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Lecture 1 PMATH 450/650 02 May 2018

Start of Lecture 1

Course webpage: http://www.math.uwaterloo.ca/ snew/
Definition 1.1: We define the outer Jordan Content (c¢*) of set A as
R is a rectangle with
c(A)=infq > |Ryl ACRand Pisa
Ri;NA#D double partition of R

Definition 1.2: We define the inner Jordan Content (c.) of set A as

R is a rectangle with

c«(A) = sup Z ‘Rij‘ ACRand Pisa or equivalently
RijNA#D double partition of R
R is a rectangle with
= supy |R| — Z }Rij‘ ACRandPis a
Ri;N(R\A)#2 double partition of R

Remark 1.3: A has a well-defined Jordan content when ¢*(A) = ¢.(A). We denote Jordan content was
c(A) = c*(A) = e (4).

Definition 1.4: We define the outer Jordan content of a bounded set A C R as

" n € Z* and each R; is a bounded

¢*(4) = inf ; | il open interval with A C O R;
=0
Theorem 1.5 (Properties of outer Jordan content):
1. (Translation) If A C R and a € R, then ¢*(a + A) = ¢*(A) wherea+ A={a+2 | z € A}
2. (Scaling) If 0 # r € R then ¢*(rA) = rc*(A).
3. (Inclusion) IfA C B C R, then ¢*(A4) < ¢*(B).
4. If A C R is finite, then ¢*(A) = 0.
5. If I = (a,b),(a,b],a,b) or [a,b] where a,b € R with a < b then ¢*(I) = |I| =b—a.
6. (Subadditivity) If A, B C R then ¢*(AU B) < ¢*(A) 4+ ¢*(B).
7. We have c*(A) = c*(A).
Exercise 1.6: Prove these theorems.

Remark 1.7: We would also like to have to property that if A, B C R with AN B = & then ¢* (AU B) =
c*(A) + ¢*(B) but this property does not hold.

Example 1.8: If A =1[0,1]NQ and B = [0,1] \ Q then ¢*(A) = 1,c¢*(B) = 1 but ¢*(AU B) = ¢*([0,1]) =
14 2.

End of Lecture 1
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Lecture 2 PMATH 450/650 04 May 2018

Start of Lecture 2

Definition 2.1: For the interval I = (a,b), (a, b], [a, b)or[a,b] where a,b € R with a < b we define |I| =b—a
and for the unbounded intervals I = (—o0,a), (—00,al, (a,0)[a, ), or(—oc0,00) where a € R we define
|| = 0.

Definition 2.2: We define the outer Lebesgue measure of a bounded set A C R as

each R; is a bounded

A*(A) = inf z; | Ri] open interval with A C U R;
i= i=0

Notation 2.3: Through out this course, unless otherwise specified, when we say "measure" we mean
Lebesgue measure.

Theorem 2.4 (Properties of outer Lebesgue measure):

1. If A is finite or countable then \*(A) = 0.

2. (Inclusion) If A C B C R then A*(A4) < \*(B).
3. (Translation) If A C R and a € R then A\*(a + A) = A*(A) wherea+ A={a+2x | z € A}.
bijective correspondence

4. (Scaling) If 0 # r € R then A*(rA) = rA*(A).

5. (Intervals) If I is an interval, then A*(I) = |I|.

6. (Subadditivity) If A, B C R then A*(AU B) < A*(A) + \*(B). More generally, if A;, Ay, ... € R, then

MU AR ] <D (A
k=1 k=1
[Proof of 11
Let A = {aj,az,...}. Let ¢ > 0. For each k € ZT let I}, = <ak—2€k,ak+28k>. Then a, € I. So
A C U I. Thus \*(A) < Z\IM — e+ o+ S 4. =2. Since A*(A) < 2e, for all e > 0, we have
k=1 k=1 2 4

A*(A) =0.

Exercise 2.5: Proofs of 2, 4, and 4 are left as exercises.

[Proof of 5l

Let I = (a,b),(a,b],[a,b)or[a,b] where a,b € R with a < b. Let € > 0. Let I} = (a—¢/2,a+¢/2)

so that I C Iy and |I| = (b—a)+¢e = |[I|+cand let Iy = I3 = ... = @. Then I C UIk and
k=1

Z)\*(Ik) = N'(Iy) = [Ix| = |I| + €. It follows that A*(I) < |I| + e. Since this holds for all ¢ > 0, we have

k=1
N(I) < I =b—a.

Spring 2018 2



Lecture 2 PMATH 450/650 04 May 2018

Remark 2.6: We could also have used transfinite induction on I;’s to arrive this conclusion.

o
Now let I, be any bounded open interval such that (a,b) or [a,b) or (a,b] =1 C U Ij. Let € > 0 arbitrary
k=1
with e < b—a. Let k = [a — 5/2,@4—5/2]. Since K is compact, we can extract a finite subcover of
{I,I,...}. Let this subcover be {I1,Is,..., I} (after possibly reordering). Choose Iy, = (a1,b;) with
a1 < a+¢/2 < by, and if by < b—¢/2 then choose Iy, = (a2, b2) with ag < by, ba > by. If bo < b—e/2 choose
I, = (a3, b3) with a3z < bg, b3 > by. Eventually we obtain intervals,

(a1,b1), (az,b2), ..., (ag,be) with a; < a+ %7CL2 <bi,az <bg,...,ap <bp_1,by >b— %
We have
L l
D A (@i bi) =Y (b —a;) = (b1 —a1) + (b2 — az) + ... + (b — ar)
i=1 =1
€ €
2az—(a+5)+ (a3 —az) +(ag —az) +...+ (@ —ae-1) + (b 5) —a
=((b—-a)—e
14
Since € is arbitrary, Z(b —a > (b—a)). Thus,
i=1

o) V4
S ON(I) =) (b —ai) = b—a.
k=1

=1

Thus, A*(I) > b — a. Since we have both A*(I) < |I| =b—a and A*(I) > b — a then \*(I) = |I|.

End of Lecture 2
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Lecture 3 PMATH 450/650 07 May 2018

Start of Lecture 3

Remark 3.1: Recall that we proved part 5 last lecture in the case of a bounded interval I. When I is
an unbounded interval, for any R > 0, we can choose a bounded interval J C I with |J| = R then by the
inclusion property, we have \*(I) > A\*(J) = R. Since R was arbitrary, we have \*(I) = oc.

Recall 3.2: Recall the 6 (subadditivity) property.
6. (Subadditivity) If A, B C R then A*(AU B) < A*(A) + A\*(B). More generally, if A;, As, ... € R, then

MU Ak | <D0 (4w,
k=1 k=1

Proof of 6.
Let Ay, Aa,... CR. Let £ > 0. For each k € Z" choose bounded open intervals Iy, , I, . .. so that

o o
Ay €Iy and Y |L | < AT4; + 2%
=1 =1

Then [j Ay, C UIk
k=1 ki

k=1 ki

(o] oo
Since € > 0 was arbitrary, we get \* U A | < Z A*(Ag) as required.
k=1 k=1

Definition 3.3: We define the lower Jordan content of a bounded set A C R as

cx(A) = [I| = " (I\ A),
where I is a bounded interval which contains A C I (if we wish we can require that I is the smallest closed
interval which contains A).

Definition 3.4: We say that A has a (well-defined) Jordan content when c¢*(A) = c,(A) and in this
case, we define the Jordan content of A to be ¢(A) = ¢*(A4) = c.(4).

Remark 3.5: We could define the lower Lebesgue measure of a bounded set A C R to be \*(A4) = |I] —
A*(I'\ A) where I is any bounded interval containing A (or where I = [inf(A),sup(A)]) and we could (but
don’t) define A to be Lebesgue measurable when A*(A) = A\, (A).

Spring 2018 4



Lecture 3 PMATH 450/650 07 May 2018

Definition 3.6: For A C R (A is not necessarily bounded), A is Lebesgue measurable when for all sets
X e R,
A(X)=X(XNA) +X(X\A).

In this case, we define the Lebesgue measure of A to be A(A) = A*(A) and denote the set of all measurable
subsets of R as M.

Theorem 3.7 (Properties of Lebesgue measure):
1. For AC R and a € R, A is measurable iff a + A is measurable. This means translation is measurable.
2. if 0 # r € R then A is measurable iff rA is measurable.
3. @ and R are measurable.
4. For A C R, if A*(A) =0 then A is measurable.
5. For A C R, if A is measurable then so is A° =R\ A.
6. If A, B C R are both measurable then so are AU B, AN B and A\ B.
7

. Every interval I is measurable.

[o.¢] o0
8. If Ay, As,... C R are all measurable, then so are (countable )U Aj, and (countable) ﬂ Ay

k=1 k=1
9. (Additivity) If Ay, A, ... C R are measurable and disjoint then A U Ap | = Z(Ak)
k=1 k=1

Remark 3.8: Before beginning the proof, we remark that for any sets A, X C we have (XNA)U(X\A) = X.
So by subadditivity A*(X) < A*(X N A) + A*(X \ A). thus, A C R is measurable iff for all X C R,

A(X)>N(XNA)+A(X\A).

Exercise 3.9: [Prove 7 and 2l

IProof of 3

@ is measurable because for all X C R we have
AM(XN2)+A(X\2)=A(2)+ A(X) =0+ \(X) = \(X)
and R is measurable because V X € R we have

N(XNR) + A (X \R) = M (X) + A" (@) = A*(X) + 0 = \*(X).

Remark 3.10: Also note after we show & is measurable, by Property 4, @° = R is also measurable.

[Proof of 4
Let A C R with A*(A) = 0. Let X C R. Then

A(XNA) +A(X\A) <A (A) + N(X) (by inclusion property, since X UA C A, X \ A C A)
— 0+ N (X) = A (X).

Spring 2018 )



Lecture 3 PMATH 450/650 07 May 2018

[Proof of 8
Let A C R be measurable. Let X C R. Then A*(X NA°) + X *(X | A% = (X \A)+ (X NA) = \(X).

[Proof of 6l
Suppose A, B C R are measurable. Let X C R. We have
A(X) =X (X NAN(X\A) (since A is measurable)
=N(XNA)+XN(X\NA)NB)+ X (X \A4)\B) (since B is measurable)
>A(XN(AUB))+ A ((X\A)\B) (by subadditivity)
=N (XN(AUB))+ (X \ (AUB)) (since (X NA)U(X\A)NB)=XN(AUB))

Hence AU B is measurable. Then A¢U B¢ is measurable and thus (A°U B¢)¢ = AN B is measurable. Then
AN B®= A\ B is also measurable.

End of Lecture 3
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Lecture 4 PMATH 450/650 09 May 2018

Start of Lecture 4

IProof of 7|

This content is covered in section 2.10 in the textbook.
If ] =@ or I ={a} (ie I is a degenerate interval) then I is measurable because \*(I) = 0.

Suppose I = (a,b) where a,b € R with a < b. Let X C R. Let ¢ > 0. Choose bounded open inter-
[o.¢] o

vals I1,Io,... C R so that X C U I, and Z [I| < X*(X) +¢e. For each n € ZT let
k=1 k=1

Jp =1, N (a,b), K, = I, N (—00,a), and L, = I, N (b,0).
Then X N (a,b) U In.

So \*(X N (a,b)) <Z|J|andX\ab UK UULU (a—e,a4+e) U (b—eb+e)
S—— ———

n=1 . .. . ..
an interval containing a  an interval containing b

So A*(X \ (a,b)) Z|K |+Z|L | + 4. Thus,

N (X N (a, b)) + X (X \ (a,b)) <Z || + [ Kp| + |Ln]) + 4

n=1

Since € > 0 was arbitrary, then
A(X N(a,b))+ A (X\ (a,b) <A (X).
Thus, (a,b) is measurable.
This proves Part 6 for bounded open intervals. Note that every interval can be obtained from bounded

open intervals using countable unions or intersections and/or compliments. Hence every interval I is mea-
surable.

Remark 4.1: To help proving 8 and 9 note that for X C R, if A, B C R are measurable and disjoint then

N(XN(AUB)) = X (XN (AUB))NA) + X ((X N (AUB))\ 4)
= A(X NA)+ M\ (X NB).

n
By induction, if Ay, Ao, ..., A, are measurable and disjoint then U Ay is measurable and for all sets X C R

k=1
we have

XA =D (XN Ag).
k=1 k=1

Spring 2018 7



Lecture 4 PMATH 450/650 09 May 2018

[Proof of 8 and 9l

Let Ay, Ay, ... C R be measurable and disjoint. For each n € ZT, we have

Zn:A*(XmAk) =\ Xn O Ay,
k=1 k=1

<A XnN U Apg (by inclusion)
k=1

=X X n4
k=1

Z (X NAg) (by subadditivity)
k=1

Taking the limit as n — oo we obtain

o0

i)\*(XﬂAk)SZ)\* XN [OJAk Z<Z>\* XﬂAk)

ix* XN GAk :i/\*(XmAk).
k=1 k=1

k=1

In particular, taking X = R gives \* U Ap | = Z A*(Ag) which is needed for part 8.
k=1 k=1

o0
We still need to show that U A}, is measurable. Let X C R. For all n € ZT,
k=1

=D N(X A+ A X\ OAk

k=1 k=1
< Z N(XNAR) + X[ X\ U Ay, (by inclusion)
k=1 k=1

Taking the limit as n — oo gives us

NMX)=xxn A | +x [ X\ Ak
k=1 k=1

n
Thus, U Ay is measurable when Aq, As,... C R are measurable and disjoint.
k=1

Spring 2018 8



Lecture 4 PMATH 450/650 09 May 2018

When Aj, As,... C R are measurable but not necessarily disjoint we have

J Ae = A1 U (A2\ A1) U (A3 (A1 U A2) U (Ag\ (A1 UA; U A3 U Ay)) U ...
k=1

We can rewrite any countable union of disjoint sets as a union of disjoint sets which is measurable since it
is a countable union of disjoint measurable sets.

Corollary 4.2:

1. If Ay, Ag,... € R are measurable with A; C Ay C A3 C ... (where they form an increasing chain)
then

n—oo

A U An | = lim A(Ag).
n=1

2. If A1, Ag,... C R are measurable with A; O Ay O A3 D ... (where they form an descending chain)

and A(A,,) < oo (measure of A, is finite) then

V)

n—oo

A ) An | = lim A(Ag).
n=1

[Proot of Corollary 1}

Suppose A1, As, ... C R are measurable with A; C Ay C A3 C....
Let

B:Ala B2:A2\A27 tee Bk:Ak\Ak‘—l
Then,

A U A, =) U A (since U2y An = Uz Br)
n=1 k=1

o
= Z \(By) (since the By are disjoint)

n
= lim A U By, (since the By, are disjoint)

= lim \(4,). (since Ap, = Uj_, Bk)

Spring 2018 9



Lecture 4 PMATH 450/650 09 May 2018

[Proot of Corollary 2|

Suppose Aj, Ag,... C R are measurable with A1 O Ay O Ag D ... (where they form an descending chain)
and A(A4,,) < co. Then

{a4)-(04

= (Am \ m (Am \ Ak)> (by the equivalence relation of S = (5)°)

Since A, is the disjoint union of U (A \ Ax) and A, \ U (A, \ Ag) then,

k=m k=m

e

=ANAn) — hm AMAm \ Ag)

Since A, is the disjoint union of Ay and A,, \ Ay then,
= )‘(Am) — lim (/\(Am) - )‘(Ak))
k—o00
=AMAn) — A(Ap) + lim A(Ag)
k—o0
k—o0

End of Lecture 4

Spring 2018 10



Lecture 5 PMATH 450/650 11 May 2018

Start of Lecture 5

Corollary 5.1:
1. All open sets and all closed sets in R are measurable.

2. All Borel sets in R are measurable.

We make use of the following properties in our proof:
Recall 5.2:
1. Any X C R" is equal to the disjoint union of its connected components.

