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Preface and Notation

This PDF document includes lecture notes for CO 331 - Coding Theory taught by Alfred MENEZES
in Winter 2020.

For any questions contact me at c2kent(at)uwaterloo(dot)ca.

Notation

Throughout the course and the notes, unless otherwise is explicitly stated, we adopt the following
conventions and notations.

• The university logo is used as a place holder.

• The textbook used in this class is An Introduction to Error Correcting Codes with Applications,
by S.A. Vanstone and P.C. van Oorschot.

• Due to COVID-19, University of Waterloo took the following measures:

– All activity for on-campus courses (e.g., classes, labs, tutorials, etc.) is suspended for
one week. Course activity will stop on March 14. We will resume course activities in
alternative formats on Monday, March 23.

– At the end of the suspension of activities, the University is cancelling all in-person course
activity, including in-person exams, through the end of the Winter Term on April 25.

Detailed information regarding how the university handles COVID-19 can be found here:
https://uwaterloo.ca/coronavirus/ and https://uwaterloo.ca/coronavirus/academic-information.

Calvin KENT
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Lecture 1 Chapter 0. Brief Overview of the Course 06 January 2020

Start of Lecture 1

Chapter 0 – Brief Overview of the Course: Lectures 1–1

In its broadest sense, coding theory deals with the reliable, efficient and secure transmission of data
over channels that are subject to inadvertent noise and malicious intrusion.

0.1 Big Picture

Data
Source

Source
Encoder

(Digital data)

Channel
Encoder

(Encoding algo.)

Channel

Noise

Channel
Decoder

(Decoding algo.)

Source
Decoder

Data

Figure 0.1.1: Big picture.

Example 0.1.1: Replication code example. Below TCD means that can be detected and TCC
means that can be corrected.

Source Messages −→ Codewords # of errors TCD* # of codewords TCC* Rate
0 −−−−−−−−−−→ 0 0 0 1

1 −−−−−−−−−−→ 1

0 −−−−−−−−−−→ 00 1 0

1 −−−−−−−−−−→ 11
1

2

0 −−−−−−−−−−→ 000 1 1

1 −−−−−−−−−−→ 111
1

3

0 −−−−−−−−−−→ 00000 4 2

1 −−−−−−−−−−→ 11111
1

5

0 −−−−−−−−−−→ 0 . . . 0 m− 1

1 −−−−−−−−−−→ 1 . . . 1︸ ︷︷ ︸
m times

⌊m
2

⌋ 1

m

/

0.2 Goal of Coding Theory and Classification of Codes

We want to design code so that we have

• high information rate,

Winter 2020 CO 331 1



Lecture 1 Chapter 0. Brief Overview of the Course 06 January 2020

• high error-correcting capability,

• with efficient encoding and decoding algorithms.

We group codes as follows.

Codes

Block Codes

Linear Codes

Cyclic Codes

BCH Codes

RS Codes

Figure 0.2.1: Classification of codes.

Things that will not be covered in this course:

• Flamming codes,

• Raptor codes,

• LDPC codes,

• Turbo codes.

End of Lecture 1

Winter 2020 CO 331 2



Lecture 2 Chapter 1. Introduction and Fundamentals 08 January 2020

Start of Lecture 2

Chapter 1 – Introduction and Fundamentals: Lectures 2–4

Remark 1.0.1: We recall the big picture in Figure 0.1.1. In this course our focus is on what’s
going on between channel encoder and channel decoder, which is indicted by the purple circle.

Data
Source

Source
Encoder

(Digital data)

Channel
Encoder

(Encoding algo.)

Channel

Noise

Channel
Decoder

(Decoding algo.)

Source
Decoder

Data

Figure 1.0.1: Course focus.
/

Definition 1.0.2: We make the following definitions.

1 An alphabet A is a finite set of |A| = q ≥ 2 symbols. e.g. A = {0, 1}.

2 A word is a finite sequence (tuples or vectors) of symbols from an alphabet A.

3 The length of a word is the number of symbols in it.

4 A code C over A is a finite set of words over A that has at least of length 2.

5 A codeword is a word in code C.

6 A block code is a code where all codewords have the same length. A block code C of length
n containing M codewords over A is a subset C ⊆ An with |C| = M . This is denoted by
[n,M ] over A. /

Example 1.0.3: Let A = {0, 1} be the binary alphabet and let C = {00000, 11100, 00111, 10101}.
C is a [5, 4] code over {0, 1}.

Messages Codewords
00 −−−−−→ 00000

01 −−−−−→ 11100

10 −−−−−→ 00111

11 −−−−−→ 10101

Encoding is a one-to-one map. The channel encoder transmits only codewords but what’s received
by the channel decoder might not be a codeword.

As an example, suppose the channel decoder receives r = 11001. What should it do? In our
example, r is closest to 11100 and 10101. So it is more likely that the correct codeword was one of
these two. However this may not be the case in practice. /

Winter 2020 CO 331 3



Lecture 2 Chapter 1. Introduction and Fundamentals 08 January 2020

1.0.1 Assumptions About the Communication Channel

We have the following assumptions.

1 The channel only transmits symbols from A.

2 No symbols are deleted or added or transposed.

3 Errors are random.

Example 1.0.4: For q = 2 (binary symmetric channel, BSC ) and q = 3 we have the encoding
maps as follows.

0

1

0

1

1− p
p

p

1− p

0

1

2

0

1

2

1− p

p/2

p/2

p/2

1− p
p/2

p/2

p/2

1− p

Figure 1.0.2: Encoding maps for q = 2 and q = 3 with probabilities.

Here we have p as the symbol error probability . Hence, the probability of receiving the correct
symbol is 1 − p. Suppose the symbols transmitted are X1, X2, . . . and the symbols received are
Y1, Y2, . . .. Then, for all i ≥ 1 and for all indices 1 ≤ j, k ≤ q, we have the probability as

P (Yi = aj | Xi = ak) =

 1− p, if j = k,
p

q − 1
, if j 6= k.

/

Remark 1.0.5: We make the following remarks about BSC.

1 If p = 0, the channel is perfect :)

2 If p = 1
2 , the channel is useless :(

3 If p > 1
2 , then simply flip all bits that are received.

4 WLOG, we can assume 0 < p < 1
2 .

5 Analogously, for a q-ary channel, we can assume that 0 < p < q−1
q . /

Exercise 1.0.6: Verify remark 5 above. /

Definition 1.0.7: Let x, y ∈ An. The Hamming distance (simply referred as distance) d(x, y)
is the number of coordinate positions in which x and y differ. e.g. d(10111, 01010) = 4.

The distance of a code C is d(C) = min{d(x, y) | x, y ∈ C and x 6= y}. /
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Lecture 2 Chapter 1. Introduction and Fundamentals 08 January 2020

Theorem 1.0.8: d is a metric. That is, for all x, y, z ∈ An, Hamming distance satisfies the
following.

1 (Positive definitiveness) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.

2 (Symmetry) d(x, y) = d(y, x).

3 (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z).

Proof: By definition distance cannot be negative, so we have d(x, y) ≥ 0 for any x, y ∈ An. If
d(x, y) = 0, then every ith coordinate of x is same as every ith coordinate of y. So, x = y and if
x 6= y, then x differs from y in at least one coordinate, so d(x, y) 6= 0. Hence, d(x, y) = 0 if and
only if x = y, so distance is positive definite. If d(x, y) = d, then y and x differ in d coordinates, so
d(y, x) = d. Now suppose, for contradiction, there exists x, y, z ∈ An such that

d(x, z) > d(x, y) + d(y, z).

Let d(x, z) = d and WLOG, suppose the coordinates in which x and z differ are the first d coor-
dinates. We consider the possible values that d(x, y) can take. Suppose d(x, y) = 0. Then x = y
but then d(x, z) > d(y, z) is a contradiction. Suppose d(x, y) = 1. Then x and y differ in exactly 1
coordinate. If this coordinate is in the first d coordinates, then d(y, z) ≥ d− 1. So,

d(x, z) = d > 1 + d(y, z) ≥ d

is a contradiction. If the coordinates in which x and y differs is not in the first d coordinates,
then d(y, z) ≥ d which also is a contradiction. Suppose d(x, y) = k ≥ 2. If k ≥ d then we have a
contradiction since distance of positive definite. If k < d, then by above argument d(y, z) ≥ d − k
but then

d(x, z) = d > k + d(y, z) ≥ k + d− k = d

is a contradiction. Hence, the triangle inequality is satisfied.

Definition 1.0.9: The rate of an [n,M ]-code C over A where |A| = q is R =
logqM

n . If the source
messages all k-tuples over A, then M = qk. So, we have

R =
logq q

k

n
=
k

n
. /

Example 1.0.10: For C = {00000, 11100, 00111, 10101} we have R = 2
5 and d(C) = 2. /

End of Lecture 2
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Lecture 3 Chapter 1. Introduction and Fundamentals 10 January 2020

Start of Lecture 3

1.1 Decoding Strategy

Let C be an [n,M ]-code over A of distance d. Suppose some codeword is transmitted and r ∈ An
is received. Channel decoder has to decide the following.

1 No errors have occurred, accept r.

2 Errors have occurred and (decode) correct r to some codeword.

3 Erros have occurred and correction process is not possible.

1.1.1 Nearest Neighbor Decoding

1.1.1.1 Incomplete Maximum Likelihood Decoding (IMLD)

IMLD corrects r to be the unique codeword cr ∈ C for which the distance between r and cr, d(r, cr),
is smallest. i.e. d(r, cr) < d(r, c) for all c ∈ C with c 6= cr. If C is not unique codeword, r is rejected.

1.1.1.2 Complete Maximum Likelihood Decoding (CMLD)

Same as IMLD, except ties are broken arbitrarily.

We want to know if IMLD is a reasonable strategy.

Theorem 1.1.1: IMLD selects the codeword C that maximizes the conditional probability P (r|C),
the probability that r is received given that C was sent.

Before starting the proof we recall Bayes theorem from statistics.

Recall 1.1.2: Bayes theorem states that for two events A and B,

P (B)P (A|B) = P (A)P (B|A). /

Proof: Suppose c1, c2 ∈ C with d(c1, r) = d1 and d(c2, r) = d2. Suppose d1 > d2. So c1 is further
away from r than c2. Then IMLD selects c2. So we are only required to show P (r|c2) > P (r|c1).
We have

P (r|c1) = (1− p)n−d1
(

p

q − 1

)d1
,

P (r|c2) = (1− p)n−d2
(

p

q − 1

)d2
.

Hence,
P (r|c1)
P (r|c2)

= (1− p)d2−d1
(

p

q − 1

)d1−d2
=

(
p

(1− p)(q − 1)

)d1−d2
.

Winter 2020 CO 331 6



Lecture 3 Chapter 1. Introduction and Fundamentals 10 January 2020

We also have

p <
q − 1

q
=⇒ pq < q − 1 =⇒ 0 < q − pq − 1 =⇒ p < p+ q − pq − 1 = (1− p)(q − 1)

=⇒ p

(1− p)(q − 1)
< 1.

Since d1 > d2, then,
P (r|c1)
P (r|c2) < 1. Hence, P (r|c1) < P (r|c2).

1.1.1.3 Minimum Error Decoding (MED)

The ideal strategy is to correct r to c ∈ C that maximizes P (c|r). This is called Minimum Error
Decoding (MED).

Remark 1.1.3: IMLD is not the same as MED. Let C = {000, 111} where c1 = 000 and c2 = 111
and where the alphabet is A = {0, 1}. So we have

0→ 000, and 1→ 111.

Suppose P (c1) = 0.1 and P (c2) = 0.9. Suppose p = 0.25 and r = 100.

• With IMLD we get r → 000 since 100 is closer to 000 than it is to 111.

• We now check to see what MED gives us. By Bayes theorem we have

P (c1|r) =
P (r|c1)P (c1)

P (r)
=
p(1− p)20.1

P (r)
=

9

640P (r)
,

P (c2|r) =
P (r|c2)P (c2)

P (r)
=
p2(1− p)0.9

P (r)
=

27

640P (r)
.

So, P (c2|r) > P (c1|r). Hence, MED picks c2 and gives us r → 111. /

Remark 1.1.4: We make the following remarks.

1 IMLD selects c such that P (r|c) is maximum.

2 MED selects c such that P (c|r) is maximum.

3 MED has a drawback that required knowledge of the P (ci) for i = 1, . . . ,M .

4 Suppose source messages are equally likely. So P (ci) = 1
M for each i = 1, . . . ,M . Then,

P (r|ci) =
P (ci|r)P (r)

P (ci)
= P (ci|r) ·

P (r)

M︸ ︷︷ ︸
does not depend on i

.

So, maximizing P (r|ci) is same as maximizing P (ci|r). Hence, IMLD is same as MED.

In the remainder of the course we will use IMLD/CMLD. /

End of Lecture 3
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Lecture 4 Chapter 1. Introduction and Fundamentals 13 January 2020

Start of Lecture 4

1.2 Error Correcting and Decoding Capabilities of a Code

• If C is used for error correction, the strategy is IMLD/CMLD.

• If C is used for error detection only, the strategy is to reject r if r /∈ C, otherwise accept it.

Definition 1.2.1: A code C is called an e-error correcting code if the decoder always makes
the correct decision if at most e errors per codeword are introduced. We define e-error detecting
code similarly. /

Example 1.2.2:

1 C = {0000, 1111} is a 1-error correcting code but not a 2-error correcting code.

2 C = {00 . . . 0︸ ︷︷ ︸
m times

, 11 . . . 1︸ ︷︷ ︸
m times

} is a
⌊
m− 1

2

⌋
-error correcting code.

3 C = {0000, 1111} is a 3-error detecting code. /

Theorem 1.2.3: Let d(C) = d. Then C is a (d− 1)-error detecting code.

Proof: Suppose c ∈ C is transmitted and r is received. If no errors occur (that is, d(r, c) = 0) then
r = c ∈ C and decoder accepts r. If d or more errors occur, then the decoder can make the wrong
choice since d(C) = d. If at least 1 but less than d errors occur, then 1 ≤ d(r, c) ≤ d − 1. In this
case r /∈ C and the decoder rejects r. Hence, C is a (d− 1)-error detecting code.

Corollary 1.2.4: If d(C) = d, then C is not a d-error detecting code.

Proof: Since d(C) = d, then ∃ c1, c2 ∈ C such that d(c1, c2) = d. If c1 is sent and r is received
and with d errors, then it is possible that r = c2. In this case the decoder accepts c2 but this is the
wrong procedure. Hence C is not a d-error detecting code.

Theorem 1.2.5: If d(C) = d, then C is a
⌊
d−1
2

⌋
-error correcting code.

Proof: Suppose c ∈ C is transmitted and at most
⌊
d−1
2

⌋
errors are introduced and r is received.

