Course notes for PMATH 753

Christa Hawthorne

Lectures by Kenneth R. Davidson, Fall 2015

Contents

1	Preliminaries	1
2	Point-set topology 2.1 Nets 2.2 Axiom of choice 2.3 Compactness	2 6 7 9
3	3.1 General constructions in Banach spaces 3.2 More on Hilbert spaces 3.3 Some Fourier series	13 16 23 36 40
4		45 51
5	5.1 Hilbert space adjoint 5.2 Spectral mapping theorem for rational functions 5.3 Compact operators	60 63 71 73 77
6	compact operators and requirements	78 85 88

1 Preliminaries

I acknowledge the contributions of Ilia Chtcherbakov, Eric Yau, and Mitchell Haslehurst.

Course outline on learn. Ken Davidson, MC 5324 TA: Boyu Li, MC 5418 Recommended: A course in functional analysis, by Conway Supplementary:

- Lax, interesting application, but weird order
- Pederson
- Marcoux's course notes, also weird order

Assignments probably about every two weeks.

2 Point-set topology

If (X, d) is a metric space, recall we define

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

to be the open balls. We say $U \subseteq X$ is open if and only if for all $x \in U$ there is r > 0 such that $B_r(x) \subseteq U$.

Definition 1. A topological space is a set X together with $\tau \subseteq \mathcal{P}(X)$ (whose elements are called *open sets*) satisfying

- 1. $\emptyset, X \in \tau$.
- 2. If $\mathcal{U} \subseteq \tau$, then

- $\bigcup \mathcal{U} \in \tau$
- 3. If $U, V \in \tau$, then $U \cap V \in \tau$.

Example 2.

- 1. The discrete topology is $(X, \mathcal{P}(X))$. This is, in fact, a metric topology.
- 2. The trivial topology is $(X, \{\emptyset, X\})$.
- 3. Suppose (X, <) is a total order. We define the order topology to be generated by

$$X$$

$$L_x = \{ y \in X : y < x \}$$

$$G_x = \{ y \in X : y > x \}$$

i.e. the open sets are

$$\bigcup_{\alpha} (L_{x_{\alpha}} \cap G_{y_{\alpha}}) \cup \bigcup_{\beta} L_{b_{\beta}} \cup \bigcup_{\gamma} G_{c_{\gamma}}$$

4. Let X = C[0, 1]. Let $x \in [0, 1], a \in \mathbb{C}, r > 0$. Let

$$U_{x,a,r} = \{ f \in C[0,1] : |f(x) - a| < r \}$$
$$U_{\{(x_i,a_i,r_i):i < n\}} = \bigcap \{ U_{x_i,a_i,r_i} : i < n \}$$

We declare unions of the latter to be open. This is the topology for pointwise convergence.

Definition 3. A set C in (X, τ) is *closed* if and only if $X \setminus C$ is open.

Definition 4. For a topological space (X, τ) , a subset $A \subseteq X$, we define

• the *interior* of A is the largest open $U \subseteq A$:

$$A^{\circ} = \bigcup (\mathcal{P}(A) \cap \tau)$$

• the *closure* of A is the smallest closed $C \supseteq A$:

$$\overline{A} = \bigcap \{ K \subseteq X : K \supseteq A, K^c \in \tau \}$$

Proposition 5.

1. If \mathcal{F} is a collection of closed sets, then

 $\bigcap \mathcal{F}$

is closed.

- 2. If F, G are closed, then so is $F \cup G$.
- 3. For $A \subseteq X$, we have that $x \in \overline{A}$ if and only if for all open $U \ni x$, we have $U \cap A \neq \emptyset$.
- 4. $\overline{A} = ((A^c)^\circ)^c$.

Proof.

1. For each $F \in \mathcal{F}$, we have F^c is open. So

$$\left(\bigcap \mathcal{F}\right)^{c} = \bigcup \{ F^{c} : F \in \mathcal{F} \}$$

()*F*

is open, and

is closed.

- 2. $(F \cup G)^c = F^c \cap G^c$ is open, so $F \cup G$ is closed.
- 3. Suppose $x \in X$ and there is open $U \ni x$ such that $U \cap A = \emptyset$. Then U^c is closed and $A \subseteq U^c$. So $\overline{A} \subseteq U^c$, and $x \notin \overline{A}$.

Conversely, if $x \notin \overline{A}$, then $x \in (\overline{A})^c$. Setting $U = (\overline{A})^c$, we have $x \in U$ and $U \cap A \subseteq U \cap A^c = \emptyset$.

4.

$$(A^{c})^{\circ} = \bigcup \{ U \in \tau : U \cap A = \emptyset \}$$
$$= (\overline{A})^{c}$$

by previous item. Thus

$$((A^c)^\circ)^c = ((\overline{A})^c)^c = \overline{A}$$

 \Box Proposition 5

Proposition 6. If $S \subseteq \mathcal{P}(X)$, then there is a smallest topology τ containing S given by \emptyset, X and arbitrary unions of finite intersections of elements of S.

Proof. We check the properties.

- 1. By construction.
- 2. A union of unions is itself a union.
- 3. Well

$$\bigcup_{\alpha} (S_{\alpha,1} \cap \dots \cap S_{\alpha,n_{\alpha}}) \cap \bigcup_{\beta} (T_{\beta,1} \cap \dots \cap T_{\beta,m_{\beta}}) = \bigcup_{\alpha} \bigcup_{\beta} S_{\alpha,1} \cap \dots \cap S_{\alpha,n_{\alpha}} \cap T_{\beta,1} \cap \dots \cap T_{\beta,m_{\beta}}$$

(Check the set theory, if you don't believe it.)

\Box Proposition 6

Definition 7. If $S \subseteq \mathcal{P}(X)$ generates τ as above, then S is a *subbase* of τ . If $S \subseteq \mathcal{P}(X)$ and every $U \in \tau$ is the union of sets in S, then S is a *base* for τ .

Example 8.

- 1. Suppose (X, d) is a metric space. Then $\{B_r(X) : x \in X, r > 0\}$ is a base for the metric topology.
- 2. In the special case of (\mathbb{R}, d) , we have that $\{(r, s) : r, s \in \mathbb{Q}\}$ is a base.

Proposition 9. Suppose $\{\tau_{\alpha}\}$ is a collection of topologies on X. Then

1.

$$\tau_{\min} = \bigcap_{\alpha} \tau_{\alpha}$$

is a topology on X.

2.

$$\tau_{\max} = \bigcup_{\alpha} \tau_{\alpha}$$

is a subbase for a topology on X.

Definition 10. If σ, τ are topologies on X, we say

- $\sigma < \tau$ if $\sigma \subseteq \tau$ (σ is weaker than τ).
- $\sigma > \tau$ if $\sigma \supseteq \tau$ (σ is stronger than τ).

Example 11. Let X = C[0, 1]. Let τ be induced by the metric

$$d(f,g) = \|f - g\|_{\infty} = \sup_{x \in [0,1]} |f(x) - g(x)|$$

Consider the topology σ with base the sets

$$U = U_{\{(x_i, a_i, r_i): i < n\}} = \{ f : |f(x_i) - a_i| < r_i, i < n \}$$

We claim that $\sigma \subseteq \tau$: Suppose $f \in U$ with $f(x_i) = b_i$, $|b_i - a_i| < r_i$. Then we can take

$$r = \min_{i < n} r_i - |a_i - b_i|$$

If $||f - g||_{\infty} < r$, then $|g(x_i) - b_i| < r$, and thus $|g(x_i) - a_i| < |g(x_i) - b_i| + |b_i - a_i| \le r_i$. Thus $\sigma \subseteq \tau$; they are not equal because $U \neq \emptyset$ is always unbounded. Indeed, for

$$U_{\{(x_i,a_i,r_i):i < n\}}$$

pick $y \notin \{x_i : i < n\}$. Then there is $g \in C[0, 1]$ with $g(x_i) = a_i$ and g(y) is arbitrarily large.

Definition 12.

- (X,τ) is separable if and only if there is a countable dense subset. i.e. a countable A such that $\overline{A} = X$.
- (X, τ) is *first-countable* if and only if for each $x \in X$, there is a collection \mathcal{U} of open $U \ni x$ such that for all open $V \ni x$ there is $U \in \mathcal{U}$ such that $U \subseteq V$.
- (X, τ) is second-countable if and only if there is a countable base for the topology.

Example 13.

- 1. If (X, d) is a compact metric space, then X is separable.
- 2. If (X, d) is any metric space, then X is first-countable.
- 3. If (X, d) is a separable metric space, then X is second-countable.

Proof. Suppose $\{x_i : i < \omega\} \subseteq X$ is a countable, dense set. Consider

$$\left\{\,B_{\frac{1}{m+1}}(x_n):m,n<\omega\,\right\}$$

We claim that this is a base for the topology. Let U be open in (X, d). Let $x \in U$. Need to find m, n such that

$$x \in B_{\frac{1}{m}}(x_n) \subseteq U$$

Well, there is r > 0 such that $B_r(x) \subseteq U$. Pick *m* such that $\frac{1}{m} < \frac{r}{2}$. By density of $\{x_i : i < n\}$, we have some *n* such that $d(x_n, x) < \frac{1}{m}$. Then

$$x \in B_{\frac{1}{m}}(x) \subseteq B_{\frac{2}{m}}(x) \subseteq B_r(x) \subseteq U$$

as desired.

Definition 14. Suppose (X, τ) , (Y, σ) are topological spaces. We say $f: X \to Y$ is *continuous* if for all open $V \subseteq Y$, we have $f^{-1}(V)$ is open (in X). We say f is a *homeomorphism* if f is a bijection and f and f^{-1} are both continuous. We say f is *open* if for all open $U \subseteq X$ we have that f(U) is open (in Y).

Example 15.

1. Suppose (X, τ) is a topological space. Consider the sequence of maps

$$(X, \text{discrete}) \xrightarrow{f} (X, \tau) \xrightarrow{g} (X, \text{trivial})$$

where $f = g = id_X$. Then f and g are bijective and continuous but f^{-1} , g^{-1} are not continuous.

- 2. Any f from a discrete space into \mathbb{R} is continuous. The only continuous functions from a trivial topology into \mathbb{R} are constant.
- 3. The map

$$f: (-1, 1) \to \mathbb{R}$$
$$x \mapsto \tan\left(\frac{\pi}{2}x\right)$$

is a homeomorphism.

Definition 16. Suppose (X, τ) is a topological space, $(x_n : n < \omega)$ is a sequence in X. We say $(x_n : n < \omega)$ converges if and only if for all

$$U \in \mathcal{O}(x) = \{ U \in \tau : x \in U \}$$

there is an $N < \omega$ such that for all $N \leq N < \omega$ we have $x_n \in U$.

Example 17.

- 1. $X = \{a, b\}, \tau = \{\emptyset, \{a\}, \{a, b\}\}$. Then $x_n \to a$ if and only if x_n is eventually a. On the other hand, every sequence converges to b. In particular, some sequences converge to a and b.
- 2. $X = [0, 1) \cup \{a, b\}$ with $U \subseteq X$ open if all of the following hold:
 - $U \cap [0,1)$ is open in the metric topology.
 - If $a \in U$ or $b \in U$, then there is $\varepsilon > 0$ such that $U \supseteq (1 \varepsilon, 1)$.

Then any sequence in [0, 1) that converges to 1 in the metric topology converges to both a and b in τ . As another example, the sequence

$$1 - \frac{1}{2}, a, 1 - \frac{1}{3}, a, \dots$$

converges to a but not b.

Definition 18. (X,τ) is *Hausdorff* if for all $x \neq y$ in X there is open $U \ni x$, open $V \ni y$ such that $U \cap V = \emptyset$.

Example 19.

- 1. Metric spaces are Hausdorff.
- 2. The prior two examples are not Hausdorff.

Proposition 20. If C(X) (the set of continous maps $X \to \mathbb{C}$) separates points (i.e. for $x \neq y$ there is $f \in C_b(X)$ such that $f(x) \neq f(y)$), then X is Hausdorff.

Proof. Say $x \neq y$. Then there is a continuous $f: X \to \mathbb{C}$ such that $f(x) \neq f(y)$, by hypothesis. \mathbb{C} is Hausdorff, so we may find open $U \ni f(x)$, open $V \ni f(y)$ such that $U \cap V = \emptyset$. Then $f^{-1}(U)$ and $f^{-1}(V)$ are open sets containing x and y, respectively, and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. \Box Proposition 20

2.1 Nets

Main message: sequences are not enough.

Example 21. Let $X = \mathbb{N} \times \mathbb{N}$. Define τ by:

- For $m + n \ge 1$, the set $\{(m, n)\}$ is open.
- An open $U \ni (0,0)$ must have a finite $F \subseteq \mathbb{N}$ such that for all $n \in \mathbb{N} \setminus F$, we have

$$\{m < \mathbb{N} : (m, n) \in U\}$$

is a cofinite subset of \mathbb{N} .

Check that this defines a topology.

1. (X, τ) is Hausdorff: to house off (m_1, n_1) , (m_2, n_2) , and (0, 0), use

$$U_0 = X \setminus \{ (m_1, n_1), (m_2, n_2) \}$$
$$U_1 = \{ (m_1, n_1) \}$$
$$U_2 = \{ (m_2, n_2) \}$$

2. $(0,0) \in \overline{X \setminus \{(0,0)\}}$ since every non-empty open set has an element besides (0,0).

3. No sequence $((m_k, n_k) : k < \omega)$ in $X \setminus \{(0, 0)\}$ converges to (0, 0).

Proof. Suppose $x_k = (m_k, n_k)$ is a sequence.

Case 1. Suppose $(n_k : k < \omega)$ is bounded. Then there must be a constant subsequence $(n_{k_i} : i < \omega)$. Then

$$U = X \setminus \{ (m, n) : n = n_0 \}$$

is open and contains (0,0). But $x_{k_i} \notin U$ for all $i < \omega$. So $x_k \not\to (0,0)$.

Case 2. Suppose otherwise. Then there is a subsequence $(n_{k_i} : i < \omega)$ such that $(n_{k_i} : i < \omega) \to \infty$. Then

$$U = X \setminus \{ x_{k_i} : i < \omega \}$$

is open because only finitely many x_{k_i} have $n_{k_i} = n$. But $x_{k_i} \notin U$ for $i < \omega$. So $x_k \not\rightarrow (0,0)$.

Definition 22. A directed set is a set Λ with a binary relation \leq such that

- 1. $\lambda \leq \lambda$ for all $\lambda \in \Lambda$.
- 2. If $\lambda_1 \leq \lambda_2$ and $\lambda_2 \leq \lambda_3$, then $\lambda_1 \leq \lambda_3$ for all $\lambda_i \in \Lambda$.
- 3. Directedness: if $\lambda_1, \lambda_2 \in \Lambda$ then there is $\lambda_3 \in \Lambda$ such that $\lambda_1 \leq \lambda_3$ and $\lambda_2 \leq \lambda_3$.

(We do not require antisymmetry; some authors do.)

Definition 23. A net is a function $x \colon \Lambda \to X$ (usually written $(x_{\lambda} : \lambda \in \Lambda)$). A net converges to $x \in X$ if for all $U \in \mathcal{O}(x)$ there is $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in U$ for all $\lambda \geq \lambda_0$.

Definition 24. A subnet Γ of Λ is a function $\varphi \colon \Gamma \to \Lambda$ which is cofinal: for all $\lambda_0 \in \Lambda$ there is $\gamma_0 \in \Gamma$ such that $\varphi(\gamma) \geq \lambda_0$ for all $\gamma \geq \gamma_0$.

In practice, such φ will usually be monotonic.

Example 25. We now return to Example 21.

4. There is a net in $X \setminus \{0, 0\}$ converging to (0, 0). Let $\Lambda = \mathcal{O}((0, 0))$ ordered by $U \leq V$ if $U \supseteq V$. This is clearly a directed set. We then define a net as follows: for $U \in \Lambda$, let x_U be the smallest element of $U \setminus \{0, 0\}$ in the usual well-ordering of \mathbb{N}^2 .

Claim 26. $(x_U : U \in \Lambda) \rightarrow (0,0).$

Proof. Suppose $V \in \mathcal{O}((0,0))$. If $U \ge V$, then $U \subseteq V$, and $x_U \in U \subseteq V$. \Box Claim 26

5. Take the sequence

 $((0,1), (1,0), (0,2), (1,1), (2,0), \dots) = (x_k : k < \omega)$

This does not converge to (0,0). Define $\varphi \colon \Lambda \to \omega$ by $\varphi(U) = i$ if $x_U = x_i$. This map is cofinal, since if $N < \omega$, we can $V \in \Lambda$ such that $U \ge V \implies \varphi(U) \ge N$ by taking $V = X \setminus \{(0,0), x_0, \ldots, x_{N-1}\}$. So Λ is a subnet of the sequence $(x_n : n < \omega)$.

Proposition 27. Suppose $A \subseteq X$. Then $x \in \overline{A}$ if and only if there is a net $(x_{\lambda} : \lambda \in \Lambda)$ in A converging to x.

Proof.

 (\Longrightarrow) Well, $x \in \overline{A}$ if and only if $U \cap A \neq \emptyset$ for all $U \in \mathcal{O}(x)$. We can make $\mathcal{O}(x)$ into a directed set by reverse containment, as before. Use the axiom of choice to pick $x_U \in U \cap A$ for each $U \in \mathcal{O}(x)$. Then $(x_U : U \in \mathcal{O}(x))$ converges to x, since for all $V \in \mathcal{O}(x)$, if $U \geq V$ then $x_U \in U \subseteq V$.

(\Leftarrow) This implies that every $U \in \mathcal{O}(x)$ contains an element of A.

 \Box Proposition 27

Proposition 28. $f: (X, \tau) \to (Y, \sigma)$ is continuous if and ony if for any net $(x_{\lambda} : \lambda \in \Lambda) \to x$ in X, we have that $(f(x_{\lambda}) : \lambda \in \Lambda) \to f(x)$ in Y.

Proof.

- (\Longrightarrow) Suppose $(x_{\lambda} : \lambda \in \Lambda) \to x$. Let $V \ni f(x)$ be open. Then $U = f^{-1}(V)$ is open, and $x \in U$. So there is $\lambda_0 \in \Lambda$ such that for all $\lambda \geq \lambda_0$, we have $x_{\lambda} \in U$, and thus $f(x_{\lambda}) \in f(U) \subseteq V$. Thus $(f(x_{\lambda}) : \lambda \in \Lambda) \to f(x)$.
- (\Leftarrow) Suppose f is not continuous. Then there is V open in Y such that $U = f^{-1}(V)$ is not open, and thus U^c is not closed. Thus there is $x \in U$ such that $x \in \overline{U^c}$. By the previous proposition, there is a net $(x_{\lambda} : \lambda \in \Lambda)$ in U^c converging to x. But $f(x_{\lambda}) \in V^c$, so, by previous proposition, we have $f(x_{\lambda}) \neq f(x) \in V$.

\Box Proposition 28

Example 29. Not that the sequential characterization of continuity does not apply in general. Consider the space from before (\mathbb{N}^2, W) . Consider $f: (\mathbb{N}^2, W) \to (\mathbb{N}^2, \text{discrete})$ given by $\mathrm{id}_{\mathbb{N}^2}$. Then $(x_i : i < \omega) \to x$ if and only if $x \neq (0,0)$ and $x_i = x$ eventually. Thus $(f(x_i) : i < \omega) \to f(x)$. But f is discontinuous, since $f^{-1}(\{0,0\}) = \{0,0\}$ is not open.

2.2 Axiom of choice

Definition 30. A set A is *well-ordered* if it has a total order < and every non-empty subset has a least element. A *partial order* is reflexive, antisymmetric, and transitive. It is called *inductive* if every chain (totally ordered subset) has an upper bound.

Definition 31. The axiom of choice says that if X is a set, then there is a $c: 2^X \setminus \{\emptyset\} \to X$ such that $c(A) \in A$ for all $A \neq \emptyset$.

Definition 32. The *well-ordering principle* states that every set can be well-ordered.

Definition 33. Zorn's lemma states that if every chain in a partial order has an upper bound, then there is a maximal element. (Note: this doesn't mean the maximal element is comparable to everything; merely that no element is larger than it.)

Remark 34. If A is well-ordered, then there is a least element.

Definition 35. An *initial segment* is

$$I = I(b) = \{ a \in A : a < b \}$$

Theorem 36. The following are equivalent:

- 1. The axiom of choice
- 2. The well-ordering principle
- 3. Zorn's lemma

Proof.

- (2) \implies (1) Place a well-ordering on X; we can then define c(A) to be the least element of A.
- $(3) \implies (2)$ Let

$$\mathcal{W} = \{ (F, <_F) : F \subseteq X, <_F \text{ a well-ordering of } F \}$$

Say $(F, <_F) \leq (G, <_G)$ if $F \subseteq G$ and $<_F = <_G |_{F \times F}$, and F is an initial segment of G. Let

$$\mathcal{C} = \{ (F_{\alpha}, <_{F_{\alpha}}) : \alpha \in I \}$$

be a chain, with $(F_{\alpha}, <_{F_{\alpha}}) \leq (F_{\beta}, <_{F_{\beta}})$ for $\alpha < \beta$. Let

$$G = \bigcup_{\alpha \in I} F_{\alpha}$$
$$<_{G} = \bigcup_{\alpha \in I} <_{F_{\alpha}}$$

Now, if $\emptyset \neq A \subseteq G$, we have

$$A = \bigcup_{\alpha \in I} (A \cap F_{\alpha}) \neq 0$$

so there is $\alpha \in I$ such that $A \cap F_{\alpha} \neq \emptyset$; then we have a least $a \in A \cap F_{\alpha}$. Now, for any $b \in A$, we have that $b \in F_{\alpha}$, in which case $a \leq b$ by our choice of a; or that $b \notin F_{\alpha}$, in which case $b \in F_{\beta}$ for some $\beta > \alpha$, so F_{α} is an initial segment of F_{β} , and b > a. So in fact a is the least element of A, and $<_G$ is a well-ordering. Then $(G, <_G)$ is an upper bound of \mathcal{C} . So \mathcal{W} is inductive, and thus has a maximal element $(F, <_F)$ by Zorn's lemma.

If $F \neq X$, we could pick $a \in X \setminus F$ and define a well-ordering of $F \cup \{a\}$ by b < a for all $b \in F$, contradicting our choice of $(F, <_F)$ as a maximal element of \mathcal{W} . So X = F, and we have a well-ordering of X.

(1) \implies (3) Let (P, \leq) be an inductive partial order. Suppose there is no maximal element. Then for all $x \in P$, we have that

$$U_x = \{ y \in P : x < y \} \neq \emptyset$$

Then there is $f: P \to P$ such that $f(x) \in U_x$ for all x. Since (P, \leq) is inductive, we have that for each chain \mathcal{C} , that

 $U_{\mathcal{C}} = \{ x \in P : x \text{ is an upper bound for } \mathcal{C} \} \neq \emptyset$

Then there is a map

$$g: \{ \mathcal{C} : \mathcal{C} \text{ is a chain of } P \} \to P$$

such that $g(\mathcal{C})$ is an upper bound of \mathcal{C} for each chain \mathcal{C} . Define $h = f \circ g$; then $h(\mathcal{C})$ is strictly greater than every element of \mathcal{C} for all chains \mathcal{C} .

Define a well-ordering on P by $a_1 = h(\emptyset)$, $a_2 = h(\{a_1\})$, $a_3 = h(\{a_1, a_2\})$, and so on. Consider subsets $A \subseteq P$ such that

1. (A, \leq) is a well-ordering.

2. If $I \subsetneq A$ is an initial segment of A, then the least element of $A \setminus I$ is h(I).

Call such A a conforming set.

Claim 37. If A, B are two conforming sets, then either $A \subseteq B$ or $B \subseteq A$, and it is an initial segment.

Proof. Let \mathcal{H} be the set of initial segments common to A and B. Let

$$J = \bigcup_{I \in \mathcal{H}} I$$

be the largest initial segment common to A and B. Then, if both A and B were proper supersets of J, we would have $h(J) \in A \cap B$, and $J \cup \{h(J)\}$ would be a strictly larger initial segment common to A and B, a contradiction. \Box Claim 37

Now, let X be the union of all the conforming sets; then X is well-ordered by \leq , and each A is an initial segment. So (X, \leq) is a maximal conforming set. But $X \cup \{h(X)\}$ is a strictly larger conforming set, a contradiction.

 \Box Theorem 36

2.3 Compactness

Definition 38. Suppose (X, τ) is a topological space. We say $A \subseteq X$ is *compact* if every open cover of A has a finite subcover.

Theorem 39. The following are equivalent:

- 1. X is compact.
- 2. Every collection of closed sets C with the finite intersection property (that every finite intersection is non-empty) satisfies

$$\bigcap \mathcal{C} \neq \emptyset$$

3. Every net in X has a convergent subnet.

Proof.

(1) \implies (2) Suppose $\{C_{\alpha} : \alpha \in I\}$ has the finite intersection property but

$$\bigcap_{\alpha \in I} C_{\alpha} = \emptyset$$

Then $\{C^c_\alpha : \alpha \in I\}$ is an open cover of X with no finite subcover, a contradiction.

(2) \implies (3) Let $(x_{\lambda} : \lambda \in \Lambda)$ be a net. For $\gamma \in \Lambda$, let $C_{\gamma} = \overline{\{x_{\lambda} : \lambda \geq \gamma\}}$. Then given any $\{\gamma_1, \ldots, \gamma_n\} \subseteq \Lambda$, we some γ such that $\gamma_i \leq \gamma$ for all i; then

$$x_{\gamma} \in \bigcap_{i=1}^{n} C_{\gamma_i}$$

So $\{C_{\gamma} : \gamma \in \Lambda\}$ has the finite intersection property, and, by assumption, we have some

$$x \in \bigcap_{\gamma \in \Lambda} C_{\gamma}$$

Let

$$\Gamma = \{ (\lambda, U) : \lambda \in \Lambda, U \in \mathcal{O}(x) \}$$

Define an order on Γ by $(\lambda, U) \leq (\mu, V)$ if $\lambda \leq \mu$ and $U \supseteq V$. Want to define $\varphi \colon \Gamma \to \Lambda$ which is cofinal such that $x_{\varphi(\lambda,U)} \in C_{\lambda} \cap U$. Well, $C_{\lambda} = \{x_{\gamma} : \gamma \geq \lambda\}$ intersects U since $x \in U$. Thus $\{x_{\gamma} : \gamma \geq \lambda\}$ also intersects U, since U is open, and there is $\gamma \geq \lambda$ such that $x_{\gamma} \in U$. Let

$$Y_{\lambda,U} = \{ x_{\gamma} : \gamma \ge \lambda \} \cap U \neq \emptyset$$

By axiom of choice, there is $\varphi \colon \Gamma \to \Lambda$ such that $\varphi(\lambda, U) \in Y_{\lambda, U}$.

Claim 40. $(x_{\varphi(\lambda,U)}:(\lambda,U)\in\Gamma)\to x.$

Proof. If $v \in \mathcal{O}(x)$, pick λ_0 arbitrary. Then if $(\lambda, U) \ge (\lambda_0, V)$, then $x_{\varphi(\lambda, U)} \in U \subseteq V$. So $(x_{\varphi(\lambda, U)} : (\lambda, U) \in \Gamma) \to x$, as desired. \Box Claim 40

To check cofinality, suppose $\lambda_0 \in \Lambda$. Then $\varphi(\lambda, U) \geq \lambda \geq \lambda_0$ if $\lambda \geq \lambda_0$. Pick arbitrary $U_0 \in \mathcal{O}(x)$. Then if $(\lambda, U) \geq (\lambda_0, U_0)$, we have $\varphi(\lambda, U) \geq \lambda_0$.

(3) \implies (1) Let $\{U_{\alpha} : \alpha \in A\}$ be an open cover. Suppose there is no finite subcover. Then for each $F \subseteq_{\text{fin}} A$, say $F = \{\alpha_1, \ldots, \alpha_n\}$, we have

$$U_{\alpha_1} \cup \dots \cup U_{\alpha_n} \neq X$$

 \mathbf{SO}

$$C_F = U_{\alpha_1}^c \cap U_{\alpha_2}^c \cap \dots \cap U_{\alpha_n}^c \neq \emptyset$$

Let $\Lambda = \{F \subseteq A : |F| < \aleph_0\}$ be ordered by $F \leq G$ if $F \subseteq G$. By axiom of choice, pick $x_F \in C_F$ for each $F \in \Lambda$. Then $(x_F : F \in \Lambda \text{ is a net. By assumption, there is a subnet } \Gamma \text{ with } \varphi \colon \Gamma \to \Lambda \text{ cofinal such}$ that $(x_{\varphi(\gamma)} : \gamma \in \Gamma) \to x \in X$. Thus for all $\alpha \in A$ there is $\gamma_0 \in \Gamma$ such that $\varphi(\gamma) \geq \{\alpha\}$ if $\gamma \geq \gamma_0$. i.e. $\varphi(\gamma) = F \ni \alpha \text{ if } \gamma \geq \gamma_0$. Thus

$$x_{\varphi(\gamma)} = x_F \in C_F \supseteq C_{\{\alpha\}} = U_\alpha^c$$

But U^c_{α} is closed. So

$$x = \lim_{\gamma \in \Gamma} x_{\varphi(\gamma)} \in U_{\alpha}^c$$

and $x \notin U_{\alpha}$ for any α . But the U_{α} cover X, a contradiction.

\Box Theorem 39

Proposition 41. Suppose $f: (X, \tau) \to (Y, \sigma)$ is continuous. Suppose $C \subseteq X$ is compact. Then f(C) is compact.

Proof. Let $\{V_{\alpha} : \alpha \in A\}$ be an open cover of f(C). Set $U_{\alpha} = f^{-1}(V_{\alpha})$; these are open in X by continuity, and

$$\bigcup_{\alpha \in A} U_{\alpha} \supseteq C$$

Then there is a subcover

$$C \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$$

and thus

$$f(C) \subseteq f(U_{\alpha_1}) \cup \cdots \cup f(U_{\alpha_n}) \supseteq V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$$

 \Box Proposition 41

Definition 42 (Product topology). Suppose $((X_{\alpha}, \tau_{\alpha}) : \alpha \in A)$ are topological spaces, put a topology on

$$X = \prod_{\alpha \in A} X_{\alpha}$$

(whose elements take the form $x = (x_{\alpha} : \alpha \in A)$ where $x_{\alpha} \in X_{\alpha}$) by using the weakest topology such that all

$$\pi_{\alpha} \colon X \to X_{\alpha}$$
$$x \mapsto x_{\alpha}$$

are continuous. i.e. if $U \subseteq X_{\alpha}$ is open, then

$$\pi_{\alpha}^{-1}(U) = \{ x \in X : x_{\alpha} \in U \} = U \times \prod_{\beta \neq \alpha} X_{\beta}$$

is open. So if $\alpha_1, \ldots, \alpha_n \in A$ and each U_{α_i} open in X_{α_i} , then

$$U_{\alpha_1} \times U_{\alpha_2} \times \cdots \times U_{\alpha_n} \times \prod_{\beta \notin \{\alpha_1, \dots, \alpha_n\}} X_{\beta}$$

is open, and these sets form a basis for the topology.

Remark 43. For $U_{\alpha} \subseteq X_{\alpha}$, we have that

$$\prod_{\alpha \in A} U_{\alpha}$$

is open if $U_{\alpha} = X_{\alpha}$ except finitely often. The converse holds except if some $U_{\alpha} = \emptyset$.

Theorem 44 (Tychonoff). The product of compact spaces is compact.

Proof. Let $((X_{\alpha}, \tau_{\alpha}) : \alpha \in A)$ be compact topological spaces. Let

$$X = \prod_{\alpha \in A} X_{\alpha}$$

Suppose X is not compact; suppose there is an open cover \mathcal{U} with no finite subcover. We plan to use Zorn's lemma to find a maximal open cover with no finite subcover. The order we use is set inclusion: $\mathcal{U} \leq \mathcal{V}$ if $\mathcal{U} \subseteq \mathcal{V}$. We are given that Λ , the collection of open covers with no finite subcover, is non-empty. Now, suppose

$$\{\mathcal{U}_{\alpha}: \alpha \in T\}$$

is a chain in Λ (with T a totally ordered set and $\alpha \leq \beta$ in T implies $\mathcal{U}_{\alpha} \leq \mathcal{U}_{\beta}$). Let

$$\mathcal{U} = \bigcup_{\alpha \in T} \mathcal{U}_{\alpha}$$

Then this, too, is an open cover. Furthermore, if \mathcal{U} had a finite subcover $X \subseteq U_1 \cup \cdots \cup U_n$, then we could find α_i such that $U_i \in \mathcal{U}_{\alpha_i}$. Letting α be the maximum of the α_i , we have that the U_i are all in the \mathcal{U}_{α} , and are a finite subcover of \mathcal{U}_{α} , a contradiction. So \mathcal{U} has no finite subcover, and $\mathcal{U} \in \Lambda$ is an upper bound for

$$\{\mathcal{U}_{\alpha}: \alpha \in T\}$$

Thus by Zorn's lemma there is a maximal open cover \mathcal{U}_0 with no finite subcover. Properties of \mathcal{U}_0 :

- 1. If $U \in \mathcal{U}_0$ and $V \subseteq U$ is open, then $V \in \mathcal{U}_0$.
- 2. If $U_1, U_2 \in \mathcal{U}_0$, then $U_1 \cup U_2 \in \mathcal{U}_0$.
- 3. If V_1, V_2 are open with $V_1 \cap V_2 \in \mathcal{U}_0$, then one of V_1 and V_2 is in \mathcal{U}_0 .

Proof. If $V_1 \notin \mathcal{U}_0$ then $\mathcal{U}_0 \cup \{V_1\}$ has a finite subcover

$$X \subseteq V_1 \cup U_1 \cup U_2 \cup \dots \cup U_n = V_1 \cup W_1$$

where $W_1 \in \mathcal{U}_0$. If $V_2 \notin \mathcal{U}_0$, then

$$X \subseteq V_2 \cup W_2$$

where $W_2 \in \mathcal{U}_0$. But then

$$X \subseteq (V_1 \cap V_2) \cup W_1 \cup W_2$$

A contradiction. So $V_1 \in \mathcal{U}_0$ or $V_2 \in \mathcal{U}_0$.

For $\alpha \in A$, let

$$\mathcal{W}_{\alpha} = \left\{ U \subseteq X_{\alpha} : U \text{ open}, U \times \prod_{\beta \neq \alpha} X_{\beta} \in \mathcal{U}_{0} \right\}$$

 $\bigcup W_{\alpha} = X_{\alpha}$

If we had

then \mathcal{W}_{α} is an open cover. Then, since X_{α} is compact, we have a finite subcover

 $X_{\alpha} \subseteq U_1 \cup \dots \cup U_n$

 So

$$X \subseteq \left(U_1 \times \prod_{\beta \neq \alpha} X_\beta \right) \cup \dots \cup \left(U_n \times \prod_{\beta \neq \alpha} X_\beta \right)$$

a contradiction. So

$$C_{\alpha} = \left(\bigcup \mathcal{W}_{\alpha}\right)^{c} \neq \emptyset$$

By axiom of choice, there is $x = (x_{\alpha} : \alpha \in A) \in X$ such that $x_{\alpha} \in C_{\alpha}$ for all $\alpha \in A$. Now, \mathcal{U}_0 covers X, so there is $U \in \mathcal{U}$ such that $x \in U$. Thus there is a basic open set $V \subseteq U$ with $x \in V$. Then

$$\mathcal{U}_{0} \ni V$$

= $(V_{\alpha_{1}} \times V_{\alpha_{2}} \times \dots \times V_{\alpha_{n}}) \times \prod_{\beta \notin \{\alpha_{1}, \dots, \alpha_{n}\}} X_{\beta}$
= $\pi_{\alpha_{1}}^{-1}(V_{\alpha_{1}}) \cap \pi_{\alpha_{2}}^{-1}(V_{\alpha_{2}}) \cap \dots \cap \pi_{\alpha_{n}}^{-1}(V_{\alpha_{n}})$

By the third property, there is i_0 such that

$$\pi_{\alpha_{i_0}}(V_{\alpha_{i_0}}) = V_{\alpha_{i_0}} \times \prod_{\beta \neq \alpha_{i_0}} X_{\beta} \in \mathcal{U}_0$$

and thus

$$V_{\alpha_{i_0}} \in \mathcal{W}_{\alpha_{i_0}}$$

 So

$$x_{\alpha_{i_0}} \in V_{\alpha_{i_0}} \subseteq \bigcup \mathcal{W}_{\alpha_{i_0}}$$

. .

