{\infty} T^{n} \lambda^{-n-1}\right) \text { (which converges absolutely) } \\
& =\sum_{n=0}^{\infty} \varphi\left(T^{n}\right) \lambda^{-n-1}
\end{aligned}
$$

where the latter is sum is the Laurent expansion of $\varphi(R(\lambda, T))$ on $\{\lambda:|\lambda|>\|T\|\}$. This is analytic on a bigger annulus, namely $\{\lambda:|\lambda|>\operatorname{spr}(T)\}$. So, by complex analysis, this converges in $\{\lambda:|\lambda|>\operatorname{spr}(T)\}$. In particular, if $|\lambda|=t>\operatorname{spr}(T)$, then $\left|\varphi\left(T^{n}\right) \lambda^{-n-1}\right|=\left|\varphi\left(T^{n}\right)\right| t^{-n-1} \rightarrow 0$. So

$$
\sup _{n \geq 0} \frac{\left|\varphi\left(T^{n}\right)\right|}{t^{n+1}}<\infty
$$

But this holds for all $\varphi \in \mathcal{B}(X)^{*}$. So, by Banach-Steinhaus, we have

$$
\sup _{n \geq 0}\left\|\frac{T^{n}}{t^{n+1}}\right\|=C<\infty
$$

So $\left\|T^{n}\right\|^{\frac{1}{n}} \leq\left(C t^{n+1}\right)^{\frac{1}{n}}=C^{\frac{1}{n}}$. So

$$
\limsup _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}} \leq t
$$

Su

$$
\begin{aligned}
\lim \sup \left\|T^{n}\right\|^{\frac{1}{n}} & \leq \operatorname{spr}(T) \\
& \leq \inf \left\|T^{n}\right\|^{\frac{1}{n}} \\
& \leq \liminf \left\|T^{n}\right\|^{\frac{1}{n}} \\
& \leq \limsup \left\|T^{n}\right\|^{\frac{1}{n}}
\end{aligned}
$$

So $\lim \left\|T^{n}\right\|^{\frac{1}{n}}=\inf \left\|T^{n}\right\|^{\frac{1}{n}}=\operatorname{spr}(T)$.

5.3 Compact operators

Definition 214. We say $T \in \mathcal{B}(X, Y)$ is compact if $\overline{T b_{1}(X)}$ is compact in Y. We write $\mathcal{K}(X, Y)$ for the set of compact operators in $\mathcal{B}(X, Y)$; likewise, we write $\mathcal{K}(X)$ for the set of compact operators in $\mathcal{B}(X)$.

Example 215.

1. If F has finite rank, then it is compact because $\overline{F b_{1}(X)} \subseteq \overline{b_{\|F\|}(Y)} \cap \operatorname{Ran}(F)$ is compact by the Heine-Borel theorem.
2. Let $X=\ell_{p}$ for $1 \leq p<\infty$. Let $\left(d_{n}: n \in \mathbb{N}\right) \in \ell_{\infty}$. Let $D\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(d_{1} x_{1}, d_{2} x_{2}, d_{3} x_{3}, \ldots\right)$ a "diagonal" operator. Then

$$
\|D\|=\sup _{n \geq 1}\left|d_{n}\right|
$$

Suppose

$$
\limsup d_{n}>0
$$

Say we can find $\left|d_{n_{i}}\right| \geq r$ with $n_{1}<n_{2}<\ldots$. Then $D e_{n_{i}}=d_{n_{i}} e_{n_{i}} \in D b_{1}\left(\ell_{p}\right)$, so D is not compact.
Suppose on the other hand that

$$
\lim _{n \rightarrow \infty} d_{n}=0
$$

Claim 216. D is compact.
Proof. Let $D_{N}\left(\left(x_{1}, x_{2}, \ldots\right)=\left(d_{1} x_{1}, \ldots, d_{N} x_{N}, 0,0, \ldots\right)\right.$. Then D_{N} has rank N and

$$
\left\|D-D_{N}\right\|=\sup _{n>N}\left|d_{n}\right| \rightarrow 0
$$

So

$$
D=\lim _{N \rightarrow \infty} D_{N}
$$

The following proposition will show that the compact operators form a closed set, which then proves the claim.Claim 216

Proposition 217. $\mathcal{K}(X, Y)$ is a $\mathcal{B}(Y)-\mathcal{B}(X)$ bimodule; i.e. for $K, L \in \mathcal{K}(X, Y), S \in \mathcal{B}(Y)$, and $T \in \mathcal{B}(X)$, we have

$$
\begin{aligned}
a K+b L & \in \mathcal{K}(X, Y) \\
S K T & \in \mathcal{K}(X, Y)
\end{aligned}
$$

Furthermore, $\mathcal{K}(X, Y)$ is norm-closed. In particular, $\mathcal{K}(X)$ is a closed ideal of $\mathcal{B}(X)$.
Proof. Let $\mathcal{C}_{1}=\overline{K b_{1}(X)}$; let $\mathcal{C}_{2}=\overline{L b_{1}(X)}$. Then $\mathcal{C}_{1}, \mathcal{C}_{2}$ are compact. Consider

$$
\begin{aligned}
f: \mathcal{C}_{1} \times \mathcal{C}_{2} & \rightarrow Y \\
\left(c_{1}, c_{2}\right) & \mapsto a c_{1}+b c_{2}
\end{aligned}
$$

Then f is continuous, so its image is compact. So $a K x+b L x \in f\left(\mathcal{C}_{1} \times \mathcal{C}_{2}\right)$ for all $\|x\| \leq 1$. So

$$
\overline{(a K+b L)\left(b_{1}(X)\right)} \subseteq f\left(\mathcal{C}_{1} \times \mathcal{C}_{2}\right)
$$

Now, if $S \in \mathcal{B}(Y), T \in \mathcal{B}(X)$, and $K \in \mathcal{K}(X, Y)$, then

$$
\overline{S K T b_{1}(X)} \subseteq \overline{S K\|T\| \overline{b_{1}(X)} \subseteq \overline{(S\|T\|)\left\|K b_{1}(X)\right\|}}
$$

But this last is the continuous image of a compact set, and is thus compact.
For norm-closure, suppose $K_{n} \in \mathcal{K}(X, Y)$ with $K_{n} \rightarrow K$.

Claim 218. $K b_{1}(X)$ is totally bounded; i.e. for all $\varepsilon>0$ there are $y_{1}, \ldots, y_{n} \in K b_{1}(X)$ such that

$$
K b_{1}(X) \subseteq \bigcup_{i=1}^{n} b_{\varepsilon}\left(y_{i}\right)
$$

Proof. Fix $\varepsilon>0$. Pick N such that $\left\|K-K_{N}\right\|<\frac{\varepsilon}{3}$. Then $K_{N} b_{1}(X)$ is totally bounded, so we may pick y_{1}, \ldots, y_{n} with $y_{i}=K_{N} x_{i}$ for $\left\|x_{i}\right\| \leq 1$ such that

$$
K_{N} b_{1}(X) \subseteq \bigcup_{i=1}^{n} b_{\frac{\varepsilon}{3}}\left(y_{i}\right)
$$

Let $y_{i}^{\prime}=K x_{i}$. Then

$$
\left\|y_{i}^{\prime}-y_{i}\right\|=\left\|\left(K-K_{N}\right) x_{i}\right\|<\frac{\varepsilon}{3}
$$

If $\|x\| \leq 1$, then

$$
\left\|K_{N} x-y_{i_{0}}\right\|<\frac{\varepsilon}{3}
$$

for some i_{0}. Then

$$
\left\|K x-y_{i_{0}}^{\prime}\right\| \leq\left\|K x-K_{N} x\right\|+\left\|K_{N} x-y_{i_{0}}\right\|+\left\|y_{i_{0}}-y_{i_{0}}^{\prime}\right\|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
$$

So

$$
K b_{1}(X) \subseteq \bigcup_{i=1}^{n} b_{\varepsilon}\left(y_{i}^{\prime}\right)
$$

So $\overline{K b_{1}(X)}$ is compact. Claim 218 Proposition 217

Example 219. Let $D=\operatorname{diag}\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \in \mathcal{B}\left(c_{0}\right)$. Then $D b_{1}\left(c_{0}\right)$ is not closed, since

$$
D((1,1,1, \ldots, 0,0, \ldots))=\left(1, \frac{1}{2}, \ldots, \frac{1}{n}, 0, \ldots\right) \rightarrow\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \notin \operatorname{Ran}(D)
$$

Example 220 (Hilbert-Schmidt kernels). Let $k(x, y) \in L^{2}\left((0,1)^{2}\right)$. Define $K \in \mathcal{B}\left(L^{2}(0,1)\right)$ by

$$
(K f)(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

Note $k(\cdot, y), k(x, \cdot) \in L^{2}(0,1)$ for almost every x, y. To check boundedness, suppose $f \in L^{2}(0,1)$. Then

$$
\begin{aligned}
\|K f\|_{2}^{2} & =\int_{0}^{1}|K f(x)|^{2} d x \\
& =\int_{0}^{1}\left|\int_{0}^{1} k(x, y) f(y) d y\right|^{2} d x \\
& \leq \int_{0}^{1}\left(\int_{0}^{1}|k(x, y) \| f(y)| d y\right)^{2} d x \\
& \leq \int_{0}^{1}\left(\|k(x, \cdot)\|_{2}\|f\|_{2}\right)^{2} d x \\
& =\|f\|_{2}^{2} \int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d y d x \\
& =\|f\|_{2}^{2}\|k\|_{2}^{2}
\end{aligned}
$$

So $\|K\| \leq\|k\|_{2}$.