Let c1 ∈ C be arbitrary with c1 6= c. By triangle inequality we have

d(c, c1) ≤ d(c, r) + d(r, c1) =⇒ d(r, c1) ≥ d(c, c1)− d(c, r) ≥ d−
d− 1

2
=
d+ 1

2
>
d− 1

2
.

So, c is the unique codeword closest to r. So, IMLD,CMLD will decode r to c and hence C is a⌊
d−1
2

⌋
-error correcting code.

Theorem 1.2.6: If d(C) then C is not a
⌊
d−1
2

⌋
+ 1-error correcting code.

Proof: Exercise. /

Remark 1.2.7: Given an alphabet A with size q, n,M and d for a block code, does there exists
an [n,M ]-code C over A with d(C) = d?

Winter 2020 CO 331 8



Lecture 4 Chapter 1. Introduction and Fundamentals 13 January 2020

Consider the set of all possible n-tuples over A and let C = {c1, . . . , cm}. Let e =
⌊
d−1
2

⌋
. For any

codeword c ∈ C, define

Sc = {r ∈ An | d(r, c) ≤ e} = Sphere of radius e centered at c.

An

c1

c2

c3

cM

e

e

e

e

Figure 1.2.1: Sci are shown in orange for i = 1, 2, 3,M .

In theorems above we proved that given distinct codewords c1, c2, the spheres around them don’t
overlap. So Sci ∩ Scj = ∅ where ci 6= cj . Thus the question can be viewed as a sphere packing
problem.

This question of asking if we can place M spheres of radius e in An such that no two spheres
overlap is a purely combinatorial problem. /

Example 1.2.8: Given A = {0, 1}, n = 128, M = 264 codewords, determine if a [n,M ]-code C
over A with d(C) = d exists.

The answer is yes and we will show how to get and use this answer in the following lectures. /

Remark 1.2.9: In the following weeks we will view set of all words, An, as a vector space of dimen-
sion n over the field Zq where |A| = q. We will choose the code C to be a M -dimensional subspace
of this vector space and we will choose special subspaces that satisfy the d(C) = d requirement. /

End of Lecture 4
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Lecture 5 Chapter 2. Finite Fields 15 January 2020

Start of Lecture 5

Chapter 2 – Finite Fields: Lectures 5–9

2.1 Introduction to Finite Fields

Remark 2.1.1: We denote the multiplication operation, × as · or concatenation. It’ll be always
clear from the context. /

Definition 2.1.2: A binary operation on a set S is a function ∗ : S2 → S where S2 = S × S =
{(a, b) | a, b ∈ S}. We usually write a ∗ b instead of ∗(a, b). /

Definition 2.1.3: A ring is a set R equipped with two binary operations addition (+) and mul-
tiplication (·) and contains an element 0 such that

1 + is associative, i.e. (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,

2 + is commutative, i.e. a+ b = b+ c for all a, b, c ∈ R,

3 0 is additive identity, i.e. a+ 0 = 0 + a = a, for all a ∈ R

4 every a ∈ R has an additive inverse, i.e. there exists −a ∈ R such that a+(−a) = (−a)+a = 0,

5 × is associative, i.e. (ab)c = a(bc) for all a, b, c ∈ R,

6 × is distributive over +, i.e. a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R. /

Definition 2.1.4: Let R be a ring.

1 If × is commutative in R, that is, if ab = ba for all a, b ∈ R, then we say R is commutative .

2 If R contains additive identity, that is, if R 3 1 6= 0 such that 1a = a1 = a for all a ∈ R,
then we say R has an identity (or that R has a 1). 1 is also referred as the multiplicative
identity.

3 If R has a 1 and if there exists a, b ∈ R such that ab = 1, we say a is a invertible (or that a
is a unit). Note that if there exists a ∈ R such that a 6= 1 and a is a unit, then there exists
b ∈ R such that b 6= 1 and ab = 1. i.e. the multiplicative identity is unique.

4 If R has 1 and if for all non-zero a ∈ R is a unit then R is called a division ring .

5 If R is commutative and is a division ring then it is called a field . Generally we use F or F
to denote fields. /

Definition 2.1.5: We say a field F is infinite if |F | ≥ ℵ0. i.e. if |F | is not finite. Otherwise we say
F is finite. /

Example 2.1.6: Let n ∈ Z+. The sets Z,Q,R,C and Zn are all commutative rings with 1 but
only Q,R,C and Zp for p is prime are fields. /

Definition 2.1.7: The order of a field F is its cardinality. The multiplicative order of an
element a ∈ F is the smallest positive integer n that satisfies an = 1. We define the additive
order similarly. /

Winter 2020 CO 331 10



Lecture 5 Chapter 2. Finite Fields 15 January 2020

Recall 2.1.8: Let n ≥ 2 be a positive integer. The integers modulo n denoted by Zn or Z/nZ or
Z/(n) is the set of all equivalence classes modulo n. In this course we will use Zn. That is,

Zn =
def
{[0], [1], . . . , [n− 1]}.

Here the square brackets denote equivalence classes modulo n. That is, if a ∈ [b], then a = b mod n.
The addition and multiplication is defined in the usual sense in between equivalence classes. i.e.
[a] + [b] = [a + b] and [a][b] = [ab]. For convenience we will drop the square brackets when talking
about Zn. /

Example 2.1.9: The set of integers modulo 9 is Z9 = {0, 1, . . . , 8} and 7+8 = 6 mod 9 = [6] = 6
and 7 · 8 = 2 mod 9 = [2] = 2. /

Theorem 2.1.10: Let n ≥ 2 be a positive integer. Zn is a field if and only if n is prime.

Proof: Suppose n is composite. So n = ab where a, b ∈ Z+ with 2 ≤ a, b ≤ n − 1. Suppose, for
contradiction, a is a unit. Then ∃ a−1 ∈ Zn such that aa−1 = 1 mod n. Thus, aba−1 = na−1 = b
mod n. Hence, b = 0 mod n. Then n|b which is a contradiction. Hence, if n is composite then
Zn is not a field. The contrapositive of this argument shows if Zn is a field then n is prime. Now
suppose n is prime. Since Zn is a commutative ring with 1 we only need to show Zn is a division
ring. Then Zn = {0, 1, . . . , n− 1}. Let a ∈ Zn be non-zero. Then 1 ≤ a ≤ n− 1. Since n is prime
then gcd(a, n) = 1. Then by Bezout’s identity there exists s, t ∈ Z such that as + nt = 1. Hence,
as + nt = as mod n. Hence, a−1 = s. Since a was arbitrary, then every non-zero element in Zn
has an inverse. Hence Zn is a field.

Remark 2.1.11: By above theorem we see that there exist fields with order p where p is prime.
Do there exist fields of orders 4 and 6?
The answer is yes and we will see more about such fields in the following lectures. /

Definition 2.1.12: The characteristic of a field F , denoted by char(F ), is the smallest positive
integer m such that 1 + 1 + · · ·+ 1︸ ︷︷ ︸

m times

= 0. If no such exists, then we say the characteristic is zero. /

Example 2.1.13: char(Q) = 0 = char(R) = char(C) and char(Zp) = p. /

Theorem 2.1.14: Let F be a field. If char(F ) = 0 then F is not finite.

Proof: We have 1, 1+ 1, 1 + 1 + · · ·+ 1︸ ︷︷ ︸
m times

∈ F for all m ∈ Z+. It is sufficient to show all 1, 1+ 1, 1+

1 + · · ·+ 1 are distinct. Suppose, for contradiction, there exists distinct m,n ∈ Z+ such that

1 + · · ·+ 1︸ ︷︷ ︸
m times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

WLOG, suppose m > n. Then,

1 + · · ·+ 1︸ ︷︷ ︸
m times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

+1 + · · ·+ 1︸ ︷︷ ︸
m−n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

Hence, 1 + · · ·+ 1︸ ︷︷ ︸
m−n times

= 0. But this means char(F ) = m− n ∈ Z+ which is a contradiction. Hence F

is infinite.

Theorem 2.1.15: If F is a finite field then char(F ) is prime.
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Proof: Suppose char(F ) = m where m is composite. Then, m = ab where 2 ≤ a, b ≤ m−1. Hence
we have

1 + · · ·+ 1︸ ︷︷ ︸
m times

=

1 + · · ·+ 1︸ ︷︷ ︸
a times

1 + · · ·+ 1︸ ︷︷ ︸
b times

 = 0.

Note that we also have 1 + · · ·+ 1︸ ︷︷ ︸
a times

, 1 + · · ·+ 1︸ ︷︷ ︸
b times

∈ F . Since char(F ) = m > a then there exists c ∈ F

such that
c · 1 + · · ·+ 1︸ ︷︷ ︸

a times

= 1.

This gives us

c ·

1 + · · ·+ 1︸ ︷︷ ︸
a times

1 + · · ·+ 1︸ ︷︷ ︸
b times

 = c · 1 + · · ·+ 1︸ ︷︷ ︸
m times

= 0 = 1 · 1 + · · ·+ 1︸ ︷︷ ︸
b times

.

But then b = 0 which is a contradiction. Hence char(F ) is prime.

Remark 2.1.16: In the following weeks we will consider a finite field F with order n and charac-
teristic p for some prime p. We will see that Zp is a subfield of F and F is a vector space over Zp,
say of dimension k. We will see that n = pk. /

End of Lecture 5
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Start of Lecture 6

2.2 Existence of Finite Fields

Definition 2.2.1: We say two fields F1 and F2 are isomorphic if they have the same binary
operations and if there exists a bijection α : F1 → F2 that preserves the operations. i.e.

α(a+ b) = α(a) + α(b) ∈ F2,

α(ab) = α(a)α(b) ∈ F2, ∀ a, b ∈ F1.

/

Definition 2.2.2: Let F be a field. A subset S ⊆ F is called a subfield of F if S is also a field
using the same operations used in F . /

Example 2.2.3: Let F be a finite field with characteristic p. Consider F ⊇ E = {0, 1, 1 +
1, 1 + 1 + · · ·+ 1︸ ︷︷ ︸

p−1 times

}.

We see that the set E equipped with the field operations of F is also a field. The order of E is p.
If we label the elements of E in a natural way such that 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

= n, we have

F ⊇ E = { 0︸ ︷︷ ︸
0 times

, 1︸ ︷︷ ︸
1 times

, 1 + 1︸ ︷︷ ︸
2 times

, . . . , 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p−1 times

} ∼= {0, 1, 2, . . . , p− 1} = Zp.

So we can say E is isomorphic to Zp. /

Theorem 2.2.4: If F is a finite field of characteristic p, then Zp is a subfield of F .

Proof: Exercise. /

Remark 2.2.5: Consider Zp ⊆ F for a finite field F . We make the following remarks.

1 Each f ∈ F is a vector.

2 Each k ∈ Zp is a scalar.

3 Addition in F is defined by vector addition.

4 Multiplication in F by elements in Zp is defined by scalar multiplication. /

Theorem 2.2.6: If F is a finite field of characteristic p, then F is a vector space over Zp.

Proof: Exercise. /

Theorem 2.2.7: If F is a finite field of characteristic p, then |F | = n = pk for some k ∈ N.

Proof: Since F is a finite field then by Theorem 2.2.6 F is a vector field over Zp. Then, dimF = k
for some k ∈ Z+. Let {α1, . . . , αk} be a basis of F . Then, every element in f can be uniquely
expressed as a linear combination of the elements in this basis. That is, for all a ∈ F we have

a = c1α1 + · · ·+ cnαn where ci ∈ Zp for i = 1, . . . , n.

Note that the linear combinations of ciαi uniquely determine a. Since F is also a field, then it’s
closed under addition and multiplication. Hence, every linear combination of ciαi is also an element
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of F . For each αi, there are p possible choices for ci. Since the basis contains k vectors, then F has
pk elements. Hence, |F | = pk.

Example 2.2.8: There are no fields of order 6. /

Remark 2.2.9: How can we show if there a fields of orders 4, 8, 9?

We consider Z, which is an infinite commutative ring. We pick n ≥ 2 and consider the con-
gruence relation on Z, that is a = b( mod n). The set of equivalence classes for the congruence
equivalence relation forms a finite set Zn and for n prime, Zn forms a finite field of order n.

Z

Pick n ≥ 2,
a = b mod n

−−−−−−−→

Zn

n prime

−−−−−→

Zp

Infinite comm. ring Finite comm. ring Finite field or order n

[0]

[1]

[2]

...

[n− 1]

Figure 2.2.1: Constructing a finite field from infinite commutative ring Z.

Here [0], [1], . . . , [n − 1] are sets of equivalence classes for modulo n. We can also consider Zp[x]
(polynomial ring over Zp) and do the same procedure as before, except by picking the congruence
relation over polynomials for some polynomial f such that deg f ≥ 1 and by picking the irreducible
polynomials in the last step.

Zp[x]

Pick f ∈ Zp[x],
deg(f) = d ≥ 1
g = h mod f

−−−−−−−→

Zp[x]/(f)

f is
irreducible
−−−−−−−→

Zp[x]/(f)

Infinite comm. ring Finite comm. ring
with size pd

Finite field
with size pd

[0]

[1]

[2]

...

[pd − 1]

Figure 2.2.2: Constructing finite field from infinite commutative ring Zp[x].

Here [0], [1], . . . , [pd − 1] are sets of equivalence classes in polynomials for f ∈ Zp[x]. /

Definition 2.2.10: Let F be a field. The set of all polynomials in x over F (polynomials with

Winter 2020 CO 331 14



Lecture 6 Chapter 2. Finite Fields 17 January 2020

coefficients from F ) is denoted as F [x]. Addition and multiplication operations are defined in the
usual way with coefficient arithmetic in F . Note that generally speaking, F [x] is not always a field
since x ∈ F [x] can have no inverse but F [x] is always a commutative ring. /

Example 2.2.11: In Z11[x], we have f = 2+5x+6x2 ∈ Z11[x] and g = 3+9x+5x2 ∈ Z11[x] and
f + g = 5 + 3x ∈ Z11[x]. /

Theorem 2.2.12: Let F be a field. Then, F [x] is a commutative ring.

Proof: Since F is a field, then it’s a commutative division ring. So, every a ∈ F has an inverse.
Since in F [x] addition and multiplication is defined the same way as they do in F , then F [x] is a
commutative ring. Since x ∈ F [x] but x is not a unit in F [x], then F [x] is not a field.

Definition 2.2.13: Let F be a field and let f ∈ F [x] with deg f ≥ 1. If g, h ∈ F [x] and if f |g − h,
then we write g = h mod f . Note that this is equivalent to saying if g = h mod f then g−h = `f
for some ` ∈ F [x].

For zero polynomial, we say deg 0 = −∞ to be consistent with the division algorithm. /

Theorem 2.2.14: We state the following theorems regarding what we covered in this section.

