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Preface and Notation

This PDF document includes lecture notes for CO 255 - Introduction to Optimization (Advanced
Level) taught by Chaitanya Swamy in Winter 2019.

For any questions contact me at c2kent(at)uwaterloo(dot)ca.

Notation

Throughout the course and the notes, unless otherwise is explicitly stated, we adopt the following
conventions and notations.

• The university logo is used as a place holder.

• The animation works as expected on latest Adobe PDF reader but it does not work on primitive
PDF readers.

• For a finite set S with size n, when we say x ∈ RS we mean R|S| 3 x = (x1, . . . , xn).

Calvin KENT
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Chapter 1. Introduction to Optimization 1

Chapter 1 – Introduction to Optimization

Definition 1.0.1: An optimization problem is the problem Pmin/Pmax of finding the best solu-
tion (finding min or maximize) to a function f(x) subject to x ∈ S. Where

• f : S → R is the objective function ,

• S is the feasible region ,

• x are the variables.

We denote the point x ∈ S as the feasible solution . /

Remark 1.0.2: max f(x) subject to x ∈ S = min−f(x) subject to x ∈ S. /

1.1 Outcomes of an Optimization Problem

We have the following definitions for various outcomes.

1 If S = ∅ we say the problem is infeasible .

2 If S 6= ∅ and ∃ x∗ ∈ S such that ∀ x ∈ S, f(x∗) ≤ f(x) ∀ x ∈ S, then we say x∗ is an
optimal solution and f(x∗) is an optimal value . For a program (P), we denote the optimal
value of (P) as OPT(P).

3 If S 6= ∅ but there are feasible solutions of arbitrarily small objective values, we say the
problem is unbounded .

1.2 Classes of Optimization Problems

Historically these problems are referred as programs. We classify the optimization problems as
follows.

1 Linear Programs: f(x) = c>x =
∑

j cjxj where,

S = {x ∈ Rn | Ax ≤ b where A ∈Mm×n(R),b ∈ Rm} = {x ∈ Rn | a>i x ≤ bi ∀ i ∈ [m]}.

Note that for a,b ∈ Rn, a ≤ b ⇐⇒ ai ≤ bi ∀ i = 1, . . . , n.

2 Integer (Linear) Programs: Linear programs where x ∈ Zn.

3 Convex Programs:

Definition: A set S ⊆ Rn is called a convex set if ∀ x,y ∈ S,∀ λ ∈ [0, 1], λx+(1−λ)y ∈ S.
In other words, convex sets are the sets that contain the line which connects any of its two
elements. If S is not convex then it is said to be a concave set .

Winter 2019 CO 255 1



Chapter 1. Introduction to Optimization 2

Figure 1.2.1: Convex and concave sets.

We say f : S → R is a convex function if S is convex and ∀ x,y ∈ S, λ ∈ [0, 1] we have
f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). In other words, we say f : S → R is convex if
∀ x,y ∈ S, the line segment joining f(x), f(y) lies above the graph of f . We say a function
f is a concave function if −f is convex.

Figure 1.2.2: Convex function and concave functions.

A problem of the form min f(x) subject to x ∈ S where S is convex and f is a convex or a
concave function is called a convex program . /

Example 1.2.1:

For example, this is a convex program
min f(x) subject to x ∈ S where f is convex and S is convex,

and its equivalent is
max−f(x) subject to x ∈ S where −f is concave and S is convex.

Each of these two programs are equivalents. /

Winter 2019 CO 255 2



Chapter 1. Introduction to Optimization 3

1.3 Examples of Optimization Problems

1.3.1 Transportation Problem

Consider the scenario where a company has a set of F centers and C clients.

Each center i ∈ F can supply ui units and each client j ∈ C demands dj units.

Shipping from center i to client j costs $cij per unit. We want to find a minimum cost solution.
We assign variables xij ∀ i, j ∈ F,C (units sent from i→ j). We want to minimize the cost so our
problem is

min
∑
i

∑
j

cijxij︸ ︷︷ ︸
minimize cost

subject to
∑
j∈C

xij ≤ ui ∀ i︸ ︷︷ ︸
cannot exceed supply

and
∑
i∈F

xij ≤ di ∀ i︸ ︷︷ ︸
must meet demand

.

1.4 Examples of Optimization Problems (continued)

1.4.1 2-player Game

Consider a game with 2-players Rose (R) and Colin (C) with a known matrix A ∈ Rm×n = (aij)
where i = 1, . . . ,m and j = 1, . . . , n.

• R’s strategy is to choose a row i ∈ {1, . . . ,m}.

• C’s strategy is to choose a column j ∈ {1, . . . , n}.

• If R chooses i, and C chooses j then Rose pays Colin amount aij .

Example 1.4.1: Let A =

[
5 −2
1 6

]
.

If C chooses j = 1, we can guarantee a payoff of 1 =min-entry in column j. No matter what R
chooses.

If C chooses j = 2, we can guarantee a payoff of = −2, no matter what R chooses.

If C chooses j = 1 with probability 1
2 (and j = 2 with same probability), then C would see the

following expected payoffs under R’s choices.

v =

[
1/2
1/2

]
=⇒ Av =

1
2 · 5 +

1
2(−2) = 1.5

1
2 · 1 +

1
2( 6) = 3.5

 =

[
1.5
3.5

]
.

Now C guarantees a payoff of 1.5 no matter what R does. In general, what is Colin’s best randomized
strategy?

Winter 2019 CO 255 3



Chapter 1. Introduction to Optimization 4

C wants to choose some probabilities p1, . . . , pn ≥ 0 such that
∑
pj = 1. C wants to maximize

min
i=1...m


n∑
j=1

aijpj︸ ︷︷ ︸
(Ap)i

 (payoff if R chooses row i).

We can think C’s strategy as “Colin wants to maximize whatever he can get”. C’s problem becomes

max min
i=1...m

 n∑
j=1

aijpj

 such that
∑

pj = 1 where p = (p1, . . . , pn)
> ≥ 0.

We can think this problem as maximizing a variable v as follows

C’s linear problem (C − LP ) ≡ max v where v ≤
n∑
j=1

aijpj .

R’s problem is to choose a randomized strategy, in other words, if we denote the probabilities of
R’s as q1, . . . , qm ≥ 0 such that

∑
qj = 1, then R’s problem is to minimize

max
j=1...n


n∑
i=1

aijqi︸ ︷︷ ︸
(q>A)j

 (payoff if C chooses column j).

We can think of R’s strategy as “Rose wants to minimize her loses”. Similarly, we can think this
problem as minimizing the variable w as

R’s linear problem (R− LP ) ≡ minw where w ≥
n∑
i=1

aijqi. /

Remark 1.4.2:

1 (C − LP ) is feasible and unbounded, in fact (C − LP ) has an optimal solution (same holds
for (R− LP )).

2 Suppose (v, p) is a feasible solution to (C − LP ) (similarly with (w, q) for (R− LP )).

w ≥ max
j=1...n

(
m∑
i=1

aijqi

)
≥ min

i=1...m

 n∑
j=1

aijpj

 ≥ v.
This is similar to relationship inf ≤ sup.

3 Optimal values of C − LP and R− LP are equal, that is v = w.

Note that 2 and 3 are consequences of LP−Duality. /

Winter 2019 CO 255 4



Chapter 1. Introduction to Optimization 5

1.4.2 General 2-Person Game

Consider a game with 2 matrices A,B ∈ Rm×n giving the payoffs for C and R respectively.

If R plays i, and C plays j then C gets payoff aij and R gets payoff bij . . Recall, previously we had
B = −A (zero sum game).

How should R,C choose their randomized strategies q ∈ Rm,p ∈ Rn?

Definition 1.4.3: We say (p,q) is an equilibrium if no player has an incentive to deviate even
if other player’s strategy is revealed. Equilibrium always exists as a consequence of John Nash’s
theorem. /

For R’s case, given p, R sees the expected payoffs


(Bp)1
(Bp)2

...
(Bp)m

. So for R to not deviate from q, R’s

expected payoff under q should be equal to
(Bp)1
(Bp)2

...
(Bp)m

 = max
i=1...m

(Bp)i.

In other words,
q>Bp = max

i...m
(Bp)i ≡ q>Bp ≥ (Bp)i ∀ i = 1, . . . ,m (1)

For C’s case, given q, C sees the expected payoffs ((q>A)1, . . . , (q
>A)n). So for C to not deviate

from p, C’s expected payoff under p must be equal to

q>Ap = max
j=1...n

(q>A)j ≡ q>Ap ≥ (q>A)j ∀ j = 1, . . . , n (2)

Finding an Equilibrium: Feasible solution always exists (1),(2)
n∑
j=1

pj = 1, p ≥ 0, (3)

m∑
j=1

qi = 1, q ≥ 0 (4)

We want to find an equilibrium that maximizes the payout to both players. i.e. we want an
equilibrium that makes total payoff to the players

maxp>(A+B)q subject to constraints (1)-(4).

Note that p>(A+B)q is not a concave function of p and q.

1.4.3 Fair Division

Consider a game with n players i = 1, . . . , n and m items j = 1, . . .m. 1 unit of each item j,
divisible, assigning x−fraction of j to i gives player i utility = uij · x. We want a fair assignment of
items to players.

Winter 2019 CO 255 5



Chapter 2. Linear Programming (LP) 6

Fair assignment: We want to find an assignment maximizing the product of player utilities, that
is
∏
(utility of i). We assign variables xij for the fraction of item j given to player i.

max

n∏
i=1

 m∑
j=1

uijxij

 subject to
n∑
i=1

xij ≤ 1 where x ≥ 0.

To get a convex program, we write our program as

max
n∑
i=1

ln

 m∑
j=1

uijxij


︸ ︷︷ ︸
concave function

subject to
n∑
i=1

xij ≤ 1 where x ≥ 0.

1.4.4 Job Assignment Problem

Consider n workers and n jobs with following conditions:

• Assigning job j to worker i costs $cij .

• Each job must be assigned to one worker.

• Each worker can be assigned only 1 job.

We want to find a min-cost assignment. We assign binary variables

xij = δij ∀ i, j = 1, . . . , n

and we try to solve for

min
∑
i,j

cijxij such that
n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n where xij = 0 or 1.

Remark: There exists an optimal solution x∗ to LP obtained by dropping "xij integer ∀ i, j"
constraints that satisfies x∗ij ∀ i, j. /

Winter 2019 CO 255 6



Chapter 2. Linear Programming (LP) 7

Chapter 2 – Linear Programming (LP)

Recall 2.0.1: A linear program (LP) is a problem of the form:

max /min c>x subject to Ax ≤ b, where

• x = (x1, . . . , xn)
> and A ∈Mm×n and,

• we have a linear objective function and,

• we have a finite number of linear constraints.

We can incorporate ≤ (less than or equal to) or ≥ (greater than or equal to) constraints but we do
not allow strict inequalities. e.g. x < 0. This is because in strict inequality case x can be very close
to the limit (arbitrarily close to 0) but can never get to the limit. /

Notation 2.0.2: For a matrix A ∈ Mm×n we denote the rows (a>i ) and columns (Aj) of A as
follows.

A =


— a>1 —

— a>2 —
...

— a>m —

 =

[
A1 | A2 | · · · | An

]
.

/

Remark 2.0.3: Every LP can be converted into an equivalent LP of the following form:

max c>x subject to Ax ≤ b,x ≥ 0.

This form is called the standard inequality form (SIF). Note that this conversion may introduce
extra variables and constraints. /

2.1 Feasibility of a Linear System

Our goal is to characterize when a system of linear inequalities (Ax ≤ b) is infeasible. We consider
the equality case as special case.

Special Case: Suppose we have a system

Am×nx = b where x ∈ Rn,b ∈ Rm.

From linear algebra we know that

b /∈ Col(A) ⇐⇒ ∃ y such that y>Aj = 0 ∀ j = 1, . . . , n and y>b 6= 0,

⇐⇒ ∃ y such that y>A = 0,y>b < 0.

Winter 2019 CO 255 7



Chapter 2. Linear Programming (LP) 8

2.1.1 Fourier-Motzkin Elimination

The idea is to repeatedly eliminate a variable to determine feasibility of a linear system Ax ≤ b.

Example 2.1.1: Consider the following system

2x1+ x2+ x3 ≤ 5, (1)
−x1+3x2+2x3 ≤ 6, (2)
3x1− x2 ≤ 0, (3)
x1−2x2− x3 ≤ −2, (4)

We want to eliminate x3 and get a new equivalent system. We have the relation

(1), (2) =⇒ x3 ≤ min

{
5− 2x1, x2,

6 + x1 − 3x2
2

}
,

(4) =⇒ x3 ≥ x1 − 2x2 + 2.

For (1)− (4) to be feasible we need

x1 − 2x2 + 2 ≤ x3 ≤ min

{
5− 2x1, x2,

6 + x1 − 3x2
2

}
and 3x1 − x2 ≤ 0.

In other words, for (1)− (4) to be feasible, we need x1, x2 to satisfy

x1−2x2 + 2 ≤ 5− 2x1 − x2,

x1−2x2 + 2 ≤ 6 + x1 − 3x2
2

,

3x1− x2 ≤ 0.

Note that the system is obtained from the non-negative linear combinations of the system in (1)−
(4). /

Formally, given a system Ax ≤ b with A ∈Mm×n, let

I+ = {i ∈ {1, . . . ,m} | ain > 0},
I− = {i ∈ {1, . . . ,m} | ain < 0},
I0 = {i ∈ {1, . . . ,m} | ain = 0}.

For all k ∈ I+ and ` ∈ I−, consider the inequality and scale it by 1
akn

and 1
|a`n| .

a>k x ≤ bk,
a>` x ≤ b`.

−→

[
a>k x ≤ bk

]
· 1

akn
,[

a>` x ≤ b`
]
· 1

|a`n|
.︸ ︷︷ ︸

(k−`)−inequality

We denote the inequality on the right as (k − `)− inequality.

Remark 2.1.2: (k − `)− inequality does not involve any xn. /

Winter 2019 CO 255 8



Chapter 2. Linear Programming (LP) 9

Form the new system A′x ≤ b′ consisting of

• a>i ≤ bi ∀ i ∈ I0,

• all (k − `)− inequalities.

By construction xn does not appear in A′x ≤ b′. Successively applying this method we can eliminate
all n variables which gives us the system A0x ≤ b0 where

A0 = 0m×n is feasible ⇐⇒ b0 ≥ 0.

2.1.1.1 Properties of Fourier-Motzkin Elimination

Suppose we go from Ax ≤ b to A′x ≤ b′ by eliminating xn as shown. Then we have the following
properties:

P1 If I+ = ∅ or if I− = ∅ then there are no (k − `) inequalities.

P2 Every inequality of A′x ≤ b′ is a non-negative linear combination of inequalities of A ≤ b.

P3 The (k − `) inequalities can be equivalently viewed as follows:

• Every k ∈ I+ gives the upper bound (UB)

xn ≤
bk −

∑n−1
j=1 akjxj

akn
.

• Every ` ∈ I− gives the lower bound (LB)

xn ≥
b` −

∑n−1
j=1 a`jxj

a`n
.

So we must have

max
`∈I−

(
b` −

∑n−1
j=1 a`jxj

a`n

)
≤ min

k∈I+

(
bk −

∑n−1
j=1 akjxj

akn

)
︸ ︷︷ ︸

(?)

≡ ∀ k∈I+,∀ `∈I−,
b` −

∑n−1
j=1 a`jxj

a`n
≤
bk −

∑n−1
j=1 akjxj

akn
,

where (?) refers to all (k − `) inequalities together.

P4 A′x ≤ b′ involves (n− 1) variables but the number of constraints could be as large as m2

4 . So

after k rounds, we can have about a total of m2k

constraints of inequalities.

Lemma 2.1.3: The system Ax ≤ b is feasible ⇐⇒ A′x ≤ b′ is feasible.

Exercise 2.1.4: Prove the =⇒ direction. Hint: It follows from P2 . /

Proof: ⇐= : Suppose x1, . . . , xn−1 satisfy A′x ≤ b′. Consider the easy cases where any I+, I− is
empty.

I+ = ∅ −→ can choose xn large enough,
I− = ∅ −→ can choose xn small enough,

}
so that (x1, . . . , xn−1, xn) satisfy Ax ≤ b.
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Chapter 2. Linear Programming (LP) 10

Now consider I+, I− are both non-empty. We know that x1, . . . , xn−1 satisfy (?). In other words,
the interval

J =

[
max
`∈I−

(
b` −

∑n−1
j=1 a`jxj

a`n

)
, min
k∈I+

(
bk −

∑n−1
j=1 akjxj

akn

)]
is non-empty. So we can choose xn ∈ J so that (x1, . . . , xn) satisfy Ax ≤ b.

Next lecture we will state and prove a variation of Farkas’ lemma. Farkas’ lemma has many forms.
In today’s lecture, we will prove the following.

Theorem 2.1.5 (Farkas’ Lemma): Let A ∈ Mm×n.The system Ax is infeasible if and only if
∃ y ≥ 0 ∈ Rm such that y>A = 0 and y>b < 0.

Exercise 2.1.6: Prove the ⇐= direction. /

Proof: =⇒ : Let y ≥ 0 where Rm = y = (y1, . . . , ym). Given Ax ≤ b, let α>x ≤ β be the
inequality obtained by the linear combinations of the system

a>1 x ≤ b1 ] · y1
a>2 x ≤ b2 ] · y2

...

a>mx ≤ bm ] · ym

Running FME on Ax ≤ b, we will eventually derive an inequality 0>x ≤ β where β < 0. Showing
that Ax ≤ b is infeasible. Every inequality we get by FME is a non-negative linear combination of
inequalities of previous system and hence non-negative linear combination of inequalities of Ax ≤ b.
Hence ∃ y ≥ 0 such that y>A = 0 and y>b = β < 0.

Definition 2.1.7: The vector y ∈ Rm that satisfies the condition in Farkas’ lemma is called
certificate of infeasibility . /

Remark 2.1.8: The equivalent versions of Farkas’ lemma are included below.