Let $\left\{e_{i}(x): i \geq 1\right\}$ be an orthonormal basis for $L^{2}(0,1)$. Let $\left\{f_{j}(y): j \geq 1\right\}$ be anohter orthonormal basis for $L^{2}(0,1)$. Then $\left\{e_{i}(x) f_{j}(y): i, j \geq 1\right\}$ is an orthonormal basis for $L^{2}\left((0,1)^{2}\right)$ because

$$
\left\{\sum_{m=1}^{M} g_{m}(x) h_{m}(y): g_{m} \in L^{2}, h_{m} \in L^{2}\right\}
$$

is dense in $L^{2}\left((0,1)^{2}\right)$. If

$$
\begin{aligned}
& g_{m}(x)=\sum a_{i} e_{i}(x) \\
& h_{m}(y)=\sum b_{j} f_{j}(y)
\end{aligned}
$$

then

$$
g_{m} h_{m}=\sum \sum a_{i} b_{j} e_{i}(x) f_{j}(y)
$$

Take $f_{j}(y)=\overline{e_{j}(y)}$. Expand

$$
k(x, y)=\sum \sum a_{i j} e_{i}(x) \overline{e_{j}(y)}
$$

where

$$
\|k\|_{2}^{2}=\sum \sum\left|a_{i j}\right|^{2}
$$

For $N<\infty$, let

$$
k_{N}(x, y)=\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} e_{i}(x) \overline{e_{j}(y)}
$$

Then $k_{N} \in L^{2}\left((0,1)^{2}\right)$ with $\left\|k-k_{N}\right\|_{2} \rightarrow 0$. If

$$
K_{N} h(x)=\int_{0}^{1} k_{N}(x, y) h(y) d y
$$

then $\left\|K-K_{N}\right\|=\left\|k-k_{N}\right\|_{2} \rightarrow 0$. So

$$
\begin{aligned}
K_{N} h(x) & =\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} \int_{0}^{1} e_{i}(x) \overline{e_{j}(y)} h(y) d y \\
& =\sum_{i=1}^{N} e_{i}(x) \sum_{j=1}^{N} a_{i j}\left\langle h, e_{j}\right\rangle
\end{aligned}
$$

So $\operatorname{Ran}\left(K_{N}\right) \subseteq \operatorname{span}\left\{e_{1}, \ldots, e_{N}\right\}$. So K is a norm limit of finite rank operators, and is thus compact. The "matrix of K_{N} " is given by, if

$$
h=\left(\begin{array}{c}
h_{1} \\
h_{2} \\
h_{3} \\
\vdots
\end{array}\right)
$$

where $h_{i}=\left\langle h, e_{i}\right\rangle$, then

$$
K_{N} h=\left(\begin{array}{cccc}
a_{11} & \ldots & a_{1 N} & \\
\vdots & \ddots & \vdots & 0 \\
a_{N 1} & \ldots & a_{N N} & \\
& 0 & & 0
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
h_{N} \\
h_{N+1} \\
\vdots
\end{array}\right)
$$

Example 221 (Volterra operator). Let $V \in \mathcal{B}\left(L^{2}(0,1)\right)$ be

$$
V h(x)=\int_{0}^{x} h(y) d y
$$

We may take

$$
k(x, y)= \begin{cases}1 & y \leq x \\ 0 & y>x\end{cases}
$$

So V is compact, by the above argument. Then

$$
\begin{aligned}
V^{2} h(x) & =\int_{0}^{x}(V h)(y) d y \\
& =\int_{0}^{x}\left(\int_{0}^{y} h(z) d z\right) d y \\
& =\int_{0}^{x} h(z) \int_{z}^{x} 1 d y d z \\
& =\int_{0}^{x} h(z)(x-z) d z \\
V^{3} h(x) & =\int_{0}^{x}\left(V^{2} h\right)(y) d y \\
& =\int_{0}^{x}\left(\int_{0}^{y} h(z)(y-z) d z\right) d y \\
& =\int_{0}^{x} h(z) \int_{z}^{y}(y-z) d y d z \\
& =\int_{0}^{x} h(z) \frac{x-z)^{2}}{2} d z
\end{aligned}
$$

Claim 222.

$$
V^{n} h(x)=\int_{0}^{x} h(y) \frac{(x-y)^{n-1}}{(n-1)!} d y
$$

Then

$$
\left\|V^{n}\right\|=\left\|\frac{(x-y)^{n-1}}{(n-1)!} \chi_{\{y \leq x\}}\right\|_{2} \leq \frac{1}{(n-1)!}
$$

Then

$$
\operatorname{spr}(V)=\lim _{n \rightarrow \infty}\left\|V^{n}\right\|^{\frac{1}{n}} \leq \lim _{n \rightarrow \infty}\left(\frac{1}{(n-1)!}\right)^{\frac{1}{n}}=0
$$

So $\sigma(V) \subseteq\{0\}$.
Claim 223. V is injective.
Proof. Suppose $V h=\lambda h$ for $\lambda \neq 0$. Then

$$
\lambda h(x)=\int_{0}^{x} h(y) d y
$$

But $h \in L^{2}$; so

$$
\int_{0}^{x} h(y) d y \in C[0,1]
$$

So RHS $\in C[0,1]$, so LHS $\in C[0,1]$. So $h \in C[0,1]$, and RHS is C^{1}. So $h \in C^{1}$, so RHS is C^{2}. So $h \in C^{\infty}$. So $\lambda h^{\prime}(x)=h(x)$ by the fundamental theorem of calculus. So $h(x)=c \exp (x / \lambda)$ and $h(0)=0$; so $h=0$.

In the case of $\lambda=0$, we have that if $V h=0$, then

$$
\int_{0}^{x} h(y) d y=0
$$

for all $x \in[0,1]$. So $h=0$ by measure theory.

Proposition 224. Suppose \mathcal{H} is a Hilbert space and $K \in \mathcal{K}(\mathcal{H})$. Then K is a limit of finite rank operators.
Proof. Note that $\overline{K b_{1}(\mathcal{H})}$ is compact. Suppose $\varepsilon>0$. Find $y_{1}=K x_{i}$ with $\left\|x_{i}\right\| \leq 1$ for $1 \leq i \leq n$ such that $\left\{y_{1}, \ldots, y_{n}\right\}$ is an ε-net for $\overline{K b_{1}(\mathcal{H})}$. i.e. if $\|x\| \leq 1$ then there is i such that $\left\|K x-y_{i}\right\|<\varepsilon$. Let P be the orthogonal projection onto $\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}$. Then $P K$ has rank $\leq n$. Then

$$
\|(K-P K)(x)\|=\left\|P^{\perp} K x\right\|=\left\|P^{\perp}\left(K x-y_{i}\right)\right\|<\varepsilon
$$

for all $\|x\| \leq 1$. So $\|K-P K\| \leq \varepsilon$.
Proposition 224
Theorem 225 (Schauder). If $K \in \mathcal{K}(X, Y)$ then $K^{*} \in \mathcal{K}\left(Y^{*}, X^{*}\right)$.
 $\overline{\rho\left(b_{1}\left(Y^{*}\right)\right)}$ is closed and bounded (by $\left.\|K\|\right)$ in $C(\mathcal{C})$. It is also equicontinuous since if $y_{1}, y_{2} \in \mathcal{C}$ and $\varphi \in \overline{b_{1}\left(Y^{*}\right)}$ then $\left|\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)\right| \leq\|\varphi\|\left\|y_{1}-y_{2}\right\|$. So, by Arzela-Ascoli theorem, we have $\overline{\rho\left(b_{1}\left(Y^{*}\right)\right)}$ is compact.
Claim 226. $\overline{K^{*} b_{1}\left(Y^{*}\right)}$ is compact.
Proof. Suppose $\varphi_{1}, \varphi_{2}, \cdots \in \overline{b_{1}\left(Y^{*}\right)}$. Then for $x \in \overline{b_{1}(X)}$, we have $\left(K^{*} \varphi_{i}\right)(x)=\varphi_{i}(K x)$. But $K x \in \mathcal{C}$; so $\left(K^{*} \varphi_{i}\right)(x)=\rho\left(\varphi_{i}\right)(K x)$. Letting $\psi_{i}=\rho\left(\varphi_{i}\right)$, we have $\psi_{i} \in \overline{\rho\left(b_{1}\left(Y^{*}\right)\right)} \subseteq C(\mathcal{C})$. So there is a subsequence $\psi_{n_{i}}$ converging to ψ uniformly in \mathcal{C}. So $\left(K^{*} \varphi_{i}\right)(x)=\varphi_{i}(K x) \rightarrow \psi(K x)$. i.e. $K^{*} \varphi_{i} \rightarrow \Psi \in X^{*}$. Thus $\overline{K^{*} b_{1}(Y)}$ is compact. So K^{*} is compact.