 \Box Theorem 44

contradicting our choice of $x_{\alpha_{i_0}}$.

Remark 45. Tychonoff's theorem implies the axiom of choice.

Proof. Suppose X_{α} are non-empty sets. Define $Y_{\alpha} = X_{\alpha} \sqcup \{p_{\alpha}\}$ and define τ_{α} on Y_{α} by

$$\tau_{\alpha} = \{ \emptyset, \{ p_{\alpha} \}, X_{\alpha}, Y_{\alpha} \}$$

These are compact because τ is finite. Thus

$$\prod Y_{\alpha}$$

is compact by Tychonoff's theorem. Let

$$C_{\alpha} = \pi_{\alpha}^{-1}(X_{\alpha}) = X_{\alpha} \times \prod_{\beta \neq \alpha} Y_{\beta}$$

Then these are closed. For $F = \{ \alpha_1, \ldots, \alpha_n \}$, set

$$C_F = C_{\alpha_1} \cap \dots \cap C_{\alpha_n}$$

Pick $x_i \in X_{\alpha_i}$ because $X_{\alpha_i} \neq \emptyset$ for $1 \leq i \leq n$. Let

$$x = (x_1, \dots, x_n, p_\beta : \beta \notin \{\alpha_1, \dots, \alpha_n\}) \in C_{\alpha_1} \cap \dots \cap C_{\alpha_n}$$

So $\{C_{\alpha}\}$ has the finite intersection property. So their intersection contains some x; then x satisfies $x_{\alpha} \in X_{\alpha}$ \Box Remark 45 for all α , and we have a choice function.

Definition 46. (X, τ) is normal if points are closed and whenever A, B are closed in X with $A \cap B = \emptyset$, then there is open $U \supseteq A$, $V \supseteq B$ such that $U \cap V = \emptyset$.

Example 47.

1. Metric spaces: can set

$$U = \{ x \in X : d(x, A) < d(x, B) \}$$
$$V = \{ x \in X : d(x, B) < d(x, A) \}$$

2. If X is compact and Hausdorff, then X is normal. Given A, B, fix $a \in A$. Suppose $b \in B$. Then, since X is Hausdorff, there are $U_b \ni a$ and $V_b \ni b$ open and disjoint. Then, by compactness

$$B \subseteq V_{b_1} \cup \cdots \cup V_{b_n} = V_a$$

and

$$a \in U_{b_1} \cap \dots \cap U_{b_n} = U_a$$

 $A \subseteq \bigcup_{a \in A} U_a$

Then

Again by compactness, we have

and then

$$B \subseteq V_{a_1} \cap \dots \cap V_{a_n}$$

 $A \subseteq U_{a_1} \cup \dots \cup U_{a_n}$

Theorem 48 (Urysohn's lemma). Suppose (X, τ) is normal. Suppose A, B are disjoint closed sets. Then there is continuous $f: X \to [0, 1]$ such that $f \upharpoonright A = 0$, $f \upharpoonright B = 1$.

Theorem 49 (Tietze's extension theorem). Suppose X is normal, $A \subseteq X$ is closed, and $f: A \to \mathbb{R}$ is continuous. Then there is $g: X \to \mathbb{R}$ continuous such that $g \upharpoonright A = f$.

Proof of Theorem 48. By normality, there is open $A_{\frac{1}{2}} \supseteq A$ such that $\overline{A_{\frac{1}{2}}} \cap B = \emptyset$. Also, we have open $A_{\frac{3}{4}} \supseteq \overline{A_{\frac{1}{2}}}$ such that $\overline{A_{\frac{3}{4}}} \cap B = \emptyset$, and we have open $A_{\frac{1}{4}} \supseteq A$ such that $A_{\frac{1}{4}} \cap A_{\frac{1}{2}}^c = \emptyset$. Continuing this way, we define A_y for all dyadic rationals $y \in (0, 1)$. We then take

$$f(x) = \begin{cases} \inf\{y : x \in A_y\} & \text{such a } y \text{ exists} \\ 1 & \text{else} \end{cases}$$

Then this is the desired function.

3 Banach spaces

Definition 50. Let V be a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. A norm on V is a map $\|\cdot\|: V \to [0, \infty)$ such that

- 1. for $v \in V$, we have ||v|| = 0 if and only if v = 0
- 2. ||tv|| = |t|||v|| for $t \in \mathbb{F}$, $v \in V$ (called "positive homogeneous")
- 3. $||v + w|| \le ||v|| + ||w||$ for $v, w \in V$.

A normed vector space $(V, \|\cdot\|)$ is called a *Banach space* if it is *complete*; i.e. every Cauchy sequence $(v_n : n \in \mathbb{N})$ (i.e. for all $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that for all $n, m \ge N$, we have $\|v_m - v_n\| < \varepsilon$) converges (i.e. there is $v \in V$ such that $\|v_n - v\| \to 0$).

Remark 51. $(V, \|\cdot\|)$ is a metric space with $d(v, w) = \|v - w\|$.

 \Box Theorem 48

Example 52.

1. Suppose X is compact, Hausdorff. Consider

$$C(X) = \{ f \colon X \to \mathbb{C} \mid f \text{ continuous} \}$$
$$C_{\mathbb{R}}(X) = \{ f \colon X \to \mathbb{R} \mid f \text{ continuous} \}$$

with the norm

$$||f||_{\infty} = \sup_{x \in X} |f(x)| < \infty$$

Then $(f_n : n \in \mathbb{N}) \to f$ if and only if $||f - f_n|| \to 0$, which holds if and only if $(f_n : n \in \mathbb{N}) \to f$ uniformly. But recall that the uniform limit of continuous functions is continuous. So C(X) is complete.

2. For $1 \le p < \infty$, consider

$$\ell_p = \left\{ (a_n : n \in \mathbb{N}) : \text{all}a_n \in \mathbb{C}, \|(a_n : n \in \mathbb{N})\|_p = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}} \\ \ell_{\infty} = \left\{ (a_n : n \in \mathbb{N}) : \sup_{n \in \mathbb{N}} |a_n| = \|(a_n : n \in \mathbb{N})\|_{\infty} < \infty \right\} \\ L^p(0, 1) = \left\{ f \text{ Lebesgue measurable} : \left(\int |f|^p dm\right)^{\frac{1}{p}} < \infty \right\} \\ L^p(\mu) = \left\{ f \ \mu\text{-measurable} : \left(\int |f|^p d\mu\right)^{\frac{1}{p}} < \infty \right\}$$

Proposition 53 (Hölder's inequality). For $p \ge 1$ and $q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$ (we allow p = 1 and $q = \infty$), then if $f \in L^p(\mu)$, $g \in L^q(\mu)$, then

$$\left|\int fgd\mu\right| \le \|f\|_p \|g\|_q$$

Proposition 54 (Minkowski's inequality). For $f, g \in L^p(\mu)$, we have $||f + g||_p \le ||f||_p + ||g||_p$. Proposition 55. $L^p(\mu)$ is complete.

3. Consider $C^{(n)}[0,1]$ (the set of continuously *n*-differentiable functions) with the norm

$$||f||_{C^{(n)}} = \max_{0 \le i \le n} ||f^{(i)}||_{\infty}$$

If

$$Df = \sum_{i=0}^{n} a_i(x) f^{(i)}(x)$$

for $a_i \in C[0, 1]$, then D is a linear map from $C^{(n)}[0, 1]$ to C[0, 1].

4. Hilbert spaces: \mathcal{H} together with an inner product

$$\langle \cdot, \cdot \rangle \colon \mathcal{H}^2 \to \mathbb{F}$$

that is linear in x, conjugate-linear in y, and positive-definite. i.e.

$$\begin{array}{rcl} \langle ax_1 + x_2, y \rangle &=& a \langle x_1, y \rangle + \langle x_2, y \rangle \\ \langle x, ay_1 + y_2 \rangle &=& a \langle x, y_1 \rangle + \langle x, y_2 \rangle \\ \langle x, x \rangle &\geq& 0 \\ \langle x, x \rangle = 0 \iff x = 0 \\ \langle y, x \rangle &=& \overline{\langle x, y \rangle} \end{array}$$

Note that for all $t \in \mathbb{R}$, we have

$$\begin{split} 0 &\leq \langle x + ty, x + ty \rangle \\ &= \langle x, x \rangle + \bar{t} \langle x, y \rangle + t \langle y, x \rangle + |t|^2 \langle y, y \rangle \end{split}$$

I believe t = 1 shows that $\langle x, y \rangle = \overline{\langle y, x \rangle}$ given the other axioms. Taking t = 1 also shows the triangle inequality of $||x|| = \langle x, x \rangle^{\frac{1}{2}}$.

Taking

$$t = \frac{-\langle x, y \rangle}{\|y\|^2}$$

shows the Cauchy-Schwarz inequality: that

$$|\langle x, y \rangle| \le ||x|| ||y||$$

A Hilbert space is a complete inner product space. Examples include ℓ_2 , $L^2(\mu)$.

5. Another example of a Hilbert space. Suppose Ω is an open, connected, bounded subset of \mathbb{C} . Let

$$L_a^2(\Omega) = \left\{ f \text{ analytic on } \Omega : \|f\|^2 = \int_{\Omega} |f(z)|^2 dm_2 < \infty \right\}$$

If $z \in \Omega$, there is r such that $\overline{B_r(z)} \subseteq \Omega$. Then

$$\begin{split} \int_{\overline{B_r(z)}} f(w)dw &= \int_0^r \int_0^{2\pi} f(z+r\exp(i\theta))rd\theta dr \\ &= \int_0^r 2\pi r \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z+r\exp(i\theta))}{r\exp(i\theta)}ri\exp(i\theta)d\theta dr \\ &= \int_0^r 2\pi r \frac{1}{2\pi i} \int_C \frac{f(w)}{w-z}dw dr \\ &= \int_0^r 2\pi r f(z)dr \\ &= (\pi r^2)f(z) \end{split}$$

by Cauchy's integral formula. Thus

$$f(z) = \frac{1}{\pi r^2} \int_{\overline{B_r(z)}} f(w) dw$$

 So

$$\begin{aligned} f(z)| &\leq \frac{1}{\pi r^2} \int_{\overline{B_r(z)}} |f| dm_2 \\ &= \frac{1}{\pi r^2} \int_{\Omega} |f| \chi_{\overline{B_r(z)}} dm_2 \\ &\leq \frac{1}{\pi r^2} ||f| \left(\int_{\overline{B_r(z)}} dm_2 \right)^{\frac{1}{2}} \\ &= \frac{||f||}{\sqrt{\pi r^2}} \end{aligned}$$

If $w \in \overline{B_{\frac{r}{2}}(z)}$, then $\overline{B_{\frac{r}{2}}(w)} \subseteq \Omega$, and

$$|f(w)| \le \frac{\|f\|}{\sqrt{\frac{\pi r^2}{4}}}$$

for all $w \in \overline{B_{\frac{r}{2}}(z)}$. Suppose $(f_n : n \in \mathbb{N})$ is a Cauchy sequence in $L^2_a(\Omega)$. For $w \in \overline{B_{\frac{r}{2}}(z)}$, we have

$$|f_n(w) - f_m(w)| = |(f_n - f_m)(w)|$$

$$\leq \frac{1}{\sqrt{\frac{\pi r^2}{4}}} ||f_n - f_m||$$

Thus $f_n \upharpoonright \overline{B_{\frac{r}{2}}(z)}$ is uniformly Cauchy; thus $(f_n : n \in \mathbb{N}) \to f$ uniformly in $\overline{B_{\frac{r}{2}}(z)}$; thus the limit is analytic in $B_{\frac{r}{2}}(z)$.

3.1 General constructions in Banach spaces

Proposition 56. Let X, Y be normed vector spaces over \mathbb{F} ; let $T: X \to Y$ be a linear map. Then the following are equivalent:

1.

$$||T|| = \sup_{||x|| \le 1} ||Tx||_Y < \infty$$

(T is bounded).

- 2. T is uniformly continuous.
- 3. T is continuous.
- 4. T is continuous at 0.

Proof.

(1) \implies (2) If $||T|| < \infty$, then

$$||Tx - Ty|| = ||T(x - y)||$$

 $\leq ||T|| ||x - y||$

Then for any $\varepsilon > 0$ we may let $\delta = \frac{\varepsilon}{\|T\|}$; then $\|x - y\| < \delta \implies \|Tx - Ty\| < \varepsilon$.

(2) \implies (3) \implies (4) Trivial. $\neg(1) \implies \neg(4)$ If $\sup_{\|x\| \le 1} \|Tx\| = \infty$ pick $x_n \in X$ such that $\|x_n\| \le 1$ and $\|Tx_n\| > n^2$. Let $y_n = \frac{1}{n}x_n$. Then

$$\|y_n\| \le \frac{1}{n} \to 0$$

and thus $y_n \to 0$. But $||Ty_n|| > n$; so $Ty_n \not\to 0$, and T is not continuous.

 \Box Proposition 56

Write $\mathcal{B}(X,Y)$ for the set of all bounded linear maps from X to Y. Then ||T|| is defined; it is, in fact, a

norm:

$$\begin{split} \|T\| &\geq 0 \\ \|T\| &= 0 \implies Tx = 0 \text{ for all} x \\ \|tT\| &= \sup_{\|x\| \leq 1} \|tTx\| \\ &= |t| \sup_{\|x\| \leq 1} \|Tx\| \\ &= |t| \|T\| \\ \|S+T\| &= \sup_{\|x\| \leq 1} \|(S+T)x\| \\ &\leq \sup_{\|x\| \leq 1} \|(Sx\| + \|Tx\|) \\ &\leq \sup_{\|x\| \leq 1} \|Sx\| + \sup_{\|x\| \leq 1} \|Tx\| \\ &= \|S\| + \|T\| \end{split}$$

Proposition 57. Suppose X, Y are normed vector spaces; suppose Y is complete. Then $\mathcal{B}(X, Y)$ is a Banach space.

Proof. Suppose $(T_n : n \in \mathbb{N})$ is a Cauchy sequence. Then, for $x \in X$, if $||x|| \leq 1$, then we have $||T_m x - T_n x|| \leq ||T_m - T_n|| < \varepsilon$ for sufficiently large m, n. Thus $(T_n x : n \in \mathbb{N})$ is Cauchy, uniform on $B_1(x)$. Thus $T_n \to T$ uniformly on $B_1(x)$. Thus T is linear and uniformly continuous. So it is bounded, and $\mathcal{B}(X, Y)$ is complete.

Definition 58. We set $\mathcal{B}(X) = \mathcal{B}(X, X)$. We set $X^* = \mathcal{B}(X, \mathbb{F})$ to be the *dual space of* X.

Theorem 59. If $1 \le p < \infty$ with

$$\frac{1}{p} + \frac{1}{q} = 1$$

then $\ell_p^* = \ell_q$.

Proof. Pairing: given $a = (a_n : n \in \mathbb{N}) \in \ell_p$ and $b = (b_n : n \in \mathbb{N}) \in \ell_q$, we set

$$\varphi_b(a) = b(a) = \langle a, b \rangle = \sum_{n=1}^{\infty} a_n b_n$$

(Note that this is the *definition* of $\langle \cdot, \cdot \rangle$, and that this is bilinear, rather than sesquilinear.)

Hölder's inequality then yields

$$|\varphi_b(a)| = \left|\sum_{n=1}^{\infty} a_n b_n\right| \le ||a||_p ||b||_q$$

So $|\varphi_b(a)| \leq ||a||_p ||b||_q$, and we have $||\varphi_b|| \leq ||b||_q$.

Case 1. Suppose p = 1 and $q = \infty$. Then $||b||_{\infty} = \sup_{n \in \mathbb{N}} |b_n|$. Letting

$$e_n = (0, \ldots, 0, 1, 0, \ldots)$$

we then have $||e_n||_p = 1$. Then

$$\|\varphi_b\| \ge \sup_{n \in \mathbb{N}} |\varphi_b(e_n)| = \sup |b_n| = \|b\|_{\infty} \ge \|\varphi_b\|$$

Case 2. Take

$$a_n = \begin{cases} \frac{\overline{b_n}}{|b_n|} |b_n|^{q-1} & 1 \le n \le N\\ 0 & n > N \end{cases}$$

Let $a = (a_n : n \in \mathbb{N})$. Then

$$\|a\|_{p}^{p} = \sum_{n=1}^{N} |a_{n}|^{p}$$
$$= \sum_{n=1}^{N} |b_{n}|^{p(q-1)}$$
$$= \sum_{n=1}^{N} |b_{n}|^{q}$$
$$\leq \|b\|_{q}^{q}$$

Without loss of generality we may assume $||b||_q = 1$. Then $||a||_p \le 1$. Then

$$\varphi_b(a) = \sum_{n=1}^N |b_n|^{q-1} |b_n| = \sum_{n=1}^N |b_n|^q \to ||b||_q^q = 1$$

Thus $\|\varphi_b\| \ge \|b\|_q$; thus $\|\varphi_b\| = \|b\|_q$.

Now let $\varphi \in \ell_p^*$. Let $b_n = \varphi(e_n)$. Let $b = (b_n : n \in \mathbb{N})$. We know that $|\varphi(a)| \leq ||\varphi|| ||a||$. Note that, as above, we have

$$||a||_p = \left(\sum_{n=1}^N |b_n|^q\right)^{\frac{1}{p}}$$

And

$$\begin{split} \|\varphi\|\|a\|_p &\ge |\varphi(a)| \\ &= \left|\sum_{n=1}^N a_n b_n\right| \\ &= \sum_{n=1}^N |b_n|^{q-1} |b_n| \\ &= \sum_{n=1}^N |b_n|^q \end{split}$$

Thus

Thus
$$\|\varphi\|\geq \left(\sum_{n=1}^N|b_n|^q\right)^{q-\frac{1}{p}}$$
 Thus something which immediately implies we're done.

 \Box Theorem 59

 $Example\ 60.$ Let

$$c_0 = \{ a = (a_1, a_2, \dots) : \lim_{n \to \infty} a_n = 0 \}$$

 Set

$$||a|| = \sup_{n \ge 1} |a_n|$$

Then

$$c_0^*=\{\,\varphi\colon c_0\to\mathbb{C}: \|\varphi\|=\sup_{\|a\|\leq 1} |\varphi(a)|<\infty\,\}$$

Set $e_n = (0, ..., 0, 1, 0, 0, ...)$. For $a \in c_0$, we then have

$$a = \lim_{N \to \infty} \sum_{n=1}^{N} a_n e_n$$

Let $\varphi(e_n) = x_n \in \mathbb{C}$; then $|x_n| \leq ||\varphi||$. Let

$$\overrightarrow{a}_N = \frac{\overline{x_1}}{|x_1|}e_1 + \frac{\overline{x_2}}{|x_2|}e_2 + \dots + \frac{\overline{x_N}}{|x_N|}e_N$$

Then

(where

$$\left\|\overrightarrow{a}_{N}\right\| = \max\left|\frac{\overrightarrow{x_{i}}}{|x_{i}|}\right| \le 1$$

$$\overline{0}$$
 $\overline{0}$

is taken to be 0). Then

$$\varphi(\overrightarrow{a}_N) = \frac{\overline{x_1}}{|x_1|} x_1 + \frac{\overline{x_2}}{|x_2|} x_2 + \dots + \frac{\overline{x_N}}{|x_N|} x_N$$
$$= \sum_{i=1}^N |x_i|$$
$$\leq \|\varphi\| \|\overrightarrow{a}_N\|$$
$$\leq \|\varphi\|$$

Let $N \to \infty$. Then

$$\|(x_n:n\in\mathbb{N})\|_1=\sum_{i=1}^{\infty}|x_i|\leq\|\varphi\|$$

So $(x_n : n \in \mathbb{N}) \in \ell_1$. Conversely, if $x = (x_n : n \in \mathbb{N}) \in \ell_1$, define

$$\varphi_x(a) = \sum a_n x_n$$

which then converges absolutely, as

$$|a_n x_n| \le ||a|| |x_n|$$

Then

$$\varphi_x(a)| \le \sum_{n=1}^{\infty} ||a|| |x_n| = ||a|| ||x||_1$$

So φ_x is continuous, and $\|\varphi_x\| \le \|x\|_1 \le \|\varphi_x\|$ (as shown above). So $\|\varphi_x\| = \|x\|_1$. So $c_0^* = \ell_1$. We now look at $\mathcal{B}(c_0)$ and $\mathcal{B}(c_0, \ell_\infty)$. If $T \in \mathcal{B}(c_0, \ell_\infty)$, then

$$TE_n = t_n = \begin{pmatrix} t_{1n} \\ t_{2n} \\ \vdots \end{pmatrix}$$

and

$$||t_n||_{\infty} = \sup_{i \ge 1} |t_{in}| \le ||T|| ||e_n|| = ||T||$$

Then

$$T\sum_{n=1}^{N} a_n e_n = \sum_{n=1}^{N} a_n T e_n = \sum_{n=1}^{N} a_n \overrightarrow{t_n}$$

and

$$T\sum_{n=1}^{\infty} a_n e_n = \lim_{n \to \infty} \sum_{n=1}^{N} a_n T e_n = \lim_{n \to \infty} \sum_{n=1}^{N} a_n \overrightarrow{t}_n$$

where this latter limit exists if T is continuous. We can think of T as having an $\infty \times \infty$ matrix $(t_{ij} : i \ge 1, j \ge 1)$ with columns $t_n \in \ell_{\infty}$ and

$$\sup_{n\in\mathbb{N}}||t_n||_{\infty} = ||T|$$

Observe that the n^{th} entry of $T(a_1, a_2, \dots)$ is

$$\sum_{j=1}^{\infty} t_{nj} a_j$$

So the linear map

$$\varphi_n(a) = \langle T \overrightarrow{a}, \delta_n \rangle = \sum_{j \in \mathbb{N}} t_{n_j} a_j$$

is continuous, where $\delta_n = (0, \ldots, 0, 1, 0, \ldots) \in \ell_1$. Then

$$\|\varphi_n\| \le \|T\| \|\delta_i\|_1 = \|T\|$$

Let $\overrightarrow{r_n} = (t_{nj} : j \in \mathbb{N}) \in \ell_1$; then $||r_n||_1 \leq ||T||$. On the other hand, suppose $\{r_n : n \in \mathbb{N}\} \subseteq \ell_1$ satisfies

$$\sup_{n\in\mathbb{N}}||r_n|| = R < \infty$$

Then $T: c_0 \to \ell_\infty$ given by

$$(T\overrightarrow{a})_n = \langle \overrightarrow{a}, r_n \rangle = \sum_{j \in \mathbb{N}} r_{nj} a_j$$

Then

$$|(T\overrightarrow{a})_n| \le ||a|| ||r_n||_1 \le R||a||$$

So $\operatorname{Ran}(T) \subseteq \ell_{\infty}$, and ||T|| = R. When do we have $T \in \mathcal{B}(c_0)$? Need $t_n = Te_n \in c_0$. If each $t_n \in c_0$, then

$$T\sum_{i=1}^{N} a_i e_i = \sum_{i=1}^{N} a_i \overrightarrow{t}_i \in c_0$$

If $\overrightarrow{a} \in c_0$, then

$$Ta = \lim_{N \to \infty} T \sum_{i=1}^{N} a_i e_i$$

which exists by continuity. But c_0 is closed inside ℓ_{∞} . So $T \overrightarrow{a} \in c_0$. Thus $T \in \mathcal{B}(c_0)$ if and only if the rows of T have bounded ℓ_1 norm and the columns of T are in c_0 .

Proposition 61. If X is a Banach space and $M \subseteq X$ is a closed subspace, then M is a Banach space.

Proof. For $m \in M$, we have $||m||_M = ||m||_X$, so M is a normed vector space. Then M is a closed subset of a complete metric space, and M is complete. \Box Proposition 61

Example 62. Let $A(\mathbb{D})$ the disc algebra be the set of f(z) that are continuous on \mathbb{D} and analytic on \mathbb{D} . Set

$$|f|| = ||f||_{\infty} = \sup_{z \in \overline{\mathbb{D}}} |f(z)|$$

Clearly $A(\mathbb{D}) \subseteq C(\overline{\mathbb{D}})$. For $f_n \in A(\mathbb{D})$ with $(f_n : n \in \mathbb{N}) \to f$ in $C(\overline{\mathbb{D}})$ (i.e. uniform convergence). Then f is analytic on \mathbb{D} because uniform limits of analytic functions are analytic. Also observe that for $f \in A(\mathbb{D})$, the maximum modulus principle yields

$$||f||_{\infty} = \sup_{|z|=1} |f(z)|$$

We can consider $A(\mathbb{D}) \subseteq C(\mathbb{T})$, where

$$\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}$$

Consider $R: A(\mathbb{D}) \to C(\mathbb{T})$ given by $R(f) = f \upharpoonright \mathbb{T}$. Then ||Rf|| = ||f||; i.e. R is an *isometry*. So $R(A(\mathbb{D}))$ is a subspace of $C(\mathbb{T})$ with the same norm, same linear structure as $A(\mathbb{D})$. (They are *isometrically isomorphic.*) So we can consider $A(\mathbb{D})$ as a subspace of $C(\mathbb{T})$. It is, in fact, closed, as we know it is a complete subspace. Interest: Fourier series. For $f \in C(\mathbb{T})$, we can set

$$\widehat{f}(n) = \frac{1}{2\pi} f(\exp(i\theta)) \exp(-in\theta) d\theta$$

for $n \in \mathbb{Z}$. For $f \in A(\mathbb{D})$, we have

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

Thus has radius of convergence ≥ 1 . Also f is continuous on $\overline{\mathbb{D}}$, so

$$f_r(z) = \sum_{n=0}^{\infty} a_n r^n z^n = f(rz)$$

satisfies $f_r \to f$ uniformly. Recall

Theorem 63 (Abel's theorem). For $f \in C(\mathbb{T})$, recall we can write

$$f \sim \sum_{n=-\infty}^{\infty} \widehat{f}(n) r^n \exp(2n\theta)$$

though this doesn't always converge. However, if $z = r \exp(i\theta)$ for $0 \le r < 1$, then

$$f(z) = \sum_{n=-\infty}^{\infty} \widehat{f}(n)r^n \exp(in\theta)$$

is harmonic on $\mathbb D$

Then $f_r(\exp(i\theta)) \to f(\exp(i\theta))$ uniformly. If $\widehat{f}(n) = 0$ for n < 0, then

$$f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$$

is analytic, so $f \in A(\mathbb{D})$. Thus

$$A(\mathbb{D}) = \{ f \in C(\mathbb{T}) : \hat{f}(n) = 0 \text{ for } n < 0 \}$$
$$= \bigcap_{n=-1}^{-\infty} \ker \varphi_n$$

where $\varphi_n(f) = \widehat{f}(n)$.

Definition 64 (Quotient spaces). Suppose X is a Banach space, $M \subseteq X$ is a closed subspace. Set

$$X/M = \{ \dot{x} = x + M : x \in X \}$$

be the collection of cosets of X/M with the quotient vector space structure. Define the quotient norm to be

$$\|\dot{x}\| = \inf_{m \in M} \|x + m\|$$

Proposition 65. X/M is a Banach space.

Proof. We check that it is a norm:

1. Clearly $\|\dot{x}\| \ge 0$. If $\|\dot{x}\| = 0$, then there is $(m_n : n \in \mathbb{N})$ in M such that $\|x + m_n\| \to 0$. i.e. $x + m_n \to 0$. But $x + m_n \in x + M$ and x + M is closed. So $0 \in M$ and $\dot{x} = \dot{0}$. 2. For $t \neq 0$, we have

$$\begin{aligned} \|t\dot{x}\| &= \inf_{m \in M} \|tx + m\| \\ &= \inf_{m' \in M} \|t(x + m')\| \\ &= |t| \inf_{m' \in M} \|x + m'\| \\ &= |t| \|\dot{x}\| \end{aligned}$$

3. Note that

$$\begin{aligned} \|\dot{x} + \dot{y}\| &= \inf_{m \in M} \|x + y + m\| \\ &= \inf_{m, n \in M} \|x + m + y + n\| \\ &\leq \inf_{m \in M, n \in M} (\|x + m\| + \|y + n\|) \\ &= \|x\| + \|y\| \end{aligned}$$

We now check completeness. Suppose $(\dot{x}_n : n \in \mathbb{N})$ is a Cauchy sequence in X/M. Drop to a subsequence such that $||\dot{x}_{n-1} - \dot{x}_n|| < 2^{-n}$. Recursively choose $y_n \in X$ such that

- 1. $\dot{y}_n = \dot{x}_n$
- 2. $||y_{n-1} y_n|| < 2^{-n}$

We pick $y_1 = x_1$. Now,

$$\frac{1}{4} > \|\dot{x}_1 - \dot{x}_2\| = \inf_{m \in M} \|y_1 - x_2 - m\|$$

Pick m_2 such that

$$||y_1 - (x_2 + m_2)|| < \frac{1}{4}$$

and set $y_2 = x_2 + m_2$. Given y_n , note that

$$\frac{1}{2^{n+1}} > \|\dot{x}_n - \dot{x}_{n+1}\| = \|\dot{y}_n - \dot{x}_{n+1}\| = \inf_{m \in M} \|y_n - (x_{n+1} + m)\|$$

and pick $m \in M$ such that

$$\frac{1}{2^{n+1}} > \|y_n - (x_{n+1} + m)\|$$

Then set $y_{n+1} = x_{n+1} + m$.

Then $(y_n : n \in \mathbb{N})$ is Cauchy in X. So

$$y = \lim_{n \to \infty} y_n$$

exists by completeness of X. Check then that $\dot{x}_n = \dot{y}_n \rightarrow \dot{y}$. So X/M is complete, and it is a Banach space.

Proposition 66. For a Banach space X, M a proper closed subspace, we have that the map $Q: X \to X/M$ by $Qx = \dot{x}$ has ||Q|| = 1 and ker(Q) = M.

Proof. Well,

$$Qx\| = \|\dot{x}\|$$

= $\inf_{m \in M} \|x + m\|$
 $\leq \|x + 0\|$
= $\|x\|$

 $\|$

Thus $||Q|| \leq 1$, and Q is continuous. But $M \neq X$; so there is $x \in X$ such that $\dot{x} \neq 0$. Then

$$\|\dot{x}\| = \inf_{m \in M} \|x + m\|$$

For $\varepsilon > 0$ there is $m \in M$ such that $||x + m|| < ||\dot{x}|| + \varepsilon$. Then

$$||Q|| \ge \frac{||Q(x+m)||}{||x+m||} > \frac{||\dot{x}||}{||\dot{x}|| + \varepsilon}$$

which approaches 1 as $\varepsilon \to 0$.

Observe that ker $Q = \{ x : \dot{x} = \dot{0} \} = M$.

Example 67. Consider C(X) where X is a compact Hausdorff space. Suppose $E \subseteq X$ is closed. Set $I(E) = \{ f \in C(X) : f \upharpoonright E = 0 \}$; this is a closed subspace. Consider C(X)/I(E). For $g \in C(X)$, we have

$$\|\dot{g}\| = \inf_{f \upharpoonright E = 0} \|g + f\|_{\infty} \ge \inf_{f \upharpoonright E = 0} \sup_{x \in E} |g(x) + f(x)| = \sup_{x \in E} |g(x)| = \|g \upharpoonright E\|$$

Suppose $||g| \in E|| = 1$. Let

$$h(z) = \begin{cases} z & |z| \le 1\\ \frac{z}{|z|} & |z| > 1 \end{cases}$$

Then $||h||_{\infty} = 1$, so $||h \circ g||_{\infty} = 1$. Also $h \circ g \upharpoonright E = g$. Set $f = g - h \circ g \in I(E)$. Then

$$||g - f|| = ||h \circ g|| = ||g \upharpoonright E|| = 1$$

Thus $||g|| = ||g| \in E||$. We then have the following map $g \in C(X) \mapsto g \upharpoonright E \in C(E)$ which factors as $g \mapsto \dot{g} \in C(X)/I(E)$ followed by an isometry. Tietze's extension theorem then says that R maps onto C(E). Thus $C(X) \cong C(...)/I(E) = C(E)$ something

3.2 More on Hilbert spaces

Definition 68. Suppose \mathcal{H} is a Hilbert space; suppose $x, y \in \mathcal{H}$. We write $x \perp y$ (x is orthogonal to y) if $\langle x, y \rangle = 0$.

Remark 69 (Pythagorean law). In this case we have

$$\begin{aligned} \|x+y\|^2 &= \langle x+y, x+y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &= \|x\|^2 + \|y\|^2 \end{aligned}$$

Definition 70. We say $\{e_{\alpha} : \alpha \in I\}$ is orthonormal if

$$\langle e_{\alpha}, e_{\beta} \rangle = \delta_{\alpha\beta} = \begin{cases} 1 & \alpha = \beta \\ 0 & \text{else} \end{cases}$$

Remark 71. If $\{e_1, \ldots, e_n\}$ is orthonormal, then

$$\left\|\sum_{i=1}^{n} a_i e_i\right\| = \left(\sum_{i=1}^{n} |a_i|^2\right)^{\frac{1}{2}}$$

As motivation for our definitions of convergence, note that in \mathbb{R} , we have that an infinite sum doesn't converge, converges conditionally (in which case rearrangements can converge to anything), or converges absolutely (in which case it is rearrangement-invariant). In \mathbb{R}^n we have a similar situation except that in the case of conditional convergence, there is an affine subspace of vectors to which it can converge.

□ Proposition 66

Definition 72. In a Banach space X, a sum

$$\sum_{n=1}^{\infty} x_n$$

converges absolutely if

$$\sum_{n=1}^{\infty} \|x_n\| < \infty$$

It converges unconditionally if all rearrangements converge to the same sum. It converges conditionally if

$$y_n = \sum_{i=1}^n x_k$$

converges but not unconditionally.

Remark 73. If

$$L = \sum_{n=1}^{\infty} \|x_n\| < \infty$$

then for any $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that

$$\sum_{n=1}^{\infty} \|x_n\| > L - \varepsilon$$

 So

$$s_n = \sum_{i=1}^n x_i$$

are Cauchy, since for $n, m \ge N$ we have

$$\|s_n - s_m\| \le \sum_{i=m+1}^n \|x_i\| < \varepsilon$$

If

$$\sum_{i=1}^{\infty} x_{\pi(i)}$$

is a rearrangement, then there is M such that $\{1, \ldots, N\} \subseteq \{\pi(1), \ldots, \pi(M)\}$. To look at all rearrangements at once, let $\Lambda = \{F \subseteq_{\text{fin}} \mathbb{N}\}$ where $F \leq G$ if $F \subseteq G$. Set

$$s_F = \sum_{n \in F} x_n$$

Then if $s_F \to x$, this means that every rearrangement converges to x. In our case, if $F, G \supseteq \{1, \ldots, N\}$ then

$$\|s_F - s_G\| \le \sum_{i \in F \triangle G} \|x_i\| < \varepsilon$$

so it is Cauchy, and thus converges. So absolutely convergent implies unconditionally convergent.

Theorem 74. Suppose \mathcal{H} is a Hilbert space with $\{e_{\alpha} : \alpha \in I\}$ is an orthonormal set. Let

$$\mathcal{M} = \operatorname{span}\{ e_{\alpha} : \alpha \in I \}$$

Then

1. $\{e_{\alpha} : \alpha \in I\}$ is linearly independent. Moreover, we have

dist $(e_{\alpha}, \operatorname{span}\{e_{\beta} : \beta \neq \alpha\}) = 1$

2. Suppose $x \in \mathcal{H}$. Let $x_{\alpha} = \langle x, e_{\alpha} \rangle$. Then

$$\sum_{\alpha \in I} |x_{\alpha}|^2 \le \|x\|^2$$

(This is the Bessel inequality.)

3. If

$$\sum_{\alpha\in I} \lvert x_\alpha \rvert^2 < \infty$$

then

$$\sum_{\alpha \in I} x_{\alpha} e_{\alpha}$$

converges unconditionally.