The system Ax ≤ b Ax = b

has no solution x ≥ 0 ⇐⇒ ∃ y ≥ 0 ∈ Rm s.t y>A ≥ 0 and y>b ≤ 0 ∃ y ∈ Rm s.t y>A> ≥ 0 and y>b < 0

has no solution x ∈ Rn ⇐⇒ ∃ y ∈ Rm ≥ 0 s.t y>A = 0 and y>b ≤ 0 ∃ y ∈ Rm s.t y>A> = 0 and y>b < 0.

It is easy to prove these versions by using linear algebra. /

Definition 2.1.9: Let S ⊆ Rn. Let I ⊆ {1, . . . , n}. For z ∈ Rn, write z = (x,y) where x = (zi)i∈I
and y = (zi)i/∈I . We define the projection of S on x (sometimes referred as projection of S onto
the coordinates x) as

projx(S){x ∈ R|I| | ∃ y ∈ Rn−|I| such that z = (x,y) ∈ S}.

Winter 2019 CO 255 10
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Figure 2.1.1: Projection of S on x and on y.

/

Definition 2.1.10: A polyhedron is a set of the form {x ∈ Rn | Ax ≤ b} where A ∈Mm×n(R).
In other words, a polyhedron is the set corresponding to feasible region of an LP. The plural form
of polyhedron is polyhedra . Note that if m = 1 then we have a set

{x ∈ Rn | α>x ≤ β where α> ∈ Rn and β ∈ R}.

We call sets of this form a half-space . /

Theorem 2.1.11: If P ⊆ Rn is a polyhedron and I ⊆ {1, . . . , n}, then proj(xi)i∈I (P) is also a
polyhedron.

Proof: Exercise. Hint: Proof follows from FME. /

2.2 LP Duality

We want to know if we can we prove bounds on optimal value of an LP.

Example 2.2.1: Consider the LP

(P) : max 3x1 + x2 + 2x3

subject to 2x1 − x2 + x3 ≤ 4 (1)
x1 + 2x2 + x3 ≤ 5 (2)
x1 + 2x3 ≤ 3 (3)

with xi ≥ 0 for i = 1, 2, 3.

We get
(2) · 3 =⇒ 3x1 + 6x2 + 3x3 ≤ 15.

Since all xi ≥ 0, then 15 is an upper bound (UB) on the optimal value of (P), OPT(P). We also
have

(1) + (2) =⇒ 3x1 + x2 + 2x3 ≤ 9.
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Hence 9 is an upper bound as well, in fact it’s a better upper bound. In general, we can take some
yi ≥ 0 and get the linear combination of the constraints as

y1(1) + y2(2) + y3(3) = (2y1 + y2 + y3)x1 + (−y1 +2y2)x2 + (y1 + y2 + y3)x3 ≤ 4y1 +5y2 +3y2 (?)

For (?) to give an upper bound on 3x1 + x2 + 3x3, we need the constraints to be satisfied. That is,

(x1) : 2y1 + y2 + y3 ≥ 3

(x2) : − y1 + 2y2 ≥ 1

(x3) : y1 + y2 + 2y3 ≥ 2

yi ≥ 0 for i = 1, 2, 3.

 (†)

So to find tightest upper bound using this mechanism, we want to solve for

min 4y1 + 5y2 + 3y3 subject to constraints (†)

This problem is called the dual of (P). /

Definition 2.2.2: Let be (P) be an LP. The problem of finding the tightest bound on (P) by taking
a suitable linear combination of inequalities of (P) is called the dual of (P). Generally, we denote
the given LP as (P) and refer it as the primal LP (or just primal in short) and we denote the dual
of (P) and (D) and call it the dual of (P) (or just dual in short). /

Remark 2.2.3:

1 If (P) is a max-LP then (D) is a min-LP.

2 Every primal constraint gives rise to a dual variable.

3 Every primal constraint gives rise to a dual constraint.

4 Dual of (D) is (P).

5 If (P) is primal with dual (D), then we refer (P), (D) as the primal-dual pair . /

Example 2.2.4: content... /

... will be typed up later. Refer to https://tinyurl.com/y3j5fnwg

LP Duality (continued)

Recall 2.2.5: Every LP (P) has a dual LP (D) that encodes the problem of finding best bound on
OPT(P) via taking a suitable linear combination of constraints of (P). /

Theorem 2.2.6 (Weak Duality Theorem): Let (P) be a max-LP with objective function max c>x.
Let (D) be the dual of (P) which is a min-LP, with objective function minb>y. Let x be the feasible
solution to the primal (P) and y be the feasible solution to (D). Then c>x ≤ b>y.

Proof: We have seen this when constructing (D).

We will show this here when (P) is in standard-inequality-form (SIF):

Winter 2019 CO 255 12
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Let (P) be the LP where

(P) : max c>x,

subject to Ax ≤ b,

with x ≥ 0.

We multiply the constraints by y> ≥ 0. We get

c>x ≤ (y>A)x ≤ y>b.

We get the dual problem as

(D) : min y>b,

subject to c> ≤ y>A ≡ A>y ≥ c,

with y ≥ 0.

Since x is feasible to (P) then x ≥ 0 and Ax ≤ b. Since y is feasible to (D), then y ≥ 0 and
A>y ≥ c. Hence we have

c>x ≤ (A>y)>x = y>Ax ≤ y>b = b>y.

Corollary 2.2.7: If (P) is unbounded, then (D) is infeasible. If (D) is unbounded, then (P) is
infeasible.

Proof: Exercise. /

Lemma 2.2.8: Let (P), (D) be primal-dual pair. If (P) is feasible and (D) is infeasible, then (P)
is unbounded.

Proof: Exercise. /

Corollary 2.2.9: (P) is unbounded ⇐⇒ (P) is feasible and (D) is infeasible.

Proof: Exercise. /

Theorem 2.2.10 (Strong Duality Theorem): Let (P), (D) be a primal-dual pair. Then the following
are true:

1 If (P) has an optimal solution x∗ then so does (D) and OPT(P) = OPT(D).

2 If (P) and (D) are both feasible, then they both have opt. solutions and OPT(P) = OPT(D).

Note that to prove this theorem we will first prove 2 then show 2 =⇒ 1 .

It is also easy to see 1 =⇒ 2 .

Exercise 2.2.11: Show 1 =⇒ 2 . /

Proof (of 2 ): Suppose both (P) and (D) are feasible where

(P) : max c>x,

subject to Ax ≤ b,

with x ≥ 0.

(D) : min b>y,

subject to A>y ≥ c,

with y ≥ 0.
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By weak duality theorem, it suffices to show that the following system is infeasible.

Ax ≤ b

x ≥ 0

A>y ≥ c

y ≥ 0

c>x ≥ b>y

≡

x,y ≥ 0

Ax ≤ b

−A>y ≤ −c
−c>x+ b>y ≤ 0

(?)

Recall: By Farkas’ lemma we have,

A′x′ ≤ b′,x′ ≥ 0 is infeasible ⇐⇒ ∃ y′ ≥ 0 s.t y′>A′ ≥ 0 and y′
>
b′ < 0. /

If (?) is infeasible, then there exists non-negative u ∈ Rm,v ∈ Rn, λ ∈ R such that

u>A− c>λ ≥ 0

−v>A> + λb> ≥ 0

u>b− v>c < 0

≡

A>u ≥ λc (1)

Av ≤ λb (2)

c>v > b>u. (3)

u,v, λ ≥ 0

We have two cases: λ > 0 or λ = 0.

Case 1: λ > 0. We have

u

λ
≥ 0, A>

(u
λ

)
≥ c

v

λ
≥ 0, A

(v
λ

)
≤ b

 so
v

λ
,
u

λ
are feasible

solutions to (P), (D)

But by (3) we have
c>
(v
λ

)
> b>

(u
λ

)
,

which contradicts weak duality.

Case 2: λ = 0. By hypothesis, we know that (P) has a feasible solution x and (D) has a feasible
solution y. Since A>y ≥ c and v ≥ 0 then c>v ≤ (A>y)>v. Since y ≥ 0 and Av ≤ 0 (why?) then
y>(Av) ≤ 0. Hence we have

c>v ≤ (A>y)>v = y>(Av) ≤ 0.

Since u ≥ 0 and by inequality (1) and x ≥ 0 we also have

b>u ≥ (Ax)>u = x>(A>u) ≥ 0.

But we have
c>v ≤ 0 ≤ b>u,

which contradicts (3). Hence (?) is infeasible. Hence, both (P) and (D) have same optimal solutions.
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Proof ( 2 =⇒ 1 ): Suppose 2 is true and suppose (P) has optimal solution. Then, by FTLP,
(P) is feasible and not unbounded. Then, by Lemma 2.2.8, (D) is feasible. Since both primal and
the dual are feasible, then by hypothesis OPT(P) = OPT(D).

Theorem 2.2.12 (Fundamental Theorem of Linear Programming): Let (P) be any LP. Then, (P)
is either infeasible, unbounded or has an optimal solution.

Proof: Exercise. /

2.3 Applications and Interpretations of Duality

Definition 2.3.1: We say an inequality α>x ≤ β where α,x ∈ Rn, β ∈ R is valid for a set S ⊆ Rn
if α>x ≤ β ∀ x ∈ S. /

Consider a polyhedron P = {x ∈ Rn | Ax ≤ b}. Then,

α>x ≤ β is valid for P ⇐⇒
(
max
x∈P

α>x

)
≤ β

⇐⇒
(?)
∃ feasible dual and y such that b>y ≤ β

⇐⇒ ∃ y ≥ 0,y>A = α>.

Hence, (y>A)x ≤ y>b =⇒ α>x ≤ β. (?) : By strong duality we have dual of max
x∈P

α>x as

minb>y, y ≥ 0, y>A = α>.

Remark 2.3.2: Strong duality theorem is equivalent to the statement: Every valid inequality
for P is implied by an inequality derived via a suitable (i.e. non-negative) linear combination of
constraints of P . /

2.3.1 Complementary Slackness (C-S) Conditions:

Complementary slackness (C-S) conditions are also referred as structural characterization of optimal
solutions. Let (P), (D) be primal-dual pair where

(P) : max c>x,

subject to Ax ≤ b,

with x ≥ 0.

(D) : min b>y,

subject to A>y ≥ c,

with y ≥ 0.

Let x and y be feasible solutions to (P) and (D) respectively. We have

x is optimal solution for (P) and,
y is optimal solution for (D)

⇐⇒
(??)

c>x = b>y.

(??) : By weak and strong duality. By weak duality, we also have

c>x ≤ (y>A)x = y>(Ax) ≤ y>b = b>y.

For c>x = b>y, we must have
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1 c>x = y>Ax.

2 y>Ax = y>b ⇐⇒ y>(Ax− b) = 0.

We have A ∈Mm×n,x ∈ Rn,y ∈ Rm. Hence from 1 we get

c>x = y>Ax ⇐⇒ (c> − y>A)x = 0 ⇐⇒
n∑
j=1

(
cj − (y>A)j

)
︸ ︷︷ ︸

≤0

xj︸︷︷︸
≥0︸ ︷︷ ︸

≤0

= 0

⇐⇒
n∑
j=1

(
cj − (y>A)j

)
xj = 0.

i.e. ∀ j = 1, . . . , n we have xj = 0 OR (y>A)j = cj . So ∀ j = 1, . . . , n, xj = 0 OR the dual
corresponding to xj must be tight (hold at equality for y) for y.

From 2 we get

y>Ax = y>b ⇐⇒ y>(Ax− b) = 0 ⇐⇒
m∑
i=1

yi︸︷︷︸
≥0

((Ax)i − bi)︸ ︷︷ ︸
≤0

= 0

⇐⇒
m∑
i=1

yi((Ax)i − bi) = 0.

i.e. ∀ i = 1, . . . ,m we have yj = 0 OR (Ax)i = bi. So ∀ i = 1, . . . ,m, yi = 0 OR the dual
corresponding to xj must be tight (hold at equality for x) for x.

Theorem 2.3.3 (Complementary-Slackness (CS) Theorem): Let (P), (D) be a primal-dual pair of
LPs. Let x,y be a feasible solutions to (P), (D) respectively. Then,

x is an opt. soln. to (P) and,
y is an opt. soln. to (D)

⇐⇒
a : ∀ j = 1, . . . , n, xj = 0 or corresponding dual constraint is tight for y,
b : ∀ i = 1, . . . ,m, yi = 0 or corresponding primal constraint is tight for x.

2.3.1.1 Example of Applying CS Conditions

THIS EXAMPLE IS INCOMPLETE
Let (P), (D) be primal-dual pair where

(P) : max 5x1 + 3x2 + 5x3

subject to x1 + 2x2 − x3 ≤ 2

3x1 + x2 + 2x3 ≤ 4

− x1 + x2 + x3 ≤ −1

(D) : min 2y1 + 4y2 − y3
subject to y1 + 3y2 − y3 = 5

2y1 + y2 + y3 ≤ 3

− y1 + 2y2 + y3 ≥ 5

with y1, y2, y3 ≥ 0
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Multiply (1), (2), (3) by y1, y2, y3 ≥ 0. We get the dual as

min 2y1 + 4y2 − y3 subject to y1, y2, y3 ≥ 0 and
y1 + 3y2 − y3 = 5

2y1 + y2 + y3 ≤ 3

−y1 + 2y2 + y3 ≥ 5.

Question: Is x = (1,−1, 1)> an optimal solution to (P)?

We first need to verify x is feasible for (P). If x is an optimal solution to (P), then ∃ dual feasible
solution y such that x,y satisfy the CS conditions.

x1 = 0 or y1 + 3y2 − y3 = 5

x2 = 0 or 2y1 + y2 + y3 = 3

x3 = 0 or − y1 + 2y2 + y3 = 5

y1 = 0 or x1 + 2x2 +−x3 = 2

y2 = 0 or 3x1 + x2 + 2x3 = 4

y3 = 0 or − x1 + x2 + x3 = −1.

Hence y = (0, 2, 1)> is the only y that satisfies the CS conditions with x. We need to verify this y
is feasible for D to show x is optimal for the primal and y is optimal for the dual.

y is the unique dual optimal solution. There can be examples that y is not unique.

Winter 2019 CO 255 17



Chapter 3. Geometry of Linear Programs 18

Chapter 3 – Geometry of Linear Programs

Definition 3.0.1: A set K ⊆ Rn is called a cone if K satisfies the following properties:

• 0 ∈ K.

• ∀ x ∈ K,∀ 0 ≤ λ ∈ R we have λx ∈ K.

• ∀ x,y ∈ K we have x+ y ∈ K. /

Claim 3.0.2: A cone is a convex set.

Proof: Exercise. /

Lemma 3.0.3: An arbitrary intersection of cones is a cone.

Proof: Exercise. /

Definition 3.0.4: For S ⊆ Rn we define cone(S) as the smallest cone that contains S. It is
also called the cone generated by S. /

Lemma 3.0.5: If S = {a(1), . . . ,a(n)} ⊆ Rn, then

cone(S) =

{
x ∈ Rn

∣∣∣∣∣ ∃ λ1, . . . , λk ≥ 0 such that x =

k∑
i=1

λia
(i)

}

In this case, cone(S) is a polyhedron. The linear combination
∑k

i=1 λia
(i) for λi ≥ 0 is called conic

combination of a(1), . . . ,a(k).

Proof: Exercise. /

Example 3.0.6: Consider cone({p}) = {λp | λ ≥ 0} (this is also called a ray). /

Example 3.0.7: The cone generated by vectors a(1),a(2),a(3) where

a(1) =

[
2
−1

]
,a(2) =

[
3
1

]
and a(3) =

[
2
1

]
.

Figure 3.0.1: Cone generated by vectors a(1),a(2) and a(3).
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/

Example 3.0.8: The explanation for theorem of the alternative provided by Gilbert Strang in
Linear Algebra and Its Applications uses FTLA to illustrate a separating hyperplane separating b
from the columns of A. Additional discussion from this Math SE question provides more insight on
geometrical interpretation of duality. /

Theorem 3.0.9: Let A ∈ Mm×n with columns Aj for j = 1, . . . , n. Then the following are
equivalent.

1 b /∈ cone({A1, . . . , An}).

2 The system Ax = b,x ≥ 0 has no solution.

3 ∃ y ∈ Rm such that y>A ≥ 0,y>b < 0. In other words, hyperplane {z ∈ Rm | y>z = 0}
separates b from cone({A1, . . . , An})

Proof: Exercise. /

3.1 Geometric Interpretation of Farkas’ Lemma

Definition 3.1.1: We say that an inequality α>x ≤ β is tight (or active) at x ∈ Rn if α>x = β. /

3.1.1 Geometric Statement of Strong Duality/CS Conditions

Theorem 3.1.2: Consider LP (P) : max c>x subject to Ax ≤ b. Let x be the feasible solution
to (P). Let A=x ≤ b= be the constraints of Ax ≤ b that are tight at x. Then, x is an optimal
solution if and only if c ∈ cone(rows of A=).

Proof: Let (D) be the dual of (P) where (D) : minb>y subject to y>A = c>, y ≥ 0. Then,

x is an optimal solution
⇐⇒ ∃ y such that y is feasible to dual (D) and y satisfies the CS conditions with x.

⇐⇒ ∃ y ≥ 0 such that A>y = 0 and yi > 0 =⇒ (Ax)i = bi

i.e. (Ax)i = bi is a constraint of A=x ≤ b=.

⇐⇒ c =
∑
i:(?)

a>i yi where (?) ≡ (Ax)i ≤ bi is a constraint of A=x ≤ b=.

i.e. c ∈ cone(S)(rows of A=).

Example 3.1.3: Consider the LP, (P), and its geometrical representation.
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(P) : max x1 + 3x2

subject to 2x1 + x2 ≤ 10

x1 + x2 ≤ 6

− x1 + x2 ≤ 4

with x1, x2,≥ 0.

x> =

[
1
5

]
is OPT(P). Moreover, c =

[
1
3

]
∈ cone

{[
1
1

]
,

[
−1
1

]}
since c = 2 ·

[
1
1

]
+ 1 ·

[
−1
1

]
. /

3.1.2 Physical Interpretation of Duality

Consider (P) : max c>x subject to Ax ≤ b. Think of each hyperplane a>i = bi as a wall. Let p be
a free particle inside the feasible region subjected to the force c.

(a) Force field c was ap-
plied to the particle inside
the polytope Ax ≤ b.

→

(b) Particle comes at rest
when it reaches the wall.