1 Congruency is an equivalence relation.

2 Let g ∈ F [x]. The equivalence class containing g, [g], is well-defined. That is,

[g] = {h ∈ F [x] | h = g mod f}.

3 Addition and multiplication of equivalence classes for congruency in polynomials is well-
defined.

4 The set of all equivalence classes, denoted by F [x]/(f) where f ∈ F [x] with deg f ≥ 1 is a
commutative ring.

5 The polynomials in F [x] of degree less than deg f are a system of distinct representatives of
the equivalence classes in F [x]/(f).

Proof: We only show 5 and leave others as exercise. Let g ∈ F [x]. By division algorithm in
polynomials we can write g = `f + r where deg r < deg f . So, g − r = `f . Hence, g = r mod f .
Hence, [g] = [r] and we have deg r < deg f . Also, if r1, r2 ∈ F [x] where r1 6= r2 with deg ri < deg f
for i = 1, 2 then, f 6 |r1 − r2. So, r1 6= r2 mod f . Hence, [r1] 6= [r2].

End of Lecture 6
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Start of Lecture 7

2.3 Constructing Finite Fields

Last class we proved a system of distinct representatives for Zp/(f) is [r(x)] where r ∈ Zp[x] and
deg r < deg f = n. This gave us |Zp[x]/(f)| = pn.

Definition 2.3.1: Let F be a field and f(x) ∈ F [x] with deg f = n ≥ 1. Then, we say f is
irreducible over F if f cannot be written as f = gh where g, h ∈ F [x] and deg g,deg h ≥ 1. /

Example 2.3.2: f(x) = x2 + 1 is irreducible over R,Z3 but it’s reducible over C and Z2 since
x2 + 1 = (x− i)(x+ i) and 12 + 1 = 0 mod 2. /

Theorem 2.3.3: Let F be a field and let f ∈ F [x] of degree n ≥ 1. Then, the ring of polynomials
over F modulo f , F [x]/(f), is a field if and only if f is irreducible over F .

Proof: We first note that F [x]/(f) is a commutative ring for any f with deg f ≥ 1 since F [x] is a
field and addition and multiplication operations in F are also commutative in polynomials. For the
backward direction suppose g ∈ F [x]/(f) with g 6= 0 and deg g < deg f . Then, gcd(g, f) = 1. So,
by the extended Euclidean algorithm for polynomials, there exists s, t ∈ F [x] such that gs+ ft = 1.
Then,

1 = gs+ ft = gs mod f.

So, s = g−1. Since this is true for any non-zero g ∈ F [x]/(f), then F [x]/(f) is a commutative
division ring and hence by definition, it’s a field.

Exercise 2.3.4: Prove forward direction. /

Remark 2.3.5: To construct a finite field of order pn where n ≥ 2, we need an irreducible polyno-
mial f ∈ Zp[x] of degree n. This gives us a finite field Zp[x]/(f) with order pn. /

Theorem 2.3.6: For any prime p ∈ Z and integer n ≥ 2, there exists an irreducible polynomial of
degree n over Zp.

Proof: The proof can be done using generating functions from MATH 249 and it’s beyond the
scope of this course.

Theorem 2.3.7: There exists a finite field of order q if and only if q is a prime power.

Proof: Exercise.

Example 2.3.8: To construct a finite field or order 4 = 22, we can take f(x) = x2 + x + 1 which
is irreducible over Z2[x]. We have Z2[x]/(x

2 + x+ 1) = {0, 1, x, x+ 1} where 1−1 = 1, x−1 = x+ 1.

To construct a finite field or order 8 = 23, we can take f(x) = x3+x+1 or g(x) = x3+x2+1 since
both are irreducible over Z2[x]. We have

Z2[x]/(f) = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}, where

x−1 = x2 + 1,

(x+ 1)−1 = x2 + x,

(x2)−1 = x2 + x+ 1

Note that we also have Z2[x]/(g) = {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1} but Z2[x]/f 6= Z2[x]/g.
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It is easy to see this since the zero elements in these fields represent different things but Z2[x]/f ∼=
Z2[x]/g since there exists a bijection between these two fields. /

Recall 2.3.9: Let F1, F2 be fields. We say F1 is isomorphic to F2 if there exists a bijection α :
F1 → F2 that preserves the operations. i.e.

α(a+ b) = α(a) + α(b) ∈ F2,

α(ab) = α(a)α(b) ∈ F2, ∀ a, b ∈ F1. /

Theorem 2.3.10: Any two finite fields with same order are isomorphic.

Proof: Exercise.

Notation 2.3.11: We denote finite fields with order q as GF(q) (Galois field). In above examples,
we show two different representations of GF(23). /

End of Lecture 7
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Start of Lecture 8

Recall that by Remark 2.3.5 a finite field of order q, GF(q), exists if and only if q = pn for some
prime p ∈ Z and n ≥ 1. If GF(q) = Zp[x]/(f), then charZp[x]/(f) = p.

Example 2.3.12: To construct GF(16) = GF(24), we need an irreducible polynomial of degree 4
in Z2. We can take f(x) = x4 + x + 1. Note that x2 + 1 is the only irreducible polynomial with
degree 2 in Z2. So, f is also irreducible over Z2 since f(0), f(1) 6= 0 mod 2 and x2 + 1 is not a
factor of f by long division. So we have GF(16) = Z2[x]/(f). /

2.3.1 Properties of Finite Fields

Before we state and prove Frosh’s Dream theorem, we prove the following lemma.

Lemma 2.3.13: If F and K are two finite fields that are isomorphic, then charF = charK.

Proof: Let charF = p. Then, 1F + · · ·+ 1F︸ ︷︷ ︸
p times

= 0. Let α : F → K be a bijection. For any a ∈ F

we have
α(a · 1F ) = α(a)α(1F ) = α(a), where 1F is the identity in F.

So, α(1F ) = 1K is the identity in K. We also have

α(1F + · · ·+ 1F ) = α(1F ) + · · ·+ α(1F )︸ ︷︷ ︸
p times

= 0.

Hence char(K)|p. Hence charK = p.

Theorem 2.3.14 (Frosh’s Dream): Let α, β ∈ GF(q) with |GF(q)| = p. Then, (α+β)p = αp+βp.

Proof: By binomial theorem we have

(α+ β)p =

p∑
i=0

(
p

i

)
αiβp−i = αp +

p−1∑
i=1

(
p

i

)
αiβp−i + βp.

Note that for prime p ∈ Z, we have p 6 | 1 · 2 · · · p− 1. So, for all 0 ≤ i < p, we have p 6 | i!. So, we
have (

p

i

)
=
p · (p− 1)!

i!(p− i)!
= p · γ, where γ ∈ N with γ 6= 0 and p 6 | γ.

This gives us
p−1∑
i=1

(
p

i

)
αiβp−i =

p−1∑
i=1

pγiα
iβp−i.

Since |GF(q)| = p, then GF(q) ∼= Zp. Hence, charGF(q) = p. This gives us

p−1∑
i=1

(
p

i

)
αiβp−i =

p−1∑
i=1

pγiα
iβp−i =

p−1∑
i=1

(1 + · · ·+ 1)︸ ︷︷ ︸
p times

γiα
iβp−i = 0.

Hence, (α+ β)p = αp + βp.

Remark 2.3.15: Frosh’s Dream theorem is also known as Anti-Calculus Lemma and more generally
for α, β ∈ GF(q) we have ((α+ β)p)m = (αp)m + (βp)m. /
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Theorem 2.3.16: Let α ∈ GF(q). Then αq = α.

Proof: If α = 0, then αq = 0 = α. If α 6= 0, then let GF(q)∗ = {α1, . . . , αq−1} be non-zero elements
in GF(q). Consider

GF(q)′ = αGF(q)∗ = {αα1, . . . , ααq−1}.

Note that if ααi, ααj ∈ GF(q)′ and ααi = ααj , then αi = αj . Hence, the elements of GF(q)′

are pairwise distinct. Also, ααi 6= 0 for all αi ∈ GF(q)∗. Hence, GF(q)∗ is equal to GF(q)′ up to
ordering. Hence,

q−1∏
i=1

αi =

q−1∏
i=1

ααi = αq−1
q−1∏
i=1

αi.

Hence, αq−1 = 1. Hence, αq = α.

Remark 2.3.17: Note that above theorem is generalization of Fermat’s lil theorem. /

Definition 2.3.18: Let F be a field. We denote the set of non-zero elements (units) in F as
F ∗. i.e. F ∗ = F \ {0}. So, GF(q)∗ = GF(q) \ {0}. /

Definition 2.3.19: Let α ∈ GF(q)∗. The order of α, denoted by ord(α), is the smallest positive
integer t that satisfies αt = 1. /

Example 2.3.20: There is only one element of order 1 in GF(q) and that is 1. /

Example 2.3.21: We want to find ord(x) where x ∈ GF(16) = Z2[x]/(x
4 + x+ 1). One approach

we can take is to look xi for all i = 1, . . . , 15. We have

x1 = x, x5 = x2 + x, x9 = x3 + 1, x13 = x3 + x2 + 1,

x2 = x2, x6 = x3 + x2, x10 = x2 + x+ 1, x14 = x3 + 1,

x3 = x3, x7 = x3 + x+ 1, x11 = x3 + x2 + x, x15 = 1.

x4 = x+ 1, x8 = x2 + 1, x12 = x3 + x2 + x+ 1,

So we find ord(x) = 15 in GF(16). We also find that all of xi are distinct for 1 ≤ i ≤ 15. /

Theorem 2.3.22: Let α ∈ GF(q)∗ with ord(α) = t. Then, αs = 1 if and only if t| s.

Proof: Let s ∈ Z. By division algorithm, we have s = `t+r. So, αs = α`tαr. Hence, αs = α`tαr =
(αt)`αr = αr. Thus, αs = 1 ⇐⇒ αr = 1 ⇐⇒ r = 0 ⇐⇒ t| s.

Corollary 2.3.23: ord(α)|q − 1.

Remark 2.3.24: By the above theorem, to find ord(x), we only needed to check x1, x3 and x5 in
Example 2.3.21. /

Definition 2.3.25: Let α ∈ GF(q). If ord(α) = q− 1, then we say α is a generator of GF(q)∗ (or
primitive element of GF(q)).

If α is a generator ofGF(q)∗, then {α1, . . . , αq−1} = GF(q)∗. So the powers of α generate GF(q)∗. /

The following material was covered in assignment 1.

Definition 2.3.26:

1 If ci ∈ C was sent, we denote the probability of IMLD making an incorrect decision as wi.

Winter 2020 CO 331 19



Lecture 8 Chapter 2. Finite Fields 22 January 2020

2 The error probability of an [n,M ]-code C is defined to be PC = 1
M

∑M
i=1wi. The error

probability of a code varies depending on the probability distribution of source messages.

/

End of Lecture 8
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Start of Lecture 9

Lemma 2.3.27: If α ∈ GF(q)∗ has order αt, then α1, . . . , αt−1 are pairwise distinct.

Proof: Suppose, for contradiction, αi = αj where 1 ≤ i, j ≤ t−1 and i and j are distinct. WLOG,
suppose i > j. Then, i = j + k for some non-zero positive integer k where 1 ≤ k ≤ t − 2. Then,
αi = αjαk. Then, αk = 1 which is a contradiction since ord(α) = t > k.

Theorem 2.3.28: GF(q)∗ has at least one generator.

Proof: Optional reading posted on Learn.

Example 2.3.29: To find a generator of GF(8) = Z2[x]/(x
3 + x+ 1), we want to find α ∈ GF(8)∗

such that ord(α) = 7. Since 7 is prime, then for any α ∈ GF(8)∗, if α 6= 1 then ord(α) = 7. Hence,
any non-identity α ∈ GF(8) is a generator. /

Chapter 3 – Linear Codes: Lectures 9–15

Earlier we studied block codes and saw that block codes are just codes where all codewords have
the same length. We used square brackets to denote block codes.

Remark 3.0.1: For F = GF(q), we denote the set of n-tuples over F as Vn(F ) = F ×· · ·×F = Fn.
Vn(F ) is an n dimensional vector space and we have |Vn(F )| = qn. /

Definition 3.0.2: A linear (n, k)-code over F is a k dimensional subspace of the n-dimensional
vector space Vn(F ). We use round brackets to denote linear codes and when we specify linear codes,
we simply say “let C be an (n, k)-code” and assume the field F that C is associated to is a general
finite field where F = GF(q). /

Recall 3.0.3: A subspace of a vector space V over F is a subset S ⊆ V such that

1 0 ∈ S, so S 6= ∅, and

2 S is closed under addition and multiplication operations of F . i.e. for all v1, v2 ∈ S and λ ∈ F
we have v1 + λv2 ∈ S.

Note that a subspace S ⊆ V is also a vector space. /

3.1 Properties of Linear Codes

Let C be an (n, k)-code over F . Let v1, . . . , vk be an ordered basis for C.

1 The codewords in C are precisely m1v1 + · · ·+mkvk where mi ∈ F . So, |C| =M = qk since
there are q choices for each mk. The length of C is n and it has dimension of k.

2 The rate of C is R =
logqM

n = k
n .

3 The distance of C is d(C) = min{d(x, y) | x, y ∈ C and x 6= y}.

Definition 3.1.1: The Hamming weight of v ∈ Vn(F ) is the number of non-zero coordinate
positions in v, denoted by w(v). The weight of C is w(C) = min{w(c) | c ∈ C and c 6= 0}. /
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Theorem 3.1.2: If C is a linear code, then d(C) = w(C).

Proof: We have

d(C) = min{d(x, y) | x, y ∈ C and x 6= y},
= min{w(x− y) | x, y ∈ C and x 6= y},
= min{w(c) | c ∈ C and c 6= 0},
= w(C).

Remark 3.1.3: Since M = qk, there are qk source messages. We will assume that the source
messages are elements of Vk(F ). A natural encoding rule is, given (m1, . . . ,mk) ∈ Vk(F ), encode
the message as c = m1v1 + · · ·+mkvk.

Note that the encoding rule depends on the basis chosen for C and its order. /

Remark 3.1.4: If m = (m1, . . . ,mk) and v1, . . . , vk is an ordered basis for C, then the encoding
rule can be written as follows.

C = (m1, . . . ,mk)


v1

v2
...
vk


k×n

= mG.

In this course, we treat all vectors as row vectors. Here the matrix G, which is constructed from
the basis vectors of C, is called the generator matrix (GM). /

Definition 3.1.5: Let C be a (n, k)-code. A generator matrix (GM) for C, denoted as G, is a
k × n matrix where rows form a basis for C. /

Remark 3.1.6: An encoding rule for C with respect to G is c = mG. Performing elementary row
operations on G gives a different generator matrix for the same code C. So, generator matrix is not
unique. /

End of Lecture 9
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Start of Lecture 10

Example 3.1.7: Consider a binary (5, 3)-code C. Note that C has length 5 and dimension 3 and
since C is a binary code, then F = GF(2) = Z2. We also have |C| = qk = 8 and C has rate 3

5 . We
can specify the code C by giving a basis as follows.