4.

$$Px = \sum_{\alpha \in I} x_{\alpha} e_{\alpha}$$

is a continuous linear map $\mathcal{H} \to \mathcal{M}$ with $P^2 = P$ and $\|P\| = 1$.

5. Px = 0 if and only if $x \perp \mathcal{M}$.

6. If $x \in \mathcal{M}$, then

$$\|x\| = \left(\sum_{\alpha \in I} |x_{\alpha}|^2\right)^{\frac{1}{2}}$$

Proof.

1.

$$\operatorname{dist}(e_{\alpha}, \operatorname{span}\{e_{\beta} : \beta \neq \alpha\}) = \inf \|e_{\alpha} - \sum_{\operatorname{finite}} y_{\beta} e_{\beta}\| = \inf \left(1 + \sum |y_{\beta}|^2\right)^{\frac{1}{2}} = 1$$

 $s_F = \sum_{\alpha \in F} x_\alpha e_\alpha$

2. Let $F \subseteq_{\text{fin}} I$, with

Then

$$0 \leq ||x - s_F||^2$$

= $\langle x, x \rangle - 2 \operatorname{Re} \langle x, s_F \rangle + \langle s_F, s_F \rangle$
= $||x||^2 - 2 \operatorname{Re} \left(\sum_{\alpha \in F} \langle x, x_\alpha e_\alpha \rangle \right) + \left\langle \sum_{\alpha \in F} x_\alpha e_\alpha, \sum_{\alpha \in F} x_\alpha e_\alpha \right\rangle$
= $||x||^2 - 2 \operatorname{Re} \sum_{\alpha \in F} \overline{x_\alpha} \langle x, e_\alpha \rangle + \sum_{\alpha \in F} x_\alpha \overline{x_\alpha}$
= $||x||^2 - \sum_{\alpha \in F} |x_\alpha|^2$

 So

$$\sum_{\alpha \in F} |x_{\alpha}|^2 \le \|x\|^2$$

 $\sum_{\alpha \in I} |x_{\alpha}|^2 = \sup_{F \subseteq_{\text{fin}} I} \sum_{\alpha \in F} |x_{\alpha}|^2 \le ||x||^2$

 $\quad \text{and} \quad$

Note that

$$\left\{ \alpha : x_{\alpha} \neq 0 \right\} = \bigcup_{n \ge 1} \left\{ \alpha : |x_{\alpha}| \ge \frac{1}{n} \right\}$$

is therefore countable, since each union and has cardinality

$$\leq \frac{\|x\|^2}{\frac{1}{n^2}} = n^2 \|x\|^2 < \infty$$

3. Suppose

$$L = \sum |x_{\alpha}|^2 < \infty$$

For
$$F \subseteq_{\text{fin}} I$$
, let

$$s_F = \sum_{\alpha \in F} x_\alpha e_\alpha$$

Then

$$\sup_{F \subseteq_{\text{fin}} I} \|s_F\|^2 = \sup_{F \subseteq_{\text{fin}} I} \sum_{\alpha \in F} |x_\alpha|^2 = \sum |x_\alpha|^2 = L$$

Pick F_0 such that

$$\sum_{\alpha \in F_0} |x_{\alpha}|^2 > L - \varepsilon$$

If $F, G \supseteq F_0$ then

$$\|s_F - s_G\|^2 = \left\| \sum_{\alpha \in F \setminus G} x_\alpha e_\alpha - \sum_{\alpha \in G \setminus F} x_\alpha e_\alpha \right\|^2$$
$$= \sum_{\alpha \in F \triangle G} |x_\alpha|^2$$
$$\leq \sum_{\alpha \in F \cup G} |x_\alpha|^2 - \sum_{\alpha \in F_0} |x_\alpha|^2$$
$$< L - (L - \varepsilon)$$
$$= \varepsilon$$

So { s_F } is Cauchy, and thus converges unconditionally. Example 75.

$$\sum_{n=1}^{\infty} \frac{1}{n} e_n$$

converges unconditionally since

$$\left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{\frac{1}{2}} < \infty$$

but not absolutely since

$$\sum_{n=1}^{\infty} \left\| \frac{1}{n} e_n \right\| = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

4. By (2) and (3), if $x \in \mathcal{H}$, then $(x_{\alpha} : \alpha \in I)$ is square-summable and

$$Px = \sum_{\alpha} x_{\alpha} e_{\alpha}$$

is well-defined, and further that

$$||Px||^2 = \sum |x_{\alpha}|^2 \le ||x||^2$$

So $||P|| \leq 1$ and P is linear; so P is continuous. Let $y = Px \in \overline{\operatorname{span}\{e_{\alpha} : \alpha \in I\}} = \mathcal{M}$. Then

$$\langle y, e_{\alpha} \rangle = \lim_{F} \langle s_{F}, e_{\alpha} \rangle = \lim_{F \supseteq \{\alpha\}} \left\langle x_{\alpha} e_{\alpha} + \sum_{\beta \in F \setminus \{\alpha\}} x_{\beta} e_{\beta}, e_{\alpha} \right\rangle = x_{\alpha}$$

Thus

$$Py = \sum x_{\alpha}e_{\alpha} = y$$

i.e. P(Px) = Px and $P^2 = P$. If $y \in \text{span}\{e_\alpha : \alpha \in I\}$, say

$$y = \sum_{\alpha \in F} y_{\alpha} e_{\alpha}$$

then $y_{\beta} = 0$ for $\beta \notin F$, and

$$s_G = \sum_{\alpha \in G} y_\alpha e_\alpha = \sum_{\alpha \in G \cap F} y_\alpha e_\alpha = y$$

 $\text{ if }G\supseteq F.$

5.

$$Px = 0 \iff \langle x, e_{\alpha} \rangle = 0 \text{ for all } \alpha$$
$$\iff x \perp \sum_{\alpha \in F} a_{\alpha} e_{\alpha} \text{ for all } F \subseteq_{\text{fin}} I, \text{ all } (a_{\alpha} : \alpha \in F)$$
$$\iff x \perp \mathcal{M}$$

by continuity. So $\ker(P) = \mathcal{M}^{\perp}$.

If $x \in \mathcal{H}$ with $y = Px \in \mathcal{M}$, then x - y = (I - P)x, and

$$\langle x - y, e_{\alpha} \rangle = \langle x, e_{\alpha} \rangle - \langle y, e_{\alpha} \rangle = 0$$

for all α . So $x - y \perp \mathcal{M}$. But x = y + (x - y), and

$$||x||^2 \ge ||y||^2 + ||x - y||^2$$

 \mathcal{M}^{\perp} is the orthogonal complement of \mathcal{M} . We call P the orthogonal projection of \mathcal{H} onto \mathcal{M} . 6. If $y \in \mathcal{M}$,

$$s_F = \sum_{\alpha \in F} y_\alpha e_\alpha$$

then

$$\|s_F\|^2 = \sum_{\alpha \in F} |y_\alpha|^2$$

Then $s_F \to y$, so

$$||y||^2 = \lim_{\alpha \in F} \sum_{\alpha \in F} |y_{\alpha}|^2 = \sum |y_{\alpha}|^2$$

 \Box Theorem 74

Definition 76. An orthonormal basis for a Hilbert space \mathcal{H} is an orthonormal set $\{e_{\alpha} : \alpha \in I\}$ such that $\mathcal{H} = \overline{\operatorname{span}\{e_{\alpha} : \alpha \in I\}}$.

Theorem 77. Every Hilbert space has an orthonormal basis.

Proof. Order all orthonormal sets by inclusion. Suppose

$$\mathcal{C} = \{ \mathcal{E}_{\beta} \}$$

with $\beta_1 < \beta_2 \implies \mathcal{E}_{\beta_1} \subseteq \mathcal{E}_{\beta_2}$ is a chain. Then

$$\mathcal{E} = \bigcup_{eta \in \mathcal{C}} \mathcal{E}_{eta}$$

is a set of vectors. Suppose $e, f \in \mathcal{E}$, say $e \in \mathcal{E}_{\beta_1}$, $f \in \mathcal{E}_{\beta_2}$. Say $\beta_1 \leq \beta_2$; then $e, f \in \mathcal{E}_{\beta_2}$, and $\langle e, f \rangle = 0$. So \mathcal{E} is an orthonormal basis, and is an upper bound of \mathcal{C} . By Zorn's lemma, we have that \mathcal{H} has a maximal orthonormal set $\mathcal{E} = \{e_{\alpha} : \alpha \in I\}$. Let $\mathcal{M} = \overline{\text{span}\{e_{\alpha} : \alpha \in I\}}$.

Claim 78. $\mathcal{M} = \mathcal{H}$.

Proof. Suppose otherwise; suppose we have $x \notin \mathcal{M}$. Let $y = Px \in \mathcal{M}$; let $z = (I - P)x \in \mathcal{M}^{\perp}$; then $z \neq 0$, and

Let

$$x = y + z$$
$$e = \frac{z}{\|z\|}$$

Then $\mathcal{E} \cup \{e\}$ is orthonormal, contradicting maximality of \mathcal{E} . So $\mathcal{M} = \mathcal{H}$.

 \Box Theorem 77

 \Box Claim 78

Corollary 79. Every closed subspace \mathcal{M} of a Hilbert space \mathcal{H} is the range of an orthogonal projection.

Proof. \mathcal{M} is a Hilbert space so there is an orthonormal basis $\{e_{\alpha} : \alpha \in I\}$ for \mathcal{M} . Define

$$Px = \sum \langle x, e_{\alpha} \rangle e_{\alpha}$$

as before.

Theorem 80. If \mathcal{H} is a Hilbert space and $\varphi \in \mathcal{H}^*$ (i.e. φ is a continuous linear functional), then there is a unique $y \in \mathcal{H}$ such that $\varphi(x) = \langle x, y \rangle$ and $||y|| = ||\varphi||$.

Proof. Let $\{e_{\alpha} : \alpha \in I\}$ be an orthonormal basis for \mathcal{H} . Define $a_{\alpha} = \varphi(e_{\alpha})$. For $F \subseteq_{\text{fin}} I$, look at

$$\varphi\left(\sum_{\alpha\in F}\overline{a_{\alpha}}e_{\alpha}\right) = \sum_{\alpha\in F}\overline{a_{\alpha}}\varphi(e_{\alpha}) = \sum_{\alpha\in F}|a_{\alpha}|^{2} \le \|\varphi\| \left\|\sum_{\alpha\in F}\overline{a_{\alpha}}e_{\alpha}\right\| = \|\varphi\|\left(\sum_{\alpha\in F}|a_{\alpha}|^{2}\right)^{\frac{1}{2}}$$

So

$$\left(\sum_{\alpha \in F} |a_{\alpha}|^2\right)^{\frac{1}{2}} \le \|\varphi\|$$

and

$$\sup_{F \subseteq_{\text{fin}} I} \left(\sum_{\alpha \in F} |a_{\alpha}|^2 \right)^{\frac{1}{2}} \le \|\varphi\|$$

Define

$$y = \sum \overline{a_{\alpha}} e_{\alpha}$$

Then

$$\|y\| = \left(\sum |a_{\alpha}|^2\right)^{\frac{1}{2}} \le \|\varphi\|$$

For $x \in \mathcal{H}$, write

 \Box Corollary 79

Then

$$\sum |x_{\alpha}|^2 = \|x\|^2 < \infty$$

Then

$$\begin{aligned} \langle x, y \rangle &= \left\langle \sum x_{\alpha} e_{\alpha}, \sum y_{\beta} e_{\beta} \right\rangle \\ &= \lim_{F} \left\langle \sum_{\alpha \in F} x_{\alpha} e_{\alpha}, \sum y_{\beta} e_{\beta} \right\rangle \\ &= \lim_{F} \sum_{\alpha \in F} x_{\alpha} \overline{y_{\alpha}} \\ &= \sum x_{\alpha} \overline{y_{\alpha}} \text{ by Cauchy-Schwarz} \\ &= \sum a_{\alpha} x_{\alpha} \end{aligned}$$

But

$$\varphi(x) = \varphi\left(\sum x_{\alpha}e_{\alpha}\right) = \sum x_{\alpha}\varphi(e_{\alpha}) = \sum a_{\alpha}x_{\alpha}$$

So $\langle x, y \rangle = \varphi(x)$. Also

$$\|\varphi\| = \sup_{\|x\| \le 1} |\varphi(x)| = \sup_{\|x\| \le 1} |\langle x, y \rangle| \le \sup_{\|x\| \le 1} \|x\| \|y\| = \|y\|$$

by Cauchy-Schwarz. So $||y|| = ||\varphi||$.

Remark 81. The map $\varphi \mapsto y$ is conjugate-linear. So \mathcal{H}^* is anti-isomorphic to \mathcal{H} .

Definition 82. The *dimension* of \mathcal{H} (dim(\mathcal{H})) is the cardinality of an orthonormal basis.

Proposition 83. dim (\mathcal{H}) is well-defined.

Proof. If dim $(\mathcal{H}) < \infty$, then the cardinality of a basis is well-defined. So suppose \mathcal{H} is infinite-dimensional. Suppose $\{e_{\alpha} : \alpha \in I\}$ and $\{f_{\beta} : \beta \in J\}$ are orthonormal bases. For all $\alpha \in I$, set

$$B_{\alpha} = \{ \beta \in J : \langle e_{\alpha}, f_{\beta} \rangle \neq 0 \}$$

Then this is countable and non-empty because

$$1 = \|e_\alpha\|^2 = \sum_{\beta \in J} |\langle e_\alpha, f_\beta \rangle|^2$$

Conversely, for all β there is α such that $\langle e_{\alpha}, f_{\beta} \rangle \neq 0$ by the same reasoning. So

$$J = \bigcup_{\alpha \in I} B_{\alpha}$$

Thus

$$|J| \le \sum_{\alpha \in I} |B_{\alpha}| \le |I| \aleph_0 = |I|$$

Similarly, we have $|I| \leq |J|$. So, by Cantor-Bernstein-Schroeder, we have |I| = |J|. **Definition 84.** A *unitary* is a linear map $U: H \to K$ of one Hilbert space *onto* another such that ||Ux|| = ||x||. *Remark* 85. This implies

$$\langle Ux, Uy \rangle = \langle x, y \rangle$$

for all $x, y \in \mathcal{H}$.

 \Box Theorem 80

Proof. If $\mathbb{F} = \mathbb{R}$, then

$$\langle x \pm y, x \pm y \rangle = \|x\|^2 \pm 2\langle x, y \rangle + \|y\|^2$$
$$\implies \langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2$$

If $\mathbb{F} = \mathbb{C}$, then

$$\langle x, y \rangle = \frac{\|x+y\|^2 - \|x-y\|^2 + \|x+iy\|^2 - i\|x-iy\|^2}{4}$$

□ Remark 85

Example 86. $L^2(\mathbb{T}, m)$ with

$$||f||^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} |f(\exp(i\theta))|^{2} d\theta$$

 So

$$e_n = \exp(in\theta)$$

are orthonormal. Then

$$\operatorname{span} \{ e_n : n \in \mathbb{Z} \} \supseteq \overline{\operatorname{trig polynomials}} = \overline{C(\mathbb{T})} = L^2$$

Example 87. $\ell^2(\mathbb{Z})$ has orthonormal basis δ_n . $Uf = \hat{f}$.

$$f \sim \sum \hat{f} \exp(in\theta) \sim (\hat{f}(n) : n \in \mathbb{Z})$$

is a unitary map.

Definition 88. A subset A of a topological space X is nowhere dense if \overline{A} has no interior. A subset B of a complete metric space is said to be of first category if it is the countable union of nowhere dense sets.

Theorem 89 (Baire category theorem). If X is a complete metric space and $B \subseteq X$ is of first category, then $X \setminus B$ is dense in X.

Sketch. Let $U \subseteq X$ be open; suppose $x \in U$. Choose r > 0 such that $\overline{b_r(x)} \subseteq U$. It suffices to find $y \in \overline{b_r(x)}$ such that $y \notin B$. Write

$$B = \bigcup_{n=1}^{\infty} A_n$$

with $\overline{A_n}$ has no interior. Find $x_1 \in b_r(x)$ and $r_1 > 0$ such that $r_1 \leq \frac{r}{2}$ and

$$\overline{b_{r_1}(x_1)} \cap \overline{A_1} = \emptyset$$

Recursively find $x_{n+1} \in b_{r_n}(x_n)$ such that

$$\overline{b_{r_{n+1}}(x_{n+1})}\cap\overline{A_{n+1}}=\emptyset$$

and $r_{n+1} \leq \frac{r_n}{2}$. Then $(x_n : n \in \mathbb{N})$ are Cauchy, and thus converge to $x \in X$; then

$$x \in \bigcap_{n \in \mathbb{N}} \overline{b_r(x_n)}$$

and $x \notin B$.

Corollary 90. If U_i are dense open subsets of a complete metric space, then

is dense.

 $\bigcap^{\infty} U_i$

 $\hfill\square$ Theorem 89

Theorem 91 (Banach-Steinhaus, or uniform boundedness principle). Suppose X, Y are Banach spaces; suppose $\mathcal{A} \subseteq \mathcal{B}(X,Y)$. Suppose that for all $x \in X$ we have that

$$\sup_{A \in \mathcal{A}} \|Ax\| = k_x < \infty$$

Then

$$\sup_{A\in\mathcal{A}}\|A\|<\infty$$

Proof. Let $B_n = \{ x \in X : k_x \le n \}.$

Claim 92. B_n is closed.

Proof. Suppose $(x_k : k \in \mathbb{N})$ in B_n with $x_k \to x$; suppose $A \in \mathcal{A}$. Then

$$||Ax|| = \lim_{k \to \infty} ||Ax_k|| \le n$$

So $x \in B_n$, and B_n is closed.

But

$$X = \bigcup_{n=1}^{\infty} B_n$$

By Baire category theorem, we then have that there is some n_0 such that B_{n_0} has interior; say $b_r(x_0) \subseteq B_{n_0}$. Now, if $x \in X$ with $||x|| \leq 1$, then $x_0 + rx \in B_{n_0}$; but then

$$|Ax|| = \left\| \frac{A(x_0 + rx) - Ax_0}{r} \right\|$$

$$\leq \frac{1}{r} (\|A(x_0 + rx)\| + \|Ax_0\|)$$

$$\leq \frac{2n_0}{r}$$

 So

$$\sup_{\|x\| \le 1} \sup_{A \in \mathcal{A}} \|Ax\| \le \frac{2n_0}{r} < \infty$$

 \Box Theorem 91

Remark 93. We didn't use that Y is a Banach space. Given Y a normed linear space that's not complete, we could always embed Y in its metric closure, which turns out to be a Banach space, and then apply Banach-Steinhaus.

Corollary 94. Suppose X, Y are Banach spaces; suppose $(T_n : n \in \mathbb{N})$ are in $\mathcal{B}(X, Y)$ such that

$$\lim_{n \to \infty} T_n x$$

which we define to be Tx, exists for all $x \in X$. Then $T \in \mathcal{B}(X, Y)$.

Proof. Since $T_n x \to T x$ for all $x \in X$, we have that

$$\sup_{n\geq 1} \|T_n x\| = k_x < \infty$$

By the uniform boundedness principle, we have

$$\sup_{n\geq 1} \|T_n\| = L < \infty$$

Thus

$$||Tx|| = \lim_{n \to \infty} ||T_nx|| \le L||x|$$

 \Box Claim 92

So T is continuous. Also, T is linear, since

$$T(ax + y) = \lim_{n \to \infty} T_n(ax + y)$$
$$= \lim_{n \to \infty} (aT_nx + T_ny)$$
$$= aTx + Ty$$

So $T \in \mathcal{B}(X, Y)$.

Theorem 95 (Open mapping theorem). Suppose X, Y are Banach spaces. Suppose $T \in \mathcal{B}(X, Y)$ is surjective. Then T is open. (That is, for open $U \subseteq X$, we have TU is open.)

Proof. We are given that

$$Y = TX = \bigcup_{n=1}^{\infty} T(b_n(X))$$

By the Baire category theorem, there is $n_0 \in \mathbb{N}$, $x_0 \in X$, and r > 0 such that

$$\overline{T(b_{n_0}(X))} \supseteq b_r(x_0)$$

Note then that

$$\overline{T(b_1(x))} \supseteq \overline{T\left(B_{\frac{1}{2}}(0)\right)} - \overline{T\left(B_{\frac{1}{2}}(0)\right)}$$
$$\supseteq b_{\frac{r}{2n_0}}\left(\frac{x_0}{2n_0}\right) - b_{\frac{r}{2n_0}}\left(\frac{x_0}{2n_0}\right)$$
$$= b_{\frac{r}{n_0}}(0)$$

and

$$\overline{T(b_1(x))} = \frac{1}{n_0} \overline{T(b_{n_0}(x))}$$
$$\supseteq b_{\frac{r}{n_0}} \left(\frac{x_0}{n_0}\right)$$

 So

$$T(b_1(X)) \supseteq b_\rho(0)$$

for some $\rho > 0$.

Claim 96. If $\varepsilon > 0$, then

$$T(b_{1+\varepsilon}(x)) \supseteq \overline{T(b_1(x))}$$

Proof. Fix $y \in \overline{Tb_1(x)}$. Pick $x_0 \in X$ with $||x_0|| \le 1$ and

$$\|Tx_0 - y\| < \frac{\varepsilon\rho}{2}$$

 $\|y - y_0\| < \frac{\varepsilon}{2}\rho$

Let $y_0 = Tx_0$; then

 So

$$y - y_0 \in \overline{T(b_{\frac{\varepsilon}{2}})} \\ = \frac{\varepsilon}{2} \overline{T(b_1(x))} \\ \supseteq \frac{\varepsilon}{2} b_{\rho}(0) \\ = b_{\frac{\varepsilon}{2}}(0)$$

□ Corollary 94

Pick $x_1 \in X$ with

$$\|x_1\| < \frac{\varepsilon}{2}$$

such that

$$\|Tx_1 - (y - y_0)\| < \frac{\varepsilon\rho}{4}$$

And again let $y_1 = Tx_1$. Recursively select $x_{n+1} \in X$ with

$$\|x_{n+1}\| < \frac{\varepsilon}{2^{n+1}}$$

and

$$||y_{n+1} - (y - y_0 - y_1 - \dots - y_n)|| < \frac{\varepsilon \rho}{2^{n+2}}$$

where $y_{n+1} = Tx_{n+1}$. Let

$$x = \sum_{n=0}^{\infty} x_n$$

This converges because

$$\sum_{n=0}^{\infty} ||x_n|| < 1 + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = 1 + \varepsilon$$

and in particular we also get $||x|| < 1 + \varepsilon$. Then

$$Tx = \sum_{n=0}^{\infty} Tx_n$$

=
$$\sum_{n=0}^{\infty} y_n$$

=
$$\lim_{n \to \infty} y_0 + \dots + y_n$$

=
$$y$$

	•	00
 - C - L -	0100	-96
1.11		- 90

 So

 So

$$T(B_{1+\varepsilon}(x)) \supseteq \overline{T(b_1(x))} \supseteq b_{\rho}(0)$$

 $T(b_1(x)) \supseteq b_{\frac{\rho}{1+\varepsilon}}(0)$

Let $\varepsilon \to 0$. Then

 $T(b_1(x)) \supseteq b_{\rho}(0)$

Let U be open; suppose $x \in U$. Then there is r > 0 such that $b_r(x) \subseteq U$. Let y = Tx. Then

2

$$T(U) \supseteq T(b_r(x))$$

= $Tx + T(b_r(0))$
 $\supseteq Tx + b_{\frac{r}{\rho}}(0)$
= $b_{\frac{r}{2}}(0)$

So TU is open.

Theorem 97 (Banach isomorphism theorem). If X, Y are Banach spaces and $T: X \to Y$ is a continuous linear bijection then T is an isomorphism. (i.e. T^{-1} is also continuous.)

Proof. T is surjective, so it is open by the open mapping theorem. T is injective, so T^{-1} is well-defined and linear. If $U \subseteq X$ is open, then $(T^{-1})^{-1}(U) = T(U)$ is open. So T^{-1} is continuous. \Box Theorem 97

 \Box Theorem 95

Corollary 98. Suppose X, Y are Banach spaces. Suppose $T \in \mathcal{B}(X, Y)$ is surjective. Then we have the following commutative diagram

and in particular we have \dot{T} is an isomorphism $X/\ker(T) \to Y$.

Proof. T is continuous so ker(T) is a closed subspace. So $X/\ker(T)$ is a Banach space. Define $\dot{T}(\dot{x}) = Tx$; this is well-defined since if $x_1, x_2 \in \dot{x}$, then $x_1 - x_2 \in \ker(T)$, and

$$Tx_2 = Tx_1 + T(x_2 - x_1)$$
$$= Tx_1 + 0$$
$$= Tx_1$$

Also

$$\begin{split} \|\dot{T}\| &= \sup_{\|\dot{x}\| \leq 1} \|\dot{T}\dot{x}\| \\ &= \sup_{\inf_{m \in \ker(T)} \|x+m\| \leq 1} \|Tx\| \\ &= \sup_{\inf_{m \in \ker(T)} \|x+m\| \leq 1} \|T(x+m)\| \\ &\leq \sup_{\inf_{m \in \ker(T)} \|x+m\| \leq 1} \|T\| \|x+m\| \end{split}$$

If $\varepsilon > 0$ then there is $x + m \in \dot{x}$ such that

$$||x+m|| < (1-\varepsilon) + \varepsilon = 1$$

So this yields $\|\dot{T}\| = \|T\|$. So \dot{T} is continuous and bijective. By the Banach isomorphism theorem, we have that \dot{T} is an isomorphism. \Box Corollary 98

Corollary 99. Suppose X is a Banach space with respect to two different norms $\|\cdot\|_1$ and $\|\cdot\|_2$. If there is a constant C such that

$$||x||_2 \le C ||x||_1$$

for all $x \in X$, then there is C' such that

$$||x_1|| \le C' ||x||_2$$

for all $x \in X$.

Proof. Hypothesis says that

$$\mathrm{id}_X \colon (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$$

is a continuous, linear bijection; so it is an isomorphism. So

$$||x||_1 = ||(\mathrm{id}_X)^{-1}x||_1 \le ||\mathrm{id}_X^{-1}|| ||x||_2$$

 \Box Corollary 99

Corollary 100. If X is a finite-dimensional vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, then any two norms on X are comparable. So the topology with respect to any norm is the usual metric topology in \mathbb{F}^n .

Proof. Let $\|\cdot\|_1$ be some norm on $X = \mathbb{F}^n$. Fix a basis e_1, \ldots, e_n . Define the usual norm on X by

$$\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}}$$

Then

$$\begin{aligned} \left\| \sum_{i=1}^{n} x_{i} e_{i} \right\|_{1} &\leq \sum_{i=1}^{n} |x_{i}| \|e_{i}\|_{1} \\ &\leq \left(\sum_{i=1}^{n} |x_{i}|^{2} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} \|e_{i}\|_{1}^{2} \right)^{\frac{1}{2}} \text{ by Cauchy-Schwarz} \\ &= C \left\| \sum_{i=1}^{n} x_{i} e_{i} \right\|_{2} \end{aligned}$$

so id: $(X, \|\cdot\|_2) \to (X, \|\cdot\|_1)$ is a continuous bijection; so it is an isomorphism.

Alternative proof: let $S = \{x \in X : ||x||_2 = 1\}$; then this is compact. So id(S) is compact in $(X, ||\cdot||_1)$. But $0 \notin S$; so

$$\inf_{x \in S} \|x\|_1 = r > 0$$

So $||x||_1 \ge r ||x||_2$, and

$$\|x\|_2 \le \frac{1}{r} \|x\|_1$$

□ Corollary 100

Definition 101. If $T: M \subseteq X \to Y$ is linear, the graph of T is

$$\mathcal{G}(T) = \{ (x, Tx) \in X \oplus Y \}$$

(Note that $X \oplus Y$ is a Banach space with norm ||(x, y)|| = ||x|| + ||y|| (or $(||x|| + ||y||)^{\frac{1}{2}}$, which produces an equivalent norm).) T is called *closed* if $\mathcal{G}(T)$ is closed.

Theorem 102 (Closed graph theorem). If $T: X \to Y$ is linear (and defined on all of X) and T is closed, then T is continuous.

Proof. We have the following commutative diagram

where π_1 and π_2 are both continuous. So π_1 is injective and surjective to X; so π_1^{-1} is continuous. So $T = \pi_2 \circ \pi_1^{-1}$.

Corollary 103. Suppose $T: X \to Y$ is linear; suppose that whenever $(x_n : n \in \mathbb{N}) \to 0$ and $(Tx_n : n \in \mathbb{N})$ converges, we have that $(Tx_n : n \in \mathbb{N}) \to 0$.

Proof. Suppose $((x_n, Tx_n) : n \in \mathbb{N})$ is in $\mathcal{G}(T)$ and converges to $(x_0, y_0) \in X \oplus Y$. Then $(x_n - x_0 : n \in \mathbb{N}) \to 0$. So

$$T(x_n - x_0) = Tx_n - Tx_0 \rightarrow y_0 - Tx_0$$

By hypothesis, we have $y_0 - Tx_0 = 0$, and $y = Tx_0$. So $\mathcal{G}(T)$ is closed. \Box Corollary 103

Example 104. Suppose \mathcal{H} is a Hilbert space; suppose $T: \mathcal{H} \to \mathcal{H}$ is linear and $\langle Tx, y \rangle = \langle xTy \rangle$ for all $x, y \in \mathcal{H}$.

Claim 105. T is continuous.

Proof. Suppose $x_n \to 0$; suppose $Tx_n \to y$. Then

$$||y||^{2} = \langle y, y \rangle = \lim \langle Tx_{n}, y \rangle = \lim \langle x_{n}, Ty \rangle = 0$$

since the $x_n \to 0$. So y = 0. By closed graph theorem, we have that T is continuous. \Box Claim 105

Example 106. $\mathcal{H} = \ell_2$. Let

$$D((x_n)) = \left(\frac{x_n}{n}\right)_{n \ge 1}$$
$$D = \begin{pmatrix} 1 & 0\\ \frac{1}{2} & \\ 0 & -\frac{1}{3} \end{pmatrix}$$

is continuous with ||D|| = 1. But $\operatorname{Ran}(D)$ is not closed as

$$\left(1,\frac{1}{2},\frac{1}{3},\ldots\right)\notin\operatorname{Ran}(D)$$

D is injective and $D: \ell_2 \to \operatorname{Ran}(D)$ is bijective. Then

$$\mathcal{G}(D^{-1}) = \{ (Dx, x) : x \in \ell_2 \}$$

is closed because D is continuous. So D^{-1} is closed but not continuous, as $D^{-1}(e_n) = ne_n$ is unbounded.

3.3 Some Fourier series

Definition 107. If $f \in L^1(\mathbb{T})$, define the Fourier coefficients

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) \exp(-in\theta) d\theta$$

for $n \in \mathbb{Z}$. For $N \ge 0$, define

$$S_N(f) = \sum_{k=-N}^{N} \widehat{f}(k) \exp(ik\theta)$$

Remark 108. The functional $\varphi_n(f) = \widehat{f}(n)$ is continuous on $L^1(\mathbb{T})$, and hence is continuous on $C(\mathbb{T})$ and on $L^p(\mathbb{T})$ for $1 . So the <math>S_N$ are also continuous on the above.

Recall also that the trigonometric polynomials

$$\left\{ p(\theta) = \sum_{k=-N}^{N} a_k \exp(ik\theta), a_k \in \mathbb{C}, N \ge 1 \right\}$$

are dense in $C(\mathbb{T})$ by the Weierstrass theorem. We also have $C(\mathbb{T})$ is dense in $L^p(\mathbb{T})$ if $1 \leq p < \infty$ by Lusin's theorem. So the trigonometric polynomials are dense in $L^p(\mathbb{T})$ if $1 \leq p < \infty$. (We also have that $f \in L^{\infty}$ is a bounded pointwise limit of continuous functions.)

Perhaps there is hope, then, that $S_N(f) \to f$ in L^p or $C(\mathbb{T})$: if

$$\|f - p\| < \varepsilon$$

then

$$||S_N(f) - S_N(p)|| \le ||S_N|| ||f - p|| < \varepsilon ||S_N||$$

 So

$$||S_N(f) - f|| \le ||S_N(f) - S_N(p)|| + ||S_N(p) - p|| + ||p - f|| \le (||S_N|| + 1)||f - p|$$

for $N \ge \deg(p)$. The problem is that the $||S_N||$ could blow up.

Good news: in $L^2(\mathbb{T})$, we have that $\{\exp(in\theta) : n \in \mathbb{Z}\}$ is an orthonormal basis for $L^2(\mathbb{T})$, and

 $\overline{}$

$$f(n) = \langle f, \exp(in\theta) \rangle$$

So S_N is the orthogonal projection onto

$$\operatorname{span} \exp(in\theta) : -N \le n \le N$$

So $||S_N|| = 1$ for all $N \ge 0$, and $S_N(f) \to f$ for all $f \in L^2(\mathbb{T})$. If 1 , then

$$\sup_{N\geq 1} \|S_n\|_{\mathcal{B}(L^p)} < \infty$$

So $S_N(f) \to f$ in L^p . Not so nice in $L^1(\mathbb{T})$ or $C(\mathbb{T})$. Note, however, that

$$S_N(f)(\theta) = \sum_{n=-N}^{N} \widehat{f}(k) \exp(ik\theta)$$

= $\sum_{n=-N}^{N} \frac{1}{2\pi} \int_0^{2\pi} f(t) \exp(-ikt) dt \exp(ik\theta)$
= $\frac{1}{2\pi} \int_0^{2\pi} f(t) \left(\sum_{k=-N}^{N} \exp(ik(\theta - t))\right) dt$
= $\frac{1}{2\pi} \int_0^{2\pi} f(t) D_N(\theta - t) dt$

where

$$D_N(x) = \sum_{k=-N}^{N} \exp(ikx)$$

We estimate $||D_N||_1$:

$$D_N(\theta) = \sum_{k=-N}^{N} \exp(ik\theta)$$

= $\frac{\exp(i(N+1)\theta) - \exp(-iN\theta)}{\exp(i\theta - 1)}$
= $\frac{\exp(i(N+\frac{1}{2})\theta) - \exp(-i(N+\frac{1}{2})\theta)}{2i} \frac{2i}{\exp(i\frac{\theta}{2}) - \exp(-i\frac{\theta}{2})}$
= $\frac{\sin((N+\frac{1}{2})\theta)}{\sin(\frac{1}{2}\theta)}$

So $D_N(0) = 2N + 1$; so $||D_N||_{\infty} \to \infty$ as $N \to \infty$. Also

$$\begin{split} \|D_N\|_1 &= \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{\sin((N+\frac{1}{2})\theta)}{\sin(\frac{\theta}{2})} \right| d\theta \\ &\geq \frac{1}{\pi} \int_0^{\pi} \left| \frac{\sin((N+\frac{1}{2})\theta)}{\frac{\theta}{2}} \right| d\theta \\ &= \frac{2}{\pi} \int_0^{(N+\frac{1}{2})\pi} \frac{|\sin(x)|}{x} dx \text{ (using the substitution } x = \left(N+\frac{1}{2}\right)\theta) \\ &\geq \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \frac{\sin(x)}{x} dx + \sum_{k=1}^{2N} \frac{2}{\pi} \int_{k\frac{\pi}{2}}^{(k+1)\frac{\pi}{2}} \frac{|\sin(x)|}{(k+1)\frac{\pi}{2}} dx \\ &\geq \frac{2}{\pi} \frac{\pi}{4} + \sum_{k=1}^{2N} \frac{2}{\pi} \frac{\pi}{k+1} \int_0^{\frac{\pi}{2}} \sin(x) dx \\ &= \frac{1}{2} + \frac{4}{\pi^2} \sum_{k=2}^{2N+1} \frac{1}{k} \\ &\approx \frac{4}{\pi^2} \log(N) \\ &\to \infty \end{split}$$

Theorem 109. For $\theta_0 \in [0, 2\pi]$, we have that

$$\{f \in C(\mathbb{T}) : S_N(f)(\theta_0) \to f(\theta_0)\}$$

is of first category.