→

(c) Wall exerts normal force
to the particle.

→

(d) Since net force is zero,
then c =

∑
i:(??)

yia
>
i .

Figure 3.1.1: Physical interpretation of duality. Source.1

The particle reaches equilibrium when the net force acting on it c is zero. So, if x is resting position,
then c is balanced by normal reaction from walls that the particle touches (exactly the constrains
of Ax ≤ b) that are tight at x. In other words,

−c =
∑
i:(??)

yi(−a>i ) where yi ≥ 0,

1Dughm’s notes from USC. https://www-bcf.usc.edu/~shaddin/cs599fa13/slides/lec2.pdf
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and where (??) : particle rests on wall i. i.e. c ∈ cone(rows of A=).

Remark 3.1.4: It is easy to see strong duality =⇒ Farkas’ lemma. Consider the system Ax ≤
b, x ≥ 0 and suppose it is infeasible. Recall that Farkas’ lemma states Ax ≤ b, x ≥ 0 is infeasible
if and only if ∃ y ≥ 0 such that y>A ≥ 0 and y>b < 0. Consider the LP, (P) : max0>x subject to
Ax ≤ b, x ≥ 0 and its dual (D) : minb>y subject to y>A ≥ 0, y ≥ 0. Hence, by strong duality
we have

(P) is feasible ⇐⇒ (D) is unbounded. Note (D) is always feasible (y = 0)

⇐⇒ ∃ y such that y is feasible to (D) subject to b>y < 0. /

3.1.3 Economic Interpretation of Duality and Sensitivity Analysis

Consider the LP

(P) : max c>x,

subject to Ax ≤ b where A ∈Mm×n,

with x ≥ 0

Assume (P) is modeling some production management problem with the variables

• xj : how much of product j to produce.

• Every i ∈ [m] ≡ resource.

• aij : number of resource i needed to produce 1 unit of product j.

(Ax)i ≤ bi ≡
∑

aijxj ≤ bi where bi is supply of resource i.

Consider the dual of (P).

(D) : min b>y,

subject to Ay ≥ c,

with y ≥ 0.

Let x,y be optimal solutions for the primal and the dual respectively. Consider perturbation by ε.
By strong duality we have

c>x = b>y

bi → bi + ε

b>y→ b>y + εyi where yiis the amount by which optimal value changes
bi′ → bi′ ∀ i′ 6= i.

i.e. yi is the rate of change of optimal value with respect to change change in bi. yi is sometimes
called the shadow price of resource i.
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3.2 Geometry of Polyhedra

Definition 3.2.1: Let S ⊆ Rn be a convex set. We say that x is an extreme point of S (or corner
point) if x ∈ S and there do not exist distinct u,v ∈ S and λ ∈ (0, 1) such that x = λu+ (1− λ)v.
In other words, x is not contained in the interior of any segment contain in S. This is equivalent to
∀ d ∈ Rn, d 6= 0, x+ d /∈ S or x− d /∈ S. /

Remark 3.2.2: In below figure points A,B,C are extreme points and D is not an extreme point.

Figure 3.2.1: Extreme points of a closed set.2

/

Other Natural ways of Defining Extreme Points

1 Unique intersection of some hyperplanes.

2 Unique optimal solution for some choice of objective function. This interpretation can be
visualized with Example 3.1.3. Here x1 + 3x2 = 16 with (x1, x2) = (1, 5) is a unique solution
to the objective function x1 + 3x2 which is also an extreme point.

3.2.1 Theorems about Extreme Points

Recall 3.2.3: Let S ⊆ Rn be convex. We say that x ∈ Rn is an extreme point of S if x ∈ S and
@u,v ∈ S,u 6= v, λ ∈ (0, 1) such that x = λu+ (1− λ)v. /

Theorem 3.2.4: Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron. Let x ∈ P . Let A=x ≤ b=

be constraints of Ax ≤ b that are tight at x. Then, x is an extreme point of P if and only if
rankA= = n.

Proof: =⇒ . We prove the contrapositive. Suppose, rankA= < n. Then, ∃ d ∈ Rn,d 6= 0 such
that A=d = 0. We will prove x is not an extreme point. To to this we will show for suitable small
ε > 0, both

x(1) = x+ εd and x(2) = x− εd
2https://math.stackexchange.com/q/959065
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lie in P . We have
A=x(1) = A=x+ ε(A=d) = A=x

A=x(2) = A=x− ε(A=d) = A=x

}
= b=.

So every constraint of A=x ≤ b= is tight at x(1),x(2). Consider a constraint a>i x ≤ bi that is not
tight at x.

a>i x
(1) = a>i x︸︷︷︸

<b

+ε(a>i d) < bi + ε(a>i d)

a>i x
(2) = a>i x︸︷︷︸

<b

−ε(a>i d) < bi − ε(a>i d)


We can take ε > 0 small enough
so that RHS ≤ bi for all non-tight constraints.

Note that in this step we’re basically picking ε to offset the difference between a>i x and b.

⇐= . Let rankA= = n and suppose, for contradiction, x is not an extreme point. Then ∃ u,v ∈
P, u 6= v, λ ∈ (0, 1) such that x = λu+ (1− λ)v. Then,

b= = A=x = A=(λu+ (1− λ)v) = λ︸︷︷︸
>0

(A=u)︸ ︷︷ ︸
≤b=

+(1− λ)︸ ︷︷ ︸
>0

A=v︸︷︷︸
≤b=

=⇒ 0 = λ︸︷︷︸
>0

(A=u− b=)︸ ︷︷ ︸
≤0

+(1− λ)︸ ︷︷ ︸
>0

(A=v − b=)︸ ︷︷ ︸
≤0

.

Here we used the fact that b= = λb=+(1−λ)b=. Hence, A=u = b= = A=v =⇒ A=(v−u) = 0.
But if v−u 6= 0 then rankA= < n, which contradicts the assumption rankA= = n. Hence, x is an
extreme point.

Remark 3.2.5: The system A=x ≤ b= has x as the unique solution. /

Corollary 3.2.6: Every polyhedron has a finite number of extreme points.

Proof: Let P = {x ∈ Rn | Ax ≤ b} be polyhedron and let A ∈Mm×n. If x is an extreme point,
and A=x ≤ b= are the tight constraints at x then rankA= = n and x is the unique solution to
A=x = b=. Hence,

# of extreme points ≤ # of subsystems A′x ≤ b′ of Ax ≤ b with rankA′ = n ≤
(
m

n

)
.

In other words, if a set has infinite number of extreme points, then it’s not a polyhedron.

Theorem 3.2.7: Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron and x ∈ P . Then, x is an extreme
point of P if and only if ∃ c ∈ Rn such that x is a unique optimal solution to max c>x subject to
x ∈ P .

Proof: =⇒ . Let A=x ≤ b= are the tight constraints of the system Ax ≤ b at x. Then, by
Theorem 3.2.4, rankA= = n, so x is the unique solution to A=x = b Let a>1 x ≤ b1, . . . , a

>
k x ≤ bk

be constraints of A=x ≤ b=. Take

c> =

k∑
i=1

a>i .

Note that we have

c>x =

k∑
i=1

a>i x ≤
k∑
i=1

bi ∀ x ∈ P.
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The equality case gives us

c>x =
k∑
i=1

bi ⇐⇒ a>i x = bi ∀ i = 1, . . . , k.

In other words, x is a solution to A=x = b=. Hence, x is unique optimal solution to max c>x
subject to x ∈ P .

⇐= . Suppose x is a unique optimal solution to max c>x subject to x ∈ P . Suppose, for contra-
diction, x is not an extreme point. Then,

x = λu+ (1− λ)v where u,v ∈ P,u 6= v︸ ︷︷ ︸
(?)

, λ ∈ (0, 1).

Note that (?) =⇒ u 6= x and v 6= x. Then,

c>x = λ︸︷︷︸
>0

(c>u)︸ ︷︷ ︸
<c>x

+(1− λ)︸ ︷︷ ︸
>0

c>v︸︷︷︸
<c>x

which is a contradiction.

Remark 3.2.8: The Theorem 3.2.7 does not hold for an arbitrary bounded convex set /

Definition 3.2.9: Let x ∈ Rn,d ∈ Rn,d 6= 0. The set

1 {x+ λd | λ ∈ R} is called a line .

2 {x+ λd | 0 ≤ λ ∈ R} is called a ray .

We say that P ⊆ Rn has a line if ∃ x ∈ P,d ∈ Rn,d 6= 0 such that {x+ λd | λ ∈ R} ⊆ P . /

Definition 3.2.10: We call the polyhedra that do not contain a line pointed polyhedra . /

Theorem 3.2.11: Let P be non-empty and P = {x ∈ Rn | Ax ≤ b}. Then, the following are
equivalent.

1 P has a line.

2 ∃ d 6= 0 such that Ad = 0.

3 rankA < n.

Proof: Exercise. /

Theorem 3.2.12: Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron with no line. If the LP: max c>x
subject to x ∈ P has an optimal solution then it always has an optimal solution that is an extreme
point of P .

Proof: Let x be an optimal solution to the LP: max c>x subject to x ∈ P that satisfies the
maximum number of inequalities of Ax ≤ b at equality. Let A=x ≤ b= be the tight constraints at
x. If rankA= = n, then by Theorem 3.2.4, x is an extreme point and we are done. If rankA= < n,
then ∃ d 6= 0 such that A=d = 0. Then,

∃ ε > 0 such that
x+ εd

x− εd

}
∈ P
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Then, c>d = 0 (otherwise one of x± εd will have better objective value than x). Hence, all points
x on the line L = {x+ λd | λ ∈ R} have c>x = c>x. Since L 6⊆ P , there is a largest or smallest
value of λ. Denote this value as λ∗. Note that λ∗ satisfies x+ λ∗ ∈ P . Denote x+ λ∗ = x′. Since
λ∗ 6= 0 then x′ 6= x. x′ satisfies c>x′ = c>x and A=x′ = A=x = b= and x′ satisfies at least one
other constraint of P equality constraints choice of x.

Theorem 3.2.13: Let P be a non-empty polyhedron. Then, P has an extreme point if and only
if P is pointed (has no line).

Proof: Let P = {x ∈ Rn | Ax ≤ b be non-empty. Suppose P has an extreme point. Then we
have rankA = n. Then, by Theorem 3.2.11, P has no line. Conversely, suppose P has no line.
Consider the LP max 0>x subject to x ∈ P . This LP has an optimal solution. Since P 6= ∅, then
by Theorem 3.2.12, P has an optimal solution that is an extreme point.

3.2.2 Finite Generation of Polyhedra

Definition 3.2.14:

• We call a bounded polyhedron as a polytope .

• If a set K ⊆ Rn is both a cone and a polyhedron, then we call K as a polyhedral cone .

Theorem 3.2.15: If K ⊆ Rn is a polyhedral cone, then there exists some matrix A ∈Mm×n
such that K = {x ∈ Rn | Ax ≤ 0}.

Proof: Let C be a polyhedral cone. Then, C is a polyhedron and a cone. Then for all
x ∈ C ⊆ Rn, ∃ A ∈ Mm×n(R) and b ∈ Rn such that Ax ≤ b. Since 0 ∈ C then 0 ≤ b.
Moreover, since ∀ λ ≤ 0 we have λx ∈ C, then A(λx) ≤ λb ≤ b. Then b = 0. Then
C = {x ∈ Rn | Ax ≤ 0}. /

Example 3.2.16: An ice-cream cone in R3 with its tip at origin is a cone but it’s not a
polyhedral cone. /

• Minkowsky-Sum: Given sets S, T ∈ Rn, then we define the Minkowsky-Sum of S and T
as

S + T =
def
{s+ t | s ∈ S and t ∈ T}.

Note that if one of the sets is empty then S + T = ∅. /

Theorem 3.2.17:

• If S, T are polyhedra then S + T is also a polyhedron.

• If S, T are polytopes then S + T is also a polytope.

• If S, T are polyhedral cones then S + T is also a polyhedral cone.

Proof: Exercise. /

Theorem 3.2.18: Let P ⊆ Rn. P is a polytope if and only if P = conv(S) for a finite set S ⊆ Rn.
Moreover, if P is a polytope, then we can take S as the set of extreme points of P .

Proof: Suppose P = conv(S). Then P is a polyhedron (shown in Assignment #1) and bounded
(exercise). Then P is a polytope. Conversely, suppose P is a polytope. By Corollary 3.2.6, the

Winter 2019 CO 255 25



Chapter 4. Solving Linear Programs 26

set of extreme points of P is a finite set. Take S as the set of all extreme points of P . Clearly we
have P ⊇ conv(S) since P ⊇ S, P is convex. To show P ⊆ conv(S). Suppose, for contradiction,
∃ x ∈ P \ conv(S). (check this sentence) Then, ∃ α ∈ Rn, β ∈ R such that α>x > β and α>x ≤ β
∀ x ∈ conv(S). Then,(

max α>x

subject to x ∈ P

)
︸ ︷︷ ︸

LP−1

>

(
max α>x

subject to x ∈ conv(S)

)
(?)

LP-1 has an optimal solution (from Assignment #2 (since P is a polytope)). But then by Theo-
rem 3.2.12, LP-1 has an optimal solution that is a point in S which contradicts (?)

Theorem 3.2.19: Let P ⊆ Rn. P is a polyhedral cone if and only if P = cone(S) for a finite set
S ⊆ Rn.

Proof: Suppose P = cone(S). If S = {q(1), . . . ,q(k)} then by Lemma 3.0.5,

cone(S) =

{
k∑
i=1

λiq
(i)

∣∣∣∣∣ λ1, . . . , λk ≥ 0

}

which is a polyhedral cone. Conversely, suppose P is a polyhedral cone. Take Q = {x ∈ P | −1 ≤
xj ≤ 1 ∀ j = 1, . . . , n}. Q is a polytope, so by Theorem 3.2.18, Q = conv(S) for a finite set S.
Let S = {q(1), . . . ,q(k)} ⊆ Rn. We claim that P = cone(S). Note that we have P ⊇ Q ⊇ S. P is
a cone, so by definition P ⊇ cone(S). For the other direction, let x ∈ P . Then, ∃ γ > 0 such that
x
γ ∈ Q. So

x

γ
=

k∑
i=1

λiq
(i) where λi ≥ 0 and ∀ i = 1, . . . , k and

k∑
i=1

λi = 1.

Hence we have

x =
k∑
i=1

(γλi)︸ ︷︷ ︸
≥0

q(i).

Hence x ∈ cone(S). Hence P ⊆ cone(S). Hence P = cone(S).

Definition 3.2.20: For a set S ⊆ Rn, we define the perp of S as

S⊥ = {y ∈ Rn | x · y = y>x = 0 ∀ x ∈ S}. /

Theorem 3.2.21: Let P ⊆ Rn. P is a polyhedron if and only if P = Q + C where Q ⊆ Rn is a
polytope (so Q = cone(extreme points of Q) by Theorem 3.2.18) and C ⊆ Rn is a polyhedral cone
(so C = cone(T ) where T is finite). Moreover, if P is pointed, then we can take Q such that the set
of extreme points of P is equivalent to the set of extreme points of Q.

Proof: The proof provided in lecture is included here.
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Chapter 4 – Solving Linear Programs

4.1 Simplex Method

Definition 4.1.1: If an LP is of the form

max c>x

subject to Ax = b

with x ≥ 0,

we say the LP is in standard equality form (SEF). /

Remark 4.1.2: Every LP can be converted into an equivalent LP in SEF. We know every LP can
be written in SIF. We can also write

Ax ≤ b ≡ Ax+ Is = b, where s ≥ 0.

The s is called the slack variables. /

Remark 4.1.3: We can assume A has full row rank, otherwise we can either drop a redundant
constraint of Ax = b or determine infeasibility. /

Theorem 4.1.4: Show that if P = {x ∈ Rn | Ax = b where x ≥ 0} is non-empty, then P has an
extreme point.

Proof: Exercise. /

Definition 4.1.5: Consider the system Ax = b where A ∈Mm×n and rankA = m.

1 For J ⊆ [n]. We denote AJ = [Aj ]j∈J for the columns of A corresponding indices in J .
Similarly, if v ∈ Rn, we define vJ = (vj)j∈J ∈ R|J |.

2 We say that B ⊆ [n] is a basis of A if AB is square and non-singular (i.e. A−1B exists).
Equivalently, |B| = m and rankAB = m.

3 Let B ⊆ [n] be a basis of A. Let N = [n] \ B. The system Ax = b, xN = 0 has a unique
solution, xB where

Ax = ABxB +ANxN︸ ︷︷ ︸
=0

= b =⇒ xB = A−1B b, xN = 0.

xB is called the basic solution corresponding to B.

4 We say that x is a basic solution to Ax = b if there exists a basis B such that

Ax =
∑
j∈B

Ajxj +
∑

k∈N=[n]\B

Akxk = ABxB +ANxN = ABxB = b.

In other words, a solution to Ax = b is called basic if at most m of its entries are non-zero.
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5 We say that x is a basic feasible solution (BFS) if x is a basic solution and if x ≥ 0.

6 If B is a basis, we call the variables xj for j ∈ B as basic variables and xi for i ∈ N as
non-basic variable . /

Theorem 4.1.6: Let P = {x ∈ Rn | Ax = b, x ≥ 0} where A has full row rank. Then,

x is an extreme point of P ⇐⇒ x is a BFS of Ax = b

⇐⇒
[
Aj
]
j∈supp(x) has full column rank and x ≥ 0.

Proof: Exercise. /

4.1.1 Idea Behind Simplex Method

Let LP be the linear program where A ∈Mm×n has full row rank

(LP) : max c>x,

subject to Ax = b,

with x ≥ 0.

1 Start with a BFS x.

2 Repeat until x is optimal (or detect (LP) is unbounded) by moving to a "nearby extreme
point" of better objective value.

Example 4.1.7: Consider the LP (P) shown below.

(LP) : max 2x1 + x2

subject to x1 + x2 ≤ 3

x1 ≤ 2

x2 ≤ 2

with x1, x2 ≥ 0

≡

(LP) : max 2x1 + x2

subject to x1 + x2 + s1 = 3

x1 + s2 = 2

x2 + s3 = 2

with x1, x2, s1, s2, s3 ≥ 0

We obtained an equivalent version of (P) by adding the slack variables s1, s2, s3 ≥ 0. /

Recall the discussion of simplex method from the previous lecture.
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Figure 4.1.1: Starting from an extreme points and jumping the neighboring extreme points.