C = 〈10010, 01011, 00101〉 = 〈v1, v2, v3〉.

To check v1, v2, v3 are linearly independent we write them as rows. We have

G =

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1


3×5

.

Since G is of the form G3×5 = [I3 | A]3×5, then v1, v2, v3 are linearly independent. We also have
that G is a generator matrix (GM) for C. Note that G is not the only GM for C . We have

m (Source) c (codewords)
000 → 00000
001 → 00101
010 → 01011
100 → 10010

m (Source) c (codewords)
011 → 01110
101 → 10111
110 → 11001
111 → 11100

Here we showed mG = c ∈ C where G is defined as above. Note that different generator matrices
(any matrix that is row equivalent to G) will have different encoding rules. We also see that
w(C) = 2 = d(C) and C has error detecting capability 1 and error correcting capability 0. /

Remark 3.1.8: If G a GM for an (n, k)-code and if it is in the form [Ik | A], then it is trivial to
go back to source messages from codewords. /

Definition 3.1.9: Let C be an (n, k)-code with GM G. If G is of the form [Ik | A], then C is called
a systematic code and G is said to be in standard form. /

Example 3.1.10: Let C be an (6, 3)-code where C = 〈100011, 101010, 10010〉. We have

G =

1 0 0 0 1 1
1 0 1 0 1 0
1 0 0 1 1 0

.
It is easy to see that since the second row of G is zero, then C is not systematic. We use ERO to
convert G into RREF. We have

G

R1+R2→R2
R2+R3→R3−−−−−−−→

1 0 0 0 1 1
0 0 1 0 0 1
0 0 0 1 0 1


Although C is not symmetric, if every codeword is permuted by moving the second bit to a new
fourth bit, then we get a new code C ′ which is also linear and has the same length, dimension and
distance as C. /

Definition 3.1.11: Let C be an (n, k)-code. If π is a permutation on {1, . . . , n} then π(C) is an
(n, k)-code and if two codes C and C ′ differ by a permutation on {1, . . . , n} then we say C and C ′

are equivalent codes. Here {1, . . . , n} represent the coordinate positions of codewords.

If C and C ′ are equivalent codes, then d(C) = d(C ′) since w(C) = w(C ′). /
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Theorem 3.1.12: Every linear code is equivalent to a systematic code.

Proof: Let C be an (n, k)-code. Let G be a GM for C where G is in RREF. Then, we can permute
the columns of G to get a matrix Gstd. where Gstd. = [Ik | A] and Gstd. is in standard form. Then
G′ = Gstd. is a GM for code C ′ where C ′ is equivalent to C.

3.2 Dual Codes

Definition 3.2.1: Let x, y ∈ Vn(F ). The (indefinite) inner (dot) product of x and y is defined as

x · y =

n∑
i=1

xiyi ∈ F.

In this course we will simply refer this as dot product. If x · y = 0, then we say x and y are
orthogonal . /

Theorem 3.2.2 (Properties of Inner Product): For all vectors x, y, z ∈ Vn(F ) and scalars λ ∈ F
the following are true.

1 (Symmetry) x · y = y · x.

2 (Distributivity) x · (y + z) = x · y + x · z.

3 (Associativity) (λx) · y = λ(x · y).

4 (Indefiniteness) x · x does not imply x = 0.

Proof: 1 , 2 and 3 directly follow from commutativity and associativity of addition and multi-
plication in F . For 4 , we see that for (1, 1) ∈ V2(Z2), we have (1, 1) · (1, 1) = 0.

Definition 3.2.3: Let C be an (n, k)-code. The dual code of C is defined as

C⊥ = {x ∈ Vn(F ) | x · c = 0,∀ c ∈ C}. /

Remark 3.2.4: For any linear code C, we see that 0 ∈ C⊥, so C⊥ is non-empty. /

Theorem 3.2.5: Let C be an (n, k)-code over F . C⊥ be an (n, n− k)-code over F .

Proof: Let C = 〈v1, . . . , vk〉. That is, v1, . . . , vk is a basis for C.

Claim 3.2.6: For any x ∈ Vn(F ), x ∈ C⊥ if and only if vi · x = 0 for all i = 1, . . . , k.

Proof: If x ∈ C⊥ then for any c ∈ C we have x · c = 0. Since all v1, . . . , vk ∈ C, then vi · x = 0
for i = 1, . . . , k. For the converse, suppose x · vi = 0 for all i = 1, . . . , k. Let c ∈ C. Then,
c = λ1v1 + · · ·+ λk + vk. Then,

x · c = xλ1v1 + · · ·+ xλk + vk = λ1(x · v1) + · · ·+ λk(x · vk) = 0.

Hence, x ∈ C⊥. �

Consider G = (v1, . . . , vk)
>. Then by the above claim x ∈ C⊥ if and only if xG> = 0. So, C⊥ is

the nullspace of G. Hence, C⊥ is an (n, k)-dimensional subspace of Vn(F ).

End of Lecture 10
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Start of Lecture 11

Theorem 3.2.7: If C is a linear code, then (C⊥)⊥ = C.

Proof: Let C be an (n, k)-code. Then C⊥ is an (n, n − k)-code and (C⊥)⊥ is an (n, k)-code. Let
c. Then, c · x = 0 for all x ∈ C⊥. So, c ∈ (C⊥)⊥. Hence, C ⊆ (C⊥)⊥. Suppose C is a code over
F = GF(q). Then C⊥ and (C⊥)⊥ are also codes over F = GF(q). Then |C| = qk =

∣∣(C⊥)⊥∣∣.
Hence, C = (C⊥)⊥.

Recall 3.2.8: For all x1, . . . , xk ∈ F , r1, . . . , rm ∈ Vn(F ) and c1, . . . , cn ∈ Vm(F ) where 1 ≤ m,n ≤
k we have

(x1, . . . , xm)


r1

r2
...
rm


m×n

= x1r1+ · · ·+xmrm, and

 c1 . . . cn


m×n

x1...
xn

 = c1x1+ · · ·+cnxn.

/

Theorem 3.2.9 (Constructing a GM for C⊥): Let C be an (n, k)-code over F with GMG = [Ik | A].
A GM is C⊥ is H = [−A> | In−k]. Note that we have Gk×n and Ak×(n−k).

Proof: Clearly RankH = n− k, so H is a GM for some (n, n− k)-code C. We also have

GH> =
[
Ik | A

]−A
In−k

 = −A+A = 0.

Then, every row of H is orthogonal to every row of G. So, every vector in the row space of H is
orthogonal to every vector in the row space of G. Hence, C ⊆ C⊥ and since dimC = dimC⊥, then
C = C⊥.

Example 3.2.10: Consider a (5, 2)-code C over Z3 with GM G =

[
2 0 2 1 0
1 1 0 0 1

]
where |Z3| =

q = 3, n = 5 and k = 2. We have

C =
{

00000︸ ︷︷ ︸
(00)G

, 20210︸ ︷︷ ︸
(10)G

, 10120︸ ︷︷ ︸
(20)G

, 11001︸ ︷︷ ︸
(01)G

, 22002︸ ︷︷ ︸
(02)G

, 01211︸ ︷︷ ︸
(11)G

, 12212︸ ︷︷ ︸
(12)G

, 21121︸ ︷︷ ︸
(21)G

, 02122︸ ︷︷ ︸
(22)G

}
.

We have w(C) = d(C) = 3. So, C can correct at most bd−12 c = 1 error. To find a GM for C⊥, we
convert G into Gstd. using ERO where Gstd. is in standard form as follows.

G

2R1→R1
2R1+R2→R2−−−−−−−→

[
1 0 1 2 0
0 1 2 1 1

]
=
[
I2 |A

]
, where A =

[
1 2 0
2 1 1

]
.

So, by Theorem 3.2.9, we have

H = [−A> | I3]3×5 =

2 1 1 0 0
1 2 0 1 0
0 2 0 0 1

,
where H is a GM for C⊥ which is an (5, 3)-code over Z3. /

Definition 3.2.11: A GM for C⊥ is called a parity-check matrix (PCM) for C. /

End of Lecture 11
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Start of Lecture 12

3.3 Properties of Linear and Dual Codes

Remark 3.3.1: We make the following observations for an (n, k)-code C over F with GM G.

1 C = {mG | m ∈ Vk(F )}.

2 C⊥ is an (n, n− k)-code over F .

3 (C⊥)⊥ = C.

4 Gk×n is a GM for C and H(n−k)×n is a GM for C⊥.

5 H(n−k)×n is a PCM for C and Gk×n is a PCM for C⊥.

6 C = Row(G) (C is rowspace of G) and C⊥ = Row(H).

7 C = Null(H) (C is nullspace of H) and C⊥ = Null(G).

8 x ∈ C if and only if xH> = 0 and y ∈ C⊥ if and only if yG> = 0. /

Theorem 3.3.2: Let C be an (n, k)-code over F and let H be a PCM for C. Then, d(C) ≥ s if
and only if every s− 1 columns of H are linearly independent over F .

Proof: We will use contrapositive for both directions. Suppose there are S − 1 columns of H
that are linearly dependent over F . Let these columns be h1, . . . , hs−1. Then, there exists scalars
c1, . . . , cs−1 ∈ F such that c1h1 + · · · + cs−1hs−1 = 0 where c1, . . . , cs−1 are not all zero. Consider
the codeword

c = ( c1, . . . , cs−1︸ ︷︷ ︸
s−1 times

, 0, . . . , 0︸ ︷︷ ︸
n−s+1 times

).

We have Hc> = 0. But then this shows there exists c ∈ C such that 1 ≤ w(c) ≤ s − 1. Hence,
d(C) ≤ s−1. This proves the contrapositive of forward direction. Conversely, suppose d(C) ≤ s−1.
So, w(C) ≤ s− 1. Let c ∈ C with 1 ≤ w(c) ≤ s− 1. WLOG, suppose cj = 0 for all j = s+1, . . . , n.
So the non-zero entries in c are at the first s− 1 coordinates. Let h1, . . . , hn be the columns of H.
Since c ∈ C then Hc> = 0. Hence, c1h1 + · · · + cs−1hs−1 = 0. Since w(C) ≥ 1 by definition, then
h1, . . . , hs−1 are linearly dependent and this proves the contrapositive.

Corollary 3.3.3: Let C be an (n, k)-code over F with PCM H. Then, d(C) is the smallest number
of columns H that are linearly dependent over F .

Example 3.3.4: Recall in Example 3.2.10 for a (5, 2)-code C over Z3, we found PCM of C as

H =

2 1 1 0 0
1 2 0 1 0
0 2 0 0 1

.
We found that d(C) = 3. We will verify this by using the corollary above. Since H has no zero
columns, then d(C) > 1. Since no two columns of H are scalar multiples of each other, then no two
columns of H are linerly dependent, then d(C) > 2. Since we have21

0

 = 2

10
0

+

01
0

,
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then three of the columns of H are linearly dependent. Hence, d(C) = 3. /

Remark 3.3.5: Let C be a binary code with PCM H.

1 d(C) = 1 if and only if H has a zero column. Note that this is true for any q-ary code with
PCM H.

2 d(C) = 2 if and only if the columns of H are non-zero and two columns of H are the same.

3 d(C) = 3 if and only if the columns of H are non-zero and distinct and there exists a column
which is linear combination of two columns. /

Example 3.3.6: To construct a binary (7, 4, 3)-code C (that is, a binary (7, 4)-code of distance 3),
we need to have a C’s PCM must be of the form

H =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

.
Note that any column permutation of the above matrix is also a PCM for C. In this case, C is a
Hamming code or order 3 over Z2. /

Definition 3.3.7: Let C be an [n,M ]-code over A with |A| = q and with d(C) = d. Then, by
Assignment #1, we have

M

e∑
i=0

(
n

i

)
(q − 1)i ≤ qn, where e =

⌊
d− 1

2

⌋
(error correcting capability of C).

This is known as sphere packing bound and it is a necessary condition for existence of a code but
it’s not a sufficient condition. We say C is perfect if

M

e∑
i=0

(
n

i

)
(q − 1)i = qn.

That is, in a perfect code every r ∈ An is within distance e of some c ∈ C. This means for a perfect
code C, IMLD is same as CMLD. /

End of Lecture 12
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Start of Lecture 13

Remark 3.3.8: For fixed n, q, d, a perfect code maximizes the rate, R = logqM/n. /

Example 3.3.9: The codes

1 C = GF(q)n = Vn(GF(q)),

2 C = { 0︸︷︷︸
∈{0}n

, 1︸︷︷︸
∈{1}n

} over Z2 where n is odd,

are perfect codes. The code in 2 is called binary replication code. /

Theorem 3.3.10: Every perfect code has odd distance.

Proof: Exercise. /

Theorem 3.3.11 (Tietäväinen, 1973): The only perfect codes are the following codes.

1 C = GF(q)n = Vn(GF(q)). This has d = 1.

2 Binary replication code, C = { 0︸︷︷︸
∈{0}n

, 1︸︷︷︸
∈{1}n

} of odd length. This has d = n.

3 The (23, 12, 7)-binary Golay code and all codes equivalent to it. We will cover this code in
the following lectures.

4 The (11, 6, 5)−ternary Golay code and all codes equivalent to it. Ternary means over Z3. A
GM for such a code is

G =

1 1 1 1 1

0 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

1 2 2 1 0




I6

.

5 The Hamming codes and all codes of the same n,M, d parameters as them. These have d = 3.

Proof: Skipped, beyond the scope of this course.

Definition 3.3.12: A Hamming code of order r over GF(q) is a linear code over GF(q) with
n = qr−1

q−1 and k = n− r which has a PCM Hr×n whose columns are non-zero and no two columns
are scalar multiplies of each other. /

Example 3.3.13: A Hamming code of order r = 3 over GF(2) is a (7, 4, 3)-binary code with PCM
H where

H =
1 1 0 1

1 0 1 1

0 1 1 1


I3

c4 c5 c6 c7

.

It’s clear this code has distance 3 since we have c4 + c5 = c6. /
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Example 3.3.14: A Hamming code of order r = 3 over GF(3) is a (13, 10, 3)- code with PCM H
where

H =

1 1 0 1 2 2 0 2 2 1

1 0 1 1 1 0 2 2 1 2

0 1 1 1 0 1 1 1 2 2


I3 . /

Remark 3.3.15: We observe the following.

1 For every non-zero vector v ∈ Vr(GF(q)), exactly one scalar multiple of v must be a column
of a PCM for the Hamming code of order r over GF(q).