2. If U C R" is open the its connected components are open, also U has at most countable many
components.

3. The connected subsets of R are the intervals.

It follows that every open set U C R is equal to a finite or countable disjoint union of open intervals when

U= U I or U = U I, where the I are the connected components of U. Hence, by [property 8| we have
k=1 k=1

U)=> I
k

Aside: Supplementary documents on Borel sets and o—algebra:
e http://nptel.ac.in/courses/108106083/1lecture7_Borel},20Sets’20and’%20Lebesgue’,20Measure . pdf

e http://stat.math.uregina.ca/"kozdron/Teaching/Regina/451Fall13/Handouts/4511ecture05.pdf

Notation 5.3: When C is a set of subsets of R with @ € C and R € C, we write
C, = U Ap each A, € C ; and Cs = ﬂ A each A, €C

Note that C,, = C, and Css = Cs and also that G, = G and F5 = F.
Notation 5.4: We denote the set of all open subsets of R as G and the set of all closed subsets of R as F.
Definition 5.5: A set C of subsets of R is called a c—algebra in R if

1. g eC.

2. f AeC then A“=R\ AeC.

3. If Ay, Ag,... € C then |J;2, Ax € C. Equivalently, if Ay, Ag,... € C then C, =C.

Remark 5.6: Given any set S of subsets R, there is a unique smallest o—algebra in IR which contains .S,
namely the intersection of all the o—algebras in R which contain S.

Definition 5.7: The Borel c—algebra in R is the smallest c—algebra in R (denoted as B) which contains
G (hence also F). The elements in B are called Borel sets.

Spring 2018 11
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Lecture 5 PMATH 450/650 11 May 2018

Remark 5.8: Note that B includes the sets

g7g57g507g5067"‘ a‘nd F?*FUJFU(;?FO'(SOW"‘

where G5 denotes the countable intersection of all open subsets in R and Gs, denotes the countable union of
the countable intersection of all open subsets in R etc. In other words,

oo oo o0

(U ) Ukt € Goos

k=1¢=1m=1
Exercise 5.9: Show that F C Gs and G C F;.
Exercise 5.10 (Challenging): Prove of disprove the following statement.
IfH=GUGsUGss U... then H G H,.

Remark 5.11: The set M = L of Lebesgue measurable sets in R is a o—algebra in R with G C L. So by
definition of B, we have B C L.

End of Lecture 5
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Start of Lecture 6

Cantor Sets
The (standard) cantor set C C [0, 1] can be constructed as follows:

We remove the open third of [0, 1] by letting

12 1 2
= -, — :I = — 1 = - —. 1
L <3,3>, Uy =1, C=U=0,1\U [0, 3} U {3, ]

and then removing the open thirds of the two components of C

12 78 1 23 6 7 8
2 <979>a 3 <979>7 U2 1 U o U I3, CQ U2 [07 ]\UQ |:07 9:| U |:959:| U |:9a9:| |:95 :|

We continue this procedure to get

U,=LUIU...Ul_q, C, =U;,
where C,, is the disjoint union of 2" closed intervals each of size 3% and U CU; C...and C; CCy C ... We
let

U=|JUrandC=0U°= ﬂck.
k=1 k=1

The C C [0,1] is closed (hence measurable) and

M) =25 (1)
ACi) = lim A(C,) = lim @)n — 0. )

Alternatively, C is equal to the set of real numbers in [0, 1] which can be written in base 3 using only the
digits of 0 and 2.

Proof sketch.

o
[0,1] can be written as 0.x 3 1| can be written as 0.2x
1] _ [2 3 )
0, 3 can be written as 0.0x 99 can be written as 0.02x
1] | 8 ] |
0, 9 can be written as 0.00% 9’ 1| can be written as 0.22x
6 7] :
9'9 can be written as 0.20% etc.
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Properties of Cantor Sets

1. C is closed.

2. C is nowhere dense (which means that for every non-degenerate interval I, there is a non-degenerate
interval J C I with JNC = @). Or equivalently, that C° = @ where C° denotes the closure of C’s
interior.

3. C has no isolated points.
4. The cardinality of C is |C| = 2%°.
5. A(C) =0.

We can modify the above construction to obtain a generalized cantor set C C [0, 1] with any value A(C) = ¢
with 0 </ < 1.

Choose any sequence of positive real numbers ay,as, ... with Zak =1—4. Let Uy =2, Co = U§ = 1[0,1].

Choose an open interval I1 C Cy = [0, 1] which contains the midpoint % with |I1] = a;. We choose midpoint
so intervals get smaller in each step (which will be explained next). Then let U; = I; and C; = Uy = [0, 1]\ U
which is a union of two closed intervals each of size < —. Choose two nonempty open intervals I and I3
in two components of C; containing the midpoints with |Ia| + |I3| = ag then let Uy = I[; U I, U I3, Co = US
which is a disjoint union of four closed intervals each of size < 1

Continue to get sets Uy C Uy C and C1 2 Cy D where each Cy, is disjoint umon of 2" disjoint closed intervals,

1
each of size < on and \(U, Z ar and \(Cy,) =1 — Zak Let U = U Ug,and C =U° = m Ck. Then
k=1 k=1 k=1

Exercise 6.1: Verify that C is closed, nowhere dense and |C| = 2%°.

Remark 6.2: There is a bijective correspondence between C and binary sequences. Such correspondence
can be shown from the infinite tree constructed by joining the removed mid points.

Baire Category Theorem

Definition 6.3: A C R is dense when for every non-degenerate interval I, I N A # @. In other words,
A=R.

A C R is nowhere dense when for every non-degenerate interval I there exists a non-degenerate inter-
val J C I with JN A= @ or equivalently A° = @. Then B = A° = R\ A

A is nowhere dense <= A" = &
<~ B°=R
<= the interior of B is dense

If A is nowhere dense and B C A, then B is nowhere dense.
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Definition 6.4: We say A is first category (of Baire) when A is a countable union of nowhere dense sets.
Some authors also refer first category sets as meager.

We say A is second category when A is not first category.

We say A is residual when A€ is first category. In other words, A is a countable intersection of sets
which have dense interior.
Theorem 6.5 (Baire Category Theorem): The following are equivalent.

1. If A is first category then A° = @.

2. If A is residual then A = R (that is A is dense).

3. If A is a countable union of closed sets with empty interiors then A° = &.

4

. If A is a countable intersection of dense open sets then A is dense.

End of Lecture 6
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Start of Lecture 7

Course website updated: http://www.math.uwaterloo.ca/ snew/

Assignment #1 is posted.

Course outline is updated.

Lecture notes are posted: http://www.math.uwaterloo.ca/ snew/pmath450-2018-S/Notes/notes.
pdf

The content covered in this lecture is included as snippets from the PDF hosted on above website.

Definition 7.1: Let A C R. We say that A is first category (or that A is meagre) when A is equal to
a countable union of nowhere dense sets. We say that A is second category when it is not first category.
We say that A residual when A€ is first category.

Example 7.2: Every countable set is first category since if A = {a1, a2, as, - -- } then we have A = (J;~,{ax}.
In particular Q is first category and Q€ is residual.

Remark 7.3: If A C R is first category then so is every subset of A.
Remark 7.4: If Ay, Ay, A3, --- C R are are all first category then so is | Jpo | Ay.

Theorem 7.5: (Baire Category theorem)
1. Every first category set has an empty interior.
2. Every residual set is dense.
3. Every countable union of closed sets with empty interiors has an empty interior.

4. Every countable intersection of dense open sets is dense.

Proof.

Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are special cases of Parts
(1) and (2), so it suffices to prove Part (1). Let A C R be first category, say A = |J;—; Ck where each Cj
is nowhere dense. Suppose, for a contradiction, that A has nonempty interior, and choose a nondegenerate
closed interval Iy with Iy C A. Choose a nondegenerate closed interval I1 C I such that I; NCy = () (we can
do this because C1 is nowhere dense). Choose a nondegenerate closed interval Iy C I; so that Io N Cy = 0.
Continue this procedure to obtain nested closed intervals Iy D Iy D Iy D - -+ with Iy € A and I; NC), = 0 for
k > 1. Such nested intervals have nonempty intersection, so we can choose x € (- Cj. Since z € [ C A
we have € A. But for all kK > 1 we have z € I, and I, N C,, = () so that = # Cf, and it follows that
z ¢ Upey Cy, that is « ¢ A.

Example 7.6: Recall that Q is first category and Q€ is residual. The Baire Category Theorem shows that
QF cannot be first category because if Q and Q¢ were both first category then R = Q U Q¢ would also be
first category, but this is not possible since R does not have empty interior.

Example 7.7: For each n € Z™T, let f, : R — R be continuous. Suppose that for all z € R there exists
n € Z™ such that f,(z) € Q. Prove that there exists n € Z* such that f,, is constant in some nondegenerate
interval.

Proof.
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Say Q = {a1,as,...} since Va € R, I3n € Z*, such that

fn(z) € Q and U fol(ag) = R.

n,keZ~+

Also, each set f,!(a) is closed because f, is continuous and singleton {az} is closed. So by Part 3 pf
the Baire Category Theorem, one of the sets f, !(ax) must have nonempty interior. So we can choose a
non-degenerate interval I C f~1(ay) and then we have f,(x) = a; for all z € I.

o0
Example 7.8: If A is countable (say A = {aj,a2,...}) then A is first category since A = U{ak} and

k=1
singletons are nowhere dense. So A€ is residual but note that A° is not first category (equivalently, A) is not
residual because if A was first category, then R = AU A° would be first category but R is not first category

because R has nonempty interior.
Remark 7.9: Each of the following sets C of subsets of R
C= {A - IR’ A is finite or countable}
Cz{AQR‘A(A)zO}
c={AC R‘ A is first category }
has the following properties:
1. f AC B and B €C then A €C,
2. If Ay, Ay, Ag,--- € C then | JJ—, Ax € C, and
3. If A €C then A = ().

Because of this, it seems reasonable to consider the sets in C to be, in some sense, “small". The following
theorem, then, states that every set in R is the union of two small sets.

Theorem 7.10: Every subset of R is equal to the disjoint union of a set of measure zero and a set of first
category.

Proof.

and for k € Z+, let U, = U I]ﬁg.
(=1

o
1
Note that Uy D Us D Uz D --- and for each k € Z" we have Q C Uy, and A\(Uy) < Z i e| = 2h—T and we
/=1

Let Q = {a1,a2,a3,---}. For k.0 € Z™, let I = (ag

1
+ 5i77)

T okt M

o0
have Uy DUy DUz D ---. Let B = ﬂ Ui. Note that B is residual (it is a countable intersection of dense
k=1
1
open sets) and we have \(B) = klim A(Uk) = 0 since A\(Uy) < oF for all k € Z". Finally note that any sett
— 00

A is equal to the disjoint union A = (AN B) U (AN B°), and we have A(AN B) = 0 and the set AN B is
first category.

End of Lecture 7
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Start of Lecture 8
Remark 8.1: A is first category, say A = |Ji—; Cx where C} is nowhere dense, and if B C A, then
B = J;2 (BN Cy) with each B N Cj, being nowhere dense.

Exercise 8.2: Show such B is uncountable.

Theorem 8.3: There exists a non-measurable set in R.

Proof.

Define an equivalence relation on the set [0,1] by defining x ~ y when y — x € Q. Let C denote the set
of equivalence classes. For each ¢ € C, choose an element z. € c and let A = {z. | c€ C} C [0,1]. We
shall prove that the set A is not measurable. Let Q N[0,2] = {a1, as,as, - -}, with the aj distinct. For each
ke Z*, let A, = ar + A C [0,3]. We claim that the sets Ay, are disjoint. Let k,¢ € Z* and suppose that
Ap N Ay # (). Choose y € Ax N Ay, say y = ay, + x. = ay + x4 where ¢,d € C. Since . —xqg = ay — ap € Q
we have z. ~ x4 and hence ¢ = d (since we only chose one element from each class). Since ¢ = d we have
T, = x4, hence a; = ay, and hence k = £. Thus the sets Ay are disjoint, as claimed. Next, we claim that
[1,2] € Upe; Ak Let y € [1,2]. Since y — 1 € [0,1] we have y — 1 € ¢ for some ¢ € C. Since y — 1 € ¢ we
have y — 1 — z. € Q hence also y — z. € Q. Since y € [1,2] and z. € [0,1] we have y — z. € [0,2]. Since
y— 2. € QNI0,2] we have y — x, = ay, for some k € Z* so that y € Ag. This proves that [1,2] C g Ax.

Suppose, for a contradiction, that the set A is measurable. By translation, each of the sets Ay = ar + A is
measurable with A(Ag) = A(A). Since the sets Ay are disjoint and measurable, additivity gives

> e x 0, if A(4) =0,
AU 4w =3 M) = Y A4) = { ‘
(H 2 kzl : kzl co, if A(4) > 0.

But since [0,1] € g2, Ak € [0,3] we also have 1 < A(Up2; Ax) < 3, giving the desired contradiction.

Remark 8.4: We have o—algebras:
{g,R} CB={ACR | Ais Borel}
CM={ACR | Aismeasurable}
C P(R) = {A C R}
IP(R)| = 22 = 2¢

where the cardinalities of these sets are

|B| = 2% = ¢ — can be shown with transfinite induction

M| = 22" — 2¢  dince every subset of the (standard) Cantor set has measure zero

Proof. Let C be the standard Cantor set. Since A\(C) = 0, it follows that every subset of C' is measurable.
Because |C| = 2% we have

2 Z[{A | ACRY| > |M|>[{A | ACC} =22"

Exercise 8.5: Show that |G| = 2% and |Gs| = 2%°.

End of Lecture 8
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Start of Lecture 9

Chapter 1: Lebesgue Measure, Lectures 1-8. Content is available online: http://www.math.uwaterloo.ca/"snew/

Chapter 2: Lebesgue Integration, Refer to chapter 4.1,4.2 and 5 in textbook.

Newton’s Interpretation of Integration
If F is differentiable with F’' = f of [a, b] we have

b
/ f=F(b) - F(a)

So f is Newton Integrable when f has an antiderivative.

Cauchy’s Interpretation of Integration

When f is continuous on [a, b,

lim Zf(:vk)(xk — Tp_q).
k=1

Ip|—=0 7=

exists where p = (g, 21,...,2y) Witha =20 < z1 < ...<xzp =5b. We write 31 CR,Ve > 0,39 > 0 such
that Vn € Z*,V xg,21,...,2, with a = 29 < 21 < ... < 2, = b and with z — x;_1 < dV k we have

n
Z flap)(xr —xp—1) —I| <e.
k=1
In this case, f;f — T

Riemann’s Interpretation of Integration

For f = [a,b] — R bounded, we say f is Riemann integrable when

lim > f(cx)(zx—1)

lpl—0 7=
exists and the integral then equals to f: = [ as above. Alternatively, we can also define the Riemann

integrability as follows:

Definition 9.1: For S C A, the characteristic function Xg on A is the function Xs : A — {0, 1} is given

by
1 ifzxzeS
Xs(x) = .
0 ifxégsS

Definition 9.2: For a < b a step function on [a,b] is a function s : [a,b] — R which is of the form

n
s = E CkXIk
k=1

where each ¢; € R and the I are disjoint non-degenerate intervals with [a, b] = Up_; Ik
The expression s =y ;_; ¢ X7, is unique if we required that ¢ # ¢ for 1 <k < n.
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For the step function s as above, we define the Riemann integral of s to be

b n
/ SZZCHIH-
a k=1

Definition 9.3: For f : [a,b] — R bounded, we define the upper and lower Riemann integrals of f on

[a, b] be
b
U(f) = inf{/

L(j) = sup{ A

We say that f is Riemann integrable on [a,b] when U(f) = L(f) and in this case we define the Riemann

integral of f on [a,b] to be
b
| r=vin=n.

Theorem 9.4 (Properties of Riemann integral): Let f, g : [a,b] — R be bounded and let ¢ € R. Then,

s is a step function on [a, b] with s > f}

s is a step function on [a, b] with s < f}

—_

b
. If f and g are both Riemann integrable and f < g then / f< / g

2. If ¢ € (a,b) then f is Riemann 1ntegrable on [a,b] iff f is Riemann integrable on both [a, ] and [c, b].

Inthlscase/ /f+/ I

3. If f(z) = g(z) for all but ﬁmtely many x € [a,b] then f is Riemann integrable iff g is Riemann
integrable and in this case, / f= / g
a a

4. If f and g are Riemann integrable on [a, b] then so are the functions ¢f and f + g and in this case,

[en=c[ s [Gro=[1+ [

5. If f is continuous on [a, b] then f is Riemann integrable on [a, b].
6. If f is monotonic on [a,b] then it’s Riemann integrable on [a, b].