Recall 4.1.8: x is optimal if and only if there exists dual feasible solution y such that x,y satisfy
the CS conditions. /

We want to find a generalized way to detect extreme points and define what it means to be “nearby”.
We will maintain a y that satisfies the CS conditions with x.

• If y is dual feasible, then we are done.

• Otherwise, we will use y to move to an extreme point of no smaller objective value.

Definition 4.1.9: Let P ⊆ Rn be a polyhedron. We say that the extreme points x(1),x(2) of P are
neighbors if ∃ c ∈ Rn such that {λx(1) + (1 − λ)x(2) | λ ∈ [0, 1]} is the set of optimal solutions
to the LP max c>x subject to x ∈ P . Note that this set can be considered as a line connecting x1

and x2. /

Figure 4.1.2: Extreme points x(1) and x(2) are neighbors with each other but not with x(3).

Definition 4.1.10: Consider Ax = b with x ≥ 0 and where A has full row rank. We say that
bases B and B′ of A are neighbors if [B\B′] = 1 = [B′ \B]. We say that two basic solutions x(1),x(2)
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are neighbors if ∃ bases B1,B2 such that

x(1) : is a basic soltuion corresponding to B1,x(2) : is a basic soltuion corresponding to B2.

In this case, we denote the bases B1,B2 as neighboring bases. /

Remark 4.1.11: If x(1),x(2) are neighboring extreme points, then x(1),x(2) are neighboring basic
feasible solutions. Conversely, if x(1),x(2) are neighboring basic feasible solutions, x(1) = x(2) or
x(1),x(2) are neighboring extreme points. /

4.1.2 Details of Simplex Method

Let A ∈Mm×n with rankA = m and consider the LP, (P) and its dual (D)

(P) : max c>x,

subject to Ax = b,

with x ≥ 0.

(D) : min b>y,

subject to y>A ≥ c.

1 Assume we have a starting BFS x, corresponding to basis B.

2 We want to find y such that ∀ j ∈ supp(x) ⊆ B we have (y>A)j = cj . In fact, we find y such
that (y>A)j = cj for all j ∈ B . In other words,

y>AB = c>B ,

has a unique solution since AB is non-singular. Let this unique solution be y. Define

cj = cj − (y>A)j ,

this is called the reduced cost of j. We observe that if cj ≤ 0, for all j ∈ [n], then x is optimal.

3 If x is not optimal, then ∃ j ∈ [n] such that cj > 0. Note that since cB = 0 then we have
[n] = N . Pick some k ∈ [n] = N such that ck > 0.

Claim: If we increase xk while keeping all other non-basic variables are zero (and changing
basic variables so that Ax = b holds), then c>x increases.

Proof: Since AB is non-singular, then we have

ABxB +ANxN = b =⇒ xB = A−1B (b−ANxN ).

So we have c> = c>BxB + c>NxN . Which gives us

c>x = c
>
B(A

−1
B b−A−1B ANxN ) + c>NxN

= c>BA
−1
B︸ ︷︷ ︸

y>

b+

c>N − c>BA
−1
B︸ ︷︷ ︸

y>

AN

xN

= y>b =
∑
j∈N

(
cj − y>Aj

)
︸ ︷︷ ︸

cj

xj

=⇒ ck > 0 =⇒ ↑ xk.
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Notation 4.1.12: We denote the standard basis vector ej as the vector with 1 in jth position
and 0’s everywhere else. /

Our goal is to ↑ xk as much as possible while maintaining feasibility (satisfying the necessary
conditions). In other words, we want to increase xk as much as possible while not breaking
the conditions

Ax = b, x ≥ 0 =⇒ xB = A−1B (b−ANxN ).

So, if we set xk = t ∈ R+ and xj = 0 ∀ j ∈ N \ {k}, then xnew
N (t) is a function of t and

xnew
N (t) = xold

N + tek.

Which gives us

xnew
B = A−1B (b−ANxnew

N (t))

= A−1B (b−ANxold
N − tAk)

= xold
B − t(A−1B Ak).

Denote (A−1B Ak) as dB. Then, for xnew
B (t) ≥ 0, we want tdB ≤ xold

B . Note that if dB ≤ 0,
then (P) is unbounded since

(xnew
B (t),xnew

N (t))

is a family of feasible solutions whose objective value goes to infinity.

4 Otherwise, the largest value of t, denoted t∗, ensuring xnew(t ≥ 0) is

min

{
xold
j

dj

∣∣∣∣∣ j ∈ B, dj > 0

}
. (?)

Let r ∈ B be the index that attains minimum in (?).

Claim: B′ = B ∪{k} \ {r} is also a basis and xnew(t∗) is a BFS corresponding to B′ neighbor
of xold.

4.1.3 Summary of Simplex Method

Given a linear program (P),

(P) : max c>x

subject to Ax = b,

with x ≥ 0,

where A ∈ Mm×n and A has full row rank with initial BFS x with corresponding to basis B, the
simplex method can be summarized in 7 steps below.

1 Compute y such that y>AB = c>B . Let cj = cj −A>j y for all j ∈ N .

2 If c ≤ 0, STOP. We have x is the optimal solution.

3 Otherwise, let k ∈ N with ck > 0.

4 Solve ABdB = Ak.
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5 If dB ≤ 0, STOP. We have (P) as unbounded.

6 Otherwise let r ∈ B be such that dr > 0 and

t∗ =
xr
dr

= min

{
xj
dj

∣∣∣∣ j ∈ B and dj > 0

}
.

7 Update the following

B ← B ∪ {k} \ {r},
xB ← xB − t∗dB,
xN ← xN + t∗ek.

Go back to step 1 .

Remark 4.1.13: We often say that k is the entering variable and r is the leaving variable .
Moreover, the updating step described in 7 is called pivoting on (r, k). /

4.1.4 Implementation of Simplex Method

We want to maintain c so that the we have A−1B Ax = A−1B b where A−1B Ax = IxB +A−1B ANxN .

Example 4.1.14: Consider the LP

max (2, 3, 0, 0, 0)x,

subject to

 1 1 1 0 0
2 1 0 1 0
−1 1 0 0 1

x =

 6
10
4


with x ≥ 0.

Starting x = (0, 0, 6, 10, 4)> (corresponds to basis B = {3, 4, 5}) we introduce a variable z to denote
objective function.

Ax = b ≡

z − 2x1 − 3x2 = 0

x1 + x2 + x3 = 6

2x1 + x2 + x4 = 10

−x1 + x2 + x5 = 4

Here we have x1 as the entering variable and x4 as the leaving variable. We have the new basis as
B′ = {1, 3, 5}. We use elementary operations to get cB′ = 0, AB′ = I. We obtain

z −2x2 +x4 = 10
x2
2
+x3−

x4
2

= 1

x1+
x2
2

+
x4
2

= 5

3
x2
2

+
x4
2
+x5 = 9

continue... /
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4.1.4.1 Finding an Initial Basis

We will construct the following auxiliary LP (denoted by AuxLP) with A ∈Mm×n(R) and rankA =
m and b ≥ 0. We create auxiliary variables w1, . . . , wm

(AuxLP) : max −
n∑
i=1

wi,

subject to Ax+w = b,

with x,w ≥ 0.

≡
min

n∑
i=1

wi

We have the following observations.

1 (AuxLP) is feasible. We can see this by choosing auxiliary variables as basic variables. This
gives w = b ≥ 0 and x = 0 as BFS.

2 (AuxLP) is not unbounded (by FTLA).

(?) From 1 and 2 , we can run simplex method on (AuxLP) (starting with BFS in 1 ) and obtain
an optimal solution (x,w), corresponding to basis B = B1∪B2 where B1 = B∩{1, . . . , n} and
B2 = values of B corresponding to auxiliary variables.

3 OPT(AuxLP) = 0 if and only if the system Ax = b, x ≥ 0 has a feasible solution. Moreover,
if OPT(AuxLP) = 0, then (by exercise the student should do) x obtained from (?) is a BFS to
Ax = b, correspond to some basis B ⊇ B1.

4.1.4.2 2-phase Simplex Method

Phase 1: Run simplex method on (AuxLP) to detect if (LP) is infeasible of find a BFS x.

Phase 2: Run simplex method on (LP) starting with x to detect if (LP) is unbounded, or find an
optimal solution.

4.1.4.3 Termination of Simplex Method

Does the simplex method terminate in a finite (ideally "small" number of iterations? We consider
the cases for t = 0 and t > 0.

Remark 4.1.15: If t > 0 in every iteration of simplex method, then the objective value is strictly
increasing. Then we never repeat a basis. Then the simplex method terminates in a finite number
of iterates. /

Remark 4.1.16: t = 0 can happen only if xj = 0 for some j ∈ B. /

Definition 4.1.17: For a basis B with corresponding to basic solution x, we say x is degenerate
if ∃ j ∈ B such that xj = 0. Otherwise, we say x is non-degenerate . More links in degeneracy in
linear programming 1, 2, 3. /

Example 4.1.18: Consider the system where the constraints form a pyramid in R3.
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Figure 4.1.3: Pyramid with x at the top vertex.3

This problem has 5 inequalities (one for the base of the pyramid and four for its sides), so Ax ≤ b
has 5 constraints. At x all of the four vertical cases are tight /

Remark 4.1.19: There is no known method of avoiding degeneracy but under suitable tie-breaking
rules, the simplex method always terminates. /

4.1.4.4 Tie-breaking Rules

Smallest-Subscript Rule: This rule is also known as Bland’s rule. Break ties in favor of smaller
index.

Perturb RHS by a Small Amount: For ε ∈ R, define e = (ε, ε2, . . . , εm)>. Suppose we have
a BFS x corresponding to basis B. We perturb the system and obtain the following.

xB → xB + e =
def

xB(ε),

b → b+ABe =
def

b(ε).

Hence, we obtain the perturbed LP, (LP(ε)) as

(LP (ε)) : max c>x,

subject to Ax = b(ε) = b+ABe,

with x ≥ 0.

Hence for sufficiently small ε > 0 we have

1 All bases of Ax = b(ε) are non-degenerate. To see why this is true consider the basis B′. We
have xB′(ε) = A−1B′ b(ε). Which gives us

xB′(ε) = A−1B′ b︸ ︷︷ ︸
xB′ (0)

+A−1B′ ABe.

3Geogebra pyramid: https://ggbm.at/a2kaq7dc.
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Consider some j ∈ B′. So xj(ε) = xj(0) + p(ε) = q(ε). Note that q(ε) is a polynomial in
ε. If xj(ε) = 0 for all suitable small ε > 0, then q(ε) = 0 for all suitably small ε > 0. But
then q is identically zero. Then p is identically zero. But then we have (A−1B′ ABe)j = 0. Since
ε 6= 0, then the matrix A−1B′ AB must have a zero row. This is a contradiction since A−1B′ AB is
non-singular.
Instructor came unprepared and wasn’t able explain the contradiction without the help of the
students.

2 If the simplex method terminates on (LP(ε)) with an optimal solution corresponding to basis
B, then B also yields optimal solution to LP(0).

3 If the simplex method determines that (LP(ε)) is unbounded, then (LP(0)) is also unbounded.

4.1.5 Efficiency of Simplex Method

We want to check if the simplex method is efficient. For that, we need to define efficiency.

4.1.5.1 Algorithms and Order of Functions

Notation 4.1.20: Given functions f, g : R+ → R+ we say that f(n) = O(g(n)) (f is of order g) if
∃ constants n0 ≥ 0 and c > 0 such that f(n) ≤ c · g(n) for all n ≥ n0. /

Example 4.1.21: Some examples with big-O.

• 2n+ 10 = O(n), n = O(2n+ 10).

• n log2 n = O(n2) but not O(n). In fact, n log2 n = O(n2) = O(n1+ε) for any ε > 0.

• If p(n) and q(n) are polynomials of degrees c and d then p(n) = O(g(n)) ⇐⇒ c ≤ d.

• 2n is not O(p(n)) for any polynomial p(n).

• logc n = O(logd n) if c, d > 1.

• p(n) = O(nO(1)) ≡ p(n) is bounded by a polynomial function of n for n large enough. /

Remark 4.1.22: If p(n) = O(nO(1)) then we say p(n) is upper bounded by some fixed polynomial
in n. In other words, ∃ g(n) = O(1) such that p(n) = O(ng(n)). Since g(n) = O(1), then g(n) ≤ c1
for all n ≥ n0. Moreover, if p(n) = O(ng(n)) then p(n) ≤ c2 · ng(n) for all n ≥ n′0. Then,

p(n) ≤ c2 · nc1 ∀ n ≥ max(n0, n
′
0). /

Definition 4.1.23: We define the number of bits needed to specify the input data as the input
size . /

Definition 4.1.24: For an integer x ≥ 0, we call the the number of bits needed to specify x as the
size of x, and denote it by size(x). /

Remark 4.1.25: For an integer x ≥ 0, size(x) = O(log x). /

Remark 4.1.26: For a rational number x = p
q where p, q are co-prime, we have size(x) = size(p)+

size(q). /
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Example 4.1.27: For an LP max c>x such that Ax ≤ b where A ∈Mm×n(Q) and c ∈ Qm,b ∈ Qn
we have the input size of the LP as

O

 n∑
j=1

size(cj) +
m∑
i=1

n∑
j=1

size(Aij) +
m∑
i=1

size(bi) +mn

. /

Definition 4.1.28: The mathematical or logical operations involving a combination basic arith-
metic (+,−,×,÷), comparisons, if-then-else statements and assignments are denotes as elementary
operations. /

Definition 4.1.29: We define the running time of an algorithm as the number of elementary
operations executed by the algorithm as a function of input size. /

Example 4.1.30: To find the running time for the algorithm of finding minimum of n numbers
a1, . . . , an ≥ 0.

v ← −1
For i = 1 to n :

if v < ai,

v ← ai

 O(n) running time.

/

Remark 4.1.31: We can sort n numbers in O(n log n) running time. /

Definition 4.1.32: We say that an algorithm is (theoretically) efficient if its running time is
bounded by some fixed polynomial of input size. In other words, the running time is O(nO(1)) =
O(poly(n)) where n is the input size. If this is the case, we say the algorithm is in polynomial
time (polytime). /

We want to check if the simplex method is in polytime.

Remark 4.1.33: There is no known a tie-breaking rule under which the simplex method always
runs in poly(m+n) number of iterations. Solving a system of n equations in n variables (Gaussian
elimination) can be done in polytime. /

Aside: Some historical remarks about efficiency of simplex method:

• Friedman and others in 2011,2013 found problems that give bad examples (number of iterations
is exponential in m+n so cO(m+n)) for some tie-breaking rules.

• Work by Klee-Minty 1970 (or 1971).

• Spielman-Tang (1990s): Perturbing an instance of LP by a “small” amount can make the
simplex method run in polynomial time.

Moreover, below are the work done to determine if there are polytime algorithms for solving LPs:

• Ellipsoid method (1970s) [highly impractical]

• Interior-Point Methods (1988) /
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4.1.5.2 Polynomial Hirsch Conjecture

Given a polytope P ⊆ Rn described by m constraints, with any two extreme points x(1) and x(2) of
P , we can move from x(1) to x(2) in poly(m+n) steps where each step is moving from one extreme
point to a neighboring extreme point.

Remark 4.1.34: This is an open conjecture. /
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Chapter 5 – Combinatorial Optimization

5.1 Integer Programming and Discrete Optimization

Definition 5.1.1: An integer program (IP) is a problem os the form

max c>x

subject to Ax ≤ b,

with x ∈ Zn,

 LP ≡ (canonical) LP-relaxation
of integer program.

xi ∈ Z, ∀ i ∈ I ⊆ [n]︸ ︷︷ ︸
integrality constraints

It is generally considered that the set of integer programs contain the set of linear programs. /

Definition 5.1.2: If I = [n], then the IP is called the pure IP . In general, for an arbitrary I, we
say that IP is a mixed IP . /

Remark 5.1.3: The feasible region of a pure IP is P ∩Zn =
def
Z(P) where P ⊆ Rn is a polyhedron.

/

5.2 Reducing IPs to LPs

Let P ⊆ Rn be a polyhedron. So Z(P) = P ∩Zn. Define PI = conv(Z(P)).

Definition 5.2.1: We say the vector b ∈ Rm is a rational vector if bi ∈ Q for all i = 1, . . . ,m.
Similarly we say the matrix A ∈ Mm×n(R) is a rational matrix if aij ∈ Q for i = 1, . . . ,m and
j = 1, . . . , n. We show the rational vectors and polytopes as A ∈Mm×n(Q) and b ∈ Qm.

We say that the polyhedron P = {x ∈ Rm} is a rational polyhedron if A and b are rational.
Similarly for polytopes and polyhedral cones. /

Theorem 5.2.2: Let P ⊆ Rn be a rational polyhedron. Then PI is also a rational polyhedron.
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Figure 5.2.1: The polyhedra P , in green, and Z(P), in purple.

Remark 5.2.3: The rational condition is essential. Consider P = {(x1, x2) | x2 ≤
√
2 x1}.

Figure 5.2.2: Shaded regions shows x ∈ P = {(x1, x2) | x2 ≤
√
2 x1}.

We can show that PI = {(0, 0)} ∪ {(x1, x2) | x2 <
√
2 x1} which is not rational. /

Definition 5.2.4: A vector x ∈ Zn is called an integral vector is x ∈ Zn. Similarly we say a
matrix A ∈ Rm×n is an integral matrix if A ∈Mm×n(Z). /

Recall 5.2.5: Theorem 5.2.2 states for a rational polyhedron P ⊆ Rn, PI is also a rational poly-
hedron. /

Proof: We have P = Q+ C. Since P is rational then Q is a rational polytope and C is a rational
polyhedral cone (as shown in Assignment #4). So Q = conv({s(1), . . . , s(k)}) where s(i) are extreme
points for i = 1, . . . , k.

Claim 5.2.6: If Q is a rational polytope, then every extreme point of Q is also rational.
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Proof: This is shown in Question #2 of Assignment #4.