Claim 226
Theorem 225

5.3.1 Complemented subspaces

Definition 227. Suppose X is a Banach space; suppose $Y \subseteq X$ is a closed subspace. We say Y is complemented if there is $Z \subseteq X$ a closed subspace such that $Y \cap Z=\{0\}$ and $Y+Z=X$.

Remark 228. If Y is complemented, we can define

$$
T: Y \oplus_{1} Z \rightarrow X
$$

by $T(y, z)=y+z$ (where \oplus_{1} denotes that the norm is the 1-norm on the direct sum). Then by hypotheses we have T is bijective. Also $\|y+z\| \leq\|y\|+\|z\|=\|(y, z)\|$, so T is continuous. By the Banach isomorphism theorem, we get that T is invertible. So $X \cong Y \oplus Z$.

We can also define $P: Y \oplus_{1} Z \rightarrow Y \oplus_{1} Z$ by $P(y, z)=(y, 0)$. We can then let $Q=T P T^{-1}: X \rightarrow Y$; then Q is a continuous projection. Conversely, if $Q=Q^{2}$ with $\operatorname{Ran}(Q)=Y$, let $Z=\operatorname{Ran}(I-Q)$. Then $(I-Q)^{2}=I-Q$. So $x=Q x+(I-Q) x$. So $x \in Y \cap Z$. So $x=Q x=(1-Q) Q x=0$.

Lemma 229. There is an uncountable collection $\left\{A_{r}: r \in \mathbb{R}\right\}$ of subsets of \mathbb{N} such that $\left|A_{r} \cap A_{s}\right|<\aleph_{0}$ if $r \neq s$.

Proof. Identify \mathbb{N} with \mathbb{Q} (as they are both countable). For $r \in \mathbb{R}$, pick a sequence $q_{r, i} \rightarrow r$. Then let $A_{r}=\left\{n_{r, i}: i \geq 1\right\}$ where $n_{r, i}$ is the natural number corresponding to $q_{r, i}$.
\square Lemma 229
Theorem 230. c_{0} is not complemented in ℓ_{∞}.
Proof. If $\ell_{\infty} \cong c_{0} \oplus Y$ then $Y \cong \ell_{\infty} / c_{0}$. Take A_{r} as in the lemma. Let $y_{r}=\left[\chi_{A_{r}}\right] \in \ell_{\infty} / c_{0}$. Then

$$
\left\|\sum_{i=1}^{n} a_{i} y_{r_{i}}\right\|=\left\|\sum a_{i} \chi_{A_{r_{i}}}+c_{0}\right\|
$$

But if $B_{i} \subseteq A_{r_{i}}$ are pairwise disjoint with $\left|A_{r_{i}} \backslash B_{i}\right|<\infty$, then this is

$$
\left\|\sum a_{i} \chi_{B_{i}}+c_{0}\right\|=\max _{1 \leq i \leq n}\left|a_{i}\right|
$$

Claim 231. No continuous, linear $T: \ell_{\infty} / c_{0} \rightarrow \ell_{\infty}$ is injective.

Proof. If $T y_{r} \neq 0$, then there is n_{r} such that $\left(T y_{r}\right)\left(n_{r}\right)=\alpha_{r} \neq 0$. Then there is $n \in \mathbb{N}$ such that $S=\left\{r: n_{r}=n,\left|\alpha_{r}\right| \geq \varepsilon\right\}$ is uncountable. Thus uncountably many $\left|\alpha_{r}\right| \geq \varepsilon>0$. But then

$$
\begin{aligned}
T\left(\sum_{\substack{i=1 \\
r_{i} \in S}}^{N} \overline{\alpha_{i}} y_{r_{i}}\right) & =\sum\left|\alpha_{i}\right|^{2} \\
& >N \varepsilon^{2}
\end{aligned}
$$

Letting $N \rightarrow \infty$, we get a contradiction.
Claim 231 Theorem 230

Proposition 232. If K is a compact, infinite metric space then c_{0} is complemented in $C(K)$.
Proof. Pick a sequence $x_{n} \in K$ distinct with $x_{n} \rightarrow x_{\infty}$. Let

$$
S f(x)=f(x)-f\left(x_{\infty}\right)
$$

the projection of $C(K)$ onto $I\left(x_{0}\right)=\left\{f: f\left(x_{0}\right)=0\right\}$. Pick disjoint balls $b_{r_{n}}\left(x_{n}\right)$ with $n \geq 1$; let

$$
g_{n}(x)=\max \left\{\frac{r_{n}-\operatorname{dist}\left(x, x_{n}\right)}{r_{n}}, 0\right\}
$$

Let $T: I\left(x_{0}\right) \rightarrow I\left(x_{0}\right)$ be

$$
T f=\sum_{n \geq 1} f\left(x_{n}\right) g_{n}
$$

The $f\left(x_{n}\right) \rightarrow 0$, so $T f \in C(K)$. Also $P=T S$ is a projection onto a copy of c_{0}.

$$
\left\|\sum a_{n} g_{n}\right\|=\max _{n \geq 1}\left|a_{n}\right|
$$

$a_{n} \rightarrow$. So $\operatorname{Ran} P \cong c_{0}$.
Theorem 233. c_{0} is not complemented in any dual space. Suppose $X^{*} \cong c_{0} \oplus Y$. Then $X^{* * *} \cong \ell^{\infty} \oplus Y^{* *}$. We can consider map $\ell^{\infty} \rightarrow c_{0}$ by mapping to $\ell^{\infty} \oplus Y^{* *} \cong X^{* * *}$, taking the projection down to X^{*}, and observing that it will still be in c_{0} when we write $X^{*} \cong c_{0} \oplus Y$.

Corollary 234. If K is a compact, infinite metric space, then $C(K)$ is not a dual space.
Corollary 235. If X is a compact Hausdorff space and $C(X)$ is a dual space, then the only convergent sequences in X are eventually constant.

6 Compact operators and Fredholm theory

Lemma 236. If X is a Banach space and V is a closed subspace such that $\operatorname{dim}(V)<\infty$ or $\operatorname{dim}(X / V)<\infty$, then V is complemented.

Proof. Case 1. Suppose $\operatorname{dim}(V)=n<\infty$. Then there is a basis v_{1}, \ldots, v_{n} for V, and V^{*} has dual basis $\varphi_{1}, \ldots, \varphi_{n} \in V^{*}$ such that $\varphi_{i}\left(v_{j}\right)=\delta_{i j}$. Extend φ_{i} to $\widetilde{\varphi}_{i} \in X^{*}$ by Hahn-Banach. Define

$$
P=\sum_{i=1}^{n} v_{i} \varphi_{i} \in \mathcal{B}(X)
$$

so

$$
P x=\sum_{i=1}^{n} v_{i} \varphi_{i}(x)
$$

So $\operatorname{Ran}(P)=V$, and if $v \in V$, say

$$
v=\sum_{i=1}^{n} a_{i} v_{i}
$$

then

$$
P v=\sum_{i=1}^{n} v_{i} \varphi_{i}\left(v_{i}\right)=\sum_{i=1}^{n} a_{i} v_{i}=v
$$

So $P=P^{2}$ is a projection onto V. So it is complemented.
Case 2. Suppose $\operatorname{dim}(X / V)=n<\infty$. Pick a basis $\dot{x}_{1}, \ldots, \dot{x}_{n}$ for X / V. Let $q: X \rightarrow X / V$ be the quotient map. Pick $x_{i} \in X$ such that $q\left(x_{i}\right)=\dot{x}_{i}$. Let $W=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$.

Claim 237. $V+W=X$.
Proof. Suppose $x \in X$ with

$$
q(x)=\sum_{i=1}^{n} a_{i} \dot{x}_{i}
$$

Let

$$
w=\sum_{i=1}^{n} a_{i} x_{i}
$$

and $v=x-w$. Then

$$
q(v)=q(x)-\sum_{i=1}^{n} a_{i} \dot{x}_{i}=0
$$

so $v \in V$. But $x=v+w$.
Claim 237
Claim 238. $V \cap W=\{0\}$.