Theorem 9.5 (Fundamental Theorem of Calculus): Suppose F' is differentiable with F/ = f on [a, b] and
suppose that f is Riemann integrable on [a, b] then

b
/ f=F(b) - Fla).

Theorem 9.6 (Lebesgue): For f : [a,b] — R bounded, f is Riemann integrable on [a, b] iff the set of points
at which f is not continuous is a set of Lebesgue measure zero. This theorem is covered in William R. Wade’s
Analysis book.
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Definition 9.7: For A C R, a simple function on A is a function s : A — R of the form

n
s = ZCkXAk where ¢, €
k=1

n

and the Ay are measurable disjoint sets with U A, = A.
k=1

n
Remark 9.8: Note that we can make the expression so Z cr X4, to be unique by requiring that the ¢ are
k=1
distinct. Which gives us Range(s) = {c1,¢o,...,¢,} and Ay = s~ ()

Remark 9.9: For s above, we define
n
/ s = ch)\(Ak), where
A4 k=1

/ f= sup{/ s | sis a simple function on [a,b] with s < f}
A A
Example 9.10: For f:[0,1] — R given by
1 ifzeQ
fz) = . :
0 ifzdQ

f is not Riemann integrable because upper sums and lower sums are not equal. But, f is Lebesgue integrable.

1
Example 9.11: Define f: {0,1} — R by f<z> =3 when a,b € Z, b >0, 0 < a < b with ged(a,b) =1

b
and f(x) = 0 when x ¢ Q. The f is Riemann integrable with / f = 0 because f is discontinuous at the

rationals.

Remark 9.12: A function f is Riemann integrable iff the Lebesgue measure of its set of discontinuities is
zZero.

0 ifz<0
Example 9.13: Let s(z) = {1 ?fx - 0 Define f : [0,1] — [0,1] by letting Q N [0,1] = {a1,aq,...}
Tz >

k=1
sz —a
enumerating rationals) then setting f(x) = M Then, f is strictly increasing with a jump
ok
(o.9)

1
discontinuity at each a € Q N[0, 1]. It is Riemann integrable with 0 < / f<1.
0

End of Lecture 9
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Start of Lecture 10

Definition 10.1: Let C' be a Cantor set, say U = [0,1] \ C. Say U = Up2 | I;. We define the associated
Cantor function f : [0,1] — [0, 1] as follows.

We define f($):%f0r1:611,
f(x):iforxelg,
f(a:):%for:veIg,
f(a:):%forxeLl,
f(ac):gforacefg)7
f(x):gfoerIG,
f(x)zgforxeh,

= : for

Verify that f can be extended (uniquely) to give continuous function f : [0,1] — [0,1]. This function is
called the Cantor function. Note that f/(x) = 0 for all z € U. When C' is the standard Cantor set, we
have A(C') = 0. Also note that if f was differentiable everywhere, on [0,1] then it would contradict the
fundamental theorem of calculus. We would have fol f/(t)ydt = f(1) — f£(0) = 1 but all lower Riemann sums
would be zero.

Example 10.2: Let C' be a Cantor set. Say U = [0,1] \ C, and U = UpZ;I}. Let f :[0,1] — [0, 1] be the
Cantor function as above. Then define g : [0,1] — [0,2] by g(z) = = + f(x) is strictly increasing and its
inverse h : [0,2] — [0,1] is continuous. So g : [0,1] — [0, 2] is a homeomorphism. When C' is the standard
Cantor set, we have A(C') =0, A(U) = 1. Note that g sends each interval I;, to an interval g(I) of the same
size. So, AM(g(U)) = A(U). Since [0, 2] is the disjoint union g(U) U g(C), it follows that A\(g(C)) = 1. Since
AMg(C)) = 1, we can choose a non-measurable set B C ¢(C) and then for A = g7!(B), so B = g(A). We
have A C C. So that A is measurable with A\(A) = 0 but g(A) is not.

Example 10.3: Let C be a Cantor set. Say U = [0,1] \ C, and U = UpZ;I. For each k choose an open

interval Ji, C Ij, with the same center and with |J| = 5].@\ and choose continuous function fj : [0, 1] — [0, 1]
with f(x) =0 for z ¢ J and fi(z ) = 1 when z is midpoint of Jj.

Define g : [0,1] — [0,1] by g(x Z fr(z). Then, g is continuous on U but not on C. Define h(zx) by

=3 /0 fu(t) dt

Verify that h'(z) = g(x) for all z. When we use a Cantor set C' with A(C') > 0, we obtain a differentiable
function h on [0,1] with 2’ = g and g is not Riemann integrable.

=

Example 10.4: Let Q N [0,1] = {a1,as,...}. Let f(z ’“ W) Note that f: [0,1] — [~1,1]

Mg

k=1
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strictly increasing. Verify that

(V1N

f @) = 231 for o ¢ Q
k=1

-2k (z — ag,)

1
and f'(z) = co when z € Q and f'(x) > 3 for all . f gives a homeomorphism from [0, 1] to some closed

interval [a,b] C [~1,1] and the inverse function h : [a,b] C [0,1] is differentiable with h'(f(z)) = for

1
f'(=)
all z so h'(x) > 3 for all z and h/(z) =0 for z € Q.

b
If the Fundamental Theorem of Calculus held, / h'(t)dt = h(b) — h(a) = 1 — 0 = 1 but since h'(z) =

a
0V x e Q, the lower Riemann sums are all zero.

End of Lecture 10
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Start of Lecture 11

Lebesgue Measurable Functions

Definition 11.1: Sometimes it is convenient to allow functions to take the values +oco. To do so, we use
extended real numbers

[~ 00, +00] = R U {£00}.

We give [—00, 0] its usual ordering. We use the usual partially-defined + and x (we leave some expressions
undefined, such as co+(—00), 0-£00). We give [—00, 00] its usual topology. A set A C [—o00, 00| is open when
for all a € A there exists 0 < r € R such that B(a,r) C A, where B(—o0,r) = [—00, —%), B(co,r) = (%, o]
and B(a,r) = (a —r,a+r) when a € R.

Example 11.2: Every nonempty open set in [—o00,00] is a finite or countable union of nonempty open
intervals in [—o0, 0o] and nonempty open intervals are the sets of the form

(a,b), (—00,a), (a,00), (—00,00) = R and [—0o0,a), (a, 0], [-00, 0] where a,b € R with a < b.

Definition 11.3: For f : R — B C extendedrealnumbers we say that f is Lebesgue measurable when
f~1(U) is measurable (in R) for every open set U in [—oc, 0o] or equivalently, for every open set U in B.

Remark 11.4: For f: R — B C extendedrealnumbers if f is measurable then A must be measurable since

A= fﬁl([_oov OO])
Theorem 11.5: Let f: A C R — [—00,00]. Then, f is measurable

— [~ ((a, o0 ) is measurable for all a € R,
— [~ ([a, %) ) is measurable for all a € R,
< f([~00,a)) is measurable for all a € R,
< f([~00,a]) is measurable for all a € R.

Proof.

Proof of 1st equivalence If f is measurable then f~!(U) is measurable for every open set U in [—00,00].
So f~!((a,o0]) for every open set U in [—o0,00]. So f~!((a,c]) is measurable for every a € R. Suppose
that f~!((a, 0c]) is measurable for every a € R. Then f~!([—o00,a]) = A\ f~!((a, cc]) is measurable for all

a € R. So,
fH[~o0,a)) = nLJ1 =t ( [—oo,a - i]) is measurable V a € R.
Hence,
f1((a,b) = f1([—00,b)) N f~1((a,]) is measurable ¥ a,b € R.

Moreover, every nonempty open set in [—00, 00| is a finite or countable union of open intervals, each of one
of the forms [—o0, al, (a, 0], (a,b) with a,b € R.

Theorem 11.6: Let A be measurable and f: A C R — [—00,00]. Then,
1. If f is continuous, then it’s measurable.

2. If f is monotonic, then it’s measurable.
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Proof of 1..

If f is continuous then for every open set U in [—o0, 00] £~ 1U) is open in A. So f~1(U) = ANV for some
open set V in R. Hence f~(U) is measurable.

Proof of 2..

Suppose that f is increasing. For x,y € A with z <y if 2 € f~!((a, 00]) then f(z) > a. So f(y) > f(x) > a.
Hence y € f~1(a,o00]). It follows that for a € R, f~!((a,c]) is one of the forms

@or AN (b,o0) or AN[b,o0) or RN A

and these are all measurable.

Remark 11.7: If f : A C R — B C [—00,00] is measurable and ¢ : B C [—00,00] — C C [—00,00] is
continuous then g o f = A C R — C C [—00, 0] is measurable because p o f~HU) = f~1 (¢~ (U)).

End of Lecture 11
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Start of Lecture 12

Theorem 12.1 (Operations on measurable functions): If f,g : A C R — [—00,00] are measurable and
¢ € R then the following functions

cf, f+g, fo, Ifl,

are all measurable, provided they are well defined.

Definition 12.2: We define the positive part of function f: A C R — [—o0, 00| to be

fT:ACR — [—00, 00
_ ) fle) i f(x) 20
o= {20

and similarly, we define the negative part of this function as f~ : A C R — [—00, 00|, where

TSR A if f(z) >0
(@) {\f(ﬂf)! if f(z) <0

Proof.

When ¢ # 0, the function ¢ : [—00, 00] — [—00, 0] given by ¢(x) = cx is continuous. Thus, if f is measur-
able, then so if ¢f = ¢ o f.

When f, g are measurable so if f 4+ g because for a € R,

(f+9) wol = fre A | fo)+g@)>at=J{zed | f@)>randg@) >a—r} ()
reQ

Since given x € A with f(x) + g(x) > a, we can choose r € Q with

f(x) = (f(x) +g(x) —a) <7 < [f(2),

a—g(z)

so that f(x) > r and g(x) < a — r. Hence,

) U (e ng™ @ —r,0]),

reQ
which is measurable.
The map ¢ : [—00,00] — [—00,00] given by ¢(z) = 2% is continuous. So, if f is measurable then so is
f? = po f and it follows that if f and g are both measurable, then so is L = fg.
The map ¢ : [—00,00] — [—00,00] given by @(z) = |z| is continuous. So if f is measurable then so is

|f| = @o f. Thus, if f is measurable then so is f* and f~ because

= S (IfI+f) and f~ = (!f\—f)

l\D\H

Theorem 12.3: Let f, : A C R — [—00,00] be measurable. Then each of the functions

supf, and mf fn and limsupf, and hm 1nf fn

n>1 n— 00

are all well-defined and measurable.
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Proof.

For supfy,: Let g(x) = sup{fn(z) | n € Z"} for all z € A. Then, for a € R we have
n>1

g a, 0] ={z € A | g(z) >a}

={z € A | sup{fi(x), fo(x),...} > a}
={z e A | fu(z)> 0 for somen € Z+}

= U fg_l(aﬂ OO]
n=1
which is measurable.
For égfifn
Equivalently, ( so Vx € A, g(x) = inf{fi(x), fa(z),...} ) we have

g H(a,00) = {z € A | g(x) = inf{fi(), fo(a),...} > a}
={x € A | fu(x) >0 for somen € Z}

o0
-1
=12
n=1

which is measurable.
For lim sup fp,:

n—oQ
Equivalently, (so g(z) = limsupf,) we have
n—oo
g(z) = limsupfy,
n—oo

= the limit as n — oo of the sequence sup f,,(x), supfn(z),sup fn(x),. ..
n>1 n>2 n>3

= lim sup fp(zx)Vz € A
l—00 n>¢
Then, since the sup f,(z) sequence is decreasing (not necessarily strictly) with ¢ for any fixed z € A, we have
n>¢

lim sup f, = inf sup f,
£=00 p>p >1 >0

which is measurable. This is because each function g, = sup f,, is measurable.
n>/{

Definition 12.4: We say that a property or statement about x holds for almost every (written a.e) z € A
or holds almost everywhere in A. When the property of statement holds for all z € A\ E for some set £ C A
with A(E) =

Example 12.5: For f,g: A C R — [—00, 0] we say that f(z) = g(x ) for a.ex € A, or that f = ga.e € A,
when f(z) = g(z) for all x € A\ E for some set £ C A with A(E) =

Theorem 12.6: Let f,g: A C R — [—00, 0.
1. If A(A) = 0 then f is measurable.

2. If B,C C R are disjoint and measurable with A = BUC then, f is measurable on A if and only if the
restrictions of f to B and to C are both measurable on B and C.

3. If f =g on a.ein A, then f is measurable if and only if g is measurable.

Exercise 12.7: Prove these 3 theorems.
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Lebesgue Integration

Definition 12.8: A simple function on A is a function s : A — R of the form

n
s = Z crXa,
k=1

where n € ZT, each ¢, € R and the sets A, are disjoint and measurable.

Remark 12.9: We can ensure the numbers ¢ and the sets A; are uniquely determined from the function
by requiring that ¢; < ca < ¢3 < ... < ¢, (and then Ay = s7!(c;) for each k).

Exercise 12.10: Integral sum of two simple functions is the sum of two integrals.

End of Lecture 12
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Start of Lecture 13

Definition 13.1: We define the Lebesgue integral of a simple function s on A to be

/AS:/ASd)\:an:ICkA(Ak).

Theorem 13.2: Let r,s: A C R — R be simple functions and let ¢ € R. Then,
1. Ifrgstheanrngs.
2. [4(cS)=c[,s.
3. If \(A) =0 then [, s=0.
4

. If A= BUC where B and C are disjoint measurable sets then fA 5= fB s+ fC s where fB S means
fB sp where sp : B — R is given by sp(z) = s(x) for z € B.

4

If B C A is measurable then [5s= [, sXp.
6. If r = s a.ein A then fAr:fAs.

Proof.
To prove 1 and 3, say

n m
r= ZakXAk and s = ZngBe.
k=1 /=1

For each pair of indices k,¢, let Cy, = Ay N B,. Note that the sets C} ¢, are measurable and disjoint. We
have

U UAkﬁBg) AkﬂUBg:AkﬂA:Ak.
/=1 /=1 (=1
S0, > AM(Cre) = MAp) and > Xg, , = Xa,.
/=1 /=1

n
Similarly, we also have U Cr, = By. To prove 1, note that if » < s then V 2 € C} ¢, we have
k=1

ar =r(z) < s(x) = by.

Hence, /r = Zak)\(Ak)
A4 k=

n m
=2 @) Che
(=1

k=1 =

= axA(Cry)
"t
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m
= beA(By)
(=1
[
A
To prove 2 note that
n m n m m n
r+s= ZakXAk + ZngBL, = Zak XC;M + Zbg ZXCIM = Z(ak + bZ)XCk[
k=1 /=1 k=1 /=1 =1 k=1 k.l

So, [ (r+8) = 3w+ bk,

P,
= Z ak‘XC’k,z + Z beCk,z
k0 k0

= Z ag Z )\(ij) + Z bé Z /\(CkHE)
k Y4 Y4 k

= Z apA(Ag) + Z beA(By)
k L

[+ ] s

Exercise 13.3: Prove parts 3 — 6.

Non-negative Measurable Functions

Remark 13.4: We use [0,00] C [—00,00]. In [0,00] we define 0 - co = 0. So the operations + and x are
always well-defined in [0, co]. We could also define

g = o an
and the map ¢ : [0,00] — [0, 0c] (reciprocal map) given by ¢(z) = L is well-defined and continuous.

Definition 13.5: For f: A C R — [0, 0] non-negative and measurable we define the Lebesgue integral of

f on A to be
/Af:/Afd)\zsup{/As

Theorem 13.6: For non-negative measurable functions f,g: A C R — [0,00] and for ¢ € R,
1. Iffggtheanfngg.

