
Chapter Based Lecture Notes

CO 353: Computational Discrete Optimization

Prepared by: Calvin KENT
www.student.math.uwaterloo.ca/~c2kent/

Instructor: Ricardo FUKASAWA
Term: Winter 2020

Last revised: 7 March 2020 Page

Table of Contents i

Preface and Notation iii

1 Algorithm Runtime, Big-O Notn. and Graph Theory 1

1.1 Algorithm Running Time . 1
Finding an Estimate of Runtime (big-O Notation) 1
Arithmetic Model . 2

1.2 Graph Theory . 3
Minimum Spanning Tree (MST) . 6

MST Problem . 6

2 Greedy Algorithms and Matroids 11

2.1 Kruskal’s Algorithm . 11
Implementation of Kruskal’s Algorithm . 12
Validating Kruskal’s Algorithm with Linear Programming 13

2.2 Greedy Algorithms . 17
Maximum Cost Forest Problem . 18

Using Kruskal’s Algorithm for Max. Cost Forest 18
Properties of Forests . 19

2.3 Matroids . 20
Independence Systems and Independent Sets . 20
Solving Maximum Weighted Independent Set Problem with Greedy Algorithm 22
Matroid Constructions . 24

3 Dynamic Programming 29

3.1 Weighted Interval Scheduling . 29
Dynamic Programming Overview . 32
Knapsack Problem . 32
Shortest Paths . 33

Dijkstra’s Algorithm . 34
Shortest Paths Without Negative Cycles . 36

4 Complexity Theory 39

4.1 Polytime Reductions . 39

i

http://www.student.math.uwaterloo.ca/~c2kent/LectureNotes/co353-1201/CO353_CO.pdf
www.student.math.uwaterloo.ca/~c2kent/

ii

Examples of Polytime Reducible Problems . 39
Classes of P and NP . 45
NP-Completeness . 46
NP-Hardness . 47

Index 47

Preface and Notation

This PDF document includes lecture notes for CO 353 - Computational Discrete Optimization
taught by Ricardo FUKASAWA in Winter 2020.

For any questions contact me at c2kent(at)uwaterloo(dot)ca.
Thanks to Taric Ali and Caleb Nicholas Chappell for providing me the notes for the classes I missed.

Notation

Course outline and relevant info: https://piazza.com/uwaterloo.ca/winter2020/co353

Throughout the course and the notes, unless otherwise is explicitly stated, we adopt the follow-
ing conventions and notations.

• Algorithms use the same counter as definitions, theorems, examples etc.

• The university logo is used as a place holder.

Calvin KENT

iii

http://www.student.math.uwaterloo.ca/~c2kent/LectureNotes/co353-1201/CO353_CO.pdf
http://www.student.math.uwaterloo.ca/~c2kent/LectureNotes/co353-1201/CO353_CO.pdf
https://piazza.com/uwaterloo.ca/winter2020/co353

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 1

Chapter 1 – Algorithm Runtime, Big-O Notn. and Graph
Theory

1.1 Algorithm Running Time

We want to formally see which algorithms are more efficient. To compare algorithms, we measure
runtime (number of steps) of an algorithm as a function of the input.

Definition 1.1.1: Size of an input is the number of bits needed to encode it. /

Example 1.1.2: Consider a list of positive integers a1, a2, . . . , an where ai ∈ Z+ for i = 1, . . . , n.
For each integer ai, we need dlog aie bits. Hence, the number of bits needed to represent the input
is
∑n

i=1dlog aie. /

1.1.1 Finding an Estimate of Runtime (big-O Notation)

Definition 1.1.3: Let f, g : Z+ → R+ be two functions. We say f is O(g), read as big-O of g, if
∃ c ∈ R+ and ∃ n′ ∈ Z+ such that ∀ n ≥ n′ we have f(n) ≤ cg(n). /

Example 1.1.4: Let f(n) = 5 log n and show f(n) is O(n). Let g(n) = n and c = 5. Since for all
n ≥ 1 we have log n < n. Then, for n ≥ 1 we have f(n) ≤ 5n. So, f(n) ≤ cg(n). Hence, f(n) is
O(g) = O(n). /

Example 1.1.5: Let f(n) = 2n2 + 3n log n and show f(n) is O(n2).We have

f(n) = 2n2 + 3n log n ≤ 5n2,

so it follows that f(n) is O(n2). /

Remark 1.1.6: We make the following remarks for polynomials, logarithms and exponentials.

1
d∑

k=0

αkn
k where αk ∈ R and αd > 0 is O(nd). i.e. polynomials are dominated by their leading

term.

2 logb n where b > 1 and c > 0 is O(nc). i.e. logarithms are dominated by polynomials.

a We recall logarithm rules. We have

logb n =
log2 n

log2 b
=

(
1

log2 b

)
log2 n.

So big-O does not get affected by log base. In this course we will use log base 2.

3 nc where b > 1 and c > 0 is O(bn). i.e. polynomials are dominated by exponentials. /

Theorem 1.1.7 (Properties of big-O): Let f, g, h, fi, gi : Z+ → R+ be functions for i = 1, . . . ,m.

1 (Transitivity) If f is O(g) and g is O(h) then f is O(h).

Winter 2020 CO 353 1

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 2

2 If f, g are O(h) then f + g is O(h).

3 If fi is O(gi) for all i = 1, . . . ,m, then f1 · · · fm is O(g1 · · · gm).

Proof: Exercise. /

Definition 1.1.8: Let f, g : Z+ → R+ be two functions. We say f is Ω(g), read as omega of g
(or big-omega of g), if ∃ c ∈ R+ and ∃ n′ ∈ Z+ such that ∀ n ≥ n′, we have f(n) ≥ cg(n).

We say f is Θ(g), read as theta of g (or big-theta of g), if f is O(g) and Ω(g). /

Definition 1.1.9: Operations involving a combination of basic arithmetic (+,−,×,÷) operations,
comparisons, if-then-else statements and assignments are called basic operations (sometimes re-
ferred as elementary operations).

We say an algorithm has runtime p(n) if the algorithm executes p(n) basic operations on inputs
of size n. /

1.1.2 Arithmetic Model

Definition 1.1.10: Consider an algorithm with runtime of p(n). If p(n) isO(g) for some polynomial
function g(n), then the algorithm said to be in polynomial time . In short, we refer these algorithms
as polytime algorithms and they are also called efficient algorithms. /

Remark 1.1.11: In practice, big-O does not always shows which algorithms are more efficient.

1 Big-O analysis provides an upper bound (i.e. worst case) for an algorithm. For example, in
linear programming simplex algorithm is widely used and considered to be efficient but it has
big-O of exponential.

2 Big-O hides constants. Depending on the input, an exponential algorithm can be more efficient
that an polytime algorithm. For example, for small numbers for n, the exponential algorithm
with runtime 1.0001n is more efficient than the polytime algorithm with runtime 1020n100. /

We recall Example 1.1.2. Given integers a1, . . . , an ∈ Z+, we want to find an efficient algorithm
that sorts these integers. We have the size of input as

∑n
i=1dlog2 aie. It becomes tricky to express

runtime as a function of input size. So we pick some parameters that are at most a polynomial of
actual input size.

If the input size is k, then we want to pick parameters n so that we have n is poly(k).

Example 1.1.12: We refer back to our example. We have

• n as the number of integers,

• amax as the largest integer (does not have to be unique unless specified).

So, if we find algorithms in time poly(n, log amax), then time is polynomial in input size. Now,
consider the following example:

Given distinct integers a1, . . . , an ∈ Z+ find the largest integer. We know the algorithm is polytime

Winter 2020 CO 353 2

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 3

in terms of n, log amax. Consider the following algorithm.

Algorithm 1.1.13: Finding largest integer

Input : a1, . . . , an (distinct)
Output: amax (such that amax ≥ ai for i = 1, . . . , n)

1 largest ← a1

2 for i = 1, . . . , n do
3 if ai >largest then }O(1)

O(n)

4 largest ← ai }O(1)

5 return largest

Note that the operations in line 3 and 4 both take O(1) time each since they are basic operations.
The for loop in line 2 goes for n times. Hence, the algorithm is in O(n). /

Example 1.1.14: Let S1, . . . , Sk be a partition of the set S = {1, . . . , n} where
⋃k
i=1 Si = S and

Si ∩ Sj = ∅ for all i 6= j and j, ` ∈ {1, . . . , n}. We want to merge sets containing j and `. Assume
we have Label[t] that says which set t is on for all t ∈ {1, . . . , n}. So we can consider Label and
Merge as functions where Label: {1, . . . , n} → {1, . . . , k}, where Merge is defined as follows.

Algorithm 1.1.15: Algo for partition problem

Input : a1, . . . , an (distinct)
Output: amax (such that amax ≥ ai for i = 1, . . . , n)

1 if Label [j] 6=Label [`] then }O(1)

2 temp← LABEL[`] }O(1)

3 for i = 1, . . . , n do
4 if Label =temp then }O(1)

O(n)

5 Label [i]←Label [j] }O(1)

Similarly to algorithm 1.1.13, lines 2,3,5 and 6 have comparison and assignment operations so they
are in O(1). The for loop in line 3 goes n times so it is in O(n). Hence the algorithm is in O(n). /

1.2 Graph Theory

Definition 1.2.1: A graph G = (V,E) is a tuple of vertices v ∈ V , and edges e ∈ E. /

Example 1.2.2: An example of a graphG = (V,E) where V = {a, b, c, d} andE = {{a, b}, {b, d}, {a, c}}.

Winter 2020 CO 353 3

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 4

c

a b

d

Figure 1.2.1: Simple graph.
/

Remark 1.2.3: For convenience, we omit brackets when writing edges. i.e. ab = {a, b}.

In this course we will assume graphs are simple. i.e. no loops or parallel edges.

a b c

Figure 1.2.2: No parallel edges or loops.
/

Definition 1.2.4: We provide the following definitions:

1 If uv ∈ E we say u, v are endpoints of edge uv and u is adjacent to v.

2 A walk in G = (V,E) is a sequence v1, . . . , vk where vi ∈ V , vivi+1 ∈ E for all i = 1, . . . , k−1.
Recall Example 1.2.2. We have a, b, d and b, a, b, d are walks but d, c, a is not a walk.

3 A walk v1, . . . , vk is a path if for all distinct i, j = 1, . . . , k − 1 we have vi 6= vj . i.e. if every
edge and vertex in a path is traversed exactly once. For example a, b, d is a path but b, a, b, d
is not a path.

4 A walk is closed if v1 = vk.

5 A closed walk is a cycle if k ≥ 4. A graph with that contains at least one cycle is called
cyclic, graphs with no cycles are called acyclic.

Example: In the figure below, 1, 2, 3, 1 is a cycle but 1, 2, 1 is not.

3

1 2

4

Figure 1.2.3: Simple graph with cycle.

Winter 2020 CO 353 4

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 5

6 A graph G = (V,E) is connected if for all u, v ∈ V , there exists a u-v path.

7 Let G = (V,E) and H = (U,F) be graphs. We say H is a subgraph of G if U ⊆ V and
F ⊆ E.

Example: Here H1, H2 and H3 are subgraphs of G.

3

1 2

4

G

1

H1 3

1 2

H2

3

1 2

4

H3

Figure 1.2.4: Some subgraphs of G.

8 Let G = (V,E) be a graph and let S ⊆ V . The graph G[S] = (S,E(S)) is called the subgraph
induced by S where E(S) = {e ∈ E | both endpoints in S}.

Example: Let G = (V,E) where V = {1, 2, 3, 4} as below and let S = {2, 3, 4}. We have
G[S] as shown below.

3

1 2

4

G

3

2

4

G[S]

Figure 1.2.5: G and G[S].