Proof. For $x \in V \cap W$, we have $q(x)=0$. Since $x \in W$, we have

$$
x=\sum_{i=1}^{n} a_{i} x_{i}
$$

So

$$
0=q(x)=\sum_{i=1}^{n} a_{i} \dot{x}_{i}
$$

So each $a_{i}=0$. So $x=0$.Claim 238

So V is complemented.
Lemma 236
Notation 239. If V and W are complements in X, we write $X=V \oplus W$. (One also sees $X=V \dot{+} W$).
Lemma 240 (Key lemma). Suppose $K \in \mathcal{K}(X)$. Suppose we have closed subspaces $V_{0} \varsubsetneqq V_{1} \varsubsetneqq V_{2} \varsubsetneqq \ldots$ and $\alpha_{i} \in \mathbb{C}$ such that $\left(K-\alpha_{i} I\right)\left(V_{i}\right) \subseteq V_{i-1}$. Then

$$
\lim _{i \rightarrow \infty} \alpha_{i}=0
$$

Proof. Since $V_{i} \supsetneqq V_{i-1}$, we may pick $x_{i} \in V_{i}$ with $\left\|x_{i}\right\|=1$ and $\operatorname{dist}\left(x, V_{i-1}\right) \geq \frac{1}{2}$. We then have $\left(K-\alpha_{i} I\right) x_{i}=$ $y_{i} \in V_{i-1}$; so $K x_{i}=\alpha_{i} x_{i}+y_{i}$. Suppose $n_{1}<n_{2}<n_{3}<\ldots$ satisfies $\left|\alpha_{n_{k}}\right| \geq \delta>0$ for all $k \in \mathbb{N}$. If $1 \leq \ell<k$, then

$$
\begin{aligned}
\left\|K x_{n_{k}}-K x_{n_{\ell}}\right\| & =\left\|\alpha_{n_{k}} x_{n_{k}}+\left(y_{n_{k}}-K x_{n_{\ell}}\right)\right\| \\
& \geq \operatorname{dist}\left(\alpha_{n_{k}} x_{n_{k}}, V_{n_{k}-1}\right) \\
& \geq \frac{\left|\alpha_{n_{k}}\right|}{2} \\
& \geq \frac{\delta}{2}
\end{aligned}
$$

So $\overline{K b_{1}(X)}$ is not compact.
Lemma 240
Theorem 241. If $K \in \mathcal{K}(X)$ then $\operatorname{ker}(I-K)$ is finite-dimensional and $\operatorname{Ran}(I-K)$ is closed and has finite codimension.

Proof. Let $B=\overline{b_{1}(X)} \cap \operatorname{ker}(I-K)$. If $x \in B$, then $K x=(K-I) x+x=x$. So $\overline{K b_{1}(X)} \supseteq \overline{K B}=B$ is compact. So null $(I-K)=\operatorname{dim}(\operatorname{ker}(I-K)<\infty$. So $N=\operatorname{ker}(I-K)$ has a complement V; so $X=N \oplus V$. Then $(I-K) X=(I-K) V$ and $(I-K) \upharpoonright V$ is injective.

Claim 242. $(I-K) \upharpoonright V$ is bounded below.
Proof. Otherwise there are $v_{1}, v_{2}, \cdots \in V$ with $\left\|v_{i}\right\|=1$ and $\left\|v_{i}-K v_{i}\right\|=\left\|(I-K) v_{i}\right\| \rightarrow 0$. But $K v_{i} \in \overline{K b_{1}(X)}$, and the latter is compact. So there is a subsequence $\left(K v_{i_{k}}: k \in \mathbb{N}\right) \rightarrow y$. Then $v_{i_{k}}=\left(v_{i_{k}}-K v_{i_{k}}\right)+K v_{i_{k}} \rightarrow 0+y \in V$. So

$$
(I-K) y=\lim _{k \rightarrow \infty}(I-K) v_{i_{k}}=0
$$

So $y \in V \cap N=\{0\}$. But

$$
\|y\|=\lim _{k \rightarrow \infty}\left\|v_{i_{k}}\right\|=1
$$

a contradiction.
Claim 242
So $\operatorname{Ran}(I-K)=(I-K) V$ is closed.
Claim 243. $X /(I-K) X$ is finite-dimensional.
Proof. Otherwise, let $V_{0}=\operatorname{Ran}(I-K)$. We have X / V_{0} is infinite-dimensional, and so contains linearly independent $\dot{x}_{1}, \dot{x}_{2}, \ldots$. Pick $x_{i} \in X$ such that $x_{i}+V_{0}=\dot{x}_{i}$. Let $V_{i}=V_{0}+\operatorname{span}\left\{x_{1}, \ldots, x_{i}\right\}$. Then

$$
V_{0} \varsubsetneqq V_{1} \varsubsetneqq \ldots
$$

$\operatorname{with}(K-I) V_{i} \subseteq \operatorname{Ran}(I-K)=V_{0} \subseteq V_{i-1}$. By the Key lemma, we have

$$
\lim _{i \rightarrow \infty} 1=0
$$

a contradiction.

Definition 244. We say $T \in \mathcal{B}(X, Y)$ is Fredholm if

- $\operatorname{null}(T)=\operatorname{dim}(\operatorname{ker}(T))<\infty$.
- $\operatorname{Ran}(T)$ is closed.
- $\operatorname{dim}(Y / T X)<\infty$.

The index of T is $\operatorname{ind}(T)=\operatorname{null}(T)-\operatorname{dim}(Y / T X) \in \mathbb{Z}$.

Remark 245.

1. If $\operatorname{dim}(Y / T X)<\infty$, then $T X$ is closed. (Exercise; use closed graph theorem.)
2. $\operatorname{dim}(Y / T X)=\operatorname{null}\left(T^{*}\right)$. (Useful for A6; need to prove it to use on assignment, though.)

Example 246.

1. If $K \in \mathcal{K}(X)$ and $\lambda \neq 0$, then $\lambda I+K$ is Fredholm.
2. If $T \in \mathcal{K}(X, Y)$ is invertible, then T is Fredholm and $\operatorname{ind}(T)=0$.
3. The unilateral shift $S \in \mathcal{B}\left(\ell_{2}\right)$ given by $S\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$. This is an isometry, injective, and satisfies $\operatorname{Ran}(S)=\left(\mathbb{C} e_{1}\right)^{\perp}$. Also $\operatorname{null}(S)=0$ and $\operatorname{dim}\left(\ell_{2} / S \ell_{2}\right)=1$. So $\operatorname{ind}(S)=-1$.
4. The backward shift S^{*} is surjective and has $\operatorname{ker}\left(S^{*}\right)=\mathbb{C} e_{1}$, so $\ell_{2} / \operatorname{Ran}\left(S^{*}\right)=\{0\}$. So ind $\left(S^{*}\right)=1$.

Theorem 247. The set $\mathcal{F}(X)$ of all Fredholm operators on X is open in $\mathcal{B}(X)$, and ind is a continuous function (and hence locally constant; so constant on connected components).

Proof. Suppose $T \in \mathcal{B}(X)$ is Fredholm. Let $N=\operatorname{ker}(T)$. Choose a complement V so $X=N \oplus V$. Let $R=\operatorname{Ran}(T)$; choose a finite-dimensional complement R so $X=R \oplus W$. Then $\operatorname{ind}(T)=\operatorname{dim}(N)-\operatorname{dim}(W)$.

The map $\widetilde{T} \in \mathcal{B}(V, R)$ given by $\widetilde{T} V=T v$ is injective and surjective, and hence is invertible by Banach isomorphism theorem. Suppose $S \in \mathcal{B}(X)$ and

$$
\|S-T\|<\frac{1}{\left\|\tilde{T}^{-1}\right\|}
$$

Let $\widetilde{\widetilde{S}}: V \oplus W \rightarrow X=R \oplus W$ by $\widetilde{\widetilde{S}}(v+w)=S v+w$. Let $\widetilde{\widetilde{T}}: V \oplus W \rightarrow X=R \oplus W$ by $\widetilde{\widetilde{T}}(v+w)=T v+w$. Then $\widetilde{\widetilde{T}}$ is invertible. But

$$
\|\widetilde{\widetilde{S}}-\widetilde{\widetilde{T}}\|=\|(S-T) \upharpoonright V\|<\frac{1}{\left\|\widetilde{\widetilde{T}}^{-1}\right\|}
$$

But $\widetilde{\widetilde{T}}$ is invertible; so $\widetilde{\widetilde{S}}$ is invertible. So $X=\widetilde{\widetilde{S}}(V \oplus W)=S V \oplus W$. (The sum is direct since in general if $S: V \oplus W \rightarrow X$ then $X=S V+S W$ and $S V \cap S W=S(V \cap W)=0$.) So $\operatorname{ker}(S) \cap V=\{0\}$. So $\operatorname{null}(S) \leq \operatorname{dim}(W)=\operatorname{null}(T)$.
Aside 248. Suppose $V \oplus W=X$ with $N \cap V=\{0\}$. We claim that $\operatorname{dim}(N) \leq \operatorname{dim}(W)$. Suppose $\operatorname{dim}(W)=n$ with $x_{1}, \ldots, x_{n+1} \in N$ linearly independent. Then $q: V \oplus W \rightarrow W$ given by $q(v+w)=w$ has $q\left(v_{1}\right), \ldots, q\left(v_{n+1}\right)$ are linearly dependent. So there are a_{1}, \ldots, a_{n+1} not all 0 such that

$$
q\left(\sum_{i=1}^{n+1} a_{i} x_{i}\right)=0
$$

But

$$
\sum_{i=1}^{n+1} a_{i} x_{i} \in V \cap N \backslash\{0\}
$$

a contradiction.
So $S V \subseteq \operatorname{Ran}(S)=S V+S N$. But $S V$ is closed and $S N$ is finite dimensional; so $S V+S N$ is closed. Aside 249. To see this, suppose $S v_{n}+S k_{n} \rightarrow y$ where $v_{n} \in V$ and $k_{n} \in N$. Then we have a subsequence $k_{n_{i}} \rightarrow k \in N$; so $S k_{n_{i}} \rightarrow S k \in S N$. So $S v_{n} \rightarrow y-S k \in S V$, as $S V$ is closed. So $y \in S N+S V$.