So, s(1), . . . , s(k) are rational. We have C = cone({t(1), . . . , t(`)}) where t(j) are extreme points of
an associated rational polytope for j = 1, . . . , `. Hence, by the Claim 5.2.6, t(j) are rational. Since
scaling t(j) does not change the cone, we can assume, by scaling, t(j) are integral vectors (i.e. they
lie in Zn). Let

B =

∑̀
j=1

λjt
(j)

∣∣∣∣∣∣ 1 ≥ λj ≥ 0 ∀ j = 1, . . . , `

.
Claim 5.2.7: PI = (Q + B)I + C. Note that Q + B is a polytope. So Z(Q + B) is finite which
implies (Q+B)I is a polytope.

Proof: Note that we have Q = conv(s(1), . . . , s(k)) and C = cone(t(1), . . . , t(`)). Suppose P = ∅.
Then PI = conv(Z(∅)) = ∅. Now suppose P 6= ∅. To show PI ⊆ (Q+ B)I + C, it is sufficient to
show Z(P) ⊆ (Q+B)I + C. Let x ∈ Z(P). So x = u+ v where

Q 3 u =
k∑
i=1

uis
(i) such that

k∑
i=1

ui = 1, where ui ≥ 0, ∀ i ∈ [k],

C 3 v =
∑̀
i=1

λit
(i), where λi ≥ 0, ∀ i ∈ [`].

Notation: For a ∈ R, we define the

• floor of a as the largest integer that is less than or equal to a and show it as bac,

• ceiling of a as the smallest integer that is greater than or equal to a and show it as dae. /

This gives us

x =
k∑
i=1

uis
(i) +

∑̀
i=1

λit
(i) =

k∑
i=1

uis
(i) +

∑̀
i=1

λit
(i) − bλict(i)︸ ︷︷ ︸

x(1)

+
∑̀
i=1

bλict(i)︸ ︷︷ ︸
x(2)

.

Since bλic ∈ Z and t(i) ∈ Zn, then x(2) ∈ Zn. Since x ∈ Zn then x(1) = x − x(2) ∈ Zn. Also
x(1) = q + b where q = u ∈ Q and b ∈ B. So x(1) ∈ Q + B and since x(1) ∈ Zn, then
x(1) ∈ Z(Q+B). So x ∈ Z(Q+B) + C ⊆ (Q+B)I + C. To show (Q+B)I + C ⊆ PI , note that
since any point λit(i) ∈ C can be written as a convex combination of bλict(i) and dλiet(i) where
bλict(i), dλiet(i) ∈ Z(C) then C = CI . We now make the following claim.

Claim 5.2.8: For any F,G ⊆ Rn, conv(F ) + conv(G) ⊆ conv(F +G).

Proof: Let z1, z2 defined as follows.

z1 =
k∑
i=1

αif
(i), where f (i) ∈ F and αi ≥ 1 with

k∑
i

αi = 0, ∀ i ∈ [k],

z2 =
∑̀
j=1

βjg
(j), where g(j) ∈ G and βj ≥ 1 with

∑̀
j

βi = 0, ∀ j ∈ [`].
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Hence we can write

z1 + z2 =

k∑
i=1

∑̀
j=1

αiβj

f (i) + g(j)︸ ︷︷ ︸
∈F+G

.
Finish the wording for proof of Claim 5.2.8 (exercise).

This proves Claim 5.2.7 (exercise).

Hence we have,

(Q+B)I + C =
def

conv(Z(Q+B)) + C =
(?)

conv(Z(Q+B)) + conv(Z(C))︸ ︷︷ ︸
CI

⊆
(??)

conv(Z(Q+B) +Z(C)︸ ︷︷ ︸
∈Z(P) exercise

) ⊆ PI ,

where in (?) we used the fact that C = CI , and in (??) we used Claim 5.2.8. Since PI ⊆ (Q+B)I
and PI ⊇ (Q+B)I then PI = (Q+B)I . Exercise (reword the end of the proof).

Corollary 5.2.9: Consider the pure (IP) max c>x subject to x ∈ Z(P) where P is a rational
polyhedron and the (LP) max c>x subject to x ∈ PI where PI =

def
conv(Z(P)) which is a rational

polyhedron by Theorem 5.2.2. Then,

1 (IP) is infeasible ⇐⇒ (LP) is infeasible.

2 (IP) is unbounded ⇐⇒ (LP) is unbounded.

3 (IP) has optimal solution ⇐⇒ LP has an optimal solution.

a OPT(IP) = OPT(LP).

b Every extreme point of PI is in Z(P) and so if x is an extreme point which is a solution
to (LP), then it is also an optimal solution to (IP).

Proof: 1 : Z(P) = ∅ ⇐⇒ PI = ∅ (exercise).

2 : Exercise.

3 : Suppose (LP) has an optimal solution x. Then, by FTLP, (IP) is not infeasible and not
unbounded and c>x is an upper bound on objective value of feasible solutions to (IP). We have
x ∈ conv(Z(P)). So,

x =

k∑
i=1

λix
(i), where λi ≥ 0 and

k∑
i=1

λi = 1 and x(i) ∈ Z(P), ∀ i ∈ [k].

Hence we have

c>x =

k∑
i=1

λi(c
>x(i)) and c>x(i) ≤ c>x, ∀ i ∈ [k].

So there exists i ∈ [k] such that c>x(i) = c>x. Then x(i) is an optimal solution to (IP). also,
OPT(IP) = OPT(LP). If (IP) has an optimal solution, then by 1 and 2 , (LP) has also an optimal
solution and we showed above OPT(IP) = OPT(LP).
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5.2.1 Modeling Using IPs

Example 5.2.10: Consider an investment problem with 5 projects.

P1 P2 P3 P4 P5 Cash available ($)

Year 1 40 20 25 80 30 100
Year 2 10 30 30 40 20 70

Returns 100 90 120 160 100

Here each entry represents the amount needed if we choose to invest. Our goal is to find investment
strategy to maximize the return at the end of Year 2.

For i = 1, . . . , 5, define variables xi ∈ {0, 1} where

xi =

{
1 ≡ invest in Pi,
0 ≡ do not invest in Pi.

We have the objective function as max 100x1 + 90x2 + 120x3 + 160x4 + 100x5 and the constraints
as

Y1 ← 40x1 + 20x2 + 25x3 + 80x4 + 30x5 ≤ 100,

Y2 ← 10x1 + 30x2 + 30x3 + 40x4 + 20x5 ≤ 70,

where xi ∈ {0, 1} for all i ∈ [5]. i.e. 0 ≤ xi ≤ 1 where xi ∈ Z for i ∈ [5]. /

Things that can be modeled using IPs: We have binary variables x1, . . . , xn.

1. Cardinality Constraints: “At least k of xi’s are 1”. i.e.
∑n

i=1 xi ≥ k.

2. Boolean Logic:

1 NOT xi ≡ 1− xi.

2 (x1 = 1) OR x2 = 1 OR . . . OR (xk = 1) ≡ max(x1, . . . , xk)︸ ︷︷ ︸
∈{0,1}

≥ 1 ≡
∑k

i=1 xi ≥ 1.

3 (x1 = 1) AND (x2 = 1) AND . . . AND (xk = 1) ≡ min(x1, . . . , xk) ≥ 1
≡ xi = 1 ∀ i ∈ [k] ≡ x1 ≥ 1, . . . , xk ≥ 1.

4 IF (xi = 1) THEN (xj = 1) ≡ xi ≤ xj .

Example 5.2.11: An example of rewriting a boolean expression.

if (P2 and P3 and P5 are selected),
then (P1 or P4 are selected).

≡ if (x2 = 1 and x3 = 1 and x5) then (x1 or x4)

≡ if (min(x2, x3, x5) = 1) then (max(x1, x4) ≥ 1)

≡ min(x2, x3, x5) ≤ max(x1, x4)︸ ︷︷ ︸
(?)

≡ min(x2, x3, x5) ≤ x1 + x4
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We can replace (?) by sum. We negate the above expression and add 1 both sides. We get

≡ 1−min(x2, x3, x5) ≥ 1− x1 − x4
≡ max(1− x2, 1− x3, 1− x5) ≥ 1− x1 − x4
≡ 1− x2 + 1− x3 + 1− x5 ≥ 1− x1 − x4
≡ x2 + x3 + x5 ≤ 2 + x1 + x4.

/

Remark 5.2.12: We can use binary variables to encode statements about arbitrary linear expres-
sions. Suppose we have some linear expression f(x) in terms of (arbitrary) variables x1, . . . , xn and
for all feasible choices of x, we have f(x) ∈ [L,M ]. We can define a binary variable z ∈ {0, 1} such
that

• if (f(x) > k) then z = 1 where k ∈ [L,M ]. We can encode this as follows

f(x)− k ≤ (M − k)z.

• if (z = 1) then f(x) ≥ K where K ∈ [L,M ]. We can encode this as

f(x) ≥ Kz + (1− z)L.

/

Example 5.2.13: Suppose we have constrains a>i x ≥ bi and a>i x ∈ [Li,Mi] for all i = 1, . . . ,m.
We want to encode that at least k constraints hold. Our strategy is to

1 introduce {0, 1} variables zi for all i = 1, . . . ,m.

2 encode if zi = 1 then (a>i x ≥ bi) ≡ a>i x ≥ bizi + Li(1− zi)

3 have at least k of zi’s are 1 (equivalently
∑m

i=1 zi ≥ k).

Assuming a>i x and bi are integers for all choices of x. Question: What if we have to encode at
most k constraints hold? Note that

∑
zi ≤ k does not encode this. /

5.2.1.1 Integral Polyhedra

Recall for a set S ⊆ Rn we defined Z(S) = S ∩ Zn and SI = conv(Z(S)). When do we have
P = PI? If P = PI then we can solve (IP): max c>x subject to x ∈ Z(P) by solving the (LP):
max c>x subject to x ∈ P .

Definition 5.2.14: A polyhedron P is called integral if P = PI . /

Theorem 5.2.15: Let P ⊆ Rn be a pointed polyhedron and let Ext(P) be the set of extreme
points of P .

1 If P = PI then Ext(P) ⊆ Zn.

2 If P is a rational polyhedron or if P is a polytope, and Ext(P) ⊆ Zn, then P = PI .
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Proof: 1 : Let x ∈ Ext(P). If x /∈ Z(P), then since x ∈ P = PI = conv(Z(P)), then x can be
written as convex combination of points of P distinct from x which is a contradiction because x is
an extreme point.

2 : Since P is pointed then P = conv(Ext(P))+C where C is a polyhedral cone. If P is a polytope,
then C = {0} (since P is bounded). So P = conv(Ext(P)) ⊆ conv(Z(P)) = PI . Hence P = PI . If
P is a rational polyhedron, then we know C = cone({t(1), . . . , t(`)}) where t(1), . . . , t(`) ∈ Zn and
C = CI . So, we have

P = conv(Ext(P)) + C ⊆ conv(Z(P)) + conv(Z(C)) ⊆ conv(Z(P) +Z(C)) = conv(Z(P)) = PI .

5.3 Total Unimodularity

Definition 5.3.1: A matrix A ∈ Mm×n(R) is called totally unimodular if for every square
submatrix M of A, detM ∈ {−1, 0, 1}. In particular, all entries of A are 0 or ±1. /

Lemma 5.3.2: If B ∈ Mk×k(R) is an integral matrix with detB 6= 0. Then, detB ∈ {−1, 1} if
and only if B−1 is an integral matrix.

Proof: Exercise. /

Theorem 5.3.3: Let A ∈ {0,±1}m×n be a totally unimodular matrix. Then, for every b ∈ Zm,
all extreme points of P = {x ∈ Rn | Ax ≤ b} (if any) are integral.

Proof: Let x be an extreme point of P . So A=x ≤ b= is the set of tight constraints at x.
Then, rank(A=) = n. So we can extract a square submatrix M of A= and A, and b′ such that
rankM = n and x is the unique solution to Mx = b′. Since detM ∈ {−1, 1} then M−1 is integral.
So x =M−1b′ where b′ is also integral. Hence x is integral.

Lemma 5.3.4: Let D ∈ Mk×k(R) with entries (dij) where i, j ∈ [k]. Then the determinant of D
is equivalent to

detD =

k∑
i,j=1

(−1)i+jdij det(D−i,−j),

where D−i,−j is the matrix D with row i and column j deleted.

Proof: Exercise. This is beyond the scope of this course (M136/145 material). This is also known
as the minor-cofactor method. /

Lemma 5.3.5: Let A ∈ {0,±1}m×n be totally unimodular. Then, the matrices (or the matrices
obtained from the operations) below

1 A>,

2 permuting rows and columns,

3 multiplying a row or column by −1,

4 duplicating a row or column,
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5 adding a row or columns to A with exactly one non-zero entry that is ±1,

6 [A I] (this can be obtained by repeating 5 ),

7 [A −A] (this can be obtained by repeating 3 and 4 ),

are totally unimodular matrices.

Proof: The steps 1 - 3 may affect only sign of determinants. For step 4 , any new square subma-
trices, can have a duplicate row or column, which has determinant zero. For step 5 , let

A′ =

0

±1
0


A ∈Mm×n+1.

Here the entry with ±1 is in ith row. Similarly let D be the square submatrix of A′. If D is a square
submatrix of A, then detD ∈ {0,±1}. Otherwise,

D =

0

±1
0


M ∈Mk×k.

Then, by Lemma 5.3.4, we have detD = ±det(M−i) where M−i is the square submatrix obtained
fromM by deleting row i. SinceM is a submatrix of A then detM ∈ {0,±1}. Then detD ∈ {0,±1}.
Then A′ is a totally unimodular matrix.

Theorem 5.3.6: Let A ∈ {0,±1}m×n be totally unimodular and let b ∈ Zm. The following
polyhedra are integral.

1 {x ∈ Rn | Ax ≤ b where x ≥ 0}. Note that the constrains in this system can be written as[
A
−I

]
x ≤

[
b
0

]
,

2 {x ∈ Rn | Ax = b where x ≥ 0}.

3 {x ∈ Rn | Ax ≤ b where ` ≤ x ≤ u and `,u ∈ Zn}. Here we have the constraints as A
−I
I

x ≤
 b

`
u

.
This theorem is a corollary of Theorem 5.3.3 and Lemma 5.3.5.

Corollary 5.3.7: Let A ∈ {0,±1}m×n be a totally unimodular and b ∈ Zm, c, `,u ∈ Zn. Then,
the LP (P) and its dual (D) always have optimal integral solutions where

(P) : max c>b,

subject to Ax ≤ b,

−w>x ≤ −w>`,
− z>x ≤ w>u,

with w, z ≥ 0.

(D) : exercise
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Proof: We provide a proof sketch. Feasible region of (P) is a polytope. So (P) and (D) always
have optimal solutions. Feasible regions of (P) and (D) are pointed polyhedra defined by totally
unimodular matrices. This implies that there always exists an extreme point that is an optimal
solution and every extreme point is integral.

Lemma 5.3.8: Let A ∈ {0,±1}m×n be such that every column of A has at most one 1 and at most
one −1. A is a totally unimodular matrix. An example of such a matrix is given below.1 −1 0 0

0 1 −1 −1
0 0 0 1

.
Proof: We will use induction on number of rows and columns of the square submatrix M of A.
Let M ∈Mk×k(R) and let k ≤ min(m,n) be a submatrix of A.

Base Case: k = 1. Then M is either ±1 or 0. Then detM ∈ {0,±1}. Suppose the statement
holds for all M`×` where ` ≤ k. Consider Mk+1×k+1. If M has a column with all zeros, then
detM = 0. If M has a column with one non-zero entry, then M is of the form

M =

∗ ∗ ∗


[±1]
M ′

∈Mk+1×k+1,

here [+1] ∈ Rk+1 is a column vector with at most one +1 or −1. Then, by Lemma 5.3.4, we have
detM = |detM ′|.4 Hence detM ∈ {0,±1}. If every column of M has exactly one 1 and one −1,
then adding all rows gives us a row whose sum is zero. We then add columns obtain a zero row,
which gives detM = 0.

5.4 Graph Theory

Definition 5.4.1: A graph is a tuple (V,E) where V is the set of notes and E is the set of edges.
In a graph every edge joins two notes. If e joins u, v we write e = uv. Equivalently we say uv : ends
of e or e is incident on u, v. /

Example 5.4.2: An example of a graph G = (V,E).

1

2
3

4G

Figure 5.4.1: The graph G = (V,E).
4CK: This is subtle but easy to understand. Fix first row and recall that adding rows doesn’t change the deter-

minant.
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Here we have V = {1, 2, 3, 4} and E = {12, 23, 31, 14, 34}. /

Definition 5.4.3: A directed graph (digraph) G is a pair (V,E) where edges have directions.
Every edge goes from a node u to a node v, indicated by (u, v). The order of nodes matter.

If a graph is not a directed graph (i.e. if the order of nodes doesn’t matter) then we say it is
an undirected graph . In an undirected graph G = (V,E) we have E 3 e = uv = vu where
u, v ∈ V . /

Example 5.4.4: An example of a digraph G.

s

u

v

t

G

Figure 5.4.2: Directed graph.

Here we have G = (V = {s, u, v, t}, E = {(s, u), (s, v), (u, v), (u, t), (v, u), (v, t)}). /

Remark 5.4.5: We have the following remarks about graphs.

1 Graphs in this course contain no loops. That is, the end points of an edge are distinct nodes.

2 Graphs contain no parallel edges. That is, if e = uv and ẽ = ũṽ are distinct edges, then
{u, v} 6= {ũ, ṽ}. /

Definition 5.4.6: A u− v path in a graph G where u, v ∈ V is a sequence of nodes starting at u
and ending at v, where each vertex is unique and consecutive vertices in the sequence are adjacent
vertices (connected by an edge) in the graph. /

Definition 5.4.7: For an undirected graph G = (V,E) and u ∈ V , we will use δ(u) to denote the
set of edges incident to u. The size of this set is called the degree of u. We use δin(u) [δout(u)]
to denote the set of edges entering [leaving] the vertex u. /

Example 5.4.8: Consider the vertex u below.

u

Figure 5.4.3: Edges entering and leaving u.
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Here we have δin(u) = {edges in blue} and δout(u) = {edges in red}. /

Definition 5.4.9: Let G = (V,E) be a graph. The node-edge incidence matrix (just incidence
matrix for short) of G is a matrix A whose rows are indexed by V and whose columns are indexed
by E. /

Remark 5.4.10: Let A be the incidence matrix of G. If G is undirected, then for all e = uv ∈ E,
the column Ae of A is 

0
1
0
1
0


u

v

Every column consists of 0’s and 1’s and each contain only two 1’s.