2. fA(Cf) :cfAf and fA(f+9):fAf+fA9-
3. If A(A) =0 then [, f=0.
4

s is a simple function
on the set A with s < f

. If A= BUC where B and C are disjoint measurable sets then fA f= fB f+ fC f where fB f means
[ fB where fp: B — [0,00] is given by fp(z) = f(x) for z € B.

5. If B C A is measurable then [, f = [, fX5.

Spring 2018 30



Lecture 13 PMATH 450/650 30 May 2018

6. If f=gaein Athen [, f= [,9.

Remark 13.7: The proof of these all follow fairly easily from the analogous properties of simple functions

except for the fact that
[Gra=[ 1+
A A A

which we will prove later.

End of Lecture 13
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Start of Lecture 14

Theorem 14.1 (Fatou’s Lemma): Let f, : A C R — [0, 00| be measurable for n € Z™ then

n—oQ n—oo

/ liminf f,, <liminf [ f,.
A A

Proof.

We show that for all non-negative simple functions s on A with s < liminf f,, we have

n— oo
/5<hmmf/ fn-
n—oo

Let s : A C R — [0, 00] be any non-negative simple function on A with s < liminff,,.
n—oo

m
We write s = ZCkXAk- For all x € Ay, we have ¢ = s(x) < liminff,(x). It follows that VO <r <1, I3n €

n—oo
k=1
Zt, Yl >n, fox) > rcg. For each k,n € ZT, let
n={x €A | filx) >ravVe{>n}= ﬂ f[l([rck,oo]).

>n

Note that each set By, is measurable and B C By C ... and U By, = Ayg. For x € By, we have

n=1
m
fe > rey, for all £ > n, so in particular, f,(x) > rey for © € By,,. Therefore for all z, fy(x ZTCkXBn,k
k=1

So .
/ fa(@) 2> reM(Brp).
k=1

Take the liminf to get

m

. S Tim i _
liminf f,, > hnrgglerck)\(Bkm) ZTCk)\(Ak)-

e k=1
Since 0 < r <1 is arbitrary and since
o0
AMAg) = A U Bin, | = nh—>Holo A(Bk’,n) = 1"/ s,

n=1 A

then it follows that lim inf / Jn = / s. Thus, we obtain / liminf f,, <liminf / fn as required.
A A A A

n—oo n—oo n—o0

Corollary 14.2: Let f, : A C R — [0, 00] be nonnegative and measurable for n € Z". Suppose lim f,(z)
n—oo
exists and fp(z) < li_>m fo(z), Vo€ Aand ¥V n € Z'. Then
n oo

/ lim f, = lim fn
ATLHOO n—o0

Proof.

Since f, < ILm fn for all n € Z", we have

/fng/ lim fn,VnEZ+.
A A’I’L—}OO
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Thus, limsup [ f, = lim fn < / lim f,. By Fatou’s lemma, we have
A o0

n—oo JA n—00 n—

/ liminff, = / lim f, <liminf | f, = lim fn
A A

n—o0 n—oo n—oo A n—o0

Corollary 14.3: (Lebesgue’s Monotone Convergence theorem) Let f, : A C R — [0, 00] be nonnegative
measurable functions such that {f,(z)} is increasing for every z € A. Then

/ lim f, = lim fn
A

n—oo n—oo

Proof.

This is a special case of the previous corollary.

Remark 14.4: We now return to the proof of the second formula in Part (2) of [section 13.6| We suppose
that f,g: A C R — [0, 00] are nonnegative measurable functions, and we need to prove that

Jura= [+ [

Given any nonnegative measurable function f : A C R — [0, 00], we can construct an increasing sequence
{sn} of nonnegative simple functions s, : A — [0,00) with lim s, = f as follows. For n € Z™, we let
n—oo

Proof.

k—1 k—1 k
i < = wi n
o (x) = o ,if < flz) < on with & € {1,2,--- ,n2 },'
n Jif f(x) > n
k- k-1 k
that is s, = Z 5n XAk where A, = f~ [ 5 2”) for 1 <k < n2" and Apon = f~*[n, oc]. Using the
k=1

construction described above, choose increasing sequences {r,} and {s,} of nonnegative simple functions on
A such that lim r, = f and lim s, = g. Then the sequence {r,+s,} is also increasing with lim (r,+s,) =
n—o0 n—o0 n—oo

f + g. By the Monotone Convergence Theorem, along with Part (2) of we have

A(f+g):An1L%(rn+sn)_n1L% (rn + 52) _n1grolo</rn / )

= lim rp + lim sn /hmrn /limsn:/f-i-/g

End of Lecture 14
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Start of Lecture 15
From the proof of Remark 14.4] we obtain the following corollary.

Corollary 15.1: Let A C R be measurable and let {f,,} be a sequence of nonnegative measurable functions

fn A —[0,00]. Then
A;nzgén.

Proof.

n n n
Apply MCT to partial sums g, = Z fn and note that / Z fn= Z / fr by induction.
k=1 Ap=1 k=174

Corollary 15.2: Let A1, Ao, ... C R be disjoint and measurable with A = |_| Agandlet f: ACR — [0, 0]

k=1
be nonnegative and measurable. Then

f= I
Where A C A and / f means / fa, where fa, is the restriction of f to Ay with f(x) = fa, (x) in A.
A A

Proof.

This follows from the above corollary using f,, = f - X4, .

Definition 15.3: For a o-algebra C, a measure on C is a function p : C — [0, 00] such that

1. u(@) =0, and
2. If Ay, Ay, As,--- € C are disjoint then u( Upe Ak> = ZM(Ak)-
k=1

When M is the o-algebra of Lebesgue measurable sets in R, and f : R — [0,00] is any nonnegative
measurable function on R, the above corollary shows that we can define a measure y on M by

way= | 1.
A
Theorem 15.4: Let f : [a,b] = R be bounded where a < b. Then,

1. f is Riemann integrable on [a,b] if and only if f is continuous a.e in [a, b].

2. If f is Riemann integrable on [a,b] then f is Lebesgue integrable on [a,b] and they are the same as
follows:

b
/ f(z)dz = fdA.
a [a,b]
3. If we define upper Lebesgue integral and lower Lebesgue integral as
. s is a simple function _
U(f)—lnf{/s on [a, b] with s > f }andL(f)—sup{/s
then f is Lebesgue integrable if and only if U(f) = L(f). In this case,

!/fZWﬁ—LU)
A

on [a,b] with s < f

s is a simple function }
)
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Proof.
Chapter 5.5 in textbook includes proof for this theorem.

Definition 15.5: For a measurable function f : A C R — [—00, 00|, we say that f is (Lebesgue) integrable
(on A) when the functions f* and f~ are both Lebesgue integrable on A and, in this case, we define the
(Lebesgue) integral of f on A to be

[ o= [ra=[ =]

Remark 15.6: For f: A CR — [—00, 0], f is integrable if and only if | f| is integrable.

Theorem 15.7: Let f,g: A C R — [—00, 00| be measurable and let ¢ € R.

fAf‘ <[,

IffggtheanfoAg.

The functions cf and f + g are Lebesgue integrable with [,(cf) =c [, fand [,(f+9) = [, [+ [, 9
If A= BUC where B and C are disjoint and measurable then fAf = fB f+ fc f.

If B C A is measurable then [5 f = [, f- XB.

If A(A) = 0 then [, f = 0.

If f=gae onAthen [, f= [0

J4lfl=0 <= f=0aein A

1. We have

S R A

Proof of 1.

Wewanttoshow/]f]Z/fZ—/\f|. We have
A A A

/Afz/Aﬁ—f—z/Aﬁ—/Af—s/Afw/Af—:/Am.
We also have
/Afz/Af*—fz/Af*—/Afz—Af+—Af=—<Af++Af>=—Arf-

Exercise 15.8: Prove properties 2 — 8.

Theorem 15.9: (Lebesgue’s dominated convergence theorem) Let A C R be a measurable set and let
fn : A = [—00,00] be measurable functions for n € ZT. Suppose lim,_ fn(7) exists pointwise V z € A.
Suppose there exists an integrable function g : A — [0, oo] such that ‘fn(:n)‘ <g(x), YVneZ" xe A Then

/ lim f, = lim fn-
ATL*)OO n—o0 A

Proof.
Let f =lim, o fr. By Fatou’s Lemma, applied to the function g + f,, we have

/g+/ lim fn:/liminf(g—l-fn)Sliminf/(g-f—fn):/g+1iminffn.
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It follows that
liminf [ f, > / lim f,.
A A

n—oo n—oo

By Fatou’s Lemma, applied to the function g — f,,, we have

Ag—Aggrgofnzélﬂgf(g fn)<hmmf/(g—fn)=/ —llﬁsogp/fn

It follows that
limsup/ Jn < / lim f,.
n—00 A A N—00

End of Lecture 15
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Start of Lecture 16

Example 16.1: Let f, : A C R — [0, 00] be nonnegative and measurable for n € Z* with f1(z) > fo(z) >
.... Do we have [, limy, o0 fr = limy, o0 [4 fn?

No we don’t. We give two examples. Consider A = (0,1) and fn(z) = . So [, fo = o0, V n but

nT
lim,,_yoo = 0.

Also consider A = R. f,(z) = 1, V . We have f, — 0 but J4 fn = 00, ¥V n. Note that if [, fi < oo

n

then [, lim,_o fn = limy o0 [4 f by [Lebesgue’s Dominated Convergence Theorem| Simply by applying
[Lebesgue’s Monotone Convergence Theorem|to g, = f1 — fn.

Example 16.2: If f : R — R is differentiable then f’ is measurable and if so, f’ is integrable.

We have

h—0 n—o00 1
n

Thus f/ = lim,, .o g, Where

gn(T) = T
n
which is measurable.
2.1 if
For f(z) = resing, ifx#0
0, ifx#0
(=) 2xsin%—cos%, ifx#0
€Tr) =
0, ifz#0
2. 1 if
But for f(z) = resin 5, ifxz#0
0, ifx#0
() = 2xsinx—12—%cos%, ifx#0
0, ifx#0

For further explanation see section 5.5 in textbook.

Theorem 16.3 (Fundamental theorem of calculus): If f : [a,b] — [—o0, 0o] differentiable and f” is bounded,
then f’ is integrable on [a,b] and ff = f(b) — f(a).

Definition 16.4: V z,y,z € V and ¢ € R, an inner product on a real vector space V satisfies the following
properties.

1. (z,z) >0 with (z,2) =0 < z =0.
2. (,y) =
3. (4y,2) = (x,2) + (y, 2).
4. {cz,y) = c(z,y) = (z,cy).

A vector space with inner product is called an inner product space.

Definition 16.5: Vz,y € V and ¢ € R, a norm on a vector space V satisfies the following properties.
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L. ||z|| > 0 with ||z =0 <= z =0.
2. |lex|| = lell|=]]-
3z +yll < llll + llyll-
A vector space with a norm is called a normed linear space.
Definition 16.6: V z,y,z € X, a metric on a set X satisfies the following properties.
1. d(z,y) > 0 with d(z,y) =0 <= z =y.
2. d(z,y) = d(y,x).
3. d(z,z) < d(z,y) +d(y, z).
A set with a metric is called metric space.

Definition 16.7: A topology on a set X is a set 7 whose elements are subsets of X and satisfies the
following properties.

l.geTand X €T.
2. IfA,BeT then ANBeT.
3. If K is aset and Ay € T for every k € K then U, Ax € T

The elements in 7 (which are subsets of X) are called the open sets in X. A set with a topology is called
a topological space.

End of Lecture 16
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Start of Lecture 17

Definition 17.1: In given an inner product in a vector space we define the associated norm on V by all
|z|]| = v/{(z,x) . In this case, the inner product and its norm satisfy

1. Cauchy-Schwarz inequality: H(:L“,y)H < lz|l||yl-
1
2. Polarization identity: (z,y) = 1 (Hx +yl* — |l - yHQ).
Definition 17.2: Given a norm on a vector space V we define the associated metric on V' (or any subset
X CV)bydr,y) =z -yl

Definition 17.3: Given a metric on a set X, we define the associated topology on X by defining a set
A C X to be open when Va € A, 3r > 0 such that B(a,r) C A where B(a,r) ={z € X | d(z,a) <r}.

Definition 17.4: For a sequence {z,} in a metric space X, we say
{z,} is convergent in X <= Fa € X such that lim z, =a,
n—oo
< Ja€cX,Ve>03InecZ", VkwithZT 3k >n,d(zp,a) <e.

Definition 17.5: We say the sequence {xy} is Cauchy if Ve > 0, 3n € INT such that V k,/ € N, k, £ >
n — d(mk,ﬂjg) <e.

Remark 17.6: It is easy to show that if {z,} converges then (z,) is Cauchy. When X = R", it can be
shown that if (x,) is Cauchy, then (z,) converges.

Definition 17.7: We say that a metric space is complete when every Cauchy sequence in X converges in
X.

Definition 17.8: A topological space is separable when t contains a countable dense set.
Definition 17.9: For A C X, we say that A is closed if A° = X \ A is open.

Definition 17.10: The closure of A, denoted by A, is the smallest closed set which contains A, that is, the
intersection of the set of all closed sets in X which contain A. We say that A is dense in X when A = X.

Example 17.11: We have various subspaces such as
RY = {sequences (z,) € R | Ane N, Vk >n,z, =0}
= {sequences (z,) € R | (x,) is eventually constant}
= {sequences (z,) € R | (x,) converges}

We also have

o
01 = { sequences (z,,) € R Z |zy| < 00
n=1
o0
¢y = { sequences (z,) € R Z 2| < 00
n=1
oo
¢, = { sequences (z,) € R Z |z, P < 00
n=1
B (xy,) is bounded,
foo = {sequences (on) € R or equivalently, sup |zx| < oo
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In /4, we have norms

[es)
Izl =) |zl
n=1

N

[e%S)

2

lzlly = [ D lanl
n=1

Note that we can define inner product (x,y) = > 27| Txyk-

B =

(oS
lzll, = { D_ lzal?
n=1

|2l = sup{lzn| | n € N}

Definition 17.12: A complete inner product space is called a Hilbert space and a complete normed linear
space is called Banach space.

Example 17.13: C([a,b]) = {continuous functions f : [a,b] — R}. has several norms.

b
I = [ 17

b % b
I1flly = (/ W) Af.g)=[ fg

N
IUM—</!N>
1l = max{] f(z)| | a<z<b}

Example 17.14: Let R([a,b]) = {Riemann integrable functions f : [a,b] — R}. Note that on R([a,b]), | f|l; =
ff |f| does not give a norm.

End of Lecture 17
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Start of Lecture 18

Remark 18.1:

1. In Assignemnt #2, we will show that for f : A C R — [0, co] measurable, we have [, f =0 <= f=0

a.ein A.

2. When f: ACR — [—o0, ],

f is integrable <= f* and f~ are integrable. In this case / f= / ft —/ f.
A A A

<= |f] is integrable. In this case / |/ :/ f+_|_/ .
A A A

3. When f: A CR — [—o0, 0] is integrable, the sets

B={zecA| f(x)=4cc}and C={ze€ A | f(z)=—o0}

both have measure zero.

4. We define 0 - 00 = 0 and (+00) £ (£00) = oo for this chapter.

Definition 18.2: For f: A C R — [—00, co] measurable, we define

1l = / 1
1l = (/Am?)Q
141l = (/Amp)” for 1< p < o0

| fllo = esssup|f| (ess sup) is explained below.

Note that | f| is bounded

< Ja>0{zecA| |f(x)|>a} =0
— Ja>0|f| Ya, 0] =@

with sup]f]:inf{azo } \f\_l(a,oo]}.