9 Let G = (V,E) be a graph. A connected component of G is a maximal induced subgraph
of G, where maximal means adding another element violates its property. For example, if
G[S] is a connected component of G, then G[S] is a connected subgraph induced by S but
G[S ∪ {v}] is not connected for v ∈ V \ S. /

Algorithms Revisited

Example 1.2.5: Given a graph G = (V,E), u, v ∈ V where |V | = n and |E| = m, determine if
u, v are in same connected component.

Winter 2020 CO 353 5

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 6

This can be done in O(n+m) with DFS. Assume G is given as V = {1, . . . , n} and E = {e1, . . . , em}.
Similarly to partition problem we discussed in Example 1.1.14 we have the following algorithm.

Algorithm 1.2.6: Determining if vertices are in same connected component

Input : n, e1, . . . , em, u, v

1 for i = 1, . . . , n do
2 Label[i]← i

3 for i = 1, . . . ,m do // merging connected components as we go

4 let x, y be endpoints of ei
5 Merge (Label, x, y)

6 if Label[u] = Label[v] then
7 return YES
8 else
9 return NO

The first for loop in line 1 is in O(n). The merge function in line 5 is in O(n), so the for loop in
line 3 is in O(mn). The if-then-else statement in line 6 is in O(1). Hence, the algorithm is in O(mn).

Note that this can be done better but at this point in the course we want easy to analyze ex-
amples to get a feel for big-O. Our focus right now is practicing big-O, not designing algorithms. /

1.2.1 Minimum Spanning Tree (MST)

Definition 1.2.7: Given G = (V,E), a subgraph T of G is a tree if it is connected and acyclic. A
tree T of G is spanning tree of G is V (T) = V . /

Example 1.2.8: Here both T1 and T2 are trees of G and T2 is a spanning tree of G.

3

1 2

4

G

3

1 2

T1

3

1 2

4

T2

Figure 1.2.6: T1 is a tree of G and T2 is a spanning tree of G.
/

1.2.1.1 MST Problem

Given a connected graph G = (V,E) with edge costs ce ∈ Z for all e ∈ E, we want to find a
minimum spanning tree T of G that minimizes the cost function c(T), defined by

c(T) =
def

∑
e∈E(T)

ce.

Winter 2020 CO 353 6

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 7

Theorem 1.2.9 (Properties of Spanning Trees): Let T be a spanning tree of G = (V,E). Then
the following are true.

1 For all u, v ∈ V , there exists a unique u-v path in T (call Tuv).

2 T is minimally connected.

3 T is maximally acyclic.

4 T is spanning tree if and only if T is connected and has n− 1 edges.

Proof:

1 (Sketch) Suppose there exists distinct P1, P2 u-v paths where P1 = v1, . . . , vk and P2 =
w1, . . . , wl. So v1 = w1 = u, vk = wl = v. Then, there exists some t such that vt 6= wk and
1 < t < k. Since vk ∈ P2, there exists t′ > t for which vt′ ∈ P2. Choose the smallest such t′.
Let ws be the corresponding vertex on P2. Then, vt−1, vt, . . . , vt′ = ws, . . . , wk−1 is a closed
walk that leads to a cycle. To illustrate this consider the following.

1 2

3

456

7

Figure 1.2.7: Closed walk is shown in red.

P1 = 1, 2, 3, 7, 4, 5

P2 = 1, 2, 6, 4, 3, 5

2, 3, 7, 4, 6, 2 is a closed walk

vkvt

ws
vk−1

Note that if the closed walk is a, b, c, d, e, c, a then a, b, c, a is a cycle.

2 Suppose uv ∈ E(T) and T − uv is connected. Note that T − uv is the tree where the edge uv
is removed, which is T − uv = V (T) ∪ E(T) \ {uv}. Let T ′ = T − uv. T ′ has a u-v path T ′uv
without the edge uv. Hence, if we attach the edge uv back to T ′uv, we get a cycle.

3 Analogous to b . Exercise.

4 We recall and look at algorithm 1.2.6 to find if u, v are in same connected component.

Claim: Let G = (V,E) where |V | = n. If |E| < n− 1 edges, then G is disconnected.

Proof: We see that algorithm 1.2.6 starts with n labels and graph is connected if at the end
of the algorithm there is only one label remaining but for every edge the number of labels
decreases by at most 1. Hence, if the graph has less than n − 1 edges, then at the end there
exists at least two distinct labels. Hence, graph is disconnected. �

Claim: Let G = (V,E) where |V | = n. If |E| ≥ n then G has a cycle.

Winter 2020 CO 353 7

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 8

Proof: Since |E| ≥ n, then ∃ e = uv ∈ E for which the algorithm does not decrease number
of labels. Hence, there exists a u-v path P that does not use uv. Hence, P +uv is a cycle. �

Hence, it follows that spanning trees are connected with n − 1 edges. Reverse argument is
also analogous (exercise)

Definition 1.2.10: Let G = (V,E) and let A ⊆ V . We define δG(A) as the set of edges in G that
only have one end point in A. That is, δG(A) =

def
{e ∈ E | |e ∩A| = 1}. This set is called the cut

induced by (the vertices of) A in G. /

Example 1.2.11: Let G = {V,E} where V = {1, 2, 3, 4, 5} and let A = {1, 2, 3} ⊆ V . We have
δG(A) = {14, 24, 35}.

1

2

3

4

5

A

Figure 1.2.8: A = {1, 2, 3} ⊆ V
/

Theorem 1.2.12: A graph G = (V,E) is connected if and only if for all non-empty proper subsets
of V we have δG(A) 6= ∅. i.e. ∀ A (V we have A 6= ∅ and δG(A) 6= ∅.

Proof: Exercise. /

Theorem 1.2.13: Let G = (V,E) and c : E → R and T be a spanning tree of G. TFAE.

1 T is a minimum spanning tree of G.

2 For all uv ∈ E \ E(T), ce ≤ cuv for all e ∈ Tuv.

3 Let e ∈ E(T). If T1, T2 are two connected components of T − e, then e is a minimum cost
edge in δG(T1) = δG(T2).

Remark 1.2.14: Before starting the proof, we illustrate what we mean by part 2 and 3 in
above theorem. Here we have G = (V,E) where E = {e, ei, Ej | i = 1, . . . , 7 and j = 1, 2}.
T = (V,E(T)) is a spanning tree of G where E(T) = E \ {E1, E2} (shown in zigzags) and T1, T2

are two connected components of T − e.

Winter 2020 CO 353 8

Chapter 1. Algorithm Runtime, Big-O Notn. and Graph Theory 9

u v

s t

G

e1

e5

e2

e6

E2

e

e7

e3

e4

E1

Figure 1.2.9: Tuv is shown in blue.

u v

s t

G

T1 T2

e1

e5

e2

e6

E2

e

e7

e3

e4

E1

Figure 1.2.10: T1 and T2 are two connected com-
ponents of T − e.

Part 2 of the theorem states that for j = 1, 2 we have ce ≤ cEj and cei ≤ cEj for i = 1, . . . , 5. Part
3 of the theorem states that ce ≤ cEj where j = 1, 2. /

We continue the proof of Theorem 1.2.13.

Proof: We first show 1 =⇒ 2 . Suppose, for contradiction, ∃ e ∈ Tuv such that ce > cuv for some
uv ∈ E \ E(T). Let T ′ = T − e+ uv.

Claim: T ′ is a spanning tree of G.

Proof: Clearly T ′ ⊆ G and V (T ′) = V (T) = V . Also, T ′ and T have same number of edges (n− 1).
Hence, we only need to show T ′ is connected and acyclic. Since T is acyclic then after removing an
edge e from Tuv we need to add at least two more edges to to create a cycle. Hence, T ′ is acyclic.
Suppose, for contradiction, there exists a non-empty proper subset A (V such that δT ′(A) = ∅.
Since δT (A) is connected, then δT (A) 6= ∅. T = T − uv + e, then we must have δT (A) = e. Then,
|{u, v} ∩A| = 1 but this means δT ′(A) 6= ∅ which is a contradiction. Hence, for all non-empty
proper subsets A (V , we have δT ′ = ∅. Hence, T ′ is connected. Thus, T ′ is a spanning tree of
G. �

Since both T ′ and T are spanning trees of G, then

c(T ′) =
∑

e∈E(T)′

ce = c(T)− ce + cuv < c(T).

But this means T cannot be MST which is a contradiction.

We now show 2 =⇒ 3 . Suppose, for contradiction, there exists e ∈ E(T) such that for two
connected components T1 and T2 of T − e, we have ce < cuv for some uv ∈ δG(T1). Note that since
u and v are in different connected components of T − e then uv /∈ E(T). But then e ∈ Tuv which
contradicts the hypothesis of 2 .

Lastly, we show 3 =⇒ 1 . Suppose T satisfies 3 . Let T ∗ be a MSTmaximizing k = |E(T) ∩ E(T ∗)|.
If k = n− 1 we are done. Otherwise, there exists uv ∈ E(T) \E(T ∗). Let T1 and T2 be two compo-
nents of T − uv. Then, there exists e ∈ δT ∗(T1) such that e ∈ T ∗uv. Since, uv /∈ E(T ∗), then e 6= uv.

Winter 2020 CO 353 9

Chapter 2. Greedy Algorithms and Matroids 10

From the hypothesis of 3 , we have cuv ≤ ce. Let T ′ = T ∗− e+ uv then |E(T ′)| = n− 1. From the
proof of 1 =⇒ 2 , we have that T ′ is also connected and T ′ is a spanning tree of G. Hence,

c(T ′) = c(T ∗)− ce + cuv ≤ c(T ∗).

Then c(T ′) is a MST but this gives us |E(T) ∩ E(T ′)| > |E(T) ∩ E(T ∗)| which contradicts the
choice of T ∗.

Winter 2020 CO 353 10

Chapter 2. Greedy Algorithms and Matroids 11

Chapter 2 – Greedy Algorithms and Matroids

2.1 Kruskal’s Algorithm

Kruskal’s algorithm takes a connected graph G = (V,E) and edge costs as inputs and gives a MST
of G as output. It operates as follows.

Algorithm 2.1.1: Kruskal’s algorithm (idea)

Input : G = (V,E) (connected), c : E → R

Output: MST T .
Init : T = (V,∅).

1 while T is not a spanning tree do
2 Let e be the cheapest edge whose end points are different connected components of T .
3 Add e to T .

4 return T

Example 2.1.2: For G = (V,E) where V = {1, 2, 3, 4} with edge costs below, Kruskal’s algorithm
adds edges to V (T) = V (G) in the order shown.

1 2

34

G = (V,E)

10

13

5 11
7

14

algo−−→

1 2

34

algo−−→5

1 2

34

algo−−→5
7

1 2

34

T is MST.

5
7

11

Figure 2.1.1: Kruskal’s algorithm on G = (V,E)
/

Remark 2.1.3: We make the following remarks about Kruskal’s algorithm.

1 Algorithm returns a spanning tree T .

Winter 2020 CO 353 11

Chapter 2. Greedy Algorithms and Matroids 12

2 Algorithm doesn’t get stuck since there always exists an edge e with minimum cost during
the while loop. If such e didn’t exist, then we can pick a connected component T1 of T and
have δG(V (T1)) = ∅. By Theorem 1.2.12 this means G is connected.

3 T has no cycles since every new added edge e connects T to a different connected component.

4 At every while loop iteration, the number of connected components of T goes down by one,
so the algorithm terminates. /

2.1.1 Implementation of Kruskal’s Algorithm

For G = (V,E) where |V | = n and E = {e1, . . . , em} with each edge ei having cost ci, we implement
Kruskal’s algorithm in the following way. Note that it is possible implement it more efficiently.

Algorithm 2.1.4: Kruskal’s algorithm

Input : n, e1, . . . , em, c1, . . . , cm
Output: MST T .
Init : T = (V,∅).