2 The dimension of Hamming codes is k since rankPCM = r = n− k since λiei are columns of
the PCM.

3 Hamming codes have distance 3.

4 Hamming codes are perfect. It easy to see this since we have e =
⌊
d−1
2

⌋
= 1 (so Hamming

codes are 1-error correcting codes) and we have M = qk where r = n− k and n = qr−1
q−1 . So,

M

e∑
i=0

(
n

i

)
(q − 1)i = qn−r(1 + n(q − 1)) = qn−r(1 + qr − 1) = qn. /

Definition 3.3.16: If c ∈ C is transmitted and r ∈ Vn(F ) is received, the vector e that satisfies
c+ e = r is called the error vector . Error vector is the vector that represents the error introduced
to the code while transmission. /

Example 3.3.17: Consider GF(3) = Z3. If c = (120212) is sent and r = (122102) is received, then
e = r − c = (002220). /

End of Lecture 13
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Start of Lecture 14

3.3.1 Decoding Linear Codes

3.3.1.1 Decoding Algorithms for 1-error Correcting Codes

Definition 3.3.18: Let r ∈ Vn(GF(q)). The vector s = Hr> is called the syndrome of r. /

Remark 3.3.19: We make the following remarks about syndromes.

1 r and e have the same syndrome. So, if e = 0, then syndrome of e is He> = 0.

2 If w(e) = 1, say e = ei = (0, . . . , 0, α, 0, . . . , 0), then He> = αhi 6= 0 where hi is the ith

column of H. /

Remark 3.3.20: To perform decoding in 1-error correcting codes (e.g. Hamming codes), we will
use an algorithm that follows the strategy below.

1 Compute s = Hr>.

2 If w(s) = 0, then accept r, otherwise

a Compare s with the columns of H. If s = αhi where α 6= 0, then take error vector as

e = αei = (0, . . . , 0, α, 0, . . . , 0),

where α is in ith position. Correct r to c = r − e.

3 Reject r.

Note that step 3 is skipped if C is a Hamming code since Hamming codes are perfect. /

Claim 3.3.21: If w(e) ≤ 1, then the strategy above always makes the correct decision.

Proof: Exercise.

Remark 3.3.22: If C is a Hamming code and w(e) ≥ 2 then decoding algorithm above always
makes the wrong decision. /

Example 3.3.23: Consider (7, 4, 3)-binary Hamming code with PCH H where

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

.
To decode r = (0111110), we find s = Hr> = [0 1 1]> which is the 6th column of H. So,
e = (0000010). We see that Hc> = 0. /

3.3.1.2 General Decoding Problem for Binary Linear Codes

Remark 3.3.24: Consider an (n − k) × n matrix H (PCM of a code C with GM G) over GF(2)
with rankH = n − k and r ∈ Vn(GF(2)). We want to find a vector e ∈ Vn(GF(2)) of minimum
weight with Hr> = He>. This problem is NP-hard. /

End of Lecture 14
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Start of Lecture 15

3.3.1.3 Decoding Linear Codes in General

Definition 3.3.25: Let C be an (n, k)-code over F = GF(q) with PCM H. We write x ≡
y ( mod C) where x, y ∈ Vn(F ) if x − y ∈ C and say x is congruent to y. Since congruency
is an equivalence relation we will write x = y mod C. /

Definition 3.3.26: The equivalence class containing x ∈ Vn(F ) is called a coset of Vn(F ). This
class is

{y ∈ Vn(F ) | y = x mod C} = {x+ c | c ∈ C}.

We write this class as C + x = x+ C and read it as the coset of C represented by x. /

Example 3.3.27: Consider the (5, 2)-binary code C with GM G =

[
1 0 1 1 1
0 1 1 1 0

]
. So, C =

{00000, 10111, 01110, 11001}. The cosets of C are

• C + 00000 = {00000, 10111, 01110, 11001} = C + 10111 = C + 01110 = C + 11001,

• C + 10000 = {10000, 00111, 11110, 01001} = C + 00111 = C + 11110 = C + 01001,

• C + 01000 = {01000, 11111, 00110, 10001} = C + 11111 = C + 00110 = C + 10001,

• C + 00100 = {00100, 10011, 01010, 11101} = C + 10011 = C + 01010 = C + 11101,

• C + 00010 = {00010, 10101, 01100, 11011} = C + 10101 = C + 01100 = C + 11011,

• C + 00001 = {00001, 10110, 01111, 11000} = C + 10110 = C + 01111 = C + 11000,

• C + 00011 = {00011, 10100, 01101, 11010} = C + 10100 = C + 01101 = C + 11010,

• C + 11100 = {11100, 01011, 10010, 00101} = C + 01011 = C + 10010 = C + 00101.

Since d(C) = 3, if x ∈ Vn(F ), then its syndrome is s = Hr> ∈ Vn−k ∈ F where |F | = qn−k. /

Remark 3.3.28: We make the following remarks.

1 Congruency is an equivalence relation. i.e. it’s reflexive, symmetric and transitive.

2 The set of equivalence classes partitions Vn(F ).

3 C + 0 = C.

4 If y ∈ C + x, then C + y = C + x. This follows from the fact that congruency of codewords
is and equivalence relation.

5 Every coset has cardinality of qk.

6 There are qn/qk = qn−k cosets.

/

Theorem 3.3.29: Let x, y ∈ Vn(F ). Then, x = y mod C if and only if Hx> = Hy>. So, cosets
are characterized by their syndrome.
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Proof: We have

x = y mod C ⇐⇒ x− y ∈ C
⇐⇒ H(x− y)> = 0

⇐⇒ (x− y)H> = 0

⇐⇒ xH> = yH> ⇐⇒ Hx> = Hy>.

Remark 3.3.30: If c ∈ C is sent and r ∈ Vn(F ) is received, then we have e = r − c ∈ Vn(F ) and
Hr> = He>. i.e. r and e have the same syndrome so they belong to the same coset of C.

CMLD: Given r, find a vector e of smallest weight in C + r or, equivalently, find a vector e of
smallest weight with the same syndrome as r then decode r to c = r − e.

IMLD: Given r, find the unique vector e of smallest weight in C + r or, equivalently, find a vector
e of smallest weight with the same syndrome as r. If no such e exists, reject r, otherwise decode r
to c = r − e. /

3.3.1.4 Syndrome Decoding Algorithm

Definition 3.3.31: Given a PCM H for an (n, k)-code C over F = GF(q), a distinguished vector
of smallest weight of a coset of C is called a coset leader of that coset. /

For syndrome decoding, we create a table of coset leaders and their syndromes. Given a received
vector r, we consider the following algorithm.

Algorithm 3.3.32: Syndrome decoding algorithm.

1 Given r do
2 Compute s = Hr>.
3 `← the coset leader correspond to s.
4 Decode r to c = r − `.

Example 3.3.33: Recall Example 3.3.27. We had a (5, 2)-binary code with GM G and PCM H
where

G =

[
1 0 1 1 1
0 1 1 1 0

]
2×5

, and H =

1 1 1 0 0
1 1 0 1 0
1 0 0 0 1


3×5

.

Since qn−k = 25−2 = 23 = 8, we have 8 cosets and the table of coset leaders and syndromes is as
follows.

Coset Leaders Syndromes
00000 000
10000 111
01000 110
00100 100
00010 010
00001 001
00011†1 011
10010†2 101
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Note that the cosets that correspond to leaders with †1 and †2 are

C + 00011 = {00011, 10100, 01101, 11010},
C + 10010 = {11100, 01011, 10010, 00101}.

We see that in both of these cosets the vector with the minimum weight is not unique. By The-
orem 3.3.29, any vector in these cosets give the correct syndrome. So if we picked different coset
leaders, say 10100 for †1 and 00101 for †2, then we would get the same corresponding syndromes,
say s†1 and s†2 . In this case, if we receive any vector r such that Hr> = s†i for i = 1, 2, then the
coset leader-syndrome table determines how we decode r. Indeed if this is the case, if the algorithm
finds that error vector is a coset leader, then the received word will be decoded to the codeword that
was in fact transmitted. i.e. all error vectors that are not coset leaders in the syndrome decoding
algorithm will be handled incorrectly.

Consider the table above and suppose r = 10111 is received. We find s = Hr> = [0 0 0]>.
So, coset leader is ` = 00000 and c = r − e = 10111. /

End of Lecture 15
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Start of Lecture 16

Chapter 4 – The Binary Golay Code: Lectures 16–17

Remark 4.0.1: For a binary (n, k)-code C, the syndrome table has size 2n−k × n, which is expo-
nentially large. We want to design decoding algorithms which require very little space. e.g. use
only the PCH H which is (n− k)n bits. /

4.0.1 The Binary Golay Code C23 (1949)

Let B̂ be the matrix below.

B̂ =



1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1

...

...
0 1 1 0 1 1 1 0 0 0 1


12×11

rows 3 to 12 are left cyclic shifts of second row.

So we have B =


r1
r2
...
r12

, where r1 = [1 . . . 1]1×11 and r2 = [1 1 0 1 1 1 0 0 0 1 0] and ri = σi−2(r2)

for i = 3, . . . 12 where σn(r) is imposes n left shifts on r. Let Ĝ = [I12 B̂]12×23. So, Ĝ is a GM for a
(23, 12)-binary code called C23. We see that d(C23) = 7 and since

⌊
7−1
2

⌋
= 3, then C23 is a 3-error

correcting code. We also have that C23 is perfect since

212
[(

23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)]
= 223.

4.0.2 The Extended Golay Code C24

We want to add a parity bit to each row in Ĝ. Since the first row of B̂ has all 1’s and since w(ri) = 6
for all i = 2, . . . , 12, we add a column c to B̂ on the right where

c =


0
1
...
1


12×1

.

So we have B = [c | B̂] and G = [I12 | B12]. So, G is a GM for code C24.

Definition 4.0.2: If a code C satisfies C ⊆ C⊥, then C is called self-orthogonal or self-dual
code. /

Remark 4.0.3: We make the following remarks.
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1 C24 is a (24, 12, 8)-binary code.

2 GG> = 0.

3 C24 ⊆ C⊥24 and since dimC24 = 12 = dimC⊥24, then C24 = C⊥24.

4 B is symmetric.

5 A PCM for C24 is H = [B> | I12] = [B | I12].

6 Since C24 = C⊥24, then H = [B | I12] is both PCM and GM for C and G = [I12 | B] is also
both GM and PCM for C⊥24. /

4.0.2.1 Decoding Algorithm for C24

Remark 4.0.4: The syndrome table for C24 has size 212× 24 u 96 000 bits. The general decoding
strategy is as follows.

• Compute syndrome of r. That is, find s = Hr>.

• Find a vector e of weight at most 3 that has the same syndrome as r.

• If no such vector e exists, then reject r, otherwise decode r to c = r − e. /

Theorem 4.0.5: Let C be an (n, k, d)-code over GF(q). Let x ∈ Vn(GF(q)) with w(x) ≤
⌊
d−1
2

⌋
.

Then, x is the unique vector of minimum weight in the coset of C that contains x. i.e. x is the only
coset leader in C + x.

Proof: Suppose, for contradiction, there exists a vector y in the same coset of C as x (so, y ∈ C+x)
with x 6= y and

w(y) ≤ w(x) ≤
⌊
d− 1

2

⌋
.

We have y − x 6= 0 and x = y mod C. So, x− y ∈ C. But this gives us

w(x− y) = w(x+ (−y)) ≤ w(x) + w(−y) = w(x) + w(y) ≤
⌊
d− 1

2

⌋
+

⌊
d− 1

2

⌋
≤ d,

which is a contradiction since d(C) = d.

End of Lecture 16
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Start of Lecture 17

We use the following approach to decode C24. Note that the following approach is different from
the one in textbook.

Remark 4.0.6: Let r = (x, y) and e = (e1, e2) where x, y, e1, e2 ∈ V12(Z2). i.e. x, y, e1, e2 are 12
bits. We consider 5 cases which are not mutually exclusive.

A w(e1) = 0 = w(e2).

B 1 ≤ w(e1) ≤ 3 and w(e2) = 0.

C 1 ≤ w(e1) ≤ 2 and w(e2) = 1.

D w(e1) = 0 and 1 ≤ w(e2) ≤ 3.

E w(e1) = 1 and 1 ≤ w(e2) ≤ 2.

We have

s1 = [I12 | B]r> = [I12 | B]e> = [I12 | B]

[
e>1
e>2

]
= e>1 +Be>2 ,

s2 = [B | I12]r> = [B | I12]e> = [B | I12]
[
e>1
e>2

]
= Be>1 + e>2 .

Suppose that r = (x, y) is received and e = (e1, e2) where x, y, e1, e2 ∈ V12(Z2). i.e. x, y, e1, e2 are
12 bits. Note that since C24 is a binary code, correcting x in position j means flipping the jth bit
of x.

1 Find s1. If s1 = 0, then accept r and STOP.

2 If w(s1) ≤ 3, then correct x in the positions corresponding to the 1’s in s1 and STOP.

3 Compare s1 to the columns (or rows) of B. If any row of B, say column i, differs in 1 position,
say position j, or 2 positions, say positions j and k, from s1, then correct r as follows and
STOP.

• Correct x in position j or in positions j and k.

• Correct y in position i.

4 Find s2.

5 If w(s2) ≤ 3, then correct y in the positions corresponding to the 1’s in s2 and STOP.

6 Compare s2 to the columns (or rows) of B. If any row of B, say column i, differs in 1 position,
say position j, or 2 positions, say positions j and k, from s1, then correct r as follows and
STOP.

• Correct y in position j or in positions j and k.

• Correct x in position i.

7 Reject r.

/

In Python, we have the following code http://www.student.math.uwaterloo.ca/~c2kent/LectureNotes/

co331-1201/decodingC24python.pdf.
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Example 4.0.7: If r = (1000 1000 0000 1001 0001 1101) is received, then we have

x = (1000 1000 0000),

y = (1001 0001 1101),
and s1 = [0100 1000 0000]>.

Since w(s1) ≤ 3, we set e = (e1, e2) = (s>1 , 0) and decode r to

c = r − e = (1100 0000 0000 1001 0001 1101).

Since we have Hc> = Gc> = 0, then c ∈ C24.

If r = (1000 0010 0000 1000 1101 0010) is received, then we have

x = (1000 0010 0000),

y = (1000 1101 0010),
and s1 = [1011 1110 1011]>.

Since w(s1) > 3, we compare s1 with the rows of B. Since s1 differs in positions 6 and 7 from row
4 of B, we set e = (e1, e2) = (0000 0110 0000 0001 0000 0000), and decode r to

c = r − e = (1000 0100 0000 1001 1101 0010).

Hc> = Gc> = 0, then c ∈ C24. /

Remark 4.0.8: We make the following remarks about the algorithm.

