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Preface and Notation

This PDF document includes lecture notes for AMATH 353 - Partial Differential Equations 1 taught
by Francis J. Poulin in Winter 2019.

For any questions contact me at c2kent(at)uwaterloo(dot)ca.
Thanks to Zeqi Wang for notifying me of the typos.

Notation

Throughout the course and the notes, unless otherwise is explicitly stated, we adopt the following
conventions and notations.

• The university logo is used as a place holder.

• Chapter numbering follows the order in the official course notes.

• Lectures are numbered according to the scheduling of classes. In order to be consistent with
the lecture numbers from the instructor’s notes, student should compare the notes with the
lecture date instead.

• If an expression is said to be “≡ 0” then it means it is identically zero.

• We use round brackets (·, ·) to denote the inner product (instead of angular brackets).

• We use L (mathcal L) to denote the Sturm-Liouville operator in Notation 4.1.1 and use L
(curvy L) to denote the Laplace transform that we introduced in Definition 4.6.1.

Calvin KENT

iv
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Chapter 1. Modeling with PDEs 1

Chapter 1 – Modeling with PDEs

1.1 Introduction

Definition 1.1.1: A partial differential equation (PDE) is an equation that relates a function
of two or more variables with its partial derivatives. eg. If the variable is u(x, t) then the PDE is
of the form

F

(
x, t, u,

∂u

∂x
,
∂u

∂t
,
∂2u

∂x2
,
∂2u

∂x∂t
,
∂2u

∂t2
, . . .

)
= 0.

PDEs are often derived from conservation laws. /

For this course, in lectures we solve PDEs exactly and in tutorials we solve PDEs computationally.

Given a solution we need to interpret the results.

Remark 1.1.2: We define some general concepts as follows.

• A scalar PDE is a single PDE.

• A system of PDEs is two or more PDEs.

• The order of a PDE is set by the highest partial derivative. Most of the problems in this
course will be in first order or second order.

• To find a unique solution to a PDE where x is space t is time requires boundary conditions
and initial conditions.

• The vast majority of PDEs we consider are the ones where F has a linear dependency. This
is said to be a linear PDE . Otherwise, we say the PDE is non-linear . /

1.2 Conservation Laws

In today’s lecture, we performed an experiment by adding a drop of green dye into a small bucket
of water. We observed how the dye spread in water due diffusion. How do we describe this in
mathematical sense? We know that

• there is no spontaneous generation of dye,

• if at a given location, the concentration of dye increases, this must be due to

– transport across space,

– adding extra dye.

Consider a narrow 3-D tube

Winter 2019 AMATH 353 1



Chapter 1. Modeling with PDEs 2

Figure 1.2.1: Narrow 3-D tube.

We choose container to be narrow so that the concentration only depends on x (space) and on t
(time). We define our variables as

u(x, t) : mass density of dye [kg m−3]

A(x) : cross sectional area [m2]

f(x, t, u) : the rate at which the dye is added [kg m−3 s−1]

φ(x, t, u) : flux (transport) of dye [kg m−2 s−1]

Now consider two points x = a and x = b.

Figure 1.2.2: 3-D tube with bounds x = a and x = b.

Total mass in [a, b] is given by

ˆ b

a
u(x, t)A(x) dx.

Rate of change of mass in [a, b] is given by

d

dt

ˆ b

a
u(x, t)A(x) dx =

ˆ b

a

∂u(x, t)

∂t
A(x) dx.

Total change of mass by the source is given by

ˆ b

a
f(x, t, u)A(x) dx.

Total change of mass by the flux (transport) is given by

φ(a, t)A(a)− φ(b, t)A(b) = −
ˆ b

a

∂

∂x
(φ(x, t, u)A(x)) dx.

Hence, from the above we obtain

Winter 2019 AMATH 353 2



Chapter 1. Modeling with PDEs 3

Net rate of change
of mass in [a, b]

=
Net rate of change

of mass in [a, b] by source +
Net rate of change

of mass in [a, b] by flux.

This is referred as the conservation law.In mathematics, we express the conclusion we found above
as

d

dt

ˆ b

a
uAdx =

ˆ b

a
fAdx−

ˆ b

a

∂

∂x
(φA) dx. (1.2.1)

Note that this is a global property.

Recall 1.2.1: In the previous lecture we found a mathematical expression for conversation law in
Equation 1.2.1. We want to combine the terms to make things simpler, we assume A is constant.
We obtain

ˆ b

a

∂u

∂t
Adx−

ˆ b

a
fAdx+

ˆ b

a

∂φ

∂x
Adx = 0 =⇒

ˆ b

a

[
∂u

∂t
+
∂φ

∂x
− f

]
dx = 0.

Hence, by contradiction, we deduce

∂u

∂t
+
∂φ

∂x
− f = 0 (identically zero).

This is the conservation law in 1-D.This is a local property and is an example of a PDE. This PDE
cannot be solved without knowing f and φ. /

Winter 2019 AMATH 353 3



Chapter 1. Modeling with PDEs 4

1.2.1 Higher Dimensional Conservation Law

Figure 1.2.3: 3-D region.

We define

• u(x, t) : mass density [kg m−3].

• f(x, t, u) : rate of mass added by source [kg m−3 s−1].

• φ(x, t, u) : flux [kg m−2 s−1].

• n̂ : unit outward normal.

? Total mass is equivalent to
˚

V

udV .

? Rate of change of mass in V in time is equivalent to
d

dt

˚

V

udV =

˚

V

∂u

∂t
dV .

? Rate of change of mass by source is equivalent to
˚

V

f dV.

? Rate of change of mass by flux is equivalent to −
¨

∂V

φ · n̂dS = −
˚

V

∇ · φdV.

Hence, the global conservation law becomes

Winter 2019 AMATH 353 4



Chapter 1. Modeling with PDEs 5

d

dt

˚

V

udV =

˚

V

f dV −
‹

∂V

φ · n̂dS

Using both FTCs we obtain
˚

V

∂u

∂t
dV −

˚

V

f dV +

˚

V

∇ · φdV = 0

=⇒
˚

V

[
∂u

∂t
+∇ · φ− f

]
dV = 0.

True for any subvolume V . Hence, we deduce

∂u

∂t
+∇ · φ− f = 0. (local quantitiy) (1.2.2)

Recall 1.2.2: For n−dimensions we have the conservation law as ∂u
∂t +∇ · φ − f = 0. So, in 1-D

we have
∂u

∂t
+
∂φ

∂x
− f = 0. (1.2.3)

/

1.3 Constitutive Relations

Definition 1.3.1: In general we must specify φ
(
x, t, u, ∂u∂x ,

∂u
∂t , . . .

)
= 0. We denote this algebraic

relation as the personality of the equation . We need to make observations to find reasonable
φ’s. /

We will now drive and define some PDEs from the conservation law. For higher dimensions we will
refer to Equation 1.2.2 and for 1-D we will refer to Equation 1.2.3.

1.3.1 Diffusion Equation

We assume the conservation law holds. Moreover, we assume

1 n = 1, so we are in 1-D.

2 No sources or sinks, so f = 0. In this case our conservation law becomes
∂u

∂t
+
∂φ

∂x
= 0.

3 Fick’s Law: Diffusion is proportional to the gradient of density it is down gradient. Fick’s
law assumes that

φ(x, t) =
def
−D∂u

∂x
(x, t) where D is the diffusion constant with units [D] =

length2

time
.

We sub in our assumptions into (1.2.3) and obtain

Winter 2019 AMATH 353 5



Chapter 1. Modeling with PDEs 6

∂u

∂t
= −∂φ

∂x
= D

∂2u

∂x2
(Diffusion Equation)

Remark 1.3.2: If density has a length scale of L then what is the time scale of diffusion?

D is the diffusion coefficient with units [D] = L2

T . Hence T = L2

D . Which gives the intuition for the
fact that large features diffuse more slowly. Large D has faster time scales. We will confirm this
later on the course. /

1.3.2 Reaction-Diffusion Equation

We assume the conservation law holds. Moreover, we assume

1 n = 1, so we are in 1-D.

2 Fick’s law: φ = −D∂u
∂x

.

3 Sources are present, so f 6= 0.

This is same as Diffusion Equation except we have f 6= 0. Hence we obtain

∂u

∂t
= D

∂2u

∂x2
+ f. (Reaction-Diffusion Equation)

1.3.3 Fisher’s Equation

We have two choices for reactions:

f =

ru exponential growth

ru
(

1− u

K

)
logistic growth

We sub logistic growth into Reaction-Diffusion Equation and obtain Fisher’s equation as

∂u

∂t
= D

∂2u

∂x2
+ ru

(
1− u

K

)
where

r : growth rate
K : carrying capacity

(Fisher’s Equation)

1.3.4 Advection (Transport) Equation

We assume the conservation law holds. Moreover, we assume

1 n = 1, so we are in 1-D.

2 No sources, so f = 0.

Winter 2019 AMATH 353 6



Chapter 1. Modeling with PDEs 7

3 Flux is proportional to concentration, so φ = cu where c is constant and has units of speed.

We sub this into (1.2.3) and get ∂u
∂t + ∂

∂x(cu)− 0 = 0. Hence we obtain

∂u

∂t
+ c

∂u

∂x
= 0 (Linear Advection (Transport) Equation)

This describes the transport of solution at speed c.

1.3.5 Burger’s Equation

We assume the conservation law holds. Moreover, we assume

1 n = 1, so we are in 1-D.

2 No sources, so f = 0.

3 Flux obeys the Fick’s law and has a component that’s proportional to concentration, that is

φ = −D∂u
∂x

+Q(u).

So, flux has properties of combination of Fick’s law and advection.

We sub in our assumptions into (1.2.3) and obtain

∂u

∂t
+

∂

∂x

(
−D∂u

∂x
+Q(u)

)
= 0.

After rearranging we obtain
∂u

∂t
+
∂Q

∂x
= D

∂2u

∂x2
.

A particular choice for Q(u) is Q(u) = 1
2u

2. After subbing this in we obtain the Burger’s equation
as

∂u

∂t
+ u

∂u

∂x︸ ︷︷ ︸
non-linear advection

= D
∂2u

∂x2︸ ︷︷ ︸
diffusion

. (Burger’s Equation)

For the case where D = 0, we obtain the inviscid Burger’s equation

∂u

∂t
+ u

du

dx
= 0. (inviscid Burger’s equation)

1.3.6 Diffusion Equation in 3-D

We assume the conservation law holds. Moreover, we assume

1 n = 3, so we are in 3-D.

Winter 2019 AMATH 353 7



Chapter 1. Modeling with PDEs 8

2 No sources, so f = 0.

3 Fick’s law (in 3-D): φ = −D∇u.

We sub this into (1.2.2) and obtain

∂u

∂t
+∇ · (−D∇u) = 0.

Remark 1.3.3: We denote the divergence of the gradient as

∇ · ∇ = ∇2 =
def

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (Laplacian)

Older books might also use the notation ∇2 = ∆. /

Hence, our equation becomes

∂u

∂t
= D∇2u (diffusion equation in 3-D)

If we want a steady solution to this equation we assume u(x) satisfies

∇2u = 0. (Laplace’s equation)

Remark: We start the lecture by watching a short segment of a video featuring bowed violin string
in slow motion: https://www.youtube.com/watch?v=6JeyiM0YNo4

Note that in this experiment the string eventually stops due to drag (air resistance). /

1.4 Wave Equation

We can use other tools to derive PDEs eg. (Newton’s 2nd law). Motion of particle yields an ODE.
Motion of string (continuum) yields a PDE. Newton’s 2nd law can be rewritten as F = ma.

Figure 1.4.1: Vibrating string.

Winter 2019 AMATH 353 8
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Chapter 1. Modeling with PDEs 9

We define,

ρ(x) : mass density [kg m−3].

A : cross sectional area [m2] (constant).

T : string tension (F/A) [N m−2].
u(x, t) : vertical displacement from rest.

We assume that motion is purely vertical and slope ∂u
∂x is small. We need to know

1 Acceleration:
∂2u

∂t2
(vertical)

2 Mass: ρ(x)A(2∆x) (mass of subinterval)

3 Sum of forces; described in Figure 1.4.2 below.

Figure 1.4.2: Sum of forces on a vibrating string.

Note that in here the two tensions are parallel and they face opposite directions. We define the
tension (T ) as force divided by the area (F/A). We have the total forces in vertical as

F = AT (x+ ∆x, t) sin θ(x+ ∆x, t)−AT (x−∆x, t) sin θ(x−∆x, t)− ρ(x)A2∆xQ(x, t),

where Q(x, t) is the acceleration due to gravity. We sub this into the Newton’s 2nd law. We obtain

[ρ(x)A2∆x]
∂2u

∂t2
= AT (x+∆x, t) sin θ(x+∆x, t)−AT (x−∆x, t) sin θ(x−∆x, t)−ρ(x)A2∆xQ(x, t).

We divide the above equation by 2∆xA and take the limit as ∆x→ 0. We have

ρ(x)
∂2u

∂t2
= lim

∆x→0

T (x+ ∆x, t) sin θ(x+ ∆x, t)− T (x−∆x, t) sin θ(x−∆x, t)

2∆xA
− ρ(x)Q(x, t).

Hence we obtain

ρ(x)
∂2u

∂t2
=

∂

∂x
[T (x, t) sin θ(x, t)]− ρ(x)Q(x, t).

Note that ρ, T and Q must be specified. We now need to find θ in terms of u. From geometry we
have tan θ = sin θ

cos θ = ∂u
∂x . Hence, we get
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Chapter 1. Modeling with PDEs 10

Figure 1.4.3: Trigonometric identities.

So we can write

sin θ =
∂u
∂x√

1 +
(
∂u
∂x

)2 .
We obtain a closed PDE of the form

ρ
∂2u

∂t2
=

∂

∂x

T (x, t)
∂u
∂x√

1 +
(
∂u
∂x

)2
− ρ(x)Q(x, t).

We assume ρ, T are constant with slopes being small and we neglect gravity. So ∂u
∂x � 1. Then√

1 +
(
∂u
∂x

)2 ≈ 1. We divide the above expression by ρ and obtain

∂2u

∂t2
=
T

ρ

∂2u

∂x2
.

Since
[
T
ρ

]
= m2

s2
, we denote c2 =

def

T
ρ and obtain the wave equation as

∂2u

∂t2
= c2∂

2u

∂x2
(Wave Equation)

Note the comparison of wave equation with the Diffusion Equation in 1-D. The difference of 1st and
2nd derivatives yields completely different solutions.

1.4.1 Boundary Conditions

To find unique solutions to PDEs we must impose boundary conditions (BCs) and initial conditions
(ICs) that describe the physical state of the ends. The number is set by the order of time derivative.

1.4.1.1 Dirichlet

e.g. String is clamped.
u(0, t) = 0 and u(L, t) = 0. (Homogeneous)

e.g. String moving up and down.
u(0, t) = f(t). (Inhomogeneous)
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1.4.1.2 Neumann

e.g. Insulated boundaries
∂u

∂x
(0, t) = 0. (Homogeneous)

1.4.1.3 Mixed/Robin

A mixed or Robin boundary condition is of the form,

a
∂u

∂x
(0, t) + bu(0, t) = 0. (Homogeneous)

1.4.1.4 Periodic

Periodic boundary conditions. That is to say the solution is equal at the left and right ends of the
domain.

u(0, t) = u(L, t)

∂u

∂x
(0, t) =

∂u

∂x
(L, t).

1.5 Vibrating Membrane

Figure 1.5.1: Visualization of a vibrating drum.
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Chapter 1. Modeling with PDEs 12

We define,

u(x, y, t) : vertical displacement [m]

ρ(x, y) : mass density [kg m−2]

t̂ : unit tangent vector
n̂ : unit normal vector to surface (upwards)

FT : tensile (line) force, tangent to membrane[N m−2]

We assume that

1 u(x, y, t)� 1.

2 ∂u
∂x ,

∂u
∂y � 1 (small slopes).

3 Motion is purely vertical

4 Tension is constant in magnitude, that is |FT | = T0.

From physics, the force is given by
FT = T0t̂× n̂.

Hence, the vertical component of the force is given by

k̂ · FT = T0(̂t× n̂) · k̂.

Recall Newton’s 2nd law states F = ma. We have the acceleration at a point as ∂2u
∂t2

. To find ma
for a patch, we must find this at a point and integrate over area A. We have

ma =

¨

A

ρ0
∂2u

∂t2
dA.

Next, we look at the sum at the force over the perimeter. Recall the identity (̂t× n̂) · k̂ = (n̂× k̂) · t̂.
We sub this into our equation for the vertical component of the force and obtain

k̂ · FT = T0(̂t× n̂) · k̂ = T0(n̂× k̂) · t̂.

We must integrate the force over the perimeter to find the net force on the patch.

˛

∂A

T0(n̂× k̂) · t̂ ds =

˛

∂A

T0(̂t× n̂) · k̂ds.

Newton’s 2nd law yields ¨

A

ρ0
∂2u

∂t2
dA =

˛

∂A

T0(̂t× n̂) · k̂ ds.

This is also known as the global version of Newton’s law.

Recall 1.5.1 (Stokes’ Theorem): As a consequence of Stokes’ theorem we can write
˛

∂A

F · t̂ ds =

¨

A

(∇× F) · n̂ dA. /
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So, by Stokes theorem we rewrite line integrals as a double integral and get
˛

∂A

T0(n̂× k̂) · t̂ ds =

¨

A

T0[∇× (n̂× k̂)] · n̂dA.

If we sub into Newton’s 2nd law and combine the two integrals we get
¨

A

[
ρ0
∂2u

∂t2
− T0[∇× (n̂× k̂)] · n̂

]
dA = 0.

Since this is true for any A, we deduce

ρ0
∂2u

∂t2
= T0(∇× (n̂× k̂)) · n̂. (1.5.1)

This is another version of the wave equation. To get a simple PDE, we rewrite n̂ in terms of u.
Recall if the surface is z = u(x, y) and if we have small slopes, then we can find the unit normal as

n̂ =

(
−∂u
∂x ,−

∂u
∂y , 1

)
∥∥∥(−∂u

∂x ,−
∂u
∂y , 1

)∥∥∥ =

(
−∂u
∂x ,−

∂u
∂y , 1

)
√

1 +
(
∂u
∂x

)2
+
(
∂u
∂y

)2
≈
(
−∂u
∂x
,−∂u

∂y
, 1

)
.

We also have

n̂× k̂ =

∣∣∣∣∣∣
î ĵ k̂

−∂u
∂x −∂u

∂y 1

0 0 1

∣∣∣∣∣∣ =

(
−∂u
∂y
,−∂u

∂x
, 0

)
,

∇× (n̂× k̂) =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

−∂u
∂x −∂u

∂y 0

∣∣∣∣∣∣∣ =

(
0, 0,

∂2u

∂x2
+
∂2u

∂y2

)
.

