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Lecture 1 PMATH 450/650 02 May 2018

Start of Lecture 1

Course webpage: http://www.math.uwaterloo.ca/~snew/

Definition 1.1: We define the outer Jordan Content (c∗) of set A as

c∗(A) = inf


∑

Rij∩A 6=∅

∣∣Rij∣∣
∣∣∣∣∣∣∣

R is a rectangle with
A ⊆ R and P is a

double partition of R

.
Definition 1.2: We define the inner Jordan Content (c∗) of set A as

c∗(A) = sup


∑

Rij∩A 6=∅

∣∣Rij∣∣
∣∣∣∣∣∣∣

R is a rectangle with
A ⊆ R and P is a

double partition of R

 or equivalently

= sup

|R| −
∑

Rij∩(R\A) 6=∅

∣∣Rij∣∣
∣∣∣∣∣∣∣

R is a rectangle with
A ⊆ R and P is a

double partition of R

.
Remark 1.3: A has a well-defined Jordan content when c∗(A) = c∗(A). We denote Jordan content was
c(A) = c∗(A) = c∗(A).

Definition 1.4: We define the outer Jordan content of a bounded set A ⊆ R as

c∗(A) = inf


n∑
i=1

|Ri|

∣∣∣∣∣∣∣∣
n ∈ Z+ and each Ri is a bounded

open interval with A ⊆
n⋃
i=0

Ri

.
Theorem 1.5 (Properties of outer Jordan content):

1. (Translation) If A ⊆ R and a ∈ R, then c∗(a+A) = c∗(A) where a+A = {a+ x | x ∈ A}.

2. (Scaling) If 0 6= r ∈ R then c∗(rA) = rc∗(A).

3. (Inclusion) IfA ⊆ B ⊆ R, then c∗(A) ≤ c∗(B).

4. If A ⊆ R is finite, then c∗(A) = 0.

5. If I = (a, b), (a, b], [a, b) or [a, b] where a, b ∈ R with a ≤ b then c∗(I) = |I| = b− a.

6. (Subadditivity) If A,B ⊆ R then c∗(A ∪B) ≤ c∗(A) + c∗(B).

7. We have c∗(A) = c∗(A).

Exercise 1.6: Prove these theorems.

Remark 1.7: We would also like to have to property that if A,B ⊆ R with A ∩ B = ∅ then c∗(A ∪ B) =
c∗(A) + c∗(B) but this property does not hold.

Example 1.8: If A = [0, 1] ∩ Q and B = [0, 1] \ Q then c∗(A) = 1, c∗(B) = 1 but c∗(A ∪ B) = c∗([0, 1]) =
1 6= 2.

End of Lecture 1

Spring 2018 1
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Lecture 2 PMATH 450/650 04 May 2018

Start of Lecture 2

Definition 2.1: For the interval I = (a, b), (a, b], [a, b)or[a, b] where a, b ∈ R with a ≤ b we define |I| = b−a
and for the unbounded intervals I = (−∞, a), (−∞, a], (a,∞)[a,∞), or(−∞,∞) where a ∈ R we define
|I| =∞.

Definition 2.2: We define the outer Lebesgue measure of a bounded set A ⊆ R as

λ∗(A) = inf


n∑
i=1

|Ri|

∣∣∣∣∣∣∣∣
each Ri is a bounded

open interval with A ⊆
n⋃
i=0

Ri

.
Notation 2.3: Through out this course, unless otherwise specified, when we say "measure" we mean
Lebesgue measure.

Theorem 2.4 (Properties of outer Lebesgue measure):

1. If A is finite or countable then λ∗(A) = 0.

2. (Inclusion) If A ⊆ B ⊆ R then λ∗(A) ≤ λ∗(B).

3. (Translation) If A ⊆ R and a ∈ R then λ∗(a+A) = λ∗(A)︸ ︷︷ ︸
bijective correspondence

where a+A = {a+ x | x ∈ A}.

4. (Scaling) If 0 6= r ∈ R then λ∗(rA) = rλ∗(A).

5. (Intervals) If I is an interval, then λ∗(I) = |I|.

6. (Subadditivity) If A,B ⊆ R then λ∗(A∪B) ≤ λ∗(A) + λ∗(B). More generally, if A1, A2, . . . ∈ R, then

λ∗

 ∞⋃
k=1

Ak

 ≤ ∞∑
k=1

λ∗(Ak)

.

Proof of 1.

Let A = {a1, a2, . . .}. Let ε > 0. For each k ∈ Z+ let Ik =

(
ak −

ε

2k
, ak +

ε

2k

)
. Then ak ∈ Ik. So

A ⊆
∞⋃
k=1

Ik. Thus λ∗(A) ≤
∞∑
k=1

|Ik| = ε +
ε

2
+
ε

4
+ . . . = 2ε. Since λ∗(A) ≤ 2ε, for all ε > 0, we have

λ∗(A) = 0.

Exercise 2.5: Proofs of 2, 3, and 4 are left as exercises.

Proof of 5.

Let I = (a, b), (a, b], [a, b)or[a, b] where a, b ∈ R with a ≤ b. Let ε > 0. Let I1 =
(
a− ε/2, a+ ε/2

)
so that I ⊆ I1 and |I| = (b − a) + ε = |I| + ε and let I2 = I3 = . . . = ∅. Then I ⊆

∞⋃
k=1

Ik and

∞∑
k=1

λ∗(Ik) = λ∗(Ik) = |Ik| = |I| + ε. It follows that λ∗(I) ≤ |I| + ε. Since this holds for all ε > 0, we have

λ∗(I) ≤ |I| = b− a.

Spring 2018 2



Lecture 2 PMATH 450/650 04 May 2018

Remark 2.6: We could also have used transfinite induction on Ii’s to arrive this conclusion.

Now let Ik be any bounded open interval such that (a, b) or [a, b) or (a, b] = I ⊆
∞⋃
k=1

Ik. Let ε > 0 arbitrary

with ε < b − a. Let k =
[
a− ε/2, a+ ε/2

]
. Since K is compact, we can extract a finite subcover of

{I1, I2, . . .}. Let this subcover be {I1, I2, . . . , Im} (after possibly reordering). Choose Ik1 = (a1, b1) with
a1 < a+ ε/2 < b1, and if b1 ≤ b− ε/2 then choose Ik2 = (a2, b2) with a2 < b1, b2 > b1. If b2 ≤ b− ε/2 choose
Ik3 = (a3, b3) with a3 < b2, b3 > b2. Eventually we obtain intervals,

(a1, b1), (a2, b2), . . . , (a`, b`) with a1 < a+
ε

2
, a2 < b1, a3 < b2, . . . , a` < b`−1, b` > b− ε

2
.

We have

∑̀
i=1

λ∗(ai, bi) =
∑̀
i=1

(bi − ai) = (b1 − a1) + (b2 − a2) + . . .+ (b` − a`)

≥ a2 − (a+
ε

2
) + (a3 − a2) + (a4 − a3) + . . .+ (a` − a`−1) + (b− ε

2
)− a`

= (b− a)− ε.

Since ε is arbitrary,
∑̀
i=1

(b− a ≥ (b− a)). Thus,

∞∑
k=1

λ∗(Ik) ≥
∑̀
i=1

(bi − ai) ≥ b− a.

Thus, λ∗(I) ≥ b− a. Since we have both λ∗(I) ≤ |I| = b− a and λ∗(I) ≥ b− a then λ∗(I) = |I|.

End of Lecture 2
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Start of Lecture 3

Remark 3.1: Recall that we proved part 5 last lecture in the case of a bounded interval I. When I is
an unbounded interval, for any R > 0, we can choose a bounded interval J ⊆ I with |J | = R then by the
inclusion property, we have λ∗(I) ≥ λ∗(J) = R. Since R was arbitrary, we have λ∗(I) =∞.

Recall 3.2: Recall the 6th (subadditivity) property.

6. (Subadditivity) If A,B ⊆ R then λ∗(A∪B) ≤ λ∗(A) + λ∗(B). More generally, if A1, A2, . . . ∈ R, then

λ∗

 ∞⋃
k=1

Ak

 ≤ ∞∑
k=1

λ∗(Ak).

Proof of 6.

Let A1, A2, . . . ⊆ R. Let ε > 0. For each k ∈ Z+ choose bounded open intervals Ik1 , Ik2 , . . . so that

Ak ⊆
∞⋃
i=1

Iki and
∞∑
i=1

∣∣Iki∣∣ < λTAk +
ε

2k
.

Then
∞⋃
k=1

Ak ⊆
⋃
k,i

Iki .

So λ∗

 ∞⋃
k=1

Ak

 ≤∑
k,i

∣∣Iki∣∣
=
∞∑
k

∞∑
i

∣∣Iki∣∣
≤
∞∑
k

(
λ∗(Ak) +

ε

2k

)

=
∞∑
k

λ∗(Ak) + ε.

Since ε > 0 was arbitrary, we get λ∗

 ∞⋃
k=1

Ak

 ≤ ∞∑
k=1

λ∗(Ak) as required.

Definition 3.3: We define the lower Jordan content of a bounded set A ⊆ R as

c∗(A) = |I| − c∗(I \A),

where I is a bounded interval which contains A ⊆ I (if we wish we can require that I is the smallest closed
interval which contains A).

Definition 3.4: We say that A has a (well-defined) Jordan content when c∗(A) = c∗(A) and in this
case, we define the Jordan content of A to be c(A) = c∗(A) = c∗(A).

Remark 3.5: We could define the lower Lebesgue measure of a bounded set A ⊆ R to be λ∗(A) = |I| −
λ∗(I \ A) where I is any bounded interval containing A (or where I = [inf(A), sup(A)]) and we could (but
don’t) define A to be Lebesgue measurable when λ∗(A) = λ∗(A).
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Definition 3.6: For A ⊆ R (A is not necessarily bounded), A is Lebesgue measurable when for all sets
X ∈ R,

λ∗(X) = λ∗(X ∩A) + λ∗(X \A).

In this case, we define the Lebesgue measure of A to be λ(A) = λ∗(A) and denote the set of all measurable
subsets of R asM.

Theorem 3.7 (Properties of Lebesgue measure):

1. For A ⊆ R and a ∈ R, A is measurable iff a+A is measurable. This means translation is measurable.

2. if 0 6= r ∈ R then A is measurable iff rA is measurable.

3. ∅ and R are measurable.

4. For A ⊆ R, if λ∗(A) = 0 then A is measurable.

5. For A ⊆ R, if A is measurable then so is Ac = R \A.

6. If A,B ⊆ R are both measurable then so are A ∪B, A ∩B and A \B.

7. Every interval I is measurable.

8. If A1, A2, . . . ⊆ R are all measurable, then so are (countable )
∞⋃
k=1

Ak and (countable)
∞⋂
k=1

Ak.

9. (Additivity) If A1, A2, . . . ⊆ R are measurable and disjoint then λ

 ∞⋃
k=1

Ak

 =
∞∑
k=1

(Ak)

Remark 3.8: Before beginning the proof, we remark that for any sets A,X ⊆ we have (X∩A)∪(X\A) = X.
So by subadditivity λ∗(X) ≤ λ∗(X ∩A) + λ∗(X \A). thus, A ⊆ R is measurable iff for all X ⊆ R,

λ∗(X) ≥ λ∗(X ∩A) + λ∗(X \A).

Exercise 3.9: Prove 1 and 2.

Proof of 3.

∅ is measurable because for all X ⊆ R we have

λ∗(X ∩∅) + λ∗(X \∅) = λ∗(∅) + λ∗(X) = 0 + λ∗(X) = λ∗(X)

and R is measurable because ∀ X ∈ R we have

λ∗(X ∩R) + λ∗(X \R) = λ∗(X) + λ∗(∅) = λ∗(X) + 0 = λ∗(X).

Remark 3.10: Also note after we show ∅ is measurable, by Property 4, ∅c = R is also measurable.

Proof of 4.

Let A ⊆ R with λ∗(A) = 0. Let X ⊆ R. Then

λ∗(X ∩A) + λ∗(X \A) ≤ λ∗(A) + λ∗(X) (by inclusion property, since X ∪A ⊆ A,X \A ⊆ A)
= 0 + λ∗(X) = λ∗(X).
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Proof of 5.

Let A ⊆ R be measurable. Let X ⊆ R. Then λ∗(X ∩Ac)+λ∗(X \Ac) = λ∗(X \A)+λ∗(X ∩A) = λ∗(X).

Proof of 6.

Suppose A,B ⊆ R are measurable. Let X ⊆ R. We have

λ∗(X) = λ∗(X ∩A)λ∗(X \A) (since A is measurable)
= λ∗(X ∩A) + λ∗((X \A) ∩B) + λ∗((X \A) \B) (since B is measurable)
≥ λ∗(X ∩ (A ∪B)) + λ∗((X \A) \B) (by subadditivity)
= λ∗(X ∩ (A ∪B)) + λ∗(X \ (A ∪B)) (since (X ∩A) ∪ ((X \A) ∩B) = X ∩ (A ∪B))

Hence A ∪B is measurable. Then Ac ∪Bc is measurable and thus (Ac ∪Bc)c = A ∩B is measurable. Then
A ∩Bc = A \B is also measurable.

End of Lecture 3
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Start of Lecture 4

Proof of 7.

This content is covered in section 2.10 in the textbook.

If I = ∅ or I = {a} (i.e I is a degenerate interval) then I is measurable because λ∗(I) = 0.

Suppose I = (a, b) where a, b ∈ R with a < b. Let X ⊆ R. Let ε > 0. Choose bounded open inter-

vals I1, I2, . . . ⊆ R so that X ⊆
∞⋃
k=1

Ik and
∞∑
k=1

|Ik| ≤ λ∗(X) + ε. For each n ∈ Z+ let

Jn = In ∩ (a, b),Kn = In ∩ (−∞, a), and Ln = In ∩ (b,∞).

Then X ∩ (a, b) ⊆
∞⋃
n=1

Jn.

So λ∗(X ∩ (a, b)) ≤
∞∑
n=1

|Jn| and X \ (a, b) ⊆
∞⋃
n=1

Kn ∪
∞⋃
n=1

Ln ∪ (a− ε, a+ ε)︸ ︷︷ ︸
an interval containing a

∪ (b− ε, b+ ε)︸ ︷︷ ︸
an interval containing b

.

So λ∗(X \ (a, b)) ≤
∞∑
n=1

|Kn|+
∞∑
n=1

|Ln|+ 4ε. Thus,

λ∗(X ∩ (a, b)) + λ∗(X \ (a, b)) ≤
∞∑
n=1

(
|Jn|+ |Kn|+ |Ln|

)
+ 4ε

=
∞∑
n=1

|In|+ 4ε

≤ λ∗(X) + 5ε.

Since ε > 0 was arbitrary, then

λ∗(X ∩ (a, b)) + λ∗(X \ (a, b)) ≤ λ∗(X).

Thus, (a, b) is measurable.

This proves Part 6 for bounded open intervals. Note that every interval can be obtained from bounded
open intervals using countable unions or intersections and/or compliments. Hence every interval I is mea-
surable.

Remark 4.1: To help proving 8 and 9 note that for X ⊆ R, if A,B ⊆ R are measurable and disjoint then

λ∗(X ∩ (A ∪B)) = λ∗((X ∩ (A ∪B)) ∩A) + λ∗((X ∩ (A ∪B)) \A)
= λ∗(X ∩A) + λ∗(X ∩B).

By induction, if A1, A2, . . . , An are measurable and disjoint then
n⋃
k=1

Ak is measurable and for all sets X ⊆ R

we have

λ∗(X ∩
∞⋃
k=1

Ak) =

∞∑
k=1

λ∗(X ∩Ak).
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Proof of 8 and 9.

Let A1, A2, . . . ⊆ R be measurable and disjoint. For each n ∈ Z+, we have

n∑
k=1

λ∗(X ∩Ak) = λ∗

X ∩ n⋃
k=1

Ak


≤ λ∗

X ∩ ∞⋃
k=1

Ak

 (by inclusion)

= λ∗

 ∞⋃
k=1

X ∩Ak


≤
∞∑
k=1

λ∗(X ∩Ak) (by subadditivity)

Taking the limit as n→∞ we obtain

∞∑
k=1

λ∗(X ∩Ak) ≤
∞∑
k=1

λ∗

X ∩ ∞⋃
k=1

Ak

z ≤ ∞∑
k=1

λ∗(X ∩Ak).

So,
∞∑
k=1

λ∗

X ∩ ∞⋃
k=1

Ak

 =
∞∑
k=1

λ∗(X ∩Ak).

In particular, taking X = R gives λ∗

 ∞⋃
k=1

Ak

 =

∞∑
k=1

λ∗(Ak) which is needed for part 8.

We still need to show that
∞⋃
k=1

Ak is measurable. Let X ⊆ R. For all n ∈ Z+,

λ∗(X) = λ∗

X ∩ n⋃
k=1

Ak

+ λ∗

X \ n⋃
k=1

Ak


=

n∑
k=1

λ∗(X ∩Ak) + λ∗

X \ n⋃
k=1

Ak


≤

n∑
k=1

λ∗(X ∩Ak) + λ∗

X \ n⋃
k=1

Ak

 (by inclusion)

Taking the limit as n→∞ gives us

λ∗(X) = λ∗

X ∩ ∞⋃
k=1

Ak

+ λ∗

X \ n⋃
k=1

Ak

.
Thus,

n⋃
k=1

Ak is measurable when A1, A2, . . . ⊆ R are measurable and disjoint.
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When A1, A2, . . . ⊆ R are measurable but not necessarily disjoint we have

∞⋃
k=1

Ak = A1 ∪ (A2 \A1) ∪ (A3 \ (A1 ∪A2) ∪ (A4 \ (A1 ∪A2 ∪A3 ∪A4)) ∪ . . .

We can rewrite any countable union of disjoint sets as a union of disjoint sets which is measurable since it
is a countable union of disjoint measurable sets.

Corollary 4.2:

1. If A1, A2, . . . ⊆ R are measurable with A1 ⊆ A2 ⊆ A3 ⊆ . . . (where they form an increasing chain)
then

λ

 ∞⋃
n=1

An

 = lim
n→∞

λ(Ak).

2. If A1, A2, . . . ⊆ R are measurable with A1 ⊇ A2 ⊇ A3 ⊇ . . . (where they form an descending chain)
and λ(Am) <∞ (measure of Am is finite) then

λ

 ∞⋂
n=1

An

 = lim
n→∞

λ(Ak).

Proof of Corollary 1.

Suppose A1, A2, . . . ⊆ R are measurable with A1 ⊆ A2 ⊆ A3 ⊆ . . ..
Let

B = A1, B2 = A2 \A2, . . . , Bk = Ak \Ak−1.

Then,

λ

 ∞⋃
n=1

An

 = λ

 ∞⋃
k=1

Ak

 (since
⋃∞
n=1An =

⋃∞
k=1Bk)

=
∞∑
n=1

λ(Bn) (since the Bk are disjoint)

= lim
n→∞

n∑
k=1

λ(Bk)

= lim
n→∞

λ

 n⋃
k=1

Bk

 (since the Bk are disjoint)

= lim
n→∞

λ(An). (since An =
⋃n
k=1Bk)
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Proof of Corollary 2.

Suppose A1, A2, . . . ⊆ R are measurable with A1 ⊇ A2 ⊇ A3 ⊇ . . . (where they form an descending chain)
and λ(Am) <∞. Then

λ

 ∞⋂
k=1

Ak

 = λ

 ∞⋂
k=m

Ak


= λ

Am \ ∞⋂
k=m

(Am \Ak)

 (by the equivalence relation of S = (Sc)c)

Since Am is the disjoint union of
∞⋃
k=m

(Am \Ak) and Am \
∞⋃
k=m

(Am \Ak) then,

λ

 ∞⋂
k=1

Ak

 = λ(Am)− λ

 ∞⋃
k=m

(Am \Ak)


= λ(Am)− lim

k→∞
λ(Am \Ak)

Since Am is the disjoint union of Ak and Am \Ak then,

= λ(Am)− lim
k→∞

(λ(Am)− λ(Ak))

= λ(Am)− λ(Am) + lim
k→∞

λ(Ak)

= lim
k→∞

λ(Ak).

End of Lecture 4
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Start of Lecture 5

Corollary 5.1:

1. All open sets and all closed sets in R are measurable.

2. All Borel sets in R are measurable.

Proof of 1.

We make use of the following properties in our proof:

Recall 5.2:

1. Any X ⊆ Rn is equal to the disjoint union of its connected components.

2. If U ⊆ Rn is open the its connected components are open, also U has at most countable many
components.

3. The connected subsets of R are the intervals.

It follows that every open set U ⊆ R is equal to a finite or countable disjoint union of open intervals when

U =
n⋃
k=1

Ik or U =
∞⋃
k=1

Ik where the Ik are the connected components of U . Hence, by property 8 , we have

λ(U) =
∑
k

Ik.