So $\operatorname{dim}(X / S X) \leq \operatorname{dim}(X / S V)=\operatorname{dim}(W)<\infty$. So it is Fredholm. Let $N_{S}=\operatorname{ker}(S)$. Then $V \cap N_{S}=\{0\} ;$ so $V+N_{S}$ is a direct sum of finite codimension. Pick a complement Z so $V \oplus N_{s} \oplus Z=X$; then $(V \oplus Z) \oplus N_{S}=X$. So $V \oplus Z$ is complement to $\operatorname{ker}(S)$. So $S \upharpoonright(V \oplus Z)$ is bounded below. But $S X=S(V \oplus Z)=S V \oplus S Z$; so

$$
\begin{aligned}
\operatorname{ind}(S) & =\operatorname{null}(S)-\operatorname{dim}(X / S X) \\
& =\operatorname{dim}\left(N_{S}\right)-\operatorname{dim}(X /(S V \oplus S Z)) \\
& =\operatorname{dim}\left(N_{S}\right)-(\operatorname{dim}(X / S V)-\operatorname{dim}(S Z)) \\
& =\operatorname{dim}\left(N_{S}\right)-(\operatorname{dim}(W)-\operatorname{dim}(Z)) \\
& =\left(\operatorname{dim}\left(N_{S}\right)+\operatorname{dim}(Z)\right)-\operatorname{dim}(W) \\
& \left.=\operatorname{dim}\left(N_{T}\right)-\operatorname{dim}(W) \text { (since } N_{S} \oplus Z \text { is a complement to } V, \text { as is } N_{T}\right)
\end{aligned}
$$

So $\operatorname{dim}\left(N_{T}\right)-\operatorname{dim}(X / T X)=\operatorname{ind}(T)$.
Theorem 247
Corollary 250. If $\lambda \neq 0$ and $K \in \mathcal{K}(X)$, then $\operatorname{ind}(\lambda I+K)=0$.
Proof. $I+\lambda^{-1} K$ is Fredholm. So $\lambda I+K$ is Fredholm. So $\lambda I+t k$ is Fredholm for $0 \leq t \leq 1$. So $\operatorname{ind}(\lambda I+K)=\operatorname{ind}(\lambda I)=0$. Corollary 250

Corollary 251 (Of proof). Suppose T is Fredholm. Then

$$
\limsup _{S \rightarrow T} \operatorname{null}(S) \leq \operatorname{null}(T)
$$

Remark 252. It can be strict; consider

$$
\left(\begin{array}{llll}
t & & & \\
& 1 & & \\
& & 1 & \\
& & & \ddots
\end{array}\right)
$$

as $t \rightarrow 0$.
We have $\mathcal{K}(X) \triangleleft \mathcal{B}(X)$. So $\mathcal{B}(X) / \mathcal{K}(X)$ is a Banach space and a ring (in fact, an algebra over \mathbb{C}). If $\pi: \mathcal{B}(X) \rightarrow \mathcal{B}(X) / \mathcal{K}(X)$, then

$$
\pi(x y)=\|\pi(x) \pi(y)\| \leq\|\pi(x)\|\|\pi(y)\|
$$

So this is a Banach algebra.
Theorem 253 (Atkinson). $T \in \mathcal{B}(X)$ is Fredholm if and only if $\pi(T) \in(\mathcal{B}(X) / \mathcal{K}(X))^{-1}$.
Proof.
(\Longrightarrow) Suppose T is Fredholm. So if $N_{T}=\operatorname{ker}(T)$, then N_{T} is finite-dimensional; so there is a complement $X=N_{T} \oplus V$. Likewise, if $R_{T}=\operatorname{Ran}(T)$, then R_{T} has finite codimension; so there is a complement $X=R_{T} \oplus W$, where W is finite-dimensional. Then $\widetilde{T} \in \mathcal{B}\left(V, R_{T}\right)$ is invertible. Let $\widetilde{S} \in \mathcal{B}\left(R_{T}, V\right)$ be the inverse. Define $S \in \mathcal{B}(X)$ by $S(r \oplus w)=\widetilde{S} r$, wehere $r \in R_{T}$ and $w \in W$. Then $S T(n \oplus v)=S(T v)=v$ for $n \in N_{T}$ and $v \in V$. So $S T$ is a projection onto V with kernel N_{T}. So $I-S T$ is a projection onto $N_{T} ;$ so $\operatorname{rank}(I-S T)=\operatorname{dim}\left(N_{T}\right)<\infty$. So $\pi(S) \pi(T)=\pi(I)$.
On the other side,

$$
(T S)(T v \oplus w)=T(S T v)=T v
$$

So $T S$ is a projection onto R_{T} with $\operatorname{ker}(T S)=W$ is finite-dimensional. So $\operatorname{rank}(I-T S)=\operatorname{dim}(W)$. So $\pi(T) \pi(S)=\pi(I)$. So $\pi(T)$ is invertible.
(\Longleftarrow) Suppose $S \in \mathcal{B}(X)$ has $T \in \mathcal{B}(X)$ such that $\pi(S)=\pi(T)^{-1}$. Then $\pi(S T)=\pi(I)$; so $S T=I+K$ for some $K \in \mathcal{K}(X)$. Likewise, $\pi(T S)=\pi(I)$, so $T S=I+L$ for some $L \in \mathcal{K}(X)$. Then $\operatorname{ker}(T) \subseteq \operatorname{ker}(S T)=$ $\operatorname{ker}(I+K)$ is finite-dimensional, and $\operatorname{Ran}(T) \supseteq \operatorname{Ran}(T S)=\operatorname{Ran}(I+L)$ has finite codimension. So $\operatorname{Ran}(T)$ is closed and has finite codimension. So T is Fredholm.

Corollary 254. If T is Fredholm and $K \in \mathcal{K}(X)$, then $T+K$ is Fredholm and $\operatorname{ind}(T+K)=\operatorname{ind}(T)$.
Proof. $\pi(T+K)=\pi(T)$ is invertible, so $T+K$ is Fredholm. But then $T+t K$ is Fredholm for $0 \leq t \leq 1$; so by continuity we have $\operatorname{ind}(T+K)=\operatorname{ind}(T)$.

Corollary 254
Theorem 255. ind: $(\mathcal{B}(X) / \mathcal{K}(X))^{-1} \rightarrow \mathbb{Z}$ is a homomorphism.
Proof. Note that if $\pi(S)=\pi(T) \in(\mathcal{B}(X) / \mathcal{K}(X))^{-1}$, then $S-T \in \mathcal{K}(X)$, so $S=T+K$ for some $K \in \mathcal{K}(X)$. But then $\operatorname{ind}(S)=\operatorname{ind}(T)$. So we can define $\operatorname{ind}(\pi(T))=\operatorname{ind}(T)$, and this is well-defined.

Suppose $S, T \in \mathcal{F}(X)$. Write $X=N_{T} \oplus V=T X \oplus W$ (where $N_{T}=\operatorname{ker}(T)$ and $\left.T X=\operatorname{Ran}(T)=T V\right)$; write $X=N_{S} \oplus U=S X \oplus Y$ similarly. We need to choose W a bit more carefully to make the proof go smoothly.

Well, $T X+N_{S}$ is closed, as $T X$ is closed and N_{S} is finite-dimensional. Choose a complement $W_{0} \subseteq N_{S}$ such that $T X \oplus W_{0}=T X+N_{S}$; then $N_{S}=\left(T X \cap N_{S}\right) \oplus W_{0}$. Let W_{1} be a complement to $\left(T X+N_{S}\right) \oplus W_{1}=X$. Let $W=W_{0} \oplus W_{1}$. Then $T X \oplus W=\left(T X \oplus W_{0}\right) \oplus W_{1}=T X \oplus N_{S} \oplus W_{1}=X$.