Hence we have

[∇× (n̂× k̂)] · n̂ =
∂2u

∂x2
+
∂2u

∂y2
= ∇2

Hu,

where H subscript denotes horizontal. We sub this in to (1.5.1) and obtain

ρ0
∂2u

∂t2
= T0∇2

Hu.

We let c2 =
def

T0/ρ0 and obtain the 2D wave equation as

∂2u

∂t2
= c2∇2

Hu = c2

(
∂2u

∂x2
+
∂2u

∂y2

)
. (2D wave equation)
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Chapter 2 – Classification of 2nd-Order PDEs

Recall we previously we found the Diffusion Equation, Wave Equation and the Laplace’s Equation
as

∂u

∂t
= D

∂2u

∂x2
(Diffusion Equation)

∂2u

∂t2
= c2∂

2u

∂x2
(Wave Equation)

∂2u

∂x2
+
∂2u

∂y2
= 0 (Laplace’s Equation)

We will classify PDEs in 3 types: parabolic, hyperbolic, elliptic.

2.1 General 2nd-Order Linear PDEs

The most general 2nd-order linear PDE that we can write down is,

A
∂2U

∂x2
+ 2B

∂2U

∂x∂y
+ C

∂2U

∂y2
+D

∂U

∂x
+ E

∂U

∂y
+ FU = G.

We must specify A,B,C,D,E, F,G that is our PDE. To classify, we focus on 2nd-order terms

A
∂2U

∂x2
+ 2B

∂2U

∂x∂y
+ C

∂2U

∂y2
= A

(
∂

∂x

)2

U + 2B

(
∂

∂x

)(
∂

∂y

)
U + C

(
∂

∂y

)2

U.

This is a quadratic form in terms of ∂
∂x and ∂

∂y . Compare this with

Ax2 + 2Bxy + Cy2 = 0.

We can use quadratic equation to find the roots as follows:

ω± =
−2B ±

√
4B2 − 4AC

2A
=
−B ±

√
B2 −AC
A

.

Since there are 3 classifications of quadratic forms based on the sign of the discriminant, then there
are 3 classes of PDEs.

B2 −AC =


∆ > 0 hyperbolic
∆ = 0 parabolic
∆ < 0 elliptic
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Example 2.1.1 (Wave Equation): Take y = t. We get

c2∂
2u

∂x2
− ∂2u

∂y2
= 0.

So we have A = c2, B = 0, C = −1. Since we have B2 − AC = 0− c2(−1) = c2 > 0 then the wave
equation is hyperbolic. /

Example 2.1.2 (Diffusion Equation): We have

D
∂2u

∂x2
.

In this case we have A = D and B = 0 = C. So B2 − AC = 0. Hence the diffusion equation is
parabolic. /

Example 2.1.3 (Laplace’s Equation): We have

∂2u

∂x2
+
∂2u

∂y2
= 0.

So we have A = 1, B = 0, C = 1, which gives us B2−AC = 0−1(1) = −1 < 0. Hence the Laplace’s
equation is elliptic. /

2.2 Reduction to Standard Form

2.2.1 Wave Equation

The wave equation can be written as

∂2u

∂t2
− c2∂

2u

∂x2
= 0(

∂2

∂t2
− c2 ∂

2

∂x2

)
u = 0.

We are going to factor differential operators as if they are are algebraic terms. We have(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0.

This equation (which resembles to advection) is hard to solve. So we will rewrite the equation for
x, t to ζ, η to reduce the equation to a simpler form we can solve. Define

ζ = x− ct

η = x+ ct


x =

ζ + η

2

y =
η − ζ

2c
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We define the variables ζ and η as characteristic variables. By change of variables we have

∂

∂ζ
u =

∂u

∂ζ
=
∂x

∂ζ

∂u

∂x
+
∂t

∂ζ

∂u

∂t
=

1

2

∂u

∂x
− 1

2c

∂u

∂t
= − 1

2c

[
∂

∂t
− c ∂

∂x

]
u.

∂

∂η
u =

∂u

∂η
=
∂x

∂η

∂u

∂x
+
∂t

∂η

∂u

∂t
=

1

2

∂u

∂x
+

1

2c

∂u

∂t
=

1

2c

(
∂

∂t
+ c

∂

∂x

)
u.

Hence we get

−2c
∂

∂ζ
=

(
∂

∂t
− c ∂

∂x

)
and 2c

∂

∂η
=

(
∂

∂t
+ c

∂

∂x

)
.

Hence, we get the wave equation as(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0 =⇒

(
−2c

∂

∂ζ

)(
2c

∂

∂η

)
u = 0

=⇒ ∂2u

∂ζ∂η
= 0. (wave equation in characteristic form)

We integrate this w.r.t η. We get
∂u

∂ζ
= α′(ζ).

We now integrate w.r.t ζ and get
u(ζ, η) = α(ζ) + β(η).

We rewrite in terms of x and t and obtain

u(x, t) = α(x− ct) + β(x+ ct) (d’Alembert’s Solution)

Question: What if we want to impose ICs? Consider the ICs

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x). (2.2.1)

We plug in the solution into first IC. We get

u(x, 0) = α(x) + β(x) = f(x).

Similarly for second IC, we get

∂u

∂t
(x, 0) = −cα′(x) + cβ′(x) = g(x).

Wave Equation (continued)

Recall that last lecture when we imposed the ICs given in (2.2.1) on d’Alembert’s solution and
obtained

∂u

∂t
(x, 0) = −cα′(x) + cβ′(x) = g(x). (2.2.2)

We divide this expression by c and integrate to obtain

− α(x) + β(x) =
1

c

ˆ x

0
g(s), ds. (2.2.3)
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We add (2.2.2) with (2.2.3) and sub (2.2.2) in (2.2.3) to obtain

β =
1

2
f +

1

2

ˆ x

0
g(s) ds,

α =
1

2
f − 1

2

ˆ x

0
g(s) ds.

We sub this into d’Alembert’s solution and obtain

u(x, t) =
1

2
f(x− ct)− 1

2

ˆ x−ct

0
g(s) ds+

1

2
f(x+ c) +

1

2

ˆ x+c

0
g(s) ds.

In summary, we get

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

ˆ x+ct

x−ct
g(s) ds.

2.3 Formulation of IVPs and BVPs

Definition 2.3.1: If a problem

1 has a solution,

2 the solution is unique and,

3 the solution depends continuously on ICs and BCs.

then we say the problem is a well-posed problem. Otherwise, we say the problem is an ill-posed
problem. /

Example 2.3.2: An example of an ill-posed problem is

(PDE)
∂2u

∂x2
+
∂2u

∂y2
= 0 where −∞ < x <∞, y > 0,

(BCs) u(x, 0) = 0 and
∂u

∂x
(x, 0) =

sin(nx)

n
.

The solution is
u(x, y) =

sinh(nx) sinh(nx)

n2
.

Case 1: In the limit as n→∞, the only solution to the PDE and the BCs is u(x, y) = 0.
Case 2: Limit at the solution n→∞ is u(x, y)→∞ (since sinhx = ex−e−x

2 )

Since small variations in BCs yield huge changes in solution then the problem is ill-posed. /
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Chapter 4 – IBVPs in Bounded Domains

4.1 Introduction

4.1.1 Governing Equations (PDEs)

Recall we obtain the n-dimensional conservation law in (1.2.2). We now consider it in the form

ρ(x)
∂u

∂t
+∇ · φ = f. (4.1.1)

Here we have added ρ(x) to generalize the conservation law slightly. We assume the following:

1 Fick’s law: φ = −p(x)∇u.

2 Newton’s law of cooling: f = −q(x)u+ ρ(x)F .

We sub our assumptions into (4.1.1) and obtain

ρ(x)
∂u

∂t
−∇ · (p(x)∇u) = −q(x)u+ ρ(x)F

Which gives us

ρ(x)
∂u

∂t
−∇ · (p(x)∇u) + q(x)u = ρ(x)F.

In 1-D we have
ρ(x)

∂u

∂t
− ∂

∂x

(
p(x)

∂u

∂x

)
+ q(x)u = ρ(x)F.

Notation 4.1.1: We define the operator L as

L[u] = − ∂

∂x

(
p(x)

∂u

∂x

)
+ q(x)u (1D)

or = −∇ · (p(x)∇u) + q(x)u. (n-dim)

We will show this operator satisfies the eigenvalue relations. /

By using this notation, our PDE becomes

ρ
∂u

∂t
+ L[u] = ρF.
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Example 4.1.2: In 1-D, pick ρ(x) = 1, p(x) = D, q(x) = 0, F (x) = 0. We get the diffusion
equation,

∂u

∂t
−D∂

2u

∂x2
= 0. (Diffusion Equation)

In 2D, pick ρ(x) = 0, p(x) = 1, q(x) = 0, F (x) = 0. We get

∇2u = 0,

which is the Laplace’s equation. /

4.1.2 Boundary Conditions

General BCs we impose 3D are

α(x)u

∣∣∣∣
∂V

+ β(x)
∂u

∂n

∣∣∣∣
∂V

= B(x, t).

Remark 4.1.3: We define
∂u

∂n
≡ n̂ · ∇u as the exterior normal derivative on the boundary.

If β ≡ 0 then we have a Dirichlet BC.
If α ≡ 0 then we have a Neumann BC.

In 1-D this becomes (for x = 0 and x = L)

α1u(0, t)− β1
∂u

∂x
(0, t) = B1(t),

α2u(L, t) + β2
∂u

∂x
(L, t) = B2(t).

It is similar in higher dimensions. /

4.2 Separation of Variables

Hyperbolic case: We use the same L operator as before, which we defined in (4.1.1), we get

ρ(x)
∂2u

∂t2
+ L[u] = ρF. (Hyperbolic PDE)

α1u(0, t)− β1
∂u

∂x
(0, t) = 0.

α2u(L, t) + β2
∂u

∂x
(L, t) = 0.

BCs

u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x).

ICs

Special case: When we have ρ(x) = 1, p(x) = c2, q(x) = 0 and F = 0 we get
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∂2u

∂t2
− c2∂

2u

∂x2
= 0. (Wave Equation)

Parabolic case: The PDE from last lecture was parabolic. We use the L same operator which
defined in (4.1.1). We had

ρ(x)
∂u

∂t
+ L[u] = ρF. (Parabolic PDE)

α1u(0, t)− β1
∂u

∂x
(0, t) = 0.

α2u(L, t) + β2
∂u

∂x
(L, t) = 0.

BCs

u(x, 0) = f(x).
}
IC

Special case: When we have ρ(x) = 1, p(x) = D, q(x) = 0 and F = 0 we get

∂u

∂t
−D∂

2u

∂x2
= 0. (Diffusion Equation)

Elliptic case: We use the same L operator as before, we get

−ρ(x)
∂2u

∂y2
+ L[u] = ρF, (Elliptic PDE)

α1u(0, y)− β1
∂u

∂x
(0, y) = 0,

α2u(L, y) + β2
∂u

∂x
(L, y) = 0.

BCs

We need two conditions (“ICs”) in the y direction.

Special case: When we have ρ(x) = 1, p(x) = 1, q(x) = 0 and F = 0 we get

∂2u

∂x2
+
∂2u

∂y2
= 0. (Laplace’s Equation)

4.2.1 Separating the Variables

For the hyperbolic problem, assume the solution u(x, t) can be written as a product of a function
of space and a function of time in the following way,

u(x, t) = M(x)N(t).
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1 We sub into the (homogeneous) PDE in (Hyperbolic PDE) (so F ≡ 0)

ρ
∂2u

∂t2
+ L[u] = 0

ρ
∂2

∂t2
[MN ] + L[MN ] = 0

ρMN ′′ +NL[M ] = 0

2 We divide the expression by ρMN and move 2nd terms to RHS

N ′′

N
= −L[M ]

ρM
.

3 Since the LHS is a function of time and the RHS is a function of space and they are equal,
then the functional dependencies must cancel out, so we must have a constant. We denote
this constant as −λ,

N ′′

N
= −L[M ]

ρM
= −λ.

4 This gives us two ODEs,

N ′′ + λN = 0

L[M ] = λρM.

Which gives us

− d

dx

(
p(x)

dM

dx

)
+ q(x)M = λρM.

We divide by ρ and we get
1

ρ
L[M ] = λM.

Here we refer to λ as an eigenvalue and M as an eigenfunction. Note that we have

1

ρ
L[M ] =

1

ρ

[
− d

dx

(
p

dM

dx

)
+ q(x)M

]
,

so here L is a linear differential operator.

Parabolic Case: ρ∂u∂t + L[u] = 0. Following the same steps as before, we get almost the same
thing.

N ′

N
= −L[M ]

ρM
= −λ =⇒ N ′ + λN = 0

=⇒ L[M ] = λρM.
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Elliptic Case: −ρ∂2u
∂y2

+ L[u] = 0. Following the same steps as before, we get

−N
′′

N
= −L[M ]

ρM
= −λ =⇒ N ′′ − λN = 0

=⇒ L[M ] = λρM.

In three cases the ODE for M is identical. Note that we can also separate the boundary conditions
u(x, t) = M(x)N(t). We have

α1u(0, t)− β1
∂u

∂x
(0, t) = 0

α1M(0)N − β1M
′(0)N = 0

[α1M(0)− β1M
′(0)]N = 0

In order to get non-trivial solutions, we require

1M(0)− β1M
′(0) = 0,

α1M(L) + β2M
′(L) = 0,

L[M ] = λρM.

Boundary Value Problem
(Eigenvalue Problem)

Special case: When we have β1 = 0 = β2 = 0, ρ(x) = 1, p(x) = 1, q(x) = 0 we get

−d2M

dx2
= λM

M(0) = 0 = M [L],

an example
of a BVP

In order to get a non-trivial solution, we have three cases to consider.

1 λ = 0, so the solutions are M = a+ bx,

BC 1 : M(0) = a = 0

BC 2 : M(L) = bL = 0 =⇒ b = 0

}
M = 0.

2 λ < 0, so the solutions are M = a sinh
(√

λ x
)

+ b cosh
(√

λ b
)
,

BC 1 : M(0) = b = 0

BC 2 : M(L) = a sinh
(√
−λ L

)
= 0 =⇒ a = 0

M = 0.

3 λ > 0... (this will be completed)

4.2.2 Self-Adjoint Operators

In the 3 different cases of PDEs and BCs we found the same boundary value problem (BVP) which
is in the form

BVP


L[M ] = λρM, ODE

α1M(0)− β1M
′(0) = 0 BC1,

α1M(L) + β2M
′(L) = 0 BC2.
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The 2nd ODE depends on the particular case

N ′′ + λN = 0 (hyperbolic)
N ′ + λN = 0 (parabolic)
N ′′ − λN = 0 (elliptic)

Special Case: For the case ρ = 1, p = 1, q = 0 we have

BVP


− d2M

dx2
= λM,

M(0) = 0,

M(L) = 0.

Last time we showed that
if λ ≤ 0 we only have
the trivial solution

If λ > 0 the general solution of 2nd order ODE is

M = c1 sin
(√

λ x
)

+ c2 cos
(√

λ x
)
.

When we impose the boundary conditions we get

BC1: M(0) = c2 = 0.

BC2: M(L) = c1 sin
(√

λ L
)

= 0.

To get non-trivial solutions, we need c1 6= 0 and
√
λ L =

√
λn L = nπ where n = 1, . . .. Hence we

deduce
λn =

(nπ
L

)2

where λn are the eigenvalues of the system. The corresponding eigenfunction is

Mn = sin
(nπx
L

)
.

Figure 4.2.1: Eigenfunctions for n = 1, 2, 3.

Note that in general, the general eigenfunction is in the form

Mn = c1 sin
(nπx
L

)
.
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4.2.3 Properties of BVPs in General

Definition 4.2.1: The inner product of functions f(x), g(x) with weight ρ(x) > 0 is

(f, g) =
def

ˆ L

0
ρ(x)f(x)g(x) dx.

Recall that weight of a function, ρ(x), is the term that appears in front of the term with the
time derivative. Here the functions f, g are well-defined (and ρ(x) > 0 )in the interval (0, L). In
3-dimensions, we have

(f, g) =
def

˚

V

ρfg dV. /

Remark 4.2.2: So, f, g are orthogonal with respect to the weight function ρ(x) if (f, g) = 0. /

Definition 4.2.3: The norm of functions with respect to the inner product of functions is

‖f‖2ρ = ‖f‖2 = (f, f) ≡
ˆ L

0
ρ(x)f2(x) dx. /

Definition 4.2.4: An operator L is said to be self-adjoint if

(w,L[u]) = (L[w], u). /

Example 4.2.5: We want to show that the operator 1
ρL we defined in Notation 4.1.1 is self-adjoint.

Recall that we have
L[u] = − d

dx

(
p(x)

du

dx

)
+ qu.

We have(
w,

1

ρ
L[u]

)
−
(

1

ρ
L[w], u

)
=

ˆ L

0
ρw

1

p

(
−(pu′)′ + qu

)
dx−

ˆ L

0
ρ

1

ρ

(
−(pw′)′ + qw

)
udx

=

ˆ L

0
−w(pu′)′ + quw + u(pw′)′ − quw dx

=

ˆ L

0
−(pwu′)′ + pu′w′ + (puw′)′ − pu′w′ dx

= −
ˆ L

0

d

dx
(pwu′ − puw′) dx

= −
[
p(wu′ − uw′)

]L
0

.

Assuming we have the boundary conditions α1u(0) = β1u
′(0),

α2u(L) = −β2u
′(L),

and α1w(0) = β1w
′(0),

α2w(L) = −β2w
′(L),

we get

(
w,

1

ρ
L[u]

)
−
(

1

ρ
L[w], u

)
= −

[
p

(
−β2

α2
u′w′ +

β2

α2
u′w′

)]
x=L

+

[
p

(
β1

α1
w′u′ − β1

α1
u′w′

)]
x=0

= 0.

Hence
(
w, 1

ρL[u]
)

=
(

1
ρL[w], u

)
. Hence 1

ρL is self-adjoint with BCs. /
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4.2.4 Positivity of the L Operator

Definition 4.2.6: An operator T is said to be positive if

(u, T [u]) ≥ 0. /

Proposition 4.2.7: The operator 1
ρL is positive.

Proof: We have (
u,

1

ρ
L[u]

)
=

ˆ L

0
ρu

1

ρ

[
− d

dx

(
p

du

dx

)
+ qu

]
dx

=

ˆ L

0
p

(
du

dx

)2

+ qu2 dx−
[
pu

du

dx

]L
0

.

Since by boundary conditions we have

α1u(0) = β1u
′(0) and α2u(L) = −β2u

′(L).

Hence we get(
u,

1

ρ
L[u]

)
=

ˆ L

0
p

(
du

dx

)2

+ qu2 dx+

[
β2

α2
p

(
du

dx

)2
]
x=L

+

[
β1

α1
p

(
du

dx

)2
]
x=0

Since p > 0, q ≥ 0 and since α1, α2, β1, β2 ≥ 0 then we have(
u,

1

ρ
L[u]

)
≥ 0

as required.