Aside: Supplementary documents on Borel sets and σ−algebra:

• http://nptel.ac.in/courses/108106083/lecture7_Borel%20Sets%20and%20Lebesgue%20Measure.pdf

• http://stat.math.uregina.ca/~kozdron/Teaching/Regina/451Fall13/Handouts/451lecture05.pdf

Notation 5.3: When C is a set of subsets of R with ∅ ∈ C and R ∈ C, we write

Cσ =


∞⋃
k=1

Ak

∣∣∣∣∣∣ each Ak ∈ C

 and Cδ =


∞⋂
k=1

Ak

∣∣∣∣∣∣ each Ak ∈ C

.
Note that Cσσ = Cσ and Cδδ = Cδ and also that Gσ = G and Fδ = F .

Notation 5.4: We denote the set of all open subsets of R as G and the set of all closed subsets of R as F .

Definition 5.5: A set C of subsets of R is called a σ−algebra in R if

1. ∅ ∈ C.

2. If A ∈ C then Ac = R \A ∈ C.

3. If A1, A2, . . . ∈ C then
⋃∞
k=1Ak ∈ C. Equivalently, if A1, A2, . . . ∈ C then Cσ = C.

Remark 5.6: Given any set S of subsets R, there is a unique smallest σ−algebra in R which contains S,
namely the intersection of all the σ−algebras in R which contain S.

Definition 5.7: The Borel σ−algebra in R is the smallest σ−algebra in R (denoted as B) which contains
G (hence also F). The elements in B are called Borel sets.
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Remark 5.8: Note that B includes the sets

G,Gδ,Gδσ,Gδσδ, . . . and F ,Fσ,Fσδ,Fσδσ, . . .

where Gδ denotes the countable intersection of all open subsets in R and Gδσ denotes the countable union of
the countable intersection of all open subsets in R etc. In other words,

∞⋂
k=1

∞⋃
`=1

∞⋂
m=1

Uk,`,m ∈ Gδσδ

Exercise 5.9: Show that F ⊆ Gδ and G ⊆ Fδ.

Exercise 5.10 (Challenging): Prove of disprove the following statement.

If H = G ∪ Gδ ∪ Gδσ ∪ . . . then H $ Hσ.

Remark 5.11: The setM = L of Lebesgue measurable sets in R is a σ−algebra in R with G ⊆ L. So by
definition of B, we have B ⊆ L.

End of Lecture 5
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Start of Lecture 6

Cantor Sets

The (standard) cantor set C ⊆ [0, 1] can be constructed as follows:

We remove the open third of [0, 1] by letting

I1 =

(
1

3
,
2

3

)
, U1 = I1, C1 = U c1 = [0, 1] \ U =

[
0,

1

3

]
∪
[
2

3
, 1

]
and then removing the open thirds of the two components of C1

I2 =

(
1

9
,
2

9

)
, I3 =

(
7

9
,
8

9

)
, U2 = I1 ∪ I2 ∪ I3, C2 = U c2 = [0, 1] \ U2 =

[
0,

1

9

]
∪
[
2

9
,
3

9

]
∪
[
6

9
,
7

9

]
∪
[
8

9
, 1

]
.

We continue this procedure to get

Un = I1 ∪ I2 ∪ . . . ∪ I2n−1, Cn = U cn

where Cn is the disjoint union of 2n closed intervals each of size 1
3n and U1 ⊆ U2 ⊆ . . . and C1 ⊆ C2 ⊆ . . . We

let

U =
∞⋃
k=1

Uk and C = U c =
∞⋂
k=1

Ck.

The C ⊆ [0, 1] is closed (hence measurable) and

λ(Cn) = 2n
1

3n
(1)

λ(Cn) = lim
n→∞

λ(Cn) = lim
n→∞

(
2

3

)n
= 0. (2)

Alternatively, C is equal to the set of real numbers in [0, 1] which can be written in base 3 using only the
digits of 0 and 2.

Proof sketch.

[0, 1] can be written as 0.∗
[
2

3
, 1

]
can be written as 0.2∗[

0,
1

3

]
can be written as 0.0∗

[
2

9
,
3

9

]
can be written as 0.02∗[

0,
1

9

]
can be written as 0.00∗

[
8

9
, 1

]
can be written as 0.22∗[

6

9
,
7

9

]
can be written as 0.20∗ etc.
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Properties of Cantor Sets

1. C is closed.

2. C is nowhere dense (which means that for every non-degenerate interval I, there is a non-degenerate
interval J ⊆ I with J ∩ C = ∅). Or equivalently, that C◦ = ∅ where C◦ denotes the closure of C’s
interior.

3. C has no isolated points.

4. The cardinality of C is |C| = 2ℵ0 .

5. λ(C) = 0.

We can modify the above construction to obtain a generalized cantor set C ⊆ [0, 1] with any value λ(C) = `
with 0 ≤ ` < 1.

Choose any sequence of positive real numbers a1, a2, . . . with
∞∑
k=1

ak = 1− `. Let U0 = ∅, C0 = U c0 = [0, 1].

Choose an open interval I1 ⊆ C0 = [0, 1] which contains the midpoint
1

2
with |I1| = a1. We choose midpoint

so intervals get smaller in each step (which will be explained next). Then let U1 = I1 and C1 = U c1 = [0, 1]\U1

which is a union of two closed intervals each of size ≤ 1

2
. Choose two nonempty open intervals I2 and I3

in two components of C1 containing the midpoints with |I2| + |I3| = a2 then let U2 = I1 ∪ I2 ∪ I3, C2 = U c2

which is a disjoint union of four closed intervals each of size ≤ 1

4
.

Continue to get sets U1 ⊆ U2 ⊆ and C1 ⊇ C2 ⊇ where each Cn is disjoint union of 2n disjoint closed intervals,

each of size ≤ 1

2n
and λ(Un) =

n∑
k=1

ak and λ(Cn) = 1−
n∑
k=1

ak. Let U =
∞⋃
k=1

Uk, and C = U c =
∞⋂
k=1

Ck. Then

λ(C) = lim
n→∞

λ(Cn) = lim
n→∞

1−
n∑
k=1

ak

 = 1−
∞∑
k=1

ak = `.

Exercise 6.1: Verify that C is closed, nowhere dense and |C| = 2ℵ0 .

Remark 6.2: There is a bijective correspondence between C and binary sequences. Such correspondence
can be shown from the infinite tree constructed by joining the removed mid points.

Baire Category Theorem

Definition 6.3: A ⊆ R is dense when for every non-degenerate interval I, I ∩ A 6= ∅. In other words,
A = R.

A ⊆ R is nowhere dense when for every non-degenerate interval I there exists a non-degenerate inter-
val J ⊆ I with J ∩A = ∅ or equivalently A◦ = ∅. Then B = Ac = R \A

A is nowhere dense ⇐⇒ A
◦
= ∅

⇐⇒ B◦ = R

⇐⇒ the interior of B is dense

If A is nowhere dense and B ⊆ A, then B is nowhere dense.
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Definition 6.4: We say A is first category (of Baire) when A is a countable union of nowhere dense sets.
Some authors also refer first category sets as meager.

We say A is second category when A is not first category.

We say A is residual when Ac is first category. In other words, A is a countable intersection of sets
which have dense interior.

Theorem 6.5 (Baire Category Theorem): The following are equivalent.

1. If A is first category then A◦ = ∅.

2. If A is residual then A = R (that is A is dense).

3. If A is a countable union of closed sets with empty interiors then A◦ = ∅.

4. If A is a countable intersection of dense open sets then A is dense.

End of Lecture 6
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Start of Lecture 7

• Course website updated: http://www.math.uwaterloo.ca/~snew/

• Assignment #1 is posted.

• Course outline is updated.

• Lecture notes are posted: http://www.math.uwaterloo.ca/~snew/pmath450-2018-S/Notes/notes.
pdf

The content covered in this lecture is included as snippets from the PDF hosted on above website.

Definition 7.1: Let A ⊆ R. We say that A is first category (or that A is meagre) when A is equal to
a countable union of nowhere dense sets. We say that A is second category when it is not first category.
We say that A residual when Ac is first category.

Example 7.2: Every countable set is first category since if A = {a1, a2, a3, · · · } then we have A =
⋃∞
k=1{ak}.

In particular Q is first category and Qc is residual.

Remark 7.3: If A ⊆ R is first category then so is every subset of A.

Remark 7.4: If A1, A2, A3, · · · ⊆ R are are all first category then so is
⋃∞
k=1Ak.

Theorem 7.5: (Baire Category theorem)

1. Every first category set has an empty interior.

2. Every residual set is dense.

3. Every countable union of closed sets with empty interiors has an empty interior.

4. Every countable intersection of dense open sets is dense.

Proof.

Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are special cases of Parts
(1) and (2), so it suffices to prove Part (1). Let A ⊆ R be first category, say A =

⋃∞
k=1Ck where each Ck

is nowhere dense. Suppose, for a contradiction, that A has nonempty interior, and choose a nondegenerate
closed interval I0 with I0 ⊆ A. Choose a nondegenerate closed interval I1 ⊆ I0 such that I1∩C1 = ∅ (we can
do this because C1 is nowhere dense). Choose a nondegenerate closed interval I2 ⊆ I1 so that I2 ∩ C2 = ∅.
Continue this procedure to obtain nested closed intervals I0 ⊇ I1 ⊇ I2 ⊇ · · · with I0 ⊆ A and Ik ∩Ck = ∅ for
k ≥ 1. Such nested intervals have nonempty intersection, so we can choose x ∈

⋂∞
k=1Ck. Since x ∈ I0 ⊆ A

we have x ∈ A. But for all k ≥ 1 we have x ∈ Ik and Ik ∩ Ck = ∅ so that x 6= Ck, and it follows that
x /∈

⋃∞
k=1Ck, that is x /∈ A.

Example 7.6: Recall that Q is first category and Qc is residual. The Baire Category Theorem shows that
Qc cannot be first category because if Q and Qc were both first category then R = Q ∪ Qc would also be
first category, but this is not possible since R does not have empty interior.

Example 7.7: For each n ∈ Z+, let fn : R → R be continuous. Suppose that for all x ∈ R there exists
n ∈ Z+ such that fn(x) ∈ Q. Prove that there exists n ∈ Z+ such that fn is constant in some nondegenerate
interval.

Proof.
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Say Q = {a1, a2, . . .} since ∀ x ∈ R, ∃ n ∈ Z+, such that

fn(x) ∈ Q and
⋃

n,k∈Z+

f−1n (ak) = R.

Also, each set f−1n (ak) is closed because fn is continuous and singleton {ak} is closed. So by Part 3 pf
the Baire Category Theorem, one of the sets f−1n (ak) must have nonempty interior. So we can choose a
non-degenerate interval I ⊆ f−1(ak) and then we have fn(x) = ak for all x ∈ I.

Example 7.8: If A is countable (say A = {a1, a2, . . .}) then A is first category since A =
∞⋃
k=1

{ak} and

singletons are nowhere dense. So Ac is residual but note that Ac is not first category (equivalently, A) is not
residual because if Ac was first category, then R = A∪Ac would be first category but R is not first category
because R has nonempty interior.

Remark 7.9: Each of the following sets C of subsets of R

C =
{
A ⊆ R

∣∣A is finite or countable
}

C =
{
A ⊆ R

∣∣λ(A) = 0
}

C =
{
A ⊆ R

∣∣A is first category
}

has the following properties:

1. If A ⊆ B and B ∈ C then A ∈ C,

2. If A1, A2, A3, · · · ∈ C then
⋃∞
k=1Ak ∈ C, and

3. If A ∈ C then A0 = ∅.

Because of this, it seems reasonable to consider the sets in C to be, in some sense, “small". The following
theorem, then, states that every set in R is the union of two small sets.

Theorem 7.10: Every subset of R is equal to the disjoint union of a set of measure zero and a set of first
category.

Proof.

Let Q = {a1, a2, a3, · · · }. For k, ` ∈ Z+, let Ik,` =
(
a` −

1

2k+`
, a` +

1

2k+`
)
and for k ∈ Z+, let Uk =

∞⋃
`=1

Ik,`.

Note that U1 ⊇ U2 ⊇ U3 ⊇ · · · and for each k ∈ Z+ we have Q ⊆ Uk and λ(Uk) ≤
∞∑
`=1

|Ik,`| =
1

2k−1
and we

have U1 ⊃ U2 ⊇ U3 ⊇ · · · . Let B =
∞⋂
k=1

Uk. Note that B is residual (it is a countable intersection of dense

open sets) and we have λ(B) = lim
k→∞

λ(Uk) = 0 since λ(Uk) ≤
1

2k
for all k ∈ Z+. Finally note that any sett

A is equal to the disjoint union A = (A ∩ B) ∪ (A ∩ Bc), and we have λ(A ∩ B) = 0 and the set A ∩ Bc is
first category.

End of Lecture 7
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Start of Lecture 8

Remark 8.1: A is first category, say A =
⋃∞
k=1Ck where Ck is nowhere dense, and if B ⊆ A, then

B =
⋃∞
k=1(B ∩ Ck) with each B ∩ Ck being nowhere dense.

Exercise 8.2: Show such B is uncountable.

Theorem 8.3: There exists a non-measurable set in R.

Proof.

Define an equivalence relation on the set [0, 1] by defining x ∼ y when y − x ∈ Q. Let C denote the set
of equivalence classes. For each c ∈ C, choose an element xc ∈ c and let A = {xc | c ∈ C} ⊆ [0, 1]. We
shall prove that the set A is not measurable. Let Q∩ [0, 2] = {a1, a2, a3, · · · }, with the ak distinct. For each
k ∈ Z+, let Ak = ak + A ⊆ [0, 3]. We claim that the sets Ak are disjoint. Let k, ` ∈ Z+ and suppose that
Ak ∩ A` 6= ∅. Choose y ∈ Ak ∩ A`, say y = ak + xc = a` + xd where c, d ∈ C. Since xc − xd = a` − ak ∈ Q
we have xc ∼ xd and hence c = d (since we only chose one element from each class). Since c = d we have
xc = xd, hence ak = a`, and hence k = `. Thus the sets Ak are disjoint, as claimed. Next, we claim that
[1, 2] ⊆

⋃∞
k=1Ak. Let y ∈ [1, 2]. Since y − 1 ∈ [0, 1] we have y − 1 ∈ c for some c ∈ C. Since y − 1 ∈ c we

have y − 1 − xc ∈ Q hence also y − xc ∈ Q. Since y ∈ [1, 2] and xc ∈ [0, 1] we have y − xc ∈ [0, 2]. Since
y − xc ∈ Q ∩ [0, 2] we have y − xc = ak for some k ∈ Z+ so that y ∈ Ak. This proves that [1, 2] ⊆

⋃∞
k=1Ak.

Suppose, for a contradiction, that the set A is measurable. By translation, each of the sets Ak = ak + A is
measurable with λ(Ak) = λ(A). Since the sets Ak are disjoint and measurable, additivity gives

λ
( ∞⋃
k=1

Ak
)
=
∞∑
k=1

λ(Ak) =
∞∑
k=1

λ(A) =

{
0, if λ(A) = 0,

∞, if λ(A) > 0.

But since [0, 1] ⊆
⋃∞
k=1Ak ⊆ [0, 3] we also have 1 ≤ λ

(⋃∞
k=1Ak

)
≤ 3, giving the desired contradiction.

Remark 8.4: We have σ−algebras:

{∅,R} ⊆ B = {A ⊆ R | A is Borel}
⊆ M = {A ⊆ R | A is measurable}
⊆ P(R) = {A ⊆ R}∣∣P(R)∣∣ = 22

ℵ0
= 2c

where the cardinalities of these sets are

|B| = 2ℵ0 = c — can be shown with transfinite induction

|M| = 22
ℵ0

= 2c — since every subset of the (standard) Cantor set has measure zero

Proof. Let C be the standard Cantor set. Since λ(C) = 0, it follows that every subset of C is measurable.
Because |C| = 2ℵ0 we have

22
ℵ0

=
∣∣{A | A ⊆ R}∣∣ ≥ |M| ≥ ∣∣{A | A ⊆ C}∣∣ = 22

ℵ0
.

Exercise 8.5: Show that |G| = 2ℵ0 and |Gδ| = 2ℵ0 .

End of Lecture 8
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Start of Lecture 9

Chapter 1: Lebesgue Measure, Lectures 1-8. Content is available online: http://www.math.uwaterloo.ca/~snew/

Chapter 2: Lebesgue Integration, Refer to chapter 4.1,4.2 and 5 in textbook.

Newton’s Interpretation of Integration

If F is differentiable with F ′ = f of [a, b] we have∫ b

a
f = F (b)− F (a)

So f is Newton Integrable when f has an antiderivative.

Cauchy’s Interpretation of Integration

When f is continuous on [a, b],

lim
|p|→0

n∑
k=1

f(xk)(xk − xk−1).

exists where p = (x0, x1, . . . , xn) with a = x0 < x1 < . . . < xn = b. We write ∃ I ⊆ R,∀ ε > 0,∃ δ > 0 such
that ∀ n ∈ Z+,∀ x0, x1, . . . , xn with a = x0 < x1 < . . . < xn = b and with xk − xk−1 < δ∀ k we have∣∣∣∣∣∣

n∑
k=1

f(xk)(xk − xk−1)− I

∣∣∣∣∣∣ < ε.

In this case,
∫ b
a f = I.

Riemann’s Interpretation of Integration

For f = [a, b]→ R bounded, we say f is Riemann integrable when

lim
|p|→0

n∑
k=1

f(ck)(xk−1)

exists and the integral then equals to
∫ b
a = I as above. Alternatively, we can also define the Riemann

integrability as follows:

Definition 9.1: For S ⊆ A, the characteristic function XS on A is the function XS : A→ {0, 1} is given
by

XS(x) =

{
1 if x ∈ S
0 if x /∈ S

Definition 9.2: For a < b a step function on [a, b] is a function s : [a, b]→ R which is of the form

s =
n∑
k=1

ckXIk

where each ck ∈ R and the Ik are disjoint non-degenerate intervals with [a, b] =
⋃n
k=1 Ik.

The expression s =
∑n

k=1 ckXIk is unique if we required that ck−1 6= ck for 1 ≤ k ≤ n.
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For the step function s as above, we define the Riemann integral of s to be∫ b

a
s =

n∑
k=1

ck|Ik|.

Definition 9.3: For f : [a, b]→ R bounded, we define the upper and lower Riemann integrals of f on
[a, b] be

U(f) = inf

{∫ b

a

∣∣∣∣∣ s is a step function on [a, b] with s ≥ f

}

L(f) = sup

{∫ b

a

∣∣∣∣∣ s is a step function on [a, b] with s ≤ f

}

We say that f is Riemann integrable on [a, b] when U(f) = L(f) and in this case we define the Riemann
integral of f on [a, b] to be ∫ b

a
f = U(f) = L(f).

Theorem 9.4 (Properties of Riemann integral): Let f, g : [a, b]→ R be bounded and let c ∈ R. Then,

1. If f and g are both Riemann integrable and f ≤ g then
∫ b

a
f ≤

∫ b

a
g.

2. If c ∈ (a, b) then f is Riemann integrable on [a, b] iff f is Riemann integrable on both [a, c] and [c, b].

In this case,
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

3. If f(x) = g(x) for all but finitely many x ∈ [a, b] then f is Riemann integrable iff g is Riemann

integrable and in this case,
∫ b

a
f =

∫ b

a
g.

4. If f and g are Riemann integrable on [a, b] then so are the functions cf and f + g and in this case,∫ b

a
(cf) = c

∫ b

a
f and

∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

5. If f is continuous on [a, b] then f is Riemann integrable on [a, b].

6. If f is monotonic on [a, b] then it’s Riemann integrable on [a, b].

Theorem 9.5 (Fundamental Theorem of Calculus): Suppose F is differentiable with F ′ = f on [a, b] and
suppose that f is Riemann integrable on [a, b] then∫ b

a
f = F (b)− F (a).

Theorem 9.6 (Lebesgue): For f : [a, b]→ R bounded, f is Riemann integrable on [a, b] iff the set of points
at which f is not continuous is a set of Lebesgue measure zero. This theorem is covered in William R. Wade’s
Analysis book.
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Definition 9.7: For A ⊆ R, a simple function on A is a function s : A→ R of the form

s =

n∑
k=1

ckXAk
where ck ∈

and the Ak are measurable disjoint sets with
n⋃
k=1

Ak = A.