1 Reorder edges so that c1 ≤ · · · ≤ cm }O(m logm)

2 for j = 1, . . . , n do
O(n)

3 Label[j]← j }O(1)

4 for i = 1, . . . ,m do
5 Let uv be endpoints of ei }O(1)

6 if Label[u] 6= Label[v] then }O(1)


O(mn)

7 Add ei to T }O(1)

8 Merge(Label,u,v) }O(n)

9 return T

Since ordering m elements takes m logm, line 1 is in O(m logm). The overall algorithm is in O(mn)
due to the for loop in line 4 with the Merge function in line 8. We can improve the algorithm by
bringing the complexity of line 6 higher and lowering the complexity of line 8 (with clever use of
data structures) so that both line 6 and line 8 have around same complexity O(log(n)). We use
labels for keeping track of connected components.

Remark 2.1.5: Note that algorithm 2.1.4 always returns MST T . To see this, suppose, for contra-
diction, T is not MST. Then by Theorem 1.2.13 there exists uv ∈ E \ E(T) and e ∈ Tuv such that
cuv < ce. At the point where e was added to T , the vertices u and v were in different connected
components which is a contradiction since there exists a u-v path which is connected. /

Remark 2.1.6: It is also easy to show that Kruskal’s algorithm works with linear programming.
Let G = (V,E) where |V | = n and |E| = m. For all e ∈ E, define variables xe where

xe =

{
1 if e is in MST,
0 if e is not in MST.

Winter 2020 CO 353 12

Chapter 2. Greedy Algorithms and Matroids 13

We have

(Pst) : min
∑
e∈E

cexe,

subject to
∑
e∈E

xe = n− 1,∑
e∈F

xe ≤ n− κ(F), ∀ F ⊆ E,

with 0 ≤ xe ≤ 1.

Here κ(F), kappa of F , is the number of connected components of (V, F). /

2.1.2 Validating Kruskal’s Algorithm with Linear Programming

Recall MST problem we introduced in subsubsection 1.2.1.1. Given G = (V,E) and c : E → R, we
want to find a spanning tree of G of minimum cost.

Definition 2.1.7: A graph is called a forest if it is acyclic (contains no cycles). /

Claim 2.1.8: If T is a forest of G = (V,E) with V (T) = V , then for all F ⊆ E, T has at most
n− κ(F) edges of F .

Example 2.1.9:

Winter 2020 CO 353 13

Chapter 2. Greedy Algorithms and Matroids 14

1 2

3

4

5

G

F = {12, 15, 25}

1 2

3

4

5

(V, F)
κ(F) = 3
n− κ(F) = 2
|E(T) ∩ F | = 1

1 2

3

4

5

T

F = {12, 23, 13}

1 2

3

4

5

(V, F)
κ(F) = 3
n− κ(F) = 2
|E(T) ∩ F | = 2

Figure 2.1.2: Illustration of of Claim 2.1.8.
/

Proof: Let V1, . . . , Vκ(F) be the vectors of each connected component of (V, F). Let ni = |Vi| for
all i = 1, . . . , κ(F). Consider Gi = (Vi, E(T) ∩E(Vi) ∩ F). If Gi is a tree, then it has ni − 1 edges.
If it’s not a tree then it has at most ni − 1 edges since it’s acyclic. So, the number of edges in G is
at most ni − 1. We have

|E(T) ∩ F | =
κ(F)∑
i=1

|E(T) ∩ E(Vi) ∩ F |

≤
κ(F)∑
i=1

(ni − 1)

=

κ(F)∑
i=1

ni

− κ(F)

= n− κ(F),

as required.

Winter 2020 CO 353 14

Chapter 2. Greedy Algorithms and Matroids 15

Remark 2.1.10: Given a spanning tree T , let x> be its characteristic vector . i.e.

x>e =

{
1 if e ∈ E(T),

0 if e /∈ E(T).

x> is feasible for (Pst). Thus, the optimal solution of (Pst) is at most equal to the cost of MST.

Note that by convention, χ is used to denote characteristic vector. In this course we’ll use x. /

Theorem 2.1.11: Let T be the tree returned by Kruskal’s algorithm. Then x> is optimal for (Pst).

Proof: We have the linear program (Pst) as follows.

(Pst) : min c>x,

subject to
∑
e∈F

xe ≤ n− κ(F), ∀ F (E,∑
e∈F

xe = n− 1,

with xe ≥ 0.

We have the dual of (Pst) as (Dst) where

(Dst) : max
∑
∀ F⊆E

(n− κ(F))yF ,

subject to
∑
F :e∈F

yF ≤ ce, ∀ e ∈ E,

with yF ≤ 0, F (E,

yE free.

We illustrate what we mean by above in the following example.

Example: Let G = (V,E) where V = {1, 2, 3} and E = {12, 13, 23} as shown.

3

1 2

G

So we have (Pst) as

(Pst) : min c12x12 + c13x13 + c23x23, F

subject to x12 ≤ 3− 2, {12}
x13 ≤ 3− 2, {13}

x23 ≤ 3− 2, {23}
x12 + x13 ≤ 3− 1, {12, 13}
x12 + x23 ≤ 3− 1, {12, 23}

x13 + x23 ≤ 3− 1, {13, 23}
x12 + x13 + x23 ≤ 3− 1, {12, 13, 23}

with x12 + x13 + x23 = 2.

Winter 2020 CO 353 15

Chapter 2. Greedy Algorithms and Matroids 16

We have (Dst) as

(Dst) : max y12 + y13 + y23 + 2y{12,13} + 2y{12,23} + 2y{13,23} + 2y{12,13,23}

subject to y12 + y{12,13} + y{12,23} + y{12,13,23} ≤ c12

y13 + y{12,13} + y{13,23} + 2y{12,13,23} ≤ c13

y23 + y{12,23} + y{13,23} + 2y{12,13,23} ≤ c23,

with all y’s ≤ 0 except for y12,13,23. /

We now let
E = {e1, . . . , em} with ce1 ≤ · · · ≤ cem ,
Ei := {e1, . . . , ei},
yEi

= cei − cei+1 ≤ 0, ∀ i = 1, . . . ,m− 1,

yE = cem ,

yF = 0, for all other F ⊆ E.

Claim 2.1.12: y is feasible for (Dst).

Proof: We immediately see that the sign restrictions are satisfied. Consider edge ek. We have∑
F :ek∈F

yF =

m∑
i=k

yEi
=

(
m∑
i=k

cei − cei+1

)
+ cem = cek .

We see that the dual constraints are tight. �

Complementary-Slackness conditions state the following.

1 If primal variable is non-zero, then corresponding dual constraint is tight.

2 If dual variable is non-zero, then corresponding primal constraint is tight.

Clearly 1 holds since by the proof of above claim, every dual constraint is tight. To show 2 is
true, we make the following claims.

Claim: For all F ⊆ E, if T is a maximal forest of (V, F) (that is, if any more edges are added to T
it’s no longer a forest), then |E(T) ∩ F | = n− κ(F).

Proof: Exercise. �

Claim: At every step of Kruskal’s algorithm we have a maximal forest of Ei = {e1, . . . , ei}.

Proof: Suppose T is a forest constructed after edges in Ei and suppose, for contradiction, T is not
a maximal forest of (V,Ei). Then, there exists ek ∈ Ei \ E(T) such that T + ek is a forest. Then,
when Kruskal’s algorithm is at step k ≤ i, we had constructed (V,E(T)∩Ek) and ek was not added.
But that means adding ek would have created a cycle and this a contradiction since T is a tree and
T + ek is acyclic. �

Hence, by above claims we have∑
e∈F

x>e n− κ(Ei), ∀ i = 1, . . . ,m.

Hence, x> and y satisfy the Complementary-Slackness (C-S) conditions.

Winter 2020 CO 353 16

Chapter 2. Greedy Algorithms and Matroids 17

Remark 2.1.13: The tight inequality we found in the proof of Claim 2.1.12 provides a certificate
that verifies the MST obtained from Kruskal’s algorithm is correct. /

2.2 Greedy Algorithms

Definition 2.2.1: In every step, Kruskal’s algorithm picks the locally best option since it takes the
cheapest edge that keeps the solution feasible. The algorithms that prioritize locally best options
are called greedy algorithms.

This greedy approach doesn’t work on some problems. /

Definition 2.2.2: A cycle that goes through every edge exactly once is called a Hamiltonian
cycle . /

Example 2.2.3: Let G = (V,E) as below. Then 123451 is a Hamiltonian cycle.

1 2

3

4

5

G

Figure 2.2.1: G = (V,E) with Hamiltonian cycle 123451.
/

Example 2.2.4: Consider the traveling salesman problem. The goal is to find a minimum cost
Hamiltonian cycle in a given graph G = (V,E) with edge costs c : E → R. A greedy algorithm for
this problem can be of the following form.

Algorithm 2.2.5: Greedy algorithm for TSP.

1 Pick v ∈ V .
2 Let v1 = v.
3 for i = 1, . . . , n− 1 do
4 vi+1 ← w where w is the vertex with minimum cost cviw and w /∈ {v1, . . . , vi}.
5 return v1, . . . , vn, v1.

Let G = (V,E) as below and suppose v1 = 1.

Winter 2020 CO 353 17

Chapter 2. Greedy Algorithms and Matroids 18

1 2

34

G

100

1

0 0

5

0

Figure 2.2.2: G = (V,E) with Hamiltonian cycle 123451.
/

If we use the greedy algorithm described in algorithm 2.2.5 start at v1 = 1, then the greedy algorithm
gives us the Hamiltonian cycle 14321 which has cost 100 but 13241 is also a Hamiltonian cycle but
it has cost 2. Hence, greedy algorithm doesn’t always work efficiently.

2.2.1 Maximum Cost Forest Problem

Given G = (V,E), c : E → R where G is connected and F ⊆ E such that (V, F) is a forest,
maximum cost forest problem tries to maximize

∑
e∈F ce. Consider the following algorithm.

Algorithm 2.2.6: Pseudocode for max. cost forest problem

1 Define E− = {e ∈ E | ce ≤ 0}.
2 Let c′e = −ce for all e /∈ E− and c′e = 0 for all e ∈ E−.
3 Run any algorithm that gives MST on G = (V,E) with costs c′e.
4 Let T be MST that is returned my the MST algorithm.
5 Delete all edges in T that belong to E−.
6 return T .

Exercise 2.2.7: Show algorithm 2.2.6 works as required. /

2.2.1.1 Using Kruskal’s Algorithm for Max. Cost Forest

We can use Kruskal’s algorithm as follows for MCFP.

Algorithm 2.2.8: Kruskal’s algorithm for MCFP.
Init : H = (V,∅), E ← E

1 while H is not a spanning tree and E 6= ∅ do
2 Let e ∈ E be one with the largest cost ce with endpoints in different connected

components of H
3 if ce > 0 then
4 Add e to H.

5 E ← E \ {e}
6 return H.

Winter 2020 CO 353 18

Chapter 2. Greedy Algorithms and Matroids 19

The rough idea behind this algorithm is as follows.

1 while There exists an edge e such that ce > 0 with endpoints of e in different connected
components, do

2 Choose ce that is largest.
3 Add e to H.

4 return H.

Exercise 2.2.9: Prove algorithm 2.2.8 works. /

2.2.1.2 Properties of Forests

We will refer forests by their edge sets. Forests have the following properties.

1 The empty set is a forest.

2 If F is a forest and if F ′ ⊆ F , then F ′ is a forest.

3 If A ⊆ E, then every inclusion-wise maximal forest F ⊆ A, has the same cardinality.

Note that these properties coincide with the definition of matroids which will be explained later.

Example 2.2.10: Let G = (V,E) where V = {1, 2, 3, 4, 5} and let A ⊆ G be shown in blue zigzag
below. An illustration of property 3 is as follows.