4.3 Eigenfunction Expansions

4.3.1 Orthogonality of Eigenfunctions

Recall the operator 1
ρL is self-adjoint, i.e.(

w,
1

ρ
L[u]

)
−
(

1

ρ
L[w], u

)
= 0.

So, if we pick u = Mk and w = Mj , where Mj ,Mk are eigenfunctions, then we have(
Mj ,

1

ρ
L[Mk]

)
−
(

1

ρ
L[Mj ],Mk

)
= 0.

Since Mj ,Mk are eigenfunctions, then they must satisfy the eigenvalue relation, that is

1

ρ
L[Mk] = λkMk.

Hence we have
(Mj , λkMk)− (λjMj ,Mk) = 0 =⇒ (λk − λj)(Mj ,Mk) = 0.

Hence, if λk − λj 6= 0, then (Mj ,Mk) = 0. In other words, eigenfunctions corresponding to distinct
eigenvalues are orthogonal.
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Eigenvalues are Non-negative

Since 1
ρL is positive, then (

Mk,
1

ρ
L[Mk]

)
≥ 0.

Hence,
(Mk, λMk) ≥ 0 =⇒ λk(Mk,Mk) = λk‖Mk‖2 ≥ 0.

Since the eigenfunctions are non-trivial (non-zero), then ‖Mk‖2 > 0. Hence

λk ≥ 0.

Hence, all eigenvalues of L operator with BCs are non-negative.

Recall the 3 different cases and their solutions which we considered

Hyperbolic:
Parabolic:
Elliptic:

N ′′k + λkNk = 0

N ′k + λkNk = 0

N ′′k − λkNk = 0

which has
the solution

Nk = ak cos
(√

λk t
)

+ bk sin
(√

λk t
)
,

Nk = ak exp(−λkt),

Nk = ak cosh
(√

λk t
)

+ bk sinh
(√

λk t
)
.

Remark 4.3.1: We use the separation of variables which we assumed u(x, t) = M(x)N(t). In each
case, the following is a solution

uk(x, t) = Mk(x)Nk(t).

This solves the PDEs and BCs but in general this does not satisfy the ICs. Even though uk is as
solution, we need a general solution for all ICs. By linear superposition, since PDEs and BCs are
linear and homogeneous, then the sum of two solutions is still a solution. The most general solution
is a superposition over all the eigenfunctions, which is of the form

u(x, t) =

∞∑
k=1

uk(x, t) =

∞∑
k=1

Mk(x)Nk(t). /

Hyperbolic Case: Consider the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x).

We have

u(x, t) =
∞∑
k=1

Mk(x)
[
ak cos

(√
λk t

)
+ bk sin

(√
λk t

)]

We need to find ak, bk that satisfy the given ICs. For first IC, we have

u(x, 0) =

∞∑
k=1

akMk(x) = f(x).
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For the second IC we get

∂u

∂t
(x, 0) =

∞∑
k=1

√
λk akMk(x) = g(x).

These equations are called generalized Fourier series for functions f(x), g(x) and the constants
ak, bk determine the generalized Fourier coefficients.

To determine ak, bk we project onto Mj . We have

(f,Mj) =

( ∞∑
k=1

akMk,Mj

)
=

∞∑
k=1

ak(Mk,Mj) = aj(Mj ,Mj) = aj =
(f,Mj)

‖Mj‖2
.

Similarly,

bj =
(g,Mj)√
λj (Mj ,Mj)

Note that for the case where ‖Mk‖ = 1 and ‖Mj‖ = 1 we get

ak = (f,Mj) and bk =
(g,Mj)√

λk
.

Remark: We start the lecture by watching a short segment of a video featuring a vibrating string.
This allows us to see the behavior of Eigenfunctions on a spring: https://www.youtube.com/watch?v=

BSIw5SgUirg /

Recall 4.3.2: In the 3 cases (hyperbolic, parabolic and elliptic), we have

BVP


L[M ] = λρM, ODE

α1M(0)− β1M
′(0) = 0 BC1,

α1M(L) + β2M
′(L) = 0 BC2.

If p > 0, q ≥ 0, ρ > 0 and α1, α2, β1, β2 > 0 then 1
ρL is a positive operator and only has positive

eigenvalues (non-negative). /

Parabolic Case: N ′n + λnNn = 0. The solution is Nn = ane
−λnt. The general solution is

u(x, t) =
∞∑
n=1

Mnan(x)e−λnt with IC u(x, 0) = f(x).

We evaluate the solution at t = 0. We have

u(x, 0) =

∞∑
n=1

anMn(x) = f(x).
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We project on Mj(x), we get

(f,Mj) =

( ∞∑
n=1

anMn,Mj

)
=

∞∑
n=1

an(Mn,Mj) = aj(Mj ,Mj).

Hence, we have

aj =
(f,Mj)

(Mj ,Mj)
.

Special Case: Consider the diffusion equation with

∂u

∂t
= D

∂2u

∂x2
, (PDE)

u(0, t) = 0 = u(L, t), (BCs)
u(x, 0) = f(x). (IC)

1 Separate variables: u(x, t) = M(x)N(t).

a Sub into PDE.
MN ′ = DM ′′N.

b Divide by DMN .
N ′

DN
=
M ′′

M
= −λ.

c Obtain the ODEs for M and N .

M ′′ + λM = 0,

N ′′ + λDN = 0.

d Separate the BCs and combine with the obtained ODEs.

u(0, t) = M(0)N = 0 =⇒ M(0) = 0.

u(L, t) = M(L)N = 0 =⇒ M(L) = 0.

We get
M ′′ + λM = 0 with M(0) = 0 = M(L).

From before, the only case that yields non-trivial solutions is λ > 0.

Aside: Suppose, for contradiction, λ < 0. We have

M = a cosh
(√
−λ x

)
+ b sinh

(√
−λ x

)
BC1: M(0) = a = 0.

BC2: M(L) = b sinh
(√
−λ L

)
= 0.
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If BC2 is zero, then either b = 0 or sinh
(√
−λ L

)
. If we are looking for non-trivial

solutions, then b 6= 0. Then, sinh
(√
−λ L

)
= 0. This is only true if L = 0 or

√
−λ = 0.

Since L 6= 0 then
√
−λ = 0. Then λ = 0. This is a contradicts with the assumption

that λ < 0. /

2 Since λ ≥ 0, then the solution to BVP is

M = a cos
(√

λ x
)

+ b sin
(√

λ x
)
.

Hence we get

BC1: M(0) = a = 0,

BC2: M(L) = b sin
(√

λ L
)

= 0.

Hence,
√
λ L = nπ where n = 1, 2, . . .

λn =
(nπ
L

)2

Mn = sin
(
n
πx

L

)
.

3 For N(t) we have

N ′n + λnDNn = 0Nn = ak exp(−λn) = an exp

(
−
(nπ
L
Dt
)2
Dt

)
.

4 Hence, we have the general solution as

u(x, t) =
∞∑
n=1

Mn(x)Nn(t) =
∞∑
n=1

sin
(
n
πx

L

)
an exp

(
−
(
n
π

L

)2
Dt

)
.

If n = 1, the eigenfunction decays like exp
(
− π
L

)2
Dt.

If n = 2, the eigenfunction decays like exp
(
−2π

L

)2
Dt.

The shorter the wavelength, the faster the eigenfunction is going to decay. If t is large but
finite, then we expect the solution to be dominated by the first term (n = 1).

u(x, t)→ sin
(πx
L

)
a1 exp

(
−
(π
L

)2
Dt

)
.

Recall 4.3.3: We have ∂u
∂t = D ∂2u

∂x2
. Given length scale L and diffusion rate D, time scale of decay

is T = L2/D. Note that this is clear if we simply look at the exponential term in sum. /

Definition 4.3.4: We denote the time it takes for each mode to decay as e-folding time. In this
case, the e-folding time is (

L

nπ

)2 1

D
. /
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4.4 Sturm-Liouville Problems and Fourier Series

Recall 4.4.1: We defined our BVP as

L[u] =
def
− d

dx

(
p

du

dx

)
+ qu = λρu

on a domain x ∈ [0, L] with BCs

α1u(0)− βdu

dx
(0) = 0,

α1u(L) + β
du

dx
(L) = 0. /

Definition 4.4.2: If a problem is of the form

− d

dx

(
p

du

dx

)
+ qu = λρu ≡ −(p(x)u′)′ + q(x)u = λρ(x)u

and if p, ρ > 0 and q ≥ 0 and if p, ρ, q, dp
dx are continuous on the interval [0, L] then we call this

problem a Sturm-Lioville problem. In addition, if we also have

αi ≥ 0, βi ≥ 0 and αi + βi > 0 for i = 1, 2

then we call this problem a regular Sturm-Lioville problem. /

Definition 4.4.3:

1 We define the Hermitian inner product of two functions ϕ(x) and ψ(x) as

(ϕ(x), ψ(x)) =
def

ˆ L

0
ρ(x)ϕ(x)ψ(x) dx,

with respect to the weighing function ρ(x) > 0. Hermitian inner product can be complex.

2 For a complex number C 3 z = a+ ib where a, b ∈ R, we define the complex conjugate of
z as z = a+ ib = a− ib.

3 We define norm of ϕ(x) with respect to Hermitian inner product as

‖ϕ‖2 = (ϕ,ϕ) =
def

ˆ L

0
ρ(x)ϕ(x)ϕ(x) dx =

ˆ L

0
ρ|ϕ|2 dx ≥ 0 with ‖ϕ‖2 = 0 ⇐⇒ ϕ ≡ 0.

This norm is also referred as the two-norm.

4 If norm of a function is finite, then such function is said to be square integrable.

5 If ‖ϕ‖ = 1 then we say ϕ(x) is normalized.

6 We say two functions ϕ,ψ are orthogonal if (ϕ,ψ) = 0

7 We refer to a set of functions {ϕk(x)} for k = 1, . . . as an orthogonal set if (ϕi, ϕj) = 0 for
distinct i, j = 1, . . ..

8 An orthogonal set where each function is normalized is called an orthonormal set.
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9 We define the Fourier coefficients of ϕ(x) with respect to the orthonormal set {ϕk(x)} where
k = 1, 2, . . . as

(ϕ,ϕk).

10 We define the Fourier series of ϕ(x) with respect to the orthonormal set the orthonormal
set {ϕk(x)} where k = 1, 2, . . . as

ϕ(x) =
∞∑
k=1

(ϕ,ϕk)ϕk(x). /

4.4.1 Convergence

Consider the N th partial sum of a Fourier series

ψN =

N∑
k=1

(ϕ,ϕk)ϕk(x).

We can determine whether the Fourier series converges or not by checking if the above limit exists
as N → ∞. One way to do this is to consider the difference between the function, ϕ(x), and its
N th partial sum ψN (x). Consider the following

‖ϕ− ψN‖2 =

∥∥∥∥∥ϕ−
N∑
k=1

(ϕ,ϕk)ϕk

∥∥∥∥∥
2

=

(
ϕ−

N∑
k=1

(ϕ,ϕk)ϕk, ϕ−
N∑
k=1

(ϕ,ϕk)ϕk

)

= (ϕ,ϕ) +

(
ϕ,−

N∑
k=1

(ϕ,ϕk)ϕk

)
+

(
−

N∑
k=1

(ϕ,ϕk)ϕk, ϕ

)

+

(
N∑
k=1

(ϕ,ϕk)ϕk,
N∑
`=1

(ϕ,ϕ`)ϕ`

)

= ‖ϕ‖2 − 2

N∑
k=1

(ϕ,ϕk)
2 +

N∑
k=1

(ϕ,ϕk)
2

= ‖ϕ‖2 −
N∑
k=1

(ϕ,ϕk)
2 ≥ 0. (4.4.1)

The inequality in (4.4.1) is known as the Bessel’s inequality.

Definition 4.4.4: A sequence of square integrable functions {ψN (x)} where N = 1, 2, . . . is said
to converge to a function ϕ(x) in the mean if

lim
N→∞

‖ϕ− ψN‖ = 0.

This is also referred to as mean square convergence. If the equality

∞∑
k=1

(ϕ,ϕk)
2 = ‖ϕ‖2 (4.4.2)
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holds, then

lim
N→∞

‖ϕ− ψN‖2 = lim
N→∞

∥∥∥∥∥ϕ(x)−
N∑
k=1

(ϕ,ϕk)ϕk

∥∥∥∥∥
2

= 0,

which means Fourier series converges in the mean square sense. The equality in (4.4.2) is known as
Parseval’s equality. /

Definition 4.4.5: A set of square integrable functions is called complete if for any square inte-
grable function ϕ(x), the Fourier series of ϕ(x) converges in the mean. /

4.4.2 Properties of the L Operator

The L operator (Sturm-Lioville operator), which is given by,

L[u] = − d

dx

(
p(x)

dv

dx

)
+ q(x)v = ρ(x)λv,

with boundary conditions

α1u(0)− β1
du

dx
(0) = 0,

α2u(L) + β1
du

dx
(L) = 0

with ρ, p > 0 and q, α1, β1 ≥ 0 with αi + βi > 0 for i = 1, 2 has the following properties.

P1 Eigenfunctions Corresponding to Different Eigenvalues are Orthogonal

In order to show the orthogonality, we first show the self-adjointness. For this, we need to show the
following: (

1

ρ
L[u], v

)
=

(
u,

1

ρ
L[v]

)
P1.a Eigenfunctions are self-adjoint.

To simply the calculations, we assume homogeneous Dirichlet BCs u(0) = 0 = u(L). We have(
u,

1

ρ
L[v]

)
=

(
1

ρ
L[u], v

)
⇐⇒

(
u,

1

ρ
L[v]

)
−
(

1

ρ
L[u], v

)
= 0

⇐⇒
ˆ L

0
ρu

1

ρ

[
− (pv′)′ + qv

]
dx−

ˆ L

0
ρv

1

ρ

[
− (pu′)′ + qu

]
dx = 0.

By integration by parts we have(
u,

1

ρ
L[v]

)
=

(
1

ρ
L[u], v

)
⇐⇒

ˆ L

0
pu′v′ − pu′v′ dx = 0.

Since this is always equal to zero, then the operator 1
ρL is self-adjoint (even if we allow for

complex functions).
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P1.b Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Since
1

ρ
L[u] = λ1u and

1

ρ
L[v] = λ2v,

after substituting we obtain
(u, λ2v)− (λ1u, v) = 0.

If eigenvalues are real (which we will show they are always real), then we can factor out and
obtain

(λ2 − λ1)(u, v) = 0.

If eigenvalues are distinct, then λ2−λ1 6= 0. Then we must have (u, v) = 0. Hence eigenfunc-
tions are orthogonal.

P2 Eigenvalues are real and non-negative. Furthermore, eigenfunctions may be

chosen to be real valued

P2.a Eigenvalues are real.

Assume (λ, v) is an eigenpair. Then they must satisfy the eigenvalue relation, that is 1
ρL[v] =

λv. Since ρ(x) and L are real we compute the complex conjugate and get

1

ρ
L[v] = λv.

Observe that (λ, v) are also an eigenpair. Since 1
ρL is self-adjoint, then we must have(

v,
1

ρ
L[v]

)
−
(

1

ρ
L[v], v

)
= 0

Hence, when we substitute the eigenvalue problem we get

(v, λv)− (λv, v) = λ(v, v)− λ(v, v) = (λ− λ)(v, v) = (λ− λ)‖v‖2 = 0.

For non-trivial solutions, we have v 6= 0. Hence we must have λ = λ ∈ R.

P2.b Eigenvalues are non-negative.

We now show that the eigenvalues are non-negative. We have(
v,

1

ρ
L[v]

)
≡
ˆ L

0
ρv

1

ρ

[
−(pv′)′ + qv

]
dx =

ˆ L

0
pv′v′ + qvv dx.

Here we assumed Dirichlet BCs and used integration by parts. Hence(
v,

1

ρ
L[v]

)
≥ 0.

When we plug in the eigenvalue relation, we get(
v,

1

ρ
L[v]

)
= (v, λv) = λ‖v‖2 ≥ 0.
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When we solve for λ we get

λ =

(
v, 1

ρL[v]
)

‖v‖2
≥ 0.

Hence the eigenvalue is non-negative.

We will show that we can take eigenfunctions to be real valued in the next lecture.

Properties of the L Operator (continued)

Last time we showed the following properties for the Sturm-Liouville operator

P1 Eigenfunctions corresponding to different eigenvalues are orthogonal (we showed this by first

showing self-adjointness).

P2 Eigenvalues are real and non-negative (we already showed these as P2.a and P2.b ), further-

more, eigenfunctions may be chosen to be real valued (we still need to show this).

P2.c Eigenfunctions may be chosen to be real valued.

Let v ∈ C be an eigenfunction of the system with the associated eigenvalue λ. Then v =
vR + ivI where R 3 vR = Re{v} and R 3 vI = Im{v}. Since λ ∈ R and since v must satisfy
the eigenvalue relations, then we must have

1

ρ
L[v] = λv =⇒ 1

ρ
L[vR + ivI ] = λ(vR + iVi).

By linearity we have
1

ρ
L[vR] + i

1

ρ
L[vI ] = λvR + iλvI .

Since the real and imaginary parts must vanish, we must have

1

ρ
L[vR] = λvR

1

ρ
L[vI ] = λvI .


these are eigenrelations for

1

ρ
L,

and if we solve each of these we get a real eigenfunction

Hence, each eigenfunction can be taken as real valued.

P3 Each Eigenvalue is Simple

In other words, each eigenvalue has a multiplicity of one.
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P4 There Exists a Countably Infinite Number of Eigenvalues Having a Limit of

Infinity

In other words, the set of eigenvalues can be ordered as follows:

0 ≤ λ1 < λ2 < . . . with λk →∞ as k →∞.

Definition 4.4.6: The set of eigenvalues of an operator is called the spectrum of the operator.
/

P5 The Set of Eigenfunctions {vk(x)}k=1,2,... Forms a Complete Orthonormal Set of

Square Integrable Functions on 0 < x < L

The eigenfunction expansion (Fourier series) of v(x) converges in the mean

v(x) =

∞∑
k=1

(v, vk)vk.

If v(x) is continuous, then it can be shown that the series converges uniformly to v(x) in the interval
question.

4.4.3 Examples

4.4.3.1 5 Steps for Solving PDEs with Separation of Vars. and Eigenfunction Expan-
sions

Remark 4.4.7: We use the following steps to analytically solve a PDE with separation of variables.

1 Separating the Variables: Assume the solution is a multiplication of functions each with
a single variable and obtain separate ODEs for each.

2 Solving for the BVP and One of the Separated Variables: We try to impose homoge-
neous BCs and usually start with solving for the spatial solution.