Remark 9.8: Note that we can make the expression so
n∑
k=1

ckXAk
to be unique by requiring that the ck are

distinct. Which gives us Range(s) = {c1, c2, . . . , cn} and Ak = s−1(ck)

Remark 9.9: For s above, we define ∫
A
s =

n∑
k=1

ckλ(Ak), where

∫
A
f = sup{

∫
A
s | s is a simple function on [a, b] with s ≤ f}

Example 9.10: For f : [0, 1]→ R given by

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

,

f is not Riemann integrable because upper sums and lower sums are not equal. But, f is Lebesgue integrable.

Example 9.11: Define f : {0, 1} → R by f
(
a

b

)
=

1

b
when a, b ∈ Z, b > 0, 0 ≤ a ≤ b with gcd(a, b) = 1

and f(x) = 0 when x /∈ Q. The f is Riemann integrable with
∫ b

a
f = 0 because f is discontinuous at the

rationals.

Remark 9.12: A function f is Riemann integrable iff the Lebesgue measure of its set of discontinuities is
zero.

Example 9.13: Let s(x) =

{
0 if x ≤ 0

1 if x > 0
. Define f : [0, 1] → [0, 1] by letting Q ∩ [0, 1] = {a1, a2, . . .}

(enumerating rationals) then setting f(x) =
k=1∑
∞

s(x− ak)
2k

. Then, f is strictly increasing with a jump

discontinuity at each ak ∈ Q ∩ [0, 1]. It is Riemann integrable with 0 <

∫ 1

0
f < 1 .

End of Lecture 9
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Start of Lecture 10

Definition 10.1: Let C be a Cantor set, say U = [0, 1] \ C. Say U = ∪∞k=1Ik. We define the associated
Cantor function f : [0, 1]→ [0, 1] as follows.

We define f(x) =
1

2
for x ∈ I1,

f(x) =
1

4
for x ∈ I2,

f(x) =
3

4
for x ∈ I3,

f(x) =
1

8
for x ∈ I4,

f(x) =
3

8
for x ∈ I5,

f(x) =
5

8
for x ∈ I6,

f(x) =
7

8
for x ∈ I7,

... =
... for

...

Verify that f can be extended (uniquely) to give continuous function f : [0, 1] → [0, 1]. This function is
called the Cantor function. Note that f ′(x) = 0 for all x ∈ U . When C is the standard Cantor set, we
have λ(C) = 0. Also note that if f was differentiable everywhere, on [0, 1] then it would contradict the
fundamental theorem of calculus. We would have

∫ 1
0 f
′(t) dt = f(1)− f(0) = 1 but all lower Riemann sums

would be zero.

Example 10.2: Let C be a Cantor set. Say U = [0, 1] \ C, and U = ∪∞k=1Ik. Let f : [0, 1] → [0, 1] be the
Cantor function as above. Then define g : [0, 1] → [0, 2] by g(x) = x + f(x) is strictly increasing and its
inverse h : [0, 2] → [0, 1] is continuous. So g : [0, 1] → [0, 2] is a homeomorphism. When C is the standard
Cantor set, we have λ(C) = 0, λ(U) = 1. Note that g sends each interval Ik to an interval g(Ik) of the same
size. So, λ(g(U)) = λ(U). Since [0, 2] is the disjoint union g(U) ∪ g(C), it follows that λ(g(C)) = 1. Since
λ(g(C)) = 1, we can choose a non-measurable set B ⊆ g(C) and then for A = g−1(B), so B = g(A). We
have A ⊆ C. So that A is measurable with λ(A) = 0 but g(A) is not.

Example 10.3: Let C be a Cantor set. Say U = [0, 1] \ C, and U = ∪∞k=1Ik. For each k choose an open

interval Jk ⊆ Ik with the same center and with |Jk| =
1

2
|Ik| and choose continuous function fk : [0, 1]→ [0, 1]

with f(x) = 0 for x /∈ Jk and fk(x) = 1 when x is midpoint of Jk.

Define g : [0, 1]→ [0, 1] by g(x) =
k=1∑
∞
fk(x). Then, g is continuous on U but not on C. Define h(x) by

h(x) =

∞∑
k=1

∫ x

0
fk(t) dt.

Verify that h′(x) = g(x) for all x. When we use a Cantor set C with λ(C) > 0, we obtain a differentiable
function h on [0, 1] with h′ = g and g is not Riemann integrable.

Example 10.4: Let Q ∩ [0, 1] = {a1, a2, . . .}. Let f(x) =
∞∑
k=1

(x− ak)
1
3

2k
. Note that f : [0, 1] → [−1, 1]
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strictly increasing. Verify that

f−1(x) =

∞∑
k=1

1

3 · 2k(x− ak)
2
3

for x /∈ Q

and f ′(x) = ∞ when x ∈ Q and f ′(x) ≥ 1

3
for all x. f gives a homeomorphism from [0, 1] to some closed

interval [a, b] ⊆ [−1, 1] and the inverse function h : [a, b] ⊆ [0, 1] is differentiable with h′(f(x)) =
1

f ′(x)
for

all x so h′(x) ≥ 3 for all x and h′(x) = 0 for x ∈ Q.

If the Fundamental Theorem of Calculus held,
∫ b

a
h′(t) dt = h(b) − h(a) = 1 − 0 = 1 but since h′(x) =

0 ∀ x ∈ Q , the lower Riemann sums are all zero.

End of Lecture 10
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Start of Lecture 11

Lebesgue Measurable Functions

Definition 11.1: Sometimes it is convenient to allow functions to take the values ±∞. To do so, we use
extended real numbers

[−∞,+∞] = R ∪ {±∞}.

We give [−∞,∞] its usual ordering. We use the usual partially-defined + and × (we leave some expressions
undefined, such as∞+(−∞), 0·±∞). We give [−∞,∞] its usual topology. A set A ⊆ [−∞,∞] is open when
for all a ∈ A there exists 0 ≤ r ∈ R such that B(a, r) ⊆ A, where B(−∞, r) = [−∞,−1

r

)
, B(∞, r) =

(
1
r ,∞]

and B(a, r) = (a− r, a+ r) when a ∈ R.

Example 11.2: Every nonempty open set in [−∞,∞] is a finite or countable union of nonempty open
intervals in [−∞,∞] and nonempty open intervals are the sets of the form

(a, b), (−∞, a), (a,∞), (−∞,∞) = R and [−∞, a), (a,∞], [−∞,∞] where a, b ∈ R with a < b.

Definition 11.3: For f : R → B ⊆ extendedrealnumbers we say that f is Lebesgue measurable when
f−1(U) is measurable (in R) for every open set U in [−∞,∞] or equivalently, for every open set U in B.

Remark 11.4: For f : R→ B ⊆ extendedrealnumbers if f is measurable then A must be measurable since
A = f−1

(
[−∞,∞]

)
.

Theorem 11.5: Let f : A ⊆ R→ [−∞,∞]. Then, f is measurable

⇐⇒ f−1
(
(a,∞]

)
is measurable for all a ∈ R,

⇐⇒ f−1
(
[a,∞]

)
is measurable for all a ∈ R,

⇐⇒ f−1
(
[−∞, a)

)
is measurable for all a ∈ R,

⇐⇒ f−1
(
[−∞, a]

)
is measurable for all a ∈ R.

Proof.

Proof of 1st equivalence If f is measurable then f−1(U) is measurable for every open set U in [−∞,∞].
So f−1((a,∞]) for every open set U in [−∞,∞]. So f−1((a,∞]) is measurable for every a ∈ R. Suppose
that f−1((a,∞]) is measurable for every a ∈ R. Then f−1([−∞, a]) = A \ f−1((a,∞]) is measurable for all
a ∈ R. So,

f−1([−∞, a)) =
∞⋃
n=1

f−1

([
−∞, a− 1

n

])
is measurable ∀ a ∈ R.

Hence,
f−1((a, b)) = f−1([−∞, b)) ∩ f−1((a,∞]) is measurable ∀ a, b ∈ R.

Moreover, every nonempty open set in [−∞,∞] is a finite or countable union of open intervals, each of one
of the forms [−∞, a], (a,∞], (a, b) with a, b ∈ R.

Theorem 11.6: Let A be measurable and f : A ⊆ R→ [−∞,∞]. Then,

1. If f is continuous, then it’s measurable.

2. If f is monotonic, then it’s measurable.
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Proof of 1..

If f is continuous then for every open set U in [−∞,∞] f−1(U) is open in A. So f−1(U) = A ∩ V for some
open set V in R. Hence f−1(U) is measurable.

Proof of 2..

Suppose that f is increasing. For x, y ∈ A with x ≤ y if x ∈ f−1((a,∞]) then f(x) > a. So f(y) ≥ f(x) > a.
Hence y ∈ f−1(a,∞]). It follows that for a ∈ R, f−1((a,∞]) is one of the forms

∅ or A ∩ (b,∞) or A ∩ [b,∞) or R ∩A

and these are all measurable.

Remark 11.7: If f : A ⊆ R → B ⊆ [−∞,∞] is measurable and ϕ : B ⊆ [−∞,∞] → C ⊆ [−∞,∞] is
continuous then ϕ ◦ f = A ⊆ R→ C ⊆ [−∞,∞] is measurable because ϕ ◦ f−1(U) = f−1

(
ϕ−1(U)

)
.

End of Lecture 11
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Start of Lecture 12

Theorem 12.1 (Operations on measurable functions): If f, g : A ⊆ R → [−∞,∞] are measurable and
c ∈ R then the following functions

cf, f + g, fg, |f |, f+, f−

are all measurable, provided they are well defined.

Definition 12.2: We define the positive part of function f : A ⊆ R→ [−∞,∞] to be
f+ : A ⊆ R→ [−∞,∞]

f+(x) =

{
f(x) if f(x) ≥ 0

0 if f(x) ≤ 0

and similarly, we define the negative part of this function as f− : A ⊆ R→ [−∞,∞], where

f+(x) =

{
0 if f(x) ≥ 0∣∣f(x)∣∣ if f(x) ≤ 0

.

Proof.

When c 6= 0, the function ϕ : [−∞,∞]→ [−∞,∞] given by ϕ(x) = cx is continuous. Thus, if f is measur-
able, then so if cf = ϕ ◦ f .

When f, g are measurable so if f + g because for a ∈ R,

(f + g)−1(a,∞] = {x ∈ A | f(x) + g(x) > a} =
⋃
r∈Q
{x ∈ A | f(x) > r and g(x) > a− r} (?)

Since given x ∈ A with f(x) + g(x) > a, we can choose r ∈ Q with

f(x)− (f(x) + g(x)− a)︸ ︷︷ ︸
a−g(x)

< r < f(x),

so that f(x) > r and g(x) < a− r. Hence,

(?)
⋃
r∈Q

(
f−1(a,∞] ∩ g−1(a− r,∞]

)
,

which is measurable.
The map ϕ : [−∞,∞] → [−∞,∞] given by ϕ(x) = x2 is continuous. So, if f is measurable then so is
f2 = ϕ ◦ f and it follows that if f and g are both measurable, then so is (f+g)2−(f−g)2

4 = fg.
The map ϕ : [−∞,∞] → [−∞,∞] given by ϕ(x) = |x| is continuous. So if f is measurable then so is
|f | = ϕ ◦ f . Thus, if f is measurable then so is f+ and f− because

f+ =
1

2

(
|f |+ f

)
and f− =

1

2

(
|f | − f

)

Theorem 12.3: Let fn : A ⊆ R→ [−∞,∞] be measurable. Then each of the functions

sup
n≥1

fn and inf
n≥1

fn and lim sup
n→∞

fn and lim inf
n→∞

fn

are all well-defined and measurable.
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Proof.

For sup
n≥1

fn: Let g(x) = sup{fn(x) | n ∈ Z+} for all x ∈ A. Then, for a ∈ R we have

g−1(a,∞] = {x ∈ A | g(x) > a}
= {x ∈ A | sup{f1(x), f2(x), . . .} > a}
= {x ∈ A | fn(x) > 0 for somen ∈ Z+}

=

∞⋃
n=1

fn−1n (a,∞]

which is measurable.
For inf

n≥1
fn:

Equivalently, ( so ∀ x ∈ A, g(x) = inf{f1(x), f2(x), . . .} ) we have

g−1(a,∞] = {x ∈ A | g(x) = inf{f1(x), f2(x), . . .} ≥ a}
= {x ∈ A | fn(x) ≥ 0 for somen ∈ Z+}

=

∞⋂
n=1

fn−1n (a,∞]

which is measurable.
For lim sup

n→∞
fn:

Equivalently, (so g(x) = lim sup
n→∞

fn) we have

g(x) = lim sup
n→∞

fn

= the limit as n→∞ of the sequence sup
n≥1

fn(x), sup
n≥2

fn(x), sup
n≥3

fn(x), . . .

= lim
`→∞

sup
n≥`

fn(x) ∀ x ∈ A

Then, since the sup
n≥`

fn(x) sequence is decreasing (not necessarily strictly) with ` for any fixed x ∈ A, we have

lim
`→∞

sup
n≥`

fn = inf
`>1

sup
n≥`

fn

which is measurable. This is because each function g` = sup
n≥`

fn is measurable.

Definition 12.4: We say that a property or statement about x holds for almost every (written a.e) x ∈ A
or holds almost everywhere in A. When the property of statement holds for all x ∈ A\E for some set E ⊆ A
with λ(E) = 0.

Example 12.5: For f, g : A ⊆ R → [−∞,∞] we say that f(x) = g(x) for a.ex ∈ A, or that f = ga.e ∈ A,
when f(x) = g(x) for all x ∈ A \ E for some set E ⊆ A with λ(E) = 0.

Theorem 12.6: Let f, g : A ⊆ R→ [−∞,∞].

1. If λ(A) = 0 then f is measurable.

2. If B,C ⊆ R are disjoint and measurable with A = B ∪C then, f is measurable on A if and only if the
restrictions of f to B and to C are both measurable on B and C.

3. If f = g on a.ein A, then f is measurable if and only if g is measurable.

Exercise 12.7: Prove these 3 theorems.
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Lebesgue Integration

Definition 12.8: A simple function on A is a function s : A→ R of the form

s =
n∑
k=1

ckXAk

where n ∈ Z+, each ck ∈ R and the sets Ak are disjoint and measurable.

Remark 12.9: We can ensure the numbers ck and the sets Ak are uniquely determined from the function
by requiring that c1 < c2 < c3 < . . . < cn (and then Ak = s−1(ck) for each k).

Exercise 12.10: Integral sum of two simple functions is the sum of two integrals.

End of Lecture 12
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Start of Lecture 13

Definition 13.1: We define the Lebesgue integral of a simple function s on A to be∫
A
s =

∫
A
s dλ =

n∑
k=1

ckλ(Ak).

Theorem 13.2: Let r, s : A ⊆ R→ R be simple functions and let c ∈ R. Then,

1. If r ≤ s then
∫
A r ≤

∫
A s.

2.
∫
A(cS) = c

∫
A s.

3. If λ(A) = 0 then
∫
A s = 0.

4. If A = B ∪ C where B and C are disjoint measurable sets then
∫
A s =

∫
B s +

∫
C s where

∫
B s means∫

B sB where sB : B → R is given by sB(x) = s(x) for x ∈ B.

5. If B ⊆ A is measurable then
∫
B s =

∫
A sXB.

6. If r = s a.ein A then
∫
A r =

∫
A s.

Proof.

To prove 1 and 3, say

r =
n∑
k=1

akXAk
and s =

m∑
`=1

b`XB`
.

For each pair of indices k, `, let Ck,` = Ak ∩ B`. Note that the sets Ck,` are measurable and disjoint. We
have

m⋃
`=1

Ck,` =
m⋃
`=1

(Ak ∩B`) = Ak ∩
m⋃
`=1

B` = Ak ∩A = Ak.

So,
m∑
`=1

λ
(
Ck,`

)
= λ(Ak) and

m∑
`=1

XCk,`
= XAk

.

Similarly, we also have
n⋃
k=1

Ck,` = B`. To prove 1, note that if r ≤ s then ∀ x ∈ Ck,`, we have

ak = r(x) ≤ s(x) = b`.

Hence,
∫
A
r =

n∑
k=1

akλ(Ak)

=
n∑
k=1

ak

m∑
`=1

Ck,`

=
∑
k,`

akλ(Ck,`)

≤
∑
k,`

b`λ(Ck,`)

=

m∑
`=1

b`

n∑
k=1

λ(Ck,`)
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=
m∑
`=1

b`λ(B`)

=

∫
A
s.

To prove 2 note that

r + s =
n∑
k=1

akXAk
+

m∑
`=1

b`XB`
=

n∑
k=1

ak

m∑
`=1

XCk,`
+

m∑
`=1

b`

n∑
k=1

XCk,`
=
∑
k,`

(ak + b`)XCk,`
.

So,
∫
A
(r + s) =

∑
k,`

(ak + b`)XCk,`

=
∑
k,`

akXCk,`
+
∑
k,`

b`XCk,`

=
∑
k

ak
∑
`

λ(Ck,`) +
∑
`

b`
∑
k

λ(Ck,`)

=
∑
k

akλ(Ak) +
∑
`

b`λ(B`)

=

∫
A
r +

∫
B
s.

Exercise 13.3: Prove parts 3− 6.

Non-negative Measurable Functions

Remark 13.4: We use [0,∞] ⊆ [−∞,∞]. In [0,∞] we define 0 · ∞ = 0. So the operations + and × are
always well-defined in [0,∞]. We could also define

1

0
=∞ and

1

∞
= 0

and the map ϕ : [0,∞]→ [0,∞] (reciprocal map) given by ϕ(x) = 1
x is well-defined and continuous.

Definition 13.5: For f : A ⊆ R → [0,∞] non-negative and measurable we define the Lebesgue integral of
f on A to be ∫

A
f =

∫
A
f dλ = sup

{∫
A
s

∣∣∣∣∣ s is a simple function
on the set A with s ≤ f

}
Theorem 13.6: For non-negative measurable functions f, g : A ⊆ R→ [0,∞] and for c ∈ R,

1. If f ≤ g then
∫
A f ≤

∫
A g.

2.
∫
A(cf) = c

∫
A f and

∫
A(f + g) =

∫
A f +

∫
A g.

3. If λ(A) = 0 then
∫
A f = 0.

4. If A = B ∪ C where B and C are disjoint measurable sets then
∫
A f =

∫
B f +

∫
C f where

∫
B f means∫

B fB where fB : B → [0,∞] is given by fB(x) = f(x) for x ∈ B.

5. If B ⊆ A is measurable then
∫
B f =

∫
A fXB.
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6. If f = g a.e in A then
∫
A f =

∫
A g.

Remark 13.7: The proof of these all follow fairly easily from the analogous properties of simple functions
except for the fact that ∫

A
(f + g) =

∫
A
f +

∫
A
g

which we will prove later.

End of Lecture 13
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Start of Lecture 14

Theorem 14.1 (Fatou’s Lemma): Let fn : A ⊆ R→ [0,∞] be measurable for n ∈ Z+ then∫
A
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A
fn.

Proof.

We show that for all non-negative simple functions s on A with s ≤ lim inf
n→∞

fn we have∫
A
s ≤ lim inf

n→∞

∫
A
fn.

Let s : A ⊆ R→ [0,∞] be any non-negative simple function on A with s ≤ lim inf
n→∞

fn.

We write s =
m∑
k=1

ckXAk
. For all x ∈ Ak we have ck = s(x) ≤ lim inf

n→∞
fn(x). It follows that ∀ 0 ≤ r < 1, ∃ n ∈

Z+, ∀ ` ≥ n, f`(x) ≥ rck. For each k, n ∈ Z+, let

Bk,n = {x ∈ Ak | f`(x) ≥ rck∀ ` ≥ n} =
⋂
`≥n

f−1`
(
[rck,∞]

)
.

Note that each set Bk,n is measurable and Bk,1 ⊆ Bk,2 ⊆ . . . and
∞⋃
n=1

Bk,n = Ak. For x ∈ Bk,n we have

f` ≥ rck for all ` ≥ n, so in particular, fn(x) ≥ rck for x ∈ Bk,n. Therefore for all x, fn(x) ≥
m∑
k=1

rckXBn,k
.

So ∫
A
fn(x) ≥

m∑
k=1

rckλ(Bk,n).

Take the lim inf to get

lim inf
n→∞

fn ≥ lim inf
n→∞

m∑
k=1

rckλ(Bk,n) =
m∑
k=1

rckλ(Ak).

Since 0 ≤ r ≤ 1 is arbitrary and since

λ(Ak) = λ

 ∞⋃
n=1

Bk,n

 = lim
n→∞

λ
(
Bk,n

)
= r

∫
A
s,

then it follows that lim inf
n→∞

∫
A
fn ≥

∫
A
s. Thus, we obtain

∫
A
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A
fn as required.