Definition 18.3: We say that f is essentially bounded when 3 a > 0, )\(]f]_l(a, oo]) = 0 and we define

the essential supremum of |f| as esssup |f| = inf{a >0 ’ )\(|f|71(a, oo]) }

Definition 18.4: Let A C R be measurable. We define

Li(A) = {f : A — [—o0,00] | f is measurable and /A\f| < oo}/ ~

Ly(A) = {f : A — [—o0,00] | f is measurable and /A\f|2 < oo}/ ~

L,(A) = {f : A — [—00,00] | f is measurable and /A|f|p < oo}/ ~

Loo(A) = {f: A= [~00,00] | f is measurable and esssup |f| < oo}/ ~
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where in all cases f ~ g <= f =g a.ein A. Note that in all cases {f | f =0 a.ein A} is a subspace. So
L,(A) is a vector space.

Remark 18.5: We shall show that for 1 < p < oo, ||f|, defines a norm on the vector space Ly(4).
Exercise 18.6: Show that || f|| ., defines a norm on Ly (A).

Remark 18.7: For 1 < p < oo we have the following
1
p .
L. For f € Ly(A), |Ifll, = </|f]p) € [0,00) with || f||, > 0 and

1, =0 /mp:o s |fP=0acin A
<— f=0aein A

<~ f=0in L,(A).

2. For f € L,(A) and c € R,

lesl, = (| rcf\p)’l’ -(/ \cﬂfrp)’l’ —1d( rfp)’l’ _ Il

It remains to prove the triangle inequality.

3. For f,g € Lp(A), [|f +gll, < IfIl, + llgll,- This is called Minkowski’s inequality.

Definition 18.8: For p,q € [1, o0], we say that p and ¢ are conjugate when % + % =1 with é =0.

1 1
Theorem 18.9 (Hoélder’s inequality): Let p,q € (1,00) with — + — = 1, then
p q

1. For z € ),y € {4, we have zy € {1 and [lzyll; < [lz|,|lyll, with the equality when 3 s,¢ € R both
nonzero such that s|z? = t|y|? where s|xy |’ = t|yx|?, V k.

2. For f € Ly(A),g € Ly(A) where A C R is measurable, we have fg € L1(A) and [|fgll; < |Ifll,l9ll,
with the equality when 3 s,¢ € R both nonzero such that s|f|” = t|g|? a.e in A.

Proof of 1.
P bl 1 1 1 1 -1
We claim that for all a,b > 0, ab < @ + —. Note that since — 4+ — =1 we have — =1— - = L. So
P p q p q q p p
= Hence ¢(p — 1) = p and similarly p(¢ — 1) = ¢. For x,y > 0 we have
p p—

y = 2Pl e Yl = 23=1) — .p
= g=yi!

So the functions f(z) = 2P~! and g(y) = y?~! are inverse functions. Graph We have

a b
/ 2P dx/ Yyt dy > ab
0 0

pla g7

7l 1e], 2
P lo q 1o
aP b

—+—>ab
P q
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with equality when

b=a"! = b =0a
— q=0b""t

To prove Part 1, apply the above inequality to a = 2| , b= [y to get
], lyll,
|k Yk zkl” Tyl

Izl Yl — plllly, — allyllg
Sum over k to get

eyl 1,1
el v, = »

End of Lecture 18
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Start of Lecture 19

Proof of 2.

X
Recall that for a,b > 0, ab < @ + — with equality when b = a?™! <= b =a? <= a =071 Apply
p q

this inequality to

@l )
1£1l, gl
and obtain ) .
f@ew)| |l ol
Iflpllglly, = plfIE  allgllg
Integrate over A to get
lfgh 1,1,
Ifllpllglly =2 g

So that [|fgll; <[/fll,llgll, and we have equality when

F@ _ o)
e Tl

This is equivalent to 3 s,¢ > 0 such that s|f|” = ¢|g|? a.e in A. Since if s|f|’ = t|g|? a.e in A then we can
integrate to get s||f||) = tgll7. So that

i
lallg
p p q
Hence, s|f? = s”ng]g]q a.e in A. Thus /] 5 = 91 7 a.ein A
g1l 171 llallg

Theorem 19.1 (Minkowski’s Inequality): Let p € (1,00) and let A C R be measurable. Then
1. For z,y € £, we have ||z +yl|, < |z, + |y, with equality

2. For f,g € Ly(A) we have [|f +gll, < |[fll, + lgll, with equality when 3 s,¢ > 0 with (s,t) # (0,0)
such that sf = tg a.e in A.

Proof of Part 1.
Note that for a,b € R we have

la+b” = |a+bl|la+b"" < (Ja| + [b])]a + b"~" = |alla + b " + [b]]a + b’
with equality when a and b have the same sign.
To prove Part 1, apply this inequality with a = x; and b = y;, to get
2+ ynl” < lonllee + yel” + lynlloe + yel
Take the sum over k and get
o+ gl < [[lalle +yP 7|+ ||lwlle + w27

-1 -1
< llly [l + |+l 2 917
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1,1
where = + = =1
p+q ,

= (llzll, + 11w,) (32 yx+y,q<p1>)é

p—1

(
(el + sl ) (ko +917) 7
(I

—1
[all, + llyll, ) llz + g™ and so,

Iz +yll, < llzll, + [lyll,

Equality holds when x; and y; have the same sign for all £ and when x,y both nonzero, 3 r,s,t > 0 such
that r|xz|? = s|z + y|? = t|y|’ that is when 3 u,v > 0 such that uzr = vy.

End of Lecture 19
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Start of Lecture 20

Proof of Part 2.

To prove Part 2, we apply the inequality |a + b|P < |a|la + b[P~" + |b||a + b|P " with a = f(z) and b = g(x)
to get . .
@) +g@)]" < [f@)][f @)+ 9@)|" + |g@)][f(2) + g@)" ", Vo € A,

Integrate and use Holder’s inequality to obtain

1F + gl < (1117 + g7 + |lgllsf + glP~]| +1
< 71,17+ 617+ gl |17 + o

= (11, + g, ) |17 +9\”‘1Hq

= (111,+ a1, /. f+g,q<p_1)>é
— (Hf”g + ||g||p> (/A If + g|50methmg)‘11

= (171l + ligll, ) 1f + gl

Thus, either || f + g||, = 0 in which case the equality holds, or we can divide by || f + 9||§71 to get || f + g, <
11, + llgll,,- Equality holds when f(x) and g(x) have the same sign for a.e x € A and either f =0or g =0
or f+g=0a.ein Aor 3 rs,t>0such that rf = s(f+g) =tg a.e in A. That is,

f =0aein A
or g = Oa.ein A
or 3s,t > 0 such that sf = tga.e in A

Case 1: p=1.

When z,y € ¢; we have

o0

lz+ylly = |k + yl
k=1

o
<Y (k] + [yx])
k=1

oo o0
szzj\xk\*‘j£:|yﬂ
k=1 k=1

= lllly + llylly
For f,g € L1(A) where A C R is measurable, we have
15+l = [ 17 +4l
A
< [ s1+1aD
A
— [ 171+ [ 10
A A
= [Iflly + llglly

Spring 2018 46



Lecture 20 PMATH 450/650 15 June 2018

Case 2: p = 2.

In ¢5 we have an inner product given by (z,y) = Y ro; Zxyr and ||z|, = /(z,z) . Note that for a,b € R we
have

(a+b)? =a®+2ab+b?

0
0 < (a=0)?=a*—2ab+b*

IA A

Thus +2ab < a® + b2 Thus |ab| < 1(a® + b?). Thus,

S bkl < 0 50+ 6) < 5(lelly + lylly).
k=1 k=1

Similarly, in Ly(A) we have an inner product given by (f,g) = [, fg since when f,g € La(A), we have

[ o< [ 15a
< [ 52 =a
= 50171 + llgly) < o0

and properties of inner product hold.
Case 3: p = 0.

In ¢o, = { bounded sequences in R} we have the norm ||z = sup(|zx| | k¥ € ZT). The triangle inequality
holds because

1z + ylloo = sup |z + il
k>1
< sup(|zi| + ykl)
k>1
< sup |ax| + sup |y |
k>1 k>1
= |zlloo + ¥l

In Lo (A) we have the norm || f|| ., = esssup || f|| = inf{a >0 | )\}f_ll(a, oo] = 0}. Let us verify the triangle
inequality. For f,g € Lo (A), we have

If + glloo = esssup |f + g|
<esssup (|f] + |g])
<esssup |f| +esssup |g] = [ flloc + 9]l

Indeed, for h,k: A — [0, 00] with h(z) < k(zx) Vx € A. If h(xz) > a then k(x) > a.
So k™ (a,00] € b (a, 00
So if Ak™!(a, oc] = 0 then Ah™!(a, oc]

So {a | Mk (a,00] =0} C {a | Ah" Y (a,o0] = 0}
So inf{a | Ak ™!(a,00] =0} <inf{a | Ah"*(a,o0] = 0}
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Hence esssup (h + k) < esssup h + esssup k. Let ¢ > 0. Choose a > 0 so that Ah~!(a,o0] = 0 and

a < esssup h + . Choose h > 0 so that Ak~!(b,00] = 0 and b < esssup k +¢. If h(x) + k(z) > a + b then
either h(x) > a or k(x) > b. Thus,

(h+ k)" (a + b,00] € h™a,00] Uk (b, 0]
Since Ah~t(a, 00] = Ak ~1(b, 00] = 0. We have A(h + k)~ !(a + b,o0] = 0. It follows that
esssup (h+ k) < a+ b < esssup h + esssup k + 2¢.

Since ¢ > 0 was arbitrary, we have esssup (h + k) < esssup h + esssup k as required.

End of Lecture 20
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Start of Lecture 21

Recall 21.1: For f,9 € Loo(A), |f +9llec < 1 fllec + l9llso-

L <p<oo, L+ 1= 1 For feLy(d). ge Ly(A). | fal, < |71, lall,
Theorem 21.2 (Special case for Holder’s inequality): For p =1, ¢ = oo,
1 I @ € 01, € o, we have zy € £ and lzy]l, < il yll.

2. If feLi(A),g € Loo(A) where A C R is measurable, we have fg € L1(A) and || fg|l; < ||fli 19/l

Proof of 2.

Recall that we define ||f|| ., = inf{a >0 | A/f|""(a,00] = 0}.

We claim {z € A | |f(z)| > ||fll} has measure zero. Let A, = {z € A | [f(z)| > [|fl]l + 1}. Note

that A(A,) =0, V n (since by the definition of || ||, given n e can choose a > 0, so || fll, < a < |[fllo+ 2

with A[f|7'(a,00] = 0 and then {x € A | [f(z)] > |fll + L} € |f| "(a,00] ). Then, 4; C Ay C
cand UAn={z €A | |f(@)|>|Ifll} Thus, {z € A | |f(@)| > |fl} has measure zero.

Lot £ € Ly(A) and g € Lo(A) then fg € Ly(4) with |fgll, < [ fl,lglle. Lot B = {z € A | |g()] > lgll}

and C=A\B={z €A | |g(x)] <|gll} Then,

\Fal, = /A £l

= [ 1nal+ [ 111l

:/ £llg| since A(B) = 0
C
< /C Fllgll, since |9(@)] < gl Vo € C

= gl /C i

< gll /A /| since C C 4

= llgllcol f11-

Theorem 21.3: Let A C R be measurable and let p € [1,00]. Then L,(A) is a complete using the p—norm.

Proof.

1

In the case that 1 < p < oo, we have ||f||, = (/ |f|p> " Let {fn} be a Cauchy sequence in L,(A). Then
A

each f, € Ly(A) and Ve, Am € Z', Vk, £ € ZT, if k,{ > m then | fx — ngp < €. Choose a subsequence

1
{fap} sothat || fo, ) — fa || < V k € Z*. Note that

p_?7

/-1

fnz = fm +Z(fnk+1 - fm)
k=1
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Let
/—1 %)
90 = |fars = fu| and g = lim ge =3 1 fo = fu,
k=1 k=1
Note that g(x) exists in [0,00], V 2 € A. We have
-1
||9£Hp < Z ‘ Jreer — T (by Minkowski’s inequality)
p
k=1
1
< Zﬁ - 1k=127C
<1,VleZ"
It follows that
p_ P
loll; = [ lo
= [ timla
< lim inf / lge|P (by Fatou’s lemma)
L—o0

= liminf ||g¢||”
iminf [|gell,

<1

So that [|g[|, < 1. Since / 9P < oo, it follows that |g(x)| < oo for a.e # € A. Thus, the sum
A

o0

D

k=1

) f ()

fnk+1

converges to the finite number g(x) for a.e z € A. Hence

o0

> (@) = fn ()

k=1

converges to a finite real number for a.e x € A.

We define

f@) S () + Z(fnk+1 — fop (2 )) = Klim fe(xz)  provided this limit exists and finite
T)= k=1 e :
0 otherwise

We claim that f, — f in Ly(A). That is, || fo — fll, — 0 as n — oo. Given V ¢, we can choose m € 7+ so
that V k,¢ € Z", if k,£ > m then || f — fell, <e. Let n>m. So, Vk>m, || fy — full, <e. Then,

an_pr: ’fn_f’p: lim ‘fn_fnk‘pghminf |fn_fnk‘p:hminfufn_fnkupSf‘:p
p A A k—oo k—oco  Ja k—o0 p

and so || f, — fll, < e. Thus [|f, — fl[, = 0 as n — occo. Finally, note if we choose n so that [|f — f,[| < 1.
Then

11l = 1f = fa+ Full, < = Fall, + [1fnll, < 1T+ fnll, < oo
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So that f € Ly(A). Since ||f — full, = 0 as n — oo, fn — f in Ly(A).
Now we prove for the case p = oo. Let {f,} be a Cauchy sequence in Lo(A). SoV e > 03 m €
7tV kot € ZV if k4 > then |fy— fillo < & let Bifz € A | |fa(@)] > [fllso} and Cre =

{zeA ‘ | fr(@) = fo(@)| > | fe — fello} for k,€,n € Z*. Recall that B, and Cjy all have measure zero.

Let - -
E= UBnU U Ck’g.
n=1 ke=1
Then M(E) = 0. For x € A\ E, {fn(x)} is a Cauchy sequence in R because given ¢ > 0 we can choose
m € Z* so that k., > m = ||fy — fr <ell. Thus for k,£ > m, | fr(z) — fo(2)| < |Ifx — fello < € for all
x € A\ E. Indeed the sequence of functions {f,} defined on A\ E converges to a function f defined on
A\ E. Define f: A — R as

li_>m fo(z) forxe A\E

fle) = 0 forxe B

Note that f is measurable since each f,, is measurable in A\ E. So ILm fn is measurable in A\ E. So f is
n—oo

measurable on A\ E. Hence on A (since A\(E) = 0).
Also note that f € Loo(A). Indeed we can take ¢ = 1. Choose m € Z* sothat k,£ > m = ||fr — foll, < 1.
Then for all n > m, we have | fn(z) = fim(2)| < | fo — fmllew <1V @ € A\ E. Thus

| fu(@)] = | fu(@) = fin(2) + fin()|
<14 || fmlloo

Hence | f(z)| = nl;n;o fn(z)

ST+ |fmllee Ve ANE
Hence |f(z)| <1+ |fmllo Vo € A
Hence || flloo < 1+ |[fimlloo < o0

Finally note that f, — f in Loo(A). That is || f, — f||,o = 0 as n — oco. Indeed since f,, — f uniformly in
A\ E given € > 0 we can choose m € Z" sothat Vne€ ZT Vo € A\E, n>m = |fu(z) — f(z)| <e.
SoVneZ" ifn>mthenVaeA\E, |fulx)— f(z)] <e = |fn— fllo <& So we have f, — f in
Lo (A).

End of Lecture 21
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Start of Lecture 22
This chapter is in Section 13.8 in the textbook.

Theorem 22.1: Let 1 < p < g < oo and let A C R be measurable. Then,
1. ¢, C ¢, and,

2. if A(A) < oo then Lg(A) C Ly(A).

B =
Q=

Note that if f € Ly(A) then ||f], < A(A)7 7 -||f]],.

Proof of 2.
Suppose ¢ < co. Suppose f € Ly(A). Then

1FIE = /A Tk
= [[IF1”- 1],

1 1
< PN - I, where — 4 = =1

(o) ()

= “771 So we choose

Choose u so up = q. take u = % and we want % =1 —%

u
v = =
u—1

| =

7 -1 to get
>~ 1 a-»p

i< ([ \f\Q)§A<A>q7

= | £IPAA)
Hence || ]|, < IIf1l, - A(A)» 5.