3 Solving for the Other Separated Variable: We solve for the remaining solutions by
imposing the remaining BCs.

4 Forming the General Solution: We use the principle of superposition to obtain the general
solution.

5 Imposing ICs: We impose the ICs on the general solution (usually to obtain the Fourier
coefficients). /
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4.4.3.2 Fourier Sine Series

We start with ρ(x) = 1. We have the following BVP.

− d2v

dx2
= λv

v(0) = 0 = v(L) where 0 < x < L.

 BVP

Previously, we found the eigenvalues as λn =
(
n πL
)2 where n = 1, 2, . . .. The orthogonal eigenfunc-

tions are
vn(x) = sin

(
n
π

L
x
)
.

To normalize, we want ‖vn‖2 = 1. So we find ‖vn‖2 = (vn, vn).

‖vn‖2 = (vn, vn) =

ˆ L

0
sin2

(
n
π

L
x
)

=
1

2

ˆ L

0
1− cos

(
2n
π

L
x
)

dx =
L

2
.

The orthonormal series is

v̂n(x) =

√
2

L
sin
(
n
π

L
x
)

where n = 1, 2, . . .

4.4.3.3 Fourier Cosine Series

We start with ρ(x) = 1. We have the following BVP.

−d2v

dx2
= λv

dv

dx
(0) = 0 =

dv

dx
(L) where 0 < x < L

 BVP

We found the eigenvalues and eigenfunctions

λn =
(
n
π

L

)2
and cos

(
n
π

L
x
)
where n = 0, 1, 2, . . .

To normalize, we consider two cases.

n = 1, 2, . . . =⇒ ‖vn‖2 =
L

2
,

n = 0 =⇒ ‖v0‖2 = L

Orthonormal functions are

vn(x) =


1√
L

for n = 0,√
2

L
cos
(
n
π

L
x
)
for n = 1, 2, . . .
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4.4.3.4 Fourier Series

We start with ρ(x) = 1. We have the following BVP.

− d2v

dx2
= λv

v(0) = v(L)

dv

dx
(0) =

dv

dx
(L) where 0 < x < L

 BVP

Since the general solution is a sum of two linearly independent functions, we get

v(x) = a cos
(√

λ x
)

+ b sin
(√

λ x
)
.

To ensure the solution is L-periodic, we must pick λ so that the trig functions fit in the domain.
√
λ L = n2π or λn =

(
2n
π

L

)2
.

So, our orthogonal eigenfunctions

1, cos
(

2n
π

L
x
)
, sin

(
2n
π

L
x
)
where n = 1, 2, . . .

To find orthonormal basis, we compute the norm of each function.

v̂0(x) =
1√
L

v̂n(x) =

√
2

L
cos
(

2n
π

L
x
)

ûn(x) =

√
2

L
sin
(

2n
π

L
x
)

where n = 1, 2, . . .

Recall from Fourier analysis that these form a complete basis and can reproduce functions with
Fourier series. Given v(x),

v(x) = (v, v̂0)v̂0 +

∞∑
k=1

(v, v̂k)v̂k + (v, ûk)ûk.

4.4.3.5 Bessel Series

The Bessel’s equation is given by

x2v′′ + xv′ + (x2 − n2)v = 0 where n ∈ Z+.

When we make the substitution x→
√
λ z and v(x)→ v(z), we get

z2v′′ + zv′ + (λz2 − n2)v = 0,
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which is equivalent to
λz2v = −z2v′′ − zv′ + n2v = 0,

which is not necessarily in Sturm-Liouville form. We divide the above expression by z. We have

−zv′′ − v′ + n2

z
v = λzv,

equivalently,

− d

dz

(
z

dv

dz

)
+
n2

z
v = λzv.

This looks like our Sturm-Liouville equation with

ρ(z) = z, q(z) =
n2

z
, ρ(z) = z.

If our domain is 0 < z < L, then,

as z → 0, we have
p→ 0,

ρ→ 0,

q →∞.

In order to close the problem, we need to impose certain boundary conditions.

We assume that v(0) is bounded and v(L) = 0.

To show the eigenfunctions are orthogonal, we must adapt our theory to this BVP.

Self-Adjointness

We want to show
(
u, 1

ρL[w]
)

=
(

1
ρL[u], w

)
. We have

(
u,

1

ρ
L[w]

)
−
(

1

ρ
L[u], w

)
=

ˆ L

0
zu

1

z

[
−(zw′)′ +

n2

z
w

]
dz −

ˆ L

0
z

1

z

[
−(zu′)′ +

n2

z
u

]
w dz

=

ˆ L

0
−u(zw′)′ + w(zu′)′ dz

=

[
− zuw′ + zwu′

]L
0

+

ˆ L

0
zu′w′ − zu′w′ dz (†)

= [−Lu(L)w′(L) + Lw(L)u′(L)]− [−0 · u(0)w′(0) + 0 · w(0)u′(0)]

= 0,

where in step (†) we used integration by parts. Hence, the operator is self-adjoint.
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Orthogonality

Let (λi, ui) and (λj , uj) be two eigenpairs that solve the system where λi 6= λj . Since the operator
is self-adjoint, then (

ui,
1

ρ
L[uj ]

)
−
(

1

ρ
L[ui], uj

)
= 0.

When we sub in the eigenvalue relation, we obtain

(ui, λjuj)− (λiui, uj) = (λj − λi)(ui, uj) = 0.

Since λi 6= λj , then we must have (ui, uj) = 0. Hence, the eigenfunctions corresponding to distinct
eigenvalues are orthogonal.

General Solution

In AMATH 351, we solve Bessel’s equation using power series. We obtain two linearly independent
solutions

v(z) = c1Jn(
√
λ z) + c2Yn(

√
λ z).

Jn is the Bessel function of order n of the 1st kind and Yn is the Bessel function of order n of the
2nd kind.

Remark 4.4.8: For all n, as z → 0, Yn(z) → ∞. For solutions to be bounded at z = 0, we need
c2 = 0. Hence, we get

v(z) = Jn(
√
λ z).

To find eigenvalues, we must impose 2nd boundary conditions where

Jn(
√
λ L) = 0.

This equation determines eigenvalues. /

Bessel Series (continued)

Last time we showed the general solution (viewed as an eigenvalue problem) is

v(z) = c1Jn(
√
λ z) + c2Yn(

√
λ z)

with the boundary conditions

v(0) is bounded and v(L) = 0,

we got c2 = 0 and obtained
v(z) = Jn(

√
λ z) = 0
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Aside: This is analogous to sin
(√

λ L
)
. Define αkn to be the k-th root of Jn(z). With this, we

can compute the eigenvalues to be

√
λ L = αkn =⇒ λkn =

(αkn
L

)2
where k = 1, 2, . . . ,

with the corresponding eigenfunctions

vkn(z) = Jn

(αkn
L
z
)
. /

Normalization

Since we have

‖vkn‖2 =

ˆ L

0
zJ2

n(
√
λkn z) dz =

L2

2
J2
n+1(

√
λkn L),

we get

v̂kn(z) =

√
2

L

Jn(αkn
z
L)

Jn+1(αkn)
with k = 1, 2, . . .

4.4.3.6 Fourier-Bessel Series

For v(z) defined on 0 < z < L that satisfies the same BCs hen

v(z) =
∞∑
k=1

(v, v̂kn)v̂kn(z).

4.4.3.7 Wave Equation

We have the wave equation with the boundary conditions (clamped down) and initial conditions as

∂2u

∂t2
= c2∂

2u

∂x2
where 0 < x < L

}
PDE

u(0, t) = 0 = u(L, t), where t > 0,

}
BCs

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x), where 0 < x < L.

}
ICs

1 Separating the Variables: We assume u(x, t) = M(x)N(t) and plug it into the PDE. After
simplifying, we get

MN ′′ = c2M ′′N =⇒ N ′′

c2N
=
M ′′

M
= −λ.
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We obtain the ODEs

N ′′ + λc2N = 0

M ′′ + λM = 0.

We separate the BCs and obtain

M(0)N = 0 =⇒ M(0) = 0,

M(L)N = 0 =⇒ M(L) = 0.

Hence we get the BVP for spatial component as

−M ′′ = λM

M(0) = 0 = M(L)

}
BVP

2 Solving the BVP for Spatial Variable: We have the general solution as

M = c1 sin
(√

λ x
)

+ c2 cos
(√

λ x
)
.

With the BCs, we get M(0) = 0 =⇒ c2 = 0. Hence we have

M = c1 sin
(√

λ x
)
.

We also have M(L) = c1 sin
(√

λ L
)

= 0, which gives us

√
λ L = nπ =⇒ λn =

(
n
π

L

)2
.

Hence we obtain

Mn(x) = sin
(
n
π

L
x
)

=⇒ M̂n(x) =

√
2

L
sin
(
n
π

L
x
)
.

3 Solving for the Temporal Equation: For the temporal component, N(t), we have

N ′′ + λ2c2N = 0 =⇒ N ′′ +
(
n
π

L

)2
c2N = 0.

This has the solution
N(t) = an sin

(
n
π

L
ct
)

+ bn cos
(
n
π

L
ct
)
.

4 Forming the General Solution to PDE: By superposition of the all solutions, we get

u(x, t) =
∞∑
n=1

Nn(t)Mn(x) =
∞∑
n=1

[
an sin

(
n
π

L
t
)

+ bn cos
(
n
π

L
t
)]√ 2

L
sin
(
n
π

L
x
)
. (4.4.3)
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5 Imposing ICs: We project the ICs onto eigenfunction Mj . From the ICs we get

u(x, 0) = f(x) =

∞∑
n=1

bnM̂n(x) =⇒ bn = (f, M̂n).

We also have

∂u

∂t
(x, 0) = g(x) =

∞∑
n=1

an

(
n
π

L
c
)
M̂n(x) =⇒ an =

(
L

nπc

)
(g, M̂n).

Wave Equation (continued)

Recall 4.4.9: We found the solution for wave equation in (4.4.3), where

an =
L

nπc
(g, M̂n(x)) and bn = (f, M̂n(x)).

Note that we have the frequency of the oscillation as

ωn =
nπc

L
. /

Energetics of Wave Equation: The PDE can be written as

ρ
∂2u

∂t2
= T

∂2u

∂x2
.

To find how the energy changes in time we multiply by ∂u
∂t and integrate over domain. We have

ˆ L

0

[
ρ
∂u

∂t

∂2u

∂t2

]
dx =

ˆ L

0

[
T
∂u

∂t

∂2u

∂t2

]
dx ⇐⇒

ˆ L

0

ρ

2

∂

∂t

[(
∂u

∂t

)2
]

dx =

ˆ L

0
T

[
∂

∂x

(
∂u

∂t

∂u

∂x

)
− ∂2u

∂t∂x

∂u

∂x

]
dx.

The BCs that we imposed are
u(0, t) = 0 = u(L, t).

Since ∂u
∂t (0, t) = 0 = ∂u

∂t (L, t), we have the first term on RHS as

ˆ L

0
T

[
∂

∂x

(
∂u

∂t

∂u

∂x

)]
dx = T

[
∂u

∂t

∂u

∂x

]L
0

= 0.

We have the second term of RHS as

−T
ˆ L

0

∂2u

∂t∂x

∂u

∂x
dx = −T

2

ˆ L

0

∂

∂t

((
∂u

∂x

)2
)

dx.

We combine the two non-zero terms and obtain

d

dt

ˆ L

0

ρ

2

(
∂u

∂t

)2

dt+
d

dt

ˆ L

0

T

2

(
∂u

∂x

)2

dx = 0 =⇒ d

dt

ˆ L

0

[
ρ

2

(
∂u

∂t

)2

+
T

2

(
∂u

∂x

)2
]

dx.
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We denote the kinetic energy density as the term

ρ

2

(
∂u

∂t

)2

,

and the total kinetic energy as ˆ L

0
A
ρ

2

(
∂u

∂t

)2

dx, (4.4.4)

where A is the cross sectional area. Following the argument from before, we define the potential
energy density as

T

2

(
∂u

∂x

)2

,

and the total potential energy as ˆ L

0
A
T

2

(u
x

)2
dx. (4.4.5)

The Equations (4.4.4) and (4.4.5) state that the sum of KE and PE (total energy) is conserved.
These equations express the conservation of energy .

Total Energy of the String: We have

u(x, t) =
∞∑
n=1

[
an cos(ωnt) + bn sin(ωnt)

]
M̂n(x)

∂u

∂t
(x, t) =

∞∑
n=1

ωn
[
− an sin(ωnt) + bn cos(ωnt)

]
M̂n(x)

∂u

∂x
(x, t) =

∞∑
n=1

[
an cos(ωnt) + bn sin(ωnt)

]dM̂n

dx
(x),

where
dM̂n

dx
= n

π

L

√
2

L
cos
(
n
π

L
x
)
.

After some algebra we find

ˆ L

0

ρ

2

(
∂u

∂t

)2

+
T

2

(
∂u

∂x

)2

dx =
∞∑
n=1

(
n
π

L

)2T

2
(a2
n + b2n),

which is closely related with the Parseval’s theorem. The total energy (which is an integral) is equal
to a sum of the square of all Fourier coefficients. In particular, the eigenfunction n has(

n
π

L

)T
2

[
a2
n + b2n

]
.

amount of energy which is conserved for all time.
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4.4.3.8 Diffusion Equation

We have the diffusion equation as
∂u

∂t
= D

∂2u

∂t2

on the domain 0 < x < L and t > 0. We impose the Neumann BCs,

∂u

∂x
(0, t) = 0 =

∂u

∂x
(L, t) where t > 0

and the initial condition

u(x, 0) = f(x) on the domain 0 < x < L.

Conservation of Mass: If the total amount of dye is conserved, then

∂

∂t

ˆ L

0
udx = 0.

To determine if the total mass is conserved, we integrate the PDE over the domain. We have
ˆ L

0

∂u

∂t
dx =

ˆ L

0
D
∂2u

∂x2
dx ⇐⇒ d

dt

ˆ L

0
udx =

ˆ L

0
D
∂2u

∂x2
dx =

ˆ L

0

∂

∂x

(
D
∂u

∂x

)
dx.

On RHS, by FTC we have [
D
∂u

∂x

]L
0

,

which is zero due to Neumann BCs. Hence, the total mass is conserved. Due to this nature,
Neumann BCs are called insulating boundary conditions. When we have homogeneous Dirichlet
BCs, (which states the solution itself is zero at the boundary), the mass reaches zero given enough
time. Hence, the mass is not conserved under Dirichlet BCs.

Exercise 4.4.10: Read section 4.4.2 in the course notes about finding a solution to diffusion equa-
tion. Looking at solutions to diffusion equation with either Dirichlet or Neumann BCs, why does
one conserve total mass and not the other? /

Remark: Assignment #5 is skipped, assignment #6 will be posted later this week. /

4.4.3.9 Laplace’s Equation on a Rectangle

We have the Laplace’s equation as

∂2u

∂x2
+
∂2u

∂y2
= 0 on the boundary

0 < x < Lx,

0 < y < Ly.

The boundary conditions we pick are

u(x, 0) = f(x) and u(x, Ly) = g(x),

u(0, y) = 0 and u(Lx, y) = 0.
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0

g(x)

0

f(x)

x

y

Figure 4.4.1: Laplace’s equation on a rectangle.

We use the 5 steps we discussed in Remark 4.4.7 to solve the problem as follows.

1 Separation of Variables: We assume the solution is of the form u(x, y) = M(x)N(y) and
substitute this into PDE and simplify. We obtain

M ′′N +MN ′′ = 0 =⇒ M ′′

M
+
N ′′

N
= 0 =⇒ N ′′

N
= −M

′′

M
= λ.

We obtain two ODEs,
N ′′ − λN = 0 and M ′′ + λM = 0.

We separate the homogeneous BCs. When we try

u(x, 0) = f(x) =⇒ M(x)N(0) = f(x),

we don’t get homogeneous BC on M . We cannot build a complete set of eigenfunctions. We can
only separate homogeneous BCs.

u(0.y) = M(0)N(y) = 0 =⇒ M(0) = 0,

u(Lx, y) = M(L)N(y) = 0 =⇒ M(Lx) = 0.

Hence, we get our BVP as

M ′′ + λM = 0,

M(0) = 0 = M(Lx).

2 Solving the BVP: The ODE we want to solve is

M ′′ + λM = 0 with M(0) = 0 = M(Lx),

which has the solution

λn =

(
n
π

Lx

)2

with M̂n =

√
2

Lx
sin

(
n
π

Lx
x

)
.
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3 Solving for N(y): The equation looks like

N ′′n − λnNn = 0.

After we plug in the eigenvalues we obtain

N ′′n −
(
n
π

Lx

)
Nn = 0.

The solution can be written in different ways

Nn(y) = ãn exp

(
n
π

Lx
y

)
+ b̃n exp

(
−n π

Lx
y

)
,

or, equivalently,

Nn(y) = an sinh

(
n
π

Lx
y

)
+ bn cosh

(
−n π

Lx
y

)
.

As long as the two solutions are linearly independent and solve the problem, we can rewrite it in
various ways.

4 Forming the General Solution: A solution is

un(x, y) = Mn(x)Nn(y) =

√
2

Lx
sin

(
n
π

Lx
x

)[
an sinh

(
n
π

Lx
y

)
+ bn cosh

(
n
π

Lx
y

)]
.

The general solution is

u(x, y) =

∞∑
n=1

M̂n(x)Nn(y) =

∞∑
n=1

M̂n(x)

[
an sinh

(
n
π

Lx
y

)
+ bn cosh

(
n
π

Lx
y

)]
.

5 Finding the Fourier Coefficients: We have the first boundary condition as

u(x, 0) = f(x) =
∞∑
n=1

M̂n(x)bn =⇒ bn = (f, M̂n)

For the second boundary condition, we have

u(x, Ly) = g(x) =

∞∑
n=1

M̂n(x)

[
an sinh

(
n
π

Lx
Ly

)
+ bn cosh

(
n
π

Lx
Ly

)]
.

We take the inner product with M̂k. We get

(g, M̂k) = ak sinh

(
k
π

Lx
Ly

)
+ bk cosh

(
k
π

Lx
Ly

)
.

Which gives us

ak =
(g, M̂k)− bk cosh

(
k π
Lx
Ly

)
sinh

(
k π
Lx
Ly

) .
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Remark 4.4.11: What do we do if we have non-zero BCs on all four sides of the rectangle?

By linearity we can add the solutions for the homogeneous BCs to get the solution for suitable BC
as follows.

0

g(x)

0

f(x)

u1(x, y)

+

+

h(y)

0

j(y)

0

u2(x, y)

=

=

h(y)

g(x)

j(y)

f(x)

u(x, y).

Figure 4.4.2: Using linearity of Laplace’s equation.