Corollary 14.2: Let fn : A ⊆ R→ [0,∞] be nonnegative and measurable for n ∈ Z+. Suppose lim
n→∞

fn(x)

exists and fn(x) ≤ lim
n→∞

fn(x), ∀ x ∈ A and ∀ n ∈ Z+. Then∫
A

lim
n→∞

fn = lim
n→∞

∫
A
fn.

Proof.

Since fn ≤ lim
n→∞

fn for all n ∈ Z+, we have∫
A
fn ≤

∫
A

lim
n→∞

fn, ∀ n ∈ Z+.
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Thus, lim sup
n→∞

∫
A
fn = lim

n→∞

∫
A
fn ≤

∫
A

lim
n→∞

fn. By Fatou’s lemma, we have

∫
A
lim inf
n→∞

fn =

∫
A

lim
n→∞

fn ≤ lim inf
n→∞

∫
A
fn = lim

n→∞

∫
A
fn.

Corollary 14.3: (Lebesgue’s Monotone Convergence theorem) Let fn : A ⊆ R → [0,∞] be nonnegative
measurable functions such that {fn(x)} is increasing for every x ∈ A. Then∫

A
lim
n→∞

fn = lim
n→∞

∫
A
fn.

Proof.

This is a special case of the previous corollary.

Remark 14.4: We now return to the proof of the second formula in Part (2) of section 13.6. We suppose
that f, g : A ⊆ R→ [0,∞] are nonnegative measurable functions, and we need to prove that∫

A
(f + g) =

∫
A
f +

∫
A
g.

Proof.

Given any nonnegative measurable function f : A ⊆ R → [0,∞], we can construct an increasing sequence
{sn} of nonnegative simple functions sn : A→ [0,∞) with lim

n→∞
sn = f as follows. For n ∈ Z+, we let

sn(x) =


k − 1

2n
, if

k − 1

2n
≤ f(x) < k

2n
with k ∈ {1, 2, · · · , n2n},

n , if f(x) ≥ n,
.

that is sn =
n2n∑
k=1

k − 1

2n
XAk

where Ak = f−1
[k − 1

2n
,
k

2n
)
for 1 ≤ k < n2n and An2n = f−1[n,∞]. Using the

construction described above, choose increasing sequences {rn} and {sn} of nonnegative simple functions on
A such that lim

n→∞
rn = f and lim

n→∞
sn = g. Then the sequence {rn+sn} is also increasing with lim

n→∞
(rn+sn) =

f + g. By the Monotone Convergence Theorem, along with Part (2) of section 13.6, we have∫
A
(f + g) =

∫
A

lim
n→∞

(rn + sn) = lim
n→∞

∫
A
(rn + sn) = lim

n→∞

(∫
A
rn +

∫
A
sn

)
= lim

n→∞

∫
A
rn + lim

n→∞

∫
A
sn =

∫
A

lim
n→∞

rn +

∫
A

lim
n→∞

sn =

∫
A
f +

∫
A
g.

End of Lecture 14
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Start of Lecture 15

From the proof of Remark 14.4 we obtain the following corollary.

Corollary 15.1: Let A ⊆ R be measurable and let {fn} be a sequence of nonnegative measurable functions
fn : A→ [0,∞]. Then ∫

A

∞∑
n−1

fn =

∞∑
n=1

∫
A
fn .

Proof.

Apply MCT to partial sums gn =
n∑
k=1

fn and note that
∫
A

n∑
k=1

fn =
n∑
k=1

∫
A
fn by induction.

Corollary 15.2: Let A1, A2, . . . ⊆ R be disjoint and measurable with A =
∞⊔
k=1

Ak and let f : A ⊆ R→ [0,∞]

be nonnegative and measurable. Then ∫
A
f =

∞∑
k=1

∫
Ak

f.

Where Ak ⊆ A and
∫
Ak

f means
∫
A
fAk

where fAk
is the restriction of f to Ak with f(x) = fAk

(x) in Ak.

Proof.

This follows from the above corollary using fn = f · XAk
.

Definition 15.3: For a σ-algebra C, a measure on C is a function µ : C → [0,∞] such that

1. µ(∅) = 0, and

2. If A1, A2, A3, · · · ∈ C are disjoint then µ
(
∪∞k=1 Ak

)
=

∞∑
k=1

µ(Ak).

When M is the σ-algebra of Lebesgue measurable sets in R, and f : R → [0,∞] is any nonnegative
measurable function on R, the above corollary shows that we can define a measure µ onM by

µ(A) =

∫
A
f .

Theorem 15.4: Let f : [a, b]→ R be bounded where a ≤ b. Then,

1. f is Riemann integrable on [a, b] if and only if f is continuous a.e in [a, b].

2. If f is Riemann integrable on [a, b] then f is Lebesgue integrable on [a, b] and they are the same as
follows: ∫ b

a
f(x) dx =

∫
[a,b]

f dλ.

3. If we define upper Lebesgue integral and lower Lebesgue integral as

U(f) = inf

{∫
s

∣∣∣∣∣ s is a simple function
on [a, b] with s ≥ f

}
and L(f) = sup

{∫
s

∣∣∣∣∣ s is a simple function
on [a, b] with s ≤ f

}
,

then f is Lebesgue integrable if and only if U(f) = L(f). In this case,∫
A
f = U(f)− L(f).
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Proof.

Chapter 5.5 in textbook includes proof for this theorem.

Definition 15.5: For a measurable function f : A ⊆ R→ [−∞,∞], we say that f is (Lebesgue) integrable
(on A) when the functions f+ and f− are both Lebesgue integrable on A and, in this case, we define the
(Lebesgue) integral of f on A to be∫

A
f =

∫
A
f dλ =

∫
A
f+ −

∫
A
f−.

Remark 15.6: For f : A ⊆ R→ [−∞,∞], f is integrable if and only if |f | is integrable.

Theorem 15.7: Let f, g : A ⊆ R→ [−∞,∞] be measurable and let c ∈ R.

1. We have
∣∣∣∣ ∫A f ∣∣∣∣ ≤ ∫A |f | .

2. If f ≤ g then
∫
A f ≤

∫
A g.

3. The functions cf and f + g are Lebesgue integrable with
∫
A(cf) = c

∫
A f and

∫
A(f + g) =

∫
A f +

∫
A g.

4. If A = B ∪ C where B and C are disjoint and measurable then
∫
A f =

∫
B f +

∫
C f .

5. If B ⊆ A is measurable then
∫
B f =

∫
A f · XB.

6. If λ(A) = 0 then
∫
A f = 0.

7. If f = g a.e. on A then
∫
A f =

∫
A g.

8.
∫
A |f | = 0 ⇐⇒ f = 0 a.e in A.

Proof of 1.

We want to show
∫
A
|f | ≥

∫
A
f ≥ −

∫
A
|f |. We have∫

A
f =

∫
A
f+ − f− =

∫
A
f+ −

∫
A
f− ≤

∫
A
f+ +

∫
A
f− =

∫
A
|f |.

We also have∫
A
f =

∫
A
f+ − f− =

∫
A
f+ −

∫
A
f− ≥ −

∫
A
f+ −

∫
A
f− = −

(∫
A
f+ +

∫
A
f−
)

= −
∫
A
|f |.

Exercise 15.8: Prove properties 2− 8.

Theorem 15.9: (Lebesgue’s dominated convergence theorem) Let A ⊆ R be a measurable set and let
fn : A → [−∞,∞] be measurable functions for n ∈ Z+. Suppose limn→∞ fn(x) exists pointwise ∀ x ∈ A.
Suppose there exists an integrable function g : A→ [0,∞] such that

∣∣fn(x)∣∣ ≤ g(x), ∀ n ∈ Z+, x ∈ A. Then∫
A

lim
n→∞

fn = lim
n→∞

∫
A
fn .

Proof.

Let f = limn→∞ fn. By Fatou’s Lemma, applied to the function g + fn, we have∫
A
g +

∫
A

lim
n→∞

fn =

∫
A
lim inf
n→∞

(g + fn) ≤ lim inf
n→∞

∫
A
(g + fn) =

∫
A
g + lim inf

n→∞
fn.
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It follows that
lim inf
n→∞

∫
A
fn ≥

∫
A

lim
n→∞

fn.

By Fatou’s Lemma, applied to the function g − fn, we have∫
A
g −

∫
A

lim
n→∞

fn =

∫
A
lim inf
n→∞

(g − fn) ≤ lim inf
n→∞

∫
A
(g − fn) =

∫
A
g − lim sup

n→∞

∫
A
fn.

It follows that
lim sup
n→∞

∫
A
fn ≤

∫
A

lim
n→∞

fn.

End of Lecture 15
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Start of Lecture 16

Example 16.1: Let fn : A ⊆ R→ [0,∞] be nonnegative and measurable for n ∈ Z+ with f1(x) ≥ f2(x) ≥
. . .. Do we have

∫
A limn→∞ fn = limn→∞

∫
A fn?

No we don’t. We give two examples. Consider A = (0, 1) and fn(x) = 1
nx . So

∫
A fn = ∞, ∀ n but

limn→∞ = 0.

Also consider A = R. fn(x) = 1
n , ∀ x. We have fn → 0 but

∫
A fn = ∞, ∀ n. Note that if

∫
A f1 < ∞

then
∫
A limn→∞ fn = limn→∞

∫
A f by Lebesgue’s Dominated Convergence Theorem. Simply by applying

Lebesgue’s Monotone Convergence Theorem to gn = f1 − fn.

Example 16.2: If f : R→ R is differentiable then f ′ is measurable and if so, f ′ is integrable.

We have

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
n→∞

f
(
x+ 1

n

)
− f(x)

1
n

.

Thus f ′ = limn→∞ gn where

gn(x) =
f
(
x+ 1

n − f(x)
)

1
n

which is measurable.

For f(x) =

{
x2 sin 1

x , if x 6= 0

0, if x 6= 0

f ′(x) =

{
2x sin 1

x − cos 1
x , if x 6= 0

0, if x 6= 0

But for f(x) =

{
x2 sin 1

x2
, if x 6= 0

0, if x 6= 0

f ′(x) =

{
2x sin 1

x2
− 2

x cos
1
x2
, if x 6= 0

0, if x 6= 0

For further explanation see section 5.5 in textbook.

Theorem 16.3 (Fundamental theorem of calculus): If f : [a, b]→ [−∞,∞] differentiable and f ′ is bounded,
then f ′ is integrable on [a, b] and

∫ b
a = f(b)− f(a).

Definition 16.4: ∀ x, y, z ∈ V and c ∈ R, an inner product on a real vector space V satisfies the following
properties.

1. 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 ⇐⇒ x = 0.

2. 〈x, y〉 = 〈y, x〉.

3. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

4. 〈cx, y〉 = c〈x, y〉 = 〈x, cy〉.

A vector space with inner product is called an inner product space.

Definition 16.5: ∀ x, y ∈ V and c ∈ R, a norm on a vector space V satisfies the following properties.
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1. ‖x‖ ≥ 0 with ‖x‖ = 0 ⇐⇒ x = 0.

2. ‖cx‖ = |c|‖x‖.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A vector space with a norm is called a normed linear space.

Definition 16.6: ∀ x, y, z ∈ X, a metric on a set X satisfies the following properties.

1. d(x, y) ≥ 0 with d(x, y) = 0 ⇐⇒ x = y.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) + d(y, z).

A set with a metric is called metric space.

Definition 16.7: A topology on a set X is a set T whose elements are subsets of X and satisfies the
following properties.

1. ∅ ∈ T and X ∈ T .

2. If A,B ∈ T then A ∩B ∈ T .

3. If K is a set and Ak ∈ T for every k ∈ K then
⋃
k∈K Ak ∈ T .

The elements in T (which are subsets of X) are called the open sets in X. A set with a topology is called
a topological space.

End of Lecture 16

Spring 2018 38



Lecture 17 PMATH 450/650 08 June 2018

Start of Lecture 17

Definition 17.1: In given an inner product in a vector space we define the associated norm on V by all
‖x‖ =

√
〈x, x〉 . In this case, the inner product and its norm satisfy

1. Cauchy-Schwarz inequality:
∥∥〈x, y〉∥∥ ≤ ‖x‖‖y‖.

2. Polarization identity: 〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Definition 17.2: Given a norm on a vector space V we define the associated metric on V (or any subset
X ⊆ V ) by d(x, y) = |x− y|

Definition 17.3: Given a metric on a set X, we define the associated topology on X by defining a set
A ⊆ X to be open when ∀ a ∈ A, ∃ r > 0 such that B(a, r) ⊆ A where B(a, r) = {x ∈ X | d(x, a) < r}.

Definition 17.4: For a sequence {xn} in a metric space X, we say

{xn} is convergent in X ⇐⇒ ∃ a ∈ X such that lim
n→∞

xn = a,

⇐⇒ ∃ a ∈ X, ∀ ε > 0 ∃ n ∈ Z+, ∀ k with Z+ 3 k ≥ n, d(xk, a) < ε.

Definition 17.5: We say the sequence {xk} is Cauchy if ∀ ε > 0, ∃ n ∈ N+ such that ∀ k, ` ∈ N, k, ` ≥
n =⇒ d(xk, x`) < ε.

Remark 17.6: It is easy to show that if {xn} converges then (xn) is Cauchy. When X = Rn, it can be
shown that if (xn) is Cauchy, then (xn) converges.

Definition 17.7: We say that a metric space is complete when every Cauchy sequence in X converges in
X.

Definition 17.8: A topological space is separable when t contains a countable dense set.

Definition 17.9: For A ⊆ X, we say that A is closed if Ac = X \A is open.

Definition 17.10: The closure of A, denoted by A, is the smallest closed set which contains A, that is, the
intersection of the set of all closed sets in X which contain A. We say that A is dense in X when A = X.

Example 17.11: We have various subspaces such as

Rω = {sequences (xn) ∈ R | ∃ n ∈ N, ∀ k ≥ n, xk = 0}
= {sequences (xn) ∈ R | (xn) is eventually constant}
= {sequences (xn) ∈ R | (xn) converges}

We also have

`1 =

sequences (xn) ∈ R

∣∣∣∣∣∣
∞∑
n=1

|xn| <∞


`2 =

sequences (xn) ∈ R

∣∣∣∣∣∣
∞∑
n=1

|xn|2 <∞


`p =

sequences (xn) ∈ R

∣∣∣∣∣∣
∞∑
n=1

|xn|p <∞


`∞ =

{
sequences (xn) ∈ R

∣∣∣∣∣ (xn) is bounded,
or equivalently, sup |xk| <∞

}
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In `p we have norms

‖x‖1 =
∞∑
n=1

|xn|

‖x‖2 =

 ∞∑
n=1

|xn|2
 1

2

Note that we can define inner product 〈x, y〉 =
∑∞

k=1 xkyk.

‖x‖p =

 ∞∑
n=1

|xn|p
 1

p

‖x‖∞ = sup{|xn| | n ∈ N+}

Definition 17.12: A complete inner product space is called a Hilbert space and a complete normed linear
space is called Banach space.

Example 17.13: C([a, b]) = {continuous functions f : [a, b]→ R}. has several norms.

‖f‖1 =
∫ b

a
|f |

‖f‖2 =

(∫ b

a
|f |2

) 1
2

, 〈f, g〉 =
∫ b

a
fg

‖f‖p =

(∫ b

a
|f |p

) 1
p

‖f‖∞ = max{
∣∣f(x)∣∣ | a ≤ x ≤ b}

Example 17.14: LetR([a, b]) = {Riemann integrable functions f : [a, b]→ R}. Note that onR([a, b]), ‖f‖1 =∫ b
a |f | does not give a norm.

End of Lecture 17
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Start of Lecture 18

Remark 18.1:

1. In Assignemnt #2, we will show that for f : A ⊆ R→ [0,∞] measurable, we have
∫
A f = 0 ⇐⇒ f = 0

a.e in A.

2. When f : A ⊆ R→ [−∞,∞],

f is integrable ⇐⇒ f+ and f− are integrable. In this case
∫
A
f =

∫
A
f+ −

∫
A
f−.

⇐⇒ |f | is integrable. In this case
∫
A
|f | =

∫
A
f+ +

∫
A
f−.

3. When f : A ⊆ R→ [−∞,∞] is integrable, the sets

B = {x ∈ A | f(x) = +∞} and C = {x ∈ A | f(x) = −∞}

both have measure zero.

4. We define 0 · ±∞ = 0 and (±∞)± (±∞) =∞ for this chapter.

Definition 18.2: For f : A ⊆ R→ [−∞,∞] measurable, we define

‖f‖1 =
∫
A
|f |

‖f‖2 =
(∫

A
|f |2

) 1
2

‖f‖p =
(∫

A
|f |p

) 1
p

for 1 ≤ p <∞

‖f‖∞ = ess sup |f | (ess sup) is explained below.

Note that |f | is bounded

⇐⇒ ∃ a ≥ 0 {x ∈ A |
∣∣f(x)∣∣ > a} = ∅

⇐⇒ ∃ a ≥ 0 |f |−1(a,∞] = ∅

with sup |f | = inf
{
a ≥ 0

∣∣∣ |f |−1(a,∞]
}
.

Definition 18.3: We say that f is essentially bounded when ∃ a ≥ 0, λ
(
|f |−1(a,∞]

)
= 0 and we define

the essential supremum of |f | as ess sup |f | = inf

{
a ≥ 0

∣∣∣∣ λ(|f |−1(a,∞]
)}

.

Definition 18.4: Let A ⊆ R be measurable. We define

L1(A) =

{
f : A→ [−∞,∞]

∣∣∣∣ f is measurable and
∫
A
|f | <∞

}
/ ∼

L2(A) =

{
f : A→ [−∞,∞]

∣∣∣∣ f is measurable and
∫
A
|f |2 <∞

}
/ ∼

Lp(A) =

{
f : A→ [−∞,∞]

∣∣∣∣ f is measurable and
∫
A
|f |p <∞

}
/ ∼

L∞(A) =
{
f : A→ [−∞,∞]

∣∣ f is measurable and ess sup |f | <∞
}
/ ∼
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where in all cases f ∼ g ⇐⇒ f = g a.e in A. Note that in all cases {f | f = 0 a.e in A} is a subspace. So
Lp(A) is a vector space.

Remark 18.5: We shall show that for 1 ≤ p ≤ ∞, ‖f‖p defines a norm on the vector space Lp(A).

Exercise 18.6: Show that ‖f‖∞ defines a norm on L∞(A).

Remark 18.7: For 1 ≤ p <∞ we have the following

1. For f ∈ Lp(A), ‖f‖p =
(∫
|f |p

) 1
p

∈ [0,∞) with ‖f‖p ≥ 0 and

‖f‖p = 0 ⇐⇒
∫
|f |p = 0 ⇐⇒ |f |p = 0 a.e in A

⇐⇒ f = 0 a.e in A
⇐⇒ f = 0 in Lp(A).

2. For f ∈ Lp(A) and c ∈ R,

‖cf‖p =
(∫
|cf |p

) 1
p

=

(∫
|c|p|f |p

) 1
p

= |c|
(∫
|f |p

) 1
p

= c‖f‖p.

It remains to prove the triangle inequality.

3. For f, g ∈ Lp(A), ‖f + g‖p ≤ ‖f‖p + ‖g‖p. This is called Minkowski’s inequality.

Definition 18.8: For p, q ∈ [1,∞], we say that p and q are conjugate when 1
p +

1
q = 1 with 1

∞ = 0.

Theorem 18.9 (Hölder’s inequality): Let p, q ∈ (1,∞) with
1

p
+

1

q
= 1, then

1. For x ∈ `p, y ∈ `q, we have xy ∈ `1 and ‖xy‖1 ≤ ‖x‖p‖y‖q with the equality when ∃ s, t ∈ R both
nonzero such that s|x|p = t|y|q where s|xk|p = t|yk|q,∀ k.

2. For f ∈ Lp(A), g ∈ Lq(A) where A ⊆ R is measurable, we have fg ∈ L1(A) and ‖fg‖1 ≤ ‖f‖p‖g‖q
with the equality when ∃ s, t ∈ R both nonzero such that s|f |p = t|g|q a.e in A.

Proof of 1.

We claim that for all a, b ≥ 0, ab ≤ ap

p
+
bq

q
. Note that since

1

p
+

1

q
= 1 we have

1

q
= 1 − 1

p
=
p− 1

p
. So

q =
p

p− 1
. Hence q(p− 1) = p and similarly p(q − 1) = q. For x, y ≥ 0 we have

y = xp−1 ⇐⇒ yq = xq(p−1) = xp

⇐⇒ x = yq−1

So the functions f(x) = xp−1 and g(y) = yq−1 are inverse functions. Graph We have∫ a

0
xp−1 dx

∫ b

0
yq−1 dy ≥ ab[

xp

p

]a
0

+

[
yq

q

]b
0

≥ ab

ap

p
+
bq

q
≥ ab
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with equality when

b = ap−1 ⇐⇒ bq = ap

⇐⇒ a = bq−1.