1 2

3

4

5

G

F1 = {12, 13, 45}

1 2

3

4

5

F1 ⊆ A is a maximal forest

F = {23, 23, 45}

1 2

3

4

5

F2 ⊆ A is a maximal forest

Figure 2.2.3: G = (V,E) with F1, F2 ⊆ A where :A.
/

Winter 2020 CO 353 19

Chapter 2. Greedy Algorithms and Matroids 20

Note that F1, F2 ⊆ A are maximal forests since if any edge where added to F1 or F2, they no longer
are subset forests of A.

Remark 2.2.11: We proved property 3 in MST problem with |F | = n− κ(A). /

2.3 Matroids

We introduce the abstract notion of matroids. We will focus on how greedy algorithms work on
matroids.

2.3.1 Independence Systems and Independent Sets

Definition 2.3.1: Let S be a finite set and let I ⊆ P(S) = 2S . Here P(S) is the power set of S,
which is the collection of all subsets of S. So, I is a collection of subsets of S. If I satisfies

M1 I 3 ∅, and

M2 if I1 ∈ I and I2 ⊆ I1, then I2 ∈ I,

then the pair (S, I) is called an independence system and the elements I ∈ I are called
independent sets. This property is known as the hereditary property and it is equivalent to
saying every subset of an independent set is independent. If (S, I) is an independence system
and if it also satisfies

M3 for all A ⊆ S, every inclusion-wise maximal element of I contained in A has same cardinality,

then the pair M = (S, I) is called a matroid , where S is a finite set (which is called the
ground set) and I is a collection of subsets of the ground set. This property is known as the
augmentation property or (independent set) exchange property. /

Example 2.3.2: Let G = (V,E) with V = {1, 2, 3, 4, 5} and let E = {12, 13, 14, 15, 23, . . . } where
E is the ground set.

1 2

3

4

5

G

Figure 2.3.1: G = (V,E) where I, the set of all forests of G, is an independence system.
/

I = the set of all forests of G is an independence system, I1 = {12, 14, 34} is an independent set
but A = {12, 13, 23} is not an independent set since it’s not a forest. i.e. A /∈ I.

Winter 2020 CO 353 20

Chapter 2. Greedy Algorithms and Matroids 21

Example 2.3.3: Let S = {1, . . . ,m} and k ∈ Z+. Let I = {U ⊆ S | |U | ≤ k}. Since |∅| = 0,
then ∅ ∈ I and it is clear that for all I1 ∈ I, if I2 ⊆ I1, then I2 ∈ I. So, I is an independence
system. I also satisfies property M3 . To see this, let A ⊆ S with |A| ≤ k. Then, in this case the
only maximal element of I in A is A. If |A| > k and I ∈ I with I ⊆ A and |I| < k, then there
exists e ∈ S such that I ∪ {e} ∈ I. i.e. I is not maximal. Hence, every maximal element of I has
cardinality of 5. Hence, the pair (S, I) is a matroid. /

Example 2.3.4: Let S = {1, 2, 3, 4} and I = {∅, {1}, {2}, {3}, {4}, {1, 2}}. It is easy to see that
M1 and M2 hold. Let A = {1, 2, 3} ⊆ S. We have

{1, 2} ⊆ A, and {1, 2} ⊆ I,
{3} ⊆ A, and {3} ⊆ I.

Clearly {1, 2} and {3} are maximal but |{1, 2}| 6= |{3}|. So, M3 doesn’t hold. Hence, the pair
(S, I) is not a matroid but I is an independence system. /

Remark 2.3.5: We will show that greedy algorithms for independence systems I ⊆ 2S give optimal
solution if and only if the pair (S, I) =M is a matroid. /

Definition 2.3.6: Let (S, I) be an independence system. Given A ⊆ S, a basis of A is a maximal
independent set contained in A. If A = S whereM = (S, I), then a basis of A is a basis ofM. /

Example 2.3.7: Consider the matrix B below.

B =

1 2 3 4 5 1 -1 0 0 1
2 -2 0 1 4
4 1 1 0 2

 .

Let S = {1, 2, 3, 4, 5} (column indices) and let I be defined as follows.

I = {A ⊆ S | corresponding columns are linearly independent}.

Since M1 , M2 and M3 are satisfied, (S, I) =M is a matroid. Any matroid of the formM = (S, I)

where the ground set S is column (row) indices and I is the set of linearly independent columns
(rows) is called a linear matroid . Basis ofM are the bases of the vector space generated by the
corresponding columns. /

Remark 2.3.8: We can characterize the necessary matroid condition as follows.

M3 : ∀ A ⊆ S, every inclusion-wise maximal

element of I contained in A has cardinality
⇐⇒

∀ A ⊆ S, all bases of A have
the same cardinality.

/

Definition 2.3.9: Let (S, I) = M be an independence system and let A ⊆ S. The rank of A,
r(A), is the largest basis of A. That is,

r(A) =
def

max{|J | | J ⊆ A and J ∈ I}. /

If A = S, then r(A) = r(S) = r(M).

Winter 2020 CO 353 21

Chapter 2. Greedy Algorithms and Matroids 22

Remark 2.3.10: It is easy to see that r(A) = |A| if and only if A ∈ I. Consider the graph
G = (V,E). Let S = E and I = {A ⊆ S | (V,A) is a forest}. The pair (S, I) of this form is called
a graphic (forest) matroid . We have

r(A) = n− κ(A),

where κ(A) is the number of connected connected components of A. /

2.3.2 Solving Maximum Weighted Independent Set Problem with Greedy Al-
gorithm

GivenM = (S, I) independence system and costs ce for all e ∈ S, consider the problem of finding
A ∈ I maximizing

∑
e∈A ce. This problem is called maximum weighted independent set problem.

Consider the greedy algorithm below.

Algorithm 2.3.11: Greedy Algorithm for Max Weighted Independent Set Problem
1 J ← ∅
2 while ∃ e ∈ S \ J such that ce > 0 and J ∪ {e} ∈ I do
3 Let e be such element of largest ce,
4 J ← J ∪ {e}
5 return J

Let S′ = {e ∈ S | ce > 0}. Define I ′ = {A ⊆ S′ | A ∈ I}. So,M′ = (S′, I ′) is an independence

system. In fact, if M is a matroid (that is, if M satisfies M3) then so is M′. Hence, solving
maximum weighted independent set overM′ solves the problem overM. Note that since our goal
is to maximize the sum of costs, we may assume that ce′ > 0 for all e′ ∈ S′.

Theorem 2.3.12 (Rado ‘57, Edmonds ‘71): Let M = (S, I) be a matroid and let c : S → R+.
Then, greedy algorithm in algorithm 2.3.11 finds maximum weighted independent set.

Proof: Exercise. /

Theorem 2.3.13: LetM = (S, I) be an independence system. Greedy algorithm finds a maximum
weighted independent set for all c ∈ RS if and only ifM is a matroid.

Proof: For forward direction we will use contrapositive. Suppose M is not a matroid. Then, M
does not satisfy 3 . Let A ⊆ S such that A1, A2 are two bases of A with |A1| < |A2|. Note that
such two bases exists by Remark 2.3.8. Let

ce =


1 + ε if e ∈ A1,

1 if e ∈ A2,

0 otherwise.

Hence, in this case greedy algorithm in algorithm 2.3.11 outputs A where∑
e∈A1

ce = (1 + ε)|A1|.

But we also have
∑

e∈A2
ce = |A2|. So if we choose ε small enough where

ε <
|A2|
|A1|

− 1,

Winter 2020 CO 353 22

Chapter 2. Greedy Algorithms and Matroids 23

then A1 is not a maximum weighted independent set which proves the contrapositive. The converse
immediately follows from Theorem 2.3.12.

Remark 2.3.14 (Runtime of Greedy Algorithm): Consider the greedy algorithm in algorithm 2.3.11.
We see that the main loop is executed O(|S|) times. Hence if the process of checking J ∈ I can be
done in poly(|S|), then greedy algorithm can run in polytime in |S|. /

Definition 2.3.15: LetM = (S, I) be an independence system and let A ⊆ S.

ρ(A) =
def

min{|B| | B is a basis of A.}

Note thatM = (S, I) is a matroid if and only if ρ(A) = rank(A) for all A ⊆ S. /

Definition 2.3.16: Let M = (S, I) be an independence system. The rank quotient of M,
q(S, I), is defined as

q(S, I) =
def

min
A⊆S

ρ(A)

RankA
.

Note that we always have q(S, I) ≤ 1 and it follows thatM is a matroid if and only if q(S, I) = 1. /

Theorem 2.3.17 (Jenkyns ‘76): Let M = (S, I) be an independence system. Let GRS,I be the
total weight of solution found by the greedy algorithm in algorithm 2.3.11. Let OPTS,I be weight
of optimal solution. Then

GRS,I ≥ q(S, I)OPTS,I .

Note that this implies ifM is a matroid then greedy algorithm in algorithm 2.3.11 finds an optimal
solution.

Proof: We prove Theorem 2.3.17 as follows. Let S = {e1, . . . , em} with ce1 ≥ · · · ≥ cem and let
Sj = {e1, . . . , ej} for all j = 1, . . . ,m. Let G be the solution obtained by the greedy algorithm and
let σ be the optimal solution. So, G, σ ⊆ S. Let Gj = G ∩ Sj and σj = σ ∩ Sj . Let G0 = ∅ = σ0.
We have

c(G) =
∑
ej∈G

cej =
m∑
j=1

(
|Gj | − |Gj−1|︸ ︷︷ ︸

(?)

)
cej =

m−1∑
j=1

|Gj |
(
cej − cej+1

)
+ cem |Gm| =

m∑
j=1

|Gj |
(
cej − cej+1︸ ︷︷ ︸

∆j≥0

)
,

where cem+1 = 0. Note that

(?) =

{
= 1 if ei ∈ G,
= 0 otherwise.

At step j, Gj is a basis of Sj . Hence, |Gj | ≥ ρ(Sj). Thus,

c(G) ≥
m∑
j=1

ρ(Sj)∆j ≥
m∑
j=1

q(S, I)r(Sj)∆j ≥ q(S, I)
m∑
j=1

|σj |∆j︸ ︷︷ ︸
c(σ)

.

Corollary 2.3.18: IfM is a matroid, then the greedy algorithm in algorithm 2.3.11 computes the
optimal solution.

Theorem 2.3.19: IfM = (S, I) is an independent system then

M3 : ∀ A ⊆ S, every inclusion-wise maximal

element of I contained in A has cardinality
⇐⇒

M3’ : ∀ X,Y ∈ I such that |X| < |Y |,

∃ e ∈ Y \X such that X ∪ {e} ∈ I.

Winter 2020 CO 353 23

Chapter 2. Greedy Algorithms and Matroids 24

Proof: Skipped, exercise. /

Example 2.3.20: Let S = {1, 2, 3, 4} and I = {∅, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}}. Clearly M1

and M2 are satisfied but since {1, 2}, {3} ∈ I and {3} ∪ {e} /∈ I for any {e} ∈ {1, 2} \ {3}, then

M3’ is not satisfied. Hence, (S, I) is an independence system but not a matroid. /

Remark 2.3.21: We can fully specify an independence system or a matroid by listing its bases. In
the above example, the set of bases of (S, I) is B = {{1, 2}, {3, 4}}. /

Theorem 2.3.22: Let S be a finite set and let B ⊆ P(S) = 2S . Then B is the set of bases of a
matroid if and only if

1 B 6= ∅,

2 For all B1, B2 ∈ B and x ∈ B1 \B2, there exists y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ B.

Proof: Exercise. /

Remark 2.3.23: Note that by this theorem, the set B = {{1, 2}, {3, 4}} in above example cannot
be a set of basis of a matroid.