Q=

Suppose that ¢ = oo. Suppose f € Log(A). Let B = {z € A | |f(z)| > [[flls}- So A(B) = 0. Let
C = A\ B. Then

12 = /A Tk
— P p
11 +/C|f|

= [ FIEA(C)
= [ FlI5A(A)
and so || ], < [[fllocA(A)7-

3=

End of Lecture 22
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Start of Lecture 23

Theorem 23.1: Let 1 <p<g<r <oo. Let AC R be measurable. Then,

1L, N el Cly Cly+ 1,

2. Ly(A) N Ly (A) C Ly(A) C Ly(A) + Ly (A).

Proof.

Note that Part 1 is trivial since
byl Cl. Cly €L, Cl,+ 4.

We claim that L,(A) C L,(A)+ L, (A). So every f € Ly(A) is equal to a sum f = g+ h with g € L,(A) and
h € L,(A). To show this is true suppose f € Ly(A) and let B = {z € A ‘ |f(@)]>1} and C = A\ B =
{reA| |f(x)‘ <1}. Let g=f-Xpand h = f-X.. Then f = g+ h and when = € B so |f(:v)‘ > 1 and

[f@" < [f@)]" < [f@)]

and when z € C so |f(z)| <1 and

|gu§;=/Argp=/A|f|Ps/B|f|q§/A|f|q=||f|rg<oo.

Moreoever, h € L,(A) since

Il = [ vy = [ 17 < [ 1< [ 1= 11 < o orr < o0
A C C A

For 7 = oo we have |||, = ||h|,, < 1. Since |h(z)| < 1 for all z € A. This proves our claim.
For the reverse inclusion we claim L,(A) N L,(A) C Ly(A). Let f € L,(A) N L,(A). Then,

Thus

12 = /A 1= e, < el

11" (+)

1
by Holder’s inequality for any a, b, u,v with a +b =¢g and 1 < u,v with — 4+ — = 1. Thus, * becomes
u v

(f rf\““)’l‘( / rfrb”)i

If we choose a, b, u,v so that au = p and bv = r. Then we get
a b
P T b
isig< (L1ee)" (L) =naznse < o
A A

1 1 b
Weneeda+b=¢q, au=p, bv=r, —+—=1. Thatis,g+f:1. In matrix form, “1=(1).
u v p T 1 1 f\b 1
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Therefore,
1 1 r—
[ IE L4 p(r —q)
(a) 1 r (q) 1 r (q) pr L r—p
1 _1 =71_1 = =

b - 1 Il 1 r=rl4_4 7(q —p)
p p r—0p

P\ [r=p

U a r—q

v B f o r—op

b q—p

p(r—q) r(q—p)

a b
So a,b>0, u,v > 1. In the case that r < oo we found that | f[|, < [|f|l7 [ flli = (KA N
When r = o0, let B={z € A | |f(m)‘ <|fll}, € =A\ B. Then

112 = /A T
- / P
A
_ p|£19—P Pl £19-P
/Blfl £ +/C|f| I
= [ P17 since A(©) = 0
B

P q—p
< /B FPIAIS
= (1)
B
< ( / |f!”>||f||§5”

= ARSI

So that
P 1-2
£l < LA 1T oo @

Theorem 23.2:
1. £, is separable when p < 0o but /, is not.

2. When a < b, Ly([a,b]) is separable but L ([a,b]) is not.

Exercise 23.3: Prove Part 1 of this theorem.

Proof of Part 2.

Claim 1: The set of simple functions on [a, b] is dense in Ly([a, b]).
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Let A =a,b]. Let f € Ly([a,b]) and let B={z € A | f(z)>0}and C ={zx € A | f(z) <0}. So that

we have fT = fXp, f~ = fXc. Forn € Z*, define S} : B — R by

k—1 k— k
. N .
StHa)y={ 2n if — Lo () < o with k € {1,2,...,n2"}
n if f+( ) >
Then, lim S (x) = f*(x) V2 € B. Apply the|Lebesgue’s Dominated Convergence Theorem|to the sequence
n—><>§>7
‘JH — St to get
lim Hf+ S+ lim / ‘]H_ S+
n—oo p n—o0

:/ lim ‘f*—s,t
Bn%oo

/Bo

0

So 1i_>m St = fTin L,(B) or in L,(A) where ST(z) = fT(z) = 0in A\ B. Similarly, construct simple

functions S, on C such that

lim Hf* —

n—oo

= lim / ’f* -
n—o0
Let S, = S;F — S, . Then,

£ =5ulp= [ 11=5a = [15=sp+ [1r=sp= [ |rr-stf+

|-l

p

/C{f——S;

p

p

Which goes to zero as n — oco. This proves Claim 1. The proof is continued in next lecture.

End of Lecture 23
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Start of Lecture 24

Continuation of proof.

Claim 2: The set of step functions on [a, b] is dense in the set of simple functions on [a, b]

To prove this claim we note that to approximate the simple function

m
s = Z Ck:XAk7
k=1

it suffices to approximate each characteristic function X4, by a step function since

m m m m
ZCkXAk —chrk = chyg(/\,’AlC —TE) Smax\cMZHXAk —rka
k=1 k=1 » k=1 , k=1

where each 7y is a step function. When A C [a, b] is measurable, we can approximate X4 as follows. Given
e > 0, we can choose open intervals I so A C |Jpo; I and A(A) < 377, [Ix] < A(A) + € we can take the
intervals I to be disjoint. Note that since the intervals I can be replaced by the connected components of
the open set i, Iy. Let Jy = I,, N [a,b]. So the Jj are disjoint intervals with

oo

0o k=1 k=1
AgUIkﬂ[a,b]:UJkand UgUIk
k=1 00 k=1 00

Thus, we have

A TR <) I < AA) + e
k=1 k=1

Choose m € Z1 so that

[e.9]

> kl<e

k=m+1

Then we approximate X, by the step function

We have

p

k=1 m b
Y- = [ a3,
m [a,b] k=1

p

k=1 m
=AM AU+ U A
m k=1
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Where )\(A \ Uﬁfl Jk> is the value of the integral when inside integral takes 1 and A(UL, Jk \ A) is the
value of the integral when inside integral takes -1. Then,

k=1 p 00 m 00
X2 <Al UBmNY T )+ 2| U \A
m P k=1 k=1 k=1
= > 1A U] -2

k=m+1 k=1
<e4+e=2

This proves claim 2.

Claim 3: Every step function on [a,b] can be approximated arbitrarily closely by a continuous function
on [a,b] in Ly[a,b].

To approximate
m
s = Z CkX I,
k=1

where the I}, are disjoint intervals in [a, b] it suffices to approximate each X, by a continuous function fj (as
above). We can approximate X7 where I = (¢,d), [c,d), (c,d] or [c,d] with a < ¢ < d < b using the picture

above or
.

0 fora<z<c

m(z—c) fore<z<c+ i
flz)y=<1 forc+%§x§d—%

m(d—xz) ford— L <az<d

0 ford<z<b

So that,
2
fo—fuz:/lwf—frp <2

m

which goes to zero as m — oo. More rigorously we have

X — FI = /1 X — PP

1

= 2/Om(ma:)p

2m 1
P W - oy e
2m

(p+ 1)mp+1

which goes to zero as m — oo. It follows that the set Cf[a, b] of all continuous functions on [a, b] is dense in
Lp([a, b]).

Moreover, the set of polynomial functions R[z] on [a,b] is dense in C|a,b] in Loo([a,b]). This is by Weier-
strass approximation theorem. [As an exercise prove this statement.| Also note that Q[x] is dense in R[z] in
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L (Ja, b]) because for ¢ € R, 71, € Q we have

k=1 k=1 0
Z ek — Zrkxk = Z(ck —rp)xkl] <m-M
l l k=1

o oo
_ _ _ ARV
where m = féll?%(g\ck ri| and M = {1, [al", [b]"}

which goes to zero as m — oo. Since Qz] is dense in Cfa,b] in Lo it is also dense in Cla,b] in Ly([a, b))
1
because Loo([a,b] C Ly([a, b])) with [[f[|, < [|f|l, (b — a)?.Rest of the proof will be included later.

Remark 24.1:
1. The set of simple functions is dense in Ls[a, b]
2. The set of step functions is not dense in the set of simple functions.

3. Cla,b] is not dense in Ly[a, b].

End of Lecture 24
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Start of Lecture 25
The chapter Hilbert Space is covered in chapter 14 in the textbook.

Definition 25.1: For a field IF and a vector space V' (which is over IF), we define inner product as a map
(-,-) : V x V — F that satisfies the following properties:

1. (Positive definiteness) (z,z) > 0 with (z,z) =0 <= z =0y VYzeV.
2. (Conjugate symmetrical) (z,y) = (y,z) Vaz,ye V.
3. (Sesquilinear form) (a1z + aswa,y) = a1(r1,y) + az(z2,y),
(m,byyy + baya) = bi(x,y1) + bo(z,y2) YV a4,y; €V and a;,b; € F where i = 1,2,

Remark 25.2: Inner products satisfy Cauchy-Schwarz inequality.

(@, 9)] = ll=llllyl ¥ 2,y€eV.

End of Lecture 25
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Start of Lecture 26

Theorem 26.1:

o0
1. by =05(C) = = = (z1,22,...,25) € C Z |zi| < oo p is a complex Hilbert space.
k=1

2. For A C R measurable and f: A C R — C given by f = u+iv with u,v: A C R — R, we say that f

is measurable when u and v are both measurable and we say that f is (Lebesgue) integrable when u

and v are both Lebesgue integrable and in this case / f= / u + z/ v. We define
A A A

[ 1< oo}

where f ~ g <= f =g a.e in A with the given definitions above.

L,(A,C)= {measurable f:A=C

Ly (A, C) is a complex Hilbert space using the inner product (f, g) / fgq.

Proof of 1.

We skip most of the proof. Let us verify that when f, g € La(A, C) we have (f, g) / fg € C. Recall that

for f,g € Lo(A,R) we showed that (f,g) / fg € R. Indeed for a,b € R, we have |ab| < (]a| +[p]*). S

‘ / fg] [ 1sl < [ 58410 = S8+ 13,

If we write f = u +iv, g = p+ iq then

2 _ 2 2 2
IIng—/AfI —/Aru| Tl
<f,9>:/Afg:/A(quiv)(p—iq):/Auerquri/p—uqu.

Also, let us show that Ly(A, C) is complete. Indeed, for f,, = wu, + iv,, f = u+ iv. {f,} is Cauchy if
and only if {u,} and {v,} are both Cauchy and f, — f in Lo(A, C) if and only if v, — u and v, — v in
Ls(A R).

Proof of 2.

We also have

Suppose {f,} is Cauchy in La(A, C) given € > 0 choose m € Z" so k,£ > m = | fr — fi|| < e. Using the
same m € Z7,
kl=m = [lug —uelly < [|fe = fella <€

since ||ul|® < ||lull3+|[v]l3 = || fl|5 when f = u-+4v. Thus, {u,} is Cauchy. Similarly, {v,} is Cauchy. Suppose
{u,} and {v,} are Cauchy in Lo(A,R). Given € > 0 we choose m € Z* so that

and [ — ve|| < ——

7

€
kl>m = |lup —wl| < —
ok el <
Then using the same m € Z™,
&2 2

g
kol >m = ||fe— foll5 = llur — well + [lvw — vell5 < > T3 2

=¢* = ||fi— fell; < e
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Example 26.2: If V is a countable dimensional inner product space and U C V is a subspace then if U is
finite dimensional then any orthonormal basis for U can be extended by the Gram-Schmidt procedure to an
orthonormal basis for V. When U is countable dimensional, the procedure can break down.

For example, if

o
V=R>®={x=(21,72,...) | In€ ZT Vk >n, r; =0} with inner product(z,y) = Zxkyk
k=1

and if

U= zeV | ) z=0
k=1

Then U has a basis U such that
U={ur | k> 2} where up, =e; — e, = (1,0,...,0,—-1,0,...)
and U can be extended to the basis V = U U {e1} for V. But U+ = {0} since

Ut={zecV | (z,u) =0V ueU}
={zeV | (z,u)=0Vuel}
={z eV | (z,ur) =0Vk>2}
={zeV | z1—x,=0VEk>2}
={r=(z1,20,...) €V | z1=22="...}

= {0}.

Note that U @ U+ # U.

End of Lecture 26
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Start of Lecture 27
Hilbert spaces

Example 27.1:

0 each z; € R,3n € Z*
W =R :{x:(x1,$27~') ‘ Vk;k>n zp = 0. }

%
k=1

U=<{{zecR>” Z:rk:O
k=1

U has a basis U = {uy,ug, ..., } where u = e; — e, = (1,0,...,0,—1,0,...). Note that U+ = {0} because
for x € V =R,

reUt = z-u=0 YuelU
— z-u,=0 Vk>2
== 21 —xp,=0 Vk>2
— M1 =Tz =T3=...
= z = 0 (since 3 nz, = 0)
Note that W # U @ U+, which means it is not the case that every w € W can be written uniquely as

w=u+v withu € U, and v € U*. Given w € W there does not exist a (unique) nearest point u € U to
w. For example, when w = eq, there is no nearest point u € U to w = ey:

Foru=e ile (1 ! ! ! ! 0,0 ) iu 1 nl 0. Souw € U. We also have
= €1 — —€Ck = T Ty T Ty T Ty ey T Ty Uy Uy ek - k = —n—=Vu. . V
—e n n on n — n
11 1 1 1
Hel_u‘z_H<77"'7 7070; >‘—n2—
n'n n n

which goes to zero as n — oo.

Theorem 27.2: Let H be a real or complex Hilbert space and S C H be convex and closed. Then for every
a € H there exists a unique point b € S such that ||b — a| < ||z — al| for all x € S.

Proof.
Recall that if for all b,c € S we have b+t(c —b) € S for all t € [0,1], S is convex.

When W is an inner product space and ||z| = v/(z,x) VYV ax € W, over R we have,

2 2 2
[z +ylI" = NIzl + 2(z, y) + ||yl
2 2 2
[l = ylI* = ll=l]" = 2(z, y) + lly]l

.. 1
Polarization: (x,y) = 5(”3@\\2 + Hy||2 — ||z + yHQ)

1 2 2
(,y) =7 (2 + 9" = 1o = o)

Pythagoras: [z +y||* = |l[* + |y|* < (z,y) =0.
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Over C we have

2

o+ yl* = llzl| + 2Re{(z,9) } + [yl
2

lz —ylI” = ll=]l = 2Re{{z,y}) + [yl

o 1 2, . 2 2 . 2
Polarization: (z,y) = 3 |z +ylI” +illz +iy|” — [z — y|I” —illz — iy
Parallelogram law: [ + y||* — ||z — y||* = 2(|[z[|* + [|ly]*).

Let @ #£ S C H be closed and convex. Let a € H. Translate by —a and replace a by 0. We need to show
that there exists a unique point b € S with ||b|| < ||z| for all z € S. Let d = dist(a, S). Then

d =dist(a, S) =inf{|ja —z| | x € S} =inf{||z| | x € S} since a = 0.
Choose z,, € S so that ||z,| — d as n — co. We claim that {x,} is Cauchy. Indeed

g — el + llzg + e = 2|k + 2]z

2
T + Ty

2 2 2
k= zell™ = 2llarl” + 2flzell” = ) =

So given £ > 0 we can choose n € Z* so k,{ >n = kaHZ <d+te, HW”2 <&+ Then for k.0 > n,
lzk — zel® < 2(d + €) +2(d* +¢) — 4d® = de.

Since “TW then

closed, then b € S. Since x,, — b we have ||z,| — [|b]|. So b =d = dist(a =0, 5). Finally, note that b € S is
unique because if b, ¢ € S with ||b|| = ||| = d. Then,

:”’“TWH > d. Since H is complete, {z,} converges in H. Say b = lim z,, and since S is
n—oo

2

b+ c
o <l = 210+ 20el ~ 4]
< 2d° + 2d* — 4d°
= 0 since CGSSOHIH_C > d.