To prove Part 1, apply the above inequality to a =
|xk|
‖x‖p

, b =
|yk|
‖y‖q

to get

|xkyk|
‖x‖p‖y‖q

≤ |xk|
p

p‖x‖pp
+
|yk|q

q‖y‖qq

Sum over k to get

‖xy‖1
‖x‖p‖y‖q

≥ 1

p
+

1

q
.

End of Lecture 18
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Start of Lecture 19

Proof of 2.

Recall that for a, b ≥ 0, ab ≤ ap

p
+
bq

q
with equality when b = ap−1 ⇐⇒ bq = ap ⇐⇒ a = bq−1. Apply

this inequality to

a =

∣∣f(x)∣∣
‖f‖p

and b =

∣∣g(x)∣∣
‖g‖p

and obtain ∣∣f(x)g(x)∣∣
‖f‖p‖g‖q

≤
∣∣f(x)∣∣p
p‖f‖pp

+

∣∣g(x)∣∣q
q‖g‖qq

, ∀ x ∈ A.

Integrate over A to get
‖fg‖1
‖f‖p‖g‖q

≤ 1

p
+

1

q
= 1.

So that ‖fg‖1 ≤ ‖f‖p‖g‖q and we have equality when∣∣f(x)∣∣p
‖f‖pp

=

∣∣g(x)∣∣q
‖g‖qq

.

This is equivalent to ∃ s, t > 0 such that s|f |p = t|g|q a.e in A. Since if s|f |p = t|g|q a.e in A then we can
integrate to get s‖f‖pp = t‖g‖qq. So that

t =
s‖f‖pp
‖q‖qq

.

Hence, s|f |p = s
‖f‖pp
‖g‖qq

|g|q a.e in A. Thus
|f |p

‖f‖pp
=
|g|q

‖g‖qq
a.e in A.

Theorem 19.1 (Minkowski’s Inequality): Let p ∈ (1,∞) and let A ⊆ R be measurable. Then

1. For x, y ∈ `p we have ‖x+ y‖p ≤ |x|p + ‖y‖p with equality

2. For f, g ∈ Lp(A) we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p with equality when ∃ s, t ≥ 0 with (s, t) 6= (0, 0)
such that sf = tg a.e in A.

Proof of Part 1.

Note that for a, b ∈ R we have

|a+ b|p = |a+ b||a+ b|p−1 ≤
(
|a|+ |b|

)
|a+ b|p−1 = |a||a+ b|−1 + |b||a+ b|p−1

with equality when a and b have the same sign.

To prove Part 1, apply this inequality with a = xk and b = yk to get

|xk + yk|p ≤ |xk||xk + yk|p−1 + |yk||xk + yk|p−1.

Take the sum over k and get

‖x+ y‖pp ≤
∥∥∥|x||x+ y|p−1

∥∥∥
1
+
∥∥∥|y||x+ y|p−1

∥∥∥
1

≤ ‖x‖p
∥∥∥|x+ y|p−1

∥∥∥
q
+ ‖y‖p

∥∥∥|x+ y|p−1
∥∥∥
q
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where 1
p +

1
q = 1, 1

q = 1− 1
p = p−1

p , q = p
p−1 .

=
(
‖x‖p + ‖y‖p

)(∑
|x+ y|q(p−1)

) 1
q

=
(
‖x‖p + ‖y‖p

)(∑
|x+ y|p

) p−1
p

=
(
‖x‖p + ‖y‖p

)
‖x+ y‖p−1p and so,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

Equality holds when xk and yk have the same sign for all k and when x, y both nonzero, ∃ r, s, t > 0 such
that r|x|p = s|x+ y|q = t|y|p that is when ∃ u, v > 0 such that ux = vy.

End of Lecture 19
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Start of Lecture 20

Proof of Part 2.

To prove Part 2, we apply the inequality |a+ b|p ≤ |a||a+ b|p−1 + |b||a+ b|p−1 with a = f(x) and b = g(x)
to get ∣∣f(x) + g(x)

∣∣p ≤ ∣∣f(x)∣∣∣∣f(x) + g(x)
∣∣p−1 + ∣∣g(x)∣∣∣∣f(x) + g(x)

∣∣p−1, ∀ x ∈ A.
Integrate and use Hölder’s inequality to obtain

‖f + g‖pp ≤
∥∥∥|f ||f + g|p−1

∥∥∥
1
+
∥∥∥|g||f + g|p−1

∥∥∥+ 1

≤ ‖f‖p
∥∥∥|f + g|p−1

∥∥∥
q
+ ‖g‖p

∥∥∥|f + g|p−1
∥∥∥
q

=
(
‖f‖g + ‖g‖p

)∥∥∥|f + g|p−1
∥∥∥
q

=
(
‖f‖g + ‖g‖p

)(∫
A
|f + g|q(p−1)

) 1
q

=
(
‖f‖g + ‖g‖p

)(∫
A
|f + g|something

) 1
q

=
(
‖f‖g + ‖g‖p

)
‖f + g‖p−1p

Thus, either ‖f + g‖p = 0 in which case the equality holds, or we can divide by ‖f + g‖p−1p to get ‖f + g‖p ≤
‖f‖p + ‖g‖p. Equality holds when f(x) and g(x) have the same sign for a.e x ∈ A and either f = 0 or g = 0
or f + g = 0 a.e in A or ∃ r, s, t > 0 such that rf = s(f + g) = tg a.e in A. That is,

f = 0a.ein A
or g = 0a.ein A
or ∃ s, t > 0 such that sf = tga.e in A

Case 1: p = 1.

When x, y ∈ `1 we have

‖x+ y‖1 =
∞∑
k=1

|xk + yk|

≤
∞∑
k=1

(|xk|+ |yk|)

=

∞∑
k=1

|xk|+
∞∑
k=1

|yk|

= ‖x‖1 + ‖y‖1
For f, g ∈ L1(A) where A ⊆ R is measurable, we have

‖f + g‖1 =
∫
A
|f + g|

≤
∫
A
(|f |+ |g|)

=

∫
A
|f |+

∫
A
|g|

= ‖f‖1 + ‖g‖1
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Case 2: p = 2.

In `2 we have an inner product given by 〈x, y〉 =
∑∞

k=1 xkyk and ‖x‖2 =
√
〈x, x〉 . Note that for a, b ∈ R we

have

0 ≤ (a+ b)2 = a2 + 2ab+ b2

0 ≤ (a = b)2 = a2 − 2ab+ b2

Thus ±2ab ≤ a2 + b2. Thus |ab| ≤ 1
2(a

2 + b2). Thus,

∞∑
k=1

|xkyk| ≤
∞∑
k=1

1

2
(x2 + y2k) ≤

1

2
(‖x‖2 + ‖y‖2).

Similarly, in L2(A) we have an inner product given by 〈f, g〉 =
∫
A fg since when f, g ∈ L2(A), we have∣∣∣∣∫

A
fg

∣∣∣∣ ≤ ∫
A
|fg|

≤
∫
A

1

2
(f2 − g2)

=
1

2
(‖f‖2 + ‖g‖2) <∞

and properties of inner product hold.
Case 3: p =∞.

In `∞ = { bounded sequences in R} we have the norm ‖x‖∞ = sup(|xk| | k ∈ Z+). The triangle inequality
holds because

‖x+ y‖∞ = sup
k≥1
|xk + yk|

≤ sup
k≥1

(|xk|+ |yk|)

≤ sup
k≥1
|xk|+ sup

k≥1
|yk|

= ‖x‖∞ + ‖y‖∞

In L∞(A) we have the norm ‖f‖∞ = esssup ‖f‖ = inf{a > 0 | λ
∣∣f−1∣∣(a,∞] = 0}. Let us verify the triangle

inequality. For f, g ∈ L∞(A), we have

‖f + g‖∞ = esssup |f + g|
≤ esssup (|f |+ |g|)
≤ esssup |f |+ esssup |g| = ‖f‖∞ + ‖g‖∞.

Indeed, for h, k : A→ [0,∞] with h(x) ≤ k(x) ∀ x ∈ A. If h(x) > a then k(x) > a.

So k−1(a,∞] ⊆ h−1(a,∞]

So if λk−1(a,∞] = 0 then λh−1(a,∞]

So {a | λk−1(a,∞] = 0} ⊆ {a | λh−1(a,∞] = 0}
So inf{a | λk−1(a,∞] = 0} ≤ inf{a | λh−1(a,∞] = 0}
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Hence esssup (h + k) ≤ esssup h + esssup k. Let ε > 0. Choose a > 0 so that λh−1(a,∞] = 0 and
a ≤ esssup h + ε. Choose h > 0 so that λk−1(b,∞] = 0 and b ≤ esssup k + ε. If h(x) + k(x) > a + b then
either h(x) > a or k(x) > b. Thus,

(h+ k)−1(a+ b,∞] ⊆ h−1(a,∞] ∪ k−1(b,∞]

Since λh−1(a,∞] = λk−1(b,∞] = 0. We have λ(h+ k)−1(a+ b,∞] = 0. It follows that

esssup (h+ k) ≤ a+ b ≤ esssup h+ esssup k + 2ε.

Since q > 0 was arbitrary, we have esssup (h+ k) ≤ esssup h+ esssup k as required.

End of Lecture 20
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Start of Lecture 21

Recall 21.1: For f, g ∈ L∞(A), ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

1 < p <∞, 1
p +

1
q = 1. For f ∈ Lp(A), g ∈ Lq(A), ‖fg‖1 ≤ ‖f‖p‖g‖q.

Theorem 21.2 (Special case for Hölder’s inequality): For p = 1, q =∞,

1. If x ∈ `1, y ∈ `∞, we have xy ∈ `1 and ‖xy‖1 ≤ ‖x‖1‖y‖∞

2. If f ∈ L1(A), g ∈ L∞(A) where A ⊆ R is measurable, we have fg ∈ L1(A) and ‖fg‖1 ≤ ‖f‖1‖g‖∞

Proof of 2.

Recall that we define ‖f‖∞ = inf{a ≥ 0 | λ|f |−1(a,∞] = 0}.
We claim {x ∈ A |

∣∣f(x)∣∣ > ‖f‖∞} has measure zero. Let An = {x ∈ A |
∣∣f(x)∣∣ > ‖f‖∞ + 1

n}. Note
that λ(An) = 0, ∀ n

(
since by the definition of ‖f‖∞, given n e can choose a ≥ 0, so ‖f‖∞ < a < ‖f‖∞+ 1

n

with λ|f |−1(a,∞] = 0 and then {x ∈ A |
∣∣f(x)∣∣ > ‖f‖∞ + 1

n} ⊆ |f |
−1(a,∞]

)
. Then, A1 ⊆ A2 ⊆

. . . and
⋃
An = {x ∈ A |

∣∣f(x)∣∣ > ‖f‖∞}. Thus, {x ∈ A | ∣∣f(x)∣∣ > ‖f‖∞} has measure zero.
Let f ∈ L1(A) and g ∈ L∞(A) then fg ∈ L1(A) with ‖fg‖1 ≤ ‖f‖1‖g‖∞. Let B = {x ∈ A |

∣∣g(x)∣∣ > ‖g‖∞}
and C = A \B = {x ∈ A |

∣∣g(x)∣∣ < ‖g‖∞}. Then,
|fg|1 =

∫
A
|fg|

=

∫
B
|f ||g|+

∫
C
|f ||g|

=

∫
C
|f ||g| since λ(B) = 0

≤
∫
C
|f |‖g‖∞ since

∣∣g(x)∣∣ ≤ ‖g‖∞, ∀ x ∈ C
= ‖g‖∞

∫
C
|f |

≤ ‖g‖∞
∫
A
|f | since C ⊆ A

= ‖g‖∞|f |1.

Theorem 21.3: Let A ⊆ R be measurable and let p ∈ [1,∞]. Then Lp(A) is a complete using the p−norm.

Proof.

In the case that 1 ≤ p < ∞, we have ‖f‖p =
(∫

A
|f |p

) 1
p

. Let {fn} be a Cauchy sequence in Lp(A). Then

each fn ∈ Lp(A) and ∀ ε, ∃ m ∈ Z+, ∀ k, ` ∈ Z+, if k, ` ≥ m then ‖fk − f`‖p < ε. Choose a subsequence

{fnk
} so that

∥∥∥fnk+1
− fnk

∥∥∥
p
≤ 1

2k
, ∀ k ∈ Z+. Note that

fn`
= fn1 +

`−1∑
k=1

(
fnk+1

− fnk

)
.
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Let

g` =
`−1∑
k=1

∣∣∣fnk+1
− fnk

∣∣∣ and g = lim
`→∞

g` =
∞∑
k=1

∣∣∣fnk+1
− fnk

∣∣∣
Note that g(x) exists in [0,∞], ∀ x ∈ A. We have

‖g`‖p ≤
`−1∑
k=1

∥∥∥fnk+1
− fnk

∥∥∥
p

(by Minkowski’s inequality)

≤
∑

`− 1k=1
1

2k

≤ 1, ∀ ` ∈ Z+

It follows that

‖g‖pp =
∫
A
|g|p

=

∫
A
lim |g`|p

≤ lim inf
`→∞

∫
A
|g`|p (by Fatou’s lemma)

= lim inf
`→∞

‖g`‖pp

≤ 1.

So that ‖g‖p ≤ 1. Since
∫
A
|g|p <∞, it follows that

∣∣g(x)∣∣ <∞ for a.e x ∈ A. Thus, the sum

∞∑
k=1

∣∣∣fnk+1

∣∣∣(x)fnk
(x)

converges to the finite number g(x) for a.e x ∈ A. Hence
∞∑
k=1

(
fnk+1

(x)− fnk
(x)
)

converges to a finite real number for a.e x ∈ A.
We define

f(x) =


fn1(x) +

∞∑
k=1

(
fnk+1

(x)− fnk
(x)
)
= lim

`→∞
f`(x) provided this limit exists and finite

0 otherwise
.

We claim that fn → f in Lp(A). That is, ‖fn − f‖p → 0 as n → ∞. Given ∀ ε, we can choose m ∈ Z+ so
that ∀ k, ` ∈ Z+, if k, ` ≥ m then ‖fk − f`‖p < ε. Let n ≥ m. So, ∀ k ≥ m, ‖fk − fn‖p < ε. Then,

‖fn − f‖pp =
∫
A
|fn − f |p =

∫
A

lim
k→∞

∣∣fn − fnk

∣∣p ≤ lim inf
k→∞

∫
A

∣∣fn − fnk

∣∣p = lim inf
k→∞

∥∥fn − fnk

∥∥p
p
≤ εp

and so ‖fn − f‖p ≤ ε. Thus ‖fn − f‖p → 0 as n → ∞. Finally, note if we choose n so that ‖f − fn‖ ≤ 1.
Then

‖f‖p = ‖f − fn + fn‖p ≤ ‖f − fn‖p + ‖fn‖p ≤ 1 + ‖fn‖p <∞
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So that f ∈ Lp(A). Since ‖f − fn‖p → 0 as n→∞, fn → f in Lp(A).
Now we prove for the case p = ∞. Let {fn} be a Cauchy sequence in L∞(A). So ∀ ε > 0 ∃ m ∈
Z+ ∀ k, ` ∈ Z+ if k, ` ≥ then ‖fk − f`‖∞ < ε. let Bn{x ∈ A |

∣∣fn(x)∣∣ > ‖f‖∞} and Ck,` ={
x ∈ A

∣∣∣ ∣∣fk(x)− f`(x)∣∣ > ‖fk − f`‖∞} for k, `, n ∈ Z+. Recall that Bn and Ck,` all have measure zero.
Let

E =
∞⋃
n=1

Bn ∪
∞⋃

k,`=1

Ck,`.

Then λ(E) = 0. For x ∈ A \ E, {fn(x)} is a Cauchy sequence in R because given ε > 0 we can choose
m ∈ Z+ so that k, ` ≥ m =⇒ ‖fk − f` < ε‖. Thus for k, ` ≥ m,

∣∣fk(x)− f`(x)∣∣ ≤ ‖fk − f`‖∞ < ε for all
x ∈ A \ E. Indeed the sequence of functions {fn} defined on A \ E converges to a function f defined on
A \ E. Define f : A→ R as

f(x) =

 lim
n→∞

fn(x) for x ∈ A \ E

0 for x ∈ E

Note that f is measurable since each fn is measurable in A \ E. So lim
n→∞

fn is measurable in A \ E. So f is
measurable on A \ E. Hence on A (since λ(E) = 0).
Also note that f ∈ L∞(A). Indeed we can take ε = 1. Choosem ∈ Z+ so that k, ` ≥ m =⇒ ‖fk − f`‖∞ ≤ 1.
Then for all n ≥ m, we have

∣∣fn(x)− fm(x)∣∣ ≤ ‖fn − fm‖∞ ≤ 1 ∀ x ∈ A \ E. Thus∣∣fn(x)∣∣ = ∣∣fn(x)− fm(x) + fm(x)
∣∣

≤
∣∣fn(x)− fm(x)∣∣+ ∣∣fm(x)∣∣

≤ 1 + ‖fm‖∞

Hence
∣∣f(x)∣∣ = ∣∣∣∣ limn→∞

fn(x)

∣∣∣∣
≤ 1 + ‖fm‖∞ ∀ x ∈ A \ E

Hence
∣∣f(x)∣∣ ≤ 1 + ‖fm‖∞ ∀ x ∈ A

Hence ‖f‖∞ ≤ 1 + ‖fm‖∞ <∞.

Finally note that fn → f in L∞(A). That is ‖fn − f‖∞ → 0 as n → ∞. Indeed since fn → f uniformly in
A \ E given ε > 0 we can choose m ∈ Z+ so that ∀ n ∈ Z+ ∀ x ∈ A \ E, n ≥ m =⇒

∣∣fn(x)− f(x)∣∣ < ε.
So ∀ n ∈ Z+, if n ≥ m then ∀ x ∈ A \ E,

∣∣fn(x)− f(x)∣∣ < ε =⇒ ‖fn − f‖∞ ≤ ε. So we have fn → f in
L∞(A).

End of Lecture 21
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Start of Lecture 22

This chapter is in Section 13.8 in the textbook.

Theorem 22.1: Let 1 ≤ p < q ≤ ∞ and let A ⊆ R be measurable. Then,

1. `q ⊆ `p and,

2. if λ(A) <∞ then Lq(A) ⊆ Lp(A).

Note that if f ∈ Lq(A) then ‖f‖p ≤ λ(A)
1
p
− 1

q · ‖f‖q.

Proof of 2.

Suppose q <∞. Suppose f ∈ Lq(A). Then

‖f‖pp =
∫
A
|f |p

=
∥∥|f |p · 1∥∥

1

≤
∥∥|f |p∥∥

u
· ‖1‖v where

1

u
+

1

v
= 1

=

(∫
A
|f |p·u

) 1
u
(∫

A
1v
) 1

v

.

Choose u so up = q. take u = q
p and we want 1

v = 1− 1
u = u−1

u . So we choose

v =
u

u− 1
=

q
p

q
p − 1

=
q

q − p
to get

‖f‖pp ≤
(∫

A
|f |q
) p

q

λ(A)
q−p
q

= ‖f‖pqλ(A)
1− p

q

Hence ‖f‖p ≤ ‖f‖q · λ(A)
1
p
− 1

q .

Suppose that q = ∞. Suppose f ∈ L∞(A). Let B = {x ∈ A |
∣∣f(x)∣∣ > ‖f‖∞}. So λ(B) = 0. Let

C = A \B. Then

‖f‖pp =
∫
A
|f |p

=

∫
B
|f |p +

∫
C
|f |p

=

∫
C
|f |p

≤
∫
C
‖f‖p∞

= ‖f‖p∞λ(C)
= ‖f‖p∞λ(A)

and so ‖f‖p ≤ ‖f‖∞λ(A)
1
p .

End of Lecture 22
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Start of Lecture 23

Theorem 23.1: Let 1 ≤ p < q < r ≤ ∞. Let A ⊆ R be measurable. Then,

1. `p ∩ `r ⊆ `q ⊆ `p + `r

2. Lp(A) ∩ Lr(A) ⊆ Lq(A) ⊆ Lp(A) + Lr(A).

Proof.

Note that Part 1 is trivial since
`p ∩ `r ⊆ `r ⊆ `q ⊆ `p ⊆ `p + `r.