But then

$$
\begin{aligned}
\operatorname{ker}(S T) & =N_{T}+\left\{x: T x \in N_{s}\right\} \\
& =N_{T}+\left\{v \in V: T v \in N_{S} \cap T X\right\} \\
& =N_{T} \oplus(T \upharpoonright V)^{-1}\left(N_{S} \cap T X\right)
\end{aligned}
$$

since $T \upharpoonright V$ is injective, and $N_{T} \cap V=\{0\}$. So $(S T)=(T)+\operatorname{dim}\left(N_{S} \cap T X\right)$.
Now, $S X=S\left(T X \oplus W_{0} \oplus W_{1}\right)=S T X \oplus S W_{1}$ (where the sum is direct since if $S T x=S w_{1}$, then $S\left(T x-w_{1}\right)=0$, so $T x-w_{1} \in N_{S}$; so $w_{1} \in T X+N_{S}$, and $\left.w_{1}=0\right)$. So

$$
\begin{aligned}
\operatorname{ind}(S T) & =(S T)-\operatorname{dim}(X / S T X) \\
& =(T)+\operatorname{dim}\left(N_{S} \cap T X\right)-\left(\operatorname{dim}(X / S X)-\operatorname{dim}\left(S W_{1}\right)\right) \\
& =(T)+\operatorname{dim}\left(N_{S} \cap T X\right)-\left(\operatorname{dim}(X / S X)-\operatorname{dim}\left(W_{1}\right)\right) \\
& =(T)-\operatorname{dim}\left(W_{0} \oplus W_{1}\right)+\operatorname{dim}\left(W_{0}\right)+\operatorname{dim}\left(N_{S} \cap T X\right)-\operatorname{dim}(X / S X) \\
& =(T)-\operatorname{dim}\left(W_{0} \oplus W_{1}\right)+\operatorname{dim}\left(N_{S}\right)-\operatorname{dim}(X / S X) \\
& =\operatorname{ind}(T)+\operatorname{ind}(S)
\end{aligned}
$$

since $\operatorname{dim}\left(W_{0}\right)+\operatorname{dim}\left(N_{S} \cap T X\right)=\operatorname{dim}\left(\left(N_{S} \cap T X\right) \oplus W_{0}\right)=\operatorname{dim}\left(N_{S}\right)$.
\square Theorem 255
Theorem 256 (Structure of compact operators). Suppose $K \in \mathcal{K}(X)$ with $\operatorname{dim}(X)=\infty$. Then

1. $0 \in \sigma(K)$.
2. $\sigma(K) \backslash\{0\} \subseteq \sigma_{p}(K)$
3. $\sigma(K)$ is a finite or countable set with 0 as its only cluster point.
4. For all $\lambda \in \sigma(K) \backslash\{0\}$ there is $n_{\lambda} \in \mathbb{N}$ such that

- $N(\lambda)=\operatorname{ker}\left((\lambda I-K)^{n_{\lambda}}\right)=\operatorname{ker}\left((\lambda I-K)^{n}\right)$ if and only if $n \geq n_{\lambda}$
- $R(\lambda)=\operatorname{Ran}\left((\lambda I-K)^{n_{\lambda}}\right)=\operatorname{Ran}\left((\lambda I-K)^{n}\right)$ if and only if $n \geq n_{\lambda}$

5. Then $X=N(\lambda) \oplus R(\lambda)$.
6. If E_{λ} is the projection onto $N(\lambda)$ with kernel $R(\lambda)$, then $E_{\lambda} \in\{K\}^{\prime \prime}$.

Aside 257. For $\mathcal{A} \subseteq \mathcal{B}(X)$, we set $\mathcal{A}^{\prime}=\{T \in \mathcal{B}(X): A T=T A$ for all $A \in \mathcal{A}\}$. We then set $\mathcal{A}^{\prime \prime}=\left(\mathcal{A}^{\prime}\right)^{\prime}$.
7. $\sigma(K \upharpoonright N(\lambda))=\{\lambda\}$ and $\sigma(K \upharpoonright R(\lambda))=\sigma(K) \backslash \lambda$.
8. If $\lambda \neq \mu \in \sigma(K) \backslash\{0\}$, then $E_{\lambda} E_{\mu}=0$.

Proof of Theorem 256.
2. Take $\lambda \in \sigma(K) \backslash\{0\}$. If $\operatorname{ker}(\lambda I-K)=\{0\}$, then since $\lambda I-K$ is Fredholm and $0=\operatorname{ind}(\lambda I-K)=$ $(\lambda I-K)-\operatorname{dim}(X /(\lambda I-K) X)$, then we would have $\lambda I-K$ is a bijective map $X \rightarrow X$; so $\lambda I-K$ is invertible, contradicting our assumption that $\lambda \in \sigma(K)$. So there is $0 \neq x \in \operatorname{ker}(\lambda I-K)$; so we have $K x=\lambda x$, and $\lambda \in \sigma_{p}(K)$.
4. Fix $\lambda \in \sigma(K) \backslash\{0\}$. Let $N_{i}=\operatorname{ker}\left((\lambda I-K)^{i}\right)$; then

$$
N_{1} \subseteq N_{2} \subseteq \ldots
$$

and

$$
\operatorname{Ran}(\lambda I-K) \supseteq \operatorname{Ran}\left((\lambda I-K)^{2}\right) \supseteq \ldots
$$

Now, if $N_{n} \varsubsetneqq N_{n+1}$ for all $n \geq 1$, note that $(\lambda I-K) N_{n+1} \subseteq N_{n}$. So, by the key lemma, we have

$$
\lambda=\lim _{n \rightarrow \infty} \lambda=0
$$

a contradiction. So there is a least n_{λ} such that $N_{n_{\lambda}-1} \varsubsetneqq N_{n_{\lambda}}=N_{n_{\lambda}+1}$.
Now, if $n \geq n_{\lambda}+1$ and $x \in N_{n}$, then $(\lambda I-K)^{n-n_{\lambda}-1} x \in N_{n_{\lambda}+1}=N_{n_{\lambda}}$. So $(\lambda I-K)^{n-1} x=0$. So $N_{n}=N_{n-1}=\cdots=N(\lambda)$.
But $0=\operatorname{ind}\left((\lambda I-K)^{n}\right)=\operatorname{dim}\left(N_{n}\right)-\operatorname{dim}\left(R_{n}\right)$, where $R_{n}=\operatorname{Ran}\left((\lambda I-K)^{n}\right)$. Thus $R_{n}=R(\lambda)=R_{n_{\lambda}}$ if and only if $n \geq n_{\lambda}$.
5. Suppose $x \in X$. Then $y=(\lambda I-K)^{n_{\lambda}} x \in R(\lambda)=\operatorname{Ran}\left((\lambda I-K)^{2 n_{\lambda}}\right)$. Find $z \in X$ such that $(\lambda I-K)^{2 n_{\lambda}} z=y=(\lambda I-K)^{n_{\lambda}} x$. Then

$$
(\lambda I-K)^{n_{\lambda}}\left((\lambda I-K)^{n_{\lambda}} z-x\right)=0
$$

with $w=(\lambda I-K)^{n_{\lambda}} z-x \in N(\lambda)$. But then $x=-w+(\lambda I-K)^{n_{\lambda}} z \in N(\lambda)+R(\lambda)$.
Suppose now that $x \in N(\lambda) \cap R(\lambda)$. Then there is y such that $x=(\lambda I-K)^{n_{\lambda}} y$; then since $x \in N(\lambda)$, we have $0=(\lambda I-K)^{n_{\lambda}} x=(\lambda I-K)^{2 n_{\lambda}} y$. So $y \in \operatorname{ker}\left((\lambda I-K)^{2 n_{\lambda}}\right)$. So $x=(\lambda I-K)^{n_{\lambda}} y=0$. So $X=N(\lambda) \oplus R(\lambda)$.
6. Let E_{λ} be the projection onto $N(\lambda)$ with kernel $R(\lambda)$. Suppose $T \in\{K\}^{\prime}$. If $x \in N(\lambda)$, then $0=$ $(\lambda I-K)^{n_{\lambda}} x$; so $(\lambda I-K)^{n_{\lambda}} T x=T(\lambda I-K)^{n_{\lambda}} x=0$. So $T N(\lambda) \subseteq N(\lambda)$. Now, if $y \in R(\lambda)$, then there is x such that $y=(\lambda I-K)^{n_{\lambda}} x$; then $T y=T(\lambda I-K)^{n_{\lambda}} x=(\lambda I-K)^{n_{\lambda}} T x \in R(\lambda)$.
Now, if $x=n \oplus y$ for $n \in N(\lambda)$ and $y \in R(\lambda)$, then $E_{\lambda} T x=E_{\lambda}(T n \oplus T y)=T n=T E_{\lambda} x$. So $E_{\lambda} T=T E_{\lambda}$. So $E_{\lambda} \in\{K\}^{\prime \prime}$.
7. In particular, the above yields that $N(\lambda)$ and $R(\lambda)$ are invariant for K; so $K \upharpoonright N(\lambda) \in \mathcal{B}(N(\lambda))$. But $N(\lambda)$ is finite dimensional, and $\left(\lambda I_{N(\lambda)}-(K \upharpoonright N(\lambda))\right)^{n_{\lambda}}=(\lambda I-K)^{n_{\lambda}} \upharpoonright N(\lambda)=0$ and $(\lambda I-K)^{n_{\lambda}-1} \upharpoonright$ $N(\lambda) \neq 0$; so $(\lambda-z)^{n_{\lambda}}$ is the minimal polynomial of $K \upharpoonright N(\lambda)$. So $\sigma(K \upharpoonright N(\lambda))=\{\lambda\}$. Also $(\lambda I-K) \upharpoonright R(\lambda)$ has no kernel (since $N(\lambda) \cap R(\lambda)=\{0\})$. So the index is 0 , and $(\lambda I-K) \upharpoonright R(\lambda)$ is invertible. So $\lambda \notin \sigma(K \upharpoonright R(\lambda))$. So

$$
K \cong\left(\begin{array}{cc}
K \upharpoonright N(\lambda) & 0 \\
0 & K \upharpoonright R(\lambda)
\end{array}\right)
$$