If G is directed and if e = u→ v ∈ E, the column Ae of A is
0
−1
0

+1
0


u

v

So, Au,e = −1, Av,e = 1 and Aw,e = 0 for all w ∈ V \ {u, v}. /

Example 5.4.11:

s

u

v

t

G

Figure 5.4.4: Directed graph.

=⇒ A =

(s, u) (s, v) (u, v) (v, u) (u, t) (v, t)


s −1 −1 0 0 0 0
u 1 0 −1 1 −1 0
v 0 1 1 −1 0 −1
t 0 0 0 0 1 1

An example of a digraph G and its incidence matrix A. /

Proposition 5.4.12: If A is the incidence matrix of a digraph, then A is totally unimodular.

Remark 5.4.13: Proposition 5.4.12 is false for an undirected graph. Consider the graph G (on the
left) and its incidence matrix (on the right). We have detA = 2.
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s

v w

Figure 5.4.5: Undirected graph
with detA = 2.

A =

uv vw wu[ ]u 1 0 1
v 1 1 0
w 0 1 1

=⇒ detA = 2.

This is a counter example to Proposition 5.4.12. /

Definition 5.4.14: An (undirected) graph is called bipartite with bipartition X,Y is X ∪ Y = V
is a partition of V . We say a pair X,Y ( V is a partition of V if

1 X,Y 6= ∅,

2 X ∩ Y = ∅,

3 X ∪ Y = V .

Informally, a graph G is bipartite if every edge has one end in X and one end in Y . /

Example 5.4.15: Example of a bipartite graph G.

V Y

Figure 5.4.6: A bipartite graph.

Here X,Y is a partition of V . /

Lemma 5.4.16: Incidence matrix A of a bipartite graph is totally unimodular.

Proof: We can partition the rows of A into X,Y such that for each e, every column Ae has a 1 in
a row of X and a 1 in a row of Y . So multiplying rows in X by −1 gives an incidence matrix of a
digraph, which gives a totally unimodular matrix. Hence A is totally unimodular.

5.4.1 Matchings and Assignment Problems

Let G = (V,E) be an undirected graph.

Definition 5.4.17: A matching in G is a subset M ⊆ E such that no two edges of M share an
end point. In other words, |δ(v) ∩M | ≤ 1 for all v ∈ V .

We say a matching M is a perfect if |δ(v) ∩M | = 1 for all v ∈ V . /
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Example 5.4.18: Examples of matchings.

(a) : match-
ing (not perfect).

(b) : perfect
matching.

(c) :not a
matching.

Figure 5.4.7: Three undirected with graphs with a sets of edges.

Note that there is another perfect matching for the graph in Figure 5.4.7b. /

Example 5.4.19: Recall that job assignment problem discussed in subsection 1.4.4. We have

• set J of jobs,

• set W of workers,

• |J | = |J |, that is, the number of jobs are same of number of available workers.

We are given a list of (i, j) pairs where i ∈ W and j ∈ J . The list indicates that job j can be
assigned to worker i, for each such (i, j) entry we have a cost cij ∈ R. This is the cost of assigning
j to i. We want to know

1 if there is an assignment of jobs to workers such that every job compatible with list is assigned
to exactly one worker. That is, every worker is assigned exactly one job,

2 and if there is, the minimum cost of such an assignment.

These translate to matching related questions on bipartite graphs.

W J

w1

w2
...

wi
...

wn

j1

j2
...
jj

...
jn

G

Figure 5.4.8: Bipartite graph G = (V,E) where
V =W ∪ J .

Let |J | = |W | = n. If (i, j) is in the list, then
cij is the cost of wijj . So we have the following
equivalent problem.

1 DoesG have a matchingM that is a perfect
matching?

2 If so, we want to minimize the cost of M ,
c(M), such that

c(M) =
def

∑
e∈M

ce.

This problem is called “min-cost perfect
matching problem” (MCPM).

3 Another related problem is finding a
matching M of G that maximizes |M |.
This problem is called the “maximum car-
dinality (size) matching problem”.

/

Theorem 5.4.20: If G is a bipartite graph then M(G) and PM(G) are integral polytopes.
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Proof: Exercise. /

We will use LP theory to prove various statements.

Notation 5.4.21: For a graph G = (V,E), we define the sets M(G) and PM(G) as follows.

M(G) =

x ∈ R|E|
∣∣∣∣∣∣
∑
e∈δ(v)

xe ≤ 1, ∀ v ∈ V and x ≥ 0

,
PM(G) =

x ∈ R|E|
∣∣∣∣∣∣
∑
e∈δ(v)

xe = 1, ∀ v ∈ V and x ≥ 0

.
The integer points inM(G) and PM(G) correspond to matching and perfect matching in G respec-
tively. Moreover, we can write the constraints of these sets as follows∑

e∈δ(v)

xe ≤ 1 ≡ Ax ≤ 1,

∑
e∈δ(v)

xe = 1 ≡ Ax = 1,

where A is the incidence matrix and where 1 is the vector with all entries being 1’s. /

Theorem 5.4.22: Let G = (V,E) be a bipartite graph with bipartition X,Y where |X| = |Y |.
Suppose |δ(v)| = d for all v ∈ V . Recall this is the degree of v. Then G has a perfect matching.

Proof: Setting xe = 1
d for all e ∈ E gives a point in PM(G). So PM(G) 6= ∅. Hence it has an

integral extreme point which gives a perfect matching.

Example 5.4.23: Show that if G satisfies the conditions in Theorem 5.4.22 then there are d perfect
matchings M1, . . . ,Md such that

E =
⋃
i∈[d]

Mi and Mi ∩Mj =

{
Mi if i = j,

∅ if i 6= j,
for i = 1, . . . , d. /

Definition 5.4.24: Let G = (V,E) be a graph. We say that C ⊆ V is a vertex cover if for all
e = uv ∈ E, C ∩ e 6= ∅. /

Lemma 5.4.25: For any graph G, the maximum size of a matching is at most the minimum size
of a vertex cover of G. That is,

(max |M | s.t M is a matching in G) ≤ (min |C| s.t C is a vertex cover of G).

Proof: For any matching M and vertex cover C, C must include at least one node from every edge
of M . Since the edges of M do not share any end-points, then we have |C| ≥ |M |. We will use
weak duality. Consider the LP and its dual

(LP): max
∑
e∈E

xe,

subject to
∑
e∈δ(v)

xe ≤ 1,

with x ≥ 0.

(DLP): min
∑
v∈V

yv,

subject to yu + yv ≥ 1

with y ≥ 0.
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Since by strong duality OPT(LP) = OPT(LP), then we get

(max |M | s.t M is a matching in G) ≤
(?)

OPT(LP) = OPT(LP)

≤
(??)

Opt. value among integer solutions to (DLP)

=
(???)

(min |C| s.t C is a vertex cover of G).

We used

(?) : LHS is optimal value among integer solutions to (LP).

(??) : Something. Exercise.

(? ? ?) : An optimal integer solution to (DLP) can be assured to be a {0, 1}-solution and if y ∈ {0, 1}E
is a solution to (DLP), then C = {u | yu = 1} is a vertex cover (and vice versa).

Remark 5.4.26: We check to see if we can find conditions that makes Lemma 5.4.25 hold in
equality. Consider the graph G below.

G

Figure 5.4.9: Graph G.

Here every matching has maximum size 1 and every vertex cover has size at least 2. /

Theorem 5.4.27 (Kőnig’s theorem): If G is bipartite, then

(max |M | s.t M is a matching in G) = (min |C| s.t C is a vertex cover of G).

Proof: Since the constraint matrices of (LP) and (DLP) are totally unimodular, then the in equal-
ities (?) and (??) hold at equality

Corollary 5.4.28 (Hall’s theorem): Let G = (V = X ∪ Y,E) be bipartite graph with bipartition
X ∪ Y . Then, G has a perfect matching if and only if |X| = |Y | and |S| ≤ |N(S)| for all S ⊆ X.
Here S is a subset of X and N(S) is the set of neighbors of S, i.e. the set of vertices that are
adjacent to vertices in S.
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X Y

G

S

N(S)

For S ⊆ X, N(S) ⊆ Y,
S ⊆ Y, N(S) ⊆ X.

Figure 5.4.10: A bipartite graph G with S ⊆ X in purple and N(S) in orange.

Proof: Clearly, if |X| 6= |Y |, then G does not have a perfect matching. So assume |X| = |Y |.
Suppose G has a perfect matching M . Then, for all v ∈ S, there is an edge of M that matches to
v to a distinct node of N(S). So |S| ≤ |N(S)|.

X Y

S

C ∩ Y

C ∩X

Figure 5.4.11: G with the vertex vertex cover C.

For the converse, we prove the contrapositive.
Suppose G does not have a perfect matching.
Then, by Theorem 5.4.27, there is a vertex cover
C such that |C| < |X|. Take S = X \ C. Then
N(S) ⊆ C ∩Y (since C is a vertex cover). Hence
we have |S| = |X| − |C ∩X|. This gives us

|N(S)| ≤ |C ∩ Y |
= |C| − |C ∩X|
< |X| − |C ∩X| = |S|.

We look for ways to increase the size of a matching in a bipartite graph?

Definition 5.4.29: We say that a node v is M-exposed if no edge of M is incident to v. If v is
not M -exposed, then we say v is M-matched . /

Example 5.4.30: Consider the digraph D with perfect matching M .
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X Y
D

a

b

c

d

1

2

3

4

Figure 5.4.12: Directed graph D with perfect matching ← :M .

D is obtained by directing edges of M from Y to X and edges not in M from X to Y . Here a and
1 are M -exposed nodes. Here we have a directed path P from a to 1, where

P : a −→ 2 −→ b −→ 3 −→ c −→ 1.

X Y
D

a

b

c

d

1

2

3

4

(a) Path P (in red).

X Y
D

a

b

c

d

1

2

3

4

(b) New perfect matching
M’ (in blue).

Figure 5.4.13: A larger perfect marching M ′ from the path P in D.

Note that by switching edges along P (by swapping out edges of M in P and swapping in edges of
P not in M), we get a larger matching M ′ = {a2, b3, c1, d4}. /

Definition 5.4.31: A path in a directed graph D that goes from M−exposed node in X to
M−exposed node in Y is called an M-augmenting path . /
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Notation 5.4.32: For a bipartite graph G = (V = X ∪ Y,E), we denote

X̃ = {x ∈ X | x is M -exposed},

Ỹ = {y ∈ Y | y is M -exposed}. /

Lemma 5.4.33: M is max-size matching if and only if there is no M -augmenting path.

Proof: =⇒ : Exercise.

⇐= : Let T be the set of nodes reachable from X̃ in a digraph D constructed from M . That is,

T = {v ∈ V | ∃ u ∈ X̃ such that there is a u v path in D}.

Note that we have T ⊇ X̃ if X̃ 6= ∅ then T = ∅.

Claim 5.4.34: C = (X \ T ) ∩ (T ∩ Y ) is a vertex cover and |C| = |M |.

Proof: Exercise.

Then, by Theorem 5.4.27 and above claim, we are done.

Remark 5.4.35: By running this algorithm on a bipartite graph G = (X ∩U,E) where |X| = |Y |,
we can find a perfect matching or find a vertex cover C with |C| < |X|, and hence we can find
S ⊆ X such that |S| > |N(S)|. If this is the case, we call the set S a deficient set . /

5.4.2 Min-cost Perfect Matching Problem

We will consider a min-cost perfect matching problem in a bipartite graph G = (V = X ∪ Y,E)
such that |X| = |Y | and with costs {ce}e∈E . Consider the following LP and its dual.

(P) : min cexe,

PM(G):


∑
e∈δ(v)

xe = 1, ∀ v ∈ V,

with x ≥ 0.

(D): max
∑
v∈V

yv,

subject to yu + yv ≤ cuv, ∀ e = uv ∈ E.

Note that (D) is always feasible.

Remark 5.4.36:

1 G has a perfect matching if and only if PM(G) 6= ∅.

2 M is a min-cost perfect matching if and only if χM ∈ {0, 1}E is an optimal solution to (P).
Here χM is defined as

χM
e =

{
1 if e ∈M,

0 if e /∈M,

and it is called as the characteristic vector of M . Equivalently, this is true if and only if there
exists a dual feasible y such that χm and y satisfy the CS conditions. That is, for all e ∈ M , we
have yu + yv = cuv. So given a dual feasible y, define the equality subgraph of y, G=(y), as

G=(y) =
def

(V,E=(y) = {uv ∈ E | yu + yv = cuv}).

If M is a perfect matching in G=(y), then M is a min-cost perfect matching. /
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Out strategy is to maintain a dual feasible y. We will look at G=(y). This gives us two cases.

1 We find a perfect matching M in G=(y) (in this case we are done).

2 There exists a deficient set S ⊆ X. In other words, |S| >
∣∣NG=(y)

∣∣ (where NG=(y) is the
neighbors of S in G=(y)).

a If NG(S) = NG=(y)(S) then S is deficient in G. So G does not have a perfect matching.

b Otherwise, we have NG(S) % NG=(y)(S). So there exists e = uv ∈ E \ E=(y).

X Y
G

u v

S NG=(y)(S)

Figure 5.4.14: The edge in E \ E=(y) is shown in green.

So yu + yv < cuv. Let

ε = min{cuv − yu − yv | uv ∈ E, u ∈ S, v /∈ NG=(y)(S)}.

Update y to

y ←


yv + ε if v ∈ S,
yv − ε if v ∈ NG=(y)(S),

yv if otherwise.

New y is a feasible dual solution and dual objective increases by ε(|S|−
∣∣NG=(y)(S)

∣∣) > 0.
Repeat the algorithm until termination.

Termination: Take the upper bound as
∑

e∈E ce where ce > 0. If (rational input)
∑

v∈V yv
is strictly greater than the upper bound on min-cost PM, then LP-relaxation for min-cost PM is
infeasible. So we can terminate.

Remark 5.4.37: There is a way of choosing augmenting paths and deficient set S to terminate in
O(|V |2) steps. /
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5.4.3 Min-cost Vertex Cover in General Graphs

Let wv ≥ 0 be the cost of vertex v. We want to find a vertex cover of minimum total cost. i.e. we
have the following LP.

(LP) : min
∑
v∈V

wvxv,

subject to xu + xv ≥ 1, ∀ uv ∈ E,
with x ≥ 0,

x ∈ Z|V | (integrality constraint).

Note that we cannot drop integrality constraints from the above LP. Consider the graph with 3
vertices and 3 edges. We have

G

Figure 5.4.15: Triangle graph G.

Here we have

(LP)OPT = 1.5, and (IP)OPT = 2.

Remark 5.4.38: There is no known efficient algorithm. We take this as a fact. /

We have two approaches to the above problem.

1 Drop the polynomial requirement: Get algorithms that work fine in practice.

2 Drop optimality requirement: We want a polytime algorithm that always returns a solution
of cost ≤ α· OPT, where α ≥ 1. This is referred as α−approximation algorithm.

5.4.4 2-approximation for Vertex Cover

This is the best currently known approximation algorithm. We have the LP below and its dual.

(VC-LP) : min
∑
v∈V

wvvv,

subject to xu + xv ≥ 1, ∀ e = uv ∈ E,
with x ≥ 0.

(D) : max
∑
e∈E

ze,

subject to
∑

e∈S(V )

ze ≤ wu,

with z ≥ 0.

Algorithm 1:

1 Solve (VC-LP) to get optimal solution x∗.

2 Take

C(1) = {u ∈ V | x∗u ≥
1

2
},

and let OPTI be the optimal value of the IP.

Theorem 5.4.39: C(1) is a vertex cover and

w(C(1)) =
∑
v∈C(1)

wv ≤ 2 ·OPT(VC-LP) ≤ 2 ·OPTI .
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Proof: For every e = uv ∈ E, at least one of x∗u, x∗v ≥ 1
2 . So at least one of u, v ∈ C(1). For every

v ∈ C(1) we have wv ≤ 2wvx
∗
v.

Remark 5.4.40: These LPs can be solved in polytime. We take this as a fact. /

Algorithm 2: Suppose z is a maximal dual feasible solution. That is, z is a feasible solution to
(D) and for all z′ ≥ z, z′ 6= z (so z′ is not feasible to (D)). Take

C(2) = {u ∈ V |
∑
e∈δ(u)

ze = wu}.

Theorem 5.4.41: C(2) is a vertex cover and

w(C(2)) ≤ 2
∑
e∈E

ze ≤ 2 ·OPT(VC-LP) ≤ 2 ·OPTI .

Proof: We have

w(C(2)) =
∑
v∈C(2)

wv =
∑
v∈C(2)

 ∑
e∈δ(v)

ze

.
We can construct z by starting with z = 0 and choosing edges in any order and then increasing ze
as much as possible while preserving dual feasibility.

5.4.5 Max-weight Matching in General Graphs

We have the below LP and its dual.
(Mat-LP) : max

∑
e∈E

wexe,

subject to
∑
e∈δ(v)

xe ≤ 1, ∀ v ∈ V,

with x ≥ 0.

(Mat-D) : min
∑
v∈V

yv,

subject to yu + yv ≥ wuv, ∀ e = uv ∈ E,

with y ≥ 0.

We have 1
2 -approximation algorithms.

5.4.5.1 Greedy Algorithm for Max-weight Matching

1 Sort edges so that
we1 ≥ · · · ≥ wek > 0 ≥ wek+1

≥ · · · ≥ wen .

2 Initialize M ← ∅. For i = 1 to k, if M ∪ {ei} is a matching, set M ←M ∪ {ei}.

Theorem 5.4.42:
w(M) ≥ 1

2
·OPT(Mat-D) ≥

1

2
·OPTI .