1 If w(e) ≤ 3, then the algorithm makes the correct decision.

2 Algorithm requires no storage (it doesn’t require any memory) since we have

s1 = [I12 | B]r> = [I12 | B]

[
x12×1
y12×1

]
= x+By,

which is easily calculated, similarly for s2.

3 Algorithm is very simple and efficient, so it’s good for hardware. /

4.0.2.2 Reliability of C24

C24 is a BSC. We will compare C24 with other codes to see how reliable it is. Note that triplication
code is a replication code when n = 3, which is the code in third row in Example 0.1.1. We recall
the following definitions that we made in Definition 2.3.26.

• p : symbol error probability.

• C = {c1, . . . , cM} where ci ∈ C are codewords in code C for i = 1, . . . ,M .

• wi : probability that decoding algorithm makes an incorrect decision if ci is sent.

• PC : error probability of C. We have

PC =
1

M

M∑
i=1

wi.
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• 1− PC : Reliability of C.

We have

p 1 (1− p)12 2 1− PC24
3 1− PT 4 1− PH

0.1 0.282429 0.7857379 0.7112056 0.5490430
0.01 0.8863848 0.99990946 0.9964298 0.9903702
0.001 0.9886657 0.9999999895 0.99996402 0.9998959

Rate: 1 1
2

1
3

11
15 ≈ 0.73

where

1 If no source is used, then the reliability for 12-bit messages is (1− p)12.

2 For C24 we have

wi =

[
(1− p)24 +

(
24

1

)
p(1− p)23 +

(
24

2

)
p2(1− p)22 +

(
24

3

)
(1− p)21

]
.

Hence,

PC24 =
1

212

212∑
i=1

wi = wi, since all wi are the same.

3 Here T is triplication code. We have

1− PT = [(1− p)3 + 3p(1− p)2]12.

4 Here H is Hamming code. The closest Hamming code we have to C24 is the (15, 11)-binary
hamming code. We have

1− PH = (1− p)15 + 15p(1− p)14.

End of Lecture 17
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Start of Lecture 18

Chapter 5 – Cyclic Codes: Lectures 18–...

5.1 The Association Between S ⊆ Vn(F ) and R = F [x]/(xn − 1)

Definition 5.1.1: A cyclic subspace S of Vn(F ) is a subspace such that if (a0, . . . , an−1) ∈ S
then (an−1, a0, . . . , an−2) ∈ S.

A cyclic code is a subspace of Vn(F ). /

Remark 5.1.2: Let R = F [x]/(xn−1) be a ring where F is a field and F [x] is the set of polynomials
over F . We showed that R is a commutative finite ring. We can associate a = (a0, . . . , an−1) ∈ S
with elements in R in a natural way as follows.

(a0, a1, . . . , an−1) ←→ a0 + a1x+ · · ·+ an−1x
n−1 ∈ R.

This association conserves addition and scalar multiplication since

a+ b ←→ a(x) + b(x),

λa ←→ λa(x).

We chose R = F [x]/(xn − 1) since xn = 1 mod (xn − 1), the association we have gives

xa(x) = a0x+a1x
2+ · · ·+an−1xn = an−1+ · · ·+an−2xn−1 mod (xn−1)←→ (an−1, a0, . . . , an−2).

So, multiplying a polynomial in R by x corresponds to a (right) cyclic shift of the associated vector.

We define multiplication as a binary operation · : Vn(F )× Vn(F )→ Vn(F ) by

a · b ←→ a(x) · b(x) mod (xn − 1), ∀ a, b ∈ Vn(F ). /

5.1.1 Ideals of R = F [x]/(xn − 1)

Definition 5.1.3: Let R be a commutative finite ring. A non-empty subset I ⊆ R is called an
ideal of R if

1 for all a, b ∈ I, a+ b ∈ I,

2 for all a ∈ I and c ∈ I, ac ∈ I. /

Example 5.1.4: For any ring R, 0 and R are ideals of R. These are called trivial ideals. /

Theorem 5.1.5: Let S ⊆ Vn(F ) be non-empty and let I be the set of associated polynomials as
described above. Then, S is a cyclic subspace of the vector space Vn(F ) if and only if I is an ideal
of R = F [x]/(xn − 1).

Proof: Suppose S is a cyclic subspace of Vn(F ). Since S is non-empty and closed under vector
addition, then so is I. Let a(x) ∈ I and b(x) = b0+b1x+ · · ·+bn−1xn−1 ∈ R. Then, xa(x) ∈ I since
S is a cyclic subspace. Then, xia(x) ∈ I for all i = 0, . . . , n− 1. Since for all scalars bi ∈ F we also
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have bi ∈ R, then bixia(x) ∈ F for all i = 0, . . . , n− 1since S is closed under scalar multiplication.
Finally,

a(x)b(x) = a(x)(b0 + b1x+ · · ·+ bn−1x
n−1) = b0a(x) + b1a(x)x+ · · ·+ bn−1a(x)x

n−1 ∈ I

since I is closed under addition and scalar multiplication. Hence, I is an ideal. Conversely, suppose
I is an ideal of R. Since I is closed under addition then so is S. For any scalars k ∈ F we also
have k ∈ F [x]. So, k ∈ R are constants. Since R is closed under multiplication by all polynomials
in R, then it’s also closed under multiplication by constant polynomials. Hence, S is closed under
scalar multiplication. Finally, since I is closed under multiplication by x, then for any s ∈ S, we
have xs ∈ S. So, S is closed under (right) cyclic shifts. Hence, S is a cyclic subspace.

Remark 5.1.6: This theorem shows we have a one-to-one correspondence between cyclic subspaces
of Vn(F ) and the ideals of R = F [x]/(xn − 1). /

Definition 5.1.7: Let R be a ring. If the set 〈g(x)〉 = {g(x) · a(x) | a(x) ∈ R}, is an ideal of R,
then it’s called the ideal generated by g(x).

Let I be an ideal of R. If there exists g(x) ∈ I such that I = 〈g(x)〉 then I is called a prin-
cipal ideal . If every ideal of R is principal, then R is called a principal ideal ring . /

Theorem 5.1.8: The ring R = F [x]/(xn − 1) is a principal ideal ring.

Proof: If I = {0} then I = 〈0〉 is principal. Suppose I 6= 〈0〉. Let g(x) be a non-zero polynomial
of smallest degree in I. Let a(x) ∈ I. By division algorithm we have

a(x) = `(x)g(x) + r(x)

where `(x), r(x) ∈ F [x] and deg r < deg g. Then, there exists [`(x)] ∈ R such that `(x) ∈ [`(x)].
Since I is closed under addition and multiplication by polynomials in R, then `(x)g(x) ∈ I. Hence,

a(x)− `(x)g(x) = r(x) ∈ I.

Since deg r < deg g, then we must have r(x) = 0. Hence, for any a(x) ∈ I, we have a(x) = `(x)g(x).
Hence, I = 〈g(x)〉. Hence, R is a principal ideal ring.

End of Lecture 18
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Start of Lecture 19

Remark 5.1.9: In the proof of Theorem 5.1.8, if I 6= {0} then we took g(x) = a as a non-zero
polynomial of smallest degree in I. Note that we can take g(x) to be monic (leading coefficient is
1). If g(x) is not monic, say g(x) = g`x

` + g`−1x
`−1 + · · · + g1x

1 + g0 where g` is non-zero and
g` 6= 1. Since g−1` exists in F , then the constant polynomial g−1` resides in F [x]/(xn − 1). Hence,
g−1` g ∈ I where g−1` g is monic. This process is called making g(x) monic. /

Definition 5.1.10: Let I be an ideal in F [x]/(xn−1). If I = {0}, then the generator polynomial
of I is defined to be xn−1 since xn−1 = 0 mod xn−1. If I 6= {0}, then the unique monic polynomial
with least degree in I is called the generator polynomial of I. /

Theorem 5.1.11: Let I be a non-zero ideal in R = F [x]/(xn − 1). Then,

1 there is a unique monic polynomial g(x) of smallest degree in I,

2 g(x)|xn − 1.

Proof: We first show uniqueness. Suppose g(x), h(x) are two monic polynomials in I with same
smallest degree where deg g = ` = deg h. Denote g(x)− h(x) = r(x). We have deg r < ` and r ∈ I.
If r is non-zero, then we can make r monic and have a monic polynomial in I with degree less than `
which is a contradiction. Hence, r must be the zero polynomial. Hence, g = h. For the second part
of the theorem, we can write xn − 1 = `(x)g(x) + r(x) where `(x), r(x) ∈ F [x] and deg r < deg g.
So,

0 = `g + r mod xn − 1.

This gives us
r = −lg mod xn − 1.

Hence, there exists [`] ∈ R = F [x]/(xn − 1) such that ` = [`] mod xn − 1. Since g(x) generates
I, then 〈g(x)〉 = I. So, r(x) = −`(x)g(x) ∈ I. Hence, deg r ≤ deg g which means r(x) is the zero
polynomial. Hence, g(x)|xn − 1.

Theorem 5.1.12: Let h(x) be a monic divisor of xn − 1 in F [x]. Then, the unique generator
polynomial of 〈h(x)〉 is h(x).

Proof: If h(x) = xn − 1, then I = {0} and by definition, its generator polynomial is xn − 1.
If deg h < n, then I 6= {0}. Let g be the monic polynomial with smallest degree in I = 〈h〉.
Since h(x) is a generator of 〈h〉 and since g ∈ 〈h〉, then g = ah mod xn − 1 for some polynomial
a ∈ R = F [x]/(xn − 1). Then,

g(x) = a(x)h(x) + `(x)(xn − 1),

for some `(x) ∈ F [x]. Since h|xn − 1, then h|ah + `(xn − 1). Hence h|g. Since deg g ≤ deg h by
construction, and since both h and g are monic, then we must have h = g.

Corollary 5.1.13: There is a one-to-one correspondence (bijection) between monic divisors of
xn − 1 in F [x] and ideals in R = F [x]/(xn − 1).

Hence, there is a one-to-one correspondence (bijection) between monic divisors of xn − 1 in F [x]
and cyclic subspaces of Vn(F ).

Example 5.1.14: Find all cyclic subspaces of V3(Z2). We have n = 3. The complete factorization
of x3 − 1 over Z2 is

x3 − 1 = (x− 1)(x2 + x+ 1) = (x+ 1)(x2 + x+ 1).
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Hence, we have the monic divisors of x3 − 1 as

g1 = 1,

g2 = x+ 1 = 1 + x,

g3 = x2 + x+ 1 = 1 + x+ x2,

g4 = x3 − 1 = 1 + x3 = 0.

Note that g1 and g4 correspond to trivial ideals. By the one-to-one association we made in the
beginning of this chapter, we have the following correspondence.

〈g1(x)〉 = R = F [x]/(x3 − 1) = {000, 001, . . . , 111} = S1 (since ∀ f ∈ R, we have g1f = f ∈ I),
〈g2(x)〉 = {000, 110, 011, 101} = S2,

〈g3(x)〉 = {000, 111} = S3,

〈g4(x)〉 = {000} = S4 (since g4f = 0 for any f ∈ R).

Note that it is easy to verify 〈g2(x)〉 and 〈g3(x)〉 correspond to S2 and S3 respectively. They clearly
contain additive identity of R, the zero polynomial, which corresponds to 000 in V3(Z2). They
also contain their generators, g2(x) and g3(x). Hence, their corresponding subspaces contain the
vector representation of their generator polynomials. Since cyclic subspaces are closed under cyclic
shifts, then they also contain the cyclic permutation of each their elements. Since the generators
of the ideals 〈g2(x)〉 and 〈g3(x)〉 are the unique monic polynomials with smallest degree, then their
corresponding cyclic subspaces cannot contain representations of lesser degree polynomials. This
means, for 〈g3(x)〉, S3 only contains 000 and 111. /

End of Lecture 19
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Start of Lecture 20

No class was held today due to midterm. Instead, the instructor used this time to host office hours.

End of Lecture 20
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Start of Lecture 21

Remark 5.1.15: In the beginning of this chapter we saw that there is a one-to-one association
between cyclic codes (subspaces of Vn(F )) and the ring R = F [x]/(xn − 1). We denoted this
association with ↔. This association extends as follows, some of which we already proved in
previous lectures.

Vn(F ) ←→ R = F [x]/(xn − 1),

a = (a0, a1, . . . , an−1) ∈ Vn(F ) ←→ a0 + a1x
1 + · · ·+ an−1x

n−1 ∈ R = F [x]/(xn − 1),

C, (cyclic subspace) with dimC = k ←→ I, (ideal in R),
←→ g(x), (monic div. of xn − 1) with deg g = n− k,

if G is a GM for C in terms of g(x),
Encoding: mG ←→ m(x)g(x),

C⊥, (dual code of C which is also cyclic) ←→ h∗(x), (generator polynomial of C⊥),
PCM H for C ←→ s(x) = r(x) mod g(x).

To find h∗(x), we find h(x) = (xn−1)/g(x) where deg h = k We then find the reciprocal polynomial
hR(x) if h(x). Finally, we make hR(x) monic and find h∗(x). /

5.2 Constructing Cyclic Codes

Remark 5.2.1: To find the distance of a cyclic code C, we consider BCH (Bose–Chaudhuri–
Hocquenghem) codes. In this case, we will specially select g(x) to have a lower bound on distance
d of C. /

Lemma 5.2.2: Let g(x) be a monic divisor of xn − 1 with degree n− k in F [x]. Then

〈g(x)〉 = {g(x)a(x) | a(x) ∈ R = F [x]/(xn − 1)} = {g(x)a(x) | deg a(x) ≤ k − 1}.

Proof: Let h(x) = g(x)a(x) mod (xn − 1) for some a(x) with deg a(x) < n. So, h(x)− g(x)a(x) =
`(x)xn − 1 for some `(x) ∈ F [x]. Hence, h(x) = g(x)a(x) + `(x)xn − 1. Since g(x)|xn − 1, then
g(x)|h(x). Hence, h(x) = g(x)a(x) for some a(x) ∈ F [x] with degree deg a(x) ≤ k − 1.

Theorem 5.2.3: Let g be a monic divisor of xn − 1 with degree n − k in F [x]. Then, the cyclic
code C generated by g(x) has dimension k.

Proof: We will show that B = {g(x), xg(x), . . . , xk−1g(x)} is a basis of C. We first show B is
linearly independent. Consider the linear combination of polynomials in B with constants λi from
F .

λ0g(x) + λ1xg(x) + · · ·+ λk−1x
k−1g(x).

We have deg(λk−1x
k−1g(x)) = n− k + k − 1 = n− 1 and

deg(λix
ig(x)) = deg(λi+1x

i+1g(x))− 1 = n− k + i, for i = 0, . . . , k − 2.