Note that if ∇2u1 = 0 = ∇2u2, then ∇2(u1 + u2) = 0. Since Laplace’s equation is linear, then we
can build a solution to the general problem by solving two simpler problems. /

4.4.3.10 Laplace’s Equation on a Circle

Recall that previously we wrote the Laplace’s equation in Cartesian coordinates as

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0.

We start solving Laplace’s equation in circle.

u(a, θ) = f(θ).
x

y

Figure 4.4.3: Laplace’s equation on a circle.

We will impose the BCs on the perimeter of the circle. Laplace’s equation in polar coordinates is

∇u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0, on the domain

0 ≤ θ < 2π,

0 ≤ r ≤ a,

with the explicit boundary condition,
u(a, θ) = f(θ).

We have the implicit boundary conditions

u(0, θ) is bounded,
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with the periodic boundary conditions

u(r, 0) = u(r, 2π),

∂u

∂θ
(r, 0) =

∂u

∂θ
(r, 2π).

We use the 5 steps we discussed in Remark 4.4.7 to solve the problem as follows.

1 Separation of Variables: We assume the solution is of the form u(r, θ) = R(r)Θ(θ). We
substitute this into the PDE and simplify by multiplying the expression by RΘ

r2
to get

Θ
1

r

d

dr

(
r

dR

dr

)
+

1

r2
Θ′′R = 0 =⇒ r(rR′)′

R
+

Θ′′

Θ
= 0

=⇒ r(rR′)′

R
= −Θ′′

Θ
.

We recall that we specified our BVPs as u(a, θ) = f(θ) in Figure 4.4.3. The BVPs in the θ direction.
This is because we have periodic BCs which are not Sturm-Liouville which yield a complete set of
eigenfunctions. Also, since the Dirichlet BC at r = a is inhomogeneous that gives problems in BVP.

We obtain the two ODEs as

r(rR)′ − λR = 0

=⇒ r2R′′ + rR′ − λR = 0,
and Θ′′ + λΘ = 0.

We separate the BCs in θ direction as follows.

Θ(0)R = Θ(2π)R =⇒ Θ(0) = Θ(2π),

Θ′(0)R = Θ′(2π)R =⇒ Θ′(0) = Θ′(2π).

2 Solving the BVP: We solve the BVP as follows.

Θ′′ + λΘ = 0,

Θ(0) = Θ(2π),

Θ′(0) = Θ′(2π).

This has the solution as

λn = n2 and Θn = An cos(nθ) +Bn sin(nθ) where n = 0, 1, . . .

3 Solving for R(r): We need to solve

r2R′′ + rR′ − n2R = 0.

This ODE is of the Euler type. We find our solution with R = rα (that is, we assume R is a
polynomial). After the substitution we get

(α)(α− 1)rα+2 + αrα+1 − n2rα = 0 =⇒ [α2 − α+ α− n2]rα = 0.
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Since this is true for all , then we must have

[α2 − α+ α− n2] = 0 =⇒ α = ±n.

Hence, we obtain the solution to this ODE as R = Dnr
n + Enr

−n where Dn, En are constants.
Since we have

u(0, θ) <∞ =⇒ R(0) <∞.

Hence we must have En = 0. Note that if n = 0 (then λ = 0) we get

r(rR′)′ = 0 =⇒ (rR′)′ = 0.

We integrate this to obtain

rR′ = Dn =⇒ R′ =
Dn

r
.

We integrate again and obtain
R(0) = D0 ln r + constant.

Note that this solution has two linearly independent components, ln r and 1. Since Rn must be
bounded at r = 0, we must drop ln r. This forces us to have D0. Then

R0 = constant.

We denote this constant to be D0. Which gives us R0 = D0. Hence, for all n = 0, 1, . . . we get

Rn(r) = Dnr
n.

4 Forming the General Solution: We have the general solution as

u(r, θ) =
∞∑
n=0

Rn(r)Θn(θ) =
∞∑
n=0

Dnr
n[An cos(nθ) +Bn sin(nθ)].

After combining what we found previously (merging Dn to An, Bn), we find

∞∑
n=0

rn[An cos(nθ) +Bn sin(nθ)].

5 Finding the Fourier Coefficients: We have the BC as

u(a, θ) = f(θ) =
∞∑
n=0

an[An cos(nθ) +Bn sin(nθ)],

which gives us the Fourier series decomposition for f(θ). Since sin(nθ) and cos(nθ) are orthogonal,
we can compute An and Bn using trig formulas. We get

An =
(f, cos(nθ))

an‖cos(nθ)‖2
and Bn =

(f, sin(nθ))

an‖sin(nθ)‖2
.
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4.4.3.11 Vibrating Membrane (circular)

∂2u

∂t2
= c2∇2u = c2

[
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

]
,

with BC
u(a, θ, t) = 0,

and with the ICs

u(r, θ, 0) = f(r, θ),

∂u

∂t
(r, θ, 0) = g(r, θ).

Note that the boundary condition implies

a
u(a, θ, t) = 0.

Figure 4.4.4: Boundary conditions on vibrating circular membrane.

We use the 5 steps we discussed in Remark 4.4.7 to solve the problem as follows.

1 Separation of Variables: We assume the solution is of the form

u(r, θ, t) = R(r)Θ(θ)T (t)

and sub this into the PDE and divide the expression by c2RΘT . We obtain

RΘT ′′ = c2

[
ΘT

1

r
(rR′)′ +

1

r2
Θ′′RT

]
=⇒ T ′′

c2T
=

1

R

1

r
(rR′)′ +

1

r2

Θ′′

Θ
= −λ.

We get one of the ODEs as
T ′′ + λc2T = 0.

For the second ODE we have

1

rR
(rR′)′ +

1

r2

Θ′′

Θ
= −λ =⇒ r

R
(rR′)′ + r2λ = −Θ′′

Θ
= µ.

We pick the RHS as µ since this yields the eigenfunctions in θ. When we separate periodic BCs
(which are not stated in the beginning but they are implicitly there), we get

Θ′′ + µΘ = 0,

Θ(0) = Θ(2π),

Θ′(0) = Θ′(2π).

 (BVP 1)
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Hence, we get the last ODE as

r(rR′)′ + r2λR− µR = 0 =⇒ r2R′′ + rR′ + (r2λ− µ)R = 0, with the BCs
R(a) = 0,

R(0) <∞.︸ ︷︷ ︸
BVP 2

Note that BCs imply drum is clamped down at radius a and the center of the drum has a finite
amplitude. There are two eigenvalues to find: λ and µ.

2 Solving the BVPs: We solved BVP 1 previously. For n = 0, 1, . . ., we have

µn = n2 and Θn = An cos(nθ) +Bn sin(nθ).

For BVP 2, we have the ODE as the Bessel’s equation (the solutions are the Bessel functions).
Hence, the general solution is

R(r) = DnJn(
√
λ r) + EnYn(

√
λ r).

Since by BC 1 we require R(0) <∞, then we need to have En = 0. By BC 2 we have R(a) = 0 =
DnJn(

√
λ a).

Recall 4.4.12: αn,m is the mth zero of the nth order Bessel function of 1st kind. /

We need
√
λ a = αn,m for m = 1, 2, . . .. Hence

λnm =
α2
n,m

a2
for

n = 0, 1, . . . ,

m = 1, 2, . . . .

This gives us

Rnm = Jn
(αn,mr)

a
.

Solving for T (t): We need to solve

T ′′ + c2λn,mT = 0.

The equation looks identical to the 1-D case expect with the λ. The solution is

Tnm = Fnm cos
(
c
√
λnmt

)
+Gnm sin

(
c
√
λnm t

)
.

The eigenvalue determines the frequency of oscillation which is set by the geometry of the problem.

Forming the General Solution: We have the general solution as

u(r, θ, t) =

∞∑
n=0

∞∑
m=1

{
Jn

(
αn,m

r

a

)
[Anm cos(nθ) +Bnm sin(nθ)] ·

[
Fnm cos

(
c
αnm
a
t
)

+Gnm sin
(
c
αnm
a
t
)]}

.
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Finding the Generalized Fourier Coefficients: Given any initial conditions f(r, θ) and g(r, θ),
we can compute the coefficients which is a Fourier-Bessel series and it is exhaustive to compute.

Special Case: There are some modes (eigenfunctions) that look like

Jn(
√
λn,m r) cos(nθ).

Definition 4.4.13: A node is a line where the eigenfunction is always zero. /

m = 1

m = 2

m = 3

n = 0 n = 1 n = 2

Figure 4.4.5: Nodes of modes.

4.4.3.12 Diffusion on a Circle

We have our PDE as
∂u

∂t
= D∇2u = D

[
1

r

∂1

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

]
,

which is on the physical domain

0 ≤ θ < 2π,

0 ≤ r < a,
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and has boundary conditions

u(a, θ, t) = 0,

u(0, θ, t) ≤ ∞,
u(r, 0, t) = u(r, 2π, t),

∂u

∂θ
(r, 0, t) =

∂u

∂θ
(r, 2π, t),

and the initial condition
u(r, θ, 0) = f(r, θ).

Exercise 4.4.14: Repeat the procedures in Remark 4.4.7 and find the solution as

u(r, θ, t) =

∞∑
m=1

∞∑
n=0

{
Jn

(αn,mr
a

)
[Anm cos(nθ) +Bnm sin(nθ)] · exp

(
−Dα

2
n.m

a2
t

)}
. /

4.4.3.13 Schrödinger Equation

From classical mechanics, Newton’s 2nd law yields, under a potential function V (x)

m
d2x

dt2
= F = −∂V

∂x
.

In quantum mechanics, we consider the (complex) wave function, Ψ(x, t). This is useful in that
|Ψ(x, t)|2 dx denotes the probability of finding a particle between x and x+ dx at time t. Schrödinger
equation is described as below.

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ.

Motivation: Suppose the wave function is of the form

Ψ(x, t) = Aei(kx−ωt).

We observe that

∂Ψ

∂x
= ikΨ,

∂Ψ

∂t
= −iωΨ.
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de Broglie’s Assumptions: We assume k is related to the momentum and ω is related to the
energy.

k =
p

~
and ω =

E

~
.

Using this, we get

pΨ = ~kΨ = −i~∂Ψ

∂x
,

EΨ = ~ωΨ = i~
∂Ψ

∂t
.

Recall 4.4.15: In classical mechanics, we have the total energy of a particle as

E =
1

2
mv2 + V (x) +

1

2

p2

m
+ V (x),

where p is the momentum. /

Remark 4.4.16: In quantum mechanics, we begin with the above expression and rewrite p and E
in terms of our partial derivatives.

EΨ =
1

2m
p2Ψ + VΨ.

We substitute our assumptions, we get

i~
∂Ψ

∂t
=

1

2m

(
−i~ ∂

∂x

)2

Ψ + VΨ,

ik
∂Ψ

∂t
= − ~2

2m

∂2

∂x2
Ψ + V (x)Ψ,

which is called the time dependent Schrödinger equation. /

We use the steps we discussed in Remark 4.4.7 to solve the problem as follows.

Separating the Variables: We assume the solution is in th form Ψ = M(x)N(t). We sub this
into PDE and simply the expression by dividing it by MN . We obtain

i~MN ′ = − ~2

2m
M ′′N + VMN =⇒ i~

N ′

N
= − ~2

2m

M ′′

M
+ V (x) = E.

Here the convention is to denote the non-negative constant eigenvalue as E because it is related to
the energy.

Temporal Equation: We have the ODE for the temporal equation as

i~N ′ = EN.

This has solutions
N(t) = N0e

−iE~ t.

This gives rise to oscillatory behavior.
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Spatial Equation: We have the ODE for the spatial equation as

− ~2

2m
M ′′ + V (x)M = EM.

This is called the time independent Schrödinger equation. This ODE is of the Sturm-Liouville form
with

p(x) =
~2

2m
> 0,

q(x) = V (x) ≥ 0,

ρ(x) = 1,

E is the eigenvalue.

Given “nice” BCs, we can deduce that we have a countable infinite number of eigenvalues or energies
En where each has a corresponding eigenfunction, denoted as Mn(x) for n = 1, 2, . . ..

Forming the General Solution: We have the general solution as

Ψ(x, t) =

∞∑
n=1

Mn(x) exp

(
−iEn

~
t

)
.

4.4.3.14 Spherical Wave Equation

In spherical coordinates, we define the position in terms of r, θ, φ. Recall we have the wave equation
in cartesian coordinates as

∂2u

∂t2
= c2∇2u.

In spherical coordinates, we get

c2∇2u = c2

{
1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sin θ

∂u

∂φ

)
+

1

r2 sin2 φ

∂2u

∂θ2

}
.

We use the steps we discussed in Remark 4.4.7 to solve the problem as follows.

1 Separation of Variables: We assume the solution is of the form u(x, t) = M(x)N(t). We
sub in this equation into the PDE and simply the expression by dividing it by c2MN . We obtain

MN ′′ = c2∇2MN =⇒ N ′′

c2N
=
∇2M

M
= −λ.

We get the ODE for the temporal equation as

N ′′ + c2λN = 0.

For the spatial equation we have
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−∇2M = λM.

Here λ is the 3-D eigenvalue and M is the 3-D eigenfunction. We need to separate this into ODEs.
We assume M(x) = R(r)Φ(φ)Θ(θ).

4.5 Inhomogeneous PDEs

Consider the inhomogeneous PDEs where t > 0 and ICs,

ρ
∂2u

∂t2
+ L[u] = g(x, t) with u(x, 0) = 0 and

∂u

∂t
(x, 0) = 0, (Hyperbolic)

ρ
∂u

∂t
+ L[u] = g(x, t) with u(x, 0) = 0. (Parabolic)

Method for Solving Inhomogeneous PDEs: The equation we want to solve is u(x, t). We
introduce a temporary variable v(x, t; τ). We get the PDEs and initial conditions as

ρ
∂2v

∂t2
+ L[v] = 0, t > τ, with v(x, τ ; τ) = 0 and

∂v

∂t
(x, τ ; τ) =

g(x, z)

ρ(x)
, (Hyperbolic)

ρ
∂v

∂t
+ L[v] = 0, t > τ, with v(x, τ ; τ) =

g(x, z)

ρ(x)
. (Parabolic)

We recover our actual solution using

u(x, t) =

ˆ t

0
v(x, t; τ) dτ.

4.5.0.1 Leibniz’s Principle

Suppose we have the time derivative of the integral as

d

dt

ˆ f(t)

g(t)
h(s, t) ds.

With change of variables (exercise) we obtain

d

dt

ˆ f(t)

g(t)
h(s, t) ds =

df

dt
h(f(t), t)− dg

dt
h(g(t), t) +

ˆ f(t)

g(t)

∂h

∂t
(s, t) ds.

We need the above result to compute partial derivatives of u in our given PDEs. We have

∂u

∂t
= 1 · v(x, t; t)− 0 +

ˆ t

0

∂v

∂t
(x, t; τ) dz = v(x, t; t) +

ˆ t

0

∂v

∂t
(x, t; τ) dz,

∂2u

∂t2
=

∂

∂t
[v(x, t; τ)] +

∂v

∂t
(x, t; t) +

ˆ t

0

∂2v

∂t2
(x, t; τ) dτ.

Winter 2019 AMATH 353 56



Chapter 4. IBVPs in Bounded Domains 57

Parabolic Case: We substitute the 1st expression into the LHS of the PDE. We want to show
we get g(x, t) on the RHS. We have

ρ
∂

∂ut
+ L[u] = ρ

v(x, t; t)︸ ︷︷ ︸
g(x,t)/ρ(x)

+

ˆ t

0

∂v

∂t
(x, t; τ) dτ

+ L
[ˆ t

0
v(x, t; τ) dτ

]

= g(x, t) +

ˆ t

0

ρ ∂v
∂t

(x, t; τ)︸ ︷︷ ︸
=0

+L(v)

dτ

= g(x, t).

as required. Hence, we have the means of computing u(x, t).

Hyperbolic Case: some line here fix

ρ
∂2u

∂t2
+ L[u] = ρ

 ∂∂t [v(x, t; t)︸ ︷︷ ︸
=0

] +
∂v

∂t
(x, t; τ)︸ ︷︷ ︸

g(x,t)/ρ(x)

+

ˆ t

0

∂2v

∂t2
(x, t; τ) dz

+ L
[ˆ t

0
v(x, t; τ) dτ

]

= g(x, t) +

ˆ t

0
ρ
∂2v

∂t2
+ L[v]︸ ︷︷ ︸

=0

dz

= g(x, t)

as expected.

4.5.0.2 Inhomogeneous Wave Equation

We have the inhomogeneous wave equation as

∂2u

∂t2
− c2∂

2u

∂x2
= g(x, t) on −∞ < x <∞, and t > 0,

with ICs
u(x, 0) = 0, and

∂u

∂t
(x, 0) = 0 on −∞ < x <∞.

4.5.1 Duhamel’s Principle

We define the corresponding system for v(x, t; τ). We have the PDE as

∂2v

∂t2
− c2 ∂

2v

∂x2
= 0 on −∞ < x <∞, and t > τ,

with ICs
v(x, τ ; τ) = 0, and

∂v

∂t
(x, τ ; τ) = g(x, τ) on −∞ < x <∞.
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We can apply d’Alembert’s solution where the IC is at t = τ instead of t = 0. We have

v(x, t; τ) =
1

2c

ˆ x+c(t−τ)

x−c(t−τ)
g(s, τ) ds.

Hence, we can obtain the solution as

u(x, t) =

ˆ t

0
v(x, t; τ) dτ =

1

2c

ˆ t

0

ˆ x+c(t−τ)

x−c(t−τ)
g(s, τ) ds dτ.

Remark 4.5.1: Suppose we have non-zero ICs as

u(x, 0) = F (x) and
∂u

∂t
(x, 0) = G(x).

We have the solution as

u(x, t) =
1

2
[F (x+ ct) + F (x− ct)] +

1

2c

ˆ x+ct

x−ct
G(s) ds+

1

2c

ˆ t

0

ˆ x+c(t−τ)

x−c(t−τ)
g(s, τ) ds dτ. /

Remark 4.5.2: Read section 4.5.2 in course notes for inhomogeneous diffusion equation. /

4.6 Eigenfunction Expansions

We went over 3 classes of PDEs (hyperbolic, parabolic and elliptic). We had

ρ
∂2u

∂t2
+ L[u] = ρF (Hyperbolic)

ρ
∂u

∂t
+ L[u] = ρF (Parabolic)

−ρ∂
2u

∂y2
+ L[u] = ρF (Elliptic)

Each of these have the same eigenvalue problem.

L[Mk] = λkρMk, for k = 1, 2, . . . ,

with some BCs. We have found for Sturm-Liouville problems, the Mk’s are orthogonal. Therefore,
we can consider an orthonormal basis, Mk, that is complete.

Motivation: Previously, in the homogeneous PDEs, we used separation of variables and found a
series solution. The series summed up over all the orthonormal eigenfunctions.