M = (S, I) = {∅} is a matroid and set of bases B = {∅} = I 6= ∅. /

2.3.3 Matroid Constructions

Given a matroidM, we can construct other matroids by using some operations.

Remark 2.3.24: Let M = (S, I) be a matroid. By using the following we can construct other
matroids.

1 Deletion: If J ⊆ S thenM\J = {S′, I ′} is a matroid where S′ = S\J and I ′ = {A ⊆ S′ | A ∈ I}.

We use backslash, (\), to denote deletion of J from matroidM. Some sources use M − J
notation for deletion which is objectively better.

2 Truncation: Given k ∈ Z+ define I ′ = {A ∈ I | |A| ≤ k}. Then,M′ = (S, I ′) is a matroid.

3 Dual: Let I∗ = {A ⊆ S | S \ A has a basis ofM}. Equivalently, r(S \ A) = r(S). We call
M∗ = (S, I∗) the dual matroid of M. Note that (M∗)∗ =M

We will prove thatM∗ is a matroid and rM∗(A) = |A|+ rM (S \A)− rM (S).

4 Contraction: If J ⊆ S and if B is a basis of J , then M/J = (S′, I ′) is a matroid where
S′ = S \ J and I ′ = {A ⊆ S′ | A ∪ B ∈ I}.

We use forward slash, (/), to denote deletion of J from matroidM.

5 Disjoint Union:1LetMi = (Si, Ii) be matroids. If Si are distinct for all i = 1, . . . , k then the
union of these matroids is a direct sum and

⊕k
i=1Mi =M1 ⊕ · · · ⊕Mk =M = (S′, I ′) is a

Winter 2020 CO 353 24

Chapter 2. Greedy Algorithms and Matroids 25

matroid where

S′ =

k⋃
i=1

Si, I ′ =
k⋃
i=1

Ii and A ∈ I ′ ⇐⇒ A =

k⋃
i=1

Ai where Ai ∈ Ii for i = 1, . . . , k. /

Exercise 2.3.25: Show that duality operation on matroids is an involution. i.e. M = (M∗)∗. /

Example 2.3.26: Let G = K4 (complete graph with 4 vertices). We have G and G′ as below where
G′ is obtained by contracting edge e = 23.

1 2

3 4

G 1

2, 3

4

G′

Figure 2.3.2: G = K2 and G′.
/

Aside: This is a digression and the material here is beyond the scope of this course. We make the
following remarks about union and disjoint union of matroids:

• Let M and N be two matroids with ground sets E and F respectively. The direct sum of
matroidsM andN is the matroid whose ground set is the disjoint union of E and F , and whose
independent sets are the disjoint unions of an independent set ofM with an independent set
of N .
The union ofM and N is the matroid whose ground set is the union (not the disjoint union) of
E and F , and whose independent sets are those subsets that are the union of an independent
set inM and one in N . Usually the term “union” is applied when E = F , but that assumption
is not essential. If E and F are disjoint, the union is the direct sum.

• The disjoint union of two sets A and B is a binary operator that combines all distinct
elements of a pair of given sets, while retaining the original set membership as a distinguishing
characteristic of the union set. The disjoint union is denoted

A
⊔
B = (A× {0})

⋃
(B × {1}) = A∗

⋃
B∗

where A× S is a Cartesian product. For example, the disjoint union of sets A = {1, 2, 3, 4, 5}
and B = {1, 2, 3, 4} can be computed by finding

A∗ = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0)},
B∗ = {(1, 1), (2, 1), (3, 1), (4, 1)}.

So, AtB = A∗ ∪B∗ = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (1, 1), (2, 1), (3, 1), (4, 1)}. In this case
A∗i is referred to as a copy of Ai. Disjoint unions are also sometimes written as

⊎
i∈I

Ai, or ·
⋃
i∈I

Ai

or
⋃∗
A∈C

A. In category theory the disjoint union is defined as a coproduct and
∐

is used.

1Disjoint union was covered on another lecture (L10, on Feb. 2020) but it was included in this list for the sake of
completeness.

Winter 2020 CO 353 25

Chapter 2. Greedy Algorithms and Matroids 26

• Some authors use ∨ to denote matroid union. /

Remark 2.3.27: We verify that using operations of deletion, truncation, taking the dual and
contraction on a matroid gives a matroid. Let (S, I) =M be a matroid.

1 Deletion: Recall that we have if J ⊆ S thenM\ J = {S′, I ′}. We want to show (S′, I ′) is a
matroid where S′ = S \ J and I ′ = {A ⊆ S′ | A ∈ I}.

For any J ⊆ S, we have ∅ ⊆ S \ J . So, ∅ ∈ I ′. Let I ∈ I ′ and K ⊆ I. Since I ∈ I,
then K ∈ I and since I ⊆ S′ then so is K. Hence, hereditary property holds. Let X,Y ∈ I ′
with |X| < |Y |. Then, X,Y ∈ I since M is a matroid. Then, there exists x ∈ Y \ X such
that X ∪ {x} ∈ I but X ∪ {x} ⊆ S′. Hence, X ∪ {x} ∈ I ′. So, (S, I ′) is a matroid.

2 Truncation: Recall that given k ∈ Z+ we define I ′ = {A ∈ I | |A| ≤ k}. We will show,
M′ = (S, I ′) is a matroid.

Since ∅ ∈ I and since |∅| = 0 ≤ k then ∅ ∈ I ′. Let A ⊆ I ′ and B ⊆ A. Since B ∈ I and since
|B| ≤ |A| ≤ k, then B ∈ I ′. So, hereditary property holds. Let X,Y ∈ I ′ with |X| < |Y |.
Then, X,Y ∈ I and X ∪ {x} ∈ I where {x} ∈ Y \X. Since |X ∪ {x}| = |X|+ 1 ≤ |Y | ≤ k,
then X ∪ {x} ∈ I ′. Hence, (S, I ′) is a matroid.

3 Dual: Recall that we let I∗ = {A ⊆ S | S \ A has a basis ofM}. Equivalently, r(S \ A) =
r(S). We will showM∗ = (S, I∗) is a matroid.

Since r(S\∅) = r(S), then ∅ ∈ I∗. Let A ∈ I∗ and B ⊆ A. Note that we have r(S\A) = r(S)
if and only if deleting A from S still leaves us with an M-basis of S. Hence, S \ B still has
an M-basis of A. Hence, B ∈ I∗, which means hereditary property holds. So (S, I∗) is an
independence system. Now, consider any subset A ⊆ S. All M∗ bases of A have the same
cardinality. Let J ⊆ A be anM∗-basis of A. Let B be anM-basis of S \A. Extend it to B′,
anM-basis of S \ J . So, |B′| = r(S \ J) = r(S).

Claim 2.3.28: A \ J ⊆ B′.

Proof: Suppose, for contradiction, there exists e ∈ A \ J such that e /∈ B′. Since we have
B′ ⊆ S \ (J ∪{e}), then J ∪{e} ∈ I∗ which is a contradiction since J is anM∗-basis of A. �

We know |J | = |A| − |A \ J | and B′ = (A \ J) ∪B and that |B′| = |A \ J |+ |B|. Hence,∣∣B′∣∣ = rM (S) = |A \ J | = rM (S \A).

Then, |J | = |A| − rM (S) + rM (S \A). So sizes of allM∗-bases of A are the same.

Remark 2.3.29: The dual matrix (S, I∗) =M∗ has the rank function

rM∗(A) = |A| − rM (S) + rM (S \A). /

Example 2.3.30: Consider the graphical matroidM = (E, I) presented by G below.

Winter 2020 CO 353 26

Chapter 2. Greedy Algorithms and Matroids 27

1 2

3

4

5

G

Figure 2.3.3: M = (E, I).

Here we have the following.

• M∗ = (E, I∗) = {set of edges which we can remove fromM without making it disconnected}.

• A = δ(2) = {e ∈ E | e is incident to 2}.

• J = {12, 25, 24} ∈ I∗ is anM∗-basis of A.

• B = {13, 14, 15}.

• B′ = {13, 14, 15, 23}.

• |J | = 3 = |A| − rM (E) + rM (E \A) = 4− 4 + 3 = 3. /

Remark 2.3.31: Suppose we can explore edges of a graph but to collect value (for example
cost of an edge), we must destroy the edge. We want to proceed our exploration in a way that
doesn’t leave the graph disconnected. We see that greedy algorithm is applicable for such an
exploration. /

4 Contraction: Recall that if J ⊆ S and if B is a basis of J , then we defined S′ = S \ J and
I ′ = {A ⊆ S′ | A ∪ B ∈ I}. We will showM/J = (S′, I ′) is a matroid

For any J ⊆ S, we have ∅ ⊆ S \ J . Since for any base B of J we have ∅ ∪ B = B ∈ I
then, ∅ ∈ I ′. Let K ∈ I ′ and L ⊆ K. Then, K ⊆ S′ and K ∪ B ∈ I. Then, L ∪ B ⊆ K ∪ B.
Since K ∪ B ∈ I, then any subset of it is also independent since (S, I) is a matroid. Then,
L ∪ B ∈ I. Since L ⊆ K ⊆ S′, then L ∈ I ′ Hence, hereditary property holds. We now prove
the following claim.

Claim: M/B is a matroid and rM/B(A) = rM(A ∪ B)− rM(B).

Proof: Let A ⊆ S \B and let J ′ be anM/B basis of A. Then, J∪J ′ ∈ I. We claim that J∪J ′
is anM-basis of A∪B. Suppose there exists e ∈ A∪B such that J∪J ′∪{e} ∈ I. If e ∈ B then
J ∪{e} ∈ I which contradicts the choice of J and if e /∈ B, then J ′∪{e} ∈ I which contradicts
the choice of J ′. Hence, J ∪ J ′ is anM-basis of A ∪ B. Hence, |J ∪ J ′| = rM(A ∪B). Hence,
|J ′| = rM/B(A) = |J ∪ J ′| − |J | = rMA ∪B − rM(B). �

It follows thatM/J is a matroid.

5 Disjoint Union:2Recall that if Mi = (Si, Ii) be matroids and if Si are distinct for all i =

1, . . . , k then the union of these matroids is a direct sum and
⊕k

i=1Mi =M1 ⊕ · · · ⊕Mk =

Winter 2020 CO 353 27

Chapter 3. Dynamic Programming 28

M = (S, I). We will show thatM is a matroid where

S =
k⋃
i=1

Si, I =
k⋃
i=1

Ii and A ∈ I ′ ⇐⇒ A =
k⋃
i=1

Ai where Ai ∈ Ii for i = 1, . . . , k.

Exercise 2.3.32: ShowM = (S, I) is an independence system. /

Let A ⊆ S. Consider a basis B inM =M1 ⊕ · · · ⊕Mk of A. We have Bj = B ∪ Sj ∈ Ij . Bj
is a basis of A ∩ Sj inMj . Since if Bj isn’t maximal, then there exists e ∈ (A ∩ Sj) \ Bj such
that Bj ∪ {e} ∈ Ij which implies B ∪ {e} ∈ I but this contradicts the maximality of B. We
have

B =
k∑
j=1

|Bj | =
k∑
j=1

r(A ∩ Sj).

Hence, every basis of A inM has same size. Hence,M is a matroid. /

2The part about disjoint union was covered in another lecture (L10, on Feb. 2020) but it was included in this list
for the sake of completeness.

Winter 2020 CO 353 28

Chapter 3. Dynamic Programming 29

Chapter 3 – Dynamic Programming

3.1 Weighted Interval Scheduling

We will consider an example of weighted interval scheduling. Given n tasks where each task has a
start time, si, and finish time, fi and value vi for all i = 1, . . . , n. At most one task can be executed
at each point in time and if start and finish times are same for some tasks, they can be executed at
the same time. We want to find subset of tasks S to be executed maximizing

∑
j∈S vj .