Hence, if λ0g(x) + λ1xg(x) + · · ·+ λix
ig(x) = 0, we must have λi = 0. Then, if

λ0g(x) + λ1xg(x) + · · ·+ λk−1x
k−1g(x) = 0,
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it follows that λi = 0 for all i = 0, . . . , k − 1. Hence, B is linearly independent. We now show
B spans C. Let h(x) ∈ 〈g(x)〉. By the above lemma, we can write h(x) = g(x)a(x) for some
a(x) ∈ F [x] where deg g(x) = n− k and deg a(x) ≤ k − 1. Let

a(x) =
k−1∑
i=0

aixi, where ai ∈ F.

Then, we have

h(x) = g(x)a(x) = g(x)

k−1∑
i=0

aixi =

k−1∑
i=0

aixig(x), where ai ∈ F.

Hence, h(x) can be expressed as linear combination of polynomials in B. Since this is true for any
h(x) ∈ 〈g(x)〉, then B spans 〈g(x)〉 and hence, B spans C. Since |B| = k, then dimC = k.

Remark 5.2.4: Using the basis B for a cyclic code C generated by g(x), we can find a GM G for
C as writing the polynomials in B as rows in G. By using the vector ↔ polynomial association, we
have

g(x) = g0 + g1x+ · · ·+ gn−k−1x
n−k−1 + xn−k ←→ (g0, g1, . . . , gn−k−1, 1),

xg(x) = g0x+ g1x
2 + · · ·+ gn−k−1x

n−k + xn−k−1 ←→ (0, g0, g1, . . . , gn−k−1, 1),

...
...

xk−1g(x) = g0x
k−1 + g1x

k + · · ·+ gn−k−1x
n−2 + xn−1 ←→ ( 0, . . . , 0︸ ︷︷ ︸

k−1 times

, g0, g1, . . . , gn−k−1, 1).

Hence, we have

G =


g(x)
xg(x)

...
xk−1g(x)

←→

g0 g1 . . . gn−k−1 1 0 0 . . . 0
0 g0 g1 . . . gn−k−1 1 0 . . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 . . . 0 g0 g1 . . . gn−k−1 1 0
0 0 . . . 0 g0 g1 . . . gn−k−1 1


k×n

.

Note that this G is non-systematic. Encoding in C is as follows. Let c ∈ C be a codeword. Then,

c = mG = (m0,m1, . . . ,mk−1)


g(x)
xg(x)

...
xk−1g(x)


= m0g(x) +m1xg(x) + · · ·+mk−1x

k−1g(x)

= (m0 +m1x+ · · ·+mk−1x
k−1)g(x)

= m(x)g(x). /

Example 5.2.5: To construct a cyclic (7, 4)-code C over Z2, we need a GM G for C that satisfies
above. So, we need a monic divisor of x7 − 1 with degree 7− 4 = 3 in Z2[x]. From table 3 in page
157 of the textbook, we find

x7 − 1 = (1 + x)(1 + x+ x3)(1 + x2 + x3).
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Both (1 + x+ x3) and (1 + x2 + x3) are monic divisors of x7 − 1 so we can pick either of them. We
pick (1 + x+ x3). Then, 〈g(x)〉 is a (7, 4) cyclic code C over Z2. Since

1 + x+ x3 ←→ (1101)

then, a GM G for C is

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

.
So, if we want to encode m = (1011), we have

mG = (1011)


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 = (1111111).

Equivalently, we have m = (1011)←→ 1 + x2 + x3. So,

m(x)g(x) = (1 + x2 + x3)(1 + x+ x3) = 1 + x+ x2 + x3 + x4 + x5 + x6,

which corresponds to (111111) as expected. /

End of Lecture 21
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Start of Lecture 22

5.3 Dual Code of a Cyclic Code

Remark 5.3.1: Let C be an (n, k)-cyclic code over a finite field F with generator polynomial g(x).
So, deg g = n− k, g(x) is monic and divides xn − 1. Let

g(x) = g0 + g1x
1 + · · ·+ gn−kx

n−k + gn−k+1x
n−k+1 + · · ·+ gn−1x

n−1︸ ︷︷ ︸
0

.

We have

1 g0 6= 0 since if g0 = 0, then x|g(x) but this means x|xn − 1 which is a contradiction,

2 gn−k = 1 since g(x) is monic,

3 gn−k+1 = 0 = gn−k+2 = gn−1.

Let h(x) be the polynomial

h(x) =
xn − 1

g(x)
= h0 + h1x

1 + · · ·+ hk−1x
k−1 + hkx

k + hk+1x
k+1 + · · ·+ hn−1x

n−1︸ ︷︷ ︸
0

.

We have

1 hk = 1 since g(x) is monic then so is (xn − 1)/g(x) = h(x),

2 hk+1 = 0 = hk+2 = · · · = hn−1.

Let a(x) = a0 + a1x
1 + · · · + an−1x

n−1 = gh mod (xn − 1). By construction, a(x) = 0. Equating
coefficients of xi for i = 1, . . . , n− 1, we have

ai = 0 = g0hi + g1hi−1 + · · ·+ gih0 + gi+1hn−1 + gi+2hn−2 + · · ·+ gn−1hi−1.

Let

g = (g0, . . . , gn−1) and ,

h = (hn−1, hn−2, . . . , h1, h0).

Then, g is orthogonal to h and all the cyclic shifts of h. So, every cyclic shift of g is orthogonal to
every cyclic shift of h. /

Remark 5.3.2: Recall a GM for an (n, k)-cyclic code C is

G′ =


g0 g1 · · · gn−k 0 · · · 0
0 g0 · · · gn−k 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 g0 g1 · · · gn−k


k×n

=


g(x)
xg(x)

...
xk−1g(x)

.
Here every row of G′ is a right cyclic shift of the row above it. Consider

H =


hk hk−1 · · · h0 0 · · · 0
0 hk · · · h0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 hk hk−1 · · · h0


(n−k)×n

=


h∗(x)
xh∗(x)

...
xn−k−1h∗

,
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where every row of H is a right cyclic shift shift of the row above it as well. We observed that
G′H> = 0.

Let C ′ be the code spanned by the rows of H. Then, C ′ ⊆ C⊥. Since hk = 1, then rankH = n− k.
So, dimC ′ = n− k = dimC⊥. Hence, C ′ = C⊥. Hence, H is a PCM for C. /

Definition 5.3.3: Let h(x) = h0 + h1x
1 + · · · + hkx

k be a degree k polynomial. Reciprocal
polynomial of h(x), (simply referred as reciprocal of h(x)), denoted by hR(x), is defined by

hR(x) = hk + hk−1x
1 + · · ·+ h0x

k = xkh

(
1

x

)
.

If h0 6= 0, then h∗ is defined by

h∗ = hR ·
1

h0
= hRh

−1
0 .

So, h∗ is hR made monic. /

Theorem 5.3.4: If C is an (n, k)-cyclic code, then C⊥ is an (n, n− k)-cyclic code.

Proof: We have gh = xn − 1. So,

g

(
1

x

)
h

(
1

x

)
= −1 + 1

xn
.

Multiplying each side by xn gives us

xng

(
1

x

)
h

(
1

x

)
= xn−kg

(
1

x

)
xkh

(
1

x

)
= gR(x)hR(x) = 1− xn.

Hence, gR(x)hR(x) = −(xn − 1). Hence, hR|xn − 1 and gR|xn − 1. So, hR(x) is a divisor of xn − 1
with degree k. So, the matrix H is a GM for the cyclic code generated by h∗(x). Recall that h∗(x)
is hR(x) made monic.

End of Lecture 22
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Start of Lecture 23

5.4 Syndromes in Cyclic Codes

We want to find a more convenient PCM for C. The idea is that we want to

1 find a GM for C of the form [R | Ik]k×n (this essentially in standard form),

2 so the PCM of C constructed from the GM above is of the form [In−k | −R>](n−k)×n.

Remark 5.4.1: For i = 0, . . . , k − 1, long division gives us

xn−k−i = `i(x)g(x) + ri(x),

where

• deg `i(x) ≤ k − 1,

• deg g(x) = n− k,

• deg ri(x) ≤ n− k − 1.

Hence, −ri(x) + xn−k+i = `i(x)g(x) ∈ C. Let

G =


− r0(x) + xn−k

− r1(x) + xn−k+1

...
− rk−1(x) + xn−1

 =


− r0(x) 1 0 · · · 0

− r1(x) 0 1
. . .

...
...

...
. . . . . . 0

− rk−1(x) 0 · · · 0 1

 = [R | Ik].

/

G has rank k, so G is a GM for C. Then, by Theorem 3.2.9, H = [In−k | − R>](n−k)×n is a PCM
for H since C = (C⊥)⊥. We have

H> =

[
In−k

−R

]
=



1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

r0(x)
r1(x)
...

rk−1(x)


=



x0 mod g(x)
x1 mod g(x)

...
xn−k−1 mod g(x)

xn−k mod g(x)
xn−k−1 mod g(x)

...
xn−1 mod g(x)


.

Hence, any ith column of H (ith row of H>) is xi mod g(x) for i = 0, . . . , n − 1. Hence, if
r = (r0, . . . , rn−1) ∈ Vn(F ), then

s = Hr> = (r0x
0 mod g(x)) + (r1x

1 mod g(x)) + · · ·+ (rn−1x
n−1 mod g(x))

= (r0x
0 + r1x

1 + · · ·+ rn−1x
n−1) mod g(x)

= r(x) mod g(x).
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Theorem 5.4.2: Let C be a cyclic code with generator polynomial g(x) and let r ∈ Vn(F ). Then,
the syndrome of r (with respect to the previous PCM) is s(x) = r(x) mod g(x).

Proof: This is explicitly shown above.

Example 5.4.3: It is easy to see that g(x) = 1 + x+ x2 + x3 + x6 is a generator polynomial for a
(15, 9)-binary cyclic code since deg g = 15−9 = 6 and since g(x)|x15−1. To compute the syndrome
of

r = (11101 11011 00000),

we write r in polynomial form and use long division to find `(x) and rem(x) (quotient and remainder
polynomials) such that

r(x) = `(x)g(x) + rem(x).

We have r(x) = x9 + x8 + x6 + x5 + x4 + x2 + x+ 1 and since

x9 + x8 + x6 + x5 + x4 + x2 + x+ 1 = (x6 + x3 + x2 + x+ 1)(x3 + x2) + (x5 + x4 + x+ 1),

we find `(x) = x3 + x2 and rem(x) as x5 + x4 + x+ 1. So, s(x) = 1 + x+ x4 + x5. In vector form
we have s = (110011). /

Remark 5.4.4: This method of finding the syndrome, that is, finding s(x) = rem(x) mod g(x)
can be implemented in hardware using very a very efficient and fast circuit. /

Remark 5.4.5: Given the syndrome s of r, the syndromes of cyclic shifts of r can be easily
computed. /

Theorem 5.4.6: Let r ∈ Vn(F ) and s(x) = r(x) mod g(x) = s0+s1x
1+ · · ·+sn−k−1xn−k−1. The

syndrome of xr(x) (the right cyclic shift of r(x)) is

xs(x)− sn−k−1g(x).

Proof: By definition we have r(x) = `(x)g(x) + s(x). Hence, xr(x) = x`(x)g(x) + xs(x). We
consider two cases.

• Case 1: deg s < n− k − 1. So, sn−k−1 = 0. Then, deg(x(s)) < n− k. Hence we have

xr(x) mod g(x) = xs(x).

Hence, syndrome of r is
xs(x)− sn−k−1g(x) = xs(x).

• Case 2: deg s = n− k − 1. So, sn−k−1 6= 0. Then,

xr(x) = x`(x)g(x) + xs(x) + sn−k−1g(x)− sn−k−1g(x)
= g(x)(x`(x) + sn−k−1) + xs(x)− sn−k−1g(x)︸ ︷︷ ︸

has degree at most n−k−1

.

Hence, xr(x) mod g(x) = xs(x)−sn−k−1g(x). Hence, syndrome of r(x) is xs(x)−sn−k−1g(x).

End of Lecture 23
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Start of Lecture 24

5.4.1 Burst Error Correcting

We will see that cyclic codes are good for cyclic burst error correcting.

Definition 5.4.7: Let e ∈ Vn(F ). The cyclic burst length of e is the length of the smallest
cyclic block that contains all the non-zero entries of e. We say e has cyclic burst error length t if
its cyclic burst length is t. /

Example 5.4.8: Consider

V9(Z2) 3 e = (011000001) = (e1e2e3e4e5e6e7e8e9).

So, the non-zero entries of e are e2, e3 and e9 but the smallest cyclic block that contains the non-zero
entries of e is e9e1e2e3e4. Hence, cyclic burst length of e is 4. /

Definition 5.4.9: A linear code C is called a t-cyclic burst error correcting code if every cyclic
burst error of length at most t lies in a unique coset of C. Longest such t is called the cyclic burst
error capability of C. /

Example 5.4.10: g(x) = 1 + x + x2 + x3 + x6 generates a (15, 9)-binary cyclic code C. C is a
3-cyclic burst error correcting code. We have d(C) ≤ 5 (since its generator polynomial has 5 terms),
so e ≤ 2. To verify this we can check that each cyclic burst error of length at most 3 has a unique
syndrome.

This example was explicitly solved in section 5.7 as example 20 in textbook, on pages 176–178. /

Example 5.4.11: g(x) = 1+x4+x6+x7+x8 generates a (15, 7)-binary cyclic code that is 4-cyclic
burst error correcting. We know it has distance at most 5, so e ≤ 2. /

Remark 5.4.12: To construct codes with high cyclic burst error correcting capability, we can

1 use computer search,

2 use RS codes,

3 use codeword interleaving. /

Theorem 5.4.13: Let C be an (n, k, d)-code (linear) over GF(q). Let t be its cyclic burst error
correcting capability. Then, ⌊

d− 1

2

⌋
≤ t ≤ n− k.

Proof: We know that every cyclic burst of length at most t has weight (number of non-zero indices)
at most t. Since d(C) = w(C) and since any codeword in C of weight at most bd−12 c has a unique
syndrome, then bd−12 c ≤ t. Moreover, the number of cyclic burst errors where the non-zero entries
lie in the first t coordinate positions is qt. Each of them has a unique coset and the total number
of cosets is qn−k. So, qt ≤ qn−k. Hence, t ≤ n− k.