Proof. If $S_N(f)(\theta_0) \to f(\theta_0)$, then

$$\{S_N(f)(\theta_0): N \ge 1\}$$

is bounded. Consider the functional

$$\psi_N(f) = S_N(f)(\theta_0)$$

= $\frac{1}{2\pi} \int_0^{2\pi} f(t) D_N(\theta_0 - t) dt$

We can pick $f_{\varepsilon} \in C(\mathbb{T})$ such that

$$f_{\varepsilon}(t) = \begin{cases} 1 & D_N(\theta_0 - t) \ge \varepsilon \\ -1 & D_N(\theta_0 - t) \le -\varepsilon \\ \text{piecewise linear else} \end{cases}$$

But

$$|\psi_N(f_{\varepsilon})| \to ||D_N|| \approx \frac{4}{\pi^2} \log(N) \to \infty$$

But $||f_{\varepsilon}||_{\infty} = 1$. So

$$\sup_{N\geq 1} \|\psi_N\| = \infty$$

By the uniform boundedness principle, there is $f \in C(\mathbb{T})$ such that $|\psi_N(f)| \to \infty$. In fact, from the proof, we have that

 $\{f: S_N(f)(\theta_0) \text{ is bounded}\}\$

is of first category.

Corollary 110.

$$\{f \in C(\mathbb{T}) : S_N(f)(\theta) \text{ is bounded for some } \theta \in \mathbb{Q} \cap [0, 2\pi] \}$$

is of first category.

Theorem 111 (Carleson, 1962). If $f \in L^p(\mathbb{T})$ for p > 1 (which then contains $C(\mathbb{T})$) then $S_N(f) \to f$ almost everywhere.

Proposition 112 (Kolmogorov, before 1960). There is $f \in L^1(\mathbb{T})$ such that $S_N(f)$ diverges almost everywhere.

Theorem 113. The map

$$\Lambda \colon L^1(\mathbb{T}) \to c_0(\mathbb{Z})$$
$$f \mapsto \widehat{f}$$

 $is \ injective \ and \ bounded \ but \ not \ surjective.$

Proof. Well,

$$\begin{split} \left| \widehat{f}(n) \right| &= \left| \frac{1}{2\pi} \int_{0}^{2\pi} f(\exp(i\theta)) \exp(-in\theta) d\theta \right| \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(\exp(i\theta))| d\theta \\ &= \|f\|_{1} \end{split}$$

So $\|\Lambda f\| = \sup |\widehat{f}(n)| \le \|f\|_1$.

 \Box Theorem 109

Lemma 114 (Riemann-Lebesgue lemma). If $f \in L^1(\mathbb{T})$, then $|\widehat{f}(n)| \to 0$ as $n \to \infty$. Proof. If $\varepsilon > 0$, pick p a trigonometric polynomial such that $||f - p||_1 < \varepsilon$. Then

$$\left|\widehat{f}(n)\right| = \left|\widehat{(f-p)}(n) + \widehat{p}(n)\right|$$
$$= \left|\widehat{(f-p)}(n)\right|$$
$$\leq \|f-p\|_1$$
$$< \varepsilon$$

for $|n| > \deg(p)$.

So $\Lambda f \in c_0(\mathbb{Z})$.

Claim 115. Λ is injective.

Proof. Suppose $f \in L^1(\mathbb{T})$; suppose $\Lambda f = 0$. Then

$$\frac{1}{2\pi}\int_0^{2\pi} f(\theta) \exp(-in\theta d\theta = 0$$

for all $n \in \mathbb{Z}$. So

$$\frac{1}{2\pi} \int_0^{2\pi} f(\theta) p(\theta) d\theta = 0$$

for all trigonometric polynomials. But for $g \in C(\mathbb{T})$, there exist trigonometric polynomials $p_n \to g$ uniformly with $\|p_n\|_{\infty} \leq \|g\|_{\infty}$. So

$$0 = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) p_n(\theta) d\theta \to \frac{1}{2\pi} \int_0^{2\pi} f(\theta) g(\theta) d\theta$$

by Lebesgue dominated convergence theorem. Find bounded g_n with

$$g_n \to \frac{\overline{f(\theta)}}{|f(\theta)|}$$

almost everywhere. Then

$$0 = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) g_n(\theta) d\theta \to \frac{1}{2\pi} \int_0^{2\pi} |f| d\theta$$

So f = 0 almost everywhere.

Claim 116. Λ is not surjective.

Proof. If Λ were surjective, then by the Banach isomorphism theorem Λ would be an isomorphism. So for all $f \in L^1(\mathbb{T})$ we would have

$$||f||_1 \le C ||\Lambda f||_{\infty}$$

But $||D_N||_1 \approx \frac{4}{\pi^2} \log(N)$ and $||\Lambda D_n||_{\infty} = 1$, contradicting the above.

□ Claim 116 □ Theorem 113

 \Box Claim 115

We can do better using the Cesàro means (via Fejér's theorem) or

$$f(r\exp(i\theta)) = \sum_{k=-\infty}^{\infty} r^{|k|} \widehat{f}(k) \exp(ik\theta)$$

 \Box Lemma 114

3.4 Hahn-Banach theorems

Definition 117. Suppose X is a vector space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Suppose $f: X \to \mathbb{F}$ linear is a functional. A function $p: X \to \mathbb{R}$ is sublinear if

1. $p(x+y) \le p(x) + p(y)$

2.
$$p(tx) = tp(x)$$
 if $t \ge 0$

Example 118.

- 1. If X is normed, then p(x) = ||x|| is sublinear.
- 2. If X has a topology and $U \in \mathcal{O}(0)$, then

$$\bigcup_{k>1} kU = X$$

If we further have that U is convex, we can define the *Minkowski functional* by

$$p_U(x) = \inf\{t > 0 : x \in tU\}$$

It is easily seen that $p_U(sx) = sp_U(x)$ for s > 0. If $p_U(x) = s$ and $p_U(y) = t$, then $x \in s'U$ if s' > s and $y \in t'U$ if t' > t. So

$$\frac{1}{s'}x, \frac{1}{t'}y \in U$$

By convexity of U, we then have that

$$\frac{x+y}{s'+t'} = \frac{s'}{s'+t'} \frac{1}{s'} x + \frac{t'}{s'+t'} \frac{1}{t'} y \in U$$

So $x + y \in (s' + t')U$, and $p_U(x + y) \leq s' + t'$. Letting $s' \to s, t' \to t$, sublinearity falls out.

Theorem 119. Suppose M_0 is a real vector subspace of X (where X is a real vector space). Suppose p is a sublinear functional on X. Suppose $f_0: M_0 \to \mathbb{R}$ is a linear functional. Suppose $f_0(m) \leq p(m)$ for all $m \in M_0$. Then there is $f: X \to \mathbb{R}$ linear such that

- 1. $f \upharpoonright M_0 = f_0$
- 2. $f(x) \leq p(x)$ for all $x \in X$.

Proof. Extending by 1 dimension, if $M_0 \neq X$, pick $x \in X \setminus M_0$. Let $M = M_0 + \mathbb{R}x$; try to extend the definition of f_0 to $f: M \to \mathbb{R}$. In order to set $f(x) = a \in \mathbb{R}$, we need

 $f(m+tx) \le p(m+tx)$

If t > 0, we get $f(m) + tf(x) \le p(m + tx)$; if t < 0 we get $f(m) - |t|f(x) \le p(m - |t|x)$.

Case 1. Suppose t > 0. Then we need

$$tf(x) \le p(m+tx) - f(m)$$
$$a = f(x) \le \frac{p(m+tx) - f(m)}{t}$$

Case 2. Suppose t < 0. Then we need

$$f(m) - p(m - |t|x) \le |t|f(x) = |t|a$$

 \mathbf{SO}

$$\frac{f(m) - p(m - |t|x)}{|t|} \le a$$

Conversely, if we can find a satisfying the above, then we define f(m + tx) = f(m) + ta to get the desired extension. We then need

$$\sup_{k \ge 0, m \in M_0} \frac{f(m) - p(m - sx)}{s} \le a \le \inf_{t \ge 0, m \in M_0} \frac{p(m + tx) - f(m)}{t}$$

If $m' = \frac{m}{s}$, then

LHS =
$$\sup_{\substack{m' \in M_0}} (f(m') - p(m' - x))$$

RHS =
$$\inf_{\substack{m' \in M_0}} p(m' + x) - f(m')$$

Claim 120. LHS \leq RHS.

Proof. Otherwise there is $m_1, m_2 \in M$ such that

$$p(m_2 + x) - f(m_2) < f(m_1) - p(m_1 - x)$$

and

$$p(m_1 + m_2) \le p(m_2 + x) + p(m_1 - x) < f(m_1 + m_2) \le p(m_1 + m_2)$$

a contradiction.

So we can extend (f_0, M_0) to (f, M) by choosing any $a \in [LHS, RHS]$.

We now use Zorn's lemma. Consider

$$\mathcal{E} = \{ (M, f) : M_0 \subseteq M \text{ a subspace}, f : M \to \mathbb{R} \text{ linear}, f \upharpoonright M_0 = f_0, f(x) \leq p(x) \text{ for all } x \in M \}$$

We can equip this with the partial order $(M_1, f_1) \leq (M_2, f_2)$ if $M_1 \subseteq M_2$ and $f_2 \upharpoonright M_1 = f_1$. Suppose now that $\mathcal{C} = \{ (M_\alpha, f_\alpha) : \alpha \in I \}$ is a chain in \mathcal{E} with I a total order and $\alpha < \beta$ in I implies $(M_\alpha, f_\alpha) \leq (M_\beta, f_\beta)$. Let

$$M = \bigcup_{\alpha \in I} M_{\alpha}$$

Then M is a vector space containing all of the M_{α} . Let

$$f = \bigcup_{\alpha \in I} f_{\alpha}$$

Then f is linear and $f \upharpoonright M_{\alpha} = f_{\alpha}$. So if $x \in M$, then there is $\alpha \in I$ such that $x \in M_a$; then $f(x) = f_{\alpha}(x) \leq p(x)$. Also $M_0 \subseteq M_{\alpha} \subseteq M$, so $f \upharpoonright M_0 = f_{\alpha} \upharpoonright M_0 = f_0$. So $(M, f) \in \mathcal{E}$ is an upper bound of \mathcal{C} .

So, by Zorn's lemma, we have that \mathcal{E} has a maximal element (M, \tilde{f}) .

Claim 121. $\widetilde{M} = X$.

Proof. Otherwise there is $x \in X \setminus \widetilde{M}$. Let $M_1 = \widetilde{M} + \mathbb{R}x$. By the first part of the proof, we can extend \widetilde{f} to f_1 on M_1 with $(\widetilde{M}, \widetilde{f}) < (M_1, f_1)$, contradicting maximality. \Box Claim 121

 \Box Theorem 119

Theorem 122 (Hahn-Banach theorem). Suppose X is a Banach space, $M_0 \subseteq X$ is a subspace (not necessarily closed). Suppose $f_0 \in M_0^*$ is a bounded linear functional on M_0 . Then there is $f \in X^*$ such that $f \upharpoonright M_0 = f_0$ and $||f|| = ||f_0||$.

Proof.

 \Box Claim 120

Case 1. Suppose $\mathbb{F} = \mathbb{R}$. Define $p(x) = ||f_0|| ||x||$; thus is positive-homogeneous and satisfies the triangle inequality, so is sublinear. Also $f_0(m) \leq ||f_0|| ||m|| = p(m)$ for all $m \in M_0$. So, by the previous theorem, there is a linear functional $f \in X^*$ such that $f \upharpoonright M_0 = f_0$ and $f(x) \leq p(x) = ||f_0|| ||x||$ for all $x \in X$. Then

$$-f(x) = f(-x) \le p(-x) = ||f_0|| ||x||$$

 \mathbf{SO}

$$-\|f_0\|\|x\| \le f(x) \le \|f_0\|\|x\|$$

i.e. $|f(x)| \le ||f_0|| ||x||$. So $||f|| = ||f_0||$.

Case 2. Suppose $\mathbb{F} = \mathbb{C}$. Think of X as a vector space over \mathbb{R} . Let $g_0(m) = \operatorname{Re}(f_0(m))$ for $m \in M_0$. Then

$$g_0(m) \le |f_0(m)| \le ||f_0|| ||m||$$

By the first case, we can extend g_0 to a continuous real linear functional $g: X \to \mathbb{R}$ such that $g \upharpoonright M_0 = g_0$ and $||g|| \le ||g_0|| \le ||f_0||$.

Define f(x) = g(x) + ig(-ix). Then f is continuous and \mathbb{R} -linear. Also,

$$f(ix) = g(ix) + ig(-i(ix))$$
$$= i(g(x) + (-i)g(ix))$$
$$= i(g(x) + ig(-ix))$$
$$= if(x)$$

So f is \mathbb{C} -linear. Also, if $m \in M_0$, then

$$f(m) = g(m) + ig(-im) = g_0(m) + ig_0(-im) = \operatorname{Re}(f_0(m)) + i\operatorname{Re}(f_0(-im)) = f_0(m)$$

since if $f_0(m) = a + ib$, then $f_0(-im) = -i(a + ib) = b - ia$. Finally, if $x \in X$, then $f(x) = \exp(i\theta)|f(x)|$; so

$$|f(x)| = f(\exp(-i\theta)x)$$

= Re(f(exp(i\theta)x))
= g(exp(-i\theta)x)
$$\leq ||g_0|| ||\exp(-i\theta)x||$$

$$\leq ||f_0|| ||x||$$

So $||f|| \le ||f_0||$.

 $\hfill\square$ Theorem 122

Corollary 123. If X is a Banach space with $x \in X$, then there is $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||. Proof. Define f_0 on $\mathbb{F}x$ by $f_0(\lambda x) = \lambda ||x||$. Then

$$||f_0|| = \sup_{\lambda \in \mathbb{F}} \frac{|\lambda||x|||}{||\lambda x||} = 1$$

We can then extend by the Hahn-Banach theorem.

Corollary 124. If $x \in X$ then

$$||x|| = \sup_{f \in X^*, ||f|| \le 1} |f(x)|$$

□ Corollary 123

Proof. Well, $|f(x)| \le ||f|| ||x|| \le ||x||$. But by the corollary there is f with ||f|| = 1 and f(x) = ||x||. \Box Corollary 124

Corollary 125. X^* separates points of X.

Proof. Suppose $x \neq y$. Then there is $f \in X^*$ such that $f(x) - f(y) = f(x - y) \neq 0$. So $f(x) \neq f(y)$. \Box Corollary 125

Corollary 126. Suppose X is a Banach space with $M \subseteq X$ a closed subspace. Suppose $x \notin M$. Then there is $f \in X^*$ with ||f|| = 1 such that $r \upharpoonright M = 0$ and $f(x) = \operatorname{dist}(x, M)$.

Proof. Let $q: X \to X/M$ be the quotient map. Then $q(x) = \dot{x} \neq 0$. Then

$$\|\dot{x}\| = \inf_{m \in M} \|x - m\| = \operatorname{dist}(x, M)$$

By one of the previous corollaries, there is $g \in (X/M)^*$ such that ||g|| = 1 and $g(\dot{x}) = ||\dot{x}||$. Let $f = g \circ q$; then $||f|| \le ||g|| ||q|| = 1 \cdot 1 = 1$, and

$$f(x) = g(\dot{x}) = \|\dot{x}\| = \operatorname{dist}(x, M)$$

Furthermore, for $m \in M$, we have $f(m) = g(\dot{m}) = g(0) = 0$.

If X is a Banach space, there is a natural map $X \to X^{**}$ by $x \mapsto \hat{x}$ where $\hat{x}(f) = f(x)$.

Proposition 127. The natural map $X \to X^{**}$ is isometric.

Proof. Well

$$\|\widehat{x}\| = \sup_{\substack{f \in X^*, \|f\| \le 1}} |\widehat{x}(f)|$$

= $\sup_{\substack{f \in X^*, \|f\| \le 1}} |f(x)|$
= $\|x\|$

by a previous corollary.

Definition 128. X is *reflexive* if $X = X^{**}$; i.e. the natural map above is surjective.

We get chains

$$X \subseteq X^{**} \subseteq X^{****} \subseteq X^{*****} \subseteq \dots$$

and

 $X^* \subseteq X^{***} \subseteq X^{*****} \subseteq \dots$

Proposition 129. If $X \neq X^{**}$, then $X^* \neq X^{***}$.

Proof. If $X \neq X^{**}$, then there is $y \in X^{**} \setminus X$. By a previous corollary, there is $f \in X^{***}$ such that $f \upharpoonright X = 0$ and $f(y) \neq 0$. But if $g \in X^*$ and $g \upharpoonright X = 0$, then g = 0, and $\widehat{g} = 0$. So $f \neq \widehat{g}$ for any $g \in X^*$. So $X^* \neq X^{***}$. \Box Proposition 129

Example 130.

- 1. Suppose \mathcal{H} is a Hilbert space. Then \mathcal{H}^* is $\overline{\mathcal{H}}$, and \mathcal{H}^{**} is $\overline{\overline{\mathcal{H}}} = \mathcal{H}$. So \mathcal{H} is reflexive.
- 2. Suppose $1 . Then <math>\ell_p^* = \ell_q$ for $\frac{1}{p} + \frac{1}{q} = 1$. Then $\ell_p^{**} = \ell_q^* = \ell_p$. So ℓ_p is reflexive. Similarly for $L^p(\mu)$ for 1 .
- 3. $c_0^* = \ell_1$ and $\ell_1^* = \ell_\infty$; so c_0 is not reflexive.
- 4. $L^1(0,1)^* = L^{\infty}(0,1)$ which is not separable; so $L^{\infty}(0,1)^*$ is not separable; So $L^1(0,1)$ is not reflexive.

 \Box Proposition 127

 \Box Corollary 126

- 5. $C[0,1]^* = M([0,1]) \supseteq L^1(0,1)$ (where M([0,1]) is the set of finite regular complex Borel measures). So $C[0,1]^*$ is not reflexive.
- 6. If $\dim(X) < \infty$ then $\dim(X^*) = \dim(X)$.

Example 131 (Banach limits). Weant a map L which takes a bounded sequence $x = (x_n : n < \omega)$ of real numbers and satisfies

- 1. $\liminf x_n \leq L(x) \leq \limsup x_n$
- 2. L(x) = L(Sx) where $Sx = (x_{n+1} : n < \omega)$. (Translation-invariance.)

This is called a *Banach limit*. So we're looking for a continuous linear functional L on $\ell_{\infty,\mathbb{R}}$ of norm 1. Let $M = \operatorname{span} x - Sx : x \in \ell_{\infty,\mathbb{R}}$. We need

- 1. $L \upharpoonright M = 0$
- 2. If $u = (1 : n < \omega)$, then we need L(u) = 1.

Claim 132. dist(u, M) = 1.

Proof. Well, dist $(u, M) \leq ||u - 0|| = 1$. Suppose $x \in \ell_{\infty,\mathbb{R}}$ satisfies $||u - (x - Sx)|| = 1 - \varepsilon < 1$. Write $x = (x_n : n < \omega)$; then $Sx = (x_{n+1} : n < \omega)$. Then $u - (x - Sx) = (1 - (x_n - x_{n+1}) : n < \omega)$. So $1 - (x_n - x_{n+1}) \leq 1 - \varepsilon$; so

$$x_{n+1} \le x_n - \varepsilon \le x_{n-1} - 2\varepsilon \le \dots \le x_1 - n\varepsilon$$

So $(x_n : n \in \mathbb{N}) \to -\infty$, contradicting boundedness.

By one of the corollaries, we then have $L \in \ell_{\infty,\mathbb{R}}^*$ with ||L|| = 1 such that $L \upharpoonright M = 0$ and L(u) = 1. Thus, for $x \in \ell_{\infty,\mathbb{R}}$ we have L(x) - L(Sx) = L(x - Sx) = 0; so L is translation-invariant.

Claim 133. If $x \in c_0$, then L(x) = 0.

Proof. Say $x \in c_0$. Then $S_n x = (x_{n+i} : i \in \mathbb{N})$; so $S^n x \to 0$ in ℓ_{∞} . But

$$x - S^{n}x = (x - Sx) + (Sx - S^{2}x) + \dots + (S^{n-1}x - S^{n}x)$$

and each summand is in M; so $L(x) = L(S^n x) \rightarrow L(0) = 0$. So L(x) = 0.

Take $x \in \ell_{\infty,\mathbb{R}}$; let

$$\alpha = \liminf x_n$$
$$\beta = \limsup x_n$$

Write x = y + z with $\alpha \le y_n \le \beta$, $z \in c_0$. Then L(x) = L(y) + L(z) = L(y). Let

$$w_n = y_n - \frac{\alpha + \beta}{2} \in \left[-\frac{\beta - \alpha}{2}, \frac{\beta - \alpha}{2}\right]$$

Let $w = (w_n; n \in \mathbb{N})$. Then

$$y = \left(\frac{\alpha + \beta}{2}\right)u + w$$

So

$$|L(w)| \le ||w|| \le \frac{\beta - \alpha}{2}$$

 \Box Claim 132

 \Box Claim 133

 \mathbf{So}

$$\begin{aligned} \alpha &= -\frac{\beta - \alpha}{2} + \frac{\beta - \alpha}{2} \\ &\leq L(y) \\ &= L(w) + \left(\frac{\alpha + \beta}{2}\right)L(u) \\ &\leq \frac{\beta - \alpha}{2} + \frac{\alpha + \beta}{2} \\ &= \beta \end{aligned}$$

So we have the desired properties.

Remark 134. We can extend L to \widetilde{L} on ℓ_{∞} by

$$\widetilde{L}(x) = L(\operatorname{Re}(x)) + iL(\operatorname{Im}(x))$$

This is translation-invariant, and if

$$\lim_{n \to \infty} x_n = x_\infty$$

then $\widetilde{L}(x) = x_{\infty}$.

4 LCTVSs and weak topologies

Definition 135. A seminorm on a vector space V is a map $p: V \to [0, \infty)$ such that

- 1. p(tv) = |t|p(v) for all $t \in \mathbb{F}$, all $v \in V$
- 2. $p(v+w) \le p(v) + p(w)$ for all $v, w \in V$ (triangle inequality)

Remark 136. This is not necessarily a norm because $p(v) = 0 \implies v = 0$ in general.

Definition 137. A locally convex topological vector space (LCTVS) is a vector space X with a family $\mathcal{P} = \{p_{\alpha} : \alpha \in I\}$ of seminorms such that if $x \in X$ and $p_{\alpha}(x) = 0$ for all $\alpha \in I$, then x = 0. Put a topology on X determined by a subbase

$$U(x_0, r, p_\alpha) = \{ x \in X : p_\alpha(x - x_0) < r \}$$

Remark 138. $U(x_0, r, p_\alpha)$ is convex because of the triangle inequality: if $x, y \in U(x_0, r, p_\alpha)$ and 0 < t < 1, then

$$p_{\alpha}(tx + (1-t)y) \le p_{\alpha}(tx) + p_{\alpha}((1-t)y) < |t|r + |1-t|r = r$$

and $tx + (1 - t)y \in U(x_0, r, p_{\alpha})$.

Remark 139. We have some translation-invariance: $U(x_0, r, p_\alpha) = x_0 + U(0, r, p_\alpha)$, and U is an open neighbourhood of 0 if and only if $x_0 + U$ is an open neighbourhood of x_0 .

Theorem 140. Suppose X is a LCTVS.

1. A neighbourhood base at 0 is given by the sets

$$U_{F,r} = \{ x \in X : p_{\alpha}(x) < r \text{ for all } p_{\alpha} \in F \}$$

where $F \subseteq_{\text{fin}} \mathcal{P}$ and and r > 0.

- 2. X is Hausdorff.
- 3. Addition and scalar multiplication are continuous.
- 4. A net $(x_{\beta} : \beta \in B)$ converges to x_0 if and only if $p_{\alpha}(x x_{\beta}) \to 0$ for all $p_{\alpha} \in \mathcal{P}$.

Proof.

1. Well,

$$U_{F,r} = \bigcap_{p_{\alpha} \in F} U(0, r, p_{\alpha})$$

is open and contains 0. Suppose $F \subseteq_{\text{fin}} \mathcal{P}$ and

$$U = \bigcap_{\alpha \in F} U(x_{\alpha}, r_{\alpha}, p_{\alpha})$$

is a basic open neighbourhood of 0. Well, $0 \in U(x_{\alpha}, r_{\alpha}, p_{\alpha})$, so $p_{\alpha}(x_{\alpha} - 0) < r_{\alpha}$. Let

$$r = \min_{\alpha \in F} (r_{\alpha} - p_{\alpha}(x_{\alpha}))$$

Claim 141. $U_{F,r} \subseteq U$.

Proof. If $x \in U_{F,r}$, then $p_{\alpha}(x) < r$. So

$$p_{\alpha}(x_{\alpha} - x) \le p_{\alpha}(x_{\alpha} - 0) + p_{\alpha}(0 - x) < p(x_{\alpha}) + r \le p_{\alpha}(x_{\alpha}) + r_{\alpha} - p_{\alpha}(x_{\alpha}) = r_{\alpha}$$

 So

$$x \in \bigcap_{\alpha \in F} U(x_{\alpha}, r_{\alpha}, p_{\alpha}) = U$$

and $U_{F,r} \subseteq U$.

2. If $x \neq y$ in X, then there is α such that $p_{\alpha}(x-y) = r > 0$. Then

$$U\left(x,\frac{r}{2},p_{\alpha}\right)\cap U\left(y,\frac{r}{2},p_{\alpha}\right)$$

3. We do addition; scalar multiplication is similar. Let $A: X \times X \to X$ by A(x, y) = x + y. Let U be open in X. We need to show that $A^{-1}(U)$ is open in the product topology. Suppose $(x_0, y_0) \in A^{-1}(U)$; then $x_0 + y_0 \in U$. But U is open; so there is $F \subseteq_{\text{fin}} \mathcal{P}$ and r > 0 such that

$$(x_0, y_0) + U_{F,r} = \bigcap_{p_\alpha \in F} U(x_0 + y_0, r, p_\alpha) \subseteq U$$

Claim 142.

$$\left(x_0 + U_{F,\frac{r}{2}}\right) \times \left(y_0 + U_{F,\frac{r}{2}}\right) \subseteq A^{-1}(U)$$

Proof. Suppose

$$p_{\alpha}(x - x_0) < \frac{r}{2}$$
$$p_{\alpha}(y - y_0) < \frac{r}{2}$$

for all $p_{\alpha} \in F$. Then

$$p_{\alpha}((x+y) - (x_0 + y_0)) \le p_{\alpha}(x - x_0) + p_{\alpha}(y - y_0) < \frac{r}{2} + \frac{r}{2} = r$$

 \Box Claim 142

4.

$$\begin{aligned} x_{\beta} \to x \iff (\forall F \subseteq_{\text{fn}} \mathcal{P})(\forall r > 0)(\exists \beta_0)(\forall \beta \ge \beta_0)(x_{\beta} \in x + U_{F,r}) \\ \iff \forall F \forall r \exists \beta_0 (\forall \beta \ge \beta_0)(\forall p_{\alpha} \in F)(p_{\alpha}(x - x_{\beta}) < r) \\ \iff \forall p_{\alpha}(p_{\alpha}(x - x_{\beta}) \to 0) \end{aligned}$$

 \Box Claim 141

Example 143.

- 1. $(X, \|\cdot\|)$ a normed vector space.
- 2. Let X be a normed vector space. Let Y be a vector subspace of X^* (not necessarily closed). Suppose that for all $x \neq 0$ in X, there is $\varphi \in Y$ with $\varphi(x) \neq 0$. For $\varphi \in Y$, define a seminorm $p_{\varphi}(x) = |\varphi(x)|$. τ_y is the locally convex topology generated by $\{p_{\varphi} : \varphi \in Y\}$. (X, τ_Y) is thus a LCTVS.

In particular, if X is a Banach space, then (X, τ_{X^*}) is the *weak topology* on X. We write $x_{\alpha} \xrightarrow{w} x$ if and only if $\varphi(x_{\alpha}) \to \varphi(x)$ for all $\varphi \in X^*$.

If $X = Y^*$ for a Banach space Y, then (Y^*, τ_Y) is the weak-* topology on Y^* and $f_\alpha \xrightarrow{w^*} f$ in Y^* if and only $f_\alpha(y) \to f(y)$ for all $y \in Y$.

Remark 144.

$$U_{F,r} = \left\{ x : |p_{\varphi}(x)| < r \text{ for } \varphi \in F \right\}$$
$$= \left\{ x : \left| \frac{1}{r} \varphi(x) \right| < 1, \frac{1}{r} \varphi \in \frac{1}{r} F \right\}$$
$$= U_{\frac{1}{r}F,1}$$

Proposition 145. Suppose Z a LCTVS; suppose $T: Z \to (X, \tau_Y)$ is linear. Then T is continuous if and only if $\varphi \circ T: Z \to \mathbb{F}$ is continuous for all $\varphi \in Y$.

Proof.

 (\Longrightarrow) Note that τ_Y is the weakest topology that makes all $\varphi \in Y$ continuous on (X, τ_Y) . Then $\varphi \circ T$ is continuous as the composition of continuous functions.

 (\Leftarrow) T is continuous if and only if $T^{-1}(x+U_{F,r})$ is open for all $F \subseteq_{\text{fin}} \mathcal{P}$, all r > 0. But

$$T^{-1}(x + U_{F,r}) = T^{-1}(x) + T^{-1}(U_{F,r})$$

= $T^{-1}(x) + \bigcap_{\varphi \in F} (\varphi \circ T)^{-1}(b_r(0))$

which is open because all $\varphi \circ T$ is continuous.

 \Box Proposition 145

- 3. Suppose X is a Banach space. Then we have the following topologies on $\mathcal{B}(X)$:
 - Weak operator topology In which $T_{\alpha} \xrightarrow{\text{WOT}} T$ if and only if $\varphi(T_{\alpha}x) \to \varphi(Tx)$ for all $x \in X$ all $\varphi \in X^*$. For each $x \in X$, each $\varphi \in X^*$, define $\Psi_{x,\varphi} \in \mathcal{B}(X)^*$ by $\Psi_{x,\varphi}(T) = \varphi(Tx)$.

$$Y = \operatorname{span}\{\Psi_{x,\varphi} : x \in X, \varphi \in X^*\} \subseteq \mathcal{B}(X)^*$$

(where the span is the algebraic span, not the closed span.) Note that this is not closed. $(\mathcal{B}(X), WOT) = (X, \tau_Y).$

Strong operator topology For $x \in X$, define $p_x(T) = ||Tx||$. Then $\{p_x : x \in X\}$ determines the strong operator topology. We have $T_\alpha \xrightarrow{\text{SOT}} T$ if and only if $T_\alpha x \to Tx$ for all $x \in X$; so this is the topology of pointwise convergence.

Theorem 146. Suppose X a LCTVS; suppose $f: X \to \mathbb{F}$ is linear. The following are equivalent:

- 1. f is continuous.
- 2. f is continuous at 0.

3. $\ker(f)$ is closed.

4. There is $F = \{ p_{\alpha_1}, \ldots, p_{\alpha_n} \} \subseteq_{\text{fin}} \mathcal{P}$ and $C < \infty$ such that

$$|f(x)| \le C \sum_{i=1}^{n} p_{\alpha_i}(x)$$

Proof.

- $(1) \implies (2)$ Trivial.
- (2) \implies (3) $f^{-1}(0) = X \setminus f^{-1}(\mathbb{F} \setminus \{0\})$. But $\mathbb{F} \setminus \{0\}$ is open. So $f^{-1}(0) = \ker(f)$ is closed.
- (3) \implies (4) Without loss of generality $f \neq 0$. Pick $x_0 \in X$ such that $f(x_0) = 1$. Pick $F \subseteq_{\text{fin}} \mathcal{P}$ and r > 0 such that

$$(x_0 + U_{F,r}) \cap \ker(f) = \emptyset$$

(Possible since $\ker(f)$ is closed.) Then

$$0 \notin f(x_0 + U_{F,r}) = 1 + f(U_{F,r})$$

So $-1 \notin f(U_{F,r})$. Note, though, that

$$U_{F,r}\{x : p_{\alpha}(x) < r \text{ for all } \alpha \in F\}$$

is balanced; i.e. if $x \in U_{F,r}$ and $\lambda \in \mathbb{F}$ satisfies $|\lambda| \leq 1$, then $\lambda x \in U_{F,r}$ (since $p(\lambda x) = |\lambda|p(x) \leq p(x) < r$). So $f(U_{F,r})$ is balanced in \mathbb{F} . So $f(U_{F,r})$ is convex and disjoint from $\{\lambda : |\lambda| = 1\}$. So $f(U_{F,r}) \subseteq \mathbb{D} = \{\lambda : |\lambda| < 1\}$. Thus if $kp_{\alpha}(x) < r$ for all $p_{\alpha} \in F$ then |f(x)| < 1. In particular, if

$$\sum_{F} p_{\alpha}(x) < r$$

then $p_{\alpha}(x) < r$ for all $p_{\alpha} \in F$. So |f(x)| < 1. So

$$|f(x)| \le \frac{1}{r} \sum p_{\alpha}(x)$$

(4) \implies (1) Suppose $x_{\beta} \rightarrow x$. Then $p(x_{\beta} - x) \rightarrow 0$ for all α . So

$$|f(x_{\beta}) - f(x)| = |f(x_{\beta} - x)| \le C \sum_{F} p_{\alpha}(x_{\beta} - x) \to 0$$

So $f(x_{\beta}) \to f(x)$. So f is continuous.

 \Box Theorem 146

Corollary 147. Suppose $f: (X, \tau_Y) \to \mathbb{F}$ is a linear functional. Then f is continuous if and only if $f \in Y$. *Proof.*

 (\Leftarrow) Trivial.

 (\Longrightarrow) Suppose f is continuous on (X, τ_Y) . Then by the theorem, there are $f_1, \ldots, f_n \in Y$ such that

$$|f(x)| \le C \sum_{i=1}^{n} |f_i(x)|$$

In particular, if

$$x \in \bigcap_{i=1}^{n} \ker(f_i)$$

then RHS = 0. So f(x) = 0. So

$$\bigcap_{i=1}^{n} \ker(f_i) \subseteq \ker(f)$$

Lemma 148. Suppose X is a vector space. Suppose f_1, \ldots, f_n are linear functionals (not necessarily continuous). Suppose

$$\ker(f) \supseteq \bigcap_{i=1}^n \ker(f_i)$$

Then $f \in \operatorname{span}\{f_1, \ldots, f_n\}.$

Proof. We have

But we can identify

$$F: X/\bigcap_{i=1}^{n} \ker(f_i) \cong \{ (f_1(x), \dots, f_n(x)) : x \in X \} \subseteq \mathbb{F}^n$$

Then

$$\ker(F) = \bigcap_{i=1}^{n} \ker(f_i)$$

We can extend \widetilde{f} to a linear functional $\widetilde{\widetilde{f}}$ on $\mathbb{F} {:}$

$$\widetilde{\widetilde{f}}((v_1,\ldots,v_n)) = \sum a_i v_i$$

Then

$$f(x) = \widetilde{f} \circ q(x) = \widetilde{\widetilde{f}}(F(x)) = \sum_{i=1}^{n} a_i f_i(x) \in \operatorname{span}\{f_1, \dots, f_n\}$$

 \Box Lemma 148

 So

$$f = \sum_{i=1}^{n} a_i f_i \in Y$$

□ Corollary 147

Remark 149. If we start with $Y \subseteq X^*$ which is not closed, then

$$(X, \tau_Y)^* = Y$$

is not a Banach space.