End of Lecture 27
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Start of Lecture 28
A corollary to is the following corollary.
Corollary 28.1: If H is a Hilbert space and U C H is a closed subspace, then
1. Vw € H, lu € U such that u is nearest to w.
2. H=U@ U™, soforevery w € H N u,v withueU, veV, u+v=uw.
Moreover, when w = u+ v with u € U, v € UL, u+v = w the point u is the unique nearest point to w and,

in this case, we write u = projy(w) and v = projy . (w)

Proof.

Let U be a closed subspace of a Hilbert space H. Note that U is convex. Given xz € H, let u € U be the
unique nearest point and let v = z — u. We claim that v € U+. Suppose, for contradiction, this is false.
Choose v/ € U such that (v,u’) # 0. We may assume (v,u’) > 0 (if not replace v’ by e« for some 6).
Then ||z — u|| = ||v]| and for ¢t € R,

Ha:—(u—i—tu’)H2 = Hu—i—v—u—tu’H2
= [lo — )"
= |[v]* = 2t Re(v, u') + ¢||/|?
= Jlo]® — 26(v,u') + £2||u ||
< ||lv|?* for small ¢ > 0.

So for small ¢t > 0 we get
|z — (u+td)|| < || —ull

which contradicts the fact that u is the point in U nearest to x.
This proves existence. To prove uniqueness let x € H, u € U, v € Ut with v + v = . We claim that u
is the point in U nearest to x. Let v/ = U with v/ # u. Then v’ —u € U. So <v,u’ — u> = 0. That is,
(z —u,u’ —u) =0. So,
le = '* = |l@ = w) + (u— )’
= ||z — ul|® + 2Re(z — u,u — ') + |Ju - u’H2
2 2
= llo = ull* + [lu— o'

> ||z — ul|? since u # u’

Remark 28.2: In any inner product space W there exists a maximal orthonormal set by Zorn’s lemma.

When W is finite dimensional, any maximal orthonormal set is a (Hamel) basis.

Theorem 28.3: Let W be an inner product space, let U = {uy,ug,...,u,} be an orthonormal set, and let
U = spany U where F = R or C. Then for x € U we have

n

2= 3G upyu and [ = 30 ||, w) ||
k=1

k=1

Spring 2018 64



Lecture 28 PMATH 450/650 06 July 2018

ad for x € W, we have
n n

: : 2
projy x = Z(m,uk>uk with [|z]|? > (@, ui)| "
k=1 k=1

Proof.
Suppose x € U, then =), cxug. Then,

(2, up) = <Z ChUE, Uz>

= Z cr(uk, ug) (by linearity)

We also have

Exercise 28.4: For u = Y}_,(z,u;)uy € U. let v =z — u. Verify that v € UL.

Theorem 28.5: Let H be a Hilbert space and let &/ be a maximal orthonormal set and let U = spany U/
where ' = R or C. Then U is dense in H.

Proof.

Note that U is a closed vector space in H (U is a vector space because if z,, — a and y, — b in H then
Tn+Yn — a+band cx, — ca). It follows that H = U @ U . ButU = {0} because if 0 # v € U with
lu| = 1 then ¢ U {v} would be a larger orthonormal basis (v # U since if v € U then |[v|* = (v,v) = 0 ).
Thus,

Theorem 28.6: Let H be a Hilbert space and let &/ be a maximal orthonormal set. Then H is separable
(meaning that it has a countable dense subset) if and only if ¢/ is at most countable.

Proof.

Suppose U is uncountable. Let S C H be a dense set in H. For each u € U, choose s, € S with |s; — u| < g
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Then for u,v € U with u # v,
lu = v[* = llull* = 2Re(u, v) + |o]|* = Jul® + [Jv]* =1+ 1 =2.
So, ||u — v|| = v/2" and so
vz

50 = soll = llsw = w0+ = sl = u— ol = (llsu = ull + l}o = sal}) > V2 = <2+ ; )—0-

hence, s, # s,. Then H is not separable. Hence, S is uncountable. Suppose U is countable. Let U = spany U
where F = R or C. We know that U/ is dense in H. When F = R, spang U is dense in U = spang U and when
[ = C then spang; U is dense in U = spang U where Qi) ={a+ib | a,b € Q} because if ¢1,ca,...,¢, € C
and 71,79, ...,7r, € Q[i] then

n

E CkUk—E TEUE E Ck — T)U
k=1 k=
n

Z ck — i) u||

n
= Jex — 7l |Jusll
k=1

k=1
=) lex — 7l

When U is countable, so is spang; U.

Remark 28.7: The map F' : U Qi]" — spangp; U.

n=0
n

F((r1,re,... 1)) = Z rrug is surjective (even bijective).
k=1

End of Lecture 28
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Start of Lecture 29

Solutions for the midterm are posted on course website. Today’s notes aren’t fully complete. It will be
completed at a later date.

Theorem 29.1: Let H be an inner product space. Let U = {uj,us9,...,u,} be a finite orthonormal set
then,

for x € U = spanp U

n

= 3w g and al? = 3 |||
k=1

k=1
where U is closed and H = U & U+

For x € H,

n

n

. . 2

projy z = > (w, ughug and [z > [[projy x> = > [{w, us)|
k=1 k=1

n
The inequality ||z||* > Z (@, ui,)
k=1

‘2 is called the Bessel’s inequality.

Exercise 29.2: Prove this theorem.

Definition 29.3: When the statements in [Theorem 29.4| (which are all equivalent) holds, we say that U is
a Hilbert basis for H.

Theorem 29.4: Let H be a separable Hilbert space. Let U = {u1,ua,...} be a countable orthonormal set
in H. Let U = spanp U where F = R or C. Then the following are equivalent:

1. U is maximal.

2. U is dense in H.

[e.e] n
3. Forallze H, x = kz_l(q:,uk)uk = 1}1_{1;0 kz_:l(x,uk)uk in H.

o0 n
4. Forallz € H, ||z||* = Z ’(x,uk>‘2 = nh_}Iroloz ‘<=T,Uk>‘2 in R.
k=1 k=1

5. Forall z,y € H, (z,y) = Z(w,uk><y,uk> in C.
k=1

n
The inequality ||z||* = Z (2, wi) ‘2 is called the Parseval’s inequality.
k=1

1 = 2.

This was already proven.

2 = 1.

Suppose U is not maximal. Then we can choose v with (,u;) = 0 for all k¥ and ||v|| = 1. Then, (v,z) = 0 for

all x € U. Note that if x = Z crug then (v, z) = Z@(v,um = 0. So that v € U*. We cannot find u € U
k=1 k=1
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with [|ju — v|| < 1 because for all u € U

2 2 2
Ju —f|" = Jlull® = 2Re(u, v) + [|v]]

2 2
= Jlull” + [|v|
2
Z |vl|* =1
2 = 3.
o0
Suppose U = spany U is dense in H. Let x € H. We need to show that z = Z(:r, ug)u. Let € > 0. Choose
" k=1
u € U with ||ju —z| <e. Say u = chuk. Let n > m. Then u € spang{ui,ua,...,uy}. Since Z(w,uk>uk
k=1 k=1
is the point in U,, = spang{u1,ug,...,u,} to x and u € U, we have

n

x— Z(m,uk> <|lz—ul <e.

k=1

n

Given ¢ > 0 we chose m € Z™ so that for all n > m we have ||z — Z(m,uk)uk <e.

k=1
n
Hence we get nh_}rrolo Z<ZL’, ug)up = x in H as required.
k=1
3 = 4.
oo
We suppose that for all x € H, = = Z(w,uk>uk We need to show that for all € H we have ||z|? =
k=1

oo n
Z [(@,up)|”. Write w,, = Z(az, ug)ug. Then we have ||z — wy| — 0 and, by triangle inequality
k=1 k=1

[zl = llwnll] < llz = wnl — 0.

Thus ||w,|| = ||z||. Thus |wy||* = ||z[|*. We also have

n
fwal? =< PRI Sy >
/=1

Z (x,u) x,u@éu
-3 )
k

End of Lecture 29
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Start of Lecture 30

From last time
thm: Let H be a separable Hilbert space with countable Hilbert basis U = {u, ug, ...}

L Ifx e 22, agup =Y poy brug in H then ay, = by, = (@, ug).
2. For ¢1,¢9,... € F, Y 32 cruy converges in H if and only if ) |ck\2 converges in R.

3. The map ¢ : H — {5 given by

10) chuk = (e1,ca,...) or by ¢(x) = ((z,u1), (x,uz),...)
k=1

is an isomorphism of inner product spaces.

End of Lecture 30
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Start of Lecture 31
A 2r—periodic function f : R — [—o0, oo] determines and is determined by a function f : [0, 27) — [—00, 00]
or by a function f : [-m, ) — [—00, 00] or by a function f : [—00,00] = [—00,00] with f(—m) = f(7) or by
a function f : T — [—o00,00] where T'=R/27Z (z ~y < x —y € 277Z).

Also when such a function f : R — [—o0,00] satisfies ffﬂ |fIP < oo, it determines and is determined
a.e in R (or in [—m,n]) by an element f € L,[—m,w]. We shall write Ly[—m, 7] or L,(T) for the set of such
periodic functions with f = g in Ly[—m, 7] when f =g a.e in R (or when f = g a.e in [—7, 7]).

Definition 31.1: A (real) trigonometric polynomial is a function of the form

m m
f(z) =ap+ Zan cosnx + an sin nx.

n=1 n=1

Remark 31.2: By the Stone-Weierstrass theorem the trigonometric polynomials are dense in the space
C(T) of continuous functions f : T'— R using the supremum norm || f||,, but not in C[—m,7]. Note that
since the trigonometric polynomials form a sub-algebra of C'(T") which contains the identity and separates
points.

1
Example 31.3: cosnz - sinmz Z i(sin(n +m)z —sin(n — m)x?

Example 31.4: If z,y € [—7, 7] with = # y then

cosx = cosy and sinx =siny = x =y mod 27
— x =47 and y = —x.

Hence the trigonometric polynomials are dense in C|—m, 7| in Lo[—m, 7| hence also in L,[—m, x| (since

1£1, < 2m) 72N £l o)
When p = 2, Ly[—m, 7] is a Hilbert space.

{1,cosnz,sinnx | n € Z"}

is an orthogonal set. We have

s
12 = (1.1) =/ 12 = 2r

—T

™

|cos nz||3 = / cos’nzdr =7
o

||sinnx\|§ = / sin?nrde =7
—T
™

(1,cosnx) = / cosnzdr =0

3y

(1,sinnz) = sinnzdr =0

|
3

(cosnx,sinmzx) = cos nz sinmax dx

/ sin(n + m)z + sin(n — m)x dx

o l\’)\»—lh\
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1 1 1 . . . . .
Hence {ﬁ’ = COSNT, = sinnw } n € Z" ¢ is an orthonormal set in Ly[—7, 7], which is separable, and
its span is dense, so it is a Hilbert basis for Lo[—m, 7w]. Thus, for every f € Lo|[—m, 7] we have

o [o¢]
f(x) =ag +Zancosnx+ ansinnx

n=1 n=1

in Lo[—m,m| with

e ~an ),
f,cosnx 1 [7
an:<<cosnx>2>:7r f(x) cosnx dz
f,sinnx 1 (7 .
:<<sinnaz>2>:7r f(z)sinnx dz

End of Lecture 31
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Start of Lecture 32

Some examples involving Fourier series.

Example 32.1 (Forced Damping String): Consider a spring with a mass with m is attached on it. The
spring is resting at its equilibrium point initially. We have Fypine = —Fky. This is also known as the Hooke’s
law. We also have Fyamping = —cy’ and Fypplied = g(t). By Newton’s law we have Fiota1 = my”. Hence

—ky —cy' +g(t) =my" = my" +cy’ + ky = g(t).
For the sake of example, let m = 1,¢ = 2, and k = 10. Then we have
y" +2y' + 10y = g(t)

where ¢(t) is the 2w —periodic function with

t) =
9(t) Tt 0<t<m

{g +t —m<t<0

To solve i + 2y’ + 10y = 0 try y = €™,y = re™,y" = r2e™. Then, the DE becomes
r2e™ 4 2re™ +10e™ =0 = 2+ 2r+10=0 = r = —1+3i.

Then we have

y1 = 713 — o7 (cos 3t + isin 3t) and yy = 713t = ¢ (cos 3t — isin 3t).

This gives real solutions

YLty = e ! cos 3t and -9 _, Y2
2 21

The general solution to 3" + 2y’ + 10y = 0 is

= e 'sin 3t.

y = Ae ' cos 3t + Be 'sin 3t.

Note that this goes to 0 as t — oc.
To solve y” + 2y’ + 10y = cosnt try y = A, cosnt + B, sinnt, where

y = A, cosnt + By, sinnt
y' = —nA, sinnt + nB,, cosnt

y' = —n?A,, cosnt — n’B,, sinnt
Substitute these in the DE t obtain

Y 42y + 10y = cosnt = —n?A,, cosnt — n’B,, sinnt — 2nA, sinnt + 2nB,, cosnt + 10A,, cos nt + 10B,, sinnt = cos
= (—nQAn +2nB,, + 10A,) cosnt + (nan — 2nA, + 10B,,) sin nt = cos nt.

We need,
10—n?  2n||4,| |1
—2n'0 — n? B,| |0
A 1 10-n? —2n ||1
B,|  (10—n2)2+4n2| 2n  10—n?||0
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This gives the solution

10 — n? 2n ,
UYp = — 5 cosnt + SV 5 sinnt.
(10 —n?) 4+ 4n (10 —n?)2 +4n

To solve 3" + 2y’ + 10y = g(¢), we find the Fourier series for g(t), that is, we write

oo oo
g(t) = ap + Z an cosnt + Z by, sin nt
n=1 n=1

where
1 ™
= — t)dt =0
“= o /_Wg( )
1 s
by, = — / g(t)sinntdt = 0 because ¢(t) is even and sinnt is odd
T
ey
an = / g(t) cosntdt
™ —T
2 s
:/ 7r—t> cosnt dt
™ Jo 2
=— tcosntdt

|
S

RN

—

S|

tsinnt + i cos nt] T
n2 0

> if nis odd

if n is even

I
—
O:}‘

RAES

Thus we have
= 4
t) = — t
g(t) ; —gcosn

So the general solution to the original DE " + 2y + 10y = 3.°° | -4, cosnt is

n=1 n?2
o0
4
y = Ae ' cos3t + Be 'sin3t + Z — (Ap cosnt + By, sinnt)
= mn

where
10 — n? 2n

" (10 — n2)2 4 4n? ane B (10 — n?)? + 4n?

We have

1
(10 — n2)2 + 4n2’

Ay, cosnt + By, sinnt = Cy, sin(nt + ¢,,) where C,, = \/A2 + B2 =

Example 32.2 (Vibrating String): A vibrating string of length 7 with fixed endpoints approximately sat-

isfies the DE
Pu  ,0%

i i
ot? Ox?
with the boundary and initial conditions

u(0,t) = u(w,t) =0 and u(x,0) = g(x) and us(z,0) = h(x)( often h(z) = 0).
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We use the method of separation of variables. For more on this, refer to AMATH 353 - Partial Differential
Equations notes. Try a solution of the form wu(z,t) = X (x)T'(t). The DE becomes

X// 1 T//
XT"=2X"T =
¢ X aT
Since this is true for all x and ¢, then we must have
X// 1 T//
XT"=AX'"T — X 27 - k where k is a constant.
c

So we obtain two separate DEs in the form
X"(z) = kX (z) and T"(t) = kc*T(t).
When we apply the boundary conditions [u(0,t) = u(m,t) = 0 we get
X0)T(t) =X(m)T(t) =0 Vt = either T(t)=0 Vtor X(0)=X(m)=0.
If T(t) =0 then u(x,t) =0 Va,t. If X(0) = X(7) =0 then
X"(z) =kX(z), X(0)=X(m)=0.