Example 3.1.1: Consider these 5 tasks and their visual representation below.

j sj tj vj
1 0 3 2
2 1 5 3
3 3 7 4
4 2 9 10
5 6 9 8

1 2 3 4 5 6 7 8 9 10

t5

t4

t3

t2

t1

t

j

Figure 3.1.1: Graph of tasks.

Let S = {1, . . . , n} and I = {A ⊆ S | A can be all scheduled tasks in a feasible way}. We can
show that (S, I) is an independence set but not a matroid. There can exist tasks t1, t2 and t3 as
follows.

j sj tj vj
1 1 3 v1

2 3 5 v2

3 1 5 v3

1 2 3 4 5

t3

t2

t1

Basis

Basis

t

j

Figure 3.1.2: Graph of t1, t2 and t3.

In this case both {t1, t2} and {t3} are bases but they have different cardinalities. /

Winter 2020 CO 353 29

Chapter 3. Dynamic Programming 30

To solve this problem, we first assume the tasks are sorted with respecting to their finishing time
in ascending order. If they were not ordered, we can order them in n log n time. We have n tasks
ordered in a way so that

f1 ≤ · · · ≤ fn.

Let

p(j) =

{
max{i < j | fi ≤ sj},
0 if none exists for all j = 1, . . . , n.

So, p(j) is the last job that can be possibly scheduled with task j. In the above example we have

p(1) = 0, p(2) = 0, p(3) = 1, p(4) = 0, p(5) = 2.

We see that in an optimal solution, either we perform task n or we don’t. This is a very obvious
observation but it helps us construct algorithms to solve this problem.

Suppose we use task n. Then, we cannot use tasks p(n) + 1, . . . , n − 1 and we can use tasks
1, . . . , p(n) since for all k = 1, . . . , p(n), we have fk ≤ fn−1 ≤ sn. So in this example, if we use task
5, then we cannot use task 3 and task 4 but we can use tasks 1 and 2.

Let OPT(j) be the optimal value (not the optimal solution) for instance with tasks 1, . . . , j. We
have

OPT(n) = vn + OPT(p(n)).

If we don’t use task n, then we have OPT(n− 1) = OPT(n). This approach allows us to break up
the problem into smaller problems. In general, when we implement the algorithm we have

OPT(0) = 0,

OPT(j) = max{vj + OPT(p(j)),OPT(j − 1)}.

Using this approach we can compute a recursive OPT function with the following recursion tree.

Winter 2020 CO 353 30

Chapter 3. Dynamic Programming 31

OPT(5)

OPT(2) OPT(4)

OPT(0) OPT(1) OPT(0) OPT(3)

OPT(0) OPT(0) OPT(1) OPT(2)

OPT(0) OPT(0) OPT(0) OPT(x)

OPT(0) OPT(0)

v5 0

v2 0 v4 0

v1 0 v3 0

v1 0 v2 0

v1 0

Figure 3.1.3: Recursion tree.

This procedure reuses many of the results it calculates. To be more efficient, we want to store the
OPT(j) for all j in a table. We consider the following function for our algorithm.

Algorithm 3.1.2: Computing optimal value of j recursively.

1 Function Compute_OPT(j):
2 if j = 0 then
3 return 0
4 else if M [j] has been computed then
5 return M [j]
6 else
7 M [j] = max{vj + Compute_OPT(p(j)), Compute_OPT(j-1)}
8 return M [j]

Alternatively, we have the iterative version as follows.

Algorithm 3.1.3: Computing optimal value of j iteratively.

1 for j = 0, . . . , n do
2 if j = 0 then
3 M [j] = 0
4 else
5 M [j] = max{vj +M [p(j)],M [j − 1]}

6 return M [n]

Winter 2020 CO 353 31

Chapter 3. Dynamic Programming 32

This clearly runs in O(n). So we have a polytime algorithm to solve the problem. This process of
remembering (caching) results is called memoization . This algorithm gives optimal value. To get
the optimal solution, we store the decision algorithm made in S[j] as follows.

0 if vj +M [p(j)] > M [j − 1],

0 otherwise.

This gives us the following function algorithm.

Algorithm 3.1.4: Finding optimal solution recursively.

1 Function Find_Soln(S,j):
2 if j = 0 then
3 return ∅
4 else if S[j] = 1 then
5 return Find_Soln(S,p(j))∪{j}
6 else
7 return Find_Soln(S,j − 1)

Alternatively, we have iterative version of this algorithm as below.

Algorithm 3.1.5: Finding optimal solution iteratively.

1 k ← n
2 Sol← ∅
3 while k > 0 do
4 if S[k] = 1 then
5 Sol← Sol ∪ {k}
6 k ← p(k)

7 else
8 k ← k − 1

9 return Sol

3.1.1 Dynamic Programming Overview

1 Write optimal solution to a subproblem as a function of a small number of subproblems
(Bellman equation).

2 The total number of subproblems needed is “small”.

3 Store (memoize) optimal solutions of previously computed subproblems.

3.1.2 Knapsack Problem

Given n items with weights aj ∈ Z+, profits cj ∈ Z+ and a Knapsack capacity b. We want to find
a subset S of items that maximizes

∑
j∈S cj subject to

∑
j∈S aj ≤ b.

Winter 2020 CO 353 32

Chapter 3. Dynamic Programming 33

WLOG, we order items 1, . . . , n and let OPT(i, w) be the optimal solution using items 1, . . . , i
and backpack (knapsack) capacity w. We want to find OPT(n, b).

Case 1: OPT(i, w) uses i. Then, OPT(i, w) = OPT(i− 1, w − ai) + ci.
Case 2: OPT(i, w) does not use i. Then, OPT(i, w) = OPT(i− 1, w).

• if i > 1 and ai ≤ w, then OPT(i, w) = max{OPT(i− 1, w − ai) + ci,OPT(i− 1, w)},

• if i > 1 and 0 ≤ w ≤ ai, then OPT(i, w) = OPT(i− 1, w),

• if i = 1 and a1 ≤ w then OPT(i, w) = c1,

• otherwise, OPT(i, w) = 0.

Note that case 2 leads us to the following recursive definition

OPT(i, w) = max



max

{
OPT(i− 1, w − a1) + ci,

OPT(i− 1, w)

}
if i > 1 and ai ≤ w,

OPT(i− 1, w) if i > 1 and 0 ≤ w ≤ ai,
ci if i = 1 and a1 ≤ w,
0 otherwise.

Remark 3.1.6: OPT(i, w) has O(nb) entries and it takes O(1) time to compute. Hence, the run-
time is O(nb).

We have 1 ≤ i ≤ n and 1 ≤ w ≤ b. This is not polytime since input size is measured in log b,
not b. If b ∈ O(nk) for some fixed k, then the algorithm above is a pseudo-polytime algorithm. /

Definition 3.1.7: If a numeric algorithm runs in polytime in the numeric value of the input (the
largest integer present in the input) but not necessarily in the length of the input (the number of
bits to represent it) then it runs in pseudo-polynomial time (pseudo-polytime for short). /

One perspective on dynamic programming is that we have a memoization table to compute and
each table entry defines a state. Each state is determined by optimal solutions to some previous
states. Imparts a partial order on states.

Example 3.1.8: Consider the Knapsack problem with 3 items and capacity 5. Let

a1 = 2, c1 = 3,

a2 = 1, c2 = 2,

a3 = 5, c3 = 4.

We can construct a directed graph for this problem. Solution to our dynamic program can be found
by computing the longest path from s to t (or shortest path if we multiply costs by −1). /

3.1.3 Shortest Paths

Definition 3.1.9: A directed graph or digraph is an ordered pair D = (V,A) where V is a set
of vertices and A is a set of ordered pairs of vertices, called arcs, directed edges or arrows.

Winter 2020 CO 353 33

Chapter 3. Dynamic Programming 34

An arc a = (x, y) is considered to be directed from x to y and

• x is called the tail of the arc and x is said to be a direct predecessor of y,

• y is called the head of the arc and y is said to be a direct successor of y and y is reachable
from x. /

Given a directed graph D = (V,A) with non-negative arc costs ca for all a ∈ A and vertices s, t ∈ V .
We want to find an s-t path P which minimizes

∑
a∈A(P) ca.

Definition 3.1.10: Let D = (V,A) be a directed graph. Let ∅ ⊆ S ⊆ V . We define

δ+(S) = {(u, v) ∈ A | u ∈ S, v /∈ S} (the set of arcs leaving S),

δ−(S) = {(u, v) ∈ A | u /∈ S, v ∈ S} (the set of arcs entering S).

The set δ(S) is called the cut induced by S. We have δ(S) = δ+(S) ∪ δ−(S). /

Example 3.1.11: Consider the directed graph D = (V,A) below.

s

1

2

3

4

t

Figure 3.1.4: Directed graph D = (V,A).

For S = {2, 3, 4} we have

δ+ = {(3, t), (4, t)},
δ− = {(s, 2), (1, 2), (1, 3)}. /

3.1.3.1 Dijkstra’s Algorithm

For a directed graph D = (V,A), keep a set S ⊆ S of vertices for which we know the shortest s-v
path for all v ∈ S.

Algorithm 3.1.12: Dijkstra’s algorithm.
1 S ← {s}
2 OPT(s)← 0, OPT(v)←∞ for all v 6= s
3 while S 6= V do
4 find (u, v) ∈ δ+(S) with smallest cuv + OPT(u)
5 OPT(v)← cuv + OPT(u)
6 S ← S ∪ {v}
7 return OPT(t) (where t is the last vertex added to S)

Winter 2020 CO 353 34

Chapter 3. Dynamic Programming 35

Example 3.1.13: Consider the directed graph D = (V,A) with costs below.

s

1

2

3

4

t

1

2

1

3

4

1

1

2

1

Figure 3.1.5: Directed graph D = (V,A) with given costs.

We obtain the following (in the given order during while loop) by using Dijkstra’s algorithm.

1 S = {s},

2 S = {s, 1} and OPT(1) = 1,

3 S = {s, 1, 2} and OPT(2) = 2,

4 S = {s, 1, 2, 4} and OPT(4) = 3,

5 S = {s, 1, 2, 4, 3} and OPT(3) = 4,

6 S = {s, 1, 2, 4, 3, t} and OPT(t) = 4 (since OPT(4) = 3 and c4t = 1, so OPT(t) = OPT(4) +
c4t = 3 + 1 = 4).

/

To show the correctness of Dijkstra’s algorithm, we prove the following claim.

Claim 3.1.14: At any point of execution, for all v ∈ S, OPT(v) is the shortest s-v path length.

Proof: We use induction on |S|. For |S| = 1 the claim holds since the path s-s has length 0.
Suppose claim holds for |S| = k. We want to show it also holds for k + 1. Consider the step when
algorithm chooses v to add to S. Let (u, v) be the arc used at this stage. Note that (u, v) was
chosen to minimize cuv + OPT(u). Suppose, for contradiction, there exists a shorter s-v path. Let
y be the first vertex on this path not in S such that x precedes y.

Winter 2020 CO 353 35

Chapter 3. Dynamic Programming 36

s

u

x

S

v

y

Ps,u

Ps,x

Py,v

Figure 3.1.6: Example illustrating shorter s-v path where zigzags denote paths and arrows denote
arcs.

By assumption we have

c(Ps,u) + cuv > c(Ps,x) + cxy + c(Py,v)︸ ︷︷ ︸
>0

≥ OPT(x) + cxy,

but this is a contradiction since the algorithm should have chosen (x, y) instead of (u, v).

Recall Dijkstra’s algorithm in algorithm 3.1.12.