We claim that Lq(A) ⊆ Lp(A)+Lr(A). So every f ∈ Lq(A) is equal to a sum f = g+h with g ∈ Lp(A) and
h ∈ Lr(A). To show this is true suppose f ∈ Lq(A) and let B =

{
x ∈ A

∣∣∣ ∣∣f(x)∣∣ ≥ 1
}
and C = A \ B =

{x ∈ A |
∣∣f(x)∣∣ < 1}. Let g = f · XB and h = f · Xc. Then f = g + h and when x ∈ B so

∣∣f(x)∣∣ ≥ 1 and∣∣f(x)∣∣p ≤ ∣∣f(x)∣∣q ≤ ∣∣f(x)∣∣r
and when x ∈ C so

∣∣f(x)∣∣ < 1 and ∣∣f(x)∣∣p ≥ ∣∣f(x)∣∣q ≥ ∣∣f(x)∣∣r.
Thus

‖g‖pp =
∫
A
|g|p =

∫
A
|f |p ≤

∫
B
|f |q ≤

∫
A
|f |q = ‖f‖qq <∞.

Moreoever, h ∈ Lr(A) since

‖h‖rr =
∫
A
|h|r =

∫
C
|f |r ≤

∫
C
|f |q ≤

∫
A
|f |q = ‖f‖qq <∞ for r <∞

For r =∞ we have ‖h‖r = ‖h‖∞ ≤ 1. Since
∣∣h(x)∣∣ < 1 for all x ∈ A. This proves our claim.

For the reverse inclusion we claim Lp(A) ∩ Lr(A) ⊆ Lq(A). Let f ∈ Lp(A) ∩ Lr(A). Then,

‖f‖qq =
∫
A
|f |q =

∥∥|f |q∥∥
1
≤
∥∥|f |a∥∥

u

∥∥∥|f |b∥∥∥
v

(?)

by Hölder’s inequality for any a, b, u, v with a+ b = q and 1 ≤ u, v with
1

u
+

1

v
= 1. Thus, ? becomes

(∫
A
|f |au

) 1
u
(∫

A
|f |bv

) 1
v

If we choose a, b, u, v so that au = p and bv = r. Then we get

‖f‖qq ≤
(∫

A
|f |p

)a
p
(∫

A
|f |r
) b

r

= ‖f‖ar‖f‖
b
r <∞.

We need a+ b = q, au = p, bv = r,
1

u
+

1

v
= 1. That is,

a

p
+
b

r
= 1. In matrix form,


1 1

1

p

1

r


(
a
b

)
=

(
q
1

)
.
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Therefore,

(
a
b

)
=

1
1
r −

1
p


1

r
−1

−1

p
1


(
q
1

)
=

1
1
p −

1
r


−1

r
1

1

p
−1


(
q
1

)
=

pr

r − p


1− q

r

q

p
− 1

 =


p(r − q)
r − p

r(q − p)
r − p

.

(
u
v

)
=


p

a

r

b

 =


r − p
r − q
r − p
q − p


So a, b > 0, u, v > 1. In the case that r <∞ we found that ‖f‖q ≤ ‖f‖

a
q
p ‖f‖

b
q
r = ‖f‖

p(r−q)
q(r−p)
p ‖f‖

r(q−p)
q(r−p)
r .

When r =∞, let B = {x ∈ A |
∣∣f(x)∣∣ ≤ ‖f‖∞}, C = A \B. Then

‖f‖qq =
∫
A
|f |q

=

∫
A
|f |p|f |q−p

=

∫
B
|f |p|f |q−p +

∫
C
|f |p|f |q−p

=

∫
B
|f |p|f |q−p since λ(C) = 0

≤
∫
B
|f |p‖f‖q−p∞

=

(∫
B
|f |p

)
‖f‖q−p∞

≤
(∫

A
|f |p

)
‖f‖q−p∞

= ‖f‖pp‖f‖
q−p
∞ .

So that

‖f‖q ≤ ‖f‖
p
q
p ‖f‖

1− p
q

∞

Theorem 23.2:

1. `p is separable when p <∞ but `∞ is not.

2. When a < b, Lp([a, b]) is separable but L∞([a, b]) is not.

Exercise 23.3: Prove Part 1 of this theorem.

Proof of Part 2.

Claim 1: The set of simple functions on [a, b] is dense in Lp([a, b]).
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Let A = [a, b]. Let f ∈ Lp([a, b]) and let B = {x ∈ A | f(x) ≥ 0} and C = {x ∈ A | f(x) < 0}. So that
we have f+ = fXB, f− = fXC . For n ∈ Z+, define S+

n : B → R by

S+
n (x) =


k − 1

2n
if
k − 1

2n
≤ f+(x) < k

2n
with k ∈ {1, 2, . . . , n2n}

n if f+(x) ≥ n

Then, lim
n→∞

S+
n (x) = f+(x) ∀ x ∈ B. Apply the Lebesgue’s Dominated Convergence Theorem to the sequence∣∣∣f+ − S+

n

∣∣∣p to get

lim
n→∞

∥∥∥f+ − S+
n

∥∥∥p
p
lim
n→∞

∫
B

∣∣∣f+ − S+
n

∣∣∣p
=

∫
B

lim
n→∞

∣∣∣f+ − S+
n

∣∣∣p
=

∫
B
0

= 0

So lim
n→∞

S+
n = f+ in Lp(B) or in Lp(A) where S+(x) = f+(x) = 0 in A \ B. Similarly, construct simple

functions S−n on C such that

lim
n→∞

∥∥∥f− − S−n ∥∥∥p
p
= lim

n→∞

∫
C

∣∣∣f− − S−n ∣∣∣p = 0.

Let Sn = S+
n − S−n . Then,

‖f − Sn‖pp =
∫
A
|f − Sn|p =

∫
B
|f − Sn|p +

∫
C
|f − Sn|p =

∫
B

∣∣∣f+ − S+
n

∣∣∣p + ∫
C

∣∣∣f− − S−n ∣∣∣p
=
∥∥∥f+ − S+

n

∥∥∥p + ∥∥∥f− − S−n ∥∥∥p
p
.

Which goes to zero as n→∞. This proves Claim 1. The proof is continued in next lecture.

End of Lecture 23
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Start of Lecture 24

Continuation of proof.

Claim 2: The set of step functions on [a, b] is dense in the set of simple functions on [a, b]

To prove this claim we note that to approximate the simple function

s =
m∑
k=1

ckXAk
,

it suffices to approximate each characteristic function XAk
by a step function since∥∥∥∥∥∥

m∑
k=1

ckXAk
−

m∑
k=1

ckrk

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
m∑
k=1

ck(XAk
− rk)

∥∥∥∥∥∥
p

≤ max |ck|
m∑
k=1

∥∥XAk
− rk

∥∥
p

where each rk is a step function. When A ⊆ [a, b] is measurable, we can approximate XA as follows. Given
ε > 0, we can choose open intervals Ik so A ⊆

⋃∞
k=1 Ik and λ(A) ≤

∑∞
k=1 |Ik| ≤ λ(A) + ε we can take the

intervals Ik to be disjoint. Note that since the intervals Ik can be replaced by the connected components of
the open set

⋃m
k=1 Ik. Let Jk = In ∩ [a, b]. So the Jk are disjoint intervals with

A ⊆
∞⋃
k=1

Ik ∩ [a, b] =

k=1⋃
∞
Jk and

∞⋃
k=1

⊆
k=1⋃
∞
Ik.

Thus, we have

λ ≤
∞∑
k=1

|Jk| ≤
∞∑
k=1

|Ik| ≤ λ(A) + ε.

Choose m ∈ Z+ so that
∞∑

k=m+1

|Jk| < ε.

Then we approximate Xa by the step function

X m⋃
k=1

Jk

=

k=1∑
m

XJk .

We have ∥∥∥∥∥∥X −
k=1∑
m

XJk

∥∥∥∥∥∥
p

p

=

∫
[a,b]

∣∣∣∣∣∣XA −
m∑
k=1

XJk

∣∣∣∣∣∣
p

= λ

A \ k=1⋃
m

Jk

+ λ

 m⋃
k=1

Jk \A


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Where λ
(
A \

⋃k=1
m Jk

)
is the value of the integral when inside integral takes 1 and λ

(⋃m
k=1 Jk \A

)
is the

value of the integral when inside integral takes -1. Then,∥∥∥∥∥∥X −
k=1∑
m

XJk

∥∥∥∥∥∥
p

p

≤ λ

 ∞⋃
k=1

Jk \
m⋃
k=1

Jk

+ λ

 ∞⋃
k=1

Jk \A


=

∞∑
k=m+1

|Jk|+ λ

 ∞⋃
k=1

Jk

− λ(A)
≤ ε+ ε = 2ε

This proves claim 2.

Claim 3: Every step function on [a, b] can be approximated arbitrarily closely by a continuous function
on [a, b] in Lp[a, b].

To approximate

s =
m∑
k=1

ckXIk

where the Ik are disjoint intervals in [a, b] it suffices to approximate each XIk by a continuous function fk (as
above). We can approximate XI where I = (c, d), [c, d), (c, d] or [c, d] with a ≤ c ≤ d ≤ b using the picture
above or

f(x) =



0 for a ≤ x ≤ c
m(x− c) for c ≤ x ≤ c+ 1

m

1 for c+ 1
m ≤ x ≤ d−

1
m

m(d− x) for d− 1
m ≤ x ≤ d

0 for d ≤ x ≤ b

So that,

‖XI − f‖pp =
∫
I
|XI − f |p ≤

2

m

which goes to zero as m→∞. More rigorously we have

‖XI − f‖pp =
∫
I
|XI − f |p

= 2

∫ 1
m

0
(mx)p

=
2m

p+ 1

[
xp+1

] 1
m
0

=
2m

(p+ 1)mp+1

which goes to zero as m→∞. It follows that the set C[a, b] of all continuous functions on [a, b] is dense in
Lp([a, b]).

Moreover, the set of polynomial functions R[x] on [a, b] is dense in C[a, b] in L∞([a, b]). This is by Weier-
strass approximation theorem. [As an exercise prove this statement.] Also note that Q[x] is dense in R[x] in
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L∞([a, b]) because for ck ∈ R, rk ∈ Q we have∥∥∥∥∥∥
k=1∑
`

ckx
k −

k=1∑
`

rkx
k

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑̀
k=1

(ck − rk)xk
∥∥∥∥∥∥
∞

≤ m ·M

where m = max
1≤k≤`

|ck − rk| and M = {1, |a|`, |b|`}

which goes to zero as m → ∞. Since Q[x] is dense in C[a, b] in L∞ it is also dense in C[a, b] in Lp([a, b])
because L∞([a, b] ⊆ Lp([a, b])) with ‖f‖p ≤ ‖f‖∞(b− a)

1
p .Rest of the proof will be included later.

Remark 24.1:

1. The set of simple functions is dense in L∞[a, b]

2. The set of step functions is not dense in the set of simple functions.

3. C[a, b] is not dense in L∞[a, b].

End of Lecture 24
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Start of Lecture 25

The chapter Hilbert Space is covered in chapter 14 in the textbook.

Definition 25.1: For a field F and a vector space V (which is over F), we define inner product as a map
〈·, ·〉 : V × V → F that satisfies the following properties:

1. (Positive definiteness) 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 ⇐⇒ x = 0V ∀ x ∈ V .

2. (Conjugate symmetrical) 〈x, y〉 = 〈y, x〉 ∀ x, y ∈ V .

3. (Sesquilinear form) 〈a1x+ a2x2, y〉 = a1〈x1, y〉+ a2〈x2, y〉,

〈x, b1y1 + b2y2〉 = b1〈x, y1〉+ b2〈x, y2〉 ∀ xi, yi ∈ V and ai, bi ∈ F where i = 1, 2.

Remark 25.2: Inner products satisfy Cauchy-Schwarz inequality.∣∣〈x, y〉∣∣ = ‖x‖‖y‖ ∀ x, y ∈ V.

End of Lecture 25
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Start of Lecture 26

Theorem 26.1:

1. `2 = `2(C) =

x = (x1, x2, . . . , xk) ∈ C

∣∣∣∣∣∣
∞∑
k=1

|xk| <∞

 is a complex Hilbert space.

2. For A ⊆ R measurable and f : A ⊆ R→ C given by f = u+ iv with u, v : A ⊆ R→ R, we say that f
is measurable when u and v are both measurable and we say that f is (Lebesgue) integrable when u

and v are both Lebesgue integrable and in this case
∫
A
f =

∫
A
u+ i

∫
A
v. We define

Lp(A,C) =

{
measurable f : A→ C

∣∣∣∣ ∫
A
|f |p <∞

}
where f ∼ g ⇐⇒ f = g a.e in A with the given definitions above.

L2(A,C) is a complex Hilbert space using the inner product 〈f, g〉 =
∫
A
fg.

Proof of 1.

We skip most of the proof. Let us verify that when f, g ∈ L2(A,C) we have 〈f, g〉 =
∫
A
fg ∈ C. Recall that

for f, g ∈ L2(A,R) we showed that 〈f, g〉 =
∫
A
fg ∈ R. Indeed for a, b ∈ R, we have |ab| ≤ 1

2
(|a|2 + |b|2). So∣∣∣∣∫

A
fg

∣∣∣∣ ≤ ∫
A
|fg| ≤

∫
A

1

2
(|f |2 + |g|2) = 1

2
(‖f‖22 + ‖g‖

2
2).

If we write f = u+ iv, g = p+ iq then

‖f‖22 =
∫
A
|f |2 =

∫
A
|u|2 + |v|2.

We also have
〈f, g〉 =

∫
A
fg =

∫
A
(u+ iv)(p− iq) =

∫
A
up+ vq + i

∫
v
p− uq ∈ C.

Also, let us show that L2(A,C) is complete. Indeed, for fn = un + ivn, f = u + iv. {fn} is Cauchy if
and only if {un} and {vn} are both Cauchy and fn → f in L2(A,C) if and only if un → u and vn → v in
L2(A,R).

Proof of 2.

Suppose {fn} is Cauchy in L2(A,C) given ε > 0 choose m ∈ Z+ so k, ` ≥ m =⇒ ‖fk − f`‖ ≤ ε. Using the
same m ∈ Z+,

k, ` ≥ m =⇒ ‖uk − u`‖2 ≤ ‖fk − f`‖2 ≤ ε
since ‖u‖2 ≤ ‖u‖22+‖v‖

2
2 = ‖f‖

2
2 when f = u+iv. Thus, {un} is Cauchy. Similarly, {vn} is Cauchy. Suppose

{un} and {vn} are Cauchy in L2(A,R). Given ε > 0 we choose m ∈ Z+ so that

k, ` ≥ m =⇒ ‖uk − u`‖ ≤
ε√
2

and ‖vk − v`‖ ≤
ε√
2
.

Then using the same m ∈ Z+,

k, ` ≥ m =⇒ ‖fk − f`‖22 = ‖uk − u`‖
2
2 + ‖vk − v`‖

2
2 ≤

ε2

2
+
ε2

2
= ε2 =⇒ ‖fk − f`‖2 ≤ ε.
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Example 26.2: If V is a countable dimensional inner product space and U ⊆ V is a subspace then if U is
finite dimensional then any orthonormal basis for U can be extended by the Gram-Schmidt procedure to an
orthonormal basis for V . When U is countable dimensional, the procedure can break down.
For example, if

V = R∞ = {x = (x1, x2, . . .) | ∃ n ∈ Z+ ∀ k ≥ n, xk = 0} with inner product〈x, y〉 =
∞∑
k=1

xkyk

and if

U =

x ∈ V
∣∣∣∣∣∣
∞∑
k=1

xk = 0

.
Then U has a basis U such that

U = {uk | k ≥ 2} where uk = e1 − ek = (1, 0, . . . , 0,−1, 0, . . .)

and U can be extended to the basis V = U ∪ {e1} for V . But U⊥ = {0} since

U⊥ = {x ∈ V | 〈x, u〉 = 0∀ u ∈ U}
= {x ∈ V | 〈x, u〉 = 0∀ u ∈ U}
= {x ∈ V | 〈x, uk〉 = 0∀ k ≥ 2}
= {x ∈ V | x1 − xk = 0∀ k ≥ 2}
= {x = (x1, x2, . . .) ∈ V | x1 = x2 = . . .}
= {0}.

Note that U ⊕ U⊥ 6= U .

End of Lecture 26
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Start of Lecture 27

Hilbert spaces

Example 27.1:

W = R∞ =

{
x = (x1, x2, . . .)

∣∣∣∣∣ each xk ∈ R,∃ n ∈ Z+

∀ k ≥ n, xk = 0.

}

〈x, y〉 =
∞∑
k=1

xkyk

U =

x ∈ R∞
∣∣∣∣∣∣
∞∑
k=1

xk = 0


U has a basis U = {u1, u2, . . . , } where uk = e1 − ek = (1, 0, . . . , 0,−1, 0, . . .). Note that U⊥ = {0} because
for x ∈ V = R∞,

x ∈ U⊥ =⇒ x · u = 0 ∀ u ∈ U
=⇒ x · uk = 0 ∀ k ≥ 2

=⇒ x1 − xk = 0 ∀ k ≥ 2

=⇒ x1 = x2 = x3 = . . .

=⇒ x = 0 (since ∃ nxn = 0)

Note that W 6= U ⊕ U⊥, which means it is not the case that every w ∈ W can be written uniquely as
w = u + v with u ∈ U, and v ∈ U⊥. Given w ∈ W there does not exist a (unique) nearest point u ∈ U to
w. For example, when w = e1, there is no nearest point u ∈ U to w = e1:

For u = e1−
n∑
k=1

1

e
ek =

(
1− 1

n
,− 1

n
,− 1

n
, . . . ,− 1

n
, 0, 0, . . .

)
=
∞∑
k=1

uk = 1−n 1
n
= 0. So u ∈ U . We also have

‖e1 − u‖2 =

∥∥∥∥∥
(
1

n
,
1

n
, . . . ,

1

n
, 0, 0, . . .

)∥∥∥∥∥ = n · 1

n2
=

1

n

which goes to zero as n→∞.

Theorem 27.2: Let H be a real or complex Hilbert space and S ⊆ H be convex and closed. Then for every
a ∈ H there exists a unique point b ∈ S such that ‖b− a‖ ≤ ‖x− a‖ for all x ∈ S.

Proof.

Recall that if for all b, c ∈ S we have b+ t(c− b) ∈ S for all t ∈ [0, 1], S is convex.

When W is an inner product space and ‖x‖ =
√
〈x, x〉 ∀ x ∈W , over R we have,

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2

‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2

Polarization: 〈x, y〉 = 1

2

(
‖x‖2 + ‖y‖2 − ‖x+ y‖2

)
〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
Pythagoras: ‖x+ y‖2 = ‖x‖2 + ‖y‖2 ⇐⇒ 〈x, y〉 = 0.
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Over C we have

‖x+ y‖2 = ‖x‖+ 2Re
{
〈x, y〉

}
+ ‖y‖

‖x− y‖2 = ‖x‖ − 2Re
{
〈x, y

}
〉+ ‖y‖

Polarization: 〈x, y〉 = 1

8

(
‖x+ y‖2 + i‖x+ iy‖2 − ‖x− y‖2 − i‖x− iy‖2

)
Parallelogram law: ‖x+ y‖2 − ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Let ∅ 6= S ⊆ H be closed and convex. Let a ∈ H. Translate by −a and replace a by 0. We need to show
that there exists a unique point b ∈ S with ‖b‖ ≤ ‖x‖ for all x ∈ S. Let d = dist(a, S). Then

d = dist(a, S) = inf{‖a− x‖ | x ∈ S} = inf{‖x‖ | x ∈ S} since a = 0.

Choose xn ∈ S so that ‖xn‖ → d as n→∞. We claim that {xn} is Cauchy. Indeed

‖xk − x`‖2 + ‖xk + x`‖2 = 2‖xk‖2 + 2‖x`‖2

‖xk − x`‖2 = 2‖xk‖2 + 2‖x`‖2 −
∥∥∥∥xk + x`

2

∥∥∥∥2.
So given ε > 0 we can choose n ∈ Z+ so k, ` ≥ n =⇒ ‖xk‖2 < d2 + ε, ‖x`‖2 < d2 + ε. Then for k, ` ≥ n,

‖xk − x`‖2 < 2(d2 + ε) + 2(d2 + ε)− 4d2 = 4ε.

Since xk+x`
2 then

∥∥∥xk+x`2

∥∥∥ ≥ d. Since H is complete, {xn} converges in H. Say b = lim
n→∞

xn and since S is
closed, then b ∈ S. Since xn → b we have ‖xn‖ → ‖b‖. So b = d = dist(a = 0, S). Finally, note that b ∈ S is
unique because if b, c ∈ S with ‖b‖ = ‖c‖ = d. Then,

‖b− c‖2 = 2‖b‖+ 2‖c‖2 − 4

∥∥∥∥b+ c

2

∥∥∥∥2
≤ 2d2 + 2d2 − 4d2

= 0 since
b+ c

2
∈ S so

∥∥∥∥b+ c

2

∥∥∥∥ ≥ d.