Exercise 5.4.14: Show that t ≤ n−k
2 . This is known as the Rieger bound. /

End of Lecture 24
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Start of Lecture 25

5.4.1.1 Error Trapping Decoding for Cyclic Burst Errors

Remark 5.4.15: Recall that if C is an (n, k)-cyclic code over F with generator polynomial g(x)
and if C is a t-cyclic burst error correcting code then t ≤ n− k. Also, H = [In−k | −R>] is a PCM
for C and the syndrome of r ∈ Vn(F ) is s(x) = r(x) mod g(x).
Let e be a cyclic burst of length at most t. To decode cyclic burst errors, such as e, we will compute
shifts of e, say ei = xie. /

Let r ∈ Vn(F ) be the received vector with polynomial representation r(x). Let si(x) be syndrome
of xir(x) for i = 0, . . . , n− 1. So we have

si(x) = xir(x) mod g(x)

and s0 = r(x) mod g(x). We use the following algorithm for error trapping

Algorithm 5.4.16: Error Trapping
1 for i = 0, . . . , n− 1 do
2 Compute si(x) as described above
3 if si(x) is a (non-cyclic) burst of length at most t then
4 ei(x)← (si(x), 0) (this is si(x) concatenated with zeros on the right)
5 e(x)← xn−iei(x)
6 Decode r(x) to r(x)− e(x)

7 reject r(x)

Note that in line 2, if i = 0, then we use polynomial division, otherwise si is si−1 shifted.

Example 5.4.17: Recall g(x) = 1+ x+ x2 + x3 + x6 is a generator polynomial for a (15, 9)-binary
cyclic code with cyclic burst error correcting capability 3 (as solved in pages 176–178 in textbook).
To decode

r = (11101 11011 00000),

we find si(x) = xir(x) mod g(x). We have

i si(x)

0 110011
1 100101
2 101110
3 010111
4 110111
5 100111
6 101111
7 101011
8 101011
9 101000

We stop at s9(x) since s9(x) is a non-cyclic burst of at most 3. So,

e = x15−9e9 = x6e9 = (00000 01010 00000).
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Hence, we correct r to c where

c = r − e = (11101 10001 00000). /

5.4.1.2 Interleaving Codewords

Our goal is to improve the cyclic burst error correcting capability (c.b.e.c.c.) of a code C. Suppose
C is an (n, k)-code with c.b.e.c.c. t. Suppose the following codewords v1, . . . , vs are transmitted.

v1 = (v11, v12, . . . , v1n),

v1 = (v21, v22, . . . , v2n),

...
...

vs = (vs1, vs2, . . . , vsn).

Suppose v1, . . . , vs are transmitted in this order. So the data in v11 is received first, and then v12
until v1n. Then, v21, v22 etc. until vsn. We can represent it in a big vector as follows.[

v11, v12, . . . , v1n, v21, v22, . . . , v2n, . . . , vs1, vs2, . . . , vsn
]
.

If a cyclic burst of length at most t occurs in any codeword, that error can be corrected. Instead, we
transmit the data with the order of the columns and represent it in a big (fat) codeword as follows.[

v11, v21, . . . , vs1, v12, v22, . . . , vs2, . . . , v1n, v2n, . . . , vsn
]
.

Hence, the first and the last data transmitted are the same in both orders. Now, if a cyclic burst
error of length at most s · t occurs in this fat codeword, this means each original codeword suffered
a cyclic burst error of length at most t.

End of Lecture 25
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Start of Lecture 26

Example 5.4.18: Recall as covered in Example 5.4.10 and Example 5.4.17, g(x) = 1 + x + x2 +
x3+x6 is the generator polynomial for a (15, 9)-binary cyclic code with 3-c.b.e.c.c. We interleave C
to depth s = 100 and obtain the code C∗. C∗ is a (1500, 900)-binary cyclic code with 300-c.b.e.c.c.
with generator polynomial

g(x100) = 1 + x100 + x200 + x300 + x600. /

5.5 BCH Codes and Minimal Polynomials

Recall 5.5.1: We can view the field F = GF(pm) as a vector space of dimension m over Zp where
Zp is a subfield of F . More generally, for any prime power q, we can view the finite field GF(qm)
as a vector space of dimension m over GF(q) and GF(q) as a subfield of GF(qm). /

Example 5.5.2: We can view GF(216) as follows.

GF(216) is a vector space of dimension 16 over GF(2),

GF(216) is a vector space of dimension 8 over GF(22),

GF(216) is a vector space of dimension 4 over GF(24),

GF(216) is a vector space of dimension 2 over GF(28), and

GF(216) is a vector space of dimension 1 over GF(216). /

Remark 5.5.3: We call GF(qm) the extension field and GF(q) as the subfield. Informally, GF(qm)
is the big field and GF(q) is the small field contained within big field.

GF(qm)

GF(q)

α

subfield

extension field
how can we describe α with GF(q)?

Figure 5.5.1: Extension field, GF(qm) and subfield, GF(q) with α ∈ GF(qm).
/

5.5.1 Minimal Polynomials

Definition 5.5.4: Let α ∈ GF(qm). Theminimal polynomial of α over GF(q), denotedmα(x),
is the (so it’s unique) monic polynomial of smallest degree in GF(q)[x] such that mα(α) = 0. /
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Example 5.5.5: For 0 ∈ GF(qm) we have m0(x) = x. /

Example 5.5.6: Consider GF(22) = Z2[x]/(x
2 + x + 1) = {0, 1, x, x + 1}. We can find minimal

polynomials of every α ∈ GF(22) over GF(2) as follows.

m0(y) = y,

m1(y) = y − 1,

mx(y) = y2 + y + 1,

mx+1(y) = y2 + y + 1. /

5.5.1.1 Properties of Minimal Polynomials

Remark 5.5.7: We know minimal polynomial for 0 ∈ GF(qm) exists. It’s also clear that for
any non-zero α ∈ GF(qm), minimal polynomial of α, mα(x), exists. Let α ∈ GF(qm) be non-
zero and let ord(α) = t. So t|(qm − 1) and αt = 1. Then α is a root of xt − 1 ∈ GF(q)[x].
Moreover, if f(x) ∈ GF(q)[x] with f(α) = 0, then if c ∈ GF(q) is the leading coefficient of f , then
f ′(x) = c−1f(x) ∈ GF(q)[x], f ′(x) is monic and f ′(α) = 0. Hence, mα(x) exists. /

Theorem 5.5.8 (Properties of minimal polynomial): Let α ∈ GF(qm) with minimal polynomial
mα(x). Then,

1 mα(x) is unique,

2 mα(x) is irreducible over GF(q),

3 deg(mα(x)) ≤ m,

4 if f(x) ∈ GF(q)[x], then f(α) = 0 if and only if mα(x)|f(x).

Proof:

1 Suppose, for contradiction, there exists distinct m1(x),m2 ∈ GF(q)[x] such that both m1 and
m2 are minimal polynomials for some α ∈ GF(qm). So both m1(x) and m2(x) are monic and
they have the same smallest degree. Consider r(x) = m1(x)−m2(x). Then

r(α) = m1(α)−m2(α) = 0− 0 = 0.

But this means r(x) is a non-zero polynomial with deg r(x) < degm1 which is a contradiction.
Hence, m1(x) = m2(x).

2 Suppose, for contradiction, mα(x) is reducible over GF(q). Then we can write

mα(x) = s(x)t(x),

for some s(x), t(x) ∈ GF(q)[x] with deg s(x), deg t(x) ≤ degmα(x). Then

mα(α) = 0 = s(α)t(α).

Hence, either s(α) = 0 or t(α) = 0 which contradicts the minimality of degmα(x). Hence,
mα(x) is irreducible over GF(q).
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3 Recall GF(qm) is a vector space of dimension m over GF(q). Hence, the m+ 1 elements

1, α, . . . , αm

are linearly dependent over GF(q). So we can write

a0 + a1α+ · · ·+ amα
m = 0,

for some a0, a1, . . . , am ∈ GF(q) where a0, . . . , am are not all zero. Hence, α is a root of the
non-zero polynomial

a0 + a1α+ · · ·+ amα
m ∈ GF(q)[x].

This polynomial have at most degree m. Hence, minimal polynomial has at most degree m.

4 Let f(x) ∈ GF(q)[x]. Using the division algorithm for polynomials, we can write

f(x) = `(x)mα(x) + r(x),

where `(x), r(x) ∈ GF(q)[x] and deg r(x) < degmα(x). We have

f(α) = `(α)mα(α) + r(α) = r(α).

Hence,

f(α) = 0 ⇐⇒ r(α) = 0

⇐⇒ r(x) = 0( since deg r(x) < degmα(x))

⇐⇒ mα(x)|f(x).

End of Lecture 26

Winter 2020 CO 331 56



Lecture 27 Chapter 5. Cyclic Codes 13 March 2020

Start of Lecture 27

5.5.1.2 Formula for Calculating Minimal Polynomials

We will derive a formula for computing mα(x) of α ∈ GF(qm) over GF(q). We will see that roots
of mα(x) are precisely the conjugates of α with respect to GF(q).

Theorem 5.5.9: Let α ∈ GF(qm). Then α ∈ GF(q) if and only if αq = α.

Proof: Since αq = α for all α ∈ GF(q), the elements of GF(q) are roots of the polynomial xq − x.
Since deg xq − x = q, it cannot have any other roots in GF(qm). Hence, α ∈ GF(q) if and only if
αq = α.

Definition 5.5.10: Let α ∈ GF(qm). Let t be the smallest positive integer such that αqt = α (note
that t ≤ m). Then the set of conjugates of α with respect to GF(q) is

C(α) = {α, αq, αq2 , . . . , αqt−1}.

Note that the elements of C(α) are distinct. /

Theorem 5.5.11: Let α ∈ GF(qm). Then the minimal polynomial of α over GF(q) is

mα(x) =
∏

β∈C(α)

(x− β) = (x− α)(x− αq)(x− αq2) · · · (x− αqt−1
).

Proof: We have that mα(x) is monic and mα(α) = 0. Let mα(x) =
∑t

i=0mixi. The coefficients
mi are in GF(qm). We need to prove that mi ∈ GF(q). We have

mα(x)
q =

∏
β∈C(α)

(x− β)q

=
∏

β∈C(α)

(xq − βq)

=
∏

β∈C(α)

(xq − β), since C(α) = {βq | β ∈ C(α)}

= mα(x
q)

=

t∑
i=0

mix
iq. (5.5.1)

Moreover,

mα(x)
q =

(
t∑
i=0

mix
i

)q
=

t∑
i=0

mq
ix
iq. (5.5.2)

Comparing coefficients of xiq in (5.5.1) and (5.5.2) gives mi = mq
i for all 0 ≤ i ≤ t. Hence,

mi ∈ GF(q) and so mα(x) ∈ GF(q)[x].

Now, let f(x) ∈ GF(q)[x] be non-zero and suppose that f(α) = 0. Let f(x) =
∑d

i=0 fix
i. Then,

f(αq) =
d∑
i=0

fiα
iq =

(
d∑
i=0

fiα
i

)q
= f(α)q = 0.
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Hence, the elements of C(α) are roots of f(x). Since the roots of m(x) are precisely the elements
of C(α), we conclude that mα(x) is the monic polynomial of smallest degree in GF(q)[x] that has
α as a root.

Example 5.5.12: Consider GF(24) = Z2[x]/(x
4 + x + 1). Find the minimal polynomial of

β = x2 + x3 over Z2. So we have q = 2 and m = 4.

It would help to have a generator α of GF(24)∗ and its powers. It turns out that α = x is a
generator, as the following table shows.

α0 = 1 α5 = α+ α2 α10 = 1 + α+ α2

α1 = α α6 = α2 + α3 α11 = α+ α2 + α3

α2 = α2 α7 = 1 + α+ α3 α12 = 1 + α+ α2 + α3

α3 = α3 α8 = 1 + α2 α13 = 1 + α2 + α3

α4 = 1 + α α9 = α+ α3 α14 = 1 + α3

We have β = x2 + x3 = α6. Hence, C(β) = {α6, α12, α9, α3}. Note that α24 = α9 since the order of
α is 15. Hence,

mβ(y) = (y − α3)(y − α6)(y − α9)(y − α12)

= [y2 + (α3 + α6)y + α9][y2 + (α9 + α12)y + α6]

= [y2 + α2y + α9][y2 + α8y + α6]

= y4 + (α2 + α8)y3 + (α9 + α10 + α6)y2 + (α8 + α2)y + 1

= y4 + y3 + y2 + y + 1.

We see that the coefficients of mβ(y) are in GF(2). Also we simplified terms such as α3 + α6 to α2

by using the table of powers of α. /

End of Lecture 27
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Start of Lecture 28

All classes between March 14 and March 22 have been cancelled due COVID-19.

End of Lecture 28
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Start of Lecture 29

All classes between March 14 and March 22 have been cancelled due COVID-19.

End of Lecture 29
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Start of Lecture 30

All classes between March 14 and March 22 have been cancelled due COVID-19.

End of Lecture 30
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Start of Lectures 31-36

Due COVID-19, lectures 31-36 are held as video lectures. Instructor posted 10 lectures on LEARN
(V0-V9) and posted the following information on Piazza at https://piazza.com/class/k4ht3u7bp46bf?

cid=43:

Video lectures (updated Apr 3)
• March 22: I have posted three video lectures V0, V1, V2 on “Factoring xn−1 over GF(q)”

on LEARN. The intent is that you view these lectures between Mar 23-25.
• March 24: Video lectures V3, V4 on “BCH codes”. Please view these lectures between

Mar 25-29.
• March 25: Video lectures V5, V6 on “BCH decoding”. Please view these lectures between

Mar 30-Apr 1.
• March 26: Video lecture V7 on “Reed-Solomon codes”. Please view this lecture between

Apr 1-3.
• April 2: Video lecture V8: This will be a short wrap-up. Please view this lecture between

Apr 2-3.
• April 3: Video lecture V9 on “code-based public-key encryption” (optional viewing).

These video lectures are not very polished – It’s clear that I am not yet ready to become a
YouTuber.1 I have had to learn a lot of new technologies in the past week. If you have any
suggestions on how I could improve the quality of the video lectures, please do email them to me.

Questions? Please use the V# threads on Piazza to ask questions about the video lec-
tures. If appropriate, you can include in your question the relevant time stamp from the lecture.
You can also ask questions about the lecture in office hours.

#pin

The content covered on these video lectures will not be typeset.

This concludes the final lecture(s) for CO 331 in Winter 2020.

End of Lectures 31-36

1This is wrong. Video lectures were actually pretty good, a lot better than many lecture videos on YouTube.
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inner product, 24
irreducible, 16
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minimal polynomial, 54

O
order, 10
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of a field, 10

orthogonal vectors, 24

P
parity-check matrix, 25
primitive element, 19

R
reciprocal polynomial, 48
replication code, 1
ring, 10

commutative, 10
division ring, 10
principal ideal ring, 40
with identity, 10

S
sphere packing problem, 8, 27
symbol error probability, 4
syndrome, 30
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T
t-cyclic burst error correcting code, 51
the generator polynomial of I, 41
the set of conjugates, 57

W
word, 3

length of, 3
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