An inhomogeneous PDE does not allow for separation of variables in the same way. However, since
the eigenfunctions are complete, we can look for a series solution and determine how this can be
satisfied. Note that this uses the same eigenfunctions. The idea is the following:
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1 Consider the homogeneous PDE and compute the eigenfunctions.

Mk(x), λk where k = 1, 2, . . .

2 Assume a series solution

u(x, t) =

∞∑
k=1

Nk(t)Mk(x).

3 Assume a series for the forcing

F (x, t) =
∞∑
k=1

Fk(t)Mk(x).

This works because eigenfunctions arise from the physics and geometry of the problem. Other bases
will not turn out to be as convenient.

Hyperbolic Case: We have the hyperbolic problem as

ρ
∂2u

∂t2
+ L[u] = ρF.

We will assume the following.

1 The eigenfunctions are of the form Mk(x) for k = 1, 2, . . ..

2 The solution u(x, t) can be written as a series in Mk(x).

3 F (x, t) can be written as a series in Mk(x).

We project the PDE on M`(x) (in other words multiply the PDE by M`(x) and
´ L

0 dx). We have

ˆ L

0
ρ
∂2u

∂t2
M`, dx+

ˆ L

0
ρ

1

ρ
L[u]M`(x) dx =

ˆ L

0
ρF (x, t)M`(x) dx.

Equivalently, we can also write this in terms of the inner product. We have(
∂2u

∂t2
,M`

)
+

(
1

ρ
L[u],M`

)
= (F,M`).

For the first term, we factor our the time derivative. For the second term, we use self-adjointness
and then the eigenvalue relations. For the third term, we rewrite it using Fourier coefficients of F .
We have

u(x, t) =
∞∑
k=1

Nk(t)Mk(x) =⇒ (u,M`) = N`,

F (x, t) =

∞∑
k=1

Fk(t)Mk(x) =⇒ (F,M`) = F`.
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This yields

d2

dt2
(u,M`) +

(
u,

1

ρ
L[M`]

)
= (F,M`)

=⇒ d2N`

dt2
+ λ`N` = F` for ` = 1, 2, . . . .

Note that when we have no forcing, then we get

d2N`

dt2
+ λ`N` ≡ 0,

which was the equation for temporal equation as expected. To find ICs of N`’s, we consider the
initial conditions.

u(x, 0) =

∞∑
k=1

Nk(0)Mk(x) = f(x),

∂u

∂t
(x, 0) =

∞∑
k=1

dNk

dt
(0)Mk(x) = g(x).

We project each equation on M`. We have

N`(0) = (f,M`),

dN`

dt
(0) = (g,M`),

d2N`

dt2
+ λ`N` = F`. (4.6.1)

Some of the techniques we can use this to solve this are

• Laplace transforms (we use this method in Remark 4.6.3),

• Green’s functions,

• Variation of parameters.

We get the solution as

Nk(t) = Nk(0) cos
(√

λk t
)

+
N ′k(0)√
λk

sin
(√

λk t
)

+
1√
λk

ˆ t

0
Fk(s) sin

(√
λk (t− s)

)
ds.

Parabolic Case: When we go through the same approach, we find

dNk

dt
+ λkNk = Fk for k = 1, 2, . . . ,

with Nk(0) = (f,Mk).

This is a linear DE and we can solve it by introducing an integrating factor. We let µ = eλkt and
multiply the ODE with µ. We have

eλkt
dNk

dt
+ λke

λktNk = eλktFk.
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After integrating we getˆ t

0

d

dt
(eλktNk) dt =

ˆ t

0
eλktFk dt =⇒ eλktNk(t)−Nk(0) =

ˆ t

0
eλksFk(s) ds.

Hence we have

Nk(t) = e−λktNk(0) +

ˆ t

0
e−λk(t−s)Fk(s) ds.

Elliptic Case: Similarly, for elliptic case we the below expression (we also have the BCs),

−d2Nk

dy2
+ λkNk = Fk for k = 1, 2, . . . .

4.6.1 Laplace Transforms

Definition 4.6.1: The Laplace transform of a function is defined as

L [y] =
def

ˆ ∞
0

e−sty(t) dt.

Note that we use L (mathcal L) to denote the Sturm-Liouville operator in Notation 4.1.1 and use
L (curvy L) to denote the Laplace transform that we introduced in Definition 4.6.1. /

Remark 4.6.2: The Laplace transform has the following properties.

1 Differentiation:
L [y′] = sL [y]− y[0].

In general, for a function f we have

L [f (n)] = snL [f ]− sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− s0f (n−1)(0).

2 Convolution:
L −1[L [f ]L [g]] = f ∗ g,

where (f ∗ g) is the convolution of two functions given by

(f ∗ g)(t) =

ˆ t

0
f(t− τ)g(τ) dτ.

3 Laplace transform of exponential:

L [eαt] =
1

s− a
.

4 Laplace transform of trigonometric functions:

L [cos(ωt)] =
s

s2 + ω2
,

L [sin(ωt)] =
ω

s2 + ω2
.
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5 Laplace transform of hyperbolic trigonometric functions:

L [cosh(ωt)] =
s

s2 − ω2
,

L [sinh(ωt)] =
ω

s2 − ω2
.

The proofs for these properties are not in the scope of this course. We will take these properties
as given. That being said the proofs are straight forward. They use the linearity of Laplace
transform. /

Remark 4.6.3: We will solve the hyperbolic ODE for Nk(t) we found in (4.6.1) by using Laplace
transform. Recall that we had

Nk(0) = (f,Mk),

dNk

dt
(0) = (g,Mk),

d2Nk

dt2
+ λkNk = Fk, for k = 1, 2, . . . .

Note that we can also solve this by using variation of parameters. We take the Laplace transform
of the ODE and use its linearity. We have

L

[
d2Nk

dt2
+ λkNk

]
= L [Fk],

L

[
d2Nk

dt2

]
+ L [λkNk] = L [Fk].

By the differentiation property for Laplace transform we have

L

[
d2Nk

dt2

]
= s2L [Nk]− sNk(0)−N ′k(0) + λk[Nk] = L [Fk].

We first solve for L [Nk]. We have

L [Nk] =
s

s2 + λk
Nk(0) +

1

s2 + λk
N ′k(0) +

1

s2 + λk
L [Fk].

Since we have

L
[
cos
(√

λk t
)]

=
s

s2 + λk
, and L

[
1√

λk sin
(√

λk t
)] =

1

s2 + λk
,

we obtain

L [Nk] = L [cos
(√

λk t
)

]Nk(0) + L

[
sin
(√

λk t
)

√
λk

]
N ′k(0) + L

[
sin
(√

λk t
)

√
λk

]
L [Fk].

We now take the inverse Laplace transform. We obtain

Nk(t) = cos
(√

λk t
)
Nk(0) +

sin
(√

λk t
)

√
λk

N ′k(0) +

(
sin
(√

λk t
)

√
λk

∗ Fk(t)

)
.
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This is equivalent to

Nk(t) = Nk(0) cos
(√

λk t
)

+N ′k(0)
sin
(√

λk t
)

√
λk

+

ˆ t

0

sin
(√

λk (t− τ)
)

√
λk

Fk(τ) dτ.

We used the convolution property above. /

4.6.2 Resonance

Consider a general hyperbolic PDE.

ρ(x)
∂2u

∂t2
+ L[u] = ρF (x, t).

Here L is the Sturm-Liouville operator. Pick F (x, t) = Mi(x) sin(ωt) where Mi is an eigenfunction
and ω is a real frequency. To make things simple, we suppose

f(x) = 0 =⇒ Nk(0) = 0,

g(x) = 0 =⇒ N ′k(0) = 0.

Given our previous result, we have

Nk(t) =

ˆ t

0

sin
(√

λk (t− τ)
)

√
λk

Fk(τ) dτ for k = 1, 2, . . . .

We compute Fk(t) by projecting it onto Mk. We have

Fk = (F,Mk) = (Mi sin(ωt),Mk) = sin(ωt)(Mi,Mk) = sin(ωt)δik(Mk,Mk).

Assuming Mk is normalized, we have

Fk =

{
0 if k 6= i,

sin(ωt) if k = i.

Hence, we have

Nk(t) =

0 if k 6= i,´ t
0

sin(
√
λ i(t−τ))√
λi

sin(ωτ) dτ if k = i.

Recall that 2 sinA sinB = cos(A−B)− cos(A+B) and obtain

Ni =
1√
λi

ˆ t

0
sin
(√

λi (t− τ)
)

sin(ωτ) dτ =
1

2
√
λi

ˆ t

0
cos[ωτ −

√
λi (t− τ)]− cos[ωτ +

√
λi (t− τ)] dτ

=
1

2
√
λi

[
sin[(ω +

√
λi )τ −

√
λi t]

ω +
√
λi

− sin[(ω −
√
λi )τ +

√
λi t]

ω −
√
λi

]t
0

=
1

2
√
λi

[
sin(ωt) + sin

(√
λi t
)

ω +
√
λi

−
sin(ωt)− sin

(√
λi t
)

ω −
√
λi

]

=
1√
λi

ω sin
(√

λi t
)
−
√
λi sin

(√
λi t
)

(ω2 − λi)
.
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Hence, we obtain our solution as

u(x, t) =
(ω sin

(√
λi t
)
−
√
λi sin

(√
λi t
)
)

√
λi (ω2 − λi)

Mi(x).

Following the calculation from last time, the solution to the forced hyperbolic problem is

Nk(t) = δikNi where Ni =
(ω sin

(√
λi t
)
−
√
λi sin(ωt))

√
λi (ω2 − λi)

,

The complete solution is

u(x, t) =
(ω sin

(√
λi t
)
−
√
λi sin(ωt))

√
λi (ω2 − λi)

Mi(x).

The two frequencies that arise in the solution are ω (forcing frequency) and
√
λi (natural frequency).

The resonant case occurs where ω →
√
λi . We cannot plug this in since we get 0

0 but we can take
the limit as ω →

√
λi . We have

lim
ω→
√
λi
u(x, t) = lim

ω→
√
λi

(ω sin
(√

λi t
)
−
√
λi sin(ωt))

√
λi (ω2 − λi)

Mi(x)

=
(?)

lim
ω→
√
λi

(sin
(√

λi t
)
−
√
λi t cos(ωt))

√
λi 2ω

Mi

=
(sin

(√
λi t
)
−
√
λi t cos(λit))

2λi
Mi.

Where in (?) we used L’Hopital’s rule.

Remark 4.6.4: The solution increases linearly with time. As t → ∞ we get u → ∞. This never
happens because the linear approximation in derivations the wave equation (or other hyperbolic
equations) break down when u is sufficiently large. This is the solution to the resonant problem. /

4.6.3 Inhomogeneous Boundary Conditions

Suppose we have mixed (Robin) BCs that are inhomogeneous where

α1V (0, t)− β1
∂V

∂x
(0, t) = g1(t),

α2V (L, t) + β2
∂V

∂x
(L, t) = g2(t).

The presence of non-zero g1 and g2 prevent us from using separation of variables on this prob-
lem. The idea is to decompose our solution into the sum of two terms, one of which solves the
inhomogeneous BCs. We decompose our solution as

u(x, t) = W (x, t) + V (x, t).

We will pick V (x, t) such that it satisfies the inhomogeneous BCs and it is a linear function of x.
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Example 4.6.5: Consider the PDE

∂u

∂t
−D∂

2u

∂x2
= g(x, t) on the domain

0 < x < L,

t > 0,

with the inhomogeneous Dirichlet BCs and IC

BCs:
u(0, t) = g1(t),

u(L, t) = g2(t),
on the domain t > 0,

IC: u(x, 0) = f(x) on the domain 0 < x < L.

We decompose the solution and obtain

u(x, t) = W (x, t) + V (x, t).

For this case we pick

V (x, t) =
x

L
g2(t) +

L− x
L

g1(t).

What determines W?

Since V is a linear function of x, then we have ∂2V
∂x2

= 0. When we substitute this into PDE we get

∂

∂t
(W + V )−D ∂2

∂x2
(W + V ) = g(x, t) =⇒ ∂W

∂t
−D∂

2W

∂x2
= g(x, t)− ∂V

∂t
≡ g̃(x, t).

When we sub in IC we get

u(x, 0) = W (x, 0) + V (x, 0) = f(x) =⇒ W (x, 0) = f(x)− V (x, 0) ≡ f̃(x).

We we sub into BCs we get

u(0, t) = W (0, t) + V (0, t) = g1(t) =⇒ W (0, t) + g1(t) = g1(t) =⇒ W (0, t) = 0,

u(L, t) = W (L, t) + V (L, t) = g2(t) =⇒ W (L, t) + g2(t) = g2(t) =⇒ W (L, t) = 0.

We can now solve forW (x, t) using Duhamel’s principle or eigenfunction expansions. GivenW (x, t)
and V (x, t), we can find u(x, t). /
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Chapter 5 – Fourier Transform Methods

We consider the same PDEs as in previous chapter but on infinite domain, that is −∞ < x < ∞.
Previously we found solutions of the form

u(x, t) =
∞∑
n=1

Nn(t)Mn(x).

If we have ρ(x) = 1, p(x) = 1, q(x) = 0, we found the eigenfunctions were the Fourier basis. We can
use Euler’s formula to write the functions as

eikx = cos(kx) + i sin(kx) = cis(kx).

In the bounded case, the eigenvalues are set by the eigenfunctions that “fit” in the domain. if the
domain is infinite, then all the trigonometric functions “fit” in the domain. We must integrate over
all values of k. We could try

u(x, t) =

ˆ ∞
−∞

Nk(t)e
ikx dk.

This will be replaced by Fourier transforms.

Definition 5.0.1: Let F be an arbitrary field with char(F) 6= 2. Fourier transform of a function
f : F→ F is defined as follows.

F [f(x)] = F (λ) =
1√
2π

ˆ ∞
−∞

eiλxf(x) dx. (5.0.1)

The inverse Fourier transform is

F−1[F (λ)] = f(x) =
1√
2π

ˆ ∞
−∞

e−iλxF (λ) dλ. (5.0.2)

Here F is a function on the transform space and f is a function on the physical space (if we take
F = R). We will always consider the field of real numbers Rn, generally when n = 1. /

Remark 5.0.2: When we substitute (5.0.1) into (5.0.2) we get

f(x) =
1

2π

ˆ ∞
−∞

ˆ ∞
−∞

e−iλ(x−s)f(s) ds dλ. /

5.0.1 Dirac Delta Function

Definition 5.0.3: Dirac delta function (generalized function) is defined as

δ(x− s) =
def

1

2π

ˆ ∞
−∞

e−iλ(x−s) dλ. /

Remark 5.0.4: Using this definition we obtain

f(x) =

ˆ ∞
−∞

δ(x− s)f(s) ds. /
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The Dirac delta “plucks out” the value of the integrand where the argument of delta function is
zero.

Remark 5.0.5: Using the definition of the Fourier transform, we can find the FT of the Dirac
delta function. We have

F [δ(x− x0)] =
1

2π

ˆ ∞
−∞

eiλxδ(x− x0) dx =
1

2π
eiλx0 .

Using the IFT, we obtain

δ(x− x0) = F−1

[
1

2π
eiλx0

]
=

1

2π

ˆ ∞
−∞

e−iλ(x−x0) dλ. /

Motivation: Consider the following.

δN (x) =

{
N if |x| ≤ 1

2N ,

0 if |x| > 1
2N .

x

y

N

1
2N− 1

2N

Figure 5.0.1: The δN (x) function. Note that the shaded region in purple has always area of 1.

We will see that δ(x) = lim
N→∞

δN (x). The delta function has the property that

ˆ ∞
−∞

δ(x) dx = 1.
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Consider the FT of δN (x). We have

F [δN (x)] =
1√
2π

ˆ ∞
−∞

eiλxδN (x) dx

=
1√
2π

ˆ 1/2N

−1/2N
eiλxN dx

=
N√
2π

[
eiλx

iλ

]∣∣∣∣1/2N
−1/2N

=
2N√
2π 2iλ

[
eiλ/2N − e−iλ/2N

]
=

1√
2π

sin(λ/2N)

(λ/2N)
. (5.0.3)

The function in (5.0.3) is called the sinc function . Hence we get

lim
N→∞

F [δN (x)] = F [δ(x)] = lim
N→∞

√
2π

sin(λ/2N)

λ/2N
=

1√
2π

.

Similarly by using IFT we get

δ(x) = lim
N→∞

δN (x) = lim
N→∞

F−1

[
1√
2π

sin(λ/2N)

λ/2N

]
= lim

N→∞

1√
2π

ˆ ∞
−∞

e−iλx
1√
2π

sin(λ/2N)

λ/2N
dλ

=
1

2π

ˆ ∞
−∞

e−iλx dλ.

Remark 5.0.6: Let F(f(x)) = F (λ) and F(g(x)) = G(λ). The Fourier transform has the following
properties.

1 The inverse of F (λ)G(λ) is the normalized convolution of f and g.

F−1[F (λ)G(λ)] =
1√
2π

ˆ ∞
−∞

e−iλxF (λ)G(λ) dλ

=
1

2π

ˆ ∞
−∞

ˆ ∞
−∞

e−iλxeiλsf(s)G(λ) ds dλ

=
1

2π

ˆ ∞
−∞

f(s)

[ˆ ∞
−∞

e−iλ(x−s)G(λ) dλ

]
ds

=
1√
2π

ˆ ∞
−∞

f(s)g(x− s) ds

=
1√
2π

(f ∗ g)(x).

2 Parseval’s theorem: ˆ ∞
−∞
|F (λ)|2 dλ =

ˆ ∞
−∞
|f(x)|2 dx.
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3 Differentiation formula.

F
[

df

dx

]
= (−iλ)F [f ],

F
[

dnf

dxn

]
= (−iλ)nF [f ],

The proofs for these properties can be obtain by using the linearity of the Fourier transform and
are not included in these notes. They are presented in the course notes posted on Learn. /

5.0.2 Applications of Fourier Transforms to ODEs

Consider the ODE below on the domain −∞ < x <∞,

d2y

dx2
− k2y = −f(x).

We assume that as |x| approaches to infinity then y(x), and y′(x) approach to zero. We solve this
problem by first computing FT of ODE by using its linearity and differentiation properties and
solving for F [y].

F
[

d2y

dx2

]
− k2F [y] = −F [f ] ⇐⇒ (−iλ)2F [y]− k2F [y] = −F [f ]

⇐⇒ (λ2 + k2)F [y] = F [f ]

⇐⇒ F [y] = F [f ]
1

λ2 + k2
.

We then IFT to obtain y as follows. Note that we have

1

λ2 + k2
= F

[√
2π

2k
e−k|x|

]
.

We want to solve for y where

F [y] = F [f ]
1

λ2 + k2
= F [f ]F

[√
2π

2k
e−k|x|

]
.