When k& = 0 we get X”(x) =0 then X (x) = ax 4+ b. Since X(0) = X(7) = 0 then a =0 =b. Then X = 0.
Then u(z,t) =0 V z,t.
When k = p? > 0 we get X" = p?X (we try y = €’® as our solution). We get

X(xz) = AeP* + Be™P*.

Since the boundary conditions implies X (0) = X(7) = 0 then A = B = 0. Then X = 0. Then u(z,t) =0
for all z, ¢.
When k = —p? < 0 we get X” = —p?X (we try y = €" as our solution). We get

X (x) = Acospzx + Bsinpzx.

Since X (0) = 0 then A = 0. Then X (x) = Bsinpz. Since X (7) = 0 then Bsinmp = 0. Then either B = 0
or p=n € Z. We obtain the solution

X(z) = Bsinnz where n € Z and k = —n®.

Consider the other DE when k = —n? n € ZT and X,,(z) = sinnz. We have
T'(t) = k*T(t) = T" +n*c*T = 0.

Which has the solution
T,(t) = A, cosnct + B, sinnct

which gives us
up (z,t) = sinnz(Ay, cosnct + B, sinnct).

Then we look for as solution of the form

[e.@]
u(z,t) = Z sin nx (A, cos ent + By, sinent).

n=1
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Note that any solution in this form satisfies the boundary conditions. So we look for solutions in the form
that satisfy the given initial condition where u(z,0) = g(z) and w;(x,0) = h(z). We have

oo
ug(z,t) = Z sin nz(—ncA, sinnct + ncBy, cos nct).

n=1

We need

u(z,0) = g(zr) = ZA” sinnx = g(z) and,
n=1

ut(x,0) = h(z) = chBn sinnx = h(x)

n=1

We take the A,, to be the coefficients in the Fourier series for the odd 27 periodic function which agrees with
g(x) for 0 <z < r. We take ncB,, in a similar way.

End of Lecture 32
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Start of Lecture 33

Definition 33.1: A (complex) trigonometric polynomial is a function f : R — C of the form

l 4 L l
f(z) = ao—l-Zancosnx—i—ansinnx +1 a6+2a%cosnw—|—26’nsinnm

n=1 n=1 n=1 n=1

for some ay, by, a’,, b, € R. Equivalently a function f : R — C of the form

ny“YnirYn

¢
f(z) = chemx for some ¢, € C.
¢

Where
inx —inx
e t+e ; .
COSNT = ————— where €% = cosnx + isinnz,
eint _ o—inx )
sinnz = — where e "% = cosnx — i sinnz.
1

Remark 33.2: The set of all trigonometric polynomials is dense in
C(T) = C(T,C) = {continuous 27 — periodic functions f : R — C}

using the co—norm. Hence also in L,(T) = L,(T,C) using the p—norms. The set {¢"® | n € Z} is
orthogonal in Lo(T"). Since

<einz7 eima;> — /ﬂ— em;t(:’ZWdl‘ — /7T ei(n—m)a: dz = f_ﬂ_ 1dz : 27 _ if n= m.
- . [(n_lm)i ez(n—m)x} "= 0 ifn ?é m

So the set U = {ﬁeinz

f € Lo(T), we have

n e Z} is a Hilbert basis for Lo(T) = Lo(T,C) = Lo[—m,w|. For every

n=oo é
i i 1 4 )
flz)= ) E oocnemz = Eliglo E Kcnemz in Lo(T) where ¢, = o » f(t)e ™ dt.
= o

Remark 33.3: Recall that for sy Efz:l an with a, € R,

[e.9]

Z an converges <= {sy;} and {0y} converges where o, =

S1+8S2+ ...+ 8¢
7 .
n=1

Note that the converse is not necessarily true (a, = (—1)").

Remark 33.4: For the assignment, use the sequential characterization of compactness. S is compact if and
only if S is sequentially compact. Every sequence in S has a subsequence that converges to element which
isin S.

End of Lecture 33
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Start of Lecture 34

Notation 34.1: For f € L1(T) = Li(T,C) (or f : R — C is 2r— periodic and measurable with 7| f| < oo)
we have
¢ 1 " —in
en(f) = f(n) = o (t)e~"""dt.

o o
as the (complex) Fourier coefficients of f.

Notation 34.2: We have the partial sums of the Fourier series of f as

0
Se(f)(@) =Y ealf)e™
—0

and the Cesaro means of the Fourier series of f as

CSoH) S H A Sa(f) 1 &
om(f) = m 1 —m+1;ng(x).
Question: If f € L,(T) then,
do we have E]Lm Se(f) = fin L,(T),
or do we have W}gnoo om(f) = fin Ly(T),

or do we have elim Se(f)(x) =f(zr) VaeeT (orforaexeT),
—00

or do we have n%gnoo om(f)(x) = f(z) in L,(T)?

Solution.

For f € Li(T), we have

l
Se(f)(@) =D ealf)e™

1 . i(20+u _ 1
= e it u £ 0

e —1
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Since e — 1 = €0/2(£0/2 — ¢=10/2) = ¢19/2 . 9jsin g, then

. . 1 . 1
1 i 2iexp (z(ﬁ + §)u> sin (E + §u)
21 exp(i%) sin 5
sin(ﬂ + %)u
1

2sin U
So we have
1 s
Se(f)(@) == [ f(t)De(z —t)dt
where
. 1 ”
U EC S
Dy(u) = B Z e = 1 | .
n=—{ {+ 5 it u=0.

Dy(u) is called the Dirichlet kernel.

Note that Dy(u) is real-valued and 27w —periodic and even. Also,

4

" 1 " mnu 1 " 0
Dg(u)duzQZ/ e du:2/_7re =T.

- n=—t’ "

Exercise 34.3: Show [”_|Dy(u)|.
Remark 34.4: Also, for f € L1(T), we have

o)) = 5 3 Sil@)
=0
1 « T
= Z% = f(t)Dy(z —t)dt
= % i f(t)Kp(x —t)dt, where
Konla) = ——= " Dilw)

=0
1 i (e+1)
_ I Zez 4+35)u
u
2(m + 1) sin 5 P
) oit/2 (ei(m+1)u _ 1)
= - Im .
2(m + 1) sin g e —1
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Since e — 1 = €0/2(£0/2 — ¢=10/2) = ¢19/2 . 9jsin g, then

1 I iu/2 27/€l m;rl SlIl m;1U
= m
2(m + 1) sin g ¢ 2ici/? sin 4
27 (m+Du
- . (= ) when u # 0.
2(m+1)  sin(%)
Thus we have .
on()@)=— [ F(OEn(z—1)dt
where »
m 1 sin?(FE) )
Km(u) = ; ZDZ(U) — 2(m+1) SinQ(%) if u 7é 0
Since

2 m+1 2 2 2

Km(O)—1m<g+1>_ ! (m(m+1)+m+1>_m+1.

m+1 s
The function K,,(u) is called the Fejer kernel.

Remark 34.5: K,,(u) is real-valued, even and 27— periodic.

1
Exercise 34.6: Show that max }Km(u)‘ = Kn(0) = %
Remark 34.7: Also,
1 m
Ky (u)du = 71 =2 =T
- m+ m + =0
Definition 34.8: The convolution of f with ¢ is defined as
(F+o)a@) = [ Fgta =1
Remark 34.9: Note that e
om(f)(x)=— [ f(t)Km(z—1t)dt.
Letting s = x — t gives
1 r—T
onla) =+ [ o= Kol ds
T Jatm
1 T+
—/ flz—s)Kn(s)ds
™ Tr—T

Then letting s = —t gives us

= /7r flx+t)K,,(t)dt since K, (t) is even.

End of Lecture 34
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Start of Lecture 35
Recall the definitions of [Fourier coefficients and [Cesaro means

Theorem 35.1 (Riemann-Lebesgue lemma): Let f € Lq(T). Then lim, o ¢ (f) = 0.

Proof.

l
Let € > 0. Choose a trigonometric polynomial g(z) with ||f —g||; < - 2n. Say g(z) = Zanem“. Then,
)

forn >/,
1 [7 :
— g(t)e ™ dt = 0.
2 J_,

So,

1 T ,
(Pl = |z [ Fea

3 | (0 = a®)e
<L 715 - o) at

2 J_,

1
= 5-I7 gl

=&

Thus lim ¢,(f) =0.

n—oo

Theorem 35.2 (Fejer): Let f € Li(T). Let a € T. Suppose f(a™) and f(a™) exist in C where

f(a*) = lim f(a) = lim f(a+0)

fla) = Tm f(@)= lim fo—1)
Then,
+ —_
T o ()= T

Moreover, if f is continuous in a closed interval I then the convergence is uniform.

Exercise 35.3: Show that

on(N@) == [ Kt =0
_ % " o= Ko (t) dt
1 ™

- flx +t) K, (t) dt.

—T

Proof.
Recall the following:
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4 L T ™
== 3 (;N [ s dt) =2 " e -nat

sm<€+ )

h D —’Lnu —

where Z Z 2sin %u

dom(F)@) =~ 5 (w) = il/ﬂf D~ 1)t == [ JOKn(z 1)
all m = = — — x€r — _

? . m+1€:0 ¢ v m—|—1£:07r . 1 o
1 & ;o sin?(25tu)

where (u) m—+1 p e(u) 2(m+1) sin? %)

and/ Dgudu:ﬂand/ Kp(u)du=m

/f (@ —1)d W/ﬂf(a;—t)Km(t)dt:;/ﬂf(ert) () dt
oy o 353)

Given € > 0 we can choose § > 0 so that ‘f(a—kt) - f(aﬂ} and !f(a —t) — f(a_)’.
Hence |(f(a+t) — f(a—1)) — (f(a™) — f(a™))]| is small. — Wrong
Hence |(f(a+t)+ f(a—1)) — (f(a™) + f(a™))| is small. We have

(fla+8)+ fla=1) = (F@") + f(a )| Kn(t)

(fla+1t)+ fla—1t) — (f(a) + f(a ‘K dt

Given € > 0 choose § > 0 so that 0 <t <& = |(f(a+1t)+ f(a—1t)) — (f(a™)+ f(a™))| < e. Then,

I< a/K t)dt < E/K t)dt = —5—

Also, J < Lmax Kn(®) | |(Flas) + fla—1) — (f<a+)+f(a*))‘dt

T o0t<m

l\D\(‘f)

)

< lmame(t) /W‘f(a"’t)‘ + ‘f(a—t)‘ + ‘f(a"_)‘ + ‘f(a_)‘dt

T o0t<m

max Kot )<||f||1 +7(f(a¥) +f<a‘)>

1
<-m
T 0<t<
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Since we have Ky, (t) = 5

J < 117T2<||f|] —|—7T(f(a+) +f(a))> —0asm — oo
~w2(m+1) 62 ! )

So we can choose m € Z* large enough so that J < 5

Corollary 35.4: Let f € Li(T). If all three

f(a™) = lim f(z)= lim f(a+t)

z—at t—0+
fla) = Jim f(x) = lim f(a—1)
Jlim S:(/)(a)

exist in C, then hm Se(f)(a) = M.

—00 2

Example 35.5: Recall that when g(z) is the 2r—periodic function,

g—l—xfor —rm<zx<0

g(x) =9 =
E—a:forogscgﬂ
we found that
( ) 4 1 4 /1 + 1 1 30+ 1 5
r) = — —cosnr = —| —s cosx cos 3z + —; cosdx
g ﬂ_anoddn2 12 31 52

Put in £ = 0 to get

T 4 & 1 > 1 72
T_25 _°  wh - T
2 Trkz_o(2k+1)2 where kz_:o(zkﬂ)? 8

1
Another method is done by letting S = Z —5 . Since every term is positive, then we can rearrange the sum
n

s=(L+lily —%1+i+1+ _T g
T\12 32 T2 22 62 T8 '

as

W

3 2 2
Then, ZS = % Then S = % Hence
5=
=n 6

End of Lecture 35
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Start of Lecture 36

Exercise 36.1: Find ||g||* where g is defined as

gtaxfor —m<2<0
g(z) =

g—axfor0<z <7

in We have

T T 2
v
Hg!!2=/ 9222/0 (2—:v> dz

Remark 36.2: Working in Lo(7") using the orthonormal basis {ﬁ, # cos n, # sinnz}, we have

4 1
g(x) = Z —=—5 —7= COSNT
n( odd) \/7?” \/7?
4 16
lol?= 3 |2 = 3 22
n( odd) \/7?71 n( odd) ™
Thus,
E:_i_ﬁl_f
(Odd)_ nt 616 96

For § =37, 2 we have

1 1 s 1
SI Z F_'_ Z H:%—FES

n( odd) n( even)
5o __ o _omt

Theorem 36.3: Let f € Li(T) and let a € T If

h—0

h
MniA fla+t)— fla)|dt =0

then lim,, o0 o (f)(a) = f(a).
Corollary 36.4: mlgnoo om(f)(x) = f(x) foraex eT.

Theorem 36.5: If f € L,(T) then lim o,,(t) = f in Ly(T).
m—ro0

Corollary 36.6: If f,g € Li(T') with ¢, (f) = cn(g) for all n € Z, then f = g in Li(T) (that is, f = g a.e

inT).
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Proof.

Suppose ¢, (f) = cn(g) for all n € Z. Then, 0., (f) = om(g) for all m € Z*. So we have o, (f) — f in L1(T)
and o, (f) = om(g) — g in Li(T). So f =g in Li(T).

Some harder theorems that are not covered in the textbook.

Theorem 36.7: For all f € L,(T) where 1 < p < o0, glim Se(f)(x) = f(z) foraex e T 3 fe (1)
—00
such that {Sy(f)(z)} diverges for all x € T

Remark 36.8: By Fejer’s theorem, for f € L1(T), a € T, if f(a™) and f(a~) exist and are finite and if

{Se(f)(a)} converges then Zliglo Se(f)(a) = M.

2
1
Example 36.9: For Z —cosnx we use Dirichlet’s test, that is given sequences {a,} and {b,} of real
n
n=1 n [oe)
numbers, if {S,} is bounded where S,, = Z ay and if b, N\, 0 (decreases and converges to 0) then Z anbn,
k=1 n=1

converges.
Remark 36.10: Alternating series test follows as a special case of Dirichlet’s test.

Definition 36.11: For the partition a < zp < 1 < ... < x, < b (that is, P = {zg,x1,...,2}), we define
the variation of f with respect to P as

V(£ P) =) |fzr) = flax-)|
k=1

and total variation of the function f as V(f) = supp V(f, P). We say f is of bounded variation when
V(f) < oco. Some supplementary information regarding variation can be found from: mecps://tacurty.stsu.edu/gardnerr/

5210/notes/6-3.pdf

Definition 36.12: Let f € Li(T),a € T. If f is of bounded variation in a closed interval with a in its
interior, then Sy(f)(a) =.

Theorem 36.13 (Dini’s Criterion): https://en.wikipedia.org/wiki/Dini_criterion

Corollary 36.14: If f is differentiable, then lim;_, S¢(f)(a) = f(a). More generally, if f'(a*) and f'(a™)
exist and are finite, then f(a™) and f(a™) exist and are finite and limy_,o, S¢(f)(a) = M

This concludes the final lecture for PMATH 450/650 - Summer 2018.

End of Lecture 36
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Final exam information is posted in the course website as follows: http://ww.math. uwaterloo. ca/~snew/pnathds0-2018-5/index. html

PMATH 450/650 Lebesgue Integration and Fourier Analysis, Spring 2018

Note: the PMATH 450/650 final examination will be held on Thursday August 2, from 9:00-11:30 am, in
PAC 9.

The exam will cover all of the course material.

There will be 5 questions, each with two parts.

In some of the problems you will be asked to state definitions.

You will also be asked to prove 2 of the following 5 theorems:

e Theorem 1.18 (Existence of Non-Measurable Sets)

Theorem 2.31 (Fatou’s Lemma)

Theorem 3.18 Part (2) (Holder’s Inequality)
Theorem 4.23 (Closed Convex Sets in a Hilbert Space)

Theorem 15.4 from the textbook (Fejér’s Theorem)


http://www.math.uwaterloo.ca/~snew/pmath450-2018-S/index.html
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