Proof: Define yu = yv = wuv > 0 if uv ∈M and if u isM -exposed then let yu = 0. By constriction,
w(M) = 1

2

∑
v∈V yv and y ≥ 0. We need to show y satisfies the dual constraint, that is yu+yv ≥ wuv

for all e = uv ∈ E. Consider e = uv = ei with we > 0, so i ≤ k.
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• If e ∈M then yu = yv = wuv.

• If e /∈ M , then at start of iteration, at least one of u, v is matched by M using some edge e′

such that we′ ≥ we. So at least one of yu OR yv is set to we′ ≥ we.

Notation 5.4.43: For v = (v1, . . . , vn) ∈ Rn we define the floor and ceiling of v as

bvc = (bvic)i∈[n], and dve = (dvie)i∈[n].

That is, when we say floor of a vector we mean the vector obtained by taking the floor each
component of the original vector. /

5.4.6 Methods for General IPs

Recall the definition of valid inequality that we introduced in section 2.3. Consider (IP) with
objective function max c>x subject to x ∈ Z(P) =

def
P ∩Zn where P ⊆ Rn is a rational polyhedron.

This is equivalent to the (LP) max c>x subject to x ∈ PI =
def

conv(Z(P)).

The idea is to start with Q = P , and repeatedly add valid inequalities for PI (that are also not
valid for Q), until we find an optimal solution to our current (LP) max c>x subject to x ∈ Q that
is integral.

We want to find a valid inequality for PI . Suppose

Q = {x ∈ Rn | Ax = b,x ≥ 0}.

This is our current polyhedron. Note that we have Z(Q) = Z(P). By duality, any valid inequality
α>x ≤ β for Q is implied by an inequality of the form

y>Ax = y>b. (?)

We know (?) is valid for Q. Then since x ≥ 0, the inequality

by>Acx ≤ y>b,

is also valid for Q. Then,
by>Acx ≤ by>bc, (??)

is valid for Z(P) and hence for PI . This is because the LHS of (??) is an integer for all x ∈ Z(P).
Note that this need not be valid for P . (??) is referred as Chvátal-Gomory cut/inequality. We refer
to the procedure of obtaining this inequality as the (CG) procedure.

5.4.7 Cutting Plane Algorithm

1 Start with Q ← P . We maintain Z(Q) = Z(P). Note that we can consider Q = {x ∈ Rn |
A′x = b′,x ≥ 0}.

2 Consider the current (LP): max c>x subject to x ∈ Q.
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3 Assume (LP) is not unbounded. If (LP) is infeasible, then STOP. (IP) is infeasible.

4 Otherwise, let OPT(LP) = x found using the simplex method, corresponding to basis B.

5 If x ∈ Zn, then x ∈ Z(Q) = Z(P) and x = OPT(IP).

6 Otherwise, consider the system
A′
−1
B A′︸ ︷︷ ︸
A

x = A′
−1
B b︸ ︷︷ ︸
b

.

Since x /∈ Zn, then ∃ i ∈ B such that xi = bi /∈ Z (so xi is a fraction). Consider the constraint
of Ax = b containing xi.

xi +
∑
j∈N

aijxj = bi. (†)

This is the equation obtained by taking a suitable linear combination of Ax = b. So applying
(CG) procedure gives

xi +
∑
j∈N
baijcxj ≤ bbic. (††)

This is the CG cut derived from xi. Note that (††) is valid for QI = PI but is violated by x
since

xi = bi > bbic.

This is true because bi /∈ Z.

7 Assign Q← Q ∩ {x ∈ Rn | x satisfies (††)}.
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Chapter 6 – Computational Complexity

Recall the definitions we made for input size, size and polytime in Definition 4.1.32.

Notation 6.0.1: We denote the class of problems that can be solved in polytime as P. /

Example 6.0.2: Some examples of polytime problems.

• Sorting n numbers.

• Solving a system of equations Ax = b where A ∈Mm×n(Z) and b ∈ Zm. /

Example 6.0.3: Gaussian elimination (GE) is a polytime algorithm. GE reduces Ax = b to a
simpler system A′x = b′ using row operations. This involves poly(m,n) arithmetic operations. But
also we have to ensure that the intermediate entries we have also polynomial size. That is, they
most have size poly(size(A,b)) where

size(A,b) =
def

∑
i,j

size(Aij) +
∑
i

size(bi). /

Remark 6.0.4: Every intermediate entry is a ratio of determinants of two square matrices of A|b
(the vector b augmented to A). Moreover, if M ∈Mk×k(Q), then log |detM | = poly(size(M)). /

Definition 6.0.5: Problems that can be answered by “YES” or “NO” are called decision problems.
/

Example 6.0.6: The problem below is a decision problem.

Does graph G have a vertex cover of size ≤ k.

Note that this is the decision version of vertex cover. This is also problem is also in NP. /

Definition 6.0.7: We say a decision problem is in non-deterministic polynomial time (NP) if
there exists a polytime verifier algorithm B(·, ·) and a polynomial p such that

1 For every YES-instance x, there exists a certificate y with

size(y) ≤ p(size(x)) such that B(x, y) = YES.

2 For every NO-instance x, B(x, y) = NO for all y. /

Example 6.0.8: The problems below are in NP.

LP feasibility: Given A,b, is Ax ≤ b feasible?
LP infeasibility: Given A,b, is Ax ≤ b infeasible?

Here both the YES and NO instances for both problems have certificates. /

Example 6.0.9: Consider the problem of LP-feasibility.
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Given rational A,b, does Ax ≤ b have a feasible solution?

We can write the S.I.F in S.E.F as follows.

Ax ≤ b ≡ [A −A I]︸ ︷︷ ︸
A′

x+

x−

s


︸ ︷︷ ︸

x′

= b, where x+,x−, s ≥ 0.

Hence we obtain

A′x′ = b, where x′ ≥ 0 is feasible ⇐⇒ A′x′ = b, where x′ ≥ 0 has a BFS.

Hence, if x is a BFS, then size(x) = poly(size(A′,b)) (this follows from Remark 6.0.4). /

Remark 6.0.10: From the above example, we infer that the problems below are in NP.

1 LP Infeasibility: Is Ax ≤ b is infeasible? (This is by Farkas’ Lemma in Remark 2.1.8)

2 LP Optimality: Does the LP max c>x subject to Ax ≤ b have an optimal solution? (This
is by duality)

3 LP Unboundedness: Is max c>x subject to Ax ≤ b unbounded? (This is by using the fact
that if LP is unbounded then there exists a certificate of unboundedness)

4 P ⊆ NP: Given an instance x and verifier B(·, ·), the problem ignores the certificate and runs
polytime algorithm for the problem on x. i.e. A decision problem in P is also in NP. /

Remark 6.0.11: This gives rise to the question. Is NP ⊆ P? i.e. Is P = NP?

The consensus to this question is no. /

Definition 6.0.12: Given problems A,B, we say that A polytime reduces to B, denoted A ≤p B
if given an algorithm B for B, we can solve problem A by making a polynomial number of calls to
B and a polynomial number of elementary operations. Note that if A ≤p B, then A is no harder
than B. So if we can solve B in polytime, then we can also solve A in polytime as well. /

Example 6.0.13: The problem of LP infeasibility polytime reduces to problem of LP feasibility. /

6.0.1 NP-completeness and NP-hardness

Definition 6.0.14: Given a problem A, we say

• A is NP-hard if X ≤p A for all X ∈ NP,

• A is NP-complete if A ∈ NP and A is NP-hard. /

Remark 6.0.15: Let A be a problem.

• If A is NP-hard and A ∈ P then NP = P.

• If A is NP-complete, and A /∈ P, then NP 6⊆ P.
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NP

P
NP \ P

NP-complete problems

Figure 6.0.1: P and NP.

/

6.0.1.1 Examples of NP-complete Problems

Example 6.0.16: Some examples of NP-complete problems.

1 Decision version of the vertex cover problem in Example 6.0.6.

2 {0, 1}−IP feasibility: Given A ∈Mm×n(Z) and b ∈ Zm, does Ax ≤ b have a {0, 1}-solution?

We want to show 2 is NP-complete. To show A is NP-hard, we can take any other NP-hard problem
B and show B ≤p A. This is because for all X ∈ NP, we have X ≤p B. So B is NP-hard. Since ≤p
is transitive, so X ≤p B ≤p A, which gives us X ≤p A for all X ∈ NP. /

Theorem 6.0.17 (Cook-Levin 1971): We show a brief introduction of the theorem. If a problem
has

n {0, 1} (binary) variables x1, . . . , xn and m constraints (zi1 = 1) OR . . . OR (zik = 1) ∀ i ∈ [m],

then we classify this problem as a SAT problem. We ask if this problem have a feasible solution.
The idea X ≤p SAT where X ∈ NP (verifier B). The theorem states that SAT is NP-complete. So,
if we can show SAT is in P, then we show P = NP.

Example 6.0.18: Show the problem below is NP-complete.

Given A ∈Mm×n(Z) and b ∈ Zm, does Ax ≤ b have an integer solution.

This problem is known as the IP- feasibility problem. /
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Chapter 7 – Non-Linear Programming

Definition 7.0.1: We call programs of the form

min f(x),

subject to gi(x) ≤ 0,

where f, gi : R
n → R, ∀ i ∈ [m],

as non-linear programs (NLP). /

Remark 7.0.2: If the functions f and gi are of the form α>x+ β (linear expressions) then we get
an LP. /

Remark 7.0.3: In general, we can consider any optimization problem as

(?) : min f(x),

subject to x ∈ S ⊆ Rn.

We can define

g(x) =

{
0 if x ∈ S,
1 if x /∈ S.

So (?) is equivalent to

(?) : min f(x),

subject to g(x) ≤ 0.

/

7.1 Convex Analysis

Remark 7.1.1: We might experience some issues while dealing with NLPs.

1 Feasible region might be “complicated”. e.g. we can have a non-convex set (as in IPs).

2 The function f could be “complicated”. For example, consider the function f(x) below.

x

f(x)

a b c

x′

Figure 7.1.1: Complicated function. Here we have f(b) < f(a) < f(c).
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Suppose we start the algorithm at x′ = (x′, f(x′)). We will tend to move closer to a since
f(a) < f(x′) which will make us stuck there. So, an example of a completed function f is a
function that has local minima that are not global minima.

/

Notation 7.1.2: For x ∈ Rn, we have the Euclidean norm (`-2 norm) as

‖x‖ =
def

√√√√ n∑
i=1

x2i =
√
x>x .

/

Definition 7.1.3: Consider the non-linear program below

(NLP) : min f(x),

subject to x ∈ S ⊆ Rn,
where f : Rn → R.

We say that x ∈ S is a local minimum of (NLP) if there exists ε > 0 such that f(x) ≤ f(x) for
all x ∈ Rn such that x ∈ S and ‖x− x‖ ≤ ε.

We say x ∈ Rn is a global minimum of (NLP) if f(x) ≤ f(x) for all x ∈ S. /

Definition 7.1.4: Let S ⊆ Rn be a convex set. A function f : S → R is called a convex function
(over S) if ∀ x,y ∈ S and ∀ λ ∈ [0, 1], we have f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). We say a
function g is concave if −g is convex. /

Exercise 7.1.5: Let x ∈ Rn. Show f(x) = ‖x‖ is convex. /

Definition 7.1.6: For a convex function f : Rn → R. The level set of f for α ∈ R, Lα(f), is
defined as

Lα(f) =
def
{x ∈ Rn | f(x) ≤ α}. /

Proposition 7.1.7: Let f : Rn → R be convex. Then Lα(f) is a convex set for all α ∈ R.

Proof: For any x,y ∈ Lα(f) and any λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ α =⇒ λx+ (1− λ)y ∈ Lα(f).

Definition 7.1.8: We say an (NLP) of the form

min f(x),

subject to gi(x) ≤ 0,

where f, gi : R
n → R, ∀ i ∈ [m],

is convex if the functions f, gi are convex for i = 1, . . . ,m. /

Lemma 7.1.9: Let (CP) be a convex program where

(CP) : min f(x),

subject to gi(x) ≤ 0,

where f, gi : S ⊆ Rn → R are convex, ∀ i ∈ [m],

Then
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1 The feasible region of (CP) is convex.

2 Any local minimum of (CP) is also a global minimum.

Proof: Exercise. /

Remark 7.1.10:

• Every LP is a convex program.

• An IP is not a convex program (because we cannot write its feasible region as a convex set).

In general the we will work on convex programs of the form

min f(x),

subject to x ∈ S ⊆ Rn,
where f : S ⊆ Rn → R is convex.

Let S be the domain of f . If S is convex, then the program with objective function as f and feasible
region S is a convex program. /

Definition 7.1.11: We say f : S → Rn is strictly convex if for all x,y ∈ S and for all λ ∈ [0, 1]
we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y). /

Proposition 7.1.12: If the objective function of a convex program is strictly convex, and if the
function has a global maximum then the function has a unique global minimum.

Proof: Exercise. /

7.1.1 Definitions from Calculus and Analysis

Definition 7.1.13: Let x(1), x(2) · · · ≡
{
x(i)
}
i∈N be a sequence of real numbers. We say that x ∈ R

is the limit of this sequence, denoted by

lim
i→∞

x(i) = x, or {x(i)}i∈N → x,

if ∀ ε > 0, ∃ n such that
∣∣x(i) − x∣∣ < ε for all i ≥ n.

We say that the limit is ∞ [−∞] if for all t ∈ R, there exists n such that x(i) > t [x(i) < t] for all
i ≥ n.

Let x(1),x(2) · · · ∈ Rn be a sequence of vectors. We say the vector x ∈ Rn is the limit of this
sequence if {

x(i) ∈ Rn
}
i
→ x ∈ Rn if ∀ j ∈ [n],

{
x
(i)
j

}
i∈N
→ xj ∈ R.

That is, the limit of a vector is taken component wise. /

Definition 7.1.14: Let f : S ⊆ Rn → R. We say f is continuous at x ∈ S if whenever a sequence
{x(i) ∈ S}i∈N → x, we have {f(x(i))}i∈N → f(x).

If f is continuous on all x ∈ S, we say f is continuous on S. /
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Definition 7.1.15: We define an open ball B(x, δ) as a set around x ∈ Rn of radius δ > 0. i.e.

B(x, δ) =
def
{x ∈ Rn | ‖x− x‖ < δ}. /

Definition 7.1.16: Let S ⊆ Rn. We define the interior of S, denoted intS, as

intS =
def
{x ∈ S | ∃ δ > 0 such that B(x, δ) ⊆ S}. /

Definition 7.1.17: Let S ⊆ Rn. We define the closure of S, denoted clS, as

clS =
def
{x ∈ Rn | ∃ sequence {x(i) ∈ S}i∈N that has x as its limit}. /

Example 7.1.18: If S = (0, 1], then intS = (0, 1) and clS = [0, 1]. /

Definition 7.1.19: Let S ⊆ Rn. We say

• S is open if S = intS.

• S is closed if S = clS. /

Remark 7.1.20: ∅ and Rn are both open and closed. /

Definition 7.1.21: We say that a set S ⊆ Rn is bounded if there exists some γ ∈ R such that
maxj∈[n] |xj | ≤ γ for all x ∈ S. i.e. For all x = (x1, . . . , xn) ∈ S ⊆ Rn and for all j ∈ [n],
xj ∈ [−γ, γ]. i.e. ∃ r > 0 such that ‖x‖ ≤ r for all x ∈ S /

Definition 7.1.22: We say a set S ⊆ Rn is compact if it is closed and bounded. This characteri-
zation is a result of Heine-Borel theorem. /

Theorem 7.1.23 (Bolzano-Weierstrass): Let S ⊆ Rn be compact. Then every sequence {x(i) ∈
S}i∈N has an infinite subsequence {x(ik)}k∈N that converges to a point in S.

Definition 7.1.24: Let f : S ⊆ Rn → R. We define the infimum of f over S, denoted

inf f =
def

inf{f(x) | x ∈ S},

as the largest z ∈ R such that z ≤ f(x) for all x ∈ S.

We define the supremum of f over S, denoted

sup f =
def

sup{f(x) | x ∈ S},

as the smallest z ∈ R such that z ≥ f(x) for all x ∈ S. /

Remark 7.1.25: Let f : S ⊆ Rn → R. By convention, if

• S = ∅, then inf f(x) =∞ and sup f(x) = −∞.

• {f(x) | x ∈ S} is unbounded from below, i.e. ∀ t ∈ R, ∃ x ∈ S such that f(x) < t, then
inf f(x) = −∞.

• {f(x) | x ∈ S} is unbounded from above, i.e. ∀ t ∈ R, ∃ x ∈ S such that f(x) > t, then
sup f(x) =∞. /
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Remark 7.1.26: If there exists x ∈ S such that f(x) = inf f(x) then we say that infimum is
attained and we can replace inf by min. Similarly for sup (we replace sup by max). /

Theorem 7.1.27: Let S ⊆ Rn. Suppose S 6= ∅ and S is compact. Let f : S → R be continuous.
Then for all x ∈ S, inf f(x) and sup f(x) are both attained.

Proof: Consider the infimum. Since S is compact, then S is closed and bounded. We want to
show {f(x)}x∈S is bounded. Suppose, for contradiction, {f(x)}x∈S is unbounded from below. We
can take the sequence {x(i) ∈ S}i∈N such that {f(x(i))}i∈N → −∞. But by Bolzano-Weierstrass
theorem, we also have a convergent infinite subsequence that converges to x′ ∈ S which gives us a
contradiction. Similarly if we assume f is unbounded from above. Hence, {f(x)}x∈S is bounded.

Since S 6= ∅, then inf f(x) = z, for some z ∈ R. By definition, for all ε > 0, there exists x ∈ S
such that z ≤ f(x) ≤ z + ε. Define a sequence {x(i) ∈ S}i∈N where x(i) satisfies

z ≤ f(x(i)) ≤ z + 1

2
i, ∀ i ∈ N.

We observe that

1 {f(x(i))}i∈N → z.

2 By Bolzano-Weierstrass theorem, there exists an infinite subsequence {x(ik)}k∈N that con-
verges to (has a limit of) some x ∈ S.

3 By 1 , {f(x(ik))}k∈N → z.

Since f is continuous, then by 2 and 3 we have f(x) = z. So x is a minimizer of f over S.

7.1.2 Convex Programs

We will use the definition of nearest point and infimum/supremum to determine if a program has a
unique optimal solution.