Lemma 150. Suppose X is a Banach space; suppose Y is a closed subspace of X^* which norms X. i.e.

$$||x|| = \sup_{\substack{f \in Y \\ ||f|| \le 1}} |f(x)|$$

Then if a sequence $(x_n : n \in \mathbb{N})$ converges in (X, τ_Y) then

$$\sup_{n\in\mathbb{N}}||x_n||<\infty$$

Proof. For $x \in X$, define $\hat{x} \in Y^*$ by $\hat{x}(f) = f(x)$. Since Y is closed, it is a Banach space. But $(x_n : n \in \mathbb{N}) \xrightarrow{\tau_Y} x$ says that $\hat{x}_n(f) \to \hat{x}(f)$ for all $f \in Y$; so $\{\hat{x}_n(f) : n \ge 1\}$ is bounded for all f. By the uniform boundedness principle, we have that

$$\sup_{n\in\mathbb{N}}\|\widehat{x_n}\|<\infty$$

Since Y norms X, we get $\|\widehat{x_n}\| = \|x_n\|$. So

$$\sup_{n\geq 1} \|x_n\| < \infty$$

\Box Lemma 150

Example 151. Let (ℓ_1, τ_{c_0}) be ℓ_1 with the weak-* topology from $\ell_1 = c_0^*$. Suppose $x_n = (x_{ni} : i \in \mathbb{N}) \in \ell^1$. Suppose $x_n \xrightarrow{w^*} x = (x_i : i \in \mathbb{N})$. Then $e_i(x_n) = \langle x_n, e_i \rangle = x_{ni} \to \langle x, e_i \rangle = x_i$ (where $e_i \in c_0$). By lemma, we have

$$\sup_{n\in\mathbb{N}}||x_n||_1 = M < \infty$$

Conversely, suppose the above two statements hold. Suppose $y = (y_1, y_2, ...) \in c_0$; suppose $\varepsilon > 0$. Pick N such that $|y_i| < \varepsilon$ if i > N. Then

$$\begin{aligned} |\langle x_n, y \rangle - \langle x, y \rangle| &= \left| \sum_{i=1}^{\infty} (x_{ni} - x_i) y_i \right| \\ &= \sum_{i=1}^{N} (x_{ni} - x_i) y_i + \sum_{i=N+1}^{\infty} (x_{ni} - x_i) y_i \\ &\leq N \|y\| \max_{1 \leq i \leq n} |x_{ni} - x_i| + \sum_{i \geq N} |x_{ni} - x_i| \varepsilon \end{aligned}$$

Pick N_2 such that $n \ge N_2$ implies

$$|x_{n_i} - x_i| < \frac{\varepsilon}{N \|y\|}$$

for $1 \leq i \leq N$. Ten

$$|\langle x_n, y \rangle - \langle x, y \rangle| < N ||y|| \frac{\varepsilon}{N ||y||} + ||x_n - x||_1 \varepsilon \le \varepsilon + (||x_n||_1 + ||x||_1)\varepsilon \le (1 + 2M)\varepsilon$$

So $\langle x_n, y \rangle \to \langle x, y \rangle$ for $y \in c_0$.

On the other hand, there is an unbounded net converging to 0 in (ℓ_1, τ_{c_0}) . Let Λ be the set of finite subsets of c_0 ordered by set inclusion. Then, if $F \in \Lambda$, we have

$$\bigcap_{y \in F} \ker(y)$$

is a closed subspaces of ℓ_1 of finite codimension. By axiom of choice, we can pick

$$x_F \in \bigcap_{y \in F} \ker(y)$$

such that $||x_F|| = |F|$.

Claim 152. $(x_F: F \in \Lambda) \to 0$ in τ_{c_0} .

Proof. Take $y \in c_0$. If $F \geq \{y_0\}$, then $\langle x_F, y \rangle = 0 \to 0$.

 \Box Claim 152

4.1 Geometric Hahn-Banach theorem

Given convex, disjoint A and B, we wish to find some linear functional f separating them; i.e.

$$A \subseteq \{ x \in X : \operatorname{Re}(f(x)) \le a \}$$
$$B \subseteq \{ x \in X : \operatorname{Re}(f(x)) > a \}$$

We also want f to be continuous; we then need a topological condition on A and B.

Definition 153. A hyperplane is a set $H = \{x \in X : \text{Re}(f(x)) = a\}$ where X is a LCTVS and f is a linear functional. We are interested in *closed hyperplanes*, in which we require that f be continuous.

Lemma 154. Suppose X is a LCTVS. Suppose U is open and convex with $0 \in U$. Recall the Minkowski functional

$$p_U(x) = \inf\{r > 0 : x \in rU\}$$

Then p_U is continuous and $\{x \in X : p_U(x) < 1\} = U$.

Proof. Since $0 \in U$ and U is convex, if 0 < r < s, then $rU \subseteq sU$. Suppose $p_U(x) = r < 1$, then for r < s < 1, we have $x \in sU \subseteq U$. Conversely, if $x \in U$ there is $\varepsilon > 0$ such that $(1 + \varepsilon)x \in U$ (since $t \mapsto tx$ is continuous and $1x \in U$ and U is open; thus $\{t \in \mathbb{R} : tx \in U\}$ is open in \mathbb{R} , and thus contains $(1 - \varepsilon, 1 + \varepsilon)$ for some $\varepsilon > 0$). So

$$x \in \frac{1}{1+\varepsilon}U$$

So $p_U(x) \le \frac{1}{1+\epsilon} < 1$. So $\{x \in X : p_U(x) \le 1\} = U$.

To see continuity, suppose $x_0 \in X$; suppose $p_U(x_0) = r_0 \in V \subseteq \mathbb{R}$ where V is open. Then $p_U(x_0) \in (r_0 - \varepsilon, r_0 + \varepsilon) \subseteq V$ for some $\varepsilon > 0$. Then

$$p_U^{-1}(V) \supseteq p_U^{-1}(r_0 - \varepsilon, r_0 + \varepsilon)$$

If $x \in x_0 + \frac{\varepsilon}{2}U$, then

$$p_U(x) \le p_U(x_0) + p_U(x - x_0) < p_U(x_0) + \frac{\varepsilon}{2}$$
$$p_U(x) \ge p_U(x_0) - p_U(x - x_0) > p_U(x_0) - \frac{\varepsilon}{2}$$

 \Box Lemma 154

Theorem 155 (Hyperplane theorem). Suppose X a LCTVS; suppose $U \subseteq X$ is open and convex with $0 \notin U$. Then there is $f \in X^*$ such that $\operatorname{Re}(f(x)) > 0$ for all $x \in U$. i.e. U is disjoint from the closed hyperplane $H = \{x \in X : \operatorname{Re}(f(x)) = 0\}$

Proof.

and

Case 1. Suppose $\mathbb{F} = \mathbb{R}$. Pick $x_0 \in U$. Define $V = x_0 - U$. Then V is open and convex with $0 \in V$. So p_V is a continuous sublinear functional. Define f_0 on $\mathbb{R}x_0$ by $f_0(tx_0) = t$ for $t \in \mathbb{R}$. Now, $x_0 \notin V$; so, by our lemma, we have $p_V(x_0) \ge 1$. Then if $t \ge 0$, we have $f_0(tx_0) = t \le tp_V(x_0) = p_V(tx_0)$; if t < 0, then $f_0(tx_0) = t < 0 \le p_V(tx_0)$. So $f_0 \le p_V$ on $\mathbb{R}x_0$. Thus there is linear $f: X \to \mathbb{R}$ such that $f(x) \le p_V(x)$ for all $x \in X$.

Claim 156. f is continuous.

Proof. It suffices to check continuity at 0. But

$$f^{-1}(b_r(0)) = \{ x \in X : -r < f(x) < r \} = \{ x \in X : f(x) < r \} \cap \{ x \in X : f(-x) < r \}$$

But $V \subseteq \{x \in X : f(x) < r\}$ and $-V \subseteq \{x \in X : f(-x) < r\}$. So

$$f^{-1}(b_r(0)) \supseteq rV \cap (-rV)$$

which is an open neighbourhood of 0.

 \Box Claim 156

Now, if $x \in U$ then $x_0 - x \in V$; so $1 - f(x) = f(x_0 - x) \le p_V(x_0 - x) < 1$ and f(x) > 0.

Case 2. Suppose $\mathbb{F} = \mathbb{C}$. Consider X as a real LCTVS. Find $f: X \to \mathbb{R}$ that is \mathbb{R} -linear and continuous such that f(x) > 0 for all $x \in U$. Define g(x) = f(x) + if(-ix). As before, we have that g is \mathbb{C} -linear and continuous, and $\operatorname{Re}(g(x)) = f(x)$. Thus if $x \in U$, we have $\operatorname{Re}(g(x)) = f(x) > 0$.

 \Box Theorem 155

We point out some special cases:

Corollary 157. Suppose X is a Banach space; suppose $U \subseteq X$ is open and convex with $0 \notin U$. Then there is $f \in X^*$ such that $\operatorname{Re}(f(x)) > 0$ for all $x \in U$.

Corollary 158. Suppose X is a Banach space; suppose Y is a vector subspace of X^* that separates points. Suppose $U \subseteq X$ is convex and τ_Y -open with $0 \notin U$. Then there is $f \in Y$ such that $\operatorname{Re}(f(x)) > 0$ for all $x \in U$.

Proof. A linear $f: X \to \mathbb{F}$ is τ_Y -continuous if and only if $f \in Y$. \Box Corollary 158

Theorem 159 (Separation theorem). Suppose X is a LCTVS; suppose A and B are disjoint convex subsets of X with A open. Then there is $f \in X^*$ and $d \in \mathbb{R}$ such that $\operatorname{Re}(f(b)) \leq d < \operatorname{Re}(f(a))$ for all $b \in B$, all $a \in A$.

Proof. Let

$$C = A - B = \bigcup_{b \in B} (A - b)$$

Then C is open as the union of the open A - b. Also, $0 \notin C$ since $A \cap B = \emptyset$. Finally, C is convex because

$$t(a_1 - b_1) + (1 - t)(a_2 - b_2) = (ta_1 + (1 - t)a_2) - (tb_1 + (1 - t)b_2) \in A - B$$

By the hyperplane theorem, there is $f \in X^*$ such that $\operatorname{Re}(f(a)) - \operatorname{Re}(f(b)) = \operatorname{Re}(f(c)) > 0$ for all $c \in C$. So $\operatorname{Re}(f(b)) < \operatorname{Re}(f(a))$ for all $a \in A$, all $b \in B$. Then

$$\sup_{b \in B} \operatorname{Re}(f(b)) = d \le \inf_{a \in A} \operatorname{Re}(f(a))$$

But A is open; so $\operatorname{Re}(f(A))$ is open in $[c, \infty)$. So $\operatorname{Re}(f(A)) \subseteq (c, \infty)$.

 \Box Theorem 159

Corollary 160. If A, B are both open and convex with $A \cap B = \emptyset$, then there is $f \in X^*$ and $d \in \mathbb{R}$ such that $\operatorname{Re}(f(b)) < d < \operatorname{Re}(f(a))$ for all $a \in A$ and all $b \in B$.

Example 161. Let $X = (\ell_1, \tau_{c_0})$. Let

$$A = \left\{ x \in \ell_1 : \sum_{i=1}^{\infty} x_i = 0 \right\}$$

Then A is a norm-closed linear subspace and

$$\delta_1 = (1, 0, 0, \dots) \notin A$$

If $0 \neq y \in c_0$ with $y = (y_1, y_2, ...)$, then we have $y_{n_0} \neq 0$ for some $n_0 \in \mathbb{N}$. Then if $\lambda \in \mathbb{C}$, we have

$$x_m = \frac{\lambda}{y_{n_0}} (\delta_{n_0} - \delta_m) \in A$$

Then

$$y(x_m) = \frac{\lambda}{y_{n_0}} (y_{n_0} - y_m) \xrightarrow{m \to \infty} \lambda$$

So $y(A) = \mathbb{C} \ni y(\delta_1)$. So we have no hope of separation.

What went wrong? A is not τ_{c_0} -closed, because $x_m = \delta_1 - \delta_m \in A$ with

$$\sup_{m\geq 0} \|x_m\| = 2$$

and x_{m_i} has limit

$$= \begin{cases} 1 & i = 1 \\ 0 & \text{else} \end{cases}$$

So $x_m \xrightarrow{\tau_{c_0}} \delta_1 \notin A$.

Lemma 162. Suppose X is a LCTVS. Suppose $K \subseteq X$ is compact and $V \supseteq K$ is open. Then there is open $U \ni 0$ such that $K + U \subseteq V$.

Proof. For each $x \in K$, there is a finite set F_x of seminorms and $r_x > 0$ such that $U(F_x, r_x) + x \subseteq V$. (Recall that

$$U(F_x, r_x)(x) = \{ y : p(y - x) < r \text{ for all } p \in F_x \}$$

= $U(F_x, r_x)$
 $U(F_x, r_x) = \{ y : p(y) < r_x \text{ for all } p \in F_x \}$

are the basic open sets.) Then $\{x + U(F_x, \frac{r_x}{2}) : x \in K\}$ is an open cover of K; so there is a finite subcover

$$K \subseteq \bigcup_{i=1}^{m} \left\{ x_i + U\left(F_{x_i}, \frac{r_{x_i}}{2}\right) \right\}$$

Let

$$F = \bigcup_{i=1}^{n} F_{x_i}$$
$$r = \min_{1 \le i \le n} r_i$$

Suppose $y \in K$. Then there is i_0 such that $y \in x_{i_0} + U(F_{i_0}, \frac{r_{i_0}}{2})$. Let $U = U(F, \frac{r}{2})$; then $U \subseteq U(F_i, r_{\frac{i}{2}})$ for all i. So

$$y + U \subseteq x_{i_0} + U(F_{i_0}, \frac{r_{i_0}}{2}) + U(F, \frac{r}{2})$$
$$\subseteq x_{i_0} + U(F_{i_0}, r_{i_0})$$
$$\subseteq V$$

So $K + U \subseteq V$.

Corollary 163. Suppose X is a LCTVS; suppose $A, B \subseteq X$ are closed and convex, B is compact, and $A \cap B = \emptyset$. Then there is $f \in X^*$ such that

$$\sup_{a \in A} \operatorname{Re}(f(a)) = \alpha < \beta = \inf_{b \in B} \operatorname{Re}(f(b))$$

Proof. Well, A^c is open, and $B \subseteq A^c$. We may thus pick U such that $B + U \subseteq A^c$. Thus $(B + U) \cap A = \emptyset$. Note that B + U is convex as

$$t(b_1 + u_1) + (1 - t)(b_2 + u_2) = (tb_1 + (1 - t)b_2) + (tu_1 + (1 - t)u_2)$$

Thus, by the separation theorem, there is $f \in X$ and α such that

$$\sup_{a \in A} \operatorname{Re}(f(x)) = \alpha < \operatorname{Re}(b+u)$$

for all $b \in B$ and all $u \in U$. Since B is compact, this yields that

$$\inf_{b \in B} \operatorname{Re}(f(b)) = \beta > \alpha$$

 \Box Corollary 163

 \Box Lemma 162

Definition 164. Suppose X is a LCTVS, $f \in X^*$, and $\alpha \in \mathbb{R}$. Then

$$H_{f,\alpha} = \{ y : \operatorname{Re}(f(y)) \le \alpha \}$$

is called a *closed half-space*.

Corollary 165. Suppose X is a LCTVS; suppose $A \subseteq X$. Then

$$\overline{\operatorname{conv}(A)} = \bigcap_{H_{f,\alpha} \supseteq A} H_{f,\alpha}$$

(where conv(A) is the convex hull of A: the intersection of all convex sets containing A).

Proof. The RHS is closed and convex and contains A; so

$$\overline{\operatorname{conv}(A)} \subseteq \bigcap_{H_{f,\alpha} \supseteq A} H_{f,\alpha}$$

Let $x \notin \overline{\text{conv}(A)}$. Apply the last result with $\widetilde{A} = \overline{\text{conv}(A)}$ and $\widetilde{B} = \{x\}$, which is compact. Then there is $f_0 \in X^*$ such that

$$\sup_{a \in A} \operatorname{Re}(f_0(a)) \le \alpha_0 < \beta = \operatorname{Re}(f_0(x))$$

Thus $A \subseteq H_{f_0,\alpha}$ and $x \notin H_{f,\alpha}$.oSo

$$x \notin \bigcap_{H_{f,\alpha} \supseteq A} H_{f,\alpha}$$

 So

$$\bigcap_{H_{f,\alpha}\supseteq A}\subseteq \overline{\operatorname{conv}(A)}$$

 \Box Corollary 165

Corollary 166. Suppose X is a LCTVS. Then X^* separates points.

Proof. Suppose $x_0, x_1 \in X$ have $x_0 \neq x_1$. Let

$$A = \{ x_0 \}$$
$$B = \{ x_1 \}$$

Then there is $H_{f,\alpha} \supseteq A$ such that $x_1 \notin H_{f,\alpha}$. By a previous corollary, we get that there is $f \in X^*$ such that $\operatorname{Re}(f(x_0)) = \alpha \neq \operatorname{Re}(f(x_1))$.

Proposition 167. Suppose X is a normed linear space.

- 1. Every norm-closed convex set is weakly closed.
- 2. Every norm-closed ball in X^* is weak-* closed.

Proof.

1. Suppose $C \subseteq X$ is norm-closed and convex. Then

$$C = \bigcap_{H_{f,\alpha} \supseteq C} H_{f,\alpha}$$

But each $H_{f,\alpha}$ is weakly closed. So C is weakly closed as the intersection of weakly closed sets.

2. Suppose $f_0 \in X^*$. Then

$$\overline{b_{r_0}(f_0)} = \{ y : \|y - f_0\| \le r \}$$

= $\{ y : |\widehat{x}(y - f_0)| \le r \text{ for all } x \in X, \|x\| \le 1 \}$
= $\bigcap_{\|x\| \le 1} \{ y : |(y - f_0)(x)| \le r \}$

But $\{y : |(y - f_0)(x)| \le r\} = \hat{x}^{-1}(\overline{\mathbb{D}_r})$ is closed. So $\overline{b_{r_0}(f_0)}$ is closed as the intersection of closed sets. \Box Proposition 167

Example 168. Let

$$A = \{ x \in \ell^1 : \sum_{i=1}^{\infty} x_i = 0 \}$$

Then A is not weak-*-closed. Last time we showed that if $f \in c_0$ then $f(A) = \mathbb{C}$. So $\overline{\operatorname{conv}(A)} = \ell^1$ (where the closure is taken in the weak-* topology).

Theorem 169 (Goldstine's theorem). Suppose X is a normed linear space. Then $b_1(X)$ is weak-* dense in $b_1(X^{**})$. i.e. The weak-* closure

$$\{\widehat{x}: x \in X, \|x\| \le 1\} = b_1(X^{**})$$

Proof. Suppose not. Then there is $x^{**} \in b_1(X^{**})$ and $x^{**} \notin A$ where A is the weak-* closure $A = \overline{b_1(X)}$. Then $\{x^{**}\} = B$ is compact and convex and A is a convex, weak-*-closed set. So there is f that is weak-* continuous (i.e. $f \in X^*$) such that

$$\sup_{a \in A} \operatorname{Re}(f(a)) = \alpha < \operatorname{Re}(f(x^{**}))$$

Then in particular we have

$$||f|| = \sup_{x \in b_1(X)} \operatorname{Re}(f(x)) \le \alpha$$

Since $||f|| \leq \alpha$ and $x^{**} \in b_1(X^{**})$. So $|\langle f, x^{**} \rangle| \leq ||x^{**}|| ||f|| \leq \alpha$. So $\operatorname{Re}(f(x^{**})) \leq \alpha$, a contradiction. \Box Theorem 169

Hence if $\psi \in b_1(X^{**})$ then there is a net $(x_{\lambda} : \lambda \in \Lambda)$ in X converging to ψ in the weak-* topology; i.e. $(f(x_{\lambda}) : \lambda \in \Lambda) \to \psi(f)$ for all $f \in X^*$.

Theorem 170 (Banach-Alaoglu). Suppose X is a Banach space. Then the closed unit ball of X^* is weak-*-compact.

Proof. For each $x \in X$, let $\mathbb{D}_x = \{ z \in \mathbb{C} : |z| \le ||x|| \}$. Let

$$\mathcal{D} = \prod_{x \in X} \mathbb{D}_x$$

which is compact by Tychonoff's theorem. Define $\Phi: (b_1(X^*), \tau$ the weak-* topology) $\to \mathcal{D}$ by $\Phi(f) = (f(x) : x \in X)$.

- 1. Φ is injective, since $\Phi(f) = \Phi(g)$ if and only if f(x) = g(x) for all x; i.e. f = g.
- 2. Φ is continuous: a basic open set in \mathcal{D} is given by

$$U = \{ d \in \mathcal{D} : d(x_i) \in U_i \}$$

for $x_1, \ldots, x_n \in X$ and U_i open in \mathbb{D}_{x_i} . We need to show $\Phi^{-1}(U)$ is open in $(b_1(X^*), \tau)$. But

$$\Phi^{-1}(U) = \{ f : f(x_i) \in U_i \text{ for all } 1 \le i \le n \}$$
$$= \{ f : \hat{x}_i(f) \in U_i \text{ for all } 1 \le i \le n \}$$
$$= \bigcap_{i=1}^n \hat{x}_i^{-1}(U_i)$$

which is open as the intersection of open sets.

3. $\Phi(b_1(X^*)) \subseteq \mathcal{D}$ is closed. To see this, we use nets. Take a net $(f_\alpha : \alpha \in \Lambda)$ in $b_1(X^*)$ such that $(\Phi(f_\alpha) : \alpha \in \Lambda) \to d \in \mathcal{D}$. Define $f : X \to \mathbb{C}$ by

$$f(x) = d_x = \lim_{\alpha \in \Lambda} f_\alpha(x)$$

It's easy to see that f is linear. For all x, we have

$$f(x) = \lim_{\alpha \in \Lambda} f_{\alpha}(x)$$

and $f_{\alpha}(x) \in \mathbb{D}_x$. So $|f_{\alpha}(x)| \leq ||x||$; so $|f(x)| \leq ||x||$, and $||f|| \leq 1$. So $f \in b_1(X^*)$. So $\Phi(b_1(X^*))$ is compact.

4. $\Phi: (b_1(X^*), \tau) \to \Phi(b_1(X^*))$, where the latter is compact; we now show that $\Phi^{-1}: \Phi(b_1(X^*)) \to (b_1(X^*), \tau)$ is continuous. We use nets: let $(d_\alpha : \alpha \in \Lambda)$ be a net in $\Phi(b_1(X^*))$ converging to $d \in \Phi(b_1(X^*))$. For each α , we can find $f_\alpha \in b_1(X^*)$ such that $\Phi(f_\alpha) = d_\alpha$; likewise, we can find $f \in b_1(X^*)$ such that $d = \Phi(f)$. We wish to show that $(f_\alpha : \alpha \in \Lambda) \xrightarrow{\text{wk}^*} f$. But $(d_\alpha : \alpha \in \Lambda) \to d$ in \mathcal{D}

$$(d_{\alpha}: \alpha \in \Lambda) \to d \text{ in } \mathcal{D} \iff (d_{\alpha}(x): \alpha \in \Lambda) \to d(x) \text{ for all } x \in X$$
$$\iff (f_{\alpha}(x): \alpha \in \Lambda) \to f(x) \text{ for all } x \in X$$
$$\iff (f_{\alpha}: \alpha \in \Lambda) \xrightarrow{\text{wk}^{*}} f$$

 \Box Theorem 170

Corollary 171. If X is a reflexive Banach space then norm-closed, bounded, convex sets in X are weakly compact.

Proof. Suppose X is reflexive; i.e. $\widehat{X} = X^{**}$. Suppose $A \subseteq X$ is norm-closed, bounded, and convex. Then Proposition 167 yields that A is weakly closed. By the Banach-Alaoglu, we have that $b_1(X^{**}) = \{\widehat{x} : \|\widehat{x} \le 1\|\}$ is weak-*-compact. So $\{\widehat{x} : \|\widehat{x} \le r\|\}$ is weak-*-compact. Pick r big enough so that $A \subseteq \{\widehat{x} : \|\widehat{x}\| \le r\}$. But A is then a weak-*-closed subset of a weak-*-compact set. So A is weak-*-compact. \Box Corollary 171

Corollary 172. Suppose X is a Banach space. Then $b_1(X)$ is weakly compact if and only if X is reflexive.

Proof.

(\Leftarrow) Suppose $\widehat{X} = X^{**}$. Then

$$(b_1(X), \text{weak}) = (b_1(X), \text{weak-*})$$

= $(b_1(X^{**}), \text{weak-*})$

which is compact by Banach-Alaoglu.

 (\implies) Suppose $b_1(X)$ is weakly compact. By Goldstine, we have that $b_1(\widehat{X})$ is weak-*-dense in $b_1(X^{**})$. But $(b_1(\widehat{X}), \text{weak-*}) = (b_1(X), \text{weak})$ is compact, and thus closed in $b_1(X^{**})$. So $b_1(\widehat{X}) = b_1(X^{**})$.

 \Box Corollary 172

Definition 173. Suppose V is a vector space; suppose $K \subseteq V$ is *convex*. We say that $F \subseteq K$ is a *face* if for all $x, y \in K$ and all 0 < t < 1 such that $tx + (1 - t)y \in F$, we have $x, y \in F$. We say $x \in K$ is an *extreme* point if $\{x\}$ is a face.

Example 174.

- 1. Consider $K = \{ (x, y) \in \mathbb{R}^2 : ||(x, y)|| \le 1, y \ge 0 \}$. The x-axis is a face, and the extreme points are all of the boundary besides the interior of the x-axis.
- 2. In $(\mathbb{R}^2, \|\cdot\|_{\infty})$, let $K = b_1$. We then get a square each of whose sides is a face, and whose extreme points are $\{(\pm_1 1, \pm_2 1)\}$.

- 3. Similarly with $(\mathbb{R}^2, \|\cdot, \infty\|)$.
- 4. We say $(X, \|\cdot\|)$ is strictly convex if whenever

$$1 = \|x\| = \|y\| = \left\|\frac{x+y}{2}\right|$$

we have x = y. If $(X, \|\cdot\|)$ is strictly convex, then the extreme points of $b_1(X)$ are given by $\text{Ext}(b_1(X)) = \{x : \|x\| = 1\}.$

Proof. If ||x|| = 1 and x = ty + (1 - t)z for 0 < t < 1 and $z \in b_1(X)$, then $1 = ||x|| \le t ||y|| + (1 - t)||z||$. So ||y|| = ||z|| = 1. Then we can find z' such that

$$\frac{1}{2}y + \frac{1}{2}z' = x$$

So y = z' = x. So z = x.

5. Recall from the proof of Minkowski that if 1 and

$$\frac{|a|^p + |b|^p}{2} = \left|\frac{a+b}{2}\right|^p$$

then a = b. Consider now L^p for $1 . Suppose <math>||f||_p = ||g||_p = 1$ and

$$\left\|\frac{f+g}{2}\right\|_p = 1$$

Then

$$\int_0^1 \frac{|f|^p + |g|^p}{2} = \int_0^1 \left| \frac{f+g}{2} \right|^p$$
$$\frac{|f(x)|^p + |g(x)|^p}{2} = \left| \frac{f(x) + g(x)}{2} \right|^p$$

 \mathbf{SO}

almost everywhere, and f(x) = g(x) almost everywhere. So f = g in L^p . So $\text{Ext}(b_1(L^p)) = \text{is the unit}$ sphere, for 1 .

6.
$$\operatorname{Ext}(b(L^1)) = \emptyset$$
.

Proof. Let $||f||_1 = 1$. Then

$$\int_0^1 |f(t)| dt = 1$$

Let

$$g(s) = \int_0^s |f(t)| dt$$

We know that g is continuous and g(0) = 0 and g(1) = 1. Thus there exists s_0 such that $g(s_0) = \frac{1}{2}$. Let

$$f_1(t) = 2f(t)\chi_{[0,s_0)}(t)$$

$$f_2(t) = 2f(t)\chi_{[s_0,1]}(t)$$

Then

$$\int_{0}^{1} |f_{1}(t)| dt = \int_{0}^{s_{0}} 2|f(t)| dt = 1$$
$$\int_{0}^{1} |f_{2}(t)| dt = \int_{s_{0}}^{1} 2|f(t)| dt = 1$$

and

So $||f_1||_1 = ||f_2||_1$ and

$$\frac{f_1 + f_2}{2} = f$$

But neither is equal to f.

7. $\operatorname{Ext}(b_1(c_0)) = \emptyset$.

Proof. Let $x = (x_1, x_2, ...,) \in c_0$ with ||x|| = 1. Because

$$\lim_{n \to \infty} x_n =$$

0

we may pick n_0 such that $|x_{n_0}| < \frac{1}{2}$. Let

 $y = (x_1, \dots, x_{n_0-1}, x_{n_0} + \varepsilon, x_{n_0+1}, \dots)$ $z = (x_1, \dots, x_{n_0-1}, x_{n_0} - \varepsilon, x_{n_0+1}, \dots)$

for small ε . Then ||x|| = ||y|| = ||z|| = 1 and

$$\frac{y+z}{2} = x$$

but $y \neq x$ and $z \neq x$.

Lemma 175. Suppose X is a LCTVS and $K \subseteq X$ is compact and convex. Suppose $f \in X^*$ such that $\sup \{ \operatorname{Re}(f(x)) : x \in K \} = \alpha$. Then $F = \{ x \in K : \operatorname{Re}(f(x)) = \alpha \}$ is a face.

Proof. Suppose x = ty + (1 - t)z for $y, z \in K$. Then

$$\alpha = t \operatorname{Re}(f(y)) + (1-t) \operatorname{Re}(f(z))$$

So $\operatorname{Re}(f(y)) = \operatorname{Re}(f(z)) = \alpha$. So $y, z \in F$.

Lemma 176. Suppose X is a LCTVS and $K \subseteq X$ is compact and convex. Suppose $F \subseteq K$ is a closed face. Then $F \cap \text{Ext}(K) \neq \emptyset$.

Proof. Let \mathcal{F} be the collection of all non-empty closed faces $\widetilde{F} \subseteq F$ ordered by \supseteq . Suppose $\mathcal{C} = \{F_{\alpha}\}$ is a chain in \mathcal{F} . Each F_{α} is a closed subset of K, which is compact. So each F_{α} is compact. So

$$\bigcap_{\alpha} F_{\alpha} \neq \emptyset$$

by the finite intersection property, and this is an upper bound of \mathcal{C} . By Zorn's lemma there is $\widetilde{F} \subseteq F$ such that \widetilde{F} is a minimal closed, non-empty face. Suppose for contradiction that \widetilde{F} had more than one point $x_0, y_0 \in F$. By separation, we would then have that there is $f \in X^*$ such that $\operatorname{Re}(f(y_0)) < \operatorname{Re}(f(x_0))$. Let

$$F_1 = \{ x \in \widetilde{F} : \operatorname{Re}(f(x)) = \sup \text{ over } \widetilde{F} \}$$

This is a face by the previous lemma, but $y_0 \notin F_1$, contradicting the minimality of \tilde{F} . So $\tilde{F} = \{\tilde{x}\}$ is an extreme point. \Box Lemma 176

Theorem 177 (Krein-Milman). Suppose X is a LCTVS. Suppose $\emptyset \neq K \subseteq X$ is compact and convex. Then $\operatorname{conv}(\operatorname{Ext}(K)) = K$.

Proof.

 (\subseteq) Clear.

 (\supseteq) Suppose $x_0 \in K$ but $x_0 \notin \overline{\text{conv}(\text{Ext}(K))}$. Separate by $f \in X^*$. Then

$$\sup\{\operatorname{Re}(f(x)): x \in \overline{\operatorname{conv}(\operatorname{Ext}(K))}\} = \alpha < \operatorname{Re}(f(x_0)) < \beta = \sup\{\operatorname{Re}(f(x)): x \in K\}$$

But $F = \{x \in K : \operatorname{Re}(f(x)) = \beta\}$ is a face and there is extreme $y \in F$. Then $\operatorname{Re}(f(y)) = \beta > \alpha$, a contradiction.

 \Box Theorem 177

 \Box Lemma 175

Corollary 178 (Krein-Milman). The unit ball of X^* is the weak-*-closed convex hull of its extreme points.

Proof. $b_1(X^*) = K$ is closed, convex, and compact in the weak-* topology. The theorem the yields that we are done. □ Corollary 178

Corollary 179. Suppose X is a Banach space. If $Ext(b_1(X)) = \emptyset$, then there does not exist Y such that $X = Y^*$.

Thus c_0 and L^1 cannot be the dual of any Banach space.

Example 180. $(C([0,1]), \|\cdot\|_{\infty})^*$ can be identified with the regular bounded Borel measures.

$$Ext(b_1(M[0,1])) = \{ exp(i\theta)\delta_x : x \in [0,1] \}$$

(where $\delta_x(f) = f(x)$). Hence by Krein-Milman we have if $\mu([0,1]) = 1$ then μ is a weak-* limit of convex combinations of $\exp(i\theta)\delta_x$.

Example 181. We exhibit a compact convex set C in \mathbb{R}^3 such that Ext(C) is not closed. Let C_0 be the circle in \mathbb{R}^3 with (0,0,0) and (0,0,1) diametrically opposite. Let L be the line segment (-1,0,0) to (1,0,0) Let C be the convex hull of $C_0 \cup L$. Then $\text{Ext}(C) = \{ (\pm 1, 0, 0) \} \cup C_0 \setminus \{ (0, 0, 0) \}.$

Theorem 182 (Stone-Weierstrass). Suppose A is a closed subalgebra of $C_{\mathbb{R}}(X)$ where X is compact and Hausdorff. Suppose A separates points; i.e. suppose that for all $x, y \in X$ with $x \neq y$ there is $f \in A$ such that $f(x) \neq f(y)$. Suppose there is $g \in A$ such that g(x) > 0 for all $x \in X$. Then $A = C_{\mathbb{R}}(X)$.

Proof. Suppose for contradiction that $A \subseteq C_{\mathbb{R}}(X)$. Then by Hahn-Banach we have that there is $\varphi \in C_{\mathbb{R}}(X)^*$ such that $\varphi \upharpoonright A = 0$ and $\varphi \neq 0$. Let

$$K = b_1(C_{\mathbb{R}}(X)^*) \cap A^{\perp} = \{ \varphi \in C_{\mathbb{R}}(X)^* : \varphi \upharpoonright A = 0, \|\varphi\| \le 1 \}$$

Then K is a bounded, convex set in $C_{\mathbb{R}}(X)^*$; so, by the Krein-Milman theorem, we have that $b_1(C_{\mathbb{R}}(X)^*)$ is weak-*-compact. But A^{\perp} is weak-*-closed, since if $(\varphi_{\lambda} : \lambda \in \Lambda)$ is a net in $C_{\mathbb{R}}(X)^*$ converging to φ in the weak-* topology and $a \in A$, then

$$\varphi(a) = \lim_{\lambda \in \Lambda} \varphi_{\lambda}(a) = 0$$

So K is weak-*-compact. Again by Krein-Milman, we then have that K has an extreme point ψ . But then $\psi \neq 0$ since $\pm \frac{\varphi}{\|\varphi\|} \in K$, and

$$0 = \frac{1}{2} \left(\frac{\varphi}{\|\varphi\|} + \frac{-\varphi}{\|\varphi\|} \right)$$

So 0 is not extreme, and $\psi \neq 0$.

Now, by the Riesz representation theorem there is a finite real regular Borel measure μ such that

$$\psi(f) = \int f d\mu$$

for all $f \in C_{\mathbb{R}}(X)$.

Claim 183.
$$\operatorname{supp}(\mu) = \{x_0\}$$
. (Here $\operatorname{supp}(\mu) = \{x \in X : |\mu|(U) > 0 \text{ for all } U \in \mathcal{O}(x)\}$.)

Proof. If $\operatorname{supp}(\mu) = Y$ is not a single point, then there is $f \in A$ such that $f \upharpoonright Y$ is non-constant. Without loss of generality we may assume that 0 < f(x) < 1 for all $x \in X$; otherwise we add a multiple of g to f to make it everywhere positive and then scale to get that it's less than 1; i.e. find c, d such that $0 < (\frac{cg+f}{d})(x) < 1$ for all $x \in X$. (Note that $\frac{cg+f}{d}$ is still non-constant on Y.) Let $\mu_1 = f\mu$; let $\mu_2 = (1 - f)\mu$. Then for any $h \in C_{\mathbb{R}}(X)$ we have

$$\int h d\mu_1 = \int h f d\mu$$

Then if $h \in A$, we have $hf \in A$, and

$$0 = \psi(hf) = \int hfd\mu = \int hd\mu_1$$

Therefore $\mu_1 \in A^{\perp}$. Similarly, we get that $\mu_2 \in A^{\perp}$. But now

$$\|\mu_{1}\| + \|\mu_{2}\| = \int_{X} d|\mu_{1}| + \int_{X} d|\mu_{2}|$$

= $\int_{X} f d|\mu| + \int_{X} (1 - f) d|\mu|$
= $\int_{X} d|\mu|$
= $\|\mu\|$
= $\|\psi\|$
= $\|\psi\|$

(We get $\|\psi\| = 1$ since if $\|\psi\| = r < 1$, then $\frac{1}{r}\psi \in K$ and $\psi = r(\frac{1}{r}\psi) + (1-r)0$ is not an extreme point.) Observe now that $\frac{\mu_1}{\|\mu_1\|}, \frac{\mu_2}{\|\mu_2\|} \in K$ and $\mu = fd\mu + (1-f)d\mu = \|\mu_1\|\frac{\mu_1}{\|\mu_1\|} + \|\mu_2\|\frac{\mu_2}{\|\mu_2\|}$; so μ is not extreme, and ψ is not extreme, a contradiction.