Remark 3.1.15: Dijkstra’s algorithm runs in polytime. The while loop runs in O(n) and finding
smallest cuv + OPT(u) runs in O(m) so the algorithm runs in O(mn) time where |A| = m and
|V | = n. /

Example 3.1.16: Dijkstra’s algorithm can fail if there exists negative cost arcs. Consider the
directed graph D = (V,A) with gives costs below.

s 1

2

1

10 −30

Figure 3.1.7: Directed graph D = (V,A) with given costs.

The algorithm first finds OPT(s) = 0, then OPT(1) = 1 and then OPT(2) = 10 but this is wrong
since the path s-2-1 has cost −20. /

3.1.3.2 Shortest Paths Without Negative Cycles

We assume that there does not exist a directed cycle v1, . . . , vk where vk.

Winter 2020 CO 353 36

Chapter 3. Dynamic Programming 37

Definition 3.1.17: A directed cycle is a non-empty directed walk in which all arcs are distinct
where first and last vertices are the same. A cycle’s cost is the sum of all costs of its edges or
arcs. /

Remark 3.1.18: For a directed graph D = (V,A), if there are no negative cost directed cycles,
then there exists a minimum cost shortest walk with no cycles. We want to find the shortest s-t
directed path. /

Example 3.1.19: Suppose there are no negative cost cycles exist and let W1 be the shortest walk
from 1 to 7 where

W1 : 1-2-4-3-2-6-7.

Note that by assumption we also have
W2 : 1-2-6-7

where cost(W2) ≤ cost(W1) since cost(W1) = cost(W2) + cost(2-4-3-2)︸ ︷︷ ︸
≥0

≥ cost(W2). /

Remark 3.1.20: We observe that cost of shortest s-t path is at least as large as the cost of the
shortest s-t walk. Hence, by the above remark we find that

cost of shortest s-t path = cost of shortest s-t walk.

Hence, we can solve finding shortest s-t path problem by finding shortest s-t walk with n− 1 edges
or arcs. /

Let OPT(i, v) be the shortest s-v walk using at most i edges. Then,

• OPT(0, v) =∞ for all v ∈ V \ {s} (Bellman equation),

• OPT(0, s) = 0,

• OPT(i, v) = min


OPT(i− 1, v),

min
u∈V

s.t.(u,v)∈A

{OPT(i− 1, u) + cuv}

.

Remark 3.1.21: We need to compute OPT(i, v) for all v ∈ V and i = 0, . . . , n − 1. This takes
O(n2) time. Computing each entry takes O(n) time so the whole procedure is in O(n3), so it’s in
polytime. Note that this can be implemented in O(mn) time. We can also show the correctness of
this algorithm with inductive arguments. /

Exercise 3.1.22: Show the correctness of above algorithm. /

Example 3.1.23: Consider the directed graph D = (V,E) below with given costs on the left. We
have its table on the right as follows.

Winter 2020 CO 353 37

Chapter 4. Complexity Theory 38

s

a

b

c

d

t

−5

−3

3

−3

5

−2

7

1

−5

Figure 3.1.8: Directed graph D = (V,A) with
given costs.

v\i 0 1 2 3 4 5

t ∞ ∞ 4 −4† −4 −4

d ∞ ∞ 4 4 4 4

c ∞ 3 −5†† −5 −5 −5

b ∞ −3 −3 −3 −3 −3

a ∞ −5 −5 −5 −5 −5

s 0 0 0 0 0 0

Consider the calculations in † and ††. Clearly, if we use at most use 2 arcs to get to t, then
OPT(t) = 3 + 1 = 4. If we use 3 arcs, then we take

OPT(3, t) = min

{
OPT(2, t), min

u∈V s.t.(u,t)∈A
{OPT(i− 1, u) + cut}

}
= min{4,min{−5 + 5 + 1,−3− 2 + 1,−3 + 7− 5}},
= min{4,−4},
= −4.

Similarly, to get to c with using at most 2 arcs, have

OPT(2, c) = min

{
OPT(1, c), min

u∈V s.t.(u,c)∈A
{OPT(i− 1, u) + cuc}

}
= min{3,min{−5 + 5,−3− 2}},
= min{3,−5},
= −5.

Note that the constraint u ∈ V s.t. (u, v) ∈ A for minimizing OPT(i, v) looks every arc entering v
to give a minimum cost path. Hence, we find that the shortest s-t path in this example is s-b-c-t
with cost −4. /

Remark 3.1.24: From our observations we see that we can consider dynamic programs as shortest
path problems. /

Winter 2020 CO 353 38

Chapter 4. Complexity Theory 39

Chapter 4 – Complexity Theory

Complexity theory tries to address the question of if there exists a polytime algorithm to solve a
problem of interest.

4.1 Polytime Reductions

Definition 4.1.1: Given two problems X and Y , we say Y is polytime reducible to X, denoted
by Y ≤p X, if there exists an algorithm to solve instances of Y of input size n that does

1 poly(n) basic operations,

2 poly(n) many calls to an algorithm that solves problem X. /

Example 4.1.2: We have seen that

finding maximum cost forest ≤p MST problem, and
MST problem ≤p finding maximum cost forest.

/

Remark 4.1.3: If there exists a polytime algorithm to solve X and Y ≤p X, then there exists a
polytime algorithm to solve Y . Conversely, if there does not exist a polytime algorithm to solve Y
and if Y ≤p X, then there does not exist a polytime algorithm to solve X.

This definition implies that input to solving problem X must be poly(k) in time. /

4.1.1 Examples of Polytime Reducible Problems

Definition 4.1.4: Let G = (V,E) be a graph. An independent set S ⊆ V in G is a set such
that for all u, v ∈ S, we have uv /∈ E. That is, there are no edges that connects any two vertices in
S. /

Definition 4.1.5: Let G = (V,E) be a graph. A clique S ⊆ V in G is a set such that for all
distinct u, v ∈ S, we have uv ∈ S. That is, every vertex in S is connected. /

Example 4.1.6: Consider the graph G = (V,E) below.

Winter 2020 CO 353 39

Chapter 4. Complexity Theory 40

1 2

3 4

5

Figure 4.1.1: G = (V,E).

Here we have that
• {1, 2, 3} is a clique,
• {1, 4, 5} is an independent set.

/

Example 4.1.7: Independent set problem, Ind-Set(G, k), reduces to clique problem, Clique(G, k).
So,

Ind-Set ≤p Clique.

We have

Algorithm: Ind-Set(G, k)

Input : G = (V,E), k ∈ Z+

Output: Yes if G has ind. set of size at
least k, No otherwise

Algorithm: Clique(G, k)

Input : G = (V,E), k ∈ Z+

Output: Yes if there exists a clique in G
of size at least k, No otherwise

To see that Ind-Set ≤p Clique, we can use the following algorithm.

Algorithm 4.1.8: Calling Clique to solve Ind-Set(G, k)

Input : G = (V,E), k ∈ Z+

1 Construct G = (V,E) so that uv ∈ E ⇐⇒ uv /∈ E (so G is complement of G)
2 return Clique(G, k)

Similarly we can verify Clique ≤p Ind-Set. So, if we find a solution to either of these problems,
we can also solve the other one. /

Example 4.1.9: Ind-Set(G, k), reduces to maximum independent set problem, Max-Ind-Set(G).
So,

Ind-Set ≤p Max-Ind-Set.

We have

Algorithm: Max-Ind-Set(G)

Input : G = (V,E)
Output: Ind. set of largest size

Winter 2020 CO 353 40

Chapter 4. Complexity Theory 41

To see that Ind-Set ≤p Max-Ind-Set, we can use the following algorithm.

Algorithm 4.1.10: Calling Max-Ind-Set to solve Ind-Set(G, k)

Input : G = (V,E), k ∈ Z+

1 S ←Max-Ind-Set(G)
2 return Yes ⇐⇒ |S| ≥ k

/

Definition 4.1.11: Let G = (V,E) be a graph. A vertex cover S ⊆ V of G is a set such that
for all e ∈ E, we have |e ∩ S| ≥ 1. That is, every edge of G has an end point in S. /

Example 4.1.12: Consider the graph G = (V,E) below.

1 2

3 4

5

Figure 4.1.2: G = (V,E).

Here {2, 3} is a vertex cover of G.

/

Lemma 4.1.13: Let G = (V,E) be a graph. Then S ⊆ V is an independent set if and only if
S = V \ S is a vertex cover.

Proof: Suppose S ⊆ V is an independent set and suppose, for contradiction, S is not a vertex
cover. Then, there exists uv ∈ E such that u, v /∈ S. Then u, v ∈ S but u and v is connected in S
which contradicts that S is an independent set. Conversely, suppose S is a vertex cover and consider
S ⊆ V . Suppose, for contradiction, there exists uv ∈ E such that u, v ∈ S. Then {u, v} ∩ S = ∅
but this contradicts that S is a vertex cover.

Example 4.1.14: Ind-Set(G, k), reduces to vertex cover problem, Vtx-Cover(G, k). So,

Ind-Set ≤p Vtx-Cover.

We have

Algorithm: Vtx-Cover(G, k)

Input : G = (V,E)
Output: Yes if G has a vertex cover of size at least k, No otherwise

Winter 2020 CO 353 41

Chapter 4. Complexity Theory 42

To see that Ind-Set ≤p Vtx-Cover, we can use the following algorithm.

Algorithm 4.1.15: Calling Vtx-Cover to solve Ind-Set(G, k)

Input : G = (V,E), k ∈ Z+

1 Call Vtx-Cover(G,n− k) where |V | = n
2 return Vtx-Cover(G,n− k)

/

Definition 4.1.16: Let U = {1, . . . , n} be a finite set and let C be a collection of subsets of U . We
say C is a set cover of U if

⋃
S∈C S = U . Given a collection subsets S1, . . . , Sm ⊆ U = {1, . . . , n},

the set cover problem tries to find the smallest set cover I of U such that
⋃
i∈I Si = U . /

Example 4.1.17: Vtx-Cover(G, k), reduces to set cover problem, Set-Cover(x). So,

Vtx-Cover ≤p Set-Cover.

We have

Algorithm: Set-Cover(U, S1, . . . , Sm, k)

Input : U, S1, . . . , Sm, k ∈ Z+ where U = {1, . . . , n} and Si ⊆ U for i = 1, . . . ,m
Output: Yes if I ⊆ {1, . . . ,m} such that

⋃
i∈I Si = U and |I| ≤ k, No otherwise

To see that Vtx-Cover ≤p Set-Cover, we can use the following algorithm.

Algorithm 4.1.18: Calling Set-Cover to solve Vtx-Cover(G, k)

Input : G = (V,E), k ∈ Z+

1 U ← E
2 Sv ← {e ∈ E | e ∈ δ(v)}, that is, Sv is the set of edges that are incident to v for all v ∈ V
3 Call Set-Cover(U, {Sv}v∈V , k)
4 return Set-Cover(U, {Sv}v∈V , k)

Since Ind-Set ≤p Vtx-Cover and Vtx-Cover ≤p Set-Cover then Ind-Set ≤p Set-Cover.
/

Definition 4.1.19: A clause c is a finite disjunction of terms ti where each term ti is either xj
or its complement, xj . i.e. each term is a literal . We say the clause c is satisfied if given an
assignment of values t1, . . . , t` at least one of ti is true where

c = t1 ∨ · · · ∨ t`.

A satisfying assignment in a problem with clauses c1, . . . , cm is an assignment that satisfies all
ci for i = 1, . . . ,m. /

Example 4.1.20: Consider literals x1, x2, x3, x4 and clauses

c1 = x1 ∨ x2,

c2 = x1 ∨ x3 ∨ x4,

c3 = x3 ∨ x4.

The assignment x = (1, 0, 0, 1) is not a satisfying assignment because it

Winter 2020 CO 353 42

Chapter 4. Complexity Theory 43

• satisfies c1 since 1 ∨ 1 = 1,

• satisfies c2 since 0 ∨ 1 ∨ 1 = 1,

• does not satisfy c3 since 0 ∨ 0 = 0.