This gives us

F [y] = F [f ]F
[

2π

2k
e−k|x|

]
⇐⇒ y(x) = F−1

[
F [f ]F

(√
2π

2k
e−k|x|

)]

=
(?)

1√
2π

(
f ∗
√

2π

2k
e−k|x|

)
(x)

=
1

2k

(
f ∗ e−k|x|

)
(x)

=
1

2k

ˆ ∞
−∞

f(s)e−k|x−s| ds.

Here in (?) we used the convolution property.
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5.0.3 Diffusion Equation

We have the PDE for the diffusion equation as

∂u

∂t
= D

∂2u

∂x2
, on the domain

−∞ < x <∞
t > 0,

with IC
u(x, 0) = f(x), on the domain −∞ < x <∞.

Since the domain is infinite, Fourier transforms are a good approach to solve this problem. We use
the following three steps to solve this problem.

1 Compute the Fourier transform of the PDE and the IC. For the PDE, we define U(λ, t) =
F [u(x, t)]. We have

F
[
∂u

∂t

]
= F

[
D
∂2u

∂x2

]
.

Since the Fourier transform is linear, by using the derivative property we obtain

∂

∂t
U = D(−iλ)2U = −Dλ2U.

For the IC we get
F [u(x, 0)] = F [f(x)] ⇐⇒ U(λ, 0) = F (λ).

2 Solve the ODE that we obtained by using Fourier transform. We have the ODE

∂

∂t
U = −Dλ2U.

This has the solutions
U(λ, t) = Ae−Dλ

2t.

We impose the IC and get
U(λ, t) = F (λ)e−Dλ

2t.

3 We take the inverse Fourier transform to get the solution in physical space. We have

u(x, t) = F−1[U(λ, t)] = F−1[Fe−Dλ
2t] =

1√
2π

ˆ ∞
−∞

e−iλxF (λ)e−Dλ
2t dλ

=
1

2π

ˆ ∞
−∞

e−iλx−Dλ
2t

ˆ ∞
−∞

eiλxf(s) ds dλ

=
1

2π

ˆ ∞
−∞

f(s)

ˆ ∞
−∞

exp
(
−iλ(x− s)−Dλ2t

)
dλ ds.

Denote the integral below as I.

I(x− s) =
def

ˆ ∞
−∞

exp
(
−iλ(x− s)−Dλ2t

)
dλ.

By Euler’s formula we have

I(x− s) =

ˆ ∞
−∞

[cos(λ(x− s))− i sin(λ(x− s))]e−Dλ2t dλ.
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Since sin(λ(x− s)) is odd, the it becomes zero in the integrand. Hence we get

I(x− s) = 2

ˆ ∞
0

cos[λ(x− s)]e−Dλ2t dλ.

We can rewrite this as
I(α) =

def
2

ˆ ∞
0

cos(λα)e−Dλ
2t dλ.

When we differentiate it with respect to α we obtain

dI

dα
= −2

ˆ ∞
0

λ sin(λα)e−Dλ
2t dλ

= −
ˆ ∞

0
2λe−Dλ

2t sin(λα) dλ

= −
[

d

dt
exp
(
−Dλ2t

)
sin(λα)

]∞
0

−
ˆ ∞

0

d

dt
exp
(
−Dλ2t

)
α cos(λα) dλ

= − α

2Dt
I.

It can be shown I(0) =
√

π
Dt . Hence we have

I(α) =

√
π

Dt
exp

(
− α2

4Dt

)
.

We substitute this into our solution. We obtain

u(x, t) =
1

2π

ˆ ∞
−∞

f(s)

√
π

Dt
exp

(
−(x− s)2

4Dt

)
ds

=
1√

4πDt

ˆ ∞
−∞

exp

(
−(x− s)2

4Dt

)
f(s) ds.

We define

G(x− s, t) =
1√

4πDt
exp

(
−(x− s)2

4Dt

)
.

hence we obtain

u(x, t) =

ˆ ∞
−∞

G(x− s, t)f(s) ds.

The function G(x − s, t) is called the fundamental solution to the diffusion equation or the
heat kernel.

Consider f(x) = δ(x− x0). Then our solution becomes

u(x, t) =

ˆ ∞
−∞

G(x− s, t)δ(s− x0) ds = u(x, t) = G(x− x0, t).
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5.0.4 Wave Equation

We have the PDE as

∂2u

∂t2
− c2∂

2u

∂x2
= 0, on the domain

−∞ < x <∞
t > 0,

with ICs
u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x),

on the domain −∞ < x <∞.

Since the domain is infinite, Fourier transforms are a good approach to solve this problem. We use
the following three steps to solve this problem as before.

1 Compute the Fourier transform of the PDE and the IC. For the PDE, we define U(λ, t) =
F [u(x, t)]. We have

∂2U

∂t2
+ c2λ2U = 0.

For the IC we get
U(λ, 0) = F =

def
F [f ],

∂U

∂t
(λ, 0) = G =

def
F [g].

2 Solve the ODE that we obtained by using Fourier transform. We have the ODE

∂2U

∂t2
+ c2λ2U = 0.

The solution to complex U is

U(λ, t) = α(λ)eicλt + β(λ)e−icλt.

We impose the ICs and get

U(x, 0) = α+ β = F,

∂U

∂t
(λ, 0) = icλα− icλβ = G.

To solve this, we write the above as a system of linear equations. We have[
1 1
icλ −icλ

][
α
β

]
=

[
F
G

]
=⇒

[
α
β

]
= − 1

2icλ

[
−icλ −1
−icλ 1

][
F
G

]
This gives us

α =
1

2
F +

1

2icλ
G,

β =
1

2
F − 1

2icλ
G.

Hence, our solution for U(λ, t) becomes

U(λ, t) =

[
1

2
F +

1

2icλ
G

]
eicλt +

[
1

2
F − 1

2icλ
G

]
e−icλt.
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3 We take the inverse Fourier transform to get the solution in physical space. We have

u(x, t) = F−1[U(λ, t)] = F−1

[(
1

2
F +

1

2icλ
G

)
eicλt

]
+ F−1

[(
1

2
F − 1

2icλ
G

)
e−icλt

]
=

1

2

1√
2π

ˆ ∞
−∞

exp(−iλ(x− ct))F (λ) dλ+
1

2

1√
2π

ˆ ∞
−∞

exp(−iλ(x+ ct))F (λ) dλ

+
1

2c

1√
2π

ˆ ∞
−∞

exp(−iλ(x− ct))G(λ)

iλ
dλ− 1

2c

1√
2π

ˆ ∞
−∞

exp(−iλ(x+ ct))
G(λ)

iλ
dλ︸ ︷︷ ︸

(?)

=
1

2
f(x− ct) +

1

2
f(x+ ct) + (?).

Define the function g(x) as

g(x) =
1√
2π

ˆ ∞
−∞

e−iλxG(λ) dλ.

This gives us ˆ x

0
g(s) ds = − 1√

2π

ˆ ∞
−∞

e−iλx
G(λ)

iλ
dλ.

Our solution becomes

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)]− 1

2c

ˆ x−ct

0
g(s) ds+

1

2c

ˆ x+ct

0
g(s) ds.

Hence we obtain

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

ˆ x+ct

x−ct
g(s) ds.

which is the (d’Alembert’s Solution).
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Chapter 3 – Method of Characteristics

3.1 Linear First-order PDEs

Remark 3.1.1: Recall that we have the wave equation as(
∂2

∂t2
− c2 ∂

2

∂x2

)
u = 0.

We can factor the operator as (
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
= 0.

If we define v such that (
∂

∂t
− c ∂

∂x

)
u = v,

we get (
∂

∂t
+ c

∂

∂x

)
v = 0.

This is a system of first order couples PDEs. /

We will discus methods of solving first order PDEs.

3.1.1 Basis for Method of Characteristics

Remark 3.1.2: We have the general first order linear PDE as

a(x, t)
∂v

∂x
+ b(x, t)

∂v

∂t
= c(x, t)v(x, t) + d(x, t),

with an “initial curve” Γ on example initial condition v(x, 0) = f(x). /

If we have a solution, say v(x, t), this tells us the solution at any (x, t). Since these equations are like
the wave equation, it will be useful to discuss how information propagates along curves. Suppose
we have a curve parameterized with s. So we have Γ = (x(s), t(s)).
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Γ is
t = 0.

Γ

x

t

Figure 3.1.1: An example of initial curve Γ (in red).

We check how the solution changes along parameterized curve. The solution on curve is v(x(s), t(s)).
By chain rule we have

dv

ds
=
∂v

∂x

dx

ds
+
∂v

∂t

dt

ds
.

We pick

dx

ds
= a,

dt

ds
= b,

 (3.1.1)

dv

ds
= cv + d. (3.1.2)

The equations in (3.1.1) define the characteristic curves. The equation in (3.1.2) shows how the
solution changes along these curves.

3.1.2 Using the Method of Characteristics

Theorem 3.1.3: Given a PDE of the form

a(x, t)
∂v

∂x
+ b(x, t)

∂v

∂t
= c(x, t)v(x, t) + d(x, t),

if the functions a(x, t), b(x, t), c(x, t), and d(x, t) are smooth, and if the “initial curve” Γ can be
parameterized as

Γ = {(x, t) | x = x̂(τ), t = t̂(τ)}, with v = v̂(τ) on Γ,

then a solution v(x, t) exists and it is unique.

Proof: What is a proof? This is an AMATH course. :|

Remark 3.1.4: We use the following four steps to use the method of characteristics.

1 Parameterize “initial curve” Γ with

x = x̂(τ), t = t̂(τ), and v = v̂(τ).
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2 Solve for the characteristic curves using ICs.

dx

ds
= a(x, t),

dt

ds
= b(x, t),

with
x|s=0 = x̂(τ),

t|s=0 = t̂(τ).

Note that the initial condition occurs at s = 0. This yields x(s, τ), t(s, τ). Also note that τ
is the parameter that parameterizes the initial curve Γ with bounds −∞ < τ <∞ unless the
domain is explicitly defined.

3 Substitute the above to solve for v.

dv

ds
= c(x, t)v + d(x, t), with v|s=0 = v̂(τ).

This yields solutions in terms of the parameters s and τ . We get

v(s, τ), and x = x(s, τ), and t = t(s, τ).

4 Invert the characteristic equations to find s(x, t) and τ(x, t) in terms of x and t. Then substi-
tute these into v = v(s, τ) and obtain

v(x, t) = v(s(x, t), τ(x, t)).

We will use these steps to solve questions with the method of characteristics. /

Example 3.1.5: Consider the PDE

∂v

∂t
+ c

∂v

∂x
= 0 on the domain

−∞ < x <∞,
t > 0,

with IC
v(x, 0) = f(x).

Recall that this is the advection equation introduced in (Linear Advection (Transport) Equation).

Solution: We use the four steps we introduced in Remark 3.1.4.

1 Find the parameterization of initial curve Γ.

x = τ, t = 0, and v = f(τ).

This is at s = 0.

2 Solve for the characteristic curves. We need to use given initial condition.

dx

ds
= c, x|s=0 = τ,

dt

ds
= 1, t|s=0 = 0.

We solve the equations above and obtain

x = cs+ τ,

t = s.
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3 Solve for v.

dv

ds
= 0, v|s=0 = f(τ)

=⇒ v = f(τ).

4 Getting the solution in terms of x, t.

s = t, and τ = x− ct =⇒ v = f(x− ct).

Refer Fig. 3.4. on page 51 in official course notes for the behavior of the characteristics of linear
advection equation with c = 1. /

3.1.2.1 Moving Boundary Problem Example

Consider the PDE of the form
∂v

∂t
+ 2

∂v

∂x
= −v,

with the given initial curve

v(x, t) =
1

1 + x2
on x+ t = 0.

We have

x

t

Figure 3.1.2: We have the initial curve as x = −t in red.

We use the four steps we introduced in Remark 3.1.4.

1 Parameterize the initial curve.

x = τ, t = −τ, v =
1

1 + τ2
.

2 Find characteristic curves.

dx

ds
= 2, x|s=0 = τ =⇒ x = 2s+ τ,

dt

ds
= 1, t|s=0 = τ =⇒ t = s− τ.
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3 Solution on curves (solving for the v).

dv

ds
= −v, v|s=0 =

1

1 + τ2
.

This gives us

v = f(τ)e−s =⇒ v =
1

1 + τ2
e−s.

4 Invert the transformation to find the solution in terms of x and t, i.e. find v(x, t).
We combine the equations we found in 2 . We get

s =
x+ t

3
, and τ =

x− 2τ

3
.

We substitute these in v(s, τ) and obtain

v(x, t) =
exp
(
−x+t

3

)
1 +

(
x−2t

3

)2 .
Note that if τ is a constant, then we have 3τ = x− 2t. So we have

x

t

Figure 3.1.3: We obtain the solution above the initial curve (in green).

3.1.2.2 Boundary Problem Example

Consider the PDE
∂u

∂t
+ c

∂u

∂x
= 0, on the domain

x > 0,

t < 0,

with the ICs
u(x, 0) = 0

u(0, t) = te−t,
on

x > 0,

t > 0.

We have the following sketch of the problem.
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x

t
u(0, t) = te−t

u(x, 0) = 0

Figure 3.1.4: The problem with initial curves.

We expect the solution to look like

x

t
u(0, t) = te−t

u(x, 0) = 0

Figure 3.1.5: Expected solution (in pink).

We use the four steps we introduced in Remark 3.1.4.

1 Parameterize the initial curve.

x = 0, t = τ, u = τe−τ , where τ ≥ 0.

2 Find characteristic curves.
dx

ds
= c, x|s=0 = τ =⇒ x = cs,

dt

ds
= 1, t|s=0 = 0 =⇒ t = s+ τ.

3 Solution on curves (solving for the v).
du

ds
= 0, u|s=0 = τe−τ =⇒ u = τe−τ .

4 Invert the transformation to find the solution in terms of x and t, i.e. find v(x, t).
We combine the equations we found in 2 . We get

s =
x

c
, and τ = t− s = t− x

c
.

We substitute these in v(s, τ) and obtain

u(x, t) =
(
z − x

c

)
exp
(
−t− x

c

)
.

Note that this is the upper triangle region in Figure 3.1.5.
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3.1.2.3 Wave Equation (factored)

Consider the PDE

∂u

∂t
+ c

∂u

∂x
= 0,

∂u

∂t
− c∂v

∂x
= u,

with the ICs

v(x, 0) = f(x),

∂v

∂t
(x, 0) = g(x).

We first solve for u(x, t). We have he PDE

∂u

∂t
+ c

∂u

∂x
= 0,

and IC
u(x, 0) =

∂v

∂t
(x, 0)− c∂v

∂x
(x, 0) = g(x)− cf ′(x).

We apply our previous solution and get

u(x, t) = g(x− ct)− cf ′(x− ct).

We now solve for v(x, t). We have the PDE

∂v

∂t
− c∂v

∂x
= g(x− ct)− cf ′(x− ct),

with the IC
v(x, 0) = f(x).

We use the four steps we introduced in Remark 3.1.4.

1 Parameterize the initial curve.

x = τ, t = 0, v = f(τ).

2 Find characteristic curves.

dx

ds
= −c, x|s=0 = τ =⇒ x = −cs+ τ,

dt

ds
= 1, t|s=0 = 0 =⇒ t = s.
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3 Solution on curves (solving for the v).

dv

ds
= g(x− ct)− cf ′(x− ct), v|s=0 = f(τ).

From above we have t = s and x = −cs+ τ . This gives us

dv

ds
= g(−2cs+ τ)− cf ′(−2cs+ τ), v|s=0 = f(τ).

We integrate w.r.t s from 0 to s. We get
ˆ s

0

dv

ds
ds =

ˆ s

0
g(τ − 2cs)− cf ′(τ − 2cs) ds.

We substitute β = τ − 2cs which gives us dβ = −2csds. We obtain

v(s)− v(0) = − 1

2c

ˆ τ−2cs

τ
g(β)− cf ′(β) dβ =⇒ v(s) = f(τ)− 1

2c

ˆ τ−2cs

τ
g(β) dβ +

1

2

ˆ τ−2cs

τ
cf ′(β) dβ

=⇒ v(s) = f(τ)− 1

2c

ˆ τ−2cs

τ
g(β) dβ +

1

2
[f(β)]

∣∣∣∣τ−2cs

τ

=⇒ v(s) = f(τ) +
1

2
f(τ − 2cs)− 1

2
f(τ)− 1

2c

ˆ τ−2cs

τ
g(β) dβ.

4 Invert the transformation to find the solution in terms of x and t, i.e. find v(x, t).
We combine the equations we found in 2 . We get

s = t, τ = x+ ct.

This gives us

v(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct)− 1

2c

ˆ x−ct

x+ct
g(β) dβ

=
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

ˆ x+ct

x−ct
g(β) dβ,

which is the d’Alembert’s solution

3.1.2.4 Interpretation of the Solution

We consider two cases.

1 Initial velocity is zero. We have

dv

dt
(x, 0) = g(x) = 0 =⇒ v(x, t) =

1

2
[f(x+ ct) + f(x− ct)].

This tells us the following.
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x

t

(x, t)

(x− ct) (x+ ct)

Figure 3.1.6: A plot of the two characteristic curves that transport information from the initial
curve to any position (x, t).

2 Initial displacement is zero. We have

v(x, 0) = f(x) = 0 =⇒ v(x, t) =
1

2c

ˆ x+ct

x−ct
g(β) dβ,

which is the average of g(β). This tells us the following.

x

t

(x, t)

(x− ct) (x+ ct)

Figure 3.1.7

This behavior is different from the diffusion equation, in that case if the initial condition is
f(x) = δ(x− x0) the solution is v = (x, t) = G(x− x0, t) which is non-zero everywhere.

3.1.3 Existence and Uniqueness

Existence: For a solution to exist at (x, t) we need a characteristic curve that meets this point
only once. Furthermore, we need that the “initial curve” crosses each characteristic curve once. For
the initial curve to not be a characteristic curve, we need the Jacobian of the transformation from
(s, τ) to (x, t) to be non-singular.

∣∣∣∣∂(x, t)

∂(s, τ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂x

∂s

∂x

∂τ

∂t

∂s

∂t

∂τ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
b

∂x

∂τ

a
∂t

∂τ

∣∣∣∣∣∣∣∣ 6= 0,

on the initial curve.
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Existence: As an example, consider the inhomogeneous wave equation

∂2v

∂t2
− c2 ∂

2v

∂x2
= f(x, t), on the domain

−∞ < x <∞,
t > 0.

with the ICs
v(x, 0) = f(x),

∂v

∂t
(x, 0) = g(x).

The initial curve is t = 0 (this is the x-axis). The characteristic curves are τ = x± ct.

Let v1 and v2 be two solutions for the problem. We want to show the solution is unique. Suppose
v = v1 − v2. We claim that v solves the homogeneous system

∂2v

∂t2
− c2 ∂

2v

∂x2
= 0, PDE

v(x, 0) = 0,

∂x

∂t
(x, 0) = 0.