So

$$
\mu I-K=\left(\begin{array}{cc}
(\mu I-K) \upharpoonright N(\lambda) & 0 \\
0 & (\mu I-K) \upharpoonright R(\lambda)
\end{array}\right)
$$

is invertible if and only if both diagonal entries are invertible. So $\sigma(K)=\sigma(K \upharpoonright N(\lambda)) \cup \sigma(K \upharpoonright R(\lambda))$. But $\sigma(K \upharpoonright N(\lambda))=\{\lambda\}$, and $\sigma(K \upharpoonright R(\lambda)) \subseteq \sigma(K) \backslash\{\lambda\}$. So $\sigma(K \upharpoonright R(\lambda))=\sigma(K) \subseteq\{\lambda\}$, as desired.
3. Suppose $\left(\lambda_{n}: n \in \mathbb{N}\right)$ are distinct points in $\sigma(K) \backslash\{0\}$. Pick x_{n} such that $K x_{n}=\lambda_{n} x_{n}$. Let $V_{n}=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$. Then $\left(\lambda_{n} I-K\right) V_{n} \subseteq V_{n-1}$. By the key lemma, we have

$$
\lim _{n \rightarrow \infty} \lambda_{n}=0
$$

So $\sigma(K)$ is countable with 0 as the only cluster point.
8. Suppose $\lambda, \mu \in \sigma(K) \backslash\{0\}$ are distinct. Then $N(\lambda) \cap N(\mu)=\{0\}$ since $N(\mu) \subseteq R(\lambda)$ by decomposition of K. So $E_{\mu} E_{\lambda}=0$.

1. If $0 \notin \sigma(K)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, then

$$
X=N_{\lambda_{1}} \oplus N_{\lambda_{2}} \oplus \cdots \oplus N_{\lambda_{n}} \oplus \bigcap_{i=1}^{n} R\left(\lambda_{i}\right)
$$

by induction. So

$$
\sigma\left(K \upharpoonright \bigcap_{i=1}^{n} R\left(\lambda_{i}\right)\right) \subseteq \sigma(K) \backslash\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}=\emptyset
$$

a contradiction. In fact,

$$
\sigma\left(K \upharpoonright \bigcap_{i=1}^{n} R\left(\lambda_{i}\right)\right)=\{0\}
$$

though it doesn't have to be an eigenvalue.

6.1 Normal operators on Hilbert space

Recall that for $T \in \mathcal{B}(\mathcal{H})$, we have a unique $T^{*} \in \mathcal{B}(\mathcal{H})$ such that $\left\langle T^{*} x, y\right\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{H}$.

Definition 258.

- $T \in \mathcal{B}(\mathcal{H})$ is self-adjoint if $T=T^{*}$.
- $T \in \mathcal{B}(\mathcal{H})$ is positive (written $T \geq 0$) if $T=T^{*}$ and $\langle T x, x\rangle \geq 0$ for all $x \in \mathcal{H}$.
- $U \in \mathcal{B}(\mathcal{H})$ is unitary if U is a surjective isometry. (Equivalently, by assignment 6 , if $U^{*}=U^{-1}$.)
- $N \in \mathcal{B}(\mathcal{H})$ is normal if $N N^{*}=N^{*} N$.

Remark 259.

1. On $L^{2}(0,1)$, if $f \in L^{\infty}(0,1)$, then $M_{f} h=f h$ is bounded. Also

$$
\begin{aligned}
\left\langle M_{f}^{*} g, h\right\rangle & =\left\langle g, M_{f} h\right\rangle \\
& =\langle g, f h\rangle \\
& =\int g \overline{f h} d x \\
& =\int(\bar{f} g) \bar{h} d x \\
& =\left\langle M_{\bar{f}} g, h\right\rangle
\end{aligned}
$$

So $M_{f}^{*}=M_{\bar{f}}$ and $M^{*} M_{f}=M_{\bar{f}} M_{f}=M_{|f|^{2}}=M_{f} M_{\bar{f}}=M_{f} M_{f}^{*}$. So M_{f} is normal.
2. Diagonal operators are normal. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis. Let $D e_{n}=d_{n} e_{n}$ where $\left(d_{n}: n \in \mathbb{N}\right) \in \ell_{\infty}$. Then $D^{*} e_{n}=\overline{d_{n}} e_{n}$, and D is normal.
3. If $T=T^{*}$, then $\langle T x, x\rangle=\langle x, T x\rangle=\overline{\langle T x, x\rangle}$; so $\langle T x, x\rangle \in \mathbb{R}$. If $\mathbb{F}=\mathbb{C}$, then converse is true:

$$
\begin{aligned}
\langle T x, y\rangle & =\frac{1}{4}(\langle T x+y, x+y\rangle-\langle T(x-y), x-y\rangle+i\langle T(x+i y), x+i y\rangle-i\langle T(x-i y), x-i y\rangle) \\
\langle x, T y\rangle & =\overline{\langle T y, x\rangle} \\
& =\frac{1}{4}(\langle T y+x, y+x\rangle-\langle T(y-x), y-x\rangle+i\langle T(y+i x), y+i x\rangle-i\langle T(y-i x), y-i x\rangle) \\
& =\langle T x, y\rangle
\end{aligned}
$$

since $\langle T z, z\rangle \in \mathbb{R}$ for all $z \in \mathcal{H}$.
Note that the converse fails over \mathbb{R} : let

$$
T=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

We then have $\langle T x, x\rangle=0$ for all $x \in \mathbb{R}^{2}$ but

$$
T^{*}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=-T
$$

4. If $A \in \mathcal{B}(\mathcal{H})$ then $A^{*} A \geq 0$, since $\left(A^{*} A\right)^{*}=A^{*} A^{* *}=A^{*} A$ and $\left\langle A^{*} A x, x\right\rangle=\langle A x, A x\rangle=\|A x\|^{2} \geq 0$.

Proposition 260. Suppose N is normal.

1. $\|N x\|=\left\|N^{*} x\right\|$ for all $x \in \mathcal{H}$.
2. $\|N\|=\operatorname{spr}(N)$.
3. $\operatorname{ker}(N-\lambda I)=\operatorname{ker}\left((N-\lambda I)^{n}\right)=\operatorname{ker}\left((N-\lambda I)^{*}\right)$ for all $n \geq 1$ and all $\lambda \in \mathbb{C}$.
4. $\operatorname{ker}(N-\lambda I)^{\perp}=\overline{\operatorname{Ran}(N-\lambda I)}$.
5. If $\lambda \neq \mu$ then $\operatorname{ker}(N-\lambda I) \perp \operatorname{ker}(N-\mu I)$.
6. If $p \in \mathbb{C}[z]$ then

$$
\|p(N)\|=\sup _{\lambda \in \sigma(N)}|p(\lambda)|
$$

Proof.

1. Note that

$$
\begin{aligned}
\left\|N^{*} x\right\|^{2} & =\left\langle N^{*} x, N^{*} x\right\rangle \\
& =\left\langle N N^{*} x, x\right\rangle \\
& =\left\langle N^{*} N x, x\right\rangle \\
& =\langle N x, N x\rangle \\
& =\|N x\|^{2}
\end{aligned}
$$

2. By (1), we have $\left\|N^{2} x\right\|=\left\|N^{*}(N x)\right\| \geq\left\langle N^{*} N, x, x\right\rangle=\|N x\|^{2}$. So

$$
\left\|N^{2}\right\|=\sup _{\|x\| \leq 1}\left\|N^{2} x\right\| \geq \sup _{\|x\| \leq 1}\|N x\|^{2}=\|N\|^{2}
$$

But $\left\|N^{2}\right\| \leq\|N\|^{2}$. So $\left\|N^{2}\right\|=\|N\|^{2}$. So

$$
\left\|N^{2^{k}}\right\|^{\frac{1}{2^{k}}}=\left(\|N\|^{2^{k}}\right)^{\frac{1}{2^{k}}}=\|N\|
$$

So

$$
\operatorname{spr}(N)=\lim _{k \rightarrow \infty}\left\|N^{2^{k}}\right\|^{\frac{1}{2^{k}}}=\|N\|
$$

3. Well

$$
\begin{aligned}
x \in \operatorname{ker}(N-\lambda I) & \Longleftrightarrow\|(N-\lambda) x\|=0=\left\|(N-\lambda)^{*} x\right\| \\
& \Longleftrightarrow x \in \operatorname{ker}(N-\lambda I)^{*}
\end{aligned}
$$