End of Lecture 27
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Start of Lecture 28

A corollary to Theorem 27.2 is the following corollary.

Corollary 28.1: If H is a Hilbert space and U ⊆ H is a closed subspace, then

1. ∀ w ∈ H, ∃!u ∈ U such that u is nearest to w.

2. H = U ⊕ U⊥, so for every w ∈ H ∃! u, v with u ∈ U, v ∈ V, u+ v = w.

Moreover, when w = u+ v with u ∈ U, v ∈ U⊥, u+ v = w the point u is the unique nearest point to w and,
in this case, we write u = projU (w) and v = projU⊥(w)

Proof.

Let U be a closed subspace of a Hilbert space H. Note that U is convex. Given x ∈ H, let u ∈ U be the
unique nearest point and let v = x − u. We claim that v ∈ U⊥. Suppose, for contradiction, this is false.
Choose u′ ∈ U such that

〈
v, u′

〉
6= 0. We may assume

〈
v, u′

〉
> 0 (if not replace u′ by eiθu′ for some θ).

Then ‖x− u‖ = ‖v‖ and for t ∈ R,∥∥x− (u+ tu′)
∥∥2 = ∥∥u+ v − u− tu′

∥∥2
=
∥∥v − tu′∥∥2

= ‖v‖2 − 2tRe〈v, u′〉+ t2
∥∥u′∥∥2

= ‖v‖2 − 2t〈v, u′〉+ t2
∥∥u′∥∥2

< ‖v‖2 for small t > 0.

So for small t > 0 we get ∥∥x− (u+ tu′)
∥∥ < ‖x− u‖

which contradicts the fact that u is the point in U nearest to x.

This proves existence. To prove uniqueness let x ∈ H, u ∈ U, v ∈ U⊥ with u + v = x. We claim that u
is the point in U nearest to x. Let u′ = U with u′ 6= u. Then u′ − u ∈ U . So

〈
v, u′ − u

〉
= 0. That is,〈

x− u, u′ − u
〉
= 0. So, ∥∥x− u′∥∥2 = ∥∥(x− u) + (u− u′)

∥∥2
= ‖x− u‖2 + 2Re

〈
x− u, u− u′

〉
+
∥∥u− u′∥∥2

= ‖x− u‖2 +
∥∥u− u′∥∥2

> ‖x− u‖2 since u 6= u′

Remark 28.2: In any inner product space W there exists a maximal orthonormal set by Zorn’s lemma.

When W is finite dimensional, any maximal orthonormal set is a (Hamel) basis.

Theorem 28.3: Let W be an inner product space, let U = {u1, u2, . . . , un} be an orthonormal set, and let
U = spanF U where F = R or C. Then for x ∈ U we have

x =
n∑
k=1

〈x, uk〉uk and ‖x‖2 =
n∑
k=1

∥∥〈x, uk〉∥∥2
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ad for x ∈W , we have

projU x =
n∑
k=1

〈x, uk〉uk with ‖x‖2 ≥
n∑
k=1

∣∣〈x, uk〉∣∣2.
Proof.

Suppose x ∈ U , then x =
∑n

k=1 ckuk. Then,

〈x, u`〉 =
〈∑

ckuk, u`

〉
=
∑

ck〈uk, u`〉 (by linearity)

=
∑

ckδk`

= c`

We also have

‖x‖2 =

〈∑
k

〈x, uk〉uk,
∑
`

〈x, u`〉u`

〉
=
∑
k,`

〈x, uk〉〈x, u`〉〈uk, u`〉

=
∑
k,`

〈x, uk〉〈x, u`〉δk,`

=
∑
k

〈x, uk〉〈x, uk〉

=
∑
k

∣∣〈x, uk〉∣∣2

Exercise 28.4: For u =
∑n

k=1〈x, uk〉uk ∈ U . let v = x− u. Verify that v ∈ U⊥.

Theorem 28.5: Let H be a Hilbert space and let U be a maximal orthonormal set and let U = spanF U
where F = R or C. Then U is dense in H.

Proof.

Note that U is a closed vector space in H (U is a vector space because if xn → a and yn → b in H then
xn + yn → a + b and cxn → ca). It follows that H = U ⊕ U⊥. But U⊥ = {0} because if 0 6= v ∈ U⊥ with
|v| = 1 then U ∪ {v} would be a larger orthonormal basis (v 6= U since if v ∈ U then |v|2 = 〈v, v〉 = 0 ).
Thus,

H = U ⊕ U⊥ = U ⊕ {0} = U.

Theorem 28.6: Let H be a Hilbert space and let U be a maximal orthonormal set. Then H is separable
(meaning that it has a countable dense subset) if and only if U is at most countable.

Proof.

Suppose U is uncountable. Let S ⊆ H be a dense set inH. For each u ∈ U , choose sk ∈ S with |sk − u| <
√
2
2 .
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Then for u, v ∈ U with u 6= v,

‖u− v‖2 = ‖u‖2 − 2Re〈u, v〉+ ‖v‖2 = ‖u‖2 + ‖v‖2 = 1 + 1 = 2.

So, ‖u− v‖ =
√
2 and so

‖su − sv‖ = ‖su − u+ u− v + v − sv‖ ≥ ‖u− v‖ −
(
‖su − u‖+ ‖v − sv‖

)
>
√
2 −

(√
2

2
+

√
2

2

)
= 0.

hence, su 6= sv. Then H is not separable. Hence, S is uncountable. Suppose U is countable. Let U = spanF U
where F = R or C. We know that U is dense in H. When F = R, spanQ U is dense in U = spanR U and when
F = C then spanQ[i] U is dense in U = spanC U where Q[i] = {a+ ib | a, b ∈ Q} because if c1, c2, . . . , cn ∈ C
and r1, r2, . . . , rn ∈ Q[i] then ∥∥∥∥∥∥

n∑
k=1

ckuk −
n∑
k=1

rkuk

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
k=1

(ck − rk)uk

∥∥∥∥∥∥
≤

n∑
k=1

∥∥(ck − rk)uk∥∥
=

n∑
k=1

|ck − rk|‖uk‖

=
k=1∑
n

|ck − rk|

When U is countable, so is spanQ[i] U .

Remark 28.7: The map F :
∞⋃
n=0

Q[i]n → spanQ[i] U .

F ((r1, r2, . . . , rn)) =
n∑
k=1

rkuk is surjective (even bijective).

End of Lecture 28
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Start of Lecture 29

Solutions for the midterm are posted on course website. Today’s notes aren’t fully complete. It will be
completed at a later date.

Theorem 29.1: Let H be an inner product space. Let U = {u1, u2, . . . , un} be a finite orthonormal set
then,

for x ∈ U = spanF U

x =
n∑
k=1

〈x, uk〉uk and ‖x‖2 =
n∑
k=1

∥∥〈x, uk〉∥∥2
where U is closed and H = U ⊕ U⊥

For x ∈ H,

projU x =

n∑
k=1

〈x, uk〉uk and ‖x‖2 ≥ ‖projU x‖
2 =

n∑
k=1

∣∣〈x, uk〉∣∣2
The inequality ‖x‖2 ≥

n∑
k=1

∣∣〈x, uk〉∣∣2 is called the Bessel’s inequality.

Exercise 29.2: Prove this theorem.

Definition 29.3: When the statements in Theorem 29.4 (which are all equivalent) holds, we say that U is
a Hilbert basis for H.

Theorem 29.4: Let H be a separable Hilbert space. Let U = {u1, u2, . . .} be a countable orthonormal set
in H. Let U = spanF U where F = R or C. Then the following are equivalent:

1. U is maximal.

2. U is dense in H.

3. For all x ∈ H, x =

∞∑
k=1

〈x, uk〉uk = lim
n→∞

n∑
k=1

〈x, uk〉uk in H.

4. For all x ∈ H, ‖x‖2 =
∞∑
k=1

∣∣〈x, uk〉∣∣2 = lim
n→∞

n∑
k=1

∣∣〈x, uk〉∣∣2 in R.

5. For all x, y ∈ H, 〈x, y〉 =
∞∑
k=1

〈x, uk〉〈y, uk〉 in C.

The inequality ‖x‖2 =
n∑
k=1

∣∣〈x, uk〉∣∣2 is called the Parseval’s inequality.

1 =⇒ 2.

This was already proven.

2 =⇒ 1.

Suppose U is not maximal. Then we can choose v with 〈, uk〉 = 0 for all k and ‖v‖ = 1. Then, 〈v, x〉 = 0 for

all x ∈ U . Note that if x =
n∑
k=1

ckuk then 〈v, x〉 =
n∑
k=1

ck〈v, uk〉 = 0. So that v ∈ U⊥. We cannot find u ∈ U
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with ‖u− v‖ < 1 because for all u ∈ U

‖u− v‖2 = ‖u‖2 − 2Re〈u, v〉+ ‖v‖2

= ‖u‖2 + ‖v‖2

≥ ‖v‖2 = 1

2 =⇒ 3 .

Suppose U = spanF U is dense in H. Let x ∈ H. We need to show that x =
∞∑
k=1

〈x, uk〉uk. Let ε > 0. Choose

u ∈ U with ‖u− x‖ < ε. Say u =
m∑
k=1

ckuk. Let n ≥ m. Then u ∈ spanF{u1, u2, . . . , un}. Since
n∑
k=1

〈x, uk〉uk

is the point in Un = spanF{u1, u2, . . . , un} to x and u ∈ Un, we have∥∥∥∥∥∥x−
n∑
k=1

〈x, uk〉

∥∥∥∥∥∥ ≤ ‖x− u‖ < ε.

Given ε > 0 we chose m ∈ Z+ so that for all n ≥ m we have

∥∥∥∥∥∥x−
n∑
k=1

〈x, uk〉uk

∥∥∥∥∥∥ < ε.

Hence we get lim
n→∞

n∑
k=1

〈x, uk〉uk = x in H as required.

3 =⇒ 4.

We suppose that for all x ∈ H, x =
∞∑
k=1

〈x, uk〉uk. We need to show that for all x ∈ H we have ‖x‖2 =

∞∑
k=1

∣∣〈x, uk〉∣∣2. Write wn =
n∑
k=1

〈x, uk〉uk. Then we have ‖x− wn‖ → 0 and, by triangle inequality

∣∣‖x‖ − ‖wn‖∣∣ ≤ ‖x− wn‖ → 0.

Thus ‖wn‖ → ‖x‖. Thus ‖wn‖2 → ‖x‖2. We also have

‖wn‖2 =

〈
n∑
k=1

〈x, uk〉uk,
n∑
`=1

〈x, u`〉u`

〉
=
∑
k,`

〈x, uk〉〈x, u`〉δk,`

=
∑
k

∣∣〈x, uk〉∣∣2

End of Lecture 29
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Start of Lecture 30

From last time

thm: Let H be a separable Hilbert space with countable Hilbert basis U = {u1, u2, . . .}

1. If x ∈
∑∞

k=1 akuk =
∑∞

k=1 bkuk in H then ak = bk = 〈x, uk〉.

2. For c1, c2, . . . ∈ F,
∑∞

k=1 ckuk converges in H if and only if
∑
|ck|2 converges in R.

3. The map φ : H → `2 given by

φ

 ∞∑
k=1

ckuk

 = (c1, c2, . . .) or by φ(x) = (〈x, u1〉, 〈x, u2〉, . . .)

is an isomorphism of inner product spaces.

End of Lecture 30
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Start of Lecture 31

A 2π−periodic function f : R→ [−∞,∞] determines and is determined by a function f : [0, 2π)→ [−∞,∞]
or by a function f : [−π, π)→ [−∞,∞] or by a function f : [−∞,∞]→ [−∞,∞] with f(−π) = f(π) or by
a function f : T → [−∞,∞] where T = R/2πZ (x ∼ y ⇐⇒ x− y ∈ 2πZ).

Also when such a function f : R → [−∞,∞] satisfies
∫ π
−π |f |

p < ∞, it determines and is determined
a.e in R (or in [−π, π]) by an element f ∈ Lp[−π, π]. We shall write Lp[−π, π] or Lp(T ) for the set of such
periodic functions with f = g in Lp[−π, π] when f = g a.e in R (or when f = g a.e in [−π, π]).

Definition 31.1: A (real) trigonometric polynomial is a function of the form

f(x) = a0 +

m∑
n=1

an cosnx+

m∑
n=1

bn sinnx.

Remark 31.2: By the Stone-Weierstrass theorem the trigonometric polynomials are dense in the space
C(T ) of continuous functions f : T → R using the supremum norm ‖f‖∞ but not in C[−π, π]. Note that
since the trigonometric polynomials form a sub-algebra of C(T ) which contains the identity and separates
points.

Example 31.3: cosnx · sinmx ?
=

1

2
(sin(n+m)x− sin(n−m)x?

Example 31.4: If x, y ∈ [−π, π] with x 6= y then

cosx = cos y and sinx = sin y =⇒ x = y mod 2π

=⇒ x = ±π and y = −x.

Hence the trigonometric polynomials are dense in C[−π, π] in L∞[−π, π] hence also in Lp[−π, π] (since
‖f‖p ≤ (2π)1/p‖f‖∞).
When p = 2, L2[−π, π] is a Hilbert space.

{1, cosnx, sinnx | n ∈ Z+}

is an orthogonal set. We have

‖1‖22 = 〈1, 1〉 =
∫ π

−π
12 = 2π

‖cosnx‖22 =
∫ π

−π
cos2 nx dx = π

‖sinnx‖22 =
∫ π

−π
sin2 nx dx = π

〈1, cosnx〉 =
∫ π

−π
cosnx dx = 0

〈1, sinnx〉 =
∫ π

−π
sinnx dx = 0

〈cosnx, sinmx〉 =
∫ π

−π
cosnx sinmx dx

=
1

2

∫ π

−π
sin(n+m)x+ sin(n−m)x dx

= 0
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Hence
{

1√
2π
, 1√

π
cosnx, 1√

π
sinnx

∣∣∣ n ∈ Z+
}

is an orthonormal set in L2[−π, π], which is separable, and
its span is dense, so it is a Hilbert basis for L2[−π, π]. Thus, for every f ∈ L2[−π, π] we have

f(x) = a0 +
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx

in L2[−π, π] with

a0 =
〈f, 1〉
〈1〉2

=
1

2π

∫ π

−π
f(x) dx

an =
〈f, cosnx〉
〈cosnx〉2

=
1

π

∫ π

−π
f(x) cosnx dx

bn =
〈f, sinnx〉
〈sinnx〉2

=
1

π

∫ π

−π
f(x) sinnx dx

End of Lecture 31
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Start of Lecture 32

Some examples involving Fourier series.

Example 32.1 (Forced Damping String): Consider a spring with a mass with m is attached on it. The
spring is resting at its equilibrium point initially. We have Fspring = −ky. This is also known as the Hooke’s
law. We also have Fdamping = −cy′ and Fapplied = g(t). By Newton’s law we have Ftotal = my′′. Hence

−ky − cy′ + g(t) = my′′ =⇒ my′′ + cy′ + ky = g(t).

For the sake of example, let m = 1, c = 2, and k = 10. Then we have

y′′ + 2y′ + 10y = g(t)

where g(t) is the 2π−periodic function with

g(t) =

{
π
2 + t −π ≤ t ≤ 0
π
2 − t 0 ≤ t ≤ π

.

To solve y′′ + 2y′ + 10y = 0 try y = erx, y′ = rerx, y′′ = r2erx. Then, the DE becomes

r2erx + 2rerx + 10erx = 0 =⇒ r2 + 2r + 10 = 0 =⇒ r = −1± 3i.

Then we have

y1 = e(−1+3i)t = e−t(cos 3t+ i sin 3t) and y2 = e(−1−3i)t = e−t(cos 3t− i sin 3t).

This gives real solutions
y1 + y2

2
= e−t cos 3t and

y1 − y2
2i

= e−t sin 3t.

The general solution to y′′ + 2y′ + 10y = 0 is

y = Ae−t cos 3t+Be−t sin 3t.

Note that this goes to 0 as t→∞.
To solve y′′ + 2y′ + 10y = cosnt try y = An cosnt+Bn sinnt, where

y = An cosnt+Bn sinnt

y′ = −nAn sinnt+ nBn cosnt

y′′ = −n2An cosnt− n2Bn sinnt

Substitute these in the DE t obtain

y′′ + 2y′ + 10y = cosnt =⇒ −n2An cosnt− n2Bn sinnt− 2nAn sinnt+ 2nBn cosnt+ 10An cosnt+ 10Bn sinnt = cosnt

=⇒ (−n2An + 2nBn + 10An) cosnt+ (n2Bn − 2nAn + 10Bn) sinnt = cosnt.

We need, [
10− n2 2n
−2n10− n2

][
An
Bn

]
=

[
1
0

]

=⇒

[
An
Bn

]
=

1

(10− n2)2 + 4n2

[
10− n2 −2n

2n 10− n2

][
1
0

]
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This gives the solution

yn =
10− n2

(10− n2) + 4n2
cosnt+

2n

(10− n2)2 + 4n2
sinnt.

To solve y′′ + 2y′ + 10y = g(t), we find the Fourier series for g(t), that is, we write

g(t) = a0 +
∞∑
n=1

an cosnt+
∞∑
n=1

bn sinnt

where

a0 =
1

2π

∫ π

−π
g(t) dt = 0

bn =
1

π

∫ π

−π
g(t) sinntdt = 0 because g(t) is even and sinnt is odd

an =
1

π

∫ π

−π
g(t) cosntdt

=
2

π

∫ π

0

(
π

2
− t
)
cosntdt

= − 2

π

∫ π

0
t cosnt dt

= − 2

π

[ 1
n
t sinnt+

1

n2
cosnt

]π
0

=

{
4
πn2 if n is odd
0 if n is even

.

Thus we have

g(t) =
∞∑
n=1

4

πn2
cosnt

So the general solution to the original DE y′′ + 2y′ + 10y =
∑∞

n=1
4
πn2 cosnt is

y = Ae−t cos 3t+Be−t sin 3t+

∞∑
n=1

4

πn2
(An cosnt+Bn sinnt)

where

An =
10− n2

(10− n2)2 + 4n2
and Bn =

2n

(10− n2)2 + 4n2

We have

An cosnt+Bn sinnt = Cn sin(nt+ φn) where Cn =
√
A2
n +B2

n =
1

(10− n2)2 + 4n2
.

Example 32.2 (Vibrating String): A vibrating string of length π with fixed endpoints approximately sat-
isfies the DE

∂2u

∂t2
= c2

∂2u

∂x2

with the boundary and initial conditions

u(0, t) = u(π, t) = 0 and u(x, 0) = g(x) and ut(x, 0) = h(x)( often h(x) = 0).
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We use the method of separation of variables. For more on this, refer to AMATH 353 - Partial Differential
Equations notes. Try a solution of the form u(x, t) = X(x)T (t). The DE becomes

XT ′′ = c2X ′′T =⇒ X ′′

X
=

1

c2
T ′′

T
.

Since this is true for all x and t, then we must have

XT ′′ = c2X ′′T =⇒ X ′′

X
=

1

c2
T ′′

T
= k where k is a constant.

So we obtain two separate DEs in the form

X ′′(x) = kX(x) and T ′′(t) = kc2T (t).

When we apply the boundary conditions [u(0, t) = u(π, t) = 0 we get

X(0)T (t) = X(π)T (t) = 0 ∀ t =⇒ either T (t) = 0 ∀ t or X(0) = X(π) = 0.

If T (t) = 0 then u(x, t) = 0 ∀ x, t. If X(0) = X(π) = 0 then

X ′′(x) = kX(x), X(0) = X(π) = 0.

When k = 0 we get X ′′(x) = 0 then X(x) = ax+ b. Since X(0) = X(π) = 0 then a = 0 = b. Then X = 0.
Then u(x, t) = 0 ∀ x, t.
When k = p2 > 0 we get X ′′ = p2X (we try y = erx as our solution). We get

X(x) = Aepx +Be−px.

Since the boundary conditions implies X(0) = X(π) = 0 then A = B = 0. Then X = 0. Then u(x, t) = 0
for all x, t.
When k = −p2 < 0 we get X ′′ = −p2X (we try y = erx as our solution). We get

X(x) = A cos px+B sin px.

Since X(0) = 0 then A = 0. Then X(x) = B sin px. Since X(π) = 0 then B sinπp = 0. Then either B = 0
or p = n ∈ Z. We obtain the solution

X(x) = B sinnx where n ∈ Z and k = −n2.