So supp $(\mu) = \{x_0\}$ for some $x_0 \in X$; so $\mu = \pm \delta_{x_0}$, where δ_x is the point mass:

$$\delta_x(A) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

But then

$$0 = \psi(g) = \int g d\mu = \pm \int g d\delta_{x_0} = \pm g(x_0) \neq 0$$

a contradiction.

Operator theory $\mathbf{5}$

Definition 184. Suppose X and Y are Banach spaces; suppose $T \in \mathcal{B}(X,Y)$. Then there is a map $T^* \in \mathcal{B}(Y^*, X^*)$ called the *adjoint* (or *transpose*) of T given by $(T^*\varphi)(x) = \varphi(Tx)$ for $\varphi \in Y^*$ and $x \in X$.

Theorem 185. Suppose X, Y, Z are Banach spaces; suppose $T \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(Y, Z)$. Then

- 1. $||T^*|| = ||T||$.
- 2. $T \mapsto T^*$ is linear.
- 3. $I_X^* = I_{X^*}$.
- 4. $(ST)^* = T^*S^*$.
- 5. T^* is weak-*-weak-*-continuous.
- 6. $T^{**} \upharpoonright X = T$.

Proof. For convenience, given $\varphi \in X^*$ and $x \in X$, we write $\langle x, \varphi \rangle = \varphi(x)$.

1. Note that

$$\begin{split} \|T^*\| &= \sup_{\substack{\varphi \in Y^* \\ \|\varphi\| \le 1}} \\ &= \sup_{\substack{\varphi \in Y^* \\ \|\varphi\| \le 1}} \sup_{\substack{x \in X \\ \|x\| \le 1}} |T^*\psi(x)| \\ &= \sup_{\substack{x \in X \\ \|x\| \le 1}} \sup_{\substack{\varphi \in Y^* \\ \|x\| \le 1}} |T^*\psi(x)| \\ &= \sup_{\substack{x \in X \\ \|x\| \le 1}} \|Tx\| \\ &= \|T\| \end{split}$$

 \Box Theorem 182

by Hahn-Banach.

2. Suppose $a, b \in \mathbb{F}$ and $S, T \in \mathcal{B}(X, Y)$. Suppose $\varphi \in Y^*$ and $x \in X$. Then

$$\begin{aligned} ((aS+bT)^*\varphi)(x) &= \varphi((aS+bT)x) \\ &= a\varphi(Sx) + b\varphi(Tx) \\ &= ((aS^*+bT^*)\varphi)(x) \end{aligned}$$

So $T \mapsto T^*$ is linear.

3. Suppose $\varphi \in X^*$. Then, for $x \in X$, we have

$$(I_X^*\varphi)(x) = \varphi(Ix) = \varphi(x) = (I_{X^*}\varphi)(x)$$

So $I_X^* = I_{X^*}$.

4. Suppose $w \in Z^*$ and $x \in X$. Then

$$((ST)^*w)(x) = w(S(Tx)) = (S^*w)(Tx) = (T^*S^*w)(x)$$

So $(ST)^* = T^*S^*$.

5. Note that $T^*: Y^* \to X^*$ is norm-continuous. Suppose now that $(\psi_{\lambda} : \lambda \in \Lambda)$ is a net in Y^* converging to ψ in the weak-* topology. The for all $x \in X$ we have

$$(T^*\psi_\lambda)(x) = \psi_\lambda(Tx) \to \psi(Tx) = (T^*\psi)(x)$$

So $(T\psi_{\lambda} : \lambda \in \Lambda) \xrightarrow{w^*} T^*\psi$, and T^* is weak-*-weak-*-continuous

6. Note that $T \in \mathcal{B}(X, Y)$ implies that $T^* \in B(Y^*, X^*)$ and $T^{**} \in B(X^{**}, Y^{**})$. Suppose $x \in X$ and $\psi \in Y^*$. Then

$$(T^{**}\widehat{x})(\psi) = \widehat{x}(T^*\psi) = (T^*\psi)(x) = \psi(Tx) = Tx(\psi)$$

which we colloquially interpret to mean $T^{**} \upharpoonright X = T$.

 \Box Theorem 185

Let X be an n-dimensional Banach space with $n \in \mathbb{N}$; let e_1, \ldots, e_n be a basis. Let Y be an m-dimensional Banach space with $m \in \mathbb{N}$; let f_1, \ldots, f_m be a basis. Then X^* has dual basis $\varepsilon_1, \ldots, \varepsilon_n$ where

$$\varepsilon_j(e_i) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

and similarly Y^* has dual basis $\delta_1, \ldots, \delta_m$. Let $T \in \mathcal{B}(X, Y)$. Then T has matrix $[t_{ij}]$ and

$$Te_j = \sum_{i=1}^m t_{ij} f_i$$

Then $T^* \in \mathcal{B}(Y^*, X^*)$ has matrix $[s_{ij}]$, and

$$T^*\delta_j = \sum_{i=1}^n s_{ij}\varepsilon_i$$

But then

$$s_{ij} = (T^*\delta_j)(e_i) = \delta_j(Te_i) = t_{ji}$$

So the matrix of T is the transpose of that of T^* .

Proposition 186. Suppose $T: X \to Y$ is linear. Then T is bounded if and only if T is weak-weak-continuous.

Proof.

 (\Longrightarrow) Suppose T is bounded; suppose $(x_{\alpha} : \alpha \in \Lambda) \xrightarrow{w} x$. Then

$$\psi(Tx_{\alpha}) = (T^*\psi)(x_{\alpha}) \to (T^*\psi)(x) = \psi(Tx)$$

So $(Tx_{\alpha} : \alpha \in \Lambda) \xrightarrow{w} Tx$ is weak-weak-continuous.

(\Leftarrow) Suppose T is weak-weak-continuous. Then $\psi \circ T$ is continuous for all $\psi \in Y^*$. So, if $\psi \in Y^*$, then

$$\sup_{\|x\| \le 1} |\psi(Tx)| = \sup_{\|x\| \le 1} |(\psi \circ T)(x)| = \|\psi \circ T\| < \infty$$

But $(\psi \circ T)(x) = (T^*\psi)(x)$; so $||T^*\psi|| = ||\psi \circ T|| < \infty$. (Notice that T^* is defined even if T is not bounded.)

Consider $\{Tx : x \in X, \|x\| \le 1\} \subseteq Y \subseteq Y^{**}$. We then have

$$\sup_{\substack{x \in X \\ \|x\| \le 1}} |\hat{Tx}(\psi)| = \sup_{\substack{x \in X \\ \|x\| \le 1}} |\psi(Tx)|$$
$$= \|\psi \circ T\|$$
$$< \infty$$

Then by Banach-Steinhaus we have

$$||T|| = \sup_{\substack{x \in X \\ ||x|| \le 1}} ||Tx|| = \sup_{\substack{x \in X \\ ||x|| \le 1}} ||\widehat{Tx}|| < \infty$$

So T is bounded.

□ Proposition 186

Proposition 187. $T: Y^* \to X^*$ is weak-*-continuous if and only if there is $S \in \mathcal{B}(X, Y)$ such that $T = S^*$.

TODO 1. Conditions on T?

Proof.

 (\implies)

TODO 2. This.

 (\Leftarrow) Part 5 of the previous theorem.

\Box TODO 1

Example 188. Consider the inclusion map $i_X \colon X \to X^{**}$ given by $i_X(x) = \hat{x}$. Then $i_X^* \colon X^{***} \to X^*$. If $\Phi \in X^{***} \text{ and } x \in X, \text{ we have } i_X^*(\Phi)(x) = \Phi(i_X(x)) = \Phi(\widehat{x}). \text{ So } i_X^*(\Phi) = \Phi \upharpoonright X.$ We also have $i_{X^*} \colon X^* \to X^{***}$. Define $p = i_{X^*} \circ i_X^* \colon X^{***} \to X^{***}$; then

$$p(\Phi) = i_{x^*}(\Phi \upharpoonright X) = \Phi \upharpoonright X \in X^*$$

Also $i_X^* \circ i_{X^*} \colon X^* \to X^*$. For $\varphi \in X^*$ and $x \in X$ we have

$$(i_X^*i_{X^*}(\varphi))(x) = (i_{X^*}\varphi)(i_X(x)) = \widehat{\varphi}(x)$$

So $i_X^* i_{X^*} = I_{X^*}$. But then

$$p^2 = i_{X^*}(i_X^*i_{X^*})i_X^* = i_{X^*}i_X^* = p$$

So p is a projection of norm 1.

$$||p|| \le ||i_{X^*}|| ||i_{X^*}|| = 1 \cdot 1 = 1$$

and $\operatorname{Ran}(p) = \operatorname{Ran}(i_{X^*}) = \widehat{X^*}$. So p projects X^{***} onto $\widehat{X^*}$.

5.1 Hilbert space adjoint

Proposition 189. Suppose \mathcal{H} is a Hilbert space and $[\cdot, \cdot]$ is a sesquilinear form which is bounded (i.e. $|[x,y]| \leq C ||x|| ||y||$ for all $x, y \in \mathcal{H}$). Then there is a unique $B \in \mathcal{B}(\mathcal{H})$ such that $[x,y] = \langle x, By \rangle$.

Proof. Fix $y \in \mathcal{H}$. Define $\Phi_y(x) = [x, y]$; then Φ_y is a linear functional, and

$$\|\Phi_y\| = \sup_{\|x\| \le 1} |[x, y]| \le C \|y\|$$

So $\Phi_y \in \mathcal{H}^*$. So there is a unique $z_y \in \mathcal{H}$ such that $[x, y] = \langle x, z_y \rangle$ and $||z_y|| = ||\Phi_y|| \le C||y||$. Define $By = z_y$; then $||B|| \le C$, and B is bounded.

To see linearity, suppose $y_1, y_2 \in \mathcal{H}, a, b \in \mathbb{F}$. Then for any $x \in \mathcal{H}$ we have

$$\begin{aligned} \langle x, B(ay_1 + by_2) \rangle &= [x, ay_1 + by_2] \\ &= \overline{a}[x, y_1] + \overline{b}[x, y_2] \\ &= \overline{a} \langle x, By_1 \rangle + \overline{b} \langle x, By_2 \rangle \\ &= \langle x, aBy_1 + bBy_2 \rangle \end{aligned}$$

 So

 $0 = \langle x, B(Ay_1 + by_2) - (aBy_1 + bBy_2) \rangle$

for all $x \in \mathcal{H}$. So $B(ay_1 + by_2) = aBy_1 + bBy_2$, and B is linear.

Definition 190. If \mathcal{H} is a Hilbert space and $T \in \mathcal{B}(\mathcal{H})$, then the *Hilbert space adjoint of* T is T^* the unique element of $\mathcal{B}(\mathcal{H})$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in \mathcal{H}$.

Remark 191. To see that this exists, define $[x, y] = \langle Tx, y \rangle$; then by the above proposition there is a unique $B \in \mathcal{B}(\mathcal{H})$ such that $\langle Tx, y \rangle = \langle x, By \rangle$; then $B = T^*$.

Proposition 192.

1.
$$||T^*|| = ||T||$$

 $2. \ (aS+bT)^* = \overline{a}S^* + \overline{b}T^*.$

3.
$$(ST)^* = T^*S^*$$
.

4.
$$T^{**} = T$$
.

Proof. Omitted.

Example 193. Consider $L^2(0,1)$ with $M_x(f) = xf$. What is $||M_x||$? Well,

$$\|xf\|_{2}^{2} = \int_{0}^{1} x^{2} |f(x)|^{2} dx$$
$$\leq \int_{0}^{1} |f(x)|^{2} dx$$
$$= \|f\|^{2}$$

So $||M_x|| \leq 1$. Define

$$\chi_n(x) = \begin{cases} 0 & 0 \le x \le 1 - \frac{1}{n} \\ \sqrt{n} & 1 - \frac{1}{n} \le x \le 1 \end{cases}$$

Then

$$||x_n||^2 = \int_0^1 |\chi_n|^2 = \int_{1-\frac{1}{n}}^1 n dx = 1$$

 \Box Proposition 192

 \Box Proposition 189

and

$$\|M_x x_n\|^2 = \int_{1-\frac{1}{n}}^1 (x\sqrt{n})^2 dx$$

= $(n\frac{x^3}{3})|_{1-\frac{1}{n}}^1$
= $\frac{n}{3} \left(1 - \left(1 - \frac{1}{n}\right)^3 \right)$
= $\frac{n}{3} \left(\frac{3}{n} - \frac{3}{n^2} + \frac{1}{n^3}\right)$
= $1 - \frac{3}{n} + \frac{1}{3n^2}$

 M_x is injective since if xf = xg almost everywhere then f = g almost everywhere. But $1 \notin \operatorname{Ran}(M_x)$ because $x^{-1} \notin L^2(0,1)$. So it's not invertible, but has no kernel. Does it have eigenvalues?

Suppose $xf = \lambda f$ for some $\lambda \in \mathbb{C}$. Then $(x - \lambda)f = 0$ almost everywhere. But $x - \lambda \neq 0$ almost everywhere. So f = 0. So it has no eigenvalues.

Definition 194. We say $T \in \mathcal{B}(X, Y)$ is bounded below if there is c > 0 such that $||Tx|| \ge c||x||$.

Example 195.

1. M_x is not bounded below: let

$$y_n(x) \begin{cases} \sqrt{n} & 0 \le x \le \frac{1}{n} \\ 0 & x > \frac{1}{n} \end{cases}$$

Then $||y_n|| = 1$ but

$$\|xy_n\|^2 = \int_0^{\frac{1}{n}} (x\sqrt{n})^2 dx = n \frac{x^3}{3} |_0^{\frac{1}{n}} = \frac{1}{3n^2}$$

- 2. Let $D: \ell_1 \to \ell_1$ be $De_n = \frac{1}{n}e_n$. Then $D((x_1, x_2, x_3, \dots)) = (\frac{x_1}{1}, \frac{x_2}{2}, \frac{x_3}{3}, \dots)$. Then D is injective but is not bounded below; it is also not surjective, as $(1, \frac{1}{4}, \frac{1}{9}, \dots) \in \ell^1$ but $(1, \frac{1}{2}, \frac{1}{3}, \dots) \notin \ell^1$.
- 3. Consider $\mathcal{H} = \ell_2$ with orthonormal basis e_1, e_2, \ldots Consider the shift $Se_n = e_{n+1}$. Then $S((x_1, x_2, x_3, \ldots)) = (0, x_1, x_2, x_3, \ldots)$. We have ||Sx|| = ||x||, so this is an isometry, and in particular is injective. It is also therefore bounded below by 1. It is not surjective: $\operatorname{Ran}(S) = (\mathbb{C}e_1)^{\perp}$.

We can consider its Hilbert space adjoint S^* :

$$\langle x, S^*y \rangle = \langle Sx, y \rangle$$

= $\langle (0, x_1, x_2, \dots), (y_1, y_2, \dots) \rangle$
= $\sum_{n=1}^{\infty} x_n \overline{y_{n+1}}$
= $\langle (x_1, x_2, \dots), (y_2, y_3, y_4, \dots) \rangle$

So $S^*((y_1, y_2, y_3, \dots)) = (y_2, y_3, y_4, \dots)$. i.e. $S^*e_1 = 0$ and $S^*e_{n+1} = e_n$ for $n \ge 1$. Also ker $(S^*) = \mathbb{C}e_1$, but S^* is surjective.

Now, neither S nor S^* is invertible. But

$$(S^*S)((x_1, x_2, x_3, \dots)) = S^*(0, x_1, x_2, x_3, \dots)$$

= (x_1, x_2, x_3, \dots)

So $S^*S = I$. But

$$(SS^*)((x_1, x_2, x_3, \dots)) = S((x_2, x_3, x_4, \dots))$$

= (0, x_2, x_3, x_4, \dots)

So $SS^* \neq I$.

Lemma 196. Suppose $T \in \mathcal{B}(X, Y)$. Then $(\ker(T))^{\perp} = \overline{\operatorname{Ran}(T^*)}$ (where the closure is taken in the weak-* topology) and $\ker(T^*) = (\operatorname{Ran}(T))^{\perp}$.

Proof. We first show $\ker(T^*) = (\operatorname{Ran}(T))^{\perp}$. Note that for $\psi \in Y^*$, we have

$$\psi \in (\operatorname{Ran}(T))^{\perp} \iff \psi(Tx) = 0 \text{ for all } x \in X$$
$$\iff (T^*\psi)(x) = 0 \text{ for all } x \in X$$
$$\iff T^*\psi = 0$$
$$\iff \psi \in \ker(T^*)$$

Now note that $(\operatorname{Ran}(T^*))^{\perp} = \ker(T^{**})$, and

$$(\operatorname{Ran}(T^*))_{\perp} = \{ x \in X : x \perp \operatorname{Ran}(T^*) \}$$
$$= (\operatorname{ker}(T^{**})) \cap X$$
$$= \operatorname{ker}(T)$$

So $(\ker(T))^{\perp} = ((\operatorname{Ran}(T^*))_{\perp})^{\perp}$ which is the weak-*-closure of $\operatorname{Ran}(T^*)$.

🗆 Lemma 196

Remark 197. If $T \in \mathcal{B}(X, Y)$, then the norm closure of $\operatorname{Ran}(T^*)$ may not be weak-*-closed. Consider $D: \ell_1 \to \ell_1$ by $De_n = \frac{1}{n}e_n$. Then $D^*: \ell_\infty \to \ell_\infty$ is given by $D^*((x_1, x_2, x_3, \dots)) = (\frac{x_1}{1}, \frac{x_2}{2}, \dots)$. So

$$c_0 = \operatorname{span}\left\{e_1, \frac{e_2}{2}, \frac{e_3}{3}, \dots\right\} \subseteq \overline{\operatorname{Ran}(D^*)} \subseteq c_0$$

(where here we use the norm closure). So c_0 is the norm-closure of $\operatorname{Ran}(D^*)$. But by Goldstine we have that the weak-*-closure of c_0 is ℓ_{∞} . So the norm-closure of $\operatorname{Ran}(D^*)$ is not weak-*-closed.

Proposition 198. Suppose $T \in \mathcal{B}(X, Y)$. Then the following are equivalent:

- 1. T is invertible
- 2. T is bijective
- 3. T is bounded below and has dense range
- 4. T and T^* are bounded below
- 5. T^* is invertible

Proof.

- $(1) \implies (2)$ Trivial.
- (2) \implies (1) Banach isomorphism theorem.
- (1) \implies (3) Suppose $T^{-1}T = I_X$. Then

$$||x|| = ||T^{-1}(Tx)|| \le ||T^{-1}|| ||Tx||$$

 So

$$||Tx|| \ge \frac{1}{||T^{-1}||} ||x||$$

and T is bounded below. Also, T is surjective; so T has dense range.

(3) \implies (2) If $x \neq 0$ then $||Tx|| \geq c||x|| > 0$; so T is injective. Let $y \in Y = \overline{\operatorname{Ran}(T)}$. Find $(x_n : n \in \mathbb{N})$ in X such that $(Tx_n : n \in \mathbb{N}) \rightarrow y$. Let $y_n = Tx_n$. Then $(y_n : n \in \mathbb{N})$ converges, and is thus Cauchy. But

$$||x_n - x_m|| \le \frac{1}{c} ||y_n - y_m||$$

Take $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that for all $n, m \ge N$ we have $||y_n - y_m|| < c\varepsilon$; then for all $n, m \ge N$ we have $||x_n - x_m|| < \varepsilon$. So $(x_n : n \in \mathbb{N})$ is Cauchy, and thus converges to x. But then

$$y = \lim_{n \to \infty} Tx_n = Tx$$

So T is surjective.

- (1) \implies (5) *T* is invertible so $T^{-1}T = I_X$ and $TT^{-1} = I_Y$. Taking adjoints, we find that $T^*(T^{-1})^* = I_X^* = I_{X^*}$ and $(T^{-1})^*T^* = I_Y^* = I_{Y^*}$. So $(T^{-1})^* = (T^*)^{-1}$.
- (5) \implies (4) Suppose T^* is invertible. Then, by previous directions, we have that T^* is bounded below and that T^{**} is invertible and bounded below. But $T = T^{**} \upharpoonright X$; so T is bounded below.
- (4) \implies (3) Suppose T and T^* are bounded below. Then T is bounded below, and ker $(T^*) = \{0\}$. But by the lemma we have $(\operatorname{Ran}(T))^{\perp} = \ker(T^*)$. So $\overline{\operatorname{Ran}(T)} = Y$.

□ Proposition 198

Definition 199. If $T \in \mathcal{B}(X)$, we define the *spectrum* of T is

$$\sigma(T) = \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not invertible} \}$$

The resolvent of T is $\rho(T) = \mathbb{C} \setminus \sigma(T)$. The resolvent function $R(T,\lambda) = (\lambda I - T)^{-1}$ for $\lambda \in \rho(T)$. The point spectrum is $\sigma_p(T)$ the set of eigenvalues of T; i.e. $\sigma_p(T) = \{\lambda : \ker(\lambda I - T) \neq \emptyset\}$. The approximate <u>point spectrum</u> is $\pi(T) = \{\lambda : \lambda I - T \text{ is not bounded below}\}$. The compression spectrum is $\gamma(T) = \{\lambda : \operatorname{Ran}(\lambda I - T) \neq X\}$.

Remark 200. By proposition we have that $\sigma(T) = \pi(T) \cup \gamma(T)$.

We let $\mathcal{B}(X)^{-1}$ denote the set of invertible operators in X.

Proposition 201. $B(X)^{-1}$ is open and contains $b_1(I_X)$.

Proof. If $A \in \mathcal{B}(X)$ with $||A|| \leq 1$, we wish to show that $I - A \in b_1(I)$ is invertible. Recall that in \mathbb{C} if |x| < 1 we have

$$\frac{1}{1-x} = 1 + x + x^2 + \dots$$

Let

$$B = \sum_{n=0}^{\infty} A^n \in \mathcal{B}(X)$$

This converges because

$$\sum_{n=0}^{\infty} \|A^n\| \le \sum_{n=0}^{\infty} \|A\|^n = \frac{1}{1 - \|A\|} < \infty$$

Then

$$(I - A)B = \lim_{k \to \infty} ((I - A)(I + A + \dots + A^k)) = \lim_{k \to \infty} (I - A^{k+1}) = I$$

By continuity, since I - A commutes with the partial sums, it commutes with B, and B(I - A) = (I - A)B = I. So I - A is invertible.

If $T \in \mathcal{B}(X)^{-1}$ and $||A|| < \frac{1}{||T^{-1}||}$ then $T - A = T(I - T^{-1}A)$. Then $||T^{-1}A|| \le ||T^{-1}|| ||A|| < 1$. So $(T - A)^{-1} = (I - T^{-1}A)^{-1}T^{-1}$. So

$$b_{\frac{1}{\|T^{-1}\|}} \subseteq B(X)^{-1}$$

So $B(X)^{-1}$ is open.

Proposition 202. If $T \in \mathcal{B}(X)$ then $\rho(T)$ is open and $\sigma(T) \subseteq \overline{b_{||T||}(0)}$.

Proof. $\mathcal{B}(X)^{-1}$ is open and $f: \mathbb{C} \to \mathcal{B}(X)$ given by $f(\lambda) = \lambda I - T$ is norm-continuous. Thus $\rho(T) = f^{-1}(\mathcal{B}(X)^{-1})$ is open. If $|\lambda| > ||T||$, then $\lambda I - T = \lambda(I - \lambda^{-1}T)$. So

$$\|\lambda^{-1}T\| = \frac{\|T\|}{|\lambda|} < 1$$

 So

$$(\lambda I - T)^{-1} = \lambda^{-1} (I - \lambda^{-1} T)^{-1} = \lambda^{-1} \sum_{n=0}^{\infty} (\lambda^{-1} T)^n = \sum_{n=0}^{\infty} T^n \lambda^{-n-1}$$

 \Box Proposition 202

 \Box Proposition 201

Proposition 203. The map $\mathcal{B}(X)^{-1} \to \mathcal{B}(X)^{-1}$ given by $T \mapsto T^{-1}$ is continuous. Proof. Suppose $T_0 \in \mathcal{B}(X)^{-1}$; suppose $||A|| < \frac{1}{||T_0^{-1}||}$. Then

$$(T_0 + A)^{-1} = (T_0(I + T_0^{-1}A))^{-1}$$

= $(I + T_0^{-1}A)^{-1}T_0^{-1}$
= $\sum_{n=0}^{\infty} (-T_0^{-1}A)^n T_0^{-1}$
= $T_0^{-1} + \sum_{n=1}^{\infty} (-T_0A)^n T_0^{-1}$

 So

$$\begin{split} |(T_0 + A)^{-1} - T_0^{-1}|| &= \left\| \sum_{n=1}^{\infty} (-T_0^{-1}A)^n T_0^{-1} \right\| \\ &\leq \sum_{n=1}^{\infty} (\|T_0^{-1}\| \|A\|)^n \|T_0^{-1}\| \\ &= \frac{\|T_0^{-1}\|^2 \|A\|}{1 - \|T_0^{-1}\| \|A\|} \\ &\to 0 \text{ as } \|A\| \to 0 \end{split}$$

So the map is continuous at T_0 .

 $Example \ 204.$

1. Let $X = L^p(0,1)$ for $1 \le p < \infty$. Let $h \in L^{\infty}(0,1)$ where

$$||h||_{\infty} = \operatorname{ess\,sup}|h| = \sup\{r : m(\{x : |h(x)| \ge r\}) > 0\}$$

Let $M_h f = fh$ for $f \in L^p(0,1)$. Then

$$\begin{split} \|M_h f\|_p^p &= \int |hf|^p dm \\ &\leq \int \|h\|_\infty^p |f|^p dm \\ &= \|h\|_\infty^p \|f\|_p^p \end{split}$$

So $||M_h|| \leq ||h||_{\infty}$. Let $f = \chi_A$. Then

$$||f||_p = \left(\int \chi_A^p\right)^{\frac{1}{p}} = m(A)^{\frac{1}{p}}$$

 $\quad \text{and} \quad$

$$||fh||_{p} = \left(\int (|h|\chi_{A})^{p}\right)^{\frac{1}{p}} \ge r \left(\int \chi_{A}\right)^{\frac{1}{p}} = r||f||_{p}$$

What is $\sigma(M_h)$? Well, if $h, k \in L^{\infty}(0, 1)$, then

$$M_h M_k f = M_h k f = h k f = M_{hk} f$$

We look at the case of h = x. So if $\lambda \notin [0,1]$ then $\frac{1}{x-\lambda} \in L^{\infty}(0,1)$, so $(M_x - \lambda I)M_{\frac{1}{x-\lambda}} = 1$, and $\lambda \notin \sigma(M_x)$. So $\sigma(M_x) \subseteq [0,1]$.

On the other hand, for $\varepsilon > 0$, let $f_{\varepsilon} = \chi_{(\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon)}$. Then

$$\|M_{x-\frac{1}{2}}f_{\varepsilon}\|_{p} = \left\| \left(x - \frac{1}{2}\chi_{(\frac{1}{2}-\varepsilon,\frac{1}{2}+\varepsilon)} \right) \right\| < \|\varepsilon f_{\varepsilon}\|_{p} = \varepsilon \|f_{\varepsilon}\|_{p}$$

 \Box Proposition 203

But this is not bounded below. So $\frac{1}{2} \in \sigma(M_x)$. Similarly, we have that $y \in \sigma(M_x)$ for any $y \in [0, 1]$. Consider now arbitrary $h \in C[0, 1]$. We let $h([0, 1]) = X = \operatorname{Ran}(h)$. If $\lambda \notin \operatorname{Ran}(h)$ then

$$\frac{1}{h-\lambda} \in C[0,1]$$

and

$$(M_h - \lambda I)M_{\frac{1}{h-\lambda}} = I$$

so $\lambda \notin \sigma(M_h)$. If $h(x_0) = \lambda$, then for all $\varepsilon > 0$ there is $\delta > 0$ such that $h^{-1}(b_{\varepsilon}(\lambda)) \supseteq b_{\delta}(x_0)$; then if $f_{\varepsilon} = \chi_{(x_0 - \delta, x_0 + \delta)}$, we have $\|M_{h-\lambda}f_{\varepsilon}\|_p \le \varepsilon \|f_{\varepsilon}\|_p$. So $\sigma(M_h) = h([0, 1])$. Consider now arbitrary $h \in L^{\infty}(0, 1)$. Define

ess Ran(h) = {
$$z \in \mathbb{C} : m(h^{-1}(b_{\varepsilon}(z))) > 0$$
 for all $\varepsilon > 0$ }

If $\lambda \notin \operatorname{ess} \operatorname{Ran}(h)$ then there is $\varepsilon > 0$ such that $m(h^{-1}(b_{\varepsilon}(z))) = 0$. Then

$$\left|\frac{1}{h-z}\right| \leq \frac{1}{\varepsilon}$$

almost everywhere, so

$$(M_h - zI)M_{\frac{1}{h-z}} = I$$

and $z \notin \sigma(M_h)$. Conversely, if $z \in \operatorname{ess} \operatorname{Ran}(h)$, we let $f_{\varepsilon} = \chi_{h^{-1}(b_{\varepsilon}(z))} \neq 0$. Then $||M_{h-z}f_{\varepsilon}|| \leq \varepsilon ||f_{\varepsilon}||$ is not bounded below, and is thus not invertible. So $\sigma(M_h) = \operatorname{ess} \operatorname{Ran}(h)$.

We consider now the Banach space adjoint to M_h . If $f \in L^p$ and $g \in L^q$ (where $\frac{1}{p} + \frac{1}{q} = 1$), then

$$\langle M_h f, g \rangle = \int hfgdm$$

= $\int f(hg)dm$
= $\langle f, M_hg \rangle$

So the Banach space adjoint $M_h^* = M_h$ on $L^q(0,1)$. To see the Hilbert space adjoint, note that if $f, g \in L^2(0,1)$, then

$$egin{aligned} \langle M_h f,g
angle &= \int (hf)\overline{g}dm \ &= \int f(\overline{hg})dm \ &= \langle f,\overline{hg}
angle \end{aligned}$$

So $M_h M_{\overline{h}} = M_{|h|^2} = M_{\overline{h}} M_h$. So M_h commutes with M_h^* , and it is normal.

2. Consider the unilateral shift on ℓ^2 : $Se_n = e_{n+1}$ for $n \ge 0$. i.e. $S((x_0, x_1, \dots)) = (0, x_0, x_1, \dots)$. We have the backwards shift $S^*((x_0, x_1, x_2, \dots)) = (x_1, x_2, \dots)$. Then $||S|| = 1 = ||S^*||$; so $\sigma(S) \subseteq \mathbb{D}$. *S* is not invertible because $\operatorname{Ran}(S) \perp \mathbb{C}e_0$. So $S^*e_0 = 0$, and 0 is an eigenvalue of S^* . On the other hand, clearly *S* has no eigenvalues since if $Sx = \lambda x$, then $||x|| = ||Sx|| = ||\lambda x|| = |\lambda|||x||$, and $|\lambda| = 1$:

hand, clearly S has no eigenvalues, since if $Sx = \lambda x$, then $||x|| = ||Sx|| = ||\lambda x|| = |\lambda|||x||$, and $|\lambda| = 1$; but then $\lambda x_0 = 0$, and $\lambda x_1 = x_0 = 0$, and so on, so x = 0, a contradiction.

Can we have $S^*x = \lambda x$? We need $x_{n+1} = \lambda x_n$ for $n \ge 0$. i.e.

$$x_n = \lambda x_{n-1} = \lambda^2 x_{n-2} = \dots = \lambda^n x_0$$

So $x = x_0(1, \lambda, \lambda^2, ...)$. So $S^*(1, \lambda, \lambda^2, \lambda^3, ...) = (\lambda, \lambda^2, \lambda^3, \lambda^4, ...) = \lambda(1, \lambda, \lambda^2, ...)$. If $|\lambda| < 1$, then $x_\lambda = (1, \lambda, \lambda^2, ...) \in \ell_2$. So $\sigma_p(S^*) = \mathbb{D} = \{\lambda : |\lambda| < 1\}$. So $\sigma(S^*) \supseteq \overline{\mathbb{D}}$. So $\sigma(S^*) = \overline{\mathbb{D}}$.

Returning to S, note that if $|\lambda| \leq 1$, then $(S - \lambda I)^* = S^* - \overline{\lambda I}$ is not invertible. So $S - \lambda I$ is not invertible. If $|\lambda < 1|$, then

$$\langle (S - \lambda I) x, x_{\overline{\lambda}} \rangle = \langle x, (S^* - \overline{\lambda} I) x_{\overline{\lambda}} \rangle = \langle x, 0 \rangle = 0$$

So $\operatorname{Ran}(S - \lambda I) \perp \mathbb{C}x_{\overline{\lambda}}$; so $\sigma(S) = \overline{\mathbb{D}}$. If $|\lambda| = 1$, let

$$x_n = \frac{1}{\sqrt{n}} (1, \overline{\lambda}, \overline{\lambda}^2, \dots, \overline{\lambda}^{n-1}, 0, 0, \dots)$$
$$\|x_n\|^2 = \frac{1}{n} \sum_{i=0}^{n-1} |\overline{\lambda}^i|^2 = \frac{n}{n} = 1$$

 But

$$Sx_n = \frac{1}{\sqrt{n}}(0, 1, \overline{\lambda}, \overline{\lambda}^2, \dots, \overline{\lambda}^{n-2}, \overline{\lambda}^{n-1}, 0)$$

and

$$\lambda x_n = \frac{1}{\sqrt{n}} (\lambda, 1, \overline{\lambda}, \overline{\lambda}^2, \dots, \overline{\lambda}^{n-2}, 0, \dots)$$

 So

$$(S - \lambda I)x_n = \frac{1}{\sqrt{n}}(-\lambda, 0, 0, \dots, 0, \overline{\lambda}^{n-1}, 0, \dots)$$

So

$$\|(S - \lambda I)x_n\| = \sqrt{\frac{2}{n}} \to 0$$

is not bounded below.

Definition 205. Suppose $\Omega \subseteq \mathbb{C}$ is open and X is a Banach space. Suppose $f: \Omega \to X$. We say f is strongly analytic if for all $z_0 \in \Omega$ there exist $x_0, x_1, x_2, \ldots, \in X$ such that

$$f(z_0 + w) = \sum_{n=0}^{\infty} x_n w^n$$

converges uniformly for all $|w| \leq r$ for all r > 0. We say f is *weakly anaytic* if for all $\varphi \in X^*$ we have that $\varphi \circ f \colon \Omega \to \mathbb{C}$ is analytic.

Exercise 206 (Bonus problem). Prove that if f is weakly analytic then it is strongly analytic. Hint:

1. Show

$$\left\{\varphi\left(\frac{f(z_0+w)-f(z_0)}{w}\right):|w|\leq r\right\}$$

is bounded.

- 2. Show f is continuous.
- 3. For $n \ge 0$, set

$$x_n = \frac{1}{2\pi i} \int_0^{2\pi} f(z_0 + r \exp(i\theta)) \exp(-in\theta) d\theta$$

(as a Riemann integral).

4. Show

$$f(z_0 + w) = \sum_{n=0}^{\infty} x_n w^n$$

for $|w| \leq r$.