Definition 7.1.28: let S ⊆ Rn. A point x′ ∈ S is called a nearest point to z ∈ Rn if ‖x′ − z‖ ≤
‖x− z‖ for all x ∈ S. /

Lemma 7.1.29: Let S ⊆ Rn be non-empty and closed. Then, any z has a nearest point in S.

Proof: Define f(x) = ‖x− z‖.

Exercise 7.1.30: Show that f is continuous. /

Define S′ = {x ∈ S | f(x) ≤ f(x0)} where x0 is some point in S 6= ∅. Note that S′ is bounded.
Since S is closed, then S′ is also closed. Then S′ is compact. Clearly we also have

inf f(x) s.t x ∈ S′ = inf f(x) s.t x ∈ S.

By Theorem 7.1.27, inf f(x) such that x ∈ S′ is attained by some x ∈ S which is a nearest point to
z /∈ S.

Proposition 7.1.31: Let S ⊆ Rn be a closed, convex set. Then every z ∈ Rn has a unique nearest
point in S.
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Proof: Exercise. Hint: f(x) = ‖x− z‖ is strictly convex. /

Definition 7.1.32: Let f : S ⊆ Rn → R. Let x ∈ intS. We say that f is differentiable at x if
there exists a vector, ∇f(x) ∈ Rn, called the gradient of f (at x), such that

lim
Rn3d→0

f(x+ d)− f(x)− d>∇f(x)
‖d‖

= 0. (7.1.1)

One line... /

Remark 7.1.33:

1 When n = 1 we have ∇f(x) = f ′(x) and we refer gradient as the derivative.

2 When we take d’s of the form εei where ei is the ith standard basis we get

(∇f(x))i = lim
ε→0

f(x+ εei)− f(x)
ε

=
∂f

∂xi

∣∣∣∣
x=x

.

3 If S ⊆
open

Rn and if f is differentiable at all x ∈ S then we say f is differentiable on S.

/

Definition 7.1.34: Suppose f is differentiable at x ∈ intS. Let d ∈ Rn. Since x ∈ intS, then
there exists ε such that for all δ ∈ (−ε, ε) we have

x± δd ∈ S.

Define g : (−ε, ε)→ R as
g(t) =

def
f(x+ td).

This is called the projection of f along d>. /

Proposition 7.1.35: Using (7.1.1), we can infer that

β =
def

g′(0) = ∇f(x)>d.

If β < 0 then there exists δ ∈ R such that ε ≥ δ > 0 such that for all t ∈ [0, δ), we have g(t) < g(0).

Proof: Suppose, for contradiction, the hypothesis is false. Then for all δ > 0, there exists t ∈ [0, δ)
such that g(t) ≥ g(0). So we can define a sequence {ti ∈ (0, ε]}i∈N such that {ti}i∈N → 0 and
g(ti) ≥ g(0) for all i ∈ N. Since {ti} is a sequence that converges to zero for which g(ti)−g(0)

ti
≥ 0

for all i ∈ N then
g′(0) = lim

ε→0

g(ε)− g(0)
ε

6= 0.

So if ∇f(x)>d < 0, then there exists δ > 0 such that for all t ∈ (0, δ] we have f(x+ td) < f(x).

Proposition 7.1.36: Suppose f : Rn → R. For any x ∈ Rn and any d ∈ Rn, define gx,d : R→ R

as gx,d(t) = f(x + td). Note that this is same as projecting f . f is convex if and only if gx,d is
convex for all x,d ∈ Rn.

Proof: Exercise. /
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Proposition 7.1.37: Suppose f : S → R is differentiable at x ∈ int(S). Consider the function
g(t) = f(x+td) for t ∈ (−ε, ε) for ε > 0 small enough. Since g is differentiable, then it is continuous
at t = 0. For any γ > 0, there exists δ > 0 such that |g(t)− g(0)| < γ for all t ∈ [−δ, δ].

i.e. ∀ d ∈ Rn and for all γ > 0, there exists δ > 0 such that

|f(x+ td)− f(x)| ≤ γ, ∀ t ∈ [0, δ].

Proof: Exercise. /

Theorem 7.1.38: Let I ⊆ R be an interval. Let g : I → R be differentiable everywhere on I.
Then the following are equivalent.

1 g is convex.

2 ∀ x,y ∈ I, g(y) − g(x) ≥ g′(x)(y − x). The tangent curve (in red) always lies below g(x).
Consider the example in 2-D.

x

y

I

x

g(x)

g(x) + g′(x)(y − x)

Figure 7.1.2: Tangent curve in red.

3 g′(x) is non-decreasing in x. We will not prove 3 .

Proof: 2 =⇒ 1 : Take x,y ∈ I and let z = λx+ (1− λ)y ∈ I for λ ∈ [0, 1]. We have

g(x)− g(z) ≥ g′(z)(x− z)
]
· λ

g(y)− g(z) ≥ g′(z)(y − z)
]
· (1− λ)

=⇒ λg(x) + (1− λ)g(y)− g(z) ≥ 0.

Hence g is convex.

1 =⇒ 2 : Fix x,y ∈ I. Consider the sequence{
g
(
x+ d

2i

)
− g(x)

2−id

}
i≥0,
i∈Z+

.
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Take d = y − x. By definition, this sequence converges to g′(x). Due to convexity, the sequence is
non-increasing with i. We have

g
(
x+ d

2i

)
− g(x)

2−id
≤
[
1
2g(x) +

1
2g
(
x+ d

2i−1

)]
− g(x)

2−id
.

This is because

x+
d

2i
=

1

2
x+

1

2

(
x+

d

2i−1

)
=⇒ 1

2

[
g

(
x+

d

2i−1

)
− g(x)

]
=
g
(
x+ d

2i−1

)
− g(x)

2−(i−1)d

Hence,

g

(
x+

d

2i

)
− g(x) ≥ g′(x), ∀ i ≥ 0, ∀ i ∈ Z.

Hence,
g(x+ d)︸ ︷︷ ︸

g(y)

−g(x) ≥ d︸ ︷︷ ︸
y−x

g′(x).

Theorem 7.1.39: Let f : S → R where S ⊆ Rn is convex. Let f be differentiable on S. Then, f
is convex if and only if

f(y)− f(x) ≥ ∇f(x)>(y − x), ∀ x,y ∈ S. (7.1.2)

This inequality is called the sub-gradient inequality .

Proof: ⇐= : This is true by above Theorem 7.1.38 2 =⇒ 1 .

=⇒ : Consider any x,y ∈ S. Let d = y − x. Consider g : [0, 1]→ R given by g(t) = f(x+ td) for
all t ∈ [0, 1]. This is well-defined since S is convex. Since g is convex, then by Theorem 7.1.38 we
have

g(1)︸ ︷︷ ︸
f(y)

− g(0)︸ ︷︷ ︸
f(x)

≥ g′(0)︸ ︷︷ ︸
∇f(x)>d

.

Theorem 7.1.40 (Optimality conditions for convex programs I): Let S ⊆ Rn be convex. Consider
the convex program

(C-P) : min f(x),

subject to x ∈ S,
where f : S → R is convex and differentiable on S.

Let x ∈ S. Then, x is an optimal solution to (C-P) if and only if ∇f(x)>(y−x) ≥ 0, for all y ∈ S.
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x

∇f(x)
S

Figure 7.1.3

Proof: ⇐= : By Theorem 7.1.39 (by sub-gradient inequality), we have

f(y)− f(x) ≥ ∇f(x)>(y − x), ∀ y ∈ S.

So f(y) ≥ f(x) for all y ∈ S.

=⇒ : Suppose, for contradiction, ∇f(x)>(y − x) < 0 for some y ∈ S. Then, by prop 2 (and since
S is convex), there exists δ > 0 such that for all t ∈ (0,min(δ, 1)] we have

S 3 f(x+ t(y − x)) < f(x).

Hence x is not an optimal solution.

Proposition 7.1.41: Suppose S = {x ∈ Rn | Ax ≤ b} (polyhedron) with A ∈ Mm×n(R) and
f : S → R is convex and differentiable. Then, x is an optimal solution to min f(x) such that x ∈ S
if and only if there exsits λ ∈ Rm+ such that −∇f(x)> = λ>A and x,λ satisfy the complementary
slackness (CS) conditions (i.e. λi = 0 or (Ax)i = bi for all i ∈ [m]).

Note that this generalizes LP duality.

Proof: Exercise. /

7.1.3 Application: Separating Hyperplanes

Theorem 7.1.42: Let S ⊆ Rn be a such that S 6= ∅ is closed and convex. Let z /∈ S. Then, there
exists a hyperplane separating z from S. i.e. ∃ α ∈ Rn such that α>x < αz for all x ∈ S.

Proof: Let x be the unique point in S nearest to z. Then, x is an optimal solution to the convex
program

(C-P) : min f(x) =
def
‖x− z‖2,

subject to x ∈ S.

Claim 7.1.43: f is convex where ∇f(x) = 2(x− z).

Proof: Exercise.
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Hence, by Theorem 7.1.40, we have

∇f(x)>(y − x) ≥ 0, y ∈ S.

Hence we have 2(x− z)>(y − x) ≥ 0 for all y ∈ S. Let α = z− x. Hence we have

α>y ≤ α>x ∀ y ∈ S =⇒ α>z = ‖z− x‖2 +α>x > α>x since z 6= x.

Definition 7.1.44: We say that f : Rn → R is affine if f is of the form f(x) = α>x + β where
α ∈ Rn and β ∈ R. /

Remark 7.1.45: A non-linear program with affine functions are equivalent to linear programs. If
f(x) = α>x+ β, then we have ∇f(x) = α for all x ∈ Rn. /

Definition 7.1.46: Consider a non-linear program

(NLP) : min f(x),

subject to gi(x) ≤ 0, ∀ i ∈ [m].

We say that x̂ is a slater point of

1 x̂ is feasible for NLP,

2 gi(x̂) < 0 for all i ∈ [m] such that gi is not affine. /

Remark 7.1.47: The standard definition of slater points require gi(x̂) < 0 for all i ∈ [m] under
ANY constraints (for gi affine and not affine). /

Theorem 7.1.48 (Karush-Kuhn-Tucker (KKT) optimality conditions): Consider a convex program

(C-P) : min f(x),

subject to gi(x) ≤ 0, ∀ i ∈ [m],

where f, gi : R
n → R are convex and differentiable.

Let x be a feasible solution to (C-P). Define J(x) = {i ∈ [m] | gi(x) = 0} (these are the tight
constraints).

1 (Sufficiency) If −∇f(x) ∈ cone{∇gi(x) | i ∈ J(x)}, then x is an optimal solution to (C-P).
i.e. there exists λ ∈ Rm+ such that

−∇f(x) =
∑
i∈[m]

λi∇gi(x) and λigi(x) = 0︸ ︷︷ ︸
C-S conditions

, ∀ i ∈ [m].

These conditions are called the KKT conditions.

2 (Necessity) If x is an optimal solution and if there exists a feasible solution x̂ such that
gi(x̂) < 0 for all i ∈ J(x) such that gi is not affine then the KKT conditions hold.

Note that if (C-P) has a slater point then there exists a feasible solution x̂ < 0 for all i ∈ J(x) such
that gi is not affine. We will refer the condition in blue in 2 as the extra condition in the proof.
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Proof: 1 : Suppose we have

−∇f(x) =
∑
i∈[m]

λi∇gi(x), where λi ≥ 0, ∀ i ∈ J(x).

Then, for all feasible y and for all i ∈ J(x) by sub-gradient inequality we have

0 ≥ gi(y)︸ ︷︷ ︸
≤0

− gi(x)︸ ︷︷ ︸
=0

≥ ∇gi(x)>(y − x).

Hence
∇f(x)>(y − x) = −

∑
i∈J(x)

λi︸ ︷︷ ︸
≥0

∇g(x)>(y − x)︸ ︷︷ ︸
≤0

≥ 0, ∀ feasible y.

Hence by Theorem 7.1.40 we have x is an optimal solution.

2 : First, we note that the statement is false without the extra condition (fix). Consider the convex
program

(C-P) : min f(x) = x,

subject to g1(x) = x21 − x2 ≤ 0,

g2(x) = x2 ≤ 0.

(C-P) has the graph

x1

x2

(0, 0)

Figure 7.1.4: Illustration of (C-P).

Here the only feasible solution is x = (0, 0). Hence x is the optimal solution to (C-P). We have
J(x) = {1, 2}. This gives us

∇f(x) =
[
−1
0

]
/∈ cone{∇g1(x),∇g2(x)}, where

∇g1(x) =
[
2x1
−1

]∣∣∣∣
x

=

[
0
−1

]
,

∇g2(x) =
[
0
1

]
.

Suppose x is an optimal solution and

−∇f(x) /∈ cone{∇gi(x) | i ∈ J(x)} ≡ ∇f(x) /∈ cone{−∇gi(x) | i ∈ J(x)}.

By Farkas’ lemma (or duality), there exists d ∈ Rn such that −∇gi(x)>d ≥ 0 for all i ∈ J(x)
and ∇f(x)>d < 0. Since ∇f(x)>d < 0, we want to show that there exists ε > 0 such that
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f(x+εd) < f(x) (this follows from 1 ) and x+εd is feasible. Since for i /∈ J(x) we have gi(x) < 0,
then we can choose ε > 0 such that gi(x+ εd) ≤ 0. Also, for i ∈ J(x) where gi is affine we have

gi(x+ εd) = gi(x)︸ ︷︷ ︸
=0

+εd>∇gi(x)︸ ︷︷ ︸
≤0

≤ 0.

For i ∈ J(x), if gi is not affine then the dot product of the gradient with d can be zero (i.e.
∇gi(x)>d = 0). So for all ε > 0, we could have gi(x + εd) > gi(x) = 0. Note that by the extra
condition there exists a feasible x̂ such that gi(x̂) < 0 for all i ∈ J(x) and gi is not affine. We will
use x̂ to come up with d ∈ Rn such that

a ∇fi(x)>d < 0,

b ∇gi(x)>d < 0, ∀ i ∈ J(x) is not affine,

c ∇gi(x)>d ≤ 0, ∀ i ∈ J(x) such that gi is affine.

We see that given d, we can choose ε > 0 (suitably small) such that f(x + εd) < f(x), x + εd is
feasible, which gives us a contradiction.

Consider d̂ = x̂− x. For i ∈ J(x) such that gi is not affine we have

0 > gi(x̂)︸ ︷︷ ︸
<0

− gi(x)︸ ︷︷ ︸
=0

≥ ∇gi(x)>d̂,

i.e. ∇gi(x)>d̂ < 0. For the affine constraint we have for i ∈ J(x) such that gi is affine. This gives
us

0 ≥ gi(x̂)− gi(x) ≥ ∇gi(x)>d̂.

So we can take δ > 0 suitable small such that d = d + δd̂ satisfies a , b and c and we are
done.

We complete proof for Theorem 7.1.48. The proof is included at the end of previous lecture.

Recall 7.1.49: Recall the following.

1 If ∇f(x)>d < 0 then ∃ δ > 0 such that ∀ t ∈ (0, δ], f(x+ td) < f(x).

2 ∀ γ > 0, ∃ δ > 0 such that |f(x+ td)− f(x)| ≤ γ, ∀ t ∈ [−δ, δ].

/

Remark 7.1.50: We have shown that the KKT conditions are sufficient and necessary (under some
conditions) for optimality. Recall that KKT conditions are

−∇f(x) ∈ cone{∇gi(x) | i ∈ J(x)}.

Equivalently we have ∃ λ ∈ Rm+ such that

∇f(x) +
∑
i∈[m]

λi∇gi(x) = ∇

f(x) + ∑
i∈[m]

λigi(x)

 = 0 and λigi(x) = 0, ∀ i ∈ [m].

These conditions generalizes the geometric statement of CS conditions (c ∈ cone{rows of A=}). /
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Corollary 7.1.51: x is an optimal solution to min f(x) subject to x ∈ Rn ⇐⇒ ∇f(x) = 0.

This concludes the final lecture for CO 255 in Winter 2019.
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C
certificate of infeasibility, 10
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compact set, 67
concave
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set, 1

cone, 18
conic combination, 18
generated by a set, 18
polyhedral cone, 25

continuous function, 66
convex

function, 2, 65
strictly convex, 66

program, 2
set, 1

corner point, 22

D
decision problems, 61
deficient set, 55
degree of a vertex, 47
differentiable functions, 69
dual of an LP, 12

E
efficient algorithm, 36
elementary operations, 36
equilibrium, 5
extreme point, 22

G
global minimum of an (NLP), 65
gradient, 69
graph, 46

bipartite, 49
directed, 47

H
half-space, 11

I
inequality

active, 19
Chvátal-Gomory cut/inequality, 59
tight inequality, 19
valid, 15

infimum, 67
input size, 35
integral

matrix, 39
vector, 39

interior of a set, 67

K
KKT conditions, 73

L
limit of a function, 66
line, 24
local minimum of an (NLP), 65

M
matching, 49

perfect, 49
M -exposed node, 53
Minkowsky-Sum, 25
M -matched node, 53

N
nearest point, 68
neighbors, 29

bases, 30
extreme points, 29

NP-completeness, 62
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O
open ball, 67
open set, 67
optimization problem, 1

feasible region, 1
feasible solution, 1
infeasible, 1
non-deterministic polytime, 61
objective function, 1
polytime, 61
unbounded, 1
variables, 1

P
partition of sets, 49
path, 47

M -augmenting path, 54
perp of a set, 26
pivoting, 32
polyhedra, 11

integral, 43
pointed, 24
polyhedral cone, 25
polyhedron, 11
polytope, 25
rational, 38

polynomial time, 36
polytime reduction, 62
primal LP, 12
primal-dual pair, 12

program, 1
linear (LP), 1, 7
integer (IP), 1, 38

non-linear (NLP), 64
projection of a function along a vector, 69
projection of a set, 10

R
ray, 24
running time, 36

S
set of edges incident to a vertex, 47
shadow price, 21
size of an integer, 35
slack variables, 27
slater point, 73
standard equality form (SEF), 27
standard inequality form (SIF), 7, 12
supremum, 67

T
totally unimodular matrix, 44

V
variable

basic, 28
entering, 32
leaving, 32
non-basic, 28

vertex cover, 51
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