Consider the other DE when k = −n2, n ∈ Z+ and Xn(x) = sinnx. We have

T ′′(t) = kc2T (t) =⇒ T ′′ + n2c2T = 0.

Which has the solution
Tn(t) = An cosnct+Bn sinnct

which gives us
un(x, t) = sinnx(An cosnct+Bn sinnct).

Then we look for as solution of the form

u(x, t) =

∞∑
n=1

sinnx(An cos cnt+Bn sin cnt).
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Note that any solution in this form satisfies the boundary conditions. So we look for solutions in the form
that satisfy the given initial condition where u(x, 0) = g(x) and ut(x, 0) = h(x). We have

ut(x, t) =

∞∑
n=1

sinnx(−ncAn sinnct+ ncBn cosnct).

We need

u(x, 0) = g(x) =⇒
∞∑
n=1

An sinnx = g(x) and,

ut(x, 0) = h(x) =⇒
∞∑
n=1

ncBn sinnx = h(x)

We take the An to be the coefficients in the Fourier series for the odd 2π periodic function which agrees with
g(x) for 0 ≤ x ≤ r. We take ncBn in a similar way.

End of Lecture 32
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Start of Lecture 33

Definition 33.1: A (complex) trigonometric polynomial is a function f : R→ C of the form

f(x) =

a0 + ∑̀
n=1

an cosnx+
∑̀
n=1

bn sinnx

+ i

a′0 + ∑̀
n=1

a′n cosnx+
∑̀
n=1

b′n sinnx


for some an, bn, a′n, b′n ∈ R. Equivalently a function f : R→ C of the form

f(x) =
∑̀
−`

cne
inx for some cn ∈ C.

Where

cosnx =
einx + e−inx

2
where einx = cosnx+ i sinnx,

sinnx =
einx − e−inx

2i
where e−inx = cosnx− i sinnx.

Remark 33.2: The set of all trigonometric polynomials is dense in

C(T ) = C(T,C) = {continuous 2π − periodic functions f : R→ C}

using the ∞−norm. Hence also in Lp(T ) = Lp(T,C) using the p−norms. The set {einx | n ∈ Z} is
orthogonal in L2(T ). Since

〈einx, eimx〉 =
∫ π

−π
einxeinx dx =

∫ π

−π
ei(n−m)x dx =


∫ π
−π 1 dx = 2π if n = m[

1
(n−m)ie

i(n−m)x
]π
−π = 0 if n 6= m

.

So the set U =
{

1√
2π
einx

∣∣∣ n ∈ Z} is a Hilbert basis for L2(T ) = L2(T,C) = L2[−π, π]. For every
f ∈ L2(T ), we have

f(x) =

n=∞∑
n=−∞

cne
inx = lim

`→∞

∑̀
n=−`

cne
inx in L2(T ) where cn =

1

2π

∫ π

−π
f(t)e−int dt.

Remark 33.3: Recall that for s`
∑`

n=1 an with an ∈ R,

∞∑
n=1

an converges ⇐⇒ {s`} and {σ`} converges where σ` =
s1 + s2 + . . .+ s`

`
.

Note that the converse is not necessarily true (an = (−1)n).

Remark 33.4: For the assignment, use the sequential characterization of compactness. S is compact if and
only if S is sequentially compact. Every sequence in S has a subsequence that converges to element which
is in S.

End of Lecture 33
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Start of Lecture 34

Notation 34.1: For f ∈ L1(T ) = L1(T,C) (or f : R→ C is 2π− periodic and measurable with
∫ π
−π |f | <∞)

we have

cn(f) = f̂(n) =
1

2π

∫ π

−π
f(t)e−int dt.

as the (complex) Fourier coefficients of f .

Notation 34.2: We have the partial sums of the Fourier series of f as

S`(f)(x) =
∑̀
−`

cn(f)e
inx

and the Cesàro means of the Fourier series of f as

σm(f) =
S0(f) + S1(f) + . . .+ Sm(f)

m+ 1
=

1

m+ 1

m∑
`=0

S`f(x).

Question: If f ∈ Lp(T ) then,

do we have lim
`→∞

S`(f) = f in Lp(T ),

or do we have lim
m→∞

σm(f) = f in Lp(T ),

or do we have lim
`→∞

S`(f)(x) = f(x) ∀ x ∈ T (or for a.e x ∈ T ),

or do we have lim
m→∞

σm(f)(x) = f(x) in Lp(T )?

Solution.

For f ∈ L1(T ), we have

S`(f)(x) =
∑̀
n=−`

cn(f)e
inx

=
∑̀
n=−`

(
1

2π

∫ π

−π
f(t)e−int

)
einx

=
1

π

∫ π

−π
f(t)

1

2

∑̀
n=−`

ein(x−t) dt

=
1

π

∫ π

−π
f(t)D`(x− t) dt where ,

D`(u) =
1

2

∑̀
n=−`

einu

=
1

2
e−i`u

ei(2`+1)u − 1

eiu − 1
if u 6= 0
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Since eiθ − 1 = eiθ/2(eiθ/2 − e−iθ/2) = eiθ/2 · 2i sin θ
2 , then

=
1

2
e−i`u

2i exp
(
i(`+ 1

2)u
)
sin
(
`+ 1

2u
)

2i exp
(
iu2
)
sin u

2

=
sin
(
`+ 1

2

)
u

2 sin 1
2u

.

So we have

S`(f)(x) =
1

π

∫ π

−π
f(t)D`(x− t) dt

where

D`(u) =
1

2

∑̀
n=−`

einu =


sin(`+ 1

2)u
2 sin 1

2
u

if u 6= 0

`+ 1
2 if u = 0.

.

D`(u) is called the Dirichlet kernel.

Note that D`(u) is real-valued and 2π−periodic and even. Also,

∫ π

−π
D`(u) du =

1

2

∑̀
n=−`

∫ π

−π
einu du =

1

2

∫ π

−π
e0 = π.

Exercise 34.3: Show
∫ π
−π
∣∣D`(u)

∣∣.
Remark 34.4: Also, for f ∈ L1(T ), we have

σm(f)(x) =
1

m+ 1

m∑
`=0

S`(f)(x)

=
1

m+ 1

m∑
`=0

1

π

∫ π

−π
f(t)D`(x− t) dt

=
1

π

∫ π

−π
f(t)Km(x− t) dt, where

Km(u) =
1

m+ 1

m∑
`=0

D`(u)

=
1

m+ 1

m∑
`=0

sin
(
`+ 1

2

)
u

2 sin

=
1

2(m+ 1) sin u
2

Im

 m∑
`=0

ei(`+
1
2)u


=

1

2(m+ 1) sin u
2

Im

eiu/2
(
ei(m+1)u − 1

)
eiu − 1

.
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Since eiθ − 1 = eiθ/2(eiθ/2 − e−iθ/2) = eiθ/2 · 2i sin θ
2 , then

=
1

2(m+ 1) sin u
2

Im

eiu/2 2ieim+1
2
u sin m+1

2 u

2ieiu/2 sin u
2


=

1

2(m+ 1)

sin2( (m+1)u
2 )

sin2(u2 )
when u 6= 0.

Thus we have
σm(f)(x) =

1

π

∫ π

−π
f(t)Km(x− t) dt

where

Km(u) =
1

m+ 1

m∑
`=0

D`(u) =

 1
2(m+1)

sin2(
(m+1)u

2
)

sin2(u
2
)

if u 6= 0

m+1
2 if u = 0

Since

Km(0) =
1

m+ 1

m∑
`=0

(
`+

1

2

)
=

1

m+ 1

(
m(m+ 1)

2
+
m+ 1

2

)
=
m+ 1

2
.

The function Km(u) is called the Fejer kernel.

Remark 34.5: Km(u) is real-valued, even and 2π− periodic.

Exercise 34.6: Show that max
∣∣Km(u)

∣∣ = Km(0) =
m+ 1

2
.

Remark 34.7: Also, ∫ π

−π
Km(u) du =

1

m+ 1

m∑
`=0

∫ π

−π
D`(u) du =

1

m+ 1

m∑
`=0

π = π.

Definition 34.8: The convolution of f with g is defined as

(f ∗ g)(x) =
∫
A
f(t)g(x− t) dt.

Remark 34.9: Note that
σm(f)(x) =

1

π

∫ π

−π
f(t)Km(x− t) dt.

Letting s = x− t gives

σm(f)(x) =
1

π

∫ x−π

x+π
−f(x− s)Km(s) ds

=
1

π

∫ x+π

x−π
f(x− s)Km(s) ds

=
1

π

∫ π

−π
f(x− t)Km(t) dt

Then letting s = −t gives us

=
1

π

∫ π

−π
f(x+ t)Km(t) dt since Km(t) is even.

End of Lecture 34

Spring 2018 79



Lecture 35 PMATH 450/650 23 July 2018

Start of Lecture 35

Recall the definitions of Fourier coefficients and Cesàro means.

Theorem 35.1 (Riemann-Lebesgue lemma): Let f ∈ L1(T ). Then limn→∞ cn(f) = 0.

Proof.

Let ε > 0. Choose a trigonometric polynomial g(x) with ‖f − g‖1 < ε · 2π. Say g(x) =
∑̀
−`

ane
inx. Then,

for n > `,
1

2π

∫ π

−π
g(t)e−int dt = 0.

So,

∣∣cn(f)∣∣ =
∣∣∣∣∣ 12π

∫ π

−π
f(t)e−int dt

∣∣∣∣∣∣∣∣∣∣ 12π
∫ π

−π
(f(t)− g(t))e−int dt

∣∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(t)− g(t)∣∣dt
=

1

2π
‖f − g‖1

= ε

Thus lim
n→∞

cn(f) = 0.

Theorem 35.2 (Fejer): Let f ∈ L1(T ). Let a ∈ T . Suppose f(a+) and f(a−) exist in C where

f(a+) = lim
x→a+

f(x) = lim
t→0+

f(a+ t)

f(a−) = lim
x→a−

f(x) = lim
t→0−

f(a− t).

Then,

lim
m→∞

σm(f)(a) =
f(a+) + f(a−)

2
in C.

Moreover, if f is continuous in a closed interval I then the convergence is uniform.

Exercise 35.3: Show that

σm(f)(x) =
1

π

∫ π

−π
f(t)Km(x− t) dt

=
1

π

∫ π

−π
f(x− t)Km(t) dt

=
1

π

∫ π

−π
f(x+ t)Km(t) dt.

Proof.

Recall the following:
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S`(f)(x) =
∑̀
−`

cn(f)e
inx =

∑̀
n=−`

(
1

2π

∫ π

−π
f(t)e−int dt

)
einx =

1

π

∫ π

−π
f(t)D`(x− t) dt

where D`(u) =
1

2

∑̀
−`

e−inu =
sin
(
`+ 1

2

)
u

2 sin 1
2u

and σm(f)(x) =
1

m+ 1

m∑
`=0

S`(f)(x) =
1

m+ 1

m∑
`=0

1

π

∫ π

−π
f(t)D`(x− t) dt =

1

π

∫ π

−π
f(t)Km(x− t) dt

where Km(u) =
1

m+ 1

m∑
`=0

D`(u) =
1

2(m+ 1)

sin2
(
m+1
2 u

)
sin2

(
u
2

)
and

∫ π

−π
D`(u) du = π and

∫ π

−π
Km(u) du = π

σm(f)(x) =
1

π

∫ π

−π
f(t)Km(x− t) dt =

1

π

∫ π

−π
f(x− t)Km(t) dt =

1

π

∫ π

−π
f(x+ t)Km(t) dt

(by Exercise 35.3)

Given ε > 0 we can choose δ > 0 so that
∣∣f(a+ t)− f(a+)

∣∣ and ∣∣f(a− t)− f(a−)∣∣.
Hence

∣∣(f(a+ t)− f(a− t))− (f(a+)− f(a−))
∣∣ is small. – Wrong

Hence
∣∣(f(a+ t) + f(a− t))− (f(a+) + f(a−))

∣∣ is small. We have

∣∣∣∣∣σm(f)(a)− f(a+) + f(a−)

2

∣∣∣∣∣ = 1

2

∣∣∣∣∣
∫ π

−π

(
(f(a+ t)− f(a− t))− f(a+)− f(a−)

)
Km(t) dt

∣∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣∣(f(a+ t) + f(a− t))− (f(a+) + f(a−))
∣∣∣Km(t) dt

=
1

π

∫ π

0

∣∣∣(f(a+ t) + f(a− t))− (f(a+) + f(a−))
∣∣∣Km dt

= I + J

where I =
1

π

∫ δ

0

∣∣∣(f(a+ t) + f(a− t))− (f(a+) + f(a−))
∣∣∣Km(t) dt

and J =
1

π

∫ π

δ

∣∣∣(f(a+ t) + f(a− t))− (f(a+) + f(a−))
∣∣∣Km(t) dt.

Given ε > 0 choose δ > 0 so that 0 < t < δ =⇒
∣∣(f(a+ t) + f(a− t))− (f(a+) + f(a−))

∣∣ ≤ ε. Then,
I ≤ 1

π
ε

∫ δ

0
Km(t) dt ≤

1

π
ε

∫ π

0
Km(t) dt =

1

π
ε
π

2
=
ε

2

Also, J ≤ 1

π
max
δt≤π

Km(t)

∫ π

δ

∣∣∣(f(a+ t) + f(a− t))− (f(a+) + f(a−))
∣∣∣ dt

≤ 1

π
max
δt≤π

Km(t)

∫ π

0

∣∣f(a+ t)
∣∣+ ∣∣f(a− t)∣∣+ ∣∣∣f(a+)∣∣∣+ ∣∣∣f(a−)∣∣∣ dt

≤ 1

π
max
δ≤t≤π

Km(t)

(
‖f‖1 + π

(
f(a+) + f(a−

))
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Since we have Km(t) =
1

2(m+1)

sin2(m+1
2
t)

sin2 t
2

≤ 1
2(m+1)

1
sin2 t

2

≤ 1
2(m+1)

π2

t2
, then

J ≤ 1

π

1

2(m+ 1)

π2

δ2

(
‖f‖1 + π

(
f(a+) + f(a−)

))
→ 0 as m→∞.

So we can choose m ∈ Z+ large enough so that J ≤ ε
2 .

Corollary 35.4: Let f ∈ L1(T ). If all three

f(a+) = lim
x→a+

f(x) = lim
t→0+

f(a+ t)

f(a−) = lim
x→a−

f(x) = lim
t→0−

f(a− t)

lim
`→∞

S`(f)(a)

exist in C, then lim
`→∞

S`(f)(a) =
f(a+) + f(a−)

2
.

Example 35.5: Recall that when g(x) is the 2π−periodic function,

g(x) =


π

2
+ x for − π ≤ x ≤ 0

π

2
− x for 0 ≤ x ≤ π

we found that
g(x) =

4

π
σn odd

1

n2
cosnx =

4

π

(
1

12
cosx+

1

31
cos 3x+

1

52
cos 5x

)
.

Put in x = 0 to get
π

2
=

4

π

∞∑
k=0

1

(2k + 1)2
where

∞∑
k=0

1

(2k + 1)2
=
π2

8
.

Another method is done by letting S =
∞∑
n=1

1

n2
. Since every term is positive, then we can rearrange the sum

as

S =

(
1

12
+

1

32
+

1

52
+ . . .

)
+

(
1

22
+

1

42
+

1

62
+ . . .

)
=
π2

8
+

1

4
S.

Then,
3

4
S =

π2

8
. Then S =

π2

6
. Hence

∞∑
n=1

1

n2
=
π2

6
.

End of Lecture 35
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Start of Lecture 36

Exercise 36.1: Find ‖g‖2 where g is defined as

g(x) =


π
2 + x for − π ≤ x ≤ 0

π
2 − x for 0 ≤ x ≤ π

in Example 35.5 We have

‖g‖2 =
∫ π

−π
g2 = 2

∫ π

0

(
π

2
− x
)2

dx

= 2

[
1

3

(
x− π

2

)3
]π
0

=
2

3

(
π2

2x
+
π3

3

)

=
π3

6
.

Remark 36.2: Working in L2(T ) using the orthonormal basis { 1√
2π
, 1√

π
cosnx, 1√

π
sinnx}, we have

g(x) =
∑

n( odd)

4√
π n2

1√
π

cosnx

‖g‖2 =
∑

n( odd)

∣∣∣∣ 4√
π n2

∣∣∣∣2 = ∑
n( odd)

16

πn4
.

Thus, ∑
n( odd)

=
1

n4
=
π3

6

π

16
=
π4

96
.

For S =
∑∞

n=1
1
n4 we have

S =
∑

n( odd)

1

n4
+

∑
n( even)

1

n4
=
π4

96
+

1

16
S.

Then 15
16S = π4

96 =⇒ S = π4

90 .

Theorem 36.3: Let f ∈ L1(T ) and let a ∈ T . If

lim
h→0

1

h

∫ h

0

∣∣f(a+ t)− f(a)
∣∣dt = 0

then limm→∞ σm(f)(a) = f(a).

Corollary 36.4: lim
m→∞

σm(f)(x) = f(x) for a.e x ∈ T .

Theorem 36.5: If f ∈ Lp(T ) then lim
m→∞

σm(t) = f in Lp(T ).

Corollary 36.6: If f, g ∈ L1(T ) with cn(f) = cn(g) for all n ∈ Z, then f = g in L1(T ) (that is, f = g a.e
in T ).
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Proof.

Suppose cn(f) = cn(g) for all n ∈ Z. Then, σm(f) = σm(g) for all m ∈ Z+. So we have σm(f)→ f in L1(T )
and σm(f) = σm(g)→ g in L1(T ). So f = g in L1(T ).

Some harder theorems that are not covered in the textbook.

Theorem 36.7: For all f ∈ Lp(T ) where 1 < p < ∞, lim
`→∞

S`(f)(x) = f(x) for a.e x ∈ T ∃ f ∈ L1(T )

such that {S`(f)(x)} diverges for all x ∈ T .

Remark 36.8: By Fejer’s theorem, for f ∈ L1(T ), a ∈ T , if f(a+) and f(a−) exist and are finite and if

{S`(f)(a)} converges then lim
`→∞

S`(f)(a) =
f(a+) + f(a−)

2
.

Example 36.9: For
∞∑
n=1

1

n
cosnx we use Dirichlet’s test, that is given sequences {an} and {bn} of real

numbers, if {Sn} is bounded where Sn =

n∑
k=1

ak and if bn ↘ 0 (decreases and converges to 0) then
∞∑
n=1

anbn

converges.

Remark 36.10: Alternating series test follows as a special case of Dirichlet’s test.

Definition 36.11: For the partition a < x0 < x1 < . . . < xn < b (that is, P = {x0, x1, . . . , xk}), we define
the variation of f with respect to P as

V (f, P ) =

n∑
k=1

∣∣f(xk)− f(xk−1)∣∣
and total variation of the function f as V (f) = supP V (f, P ). We say f is of bounded variation when
V (f) <∞. Some supplementary information regarding variation can be found from: https://faculty.etsu.edu/gardnerr/

5210/notes/6-3.pdf

Definition 36.12: Let f ∈ L1(T ), a ∈ T . If f is of bounded variation in a closed interval with a in its
interior, then S`(f)(a) =.

Theorem 36.13 (Dini’s Criterion): https://en.wikipedia.org/wiki/Dini_criterion

Corollary 36.14: If f is differentiable, then lim`→∞ S`(f)(a) = f(a). More generally, if f ′(a+) and f ′(a−)
exist and are finite, then f(a+) and f(a−) exist and are finite and lim`→∞ S`(f)(a) =

f(a+)+f(a−)
2 .

This concludes the final lecture for PMATH 450/650 - Summer 2018.

End of Lecture 36
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Final exam information is posted in the course website as follows: http://www.math.uwaterloo.ca/~snew/pmath450-2018-S/index.html

PMATH 450/650 Lebesgue Integration and Fourier Analysis, Spring 2018

Note: the PMATH 450/650 final examination will be held on Thursday August 2, from 9:00-11:30 am, in
PAC 9.
The exam will cover all of the course material.
There will be 5 questions, each with two parts.
In some of the problems you will be asked to state definitions.
You will also be asked to prove 2 of the following 5 theorems:

• Theorem 1.18 (Existence of Non-Measurable Sets)

• Theorem 2.31 (Fatou’s Lemma)

• Theorem 3.18 Part (2) (Hölder’s Inequality)

• Theorem 4.23 (Closed Convex Sets in a Hilbert Space)

• Theorem 15.4 from the textbook (Fejér’s Theorem)

http://www.math.uwaterloo.ca/~snew/pmath450-2018-S/index.html
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