Theorem 207. Suppose $T \in \mathcal{B}(X)$; suppose $\lambda, \mu \in \rho(T)$. Then

1.

$$\frac{R(T,\lambda) - R(T,\mu)}{\lambda - \mu} = -R(T,\lambda)R(T,\mu)$$

2. $\lambda \mapsto R(T, \lambda)$ is strongly analytic on $\rho(T)$.

3.

$$\lim_{|\lambda|\to\infty} R(T,\lambda) = 0$$

Proof.

1. Note that

$$(R(T,\lambda) - R(T,\mu))(\lambda I - T)(\mu I - T) = (\mu I - T) - (\lambda I - T) = (\mu - \lambda)I$$

Multiplying by $R(T, \lambda)R(T, \mu)$, we see

$$\frac{R(T,\lambda) - R(T,\mu)}{\lambda - \mu} = -R(T,\lambda)R(T,\mu)$$

2. Note that

$$\frac{d}{d\lambda}(R(T,\lambda))|_{\lambda=\mu} = \lim_{\lambda \to \mu} \frac{R(T,\lambda) - R(T,\mu)}{\lambda - \mu} = -R(T,\lambda)^2$$

 So

$$\frac{d}{d\lambda} \left(\frac{1}{\lambda - z} \right) = \frac{-1}{(\lambda - z)^2}$$

If $\lambda_0 \in \rho(T)$, then

$$(\lambda_0 + w)I = (\lambda_0 I - T)(\lambda_0 I - T)^{-1}((\lambda_0 I - T) + wI) = (\lambda_0 I - T)(I + w(\lambda_0 I - T)^{-1})$$

If $|w| < \frac{1}{\|(\lambda_0 I - T)^{-1}\|}$, then

$$R(T, \lambda_0 + w) = (\lambda_0 I - T)^{-1} \sum_{n=0}^{\infty} t \infty (-(\lambda_0 I - T)^{-1})^n w^n$$

which converges uniformly for $|w| \le r < \frac{1}{\|(\lambda_0 I - T)^{-1}\|}$.

3. Suppose $|\lambda| > ||T||$. Then

$$R(T,\lambda) = \sum_{n=0}^{\infty} T^n \lambda^{-n-1}$$

 So

$$\begin{split} \|R(T,\lambda)\| &\leq \sum_{n=0}^{\infty} \|T^n\| |\lambda|^{-n-1} \\ &\leq \sum \|T\|^n |\lambda|^{-n-1} \\ &= \frac{\frac{1}{|\lambda|}}{1 - \frac{\|T\|}{|\lambda|}} \\ &= \frac{1}{|\lambda| - \|T\|} \\ &\to 0 \text{ as } |\lambda| \to \infty \end{split}$$

 \Box Theorem 207

Theorem 208. Suppose $T \in \mathcal{B}(X)$. Then $\sigma(T) \neq \emptyset$.

Proof. If $\sigma(T)$ were empty, then $R(T, \lambda)$ is an entire function. But $||R(T, \lambda)|| \to 0$ as $|\lambda| \to \infty$. So it is a bounded, entire function. Take $\varphi \in \mathcal{B}(X)^*$. Then $\varphi \circ R(T, \lambda)$ is a bounded, scalar-valued, entire function. Thus it is constant by Liouville's theorem. If $R(T, \lambda)$ were not constant, then by Hahn-Banahc we have φ such that $\varphi \circ R(T, \lambda)$ is not constant, a contradiction. So $R(T, \lambda)$ is constant. But $R(T, \lambda) \to 0$ as $|\lambda| \to \infty$. So $R(T, \lambda) = 0$. This is absurd. So $\sigma(T) \neq \emptyset$.

Proposition 209. If $\lambda \in \rho(T)$ for $T \in \mathcal{B}(X)$ and $\operatorname{dist}(\lambda, \sigma(T)) = r$, then $\|(\lambda I - T)^{-1}\| \geq \frac{1}{r}$.

Proof. Pick $\lambda_0 \in \sigma(T)$ such that $|\lambda - \lambda_0| = r$. Now, $(\lambda_0 I - T)(\lambda I - T)^{-1}$ is not invertible. But

$$((\lambda_0 - \lambda)I + (\lambda I - T))(\lambda I - T)^{-1} = (\lambda_0 - \lambda)(\lambda I - T)^{-1} + I$$

and $b_1(I) \subseteq \mathcal{B}(X)^{-1}$. So $\|(\lambda_0 - \lambda)(\lambda I - T)^{-1}\| \ge 1$. So $\|(\lambda I - T)^{-1}\| \ge \frac{1}{|\lambda_0 - \lambda|} = \frac{1}{r}$. \Box Proposition 209

Corollary 210. $\partial \sigma(T) \subseteq \pi(T)$; *i.e.* λ_0 in the boundary of $\sigma(T)$ is an approximate eigenvalue.

Proof. We show $\lambda_0 I - T$ is not bounded below. Fix $\varepsilon > 0$. Pick $\lambda \in \rho(T)$ such that $|\lambda - \lambda_0| < \varepsilon$. Then $\|(\lambda I - T)^{-1}\| > \frac{1}{\varepsilon}$. Find x with $\|x\| = 1$ such that $\|(\lambda I - T)^{-1}x\| > \frac{1}{\varepsilon}$. Let $y = (\lambda I - T)^{-1}x$. Then

$$\|(\lambda_0 I - T)y\| = \|(\lambda_0 - \lambda)y + (\lambda I - T)y\|$$

$$\leq \|(\lambda_0 - \lambda)y\| + \|x\|$$

$$< \varepsilon \|y\| + \varepsilon \|y\|$$

$$= 2\varepsilon \|y\|$$

So $\lambda_0 I - T$ is not bounded below.

□ Corollary 210

5.2 Spectral mapping theorem for rational functions

If $p \in \mathbb{C}[z]$ is a polynomial, say $p(z) = a_0 + a_1 z + \dots + a_n z^n$ and $T \in \mathcal{B}(X)$, we define $p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_n T^n$. The map $\rho_T : \mathbb{C}[z] \to \mathcal{B}(X)$ given by $\rho_T(p) = p(T)$ is a homomorphism. If $q \in \mathbb{C}[z]$ has no roots in $\sigma(T)$, say $q(z) = b(z - \beta_1)(z - \beta_2) \dots (z - \beta_m)$, then $q(T) = b(T - \beta_1 I)(T - \beta_2 I) \dots (T - \beta_m I)$ is invertible. We can then define $\binom{p}{q}(t) = p(T)q(T)^{-1}$. If we set $\operatorname{Rat}(\sigma(T))$ to be the set of rationa $\frac{p}{q}$ such that q has no roots in $\sigma(T)$, then $\rho_T : \operatorname{Rat}(\sigma(T)) \to \mathcal{B}(X)$ given by $\rho_T\binom{p}{q} = p(T)q(T)^{-1}$ is well-defined and a homomorphism.

Theorem 211 (Spectral mapping theorem—rational case). Suppose $T \in \mathcal{B}(X)$ and $\frac{p}{q} \in \operatorname{Rat}(\sigma(T))$, then $\sigma(f(T)) = f(\sigma(T))$.

Proof. Write $f = \frac{p}{q}$ with gcd(p,q) = 1; factor $q(z) = b(z - \beta_1) \dots (z - \beta_m)$. If $\lambda \in \mathbb{C}$, then

$$f(z) - \lambda = \frac{p}{q} - \lambda = \frac{p_{\lambda}}{q} = \frac{a(z - \alpha_1) \dots (z - \alpha_n)}{b(z - \beta_1) \dots (z - \beta_n)}$$

Then $f(T) - \lambda I = p_{\lambda}(T)q(T)^{-1}$ is invertible if and only if $p_{\lambda}(T)$ is invertible. But $p_{\lambda}(T) = a(T - \alpha_1 I) \dots (T - \alpha_n I)$ is invertible if and only if $\alpha_1, \dots, \alpha_n \in \rho(T)$. i.e.

$$\lambda \in \sigma(f(T)) \iff f(T) - \lambda I \text{ is not invertible}$$
$$\iff p_{\lambda}(T) \text{ is not invertible}$$
$$\iff \exists i(\alpha_i \in \sigma(T))$$
$$\iff \exists \alpha(\alpha \in \sigma(T) \land p_{\lambda}(\alpha) = 0)$$
$$\iff \exists \alpha(\alpha \in \sigma(T) \land f(\alpha) = \lambda)$$
$$\iff \lambda \in f(\sigma(T))$$

 \Box Theorem 211

If $\lambda \notin f(\sigma(T))$, then $\frac{p(z)}{q(z)} - \lambda = \frac{p_{\lambda}(z)}{q(z)}$ is invertible in $\operatorname{Rat}(\sigma(T))$ as

$$\frac{1}{f(z) - \lambda} = \frac{q(z)}{p_{\lambda}(z)}$$

So $(f(T) - \lambda I)^{-1} = q(T)p_{\lambda}(T)^{-1}$; so one direction is easy.

Definition 212. If $T \in \mathcal{B}(X)$, we define the *spectral radius* of T to be $spr(T) = sup\{ |\lambda| : \lambda \in \sigma(T) \}$.

We know $\operatorname{spr}(T) \leq ||T||$. Now, if $\lambda > ||T||$, then

$$R(\lambda,T) = (\lambda I - T)^{-1} = \sum_{n=0}^{\infty} T^n \lambda^{-n-1}$$

But $R(\lambda, T)$ is analytic on $\{\lambda : |\lambda| > \operatorname{spr}(T)\}.$

Theorem 213 (Spectral radius formula). We have

$$\operatorname{spr}(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} = \inf_{n \ge 1} ||T^n||^{\frac{1}{n}}$$

Proof. The spectral mapping theorem shows that $\sigma(T^n) = \sigma(T)^n$. Thus $\operatorname{spr}(T) = \operatorname{spr}(T^n)^{\frac{1}{n}} \le ||T^n||^{\frac{1}{n}}$ for all $n \ge 1$. So

$$\operatorname{spr}(T) \le \inf_{n \ge 1} \|T^n\|^{\frac{1}{n}}$$

But $R(\lambda, T)$ is analytic on $\{\lambda : |\lambda| > \operatorname{spr}(T)\}$. So if $\varphi \in \mathcal{B}(X)^*$, then $\varphi(R(\lambda, T))$ is an analytic scalar function on the same annulus. For $|\lambda| > ||T||$, we have

$$\begin{split} \varphi(R(\lambda,T)) &= \varphi \Biggl(\sum_{n=0}^{\infty} T^n \lambda^{-n-1} \Biggr) \text{ (which converges absolutely)} \\ &= \sum_{n=0}^{\infty} \varphi(T^n) \lambda^{-n-1} \end{split}$$

where the latter is sum is the Laurent expansion of $\varphi(R(\lambda, T))$ on $\{\lambda : |\lambda| > ||T||\}$. This is analytic on a bigger annulus, namely $\{\lambda : |\lambda| > \operatorname{spr}(T)\}$. So, by complex analysis, this converges in $\{\lambda : |\lambda| > \operatorname{spr}(T)\}$. In particular, if $|\lambda| = t > \operatorname{spr}(T)$, then $|\varphi(T^n)\lambda^{-n-1}| = |\varphi(T^n)|t^{-n-1} \to 0$. So

$$\sup_{n\geq 0}\frac{|\varphi(T^n)|}{t^{n+1}}<\infty$$

But this holds for all $\varphi \in \mathcal{B}(X)^*$. So, by Banach-Steinhaus, we have

$$\sup_{n \ge 0} \left\| \frac{T^n}{t^{n+1}} \right\| = C < \infty$$

So $||T^n||^{\frac{1}{n}} \le (Ct^{n+1})^{\frac{1}{n}} = C^{\frac{1}{n}}$. So

$$\limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}} \le t$$

Su

$$\begin{split} \limsup \|T^n\|^{\frac{1}{n}} &\leq \operatorname{spr}(T) \\ &\leq \inf \|T^n\|^{\frac{1}{n}} \\ &\leq \liminf \|T^n\|^{\frac{1}{n}} \\ &\leq \limsup \|T^n\|^{\frac{1}{n}} \end{split}$$

So $\lim ||T^n||^{\frac{1}{n}} = \inf ||T^n||^{\frac{1}{n}} = \operatorname{spr}(T).$

 \Box Theorem 213

5.3 Compact operators

Definition 214. We say $T \in \mathcal{B}(X, Y)$ is *compact* if $\overline{Tb_1(X)}$ is compact in Y. We write $\mathcal{K}(X, Y)$ for the set of compact operators in $\mathcal{B}(X, Y)$; likewise, we write $\mathcal{K}(X)$ for the set of compact operators in $\mathcal{B}(X)$.

Example 215.

- 1. If F has finite rank, then it is compact because $\overline{Fb_1(X)} \subseteq \overline{b_{\|F\|}(Y)} \cap \operatorname{Ran}(F)$ is compact by the Heine-Borel theorem.
- 2. Let $X = \ell_p$ for $1 \leq p < \infty$. Let $(d_n : n \in \mathbb{N}) \in \ell_\infty$. Let $D((x_1, x_2, x_3, \dots)) = (d_1x_1, d_2x_2, d_3x_3, \dots)$ a "diagonal" operator. Then

$$||D|| = \sup_{n \ge 1} |d_n|$$

Suppose

$$\limsup d_n > 0$$

Say we can find $|d_{n_i}| \ge r$ with $n_1 < n_2 < \dots$ Then $De_{n_i} = d_{n_i}e_{n_i} \in Db_1(\ell_p)$, so D is not compact. Suppose on the other hand that

$$\lim_{n \to \infty} d_n = 0$$

Claim 216. D is compact.

Proof. Let
$$D_N((x_1, x_2, \dots) = (d_1 x_1, \dots, d_N x_N, 0, 0, \dots)$$
. Then D_N has rank N and

$$||D - D_N|| = \sup_{n > N} |d_n| \to 0$$

 So

$$D = \lim_{N \to \infty} D_N$$

The following proposition will show that the compact operators form a closed set, which then proves the claim. \Box Claim 216

Proposition 217. $\mathcal{K}(X,Y)$ is a $\mathcal{B}(Y)$ - $\mathcal{B}(X)$ bimodule; i.e. for $K, L \in \mathcal{K}(X,Y)$, $S \in \mathcal{B}(Y)$, and $T \in \mathcal{B}(X)$, we have

$$aK + bL \in \mathcal{K}(X, Y)$$
$$SKT \in \mathcal{K}(X, Y)$$

Furthermore, $\mathcal{K}(X,Y)$ is norm-closed. In particular, $\mathcal{K}(X)$ is a closed ideal of $\mathcal{B}(X)$.

Proof. Let $C_1 = \overline{Kb_1(X)}$; let $C_2 = \overline{Lb_1(X)}$. Then C_1, C_2 are compact. Consider

$$f: \mathcal{C}_1 \times \mathcal{C}_2 \to Y$$
$$(c_1, c_2) \mapsto ac_1 + bc_2$$

Then f is continuous, so its image is compact. So $aKx + bLx \in f(\mathcal{C}_1 \times \mathcal{C}_2)$ for all $||x|| \leq 1$. So

$$\overline{(aK+bL)(b_1(X))} \subseteq f(\mathcal{C}_1 \times \mathcal{C}_2)$$

Now, if $S \in \mathcal{B}(Y)$, $T \in \mathcal{B}(X)$, and $K \in \mathcal{K}(X, Y)$, then

$$\overline{SKTb_1(X)} \subseteq SK \|T\| \overline{b_1(X)} \subseteq (S\|T\|) \overline{\|Kb_1(X)\|}$$

But this last is the continuous image of a compact set, and is thus compact.

For norm-closure, suppose $K_n \in \mathcal{K}(X, Y)$ with $K_n \to K$.

Claim 218. $Kb_1(X)$ is totally bounded; i.e. for all $\varepsilon > 0$ there are $y_1, \ldots, y_n \in Kb_1(X)$ such that

$$Kb_1(X) \subseteq \bigcup_{i=1}^n b_{\varepsilon}(y_i)$$

Proof. Fix $\varepsilon > 0$. Pick N such that $||K - K_N|| < \frac{\varepsilon}{3}$. Then $K_N b_1(X)$ is totally bounded, so we may pick y_1, \ldots, y_n with $y_i = K_N x_i$ for $||x_i|| \le 1$ such that

$$K_N b_1(X) \subseteq \bigcup_{i=1}^n b_{\frac{\varepsilon}{3}}(y_i)$$

Let $y'_i = Kx_i$. Then

$$||y'_i - y_i|| = ||(K - K_N)x_i|| < \frac{\varepsilon}{3}$$

If $||x|| \leq 1$, then

$$\|K_N x - y_{i_0}\| < \frac{\varepsilon}{3}$$

for some i_0 . Then

$$||Kx - y'_{i_0}|| \le ||Kx - K_N x|| + ||K_N x - y_{i_0}|| + ||y_{i_0} - y'_{i_0}|| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

 So

$$Kb_1(X) \subseteq \bigcup_{i=1}^n b_{\varepsilon}(y'_i)$$

So $\overline{Kb_1(X)}$ is compact.

 \Box Claim 218

 \Box Proposition 217

Example 219. Let $D = \text{diag}(1, \frac{1}{2}, \frac{1}{3}, \dots) \in \mathcal{B}(c_0)$. Then $Db_1(c_0)$ is not closed, since

$$D((1, 1, 1, \dots, 0, 0, \dots)) = \left(1, \frac{1}{2}, \dots, \frac{1}{n}, 0, \dots\right) \to \left(1, \frac{1}{2}, \frac{1}{3}, \dots\right) \notin \operatorname{Ran}(D)$$

Example 220 (Hilbert-Schmidt kernels). Let $k(x, y) \in L^2((0, 1)^2)$. Define $K \in \mathcal{B}(L^2(0, 1))$ by

$$(Kf)(x) = \int_0^1 k(x, y) f(y) dy$$

Note $k(\cdot, y), k(x, \cdot) \in L^2(0, 1)$ for almost every x, y. To check boundedness, suppose $f \in L^2(0, 1)$. Then

$$\begin{split} \|Kf\|_{2}^{2} &= \int_{0}^{1} |Kf(x)|^{2} dx \\ &= \int_{0}^{1} \left| \int_{0}^{1} k(x,y) f(y) dy \right|^{2} dx \\ &\leq \int_{0}^{1} \left(\int_{0}^{1} |k(x,y)| |f(y)| dy \right)^{2} dx \\ &\leq \int_{0}^{1} (\|k(x,\cdot)\|_{2} \|f\|_{2})^{2} dx \\ &= \|f\|_{2}^{2} \int_{0}^{1} \int_{0}^{1} |k(x,y)|^{2} dy dx \\ &= \|f\|_{2}^{2} \|k\|_{2}^{2} \end{split}$$

So $||K|| \le ||k||_2$.

Let $\{e_i(x): i \ge 1\}$ be an orthonormal basis for $L^2(0, 1)$. Let $\{f_j(y): j \ge 1\}$ be another orthonormal basis for $L^2(0, 1)$. Then $\{e_i(x)f_j(y): i, j \ge 1\}$ is an orthonormal basis for $L^2((0, 1)^2)$ because

$$\left\{\sum_{m=1}^{M} g_m(x)h_m(y) : g_m \in L^2, h_m \in L^2\right\}$$

is dense in $L^2((0,1)^2)$. If

$$g_m(x) = \sum a_i e_i(x)$$

$$h_m(y) = \sum b_j f_j(y)$$

then

$$g_m h_m = \sum \sum a_i b_j e_i(x) f_j(y)$$

Take $f_j(y) = \overline{e_j(y)}$. Expand

$$k(x,y) = \sum \sum a_{ij}e_i(x)\overline{e_j(y)}$$

where

$$||k||_2^2 = \sum \sum |a_{ij}|^2$$

For $N < \infty$, let

$$k_N(x,y) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} e_i(x) \overline{e_j(y)}$$

Then $k_N \in L^2((0,1)^2)$ with $||k - k_N||_2 \to 0$. If

$$K_N h(x) = \int_0^1 k_N(x, y) h(y) dy$$

then $||K - K_N|| = ||k - k_N||_2 \to 0$. So

$$K_N h(x) = \sum_{i=1}^N \sum_{j=1}^N a_{ij} \int_0^1 e_i(x) \overline{e_j(y)} h(y) dy$$
$$= \sum_{i=1}^N e_i(x) \sum_{j=1}^N a_{ij} \langle h, e_j \rangle$$

So $\operatorname{Ran}(K_N) \subseteq \operatorname{span}\{e_1, \ldots, e_N\}$. So K is a norm limit of finite rank operators, and is thus compact. The "matrix of K_N " is given by, if

$$h = \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ \vdots \end{pmatrix}$$

where $h_i = \langle h, e_i \rangle$, then

$$K_N h = \begin{pmatrix} a_{11} & \dots & a_{1N} & \\ \vdots & \ddots & \vdots & 0 \\ a_{N1} & \dots & a_{NN} & \\ & 0 & & 0 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_N \\ h_{N+1} \\ \vdots \end{pmatrix}$$

Example 221 (Volterra operator). Let $V \in \mathcal{B}(L^2(0,1))$ be

$$Vh(x) = \int_0^x h(y) dy$$

We may take

$$k(x,y) = \begin{cases} 1 & y \le x \\ 0 & y > x \end{cases}$$

So V is compact, by the above argument. Then

$$V^{2}h(x) = \int_{0}^{x} (Vh)(y)dy$$

=
$$\int_{0}^{x} \left(\int_{0}^{y} h(z)dz\right)dy$$

=
$$\int_{0}^{x} h(z) \int_{z}^{x} 1dydz$$

=
$$\int_{0}^{x} h(z)(x-z)dz$$

$$V^{3}h(x) = \int_{0}^{x} (V^{2}h)(y)dy$$

=
$$\int_{0}^{x} \left(\int_{0}^{y} h(z)(y-z)dz\right)dy$$

=
$$\int_{0}^{x} h(z) \int_{z}^{y} (y-z)dydz$$

=
$$\int_{0}^{x} h(z) \frac{x-z^{2}}{2}dz$$

Claim 222.

$$V^{n}h(x) = \int_{0}^{x} h(y) \frac{(x-y)^{n-1}}{(n-1)!} dy$$

Then

Then

$$\|V^n\| = \left\|\frac{(x-y)^{n-1}}{(n-1)!}\chi_{\{y \le x\}}\right\|_2 \le \frac{1}{(n-1)!}$$

$$\operatorname{spr}(V) = \lim_{n \to \infty} \|V^n\|^{\frac{1}{n}} \le \lim_{n \to \infty} \left(\frac{1}{(n-1)!}\right)^{\frac{1}{n}} = 0$$

So $\sigma(V) \subseteq \{0\}$.

Claim 223. V is injective.

Proof. Suppose $Vh = \lambda h$ for $\lambda \neq 0$. Then

$$\lambda h(x) = \int_0^x h(y) dy$$

But $h \in L^2$; so

$$\int_0^x h(y) dy \in C[0,1]$$

So RHS $\in C[0, 1]$, so LHS $\in C[0, 1]$. So $h \in C[0, 1]$, and RHS is C^1 . So $h \in C^1$, so RHS is C^2 . So $h \in C^{\infty}$. So $\lambda h'(x) = h(x)$ by the fundamental theorem of calculus. So $h(x) = c \exp(x/\lambda)$ and h(0) = 0; so h = 0.

In the case of $\lambda = 0$, we have that if Vh = 0, then

$$\int_0^x h(y)dy = 0$$

for all $x \in [0, 1]$. So h = 0 by measure theory.

 \Box Claim 223

Proposition 224. Suppose \mathcal{H} is a Hilbert space and $K \in \mathcal{K}(\mathcal{H})$. Then K is a limit of finite rank operators.

Proof. Note that $\overline{Kb_1(\mathcal{H})}$ is compact. Suppose $\varepsilon > 0$. Find $y_1 = Kx_i$ with $||x_i|| \le 1$ for $1 \le i \le n$ such that $\{y_1, \ldots, y_n\}$ is an ε -net for $\overline{Kb_1(\mathcal{H})}$. i.e. if $||x|| \le 1$ then there is i such that $||Kx - y_i|| < \varepsilon$. Let P be the orthogonal projection onto span $\{y_1, \ldots, y_n\}$. Then PK has rank $\le n$. Then

$$||(K - PK)(x)|| = ||P^{\perp}Kx|| = ||P^{\perp}(Kx - y_i)|| < \varepsilon$$

for all $||x|| \le 1$. So $||K - PK|| \le \varepsilon$.

 \Box Proposition 224

Theorem 225 (Schauder). If $K \in \mathcal{K}(X, Y)$ then $K^* \in \mathcal{K}(Y^*, X^*)$.

<u>Proof.</u> Let $C = \overline{Kb_1(X)}$; then C is a compact subset of Y. Define $\rho: Y^* \to C(C)$ be $\rho(\varphi) = \varphi \upharpoonright C$. Then $\overline{\rho(b_1(Y^*))}$ is closed and bounded (by ||K||) in C(C). It is also equicontinuous since if $y_1, y_2 \in C$ and $\varphi \in \overline{b_1(Y^*)}$ then $|\varphi(y_1) - \varphi(y_2)| \leq ||\varphi|| ||y_1 - y_2||$. So, by Arzela-Ascoli theorem, we have $\overline{\rho(b_1(Y^*))}$ is compact.

Claim 226. $\overline{K^*b_1(Y^*)}$ is compact.

Proof. Suppose $\varphi_1, \varphi_2, \dots \in \overline{b_1(Y^*)}$. Then for $x \in \overline{b_1(X)}$, we have $(K^*\varphi_i)(x) = \varphi_i(Kx)$. But $Kx \in \mathcal{C}$; so $(K^*\varphi_i)(x) = \rho(\varphi_i)(Kx)$. Letting $\psi_i = \rho(\varphi_i)$, we have $\psi_i \in \overline{\rho(b_1(Y^*))} \subseteq C(\mathcal{C})$. So there is a subsequence ψ_{n_i} converging to ψ uniformly in \mathcal{C} . So $(K^*\varphi_i)(x) = \varphi_i(Kx) \to \psi(Kx)$. i.e. $K^*\varphi_i \to \Psi \in X^*$. Thus $\overline{K^*b_1(Y)}$ is compact. So K^* is compact. \Box Claim 226

 \Box Theorem 225

5.3.1 Complemented subspaces

Definition 227. Suppose X is a Banach space; suppose $Y \subseteq X$ is a closed subspace. We say Y is *complemented* if there is $Z \subseteq X$ a closed subspace such that $Y \cap Z = \{0\}$ and Y + Z = X.

Remark 228. If Y is complemented, we can define

 $T: Y \oplus_1 Z \to X$

by T(y, z) = y + z (where \oplus_1 denotes that the norm is the 1-norm on the direct sum). Then by hypotheses we have T is bijective. Also $||y + z|| \le ||y|| + ||z|| = ||(y, z)||$, so T is continuous. By the Banach isomorphism theorem, we get that T is invertible. So $X \cong Y \oplus Z$.

We can also define $P: Y \oplus_1 Z \to Y \oplus_1 Z$ by P(y, z) = (y, 0). We can then let $Q = TPT^{-1}: X \to Y$; then Q is a continuous projection. Conversely, if $Q = Q^2$ with $\operatorname{Ran}(Q) = Y$, let $Z = \operatorname{Ran}(I - Q)$. Then $(I - Q)^2 = I - Q$. So x = Qx + (I - Q)x. So $x \in Y \cap Z$. So x = Qx = (1 - Q)Qx = 0.

Lemma 229. There is an uncountable collection $\{A_r : r \in \mathbb{R}\}$ of subsets of \mathbb{N} such that $|A_r \cap A_s| < \aleph_0$ if $r \neq s$.

Proof. Identify \mathbb{N} with \mathbb{Q} (as they are both countable). For $r \in \mathbb{R}$, pick a sequence $q_{r,i} \to r$. Then let $A_r = \{n_{r,i} : i \ge 1\}$ where $n_{r,i}$ is the natural number corresponding to $q_{r,i}$. \Box Lemma 229

Theorem 230. c_0 is not complemented in ℓ_{∞} .

Proof. If $\ell_{\infty} \cong c_0 \oplus Y$ then $Y \cong \ell_{\infty}/c_0$. Take A_r as in the lemma. Let $y_r = [\chi_{A_r}] \in \ell_{\infty}/c_0$. Then

$$\left|\sum_{i=1}^{n} a_i y_{r_i}\right| = \left\|\sum a_i \chi_{A_{r_i}} + c_0\right|$$

But if $B_i \subseteq A_{r_i}$ are pairwise disjoint with $|A_{r_i} \setminus B_i| < \infty$, then this is

$$\left\|\sum a_i \chi_{B_i} + c_0\right\| = \max_{1 \le i \le n} |a_i|$$

Claim 231. No continuous, linear $T: \ell_{\infty}/c_0 \to \ell_{\infty}$ is injective.

Proof. If $Ty_r \neq 0$, then there is n_r such that $(Ty_r)(n_r) = \alpha_r \neq 0$. Then there is $n \in \mathbb{N}$ such that $S = \{r : n_r = n, |\alpha_r| \ge \varepsilon\}$ is uncountable. Thus uncountably many $|\alpha_r| \ge \varepsilon > 0$. But then

$$T\left(\sum_{\substack{i=1\\r_i\in S}}^{N}\overline{\alpha_i}y_{r_i}\right) = \sum |\alpha_i|^2$$
$$> N\varepsilon^2$$

Letting $N \to \infty$, we get a contradiction.

 \Box Claim 231

 \Box Theorem 230

Proposition 232. If K is a compact, infinite metric space then c_0 is complemented in C(K).

Proof. Pick a sequence $x_n \in K$ distinct with $x_n \to x_\infty$. Let

$$Sf(x) = f(x) - f(x_{\infty})$$

the projection of C(K) onto $I(x_0) = \{f: f(x_0) = 0\}$. Pick disjoint balls $b_{r_n}(x_n)$ with $n \ge 1$; let

$$g_n(x) = \max\left\{ \frac{r_n - \operatorname{dist}(x, x_n)}{r_n}, 0 \right\}$$

Let $T: I(x_0) \to I(x_0)$ be

$$Tf = \sum_{n \ge 1} f(x_n)g_n$$

The $f(x_n) \to 0$, so $Tf \in C(K)$. Also P = TS is a projection onto a copy of c_0 .

$$\left\|\sum a_n g_n\right\| = \max_{n \ge 1} |a_n|$$

 $a_n \to .$ So Ran $P \cong c_0$.

Theorem 233. c_0 is not complemented in any dual space. Suppose $X^* \cong c_0 \oplus Y$. Then $X^{***} \cong \ell^{\infty} \oplus Y^{**}$. We can consider map $\ell^{\infty} \to c_0$ by mapping to $\ell^{\infty} \oplus Y^{**} \cong X^{***}$, taking the projection down to X^* , and observing that it will still be in c_0 when we write $X^* \cong c_0 \oplus Y$.

Corollary 234. If K is a compact, infinite metric space, then C(K) is not a dual space.

Corollary 235. If X is a compact Hausdorff space and C(X) is a dual space, then the only convergent sequences in X are eventually constant.

6 Compact operators and Fredholm theory

Lemma 236. If X is a Banach space and V is a closed subspace such that $\dim(V) < \infty$ or $\dim(X/V) < \infty$, then V is complemented.

Proof. Case 1. Suppose dim $(V) = n < \infty$. Then there is a basis v_1, \ldots, v_n for V, and V^* has dual basis $\varphi_1, \ldots, \varphi_n \in V^*$ such that $\varphi_i(v_j) = \delta_{ij}$. Extend φ_i to $\tilde{\varphi_i} \in X^*$ by Hahn-Banach. Define

$$P = \sum_{i=1}^{n} v_i \varphi_i \in \mathcal{B}(X)$$

 \mathbf{SO}

$$Px = \sum_{i=1}^{n} v_i \varphi_i(x)$$

 \Box Proposition 232

79

So $\operatorname{Ran}(P) = V$, and if $v \in V$, say

then

$$Pv = \sum_{i=1}^{n} v_i \varphi_i(v_i) = \sum_{i=1}^{n} a_i v_i = v$$

So
$$P = P^2$$
 is a projection onto V. So it is complemented.

Case 2. Suppose dim $(X/V) = n < \infty$. Pick a basis $\dot{x}_1, \ldots, \dot{x}_n$ for X/V. Let $q: X \to X/V$ be the quotient map. Pick $x_i \in X$ such that $q(x_i) = \dot{x}_i$. Let $W = \text{span}\{x_1, \dots, x_n\}$.

Claim 237. V + W = X.

Proof. Suppose $x \in X$ with

$$q(x) = \sum_{i=1}^{n} a_i \dot{x}_i$$

Let

$$w = \sum_{i=1}^{n} a_i x_i$$

and v = x - w. Then

$$q(v) = q(x) - \sum_{i=1}^{n} a_i \dot{x}_i = 0$$

 $x = \sum_{i=1}^{n} a_i x_i$

 $0 = q(x) = \sum_{i=1}^{n} a_i \dot{x}_i$

so $v \in V$. But x = v + w.

Claim 238. $V \cap W = \{0\}.$

Proof. For $x \in V \cap W$, we have q(x) = 0. Since $x \in W$, we have

So

So each
$$a_i = 0$$
. So $x = 0$

So V is complemented.

Notation 239. If V and W are complements in X, we write $X = V \oplus W$. (One also sees X = V + W).

Lemma 240 (Key lemma). Suppose $K \in \mathcal{K}(X)$. Suppose we have closed subspaces $V_0 \subsetneqq V_1 \subsetneqq V_2 \subsetneqq \ldots$ and $\alpha_i \in \mathbb{C}$ such that $(K - \alpha_i I)(V_i) \subseteq V_{i-1}$. Then

$$\lim_{i\to\infty}\alpha_i=0$$

 \Box Claim 237

 \Box Claim 238

 \Box Lemma 236

 $v = \sum_{i=1}^{n} a_i v_i$

Proof. Since $V_i \not\supseteq V_{i-1}$, we may pick $x_i \in V_i$ with $||x_i|| = 1$ and $\operatorname{dist}(x, V_{i-1}) \ge \frac{1}{2}$. We then have $(K - \alpha_i I)x_i = y_i \in V_{i-1}$; so $Kx_i = \alpha_i x_i + y_i$. Suppose $n_1 < n_2 < n_3 < \ldots$ satisfies $|\alpha_{n_k}| \ge \delta > 0$ for all $k \in \mathbb{N}$. If $1 \le \ell < k$, then

$$\|Kx_{n_k} - Kx_{n_\ell}\| = \|\alpha_{n_k}x_{n_k} + (y_{n_k} - Kx_{n_\ell})\|$$

$$\geq \operatorname{dist}(\alpha_{n_k}x_{n_k}, V_{n_k-1})$$

$$\geq \frac{|\alpha_{n_k}|}{2}$$

$$\geq \frac{\delta}{2}$$

So $\overline{Kb_1(X)}$ is not compact.

 \Box Lemma 240

Theorem 241. If $K \in \mathcal{K}(X)$ then ker(I - K) is finite-dimensional and Ran(I - K) is closed and has finite codimension.

Proof. Let $B = \overline{b_1(X)} \cap \ker(I - K)$. If $x \in B$, then Kx = (K - I)x + x = x. So $\overline{Kb_1(X)} \supseteq \overline{KB} = B$ is compact. So $\operatorname{null}(I - K) = \dim(\ker(I - K) < \infty)$. So $N = \ker(I - K)$ has a complement V; so $X = N \oplus V$. Then (I - K)X = (I - K)V and $(I - K) \upharpoonright V$ is injective.

Claim 242. $(I - K) \upharpoonright V$ is bounded below.

Proof. Otherwise there are $v_1, v_2, \dots \in V$ with $||v_i|| = 1$ and $||v_i - Kv_i|| = ||(I - K)v_i|| \to 0$. But $Kv_i \in \overline{Kb_1(X)}$, and the latter is compact. So there is a subsequence $(Kv_{i_k} : k \in \mathbb{N}) \to y$. Then $v_{i_k} = (v_{i_k} - Kv_{i_k}) + Kv_{i_k} \to 0 + y \in V$. So

$$(I-K)y = \lim_{k \to \infty} (I-K)v_{i_k} = 0$$

So $y \in V \cap N = \{0\}$. But

$$\|y\| = \lim_{k \to \infty} \|v_{i_k}\| = 1$$

a contradiction.