The assignment x = (1, 0, 1, 1) is a satisfying assignment since it satisfies c1, c2 and c3. /

Example 4.1.21: 3-Sat problem reduces to Ind-Set. So,

3-Sat ≤p Ind-Set.

We have

Algorithm: 3-Sat(x1, . . . , xn, c1, . . . , cm) where

Input : x1, . . . , xn (literals) and c1, . . . , cm clauses of length 3.
Output: Yes if there exists a satisfying assignment for all ci for i = 1, . . . ,m, No otherwise

Before verifying this, we show an example of converting a 3-Sat problem into an independent set
problem. /

Example 4.1.22: Let x1, . . . , x5 be literals with clauses of length 3 as follows.

c1 = x1 ∨ x2 ∨ x3,

c2 = x2 ∨ x4 ∨ x5,

c3 = x1 ∨ x2 ∨ x5.

Here each clause has length 3, so each clause has 3 terms (literals). For each j-th literal in each
clause ci, we put a vertex vij and connect vertices that belong to same clause with an edge as
follows.

v11

v12 v13

v21

v22 v23

v31

v32 v33

Figure 4.1.3: Constructing a graph from SAT problem.

We then connect vertices vij if j-th literal in ci cannot be true in all clauses for all i = 1, . . . ,m.
That is, we connect vij1 and v`j2 if there exists clauses ci and c` such that vij1 and v`j2 correspond
to same literal xj where xj ∈ ci and xj ∈ c`. We obtain the following graph.

Winter 2020 CO 353 43

Chapter 4. Complexity Theory 44

v11

v12 v13

v21

v22 v23

v31

v32 v33

Figure 4.1.4: Constructing a graph from 3-SAT problem.
/

Remark 4.1.23: We see that when we construct a graph G = (V,E) as described above, any
two vertex vij and vik connected. Hence, if there are m clauses and n literals, the maximum size
independent set in G is of size m since any independent set cannot contain more than two vertices
that belong to same clause. Moreover, any independent set of G with size m contains exactly one
vertex from every clause. /

Example 4.1.24: We now show Example 4.1.21 and show 3-Sat ≤p Ind-Set.

Algorithm 4.1.25: Calling Ind-Set to solve 3-Sat(x1, . . . , xn, c1, . . . , cm)

Input : x1, . . . , xn (literals) and c1, . . . , cm clauses of length 3

1 Construct the graph G = (V,E) described in Example 4.1.22.
2 return Ind-Set(G, k)

It is not immediately clear that this algorithm gives the correct result. So, we need to verify its
correctness for both Yes and No outputs.

1 If Yes, there exists a satisfying assignment ⇐⇒ if there exists an independent set of size at
least m, then there exists a satisfying assignment.

2 If No, there does not exist a satisfying assignment ⇐⇒ if there there does not exist an
independent set of size at least m, then there does not exist a satisfying assignment.

Hence, it is sufficient to prove the following claim.

Claim 4.1.26: Let c1, . . . , cm be clauses with finite length and let G = (V,E) be the graph obtained
from Example 4.1.22. Then, there exists a satisfying assignment for c1, . . . , cm if and only if there
exists an independent set in G of size at least m.

Proof: Suppose x′1, . . . , x′n is a satisfying assignment and let U = ∅. Then, for each clause ci, there
exists at least 1 true term. Pick one such true term per clause arbitrarily and put corresponding
vertex in U . We have |U | = m. If we were to construct a graph G = (V,E) as described, then
every vertex in U is in different triangle. Hence, there exists an edge in E that connects vertices in
vi1j1 , vi2j2 ∈ U if and only if the j1-th term in ci1 is complement of the j2-th term in ci2 . Hence, we
cannot have such edge since if this is the case, then one of these literals is false so it cannot be in

Winter 2020 CO 353 44

Chapter 4. Complexity Theory 45

U . Hence, U is an independent set in G of size m.

Conversely, let U ⊆ V be an independent set in G of size m. Then, U contains exactly one vertex
from each clause and there does not exist an edge that connects any two vertices in U . Hence, no
pair of vertices in U can correspond to xj and xj for any literal xj . Note that any independent set
I in G of size less than m cannot contain one vertex from each clause since there are m clauses.
Consider the assignment x′1, . . . , x′n obtained by setting terms corresponding to vertices in U as true
and other terms as false. This is a satisfying assignment since every vertex in U corresponds to
different clause and since |U | = m, then each clause is satisfied. Moreover, we cannot have set both
xj and xj to true at the same time since if there exists a vertex corresponding to xj , say u1 ∈ U ,
then there does not exists u2 ∈ U that correspond to xj because there exists an edge in E that
connects u1 and u2 in G and U is an independent set. �

Hence, by the claim above, 3-Sat ≤p Ind-Set. /

4.1.2 Classes of P and NP

Definition 4.1.27: A problem X is called a decision problem if its outputs are Yes or No. The
set (or class) of all decision problems for that are solvable in polytime is called P. /

Example 4.1.28: The problems 3-Sat, Ind-Set, Vtx-Cover, Set-Cover etc. are all decision
problems. MST problem (that gives MST of a graph) is not a decision problem but the decision
version of the MST problem (that answers if there exists a spanning tree of cost at most k ∈ Z) is
a decision problem.

Decision-MST and Decision-Max-Cost-Forest are problems in P but it is not known if Ind-
Set is in P. /

Definition 4.1.29: A certifier C(s, t) for a decision problem X is an algorithm that for every
input s to X,

X(s) is Yes ⇐⇒ there exists t such that C(s, t) returns Yes.

In this case, t is called a Yes certificate . /

Example 4.1.30: Consider the decision problem Ind-Set(G, k). If the answer for this problem
is yes for given a graph G = (V,E) and k ∈ Z+, then one way to validate this answer is to
provide U ⊆ V such that |U | ≥ k and U is independent. In this case, U is a Yes certificate. For
3-Sat(x1, . . . , xn, c1, . . . , cm), a Yes certificate is a satisfying assignment x′1, . . . , x′n. /

Definition 4.1.31: A certifier C(s, t) for a decision problem X is called a polytime certifier if

1 size of t is polynomial in size of s and

2 C(s, t) does polynomially many basic operations in size of s. /

Definition 4.1.32: Let X be a decision problem. We say X is in non-deterministic polytime if
there exists a polytime certifier for X. The set (or class) of algorithms that are in non-deterministic
polytime is called NP. Equivalently, X ∈ NP if there exists a polytime non-deterministic algorithm
that solves X.

Winter 2020 CO 353 45

Chapter 4. Complexity Theory 46

A non-deterministic algorithm is an algorithm that, even for the same input, can exhibit differ-
ent behaviors on different runs, as opposed to a deterministic algorithm. An algorithm that solves
a problem in non-deterministic polynomial time can run in polynomial time or exponential time
depending on the choices it makes during execution. The non-deterministic algorithms are often
used to find an approximation to a solution, when the exact solution would be too costly to obtain
using a deterministic one. /

Remark 4.1.33: Let X be a decision problem. If X ∈ P, then X is solvable in polytime. Hence,
its certifier is also in polytime (we can just take its certifier as itself). Hence X ∈ NP. Hence,
P ⊆ NP. It is not known if NP ⊆ P but the consensus is NP 6⊆ P. /

4.1.3 NP-Completeness

Definition 4.1.34: A decision problem X is called NP-complete if

1 X ∈ NP, and

2 for all Y ∈ NP, Y ≤p X (so X is at least as hard as any problem in NP-class). /

Theorem 4.1.35: Let X be NP-complete. There exists a polytime algorithm to solve X if and
only if P = NP.

Proof: Suppose X is a polytime algorithm. Since for all Y ∈ NP we have Y ≤p X, then we can
use the polytime algorithm which we use to solve X to solve Y in polytime. Hence, NP ⊆ P. So
P = NP. Conversely, suppose P = NP. Since X ∈ NP then X ∈ P.

Theorem 4.1.36 (Cook-Levin ’71): Circuit-Sat problem is NP-complete.

Proof: Proof is beyond the scope of this course. We provide this theorem to show existence of
NP-complete problems. /

Theorem 4.1.37: Let X and Y be decision problems. If Y is NP-complete and if

1 X ∈ NP and

2 Y ≤p X (that is, we can solve Y using X as a subroutine),

then X is NP-complete.

Proof: Let Z ∈ NP be arbitrary. Since Y is NP-complete then Z ≤p Y . Since Y ≤p X, then we
have Z ≤p Y ≤p X for any Z ∈ NP and since X ∈ NP, then X is NP-complete.

Remark 4.1.38: Without proof, we state Circuit-Sat ≤p 3-Sat. This shows 3-Sat is NP-
complete since

1 Circuit-Sat is NP-complete by Cook-Levin ’71 theorem,

2 3-Sat ∈ NP. Let x′1, . . . , x′n be a certificate for 3-Sat. For each clause ci, we can check if ci is
satisfied by checking each term in ci. Since each ci has length 3 and since there are m clauses,
then the certifier for 3-Sat is in polytime. /

Remark 4.1.39: Note that when showing Y ≤p X, we need to show reduction is correct in both
Yes and No outputs. /

Winter 2020 CO 353 46

Chapter 4. Complexity Theory 47

Example 4.1.40: Subset-Sum is NP-complete. — This example is long and will be written
later. /

4.1.4 NP-Hardness

Winter 2020 CO 353 47

Index

A
acyclic, 4
arc, 33

B
basic operations, 2
basis

of a matroid, 21
big-O, 1
Big-omega, 2
Big-theta, 2

C
certifier, 45

polytime, 45
characteristic vector, 15
clause, 42

satisfies, 42
clique, 39
cut induced by a vertex set, 8
cycle, 4

cost of, 37
directed, 37
Hamiltonian, 17

cyclic, 4

D
decision problems, 45

set of, 45
disjoint union, 25

E
edge, 3

G
graph, 3

connected, 4
connected component, 5
directed, 33
forest, 13

greedy algorithm, 17
ground set, 20

I
independence system, 20
independent set, 20

independent set (graph theory), 39

L
literal, 42

M
matroid, 20

graphic, 22
linear, 21

maximal, 5
memoization, 31

P
path, 4
polytime algorithm, 2

pseudo, 33
polytime reducible problems, 39

R
rank

of a matroid, 21
rank quotient, 23
runtime of an algorithm, 2

S
set cover, 42
size of input, 1
subgraph, 5

induced by, 5

T
tree, 6

spanning, 6

V
vertex, 3

adjacent, 4
endpoints, 4

vertex cover, 41

W
walk, 4

closed, 4

Y
Yes certifier, 45

48

	Table of Contents
	Preface and Notation
	Algorithm Runtime, Big-O Notn. and Graph Theory
	Algorithm Running Time
	Finding an Estimate of Runtime (big-O Notation)
	Arithmetic Model

	Graph Theory
	Minimum Spanning Tree (MST)
	MST Problem

	Greedy Algorithms and Matroids
	Kruskal's Algorithm
	Implementation of Kruskal's Algorithm
	Validating Kruskal's Algorithm with Linear Programming

	Greedy Algorithms
	Maximum Cost Forest Problem
	Using Kruskal's Algorithm for Max. Cost Forest
	Properties of Forests

	Matroids
	Independence Systems and Independent Sets
	Solving Maximum Weighted Independent Set Problem with Greedy Algorithm
	Matroid Constructions

	Dynamic Programming
	Weighted Interval Scheduling
	Dynamic Programming Overview
	Knapsack Problem
	Shortest Paths
	Dijkstra's Algorithm
	Shortest Paths Without Negative Cycles

	Complexity Theory
	Polytime Reductions
	Examples of Polytime Reducible Problems
	Classes of P and NP
	NP-Completeness
	NP-Hardness

	Index