Also if $x \in \operatorname{ker}\left((N-\lambda I)^{2^{k}}\right)$, then

$$
0=\left\|(N-\lambda I)^{2^{k}} x\right\| \geq\|(N-\lambda I) x\|^{2^{k}}
$$

So $\|(N-\lambda I) x\|^{2^{k}}=0$, and $x \in \operatorname{ker}(N-\lambda I)$. So $\operatorname{ker}\left((N-\lambda I)^{2 k}\right)=\operatorname{ker}(N-\lambda I)$.
4. Note that $\operatorname{ker}(N-\lambda I)^{\perp}=\overline{\operatorname{Ran}(N-\lambda I)}$. Also

$$
\overline{\operatorname{Ran}(N-\lambda I)}=\left(\operatorname{ker}(N-\lambda I)^{*}\right)^{\perp}=\operatorname{ker}(N-\lambda I)^{\perp}
$$

(So $\overline{\operatorname{Ran}(N-\lambda I)^{*}}=\overline{\operatorname{Ran}(N-\lambda I)}$.)
5. Suppose $\lambda \neq \mu$. Suppose $x \in \operatorname{ker}(N-\lambda I)$ and $y \in \operatorname{ker}(N-\mu I)=\operatorname{ker}\left(N^{*}-\bar{\mu} I\right)$. Then $N x=\lambda x$, and $N^{*} y=\bar{\mu} y$, so $N y=\mu y$. So

$$
\lambda\langle x, y\rangle=\langle N x, y\rangle=\left\langle x, N^{*} y\right\rangle=\langle x, \bar{\mu} y\rangle=\mu\langle x, y\rangle
$$

But $\lambda \neq \mu$. So $\langle x, y\rangle=0$.
6. Well, $p(N)$ is normal. By (2), we have $\|p(N)\|=\operatorname{spr}(p(N))$. But $\sigma(p(N))=p(\sigma(N))$ by the spectral mapping theorem. So

$$
\|p(N)\|=\sup _{\lambda \in \sigma(N)}|p(\lambda)|
$$

Proposition 260
Corollary 261. If N is normal and Fredholm then $\operatorname{ind}(N)=0$.
Proof. Well, $\operatorname{ker}(N)^{\perp}=\operatorname{Ran}(N)$ and

$$
\begin{aligned}
\operatorname{ind}(N) & =\operatorname{dim}(\operatorname{ker}(N))-\operatorname{dim}(\mathcal{H} / \operatorname{Ran}(N)) \\
& =\operatorname{dim}(\operatorname{ker}(N))-\operatorname{dim}\left(\left(\operatorname{Ran}(N)^{\perp}\right)\right) \\
& =\operatorname{dim}(\operatorname{ker}(N))-\operatorname{dim}(\operatorname{ker}(N)) \\
& =0
\end{aligned}
$$

Corollary 261
Theorem 262 (Spectral theorem for compact normal operators). Suppose N is a compact normal operator on \mathcal{H}. Then \mathcal{H} has an orthonormal basis which diagonalizes N.

Proof. From the structure of arbitrary compact operators, we have

$$
\sigma(N)=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\} \cup\{0\}
$$

with

$$
\lim _{n \rightarrow \infty} \lambda_{n}=0
$$

Then

$$
\bigvee_{n=1}^{\infty} \operatorname{ker}\left(N-\lambda_{i} I\right)^{n}=\operatorname{ker}\left(N-\lambda_{i} I\right)=M_{i}=\operatorname{ker}\left(N^{*}-\overline{\lambda_{i}} I\right)
$$

by part (3) of Proposition 260, where \bigvee denotes the closed span. Note that the M_{i} are finite-dimensional, and by part (5) of Proposition 260, we have $M_{m} \perp M_{n}$ if $m \neq n$. Let

$$
\mathcal{M}=\bigoplus_{n=1}^{\infty} M_{n}
$$

Then \mathcal{M} is a closed subspace with $N \mathcal{M} \subseteq \mathcal{M}$ and $N^{*} \mathcal{M} \subseteq \mathcal{M}$. Write $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, and write

$$
N=\left(\begin{array}{cc}
N_{11} & 0 \\
0 & N_{22}
\end{array}\right)
$$

where $N_{11}: \mathcal{M} \rightarrow \mathcal{M}$ and $N_{22}: \mathcal{M}^{\perp} \rightarrow \mathcal{M}^{\perp}$. Then N_{11} and N_{22} are normal, and

$$
N^{*}=\left(\begin{array}{cc}
N_{11}^{*} & 0 \\
0 & N_{22}^{*}
\end{array}\right)
$$

and

$$
0=N^{*} N-N N^{*}=\left(\begin{array}{cc}
N_{11}^{*} N_{11}-N_{11} N_{11}^{*} & 0 \\
0 & N_{22}^{*} N_{22}-N_{22} N_{22}^{*}
\end{array}\right)
$$

So N_{22} is normal, compact, and has no non-zero eigenvalues. So $\sigma\left(N_{22}\right)=0$. So $\left\|N_{22}\right\|=\operatorname{spr}\left(N_{22}\right)=0$. So $N_{22}=0$. So $\mathcal{M}^{\perp}=\operatorname{ker}(N)$. Choose an orthonormal basis for each M_{i}; these are then eigenvectors with eigenvalue λ_{i}. Say $e_{i, 1}, \ldots, e_{i, n_{i}}$ are an orthonormal basis for M_{i}. Choose an orthonormal basis $\left\{e_{0, i}: i<\alpha\right\}$ for $\operatorname{ker}(N)=\mathcal{M}^{\perp}$; note that α is possibly infinite (indeed, possibly uncountable).
Notation 263. If $x, y \in \mathcal{H}$, then $\left(x y^{*}\right)(z)=z\left(y^{*} z\right)=\langle z, y\rangle x$. Write

$$
\begin{aligned}
& x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots
\end{array}\right) \\
& y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots
\end{array}\right)
\end{aligned}
$$

Then

$$
x y^{*}=\left(\begin{array}{ccc}
x_{1} \overline{y_{1}} & x_{1} \overline{y_{2}} & \ldots \\
x_{2} \overline{y_{1}} & x_{2} \overline{y_{2}} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

If N is compact and normal and $\left\{e_{n}: n \in \mathbb{N}\right\}$ is an orthonormal basis of eigenvectors which span $\mathcal{M}=(\operatorname{ker}(N))^{\perp}$; say $N e_{n}=\lambda_{n} e_{n}$. Then

$$
N=\sum_{n=1}^{\infty} \lambda e_{n} e_{n}^{*}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right) \oplus 0
$$

on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$.

6.2 Invariant subspaces

Definition 264. If $S \subseteq \mathcal{B}(X)$ and \mathcal{M} is a closed subspace of X, we say \mathcal{M} is invariant for S if $s \mathcal{M} \subseteq \mathcal{M}$ for all $s \in S$. We write Lat (S) for the set of all S-invariant subspaces of X.

Remark 265. We have $\{0\}, X \in \operatorname{Lat}(S)$. If all $\mathcal{M}_{\alpha} \in \operatorname{Lat}(S)$, then

$$
\bigcap_{\alpha} \mathcal{M}_{\alpha} \in \operatorname{Lat}(S)
$$

If we further have that

$$
\bigvee_{\alpha} \mathcal{M}_{\alpha} \in \operatorname{Lat}(S)
$$

then it is called a complete lattice.
Definition 266. If \mathcal{L} is a collection of subspaces, we define

$$
\operatorname{Alg}(\mathcal{L})=\{A \in \mathcal{B}(X): A M \subseteq M \text { for all } M \in \mathcal{L}\}
$$

Remark 267. $\operatorname{Alg}(\mathcal{L})$ is an algebra containing I : if $A M \subseteq M$ and $B M \subseteq M$, then $(\alpha A+\beta B) M \subseteq M$ and $A B M \subseteq A M \subseteq M$. Furthermore, if $A_{\alpha} \in \operatorname{Alg}(\mathcal{L})$ with $A_{\alpha} \xrightarrow{\text { WOT }} A$, then $\varphi\left(A_{\alpha} x\right) \rightarrow \varphi(A x)$ for all $x \in X$ and all $\varphi \in X^{*}$. If $x \in M$ and $\varphi \in M^{\perp}$, then

$$
\varphi(A x)=\lim \varphi\left(A_{\alpha} x\right)=0
$$

Ao $A x \in M$. So $\operatorname{Alg}(\mathcal{L})$ is a WOT-closed unital algebra.

Remark 268. If \mathcal{A} is an algebra, we have $\operatorname{Alg}(\operatorname{Lat}(\mathcal{A})) \supseteq \mathcal{A}$; we say \mathcal{A} is reflexive if $\mathcal{A}=\operatorname{Alg}(\operatorname{Lat}(\mathcal{A}))$. Note: this differs from our prior usage.

Simlarly, if \mathcal{L} is a lattice, then $\operatorname{Lat}(\operatorname{Alg}(\mathcal{L})) \supseteq \mathcal{L}$.
Example 269. Recall the Volterra operator

$$
V f(x)=\int_{0}^{x} f(t) d t
$$

on $\mathcal{B}\left(L^{2}(0,1)\right)$. Then

$$
N_{t}=\{f: \operatorname{supp}(f) \subseteq[t, 1]\} \in \operatorname{Lat}(V)
$$

Theorem 270. Lat $(V)=\left\{N_{t}: 0 \leq t \leq 1\right\}$.
TODO 3. Last two lectures.