So $\operatorname{Ran}(I - K) = (I - K)V$ is closed.

Claim 243. X/(I-K)X is finite-dimensional.

Proof. Otherwise, let $V_0 = \operatorname{Ran}(I - K)$. We have X/V_0 is infinite-dimensional, and so contains linearly independent $\dot{x}_1, \dot{x}_2, \ldots$ Pick $x_i \in X$ such that $x_i + V_0 = \dot{x}_i$. Let $V_i = V_0 + \operatorname{span}\{x_1, \ldots, x_i\}$. Then

 $V_0 \subsetneqq V_1 \subsetneqq \dots$

with $(K - I)V_i \subseteq \operatorname{Ran}(I - K) = V_0 \subseteq V_{i-1}$. By the Key lemma, we have

$$\lim_{i \to \infty} 1 = 0$$

a contradiction.

 \Box Claim 243

 \Box Claim 242

 \Box Theorem 241

Definition 244. We say $T \in \mathcal{B}(X, Y)$ is *Fredholm* if

- $\operatorname{null}(T) = \dim(\ker(T)) < \infty.$
- $\operatorname{Ran}(T)$ is closed.
- $\dim(Y/TX) < \infty$.

The *index* of T is $\operatorname{ind}(T) = \operatorname{null}(T) - \operatorname{dim}(Y/TX) \in \mathbb{Z}$.

Remark 245.

1. If $\dim(Y/TX) < \infty$, then TX is closed. (Exercise; use closed graph theorem.)

2. $\dim(Y/TX) = \operatorname{null}(T^*)$. (Useful for A6; need to prove it to use on assignment, though.)

Example 246.

- 1. If $K \in \mathcal{K}(X)$ and $\lambda \neq 0$, then $\lambda I + K$ is Fredholm.
- 2. If $T \in \mathcal{K}(X, Y)$ is invertible, then T is Fredholm and $\operatorname{ind}(T) = 0$.
- 3. The unilateral shift $S \in \mathcal{B}(\ell_2)$ given by $S((x_1, x_2, x_3, \dots)) = (0, x_1, x_2, x_3, \dots)$. This is an isometry, injective, and satisfies $\operatorname{Ran}(S) = (\mathbb{C}e_1)^{\perp}$. Also $\operatorname{null}(S) = 0$ and $\dim(\ell_2/S\ell_2) = 1$. So $\operatorname{ind}(S) = -1$.
- 4. The backward shift S^* is surjective and has $\ker(S^*) = \mathbb{C}e_1$, so $\ell_2 / \operatorname{Ran}(S^*) = \{0\}$. So $\operatorname{ind}(S^*) = 1$.

Theorem 247. The set $\mathcal{F}(X)$ of all Fredholm operators on X is open in $\mathcal{B}(X)$, and ind is a continuous function (and hence locally constant; so constant on connected components).

Proof. Suppose $T \in \mathcal{B}(X)$ is Fredholm. Let $N = \ker(T)$. Choose a complement V so $X = N \oplus V$. Let $R = \operatorname{Ran}(T)$; choose a finite-dimensional complement R so $X = R \oplus W$. Then $\operatorname{ind}(T) = \dim(N) - \dim(W)$.

The map $T \in \mathcal{B}(V, R)$ given by TV = Tv is injective and surjective, and hence is invertible by Banach isomorphism theorem. Suppose $S \in \mathcal{B}(X)$ and

$$\|S-T\| < \frac{1}{\left\|\widetilde{T}^{-1}\right\|}$$

Let $\widetilde{\widetilde{S}}: V \oplus W \to X = R \oplus W$ by $\widetilde{\widetilde{S}}(v+w) = Sv + w$. Let $\widetilde{\widetilde{T}}: V \oplus W \to X = R \oplus W$ by $\widetilde{\widetilde{T}}(v+w) = Tv + w$. Then $\widetilde{\widetilde{T}}$ is invertible. But

$$\left\|\widetilde{\widetilde{S}} - \widetilde{\widetilde{T}}\right\| = \left\|(S - T) \upharpoonright V\right\| < \frac{1}{\left\|\widetilde{\widetilde{T}}^{-1}\right\|}$$

But $\widetilde{\widetilde{T}}$ is invertible; so $\widetilde{\widetilde{S}}$ is invertible. So $X = \widetilde{\widetilde{S}}(V \oplus W) = SV \oplus W$. (The sum is direct since in general if $S: V \oplus W \to X$ then X = SV + SW and $SV \cap SW = S(V \cap W) = 0$.) So ker $(S) \cap V = \{0\}$. So null $(S) \leq \dim(W) = \operatorname{null}(T)$.

Aside 248. Suppose $V \oplus W = X$ with $N \cap V = \{0\}$. We claim that $\dim(N) \leq \dim(W)$. Suppose $\dim(W) = n$ with $x_1, \ldots, x_{n+1} \in N$ linearly independent. Then $q: V \oplus W \to W$ given by q(v+w) = w has $q(v_1), \ldots, q(v_{n+1})$ are linearly dependent. So there are a_1, \ldots, a_{n+1} not all 0 such that

$$q\left(\sum_{i=1}^{n+1} a_i x_i\right) = 0$$

But

$$\sum_{i=1}^{n+1} a_i x_i \in V \cap N \setminus \{ 0 \}$$

a contradiction.

So $SV \subseteq \operatorname{Ran}(S) = SV + SN$. But SV is closed and SN is finite dimensional; so SV + SN is closed. Aside 249. To see this, suppose $Sv_n + Sk_n \to y$ where $v_n \in V$ and $k_n \in N$. Then we have a subsequence $k_{n_i} \to k \in N$; so $Sk_{n_i} \to Sk \in SN$. So $Sv_n \to y - Sk \in SV$, as SV is closed. So $y \in SN + SV$. So dim $(X/SX) \leq \dim(X/SV) = \dim(W) < \infty$. So it is Fredholm. Let $N_S = \ker(S)$. Then $V \cap N_S = \{0\}$; so $V + N_S$ is a direct sum of finite codimension. Pick a complement Z so $V \oplus N_s \oplus Z = X$; then $(V \oplus Z) \oplus N_S = X$. So $V \oplus Z$ is complement to ker(S). So $S \upharpoonright (V \oplus Z)$ is bounded below. But $SX = S(V \oplus Z) = SV \oplus SZ$; so

$$ind(S) = null(S) - dim(X/SX)$$

= dim(N_S) - dim(X/(SV \oplus SZ))
= dim(N_S) - (dim(X/SV) - dim(SZ))
= dim(N_S) - (dim(W) - dim(Z))
= (dim(N_S) + dim(Z)) - dim(W)
= dim(N_T) - dim(W) (since N_S \oplus Z is a complement to V, as is N_T)

So $\dim(N_T) - \dim(X/TX) = \operatorname{ind}(T)$.

 \Box Theorem 247

Corollary 250. If $\lambda \neq 0$ and $K \in \mathcal{K}(X)$, then $ind(\lambda I + K) = 0$.

Proof. $I + \lambda^{-1}K$ is Fredholm. So $\lambda I + K$ is Fredholm. So $\lambda I + tk$ is Fredholm for $0 \le t \le 1$. So $\operatorname{ind}(\lambda I + K) = \operatorname{ind}(\lambda I) = 0$.

Corollary 251 (Of proof). Suppose T is Fredholm. Then

$$\limsup_{S \to T} \operatorname{null}(S) \leq \operatorname{null}(T)$$

Remark 252. It can be strict; consider

$$\begin{pmatrix} t & & & \\ & 1 & & \\ & & 1 & \\ & & & \ddots \end{pmatrix}$$

as $t \to 0$.

We have $\mathcal{K}(X) \triangleleft \mathcal{B}(X)$. So $\mathcal{B}(X)/\mathcal{K}(X)$ is a Banach space and a ring (in fact, an algebra over \mathbb{C}). If $\pi: \mathcal{B}(X) \to \mathcal{B}(X)/\mathcal{K}(X)$, then

$$\pi(xy) = \|\pi(x)\pi(y)\| \le \|\pi(x)\|\|\pi(y)\|$$

So this is a Banach algebra.

Theorem 253 (Atkinson). $T \in \mathcal{B}(X)$ is Fredholm if and only if $\pi(T) \in (\mathcal{B}(X)/\mathcal{K}(X))^{-1}$.

Proof.

 (\implies) Suppose T is Fredholm. So if $N_T = \ker(T)$, then N_T is finite-dimensional; so there is a complement $X = N_T \oplus V$. Likewise, if $R_T = \operatorname{Ran}(T)$, then R_T has finite codimension; so there is a complement $X = R_T \oplus W$, where W is finite-dimensional. Then $\widetilde{T} \in \mathcal{B}(V, R_T)$ is invertible. Let $\widetilde{S} \in \mathcal{B}(R_T, V)$ be the inverse. Define $S \in \mathcal{B}(X)$ by $S(r \oplus w) = \widetilde{S}r$, where $r \in R_T$ and $w \in W$. Then $ST(n \oplus v) = S(Tv) = v$ for $n \in N_T$ and $v \in V$. So ST is a projection onto V with kernel N_T . So I - ST is a projection onto N_T ; so $\operatorname{rank}(I - ST) = \dim(N_T) < \infty$. So $\pi(S)\pi(T) = \pi(I)$.

On the other side,

$$(TS)(Tv \oplus w) = T(STv) = Tv$$

So TS is a projection onto R_T with ker(TS) = W is finite-dimensional. So rank $(I - TS) = \dim(W)$. So $\pi(T)\pi(S) = \pi(I)$. So $\pi(T)$ is invertible.

(\Leftarrow) Suppose $S \in \mathcal{B}(X)$ has $T \in \mathcal{B}(X)$ such that $\pi(S) = \pi(T)^{-1}$. Then $\pi(ST) = \pi(I)$; so ST = I + K for some $K \in \mathcal{K}(X)$. Likewise, $\pi(TS) = \pi(I)$, so TS = I + L for some $L \in \mathcal{K}(X)$. Then $\ker(T) \subseteq \ker(ST) = \ker(I + K)$ is finite-dimensional, and $\operatorname{Ran}(T) \supseteq \operatorname{Ran}(TS) = \operatorname{Ran}(I + L)$ has finite codimension. So $\operatorname{Ran}(T)$ is closed and has finite codimension. So T is Fredholm.

 \Box Theorem 253

Corollary 254. If T is Fredholm and $K \in \mathcal{K}(X)$, then T + K is Fredholm and $\operatorname{ind}(T + K) = \operatorname{ind}(T)$.

Proof. $\pi(T+K) = \pi(T)$ is invertible, so T+K is Fredholm. But then T+tK is Fredholm for $0 \le t \le 1$; so by continuity we have $\operatorname{ind}(T+K) = \operatorname{ind}(T)$. \Box Corollary 254

Theorem 255. ind: $(\mathcal{B}(X)/\mathcal{K}(X))^{-1} \to \mathbb{Z}$ is a homomorphism.

Proof. Note that if $\pi(S) = \pi(T) \in (\mathcal{B}(X)/\mathcal{K}(X))^{-1}$, then $S - T \in \mathcal{K}(X)$, so S = T + K for some $K \in \mathcal{K}(X)$. But then $\operatorname{ind}(S) = \operatorname{ind}(T)$. So we can define $\operatorname{ind}(\pi(T)) = \operatorname{ind}(T)$, and this is well-defined.

Suppose $S, T \in \mathcal{F}(X)$. Write $X = N_T \oplus V = TX \oplus W$ (where $N_T = \ker(T)$ and $TX = \operatorname{Ran}(T) = TV$); write $X = N_S \oplus U = SX \oplus Y$ similarly. We need to choose W a bit more carefully to make the proof go smoothly.

Well, $TX + N_S$ is closed, as TX is closed and N_S is finite-dimensional. Choose a complement $W_0 \subseteq N_S$ such that $TX \oplus W_0 = TX + N_S$; then $N_S = (TX \cap N_S) \oplus W_0$. Let W_1 be a complement to $(TX + N_S) \oplus W_1 = X$. Let $W = W_0 \oplus W_1$. Then $TX \oplus W = (TX \oplus W_0) \oplus W_1 = TX \oplus N_S \oplus W_1 = X$. But then

But then

$$\ker(ST) = N_T + \{ x : Tx \in N_s \}$$
$$= N_T + \{ v \in V : Tv \in N_S \cap TX \}$$
$$= N_T \oplus (T \upharpoonright V)^{-1} (N_S \cap TX)$$

since $T \upharpoonright V$ is injective, and $N_T \cap V = \{0\}$. So $(ST) = (T) + \dim(N_S \cap TX)$.

Now, $SX = S(TX \oplus W_0 \oplus W_1) = STX \oplus SW_1$ (where the sum is direct since if $STx = Sw_1$, then $S(Tx - w_1) = 0$, so $Tx - w_1 \in N_S$; so $w_1 \in TX + N_S$, and $w_1 = 0$). So

$$ind(ST) = (ST) - \dim(X/STX)$$

= $(T) + \dim(N_S \cap TX) - (\dim(X/SX) - \dim(SW_1))$
= $(T) + \dim(N_S \cap TX) - (\dim(X/SX) - \dim(W_1))$
= $(T) - \dim(W_0 \oplus W_1) + \dim(W_0) + \dim(N_S \cap TX) - \dim(X/SX)$
= $(T) - \dim(W_0 \oplus W_1) + \dim(N_S) - \dim(X/SX)$
= $ind(T) + ind(S)$

since $\dim(W_0) + \dim(N_S \cap TX) = \dim((N_S \cap TX) \oplus W_0) = \dim(N_S)$.

Theorem 256 (Structure of compact operators). Suppose $K \in \mathcal{K}(X)$ with $\dim(X) = \infty$. Then

- 1. $0 \in \sigma(K)$.
- 2. $\sigma(K) \setminus \{0\} \subseteq \sigma_p(K)$
- 3. $\sigma(K)$ is a finite or countable set with 0 as its only cluster point.
- 4. For all $\lambda \in \sigma(K) \setminus \{0\}$ there is $n_{\lambda} \in \mathbb{N}$ such that
 - $N(\lambda) = \ker((\lambda I K)^{n_{\lambda}}) = \ker((\lambda I K)^n)$ if and only if $n \ge n_{\lambda}$
 - $R(\lambda) = \operatorname{Ran}((\lambda I K)^{n_{\lambda}}) = \operatorname{Ran}((\lambda I K)^n)$ if and only if $n \ge n_{\lambda}$
- 5. Then $X = N(\lambda) \oplus R(\lambda)$.
- 6. If E_{λ} is the projection onto $N(\lambda)$ with kernel $R(\lambda)$, then $E_{\lambda} \in \{K\}''$. Aside 257. For $\mathcal{A} \subseteq \mathcal{B}(X)$, we set $\mathcal{A}' = \{T \in \mathcal{B}(X) : AT = TA \text{ for all } A \in \mathcal{A}\}$. We then set $\mathcal{A}'' = (\mathcal{A}')'$.
- 7. $\sigma(K \upharpoonright N(\lambda)) = \{\lambda\} \text{ and } \sigma(K \upharpoonright R(\lambda)) = \sigma(K) \setminus \lambda.$
- 8. If $\lambda \neq \mu \in \sigma(K) \setminus \{0\}$, then $E_{\lambda}E_{\mu} = 0$.

Proof of Theorem 256.

2. Take $\lambda \in \sigma(K) \setminus \{0\}$. If ker $(\lambda I - K) = \{0\}$, then since $\lambda I - K$ is Fredholm and $0 = \operatorname{ind}(\lambda I - K) = (\lambda I - K) - \dim(X/(\lambda I - K)X)$, then we would have $\lambda I - K$ is a bijective map $X \to X$; so $\lambda I - K$ is invertible, contradicting our assumption that $\lambda \in \sigma(K)$. So there is $0 \neq x \in \operatorname{ker}(\lambda I - K)$; so we have $Kx = \lambda x$, and $\lambda \in \sigma_p(K)$.

4. Fix $\lambda \in \sigma(K) \setminus \{0\}$. Let $N_i = \ker((\lambda I - K)^i)$; then

$$N_1 \subseteq N_2 \subseteq \ldots$$

and

$$\operatorname{Ran}(\lambda I - K) \supseteq \operatorname{Ran}((\lambda I - K)^2) \supseteq \dots$$

Now, if $N_n \subsetneq N_{n+1}$ for all $n \ge 1$, note that $(\lambda I - K)N_{n+1} \subseteq N_n$. So, by the key lemma, we have

$$\lambda = \lim_{n \to \infty} \lambda = 0$$

a contradiction. So there is a least n_{λ} such that $N_{n_{\lambda}-1} \subsetneq N_{n_{\lambda}} = N_{n_{\lambda}+1}$. Now, if $n \ge n_{\lambda} + 1$ and $x \in N_n$, then $(\lambda I - K)^{n-n_{\lambda}-1}x \in N_{n_{\lambda}+1} = N_{n_{\lambda}}$. So $(\lambda I - K)^{n-1}x = 0$. So $N_n = N_{n-1} = \cdots = N(\lambda)$. But $0 = \operatorname{ind}((\lambda I - K)^n) = \dim(N_n) - \dim(R_n)$, where $R_n = \operatorname{Ran}((\lambda I - K)^n)$. Thus $R_n = R(\lambda) = R_{n_{\lambda}}$ if and only if $n \ge n_{\lambda}$.

5. Suppose $x \in X$. Then $y = (\lambda I - K)^{n_{\lambda}} x \in R(\lambda) = \operatorname{Ran}((\lambda I - K)^{2n_{\lambda}})$. Find $z \in X$ such that $(\lambda I - K)^{2n_{\lambda}} z = y = (\lambda I - K)^{n_{\lambda}} x$. Then

$$(\lambda I - K)^{n_{\lambda}}((\lambda I - K)^{n_{\lambda}}z - x) = 0$$

with $w = (\lambda I - K)^{n_{\lambda}} z - x \in N(\lambda)$. But then $x = -w + (\lambda I - K)^{n_{\lambda}} z \in N(\lambda) + R(\lambda)$. Suppose now that $x \in N(\lambda) \cap R(\lambda)$. Then there is y such that $x = (\lambda I - K)^{n_{\lambda}} y$; then since $x \in N(\lambda)$, we have $0 = (\lambda I - K)^{n_{\lambda}} x = (\lambda I - K)^{2n_{\lambda}} y$. So $y \in \ker((\lambda I - K)^{2n_{\lambda}})$. So $x = (\lambda I - K)^{n_{\lambda}} y = 0$. So $X = N(\lambda) \oplus R(\lambda)$.

- 6. Let E_{λ} be the projection onto $N(\lambda)$ with kernel $R(\lambda)$. Suppose $T \in \{K\}'$. If $x \in N(\lambda)$, then $0 = (\lambda I K)^{n_{\lambda}} x$; so $(\lambda I K)^{n_{\lambda}} T x = T(\lambda I K)^{n_{\lambda}} x = 0$. So $TN(\lambda) \subseteq N(\lambda)$. Now, if $y \in R(\lambda)$, then there is x such that $y = (\lambda I K)^{n_{\lambda}} x$; then $Ty = T(\lambda I K)^{n_{\lambda}} x = (\lambda I K)^{n_{\lambda}} T x \in R(\lambda)$. Now, if $x = n \oplus y$ for $n \in N(\lambda)$ and $y \in R(\lambda)$, then $E_{\lambda} T x = E_{\lambda}(Tn \oplus Ty) = Tn = TE_{\lambda} x$. So $E_{\lambda}T = TE_{\lambda}$. So $E_{\lambda} \in \{K\}''$.
- 7. In particular, the above yields that $N(\lambda)$ and $R(\lambda)$ are invariant for K; so $K \upharpoonright N(\lambda) \in \mathcal{B}(N(\lambda))$. But $N(\lambda)$ is finite dimensional, and $(\lambda I_{N(\lambda)} (K \upharpoonright N(\lambda)))^{n_{\lambda}} = (\lambda I K)^{n_{\lambda}} \upharpoonright N(\lambda) = 0$ and $(\lambda I K)^{n_{\lambda}-1} \upharpoonright N(\lambda) \neq 0$; so $(\lambda z)^{n_{\lambda}}$ is the minimal polynomial of $K \upharpoonright N(\lambda)$. So $\sigma(K \upharpoonright N(\lambda)) = \{\lambda\}$. Also $(\lambda I K) \upharpoonright R(\lambda)$ has no kernel (since $N(\lambda) \cap R(\lambda) = \{0\}$). So the index is 0, and $(\lambda I K) \upharpoonright R(\lambda)$ is invertible. So $\lambda \notin \sigma(K \upharpoonright R(\lambda))$. So

$$K \cong \begin{pmatrix} K \upharpoonright N(\lambda) & 0 \\ 0 & K \upharpoonright R(\lambda) \end{pmatrix}$$

So

$$\mu I - K = \begin{pmatrix} (\mu I - K) \upharpoonright N(\lambda) & 0\\ 0 & (\mu I - K) \upharpoonright R(\lambda) \end{pmatrix}$$

is invertible if and only if both diagonal entries are invertible. So $\sigma(K) = \sigma(K \upharpoonright N(\lambda)) \cup \sigma(K \upharpoonright R(\lambda))$. But $\sigma(K \upharpoonright N(\lambda)) = \{\lambda\}$, and $\sigma(K \upharpoonright R(\lambda)) \subseteq \sigma(K) \setminus \{\lambda\}$. So $\sigma(K \upharpoonright R(\lambda)) = \sigma(K) \subseteq \{\lambda\}$, as desired.

3. Suppose $(\lambda_n : n \in \mathbb{N})$ are distinct points in $\sigma(K) \setminus \{0\}$. Pick x_n such that $Kx_n = \lambda_n x_n$. Let $V_n = \operatorname{span}\{x_1, \ldots, x_n\}$. Then $(\lambda_n I - K)V_n \subseteq V_{n-1}$. By the key lemma, we have

$$\lim_{n \to \infty} \lambda_n = 0$$

So $\sigma(K)$ is countable with 0 as the only cluster point.

- 8. Suppose $\lambda, \mu \in \sigma(K) \setminus \{0\}$ are distinct. Then $N(\lambda) \cap N(\mu) = \{0\}$ since $N(\mu) \subseteq R(\lambda)$ by decomposition of K. So $E_{\mu}E_{\lambda} = 0$.
- **1.** If $0 \notin \sigma(K) = \{\lambda_1, \ldots, \lambda_n\}$, then

$$X = N_{\lambda_1} \oplus N_{\lambda_2} \oplus \dots \oplus N_{\lambda_n} \oplus \bigcap_{i=1}^n R(\lambda_i)$$

by induction. So

$$\sigma\left(K \upharpoonright \bigcap_{i=1}^{n} R(\lambda_i)\right) \subseteq \sigma(K) \setminus \{\lambda_1, \dots, \lambda_n\} = \emptyset$$

a contradiction. In fact,

$$\sigma\left(K \upharpoonright \bigcap_{i=1}^n R(\lambda_i)\right) = \{ \, 0 \, \}$$
 though it doesn't have to be an eigenvalue.

 \Box Theorem 256

6.1 Normal operators on Hilbert space

Recall that for $T \in \mathcal{B}(\mathcal{H})$, we have a unique $T^* \in \mathcal{B}(\mathcal{H})$ such that $\langle T^*x, y \rangle = \langle x, Ty \rangle$ for all $x, y \in \mathcal{H}$. Definition 258.

- $T \in \mathcal{B}(\mathcal{H})$ is self-adjoint if $T = T^*$.
- $T \in \mathcal{B}(\mathcal{H})$ is positive (written $T \ge 0$) if $T = T^*$ and $\langle Tx, x \rangle \ge 0$ for all $x \in \mathcal{H}$.
- $U \in \mathcal{B}(\mathcal{H})$ is unitary if U is a surjective isometry. (Equivalently, by assignment 6, if $U^* = U^{-1}$.)
- $N \in \mathcal{B}(\mathcal{H})$ is normal if $NN^* = N^*N$.

Remark 259.

1. On $L^2(0,1)$, if $f \in L^{\infty}(0,1)$, then $M_f h = fh$ is bounded. Also

$$\begin{split} \langle M_f^*g,h\rangle &= \langle g,M_fh\rangle \\ &= \langle g,fh\rangle \\ &= \int g\overline{fh}dx \\ &= \int (\overline{f}g)\overline{h}dx \\ &= \langle M_{\overline{f}}g,h\rangle \end{split}$$

So $M_f^* = M_{\overline{f}}$ and $M^*M_f = M_{\overline{f}}M_f = M_{|f|^2} = M_fM_{\overline{f}} = M_fM_f^*$. So M_f is normal.

- 2. Diagonal operators are normal. Let $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis. Let $De_n = d_n e_n$ where $(d_n : n \in \mathbb{N}) \in \ell_{\infty}$. Then $D^*e_n = \overline{d_n}e_n$, and D is normal.
- 3. If $T = T^*$, then $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$; so $\langle Tx, x \rangle \in \mathbb{R}$. If $\mathbb{F} = \mathbb{C}$, then converse is true:

$$\begin{split} \langle Tx,y \rangle &= \frac{1}{4} (\langle Tx+y,x+y \rangle - \langle T(x-y),x-y \rangle + i \langle T(x+iy),x+iy \rangle - i \langle T(x-iy),x-iy \rangle) \\ \langle x,Ty \rangle &= \overline{\langle Ty,x \rangle} \\ &= \overline{\frac{1}{4} (\langle Ty+x,y+x \rangle - \langle T(y-x),y-x \rangle + i \langle T(y+ix),y+ix \rangle - i \langle T(y-ix),y-ix \rangle)} \\ &= \langle Tx,y \rangle \end{split}$$

since $\langle Tz, z \rangle \in \mathbb{R}$ for all $z \in \mathcal{H}$.

Note that the converse fails over $\mathbb{R}:$ let

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

We then have $\langle Tx, x \rangle = 0$ for all $x \in \mathbb{R}^2$ but

$$T^* = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} = -T$$

4. If $A \in \mathcal{B}(\mathcal{H})$ then $A^*A \ge 0$, since $(A^*A)^* = A^*A^{**} = A^*A$ and $\langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2 \ge 0$.

Proposition 260. Suppose N is normal.

1. $||Nx|| = ||N^*x||$ for all $x \in \mathcal{H}$. 2. $||N|| = \operatorname{spr}(N)$. 3. $\ker(N - \lambda I) = \ker((N - \lambda I)^n) = \ker((N - \lambda I)^*)$ for all $n \ge 1$ and all $\lambda \in \mathbb{C}$. 4. $\ker(N - \lambda I)^{\perp} = \overline{\operatorname{Ran}(N - \lambda I)}$. 5. If $\lambda \ne \mu$ then $\ker(N - \lambda I) \perp \ker(N - \mu I)$. 6. If $p \in \mathbb{C}[z]$ then

$$||p(N)|| = \sup_{\lambda \in \sigma(N)} |p(\lambda)|$$

Proof.

1. Note that

$$||N^*x||^2 = \langle N^*x, N^*x \rangle$$
$$= \langle NN^*x, x \rangle$$
$$= \langle N^*Nx, x \rangle$$
$$= \langle Nx, Nx \rangle$$
$$= ||Nx||^2$$

2. By (1), we have $||N^2x|| = ||N^*(Nx)|| \ge \langle N^*N, x, x \rangle = ||Nx||^2$. So

$$||N^2|| = \sup_{||x|| \le 1} ||N^2x|| \ge \sup_{||x|| \le 1} ||Nx||^2 = ||N||^2$$

But $\|N^2\| \leq \|N\|^2.$ So $\|N^2\| = \|N\|^2.$ So

$$\left\|N^{2^{k}}\right\|^{\frac{1}{2^{k}}} = \left(\|N\|^{2^{k}}\right)^{\frac{1}{2^{k}}} = \|N\|$$

 So

$$\operatorname{spr}(N) = \lim_{k \to \infty} \left\| N^{2^k} \right\|^{\frac{1}{2^k}} = \|N\|$$

3. Well

$$x \in \ker(N - \lambda I) \iff \|(N - \lambda)x\| = 0 = \|(N - \lambda)^* x\|$$
$$\iff x \in \ker(N - \lambda I)^*$$

Also if $x \in \ker((N - \lambda I)^{2^k})$, then

$$0 = \|(N - \lambda I)^{2^k} x\| \ge \|(N - \lambda I)x\|^{2^k}$$

So $\|(N - \lambda I)x\|^{2^k} = 0$, and $x \in \ker(N - \lambda I)$. So $\ker((N - \lambda I)^{2^k}) = \ker(N - \lambda I)$.

4. Note that $\ker(N - \lambda I)^{\perp} = \overline{\operatorname{Ran}(N - \lambda I)}$. Also

 $\overline{\operatorname{Ran}(N-\lambda I)} = (\ker(N-\lambda I)^*)^{\perp} = \ker(N-\lambda I)^{\perp}$

(So $\overline{\operatorname{Ran}(N-\lambda I)^*} = \overline{\operatorname{Ran}(N-\lambda I)}$.)

5. Suppose $\lambda \neq \mu$. Suppose $x \in \ker(N - \lambda I)$ and $y \in \ker(N - \mu I) = \ker(N^* - \overline{\mu}I)$. Then $Nx = \lambda x$, and $N^*y = \overline{\mu}y$, so $Ny = \mu y$. So

$$\lambda \langle x, y \rangle = \langle Nx, y \rangle = \langle x, N^*y \rangle = \langle x, \overline{\mu}y \rangle = \mu \langle x, y \rangle$$

But $\lambda \neq \mu$. So $\langle x, y \rangle = 0$.

6. Well, p(N) is normal. By (2), we have $||p(N)|| = \operatorname{spr}(p(N))$. But $\sigma(p(N)) = p(\sigma(N))$ by the spectral mapping theorem. So

$$||p(N)|| = \sup_{\lambda \in \sigma(N)} |p(\lambda)||$$

 \Box Proposition 260

Corollary 261. If N is normal and Fredholm then ind(N) = 0.

Proof. Well, $\ker(N)^{\perp} = \operatorname{Ran}(N)$ and

$$ind(N) = \dim(\ker(N)) - \dim(\mathcal{H}/\operatorname{Ran}(N))$$
$$= \dim(\ker(N)) - \dim((\operatorname{Ran}(N)^{\perp}))$$
$$= \dim(\ker(N)) - \dim(\ker(N))$$
$$= 0$$

 \Box Corollary 261

Theorem 262 (Spectral theorem for compact normal operators). Suppose N is a compact normal operator on \mathcal{H} . Then \mathcal{H} has an orthonormal basis which diagonalizes N.

Proof. From the structure of arbitrary compact operators, we have

$$\sigma(N) = \{\lambda_1, \lambda_2, \dots\} \cup \{0\}$$

with

$$\lim_{n \to \infty} \lambda_n = 0$$

Then

$$\bigvee_{n=1}^{\infty} \ker(N - \lambda_i I)^n = \ker(N - \lambda_i I) = M_i = \ker(N^* - \overline{\lambda_i} I)$$

by part (3) of Proposition 260, where \bigvee denotes the closed span. Note that the M_i are finite-dimensional, and by part (5) of Proposition 260, we have $M_m \perp M_n$ if $m \neq n$. Let

$$\mathcal{M} = \bigoplus_{n=1}^{\infty} M_n$$

Then \mathcal{M} is a closed subspace with $N\mathcal{M} \subseteq \mathcal{M}$ and $N^*\mathcal{M} \subseteq \mathcal{M}$. Write $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, and write

$$N = \begin{pmatrix} N_{11} & 0\\ 0 & N_{22} \end{pmatrix}$$

where $N_{11}: \mathcal{M} \to \mathcal{M}$ and $N_{22}: \mathcal{M}^{\perp} \to \mathcal{M}^{\perp}$. Then N_{11} and N_{22} are normal, and

$$N^* = \begin{pmatrix} N_{11}^* & 0\\ 0 & N_{22}^* \end{pmatrix}$$

and

$$0 = N^*N - NN^* = \begin{pmatrix} N_{11}^*N_{11} - N_{11}N_{11}^* & 0\\ 0 & N_{22}^*N_{22} - N_{22}N_{22}^* \end{pmatrix}$$

So N_{22} is normal, compact, and has no non-zero eigenvalues. So $\sigma(N_{22}) = 0$. So $||N_{22}|| = \operatorname{spr}(N_{22}) = 0$. So $N_{22} = 0$. So $\mathcal{M}^{\perp} = \ker(N)$. Choose an orthonormal basis for each M_i ; these are then eigenvectors with eigenvalue λ_i . Say $e_{i,1}, \ldots, e_{i,n_i}$ are an orthonormal basis for M_i . Choose an orthonormal basis $\{e_{0,i} : i < \alpha\}$ for $\ker(N) = \mathcal{M}^{\perp}$; note that α is possibly infinite (indeed, possibly uncountable).

Notation 263. If $x, y \in \mathcal{H}$, then $(xy^*)(z) = z(y^*z) = \langle z, y \rangle x$. Write

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix}$$
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \end{pmatrix}$$

Then

$$xy^* = \begin{pmatrix} x_1\overline{y_1} & x_1\overline{y_2} & \dots \\ x_2\overline{y_1} & x_2\overline{y_2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

If N is compact and normal and $\{e_n : n \in \mathbb{N}\}$ is an orthonormal basis of eigenvectors which span $\mathcal{M} = (\ker(N))^{\perp}$; say $Ne_n = \lambda_n e_n$. Then

$$N = \sum_{n=1}^{\infty} \lambda e_n e_n^* = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3, \dots) \oplus 0$$

on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

 \Box Theorem 262

6.2 Invariant subspaces

Definition 264. If $S \subseteq \mathcal{B}(X)$ and \mathcal{M} is a closed subspace of X, we say \mathcal{M} is *invariant* for S if $s\mathcal{M} \subseteq \mathcal{M}$ for all $s \in S$. We write Lat(S) for the set of all S-invariant subspaces of X.

Remark 265. We have $\{0\}, X \in \text{Lat}(S)$. If all $\mathcal{M}_{\alpha} \in \text{Lat}(S)$, then

$$\bigcap_{\alpha} \mathcal{M}_{\alpha} \in \operatorname{Lat}(S)$$

If we further have that

$$\bigvee_{\alpha} \mathcal{M}_{\alpha} \in \operatorname{Lat}(S)$$

then it is called a *complete lattice*.

Definition 266. If \mathcal{L} is a collection of subspaces, we define

$$Alg(\mathcal{L}) = \{ A \in \mathcal{B}(X) : AM \subseteq M \text{ for all } M \in \mathcal{L} \}$$

Remark 267. $\operatorname{Alg}(\mathcal{L})$ is an algebra containing I: if $AM \subseteq M$ and $BM \subseteq M$, then $(\alpha A + \beta B)M \subseteq M$ and $ABM \subseteq AM \subseteq M$. Furthermore, if $A_{\alpha} \in \operatorname{Alg}(\mathcal{L})$ with $A_{\alpha} \xrightarrow{\operatorname{WOT}} A$, then $\varphi(A_{\alpha}x) \to \varphi(Ax)$ for all $x \in X$ and all $\varphi \in X^*$. If $x \in M$ and $\varphi \in M^{\perp}$, then

$$\varphi(Ax) = \lim \varphi(A_{\alpha}x) = 0$$

Ao $Ax \in M$. So Alg (\mathcal{L}) is a WOT-closed unital algebra.

Remark 268. If \mathcal{A} is an algebra, we have $\operatorname{Alg}(\operatorname{Lat}(\mathcal{A})) \supseteq \mathcal{A}$; we say \mathcal{A} is *reflexive* if $\mathcal{A} = \operatorname{Alg}(\operatorname{Lat}(\mathcal{A}))$. Note: this differs from our prior usage.

Similarly, if \mathcal{L} is a lattice, then $\operatorname{Lat}(\operatorname{Alg}(\mathcal{L})) \supseteq \mathcal{L}$.

 $Example\ 269.$ Recall the Volterra operator

$$Vf(x) = \int_0^x f(t)dt$$

on $\mathcal{B}(L^2(0,1))$. Then

$$N_t = \{ f : \operatorname{supp}(f) \subseteq [t, 1] \} \in \operatorname{Lat}(V)$$

Theorem 270. Lat $(V) = \{ N_t : 0 \le t \le 1 \}.$

TODO 3. Last two lectures.