 ICs

To show this is true, we find the equation for the energy. We multiply the PDE by ∂v
∂t . We get

∂v

∂t

∂2v

∂t2
− c2∂v

∂t

∂2v

∂x2
= 0 =⇒ ∂

∂t

(
1

2

(
∂v

∂t

)2
)
− c2 ∂

∂x

(
∂v

∂t

∂v

∂x

)
+ c2 ∂

2v

∂x∂t

∂v

∂x
= 0

=⇒ ∂

∂t

(
1

2

(
∂v

∂t

)2
)
− c2 ∂

∂x

(
∂v

∂t

∂v

∂x

)
+ c2 ∂

∂t

(
1

2

(
∂v

∂x

)2
)

= 0.

To find a global expression we integrate
´∞
−∞ dx. We get

ˆ ∞
−∞

∂

∂t

[
1

2

(
∂v

∂t

)2

+
1

2
c2

(
∂v

∂x

)2
]

dx =

ˆ ∞
−∞

c2 ∂

∂x

(
∂v

∂t

∂v

∂x

)
dx+

���
���

��:0[
c2∂v

∂t

∂v

∂x

]∣∣∣∣∞
−∞

=⇒ 1

2

d

dt

ˆ ∞
−∞

(
∂v

∂t

)2

+ c2

(
∂v

∂x

)2

dx = 0.

Since the integral is zero at t = 0, then for all time we have
ˆ ∞
−∞

(
∂v

∂t

)2

+ c2

(
∂v

∂x

)2

dx = 0.

This is only possible if ∂v∂t = 0 = ∂v
∂x . So we must have

v(x, t) = 0.

Hence we get v1 = v2 which means the solution is unique.

3.2 Quasi-linear PDEs

Consider the PDE of the form

a(x, t, v)
∂v

∂x
+ b(x, t, v)

∂v

∂t
= c(x, t, v).
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Method: We require the following.

1 The functions a, b, c ∈ C∞(R). i.e. they are smooth functions.

2 Initial curve is given by Γ with

x = x̂(τ), t = t̂(τ), v = v̂(τ).

3 The determinant of the Jacobian is initially non-zero. We have

det(A(τ)) =

∣∣∣∣∂(x, t)

∂(s, τ)

∣∣∣∣︸ ︷︷ ︸
(?)

=

∣∣∣∣∣∣∣∣
∂x

∂τ

∂x

∂s

∂t

∂τ

∂t

∂s

∣∣∣∣∣∣∣∣
s=0

=
∂x̂

∂τ
b(x̂, t̂, v̂)− ∂t̂

∂τ
a(x̂, t̂, v̂) 6= 0.

Here (?) is evaluated on the initial curve (at s = 0). If these conditions are satisfied, then there
exists a unique solution for some time interval and the solution is determined by the following
characteristic equations.

dx

ds
= a(x, t, v), x|s=0 = x̂(τ),

dt

ds
= b(x, t, v), t|s=0 = t̂(τ),

dv

ds
= c(x, t, v), v|s=0 = v̂(τ).

From the solutions to this system, we can invert

x = x(τ, s), t = t(τ, s)

to find

τ = τ(x, t), s = s(x, t)

=⇒ v(x, t) = v(τ(x, t), s(x, t)).

3.2.0.1 Inviscid Burger’s Equation

Recall that we have the inviscid Burger’s equation as

∂v

∂t
+ v

∂v

∂t
= 0, on the domain

−∞ < x <∞,
t > 0.

with the inital conditions
v(x, 0) = f(x).

Consider the initial curve
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u(x, 0) = f(x)

x

t

Figure 3.2.1: Initial curve.

1 We parametrize the initial curve.

x = τ, t = 0, v = f(τ).

2 We define the characteristic curves.

dx

ds
= v, x|s=0 = τ,

dt

ds
= 1, t|s=0 = 0,

dv

ds
= 0, v|s=0 = f(τ).

We first need to solve for t and v to obtain the solution for x. We have

t = s, and v = f(τ).

This gives us
dx

ds
= f(τ), x|s=0 = τ =⇒ f(τ)s+ τ.

Our solution is

v = f(τ)

= f(x− tf(τ))

= f(x− vt).

A characteristic has a particular value of τ . Therefore, the solution v = f(τ) is constant along each
characteristic. The characteristic curves are given by

τ = x− f(τ)t.

We want to know the slope in (x, t) space. To find this, we can find the derivative w.r.t time. We
have

0 =
dx

dt
− f(τ) =⇒ f(τ) =

dx

dt
.
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We continue our discussion on inviscid Burger’s equation. Last time we had

∂v

∂t
+ v

∂v

∂x
= 0,

with the IC
v(x, 0) = f(x).

The solution can be formally written as

v(x, t) = f(x− vt)

Note that f(x − vt) is a solution but it is implicit. In order to get the solution we need to define
some characteristic variables. In terms of characteristic variables, the solution is

v = f(τ),

where the characteristics are defined as

τ = x− tf(τ).

Note that this gives us
dt

dx
=

1

f(τ)
.

Consider the example below.

If x0 < x1 and f(x0) > f(x1), we expect the
solution to steepen and become multivalued. This
is called a shock .

ts

xs

shock
happens

x

v(x, 0)

Figure 3.2.2: Shock in red.

This gives us

x

t

the location and
time of a shock

ts

xs
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3.2.1 Shock Formation

A shock is where the solution is multivalued and the profile is vertical. This can be found mathe-
matically by determining when and where ∂v

∂x →∞. Our solutions are

v = f(τ), and x = tf(τ) + τ.

First, we have
∂v

∂x
= f ′(τ)

∂τ

∂x
.

We now differentiate w.r.t x. We have

1 = tf ′(τ)
∂τ

∂x
+
∂τ

∂x
= (tf ′(τ) + 1)

∂τ

∂x
,

which is equivalent to
∂τ

∂x
=

1

tf ′(τ) + 1
.

We combine these two equations and obtain

∂v

∂x
=

f ′(τ)

tf ′(τ) + 1
.

We want to know when this becomes infinite. Note if f ′(τ) ≥ 0, then the denominator is never zero.
Hence a shock will not occur. So we need f ′(τ) < 0 for some τ . By continuity, know that f ′(τ) for
some range of τ .

Observe that ∂v
∂x → ∞ as t → − 1

f ′(τ) . To find the initial shock time, we find the minimum of this
function. If we denote the first shock time as ts, then we have

ts = min
−∞<τ<∞

(
− 1

f ′(τ)

)
> 0.

If the minimum occurs at τmin, then the location of the shock is

xs = tsf(τmin) + τmin.

Example 3.2.1: Suppose

v(x, 0) = f(x) =
1

1 + x2
.

Note that this is maximum when x = 0. The solution is

u =
1

1 + τ2
, with x =

t

f(τ)
+ τ =

t

1 + τ2
+ τ.

We want to know when and where the shock first occurs. We have

f ′(τ) = − 2τ

(1 + τ2)2
.

We also have

ts = min
τ

(
−1
−2z

(1+τ2)2

)
= min

τ

(
(1 + τ2)2

2z

)
.
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To find the minimum, we find the extrema. We have

d

dτ

(
(1 + τ2)2

2τ

)
=

2(1 + τ2)2τ

2τ
− (1 + τ2)2

2τ2
=

2(1 + τ2)2τ2

2τ2
− (1 + τ2)2

2τ2
=

(1 + τ2)(4τ2 − (1− τ2))

2τ2

=
(1 + τ2)(−1 + 3τ2)

2τ2
.

Since τ parametrizes the curve, then τ ∈ R (i.e. τ is not imaginary). Then we must have τmin =
±1/
√

3 . This gives us

ts =
(1 + τ2)2

2τ
=

(
1 + 1

3

)2
± 2√

3

=
16
9

± 2√
3

= ±8
√

3

9
.

Since time cannot be negative, we take the shock time as

ts =
8
√

3

9
.

Note that for this case τmin = +1/
√

3 . To find the shock location, we find xs. We have

xs = tsf(τmin) + τmin =
8
√

3

9

1

1 + 1
3

+
1√
3

=
2
√

3

3
+

√
3

3
=
√

3 .

Hence, we find that the shock occurs at

(xs, ts) =

(
√

3 ,
8
√

3

9

)
. /

3.2.1.1 Expansion Fans

Consider solutions to the Burger’s equation with the following initial condition

v(x, 0) =

{
B if x ≤ 0,

A if x > 0.
, with A > B.

Graphically we have

v(x, 0)

x

B

A

Figure 3.2.3: Graphical representation of piecewise continuous solution.

We have
∂v

∂t
+ v

∂v

∂x
= 0.
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The solution to the Burger’s equation in general is

v = f(τ), τ = x− tf(τ).

For τ > 0, f(τ) = A gives us v = A. When we substitute this into the characteristic equation we
get

τ = x− tA > 0.

Hence, we need to have x > tA. Hence, we see that all of the characteristics are parallel.

For τ ≤ 0, we have f(τ) = B which gives us v = B. When we substitute this into the characteristic
equation we get

τ = x− tB ≤ 0.

Hence we need to have x ≤ tB. By this, we obtain the solution in two different pieces. We have

v(x, t) =

{
B if x ≤ tB,
A if x > tA.

This looks like

t

x

x = tAx = tB

Figure 3.2.4: Piecewise continuous solution v(x, 0).

We want to know how the solution looks like in the purple region. In some later time we expect to
have

v(x, t) t > 0

xtB tA

Figure 3.2.5: Solution at a later time.

We want to know how to solution behaves when tB < x < tA. The solution in this region is what
we call an expansion fan and it is of the form

φ(x, t) =
x− x0

t− t0
.
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Note that this function solves the inviscid Burger’s equation. We have

∂φ

∂x
=

1

t− t0
,

∂φ

∂t
=
−(x− x0)

(t− t0)2
.

We substitute these into LHS and obtain
∂φ

∂t
+ φ

∂φ

∂x
= −(x− x0)

(t− t0)2
+

(x− x0)

(t− t0)2
= 0.

This is true for all x0 and t0. Hence we must pick these constants to match our solution. We do
this by requiring continuity of the solution everywhere. On the right we have

φ(tA, t) = A, and φ(tB, t) = B.

These equations require
tA− x0

t− t0
= A, and

tB − x0

t− t0
= B.

This gives us
tA− x0 = tA− t0A,
tB − x0 = tB − t0B,

, or x0 = t0A = t0B.

This requires x0 = 0 = t0, which gives us

φ(x, t) =
x

t
.

Hence, we obtain the complete solution as

v(x, t) =


B if x ≤ tB,
x/t if tB < x ≤ tA,
A if x > tA.

Note that this is consistent with our initial guess at Figure 3.2.5.

Example 3.2.2: Solve the following PDE

∂v

∂t
+ v

∂v

∂t
= −v2, with v(x, 0) = g(x).

Solution: We use the four steps we discussed in Remark 3.1.4.

1 Parameterize the IC.
x = τ, and t = 0, and v = g(τ).

2 Find the characteristic equations.

a :
dt

ds
= 1 t|s=0 = 0,

b :
dx

ds
= v x|s=0 = τ,

c :
dv

ds
= −v2 v|s=0 = g(τ).
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From a , we get t = s. From c , we used the fact that the ODE is separable and obtain

dv

ds
= −v2 =⇒

ˆ
dv

−v2
=

ˆ
ds =⇒ 1

v
= s+ α(τ).

At s = 0, we have 1
g(τ) = α(τ). Hence we obtain

1

v
= s+

1

g(τ)
=
g(τ)s+ 1

g(τ)
.

Which gives us

v =
g(τ)

g(τ)s+ 1
.

For b we have
dx

ds
=

g(τ)

g(τ)s+ 1
=

1

s+ 1
g(τ)

.

This is separable. We have

dx =
ds

s+ 1
g(τ)

=⇒
ˆ

dx =

ˆ
ds

s+ 1
g(τ)

=⇒ x = ln

∣∣∣∣s+
1

g(τ)

∣∣∣∣+ β(τ).

So, at s = 0 we have

τ = ln |g(τ)|+ β(τ) =⇒ β(τ) = τ + ln |g(τ)|.

We obtain
x = ln

∣∣∣∣s+
1

g(τ)

∣∣∣∣+ τ + ln |g(τ)| = ln |sg(τ) + 1|+ τ.

In general, we cannot invert this equation to find a solution but if we had a particular g(τ), we
could plug it in and maybe solve it. To determine if a shock occurs, we begin with ∂v

∂x and find if it
goes to infinity. /

Final Exam Information

The final exam is on April 23, 2019 between 09:00–11:30 a.m in STC 0010. It includes material from
the entire course, with more emphasis on material after the midterm. There will be 5-6 questions.
A sample final with the formula sheet will be posted on Learn next week.

Course Summary

We give a brief summary of the course. Here the chapter numbering follows the numbering
in textbook and the order follows the order they are covered in lectures.
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Chapter 1: Modeling with PDEs

We saw that conservation law (in 1-D and 3-D) with constitutive relation gave rise to certain types
of PDEs, such as the diffusion equation. Also, from Newton’s 2nd Law we obtained other types of
PDEs, such as the wave equation.

Chapter 2: Classification of PDEs

We saw that we can classify PDEs in three classes. We have the general form of a PDE as

A
∂2U

∂x2
+ 2B

∂2U

∂x∂y
+ C

∂2U

∂y2
+D

∂U

∂x
+ E

∂U

∂y
+ FU = G.

We classified the PDEs depending on the value of B2 −AC. We had

B2 −AC =


∆ > 0 hyperbolic
∆ = 0 parabolic
∆ < 0 elliptic

Chapter 4: IBVPs

We considered some PDEs with BCs and ICs on bounded domains. For example, for the parabolic
PDE we had

ρ
∂u

∂t
+ L[u] = ρF, where L[u] = − ∂

∂x

(
ρ
∂u

∂x

)
+ qu.

If F = 0, we call our PDE as homogeneous, otherwise as inhomogeneous. To solve the PDE in
these cases, we used the following procedures. We will use the steps introduced in Remark 4.4.7
and subsubsection 4.4.3.7 to solve for the homogeneous problem.
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For the homogeneous case we used the five step
procedure below.

1 Separate the variables for the PDE and the
BCs. Assume the solution is of the form

u(x, t) = M(x)N(t).

2 Solve for the BVP for M(x) for spatial
variable by using the eigenvalue relations
L[M ] = λρM and obtain the (solutions)
eigenpairs (λn,Mn(x)) for n = 1, 2, . . ..

3 Solve for the temporal variable N(t).
4 Obtain the general solution by using the

principle of superposition.

u(x, t) =
∞∑
n=1

Nn(t)Mn(t).

5 Impose the ICs. For example for the
parabolic case we have

u(x, 0) =
∞∑
n=1

Nn(0)Mn(x) = f(x)

=⇒ Nn(0) =
(f,Mn)

(Mn,Mn)
.

For the inhomogeneous case we used the proce-
dure below.

1 We assume the solution is of the form

u(x, 0) =
∞∑
n=1

Nn(t)Mn(x) = f(x)

=⇒ F (x, t) =
∞∑
n=1

Fn(t)Mn(x).

i.e. We started from step 4 above.
2 Substitute this into the PDE and project

onto Mk.(
∂u

∂t
,Mk

)
=

(
1

ρ
L [u],Mk

)
= (F,Mk),

by using self-adjointness property and
eigenvalue relations. We get

d

dt
Nk + λkNk = Fk.

By projecting the ICs we get

Nk(0) = (f,Mk).

3 Solve for the temporal part Nk(t).

Remark: Sturm-Liouville operator is self-adjoint, positive and eigenfunctions corresponding to
different eigenvalues are orthogonal. /

Chapter 5: PDEs on Infinite Domains

We considered PDEs on infinite domains with constant coefficients. For example a PDE where

∂u

∂t
−D∂

2u

∂x2
= f(x), with the IC u(x, 0) = g(x).

We used the following steps introduced in subsection 5.0.3 and subsection 5.0.4.

1 Compute the FT of PDE and IC. Define U(λ, t) = F [u(x, t)] and F (λ) = F [f(x)] and G(λ) =
F [g(x)].

∂U

∂t
+ λ2DU = F (λ), and U(λ, 0) = G(λ).

2 Solve for U(λ, t) using convolution and other properties.

3 Take the IFT and obtain u(x, t) = F−1[U(λ, t)].
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Chapter 3: Method of Characteristics

We considered the PDE
a(x, t, v)

∂v

∂t
+ b(x, t, v)

∂v

∂x
= c(x, t, v),

with the an initial curve
v(x, 0) = f(x).

We used the following steps introduced in Remark 3.1.4.

1 Parametrize the initial curve (at s = 0).

2 Find the characteristic curves.

If quasi-linear,
solve these together.



dx

ds
= b, x|s=0 = x̂(τ),

dt

ds
= a, t|s=0 = t̂(τ),

 If linear,
solve these first.

dv

ds
= c, v|s=0 = v̂(τ).

3 Solve for x, t, v in terms of s and τ by substituting the above.

4 Invert the characteristic equations and find s, τ in terms of x and t. Then find

v = (s, τ) ≡ v(x, t) = v(s(x, t), τ(x, t)).

This concludes the final lecture for AMATH 353 in Winter 2019.
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diffusion equation, 5, 14, 20
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fundamental solution to the diffusion

eqn, 71
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E
e-folding time, 29
eigenfunction, 21
eigenpair, 33
eigenvalue, 21

simple, 34
energy, 43

conservation of, 43
kinetic energy density, 43
potential energy density, 43
total kinetic energy, 43
total potential energy, 43

exterior normal derivative, 19

F
Fick’s law, 5
Fisher’s equation, 6

Fourier coefficients, 27, 31
Fourier series, 27, 31
Fourier transform of a function, 66

G
global version of Newton’s law, 12

H
heat kernel, 71
Hermitian inner product, 30

I
ill-posed problem, 17
inner product, 24

on functions, 24

L
L Operator, 18
Laplace transform, 61
Laplace’s equation, 8, 14, 20
linear superposition, 26

M
mean square convergence, 31

N
node, 52

O
orthogonal

functions, 24, 30
set, 30

orthonormal
set, 30

P
Parseval’s equality, 32
partial differential equation (PDE), 1

elliptic, 14
hyperbolic, 14
linear, 1
non-linear, 1
order of, 1
parabolic, 14
scalar, 1
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system, 1
personality of the equation, 5
positive operator, 25

S
Schrödinger equation, 53

time dependent, 54
time independent dependent, 55

self-adjoint operator, 24
shock, 86
sinc function, 68
spectrum of an operator, 35

square integrable functions, 30
complete, 32

Sturm-Lioville problem, 30
regular, 30

T
two-norm, 30

W
wave equation, 10, 13–15, 20, 40

2D, 13
weight (of a function), 24
well-posed problem, 17
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