We wish to have a notion of a parameterized SDP scheme. We will have some parameter λ , and for every value of λ , we will have an SDP (P_{λ}) satisfying certain properties. To make sure that λ plays nicely with the theory of SDPs, we will ensure that it lives in a space that is the intersection of a positive-semidefinite cone with an affine space (i.e., the feasible region of some SDP). Only the right-hand-side of the constraint of (P_{λ}) will be allowed to depend on λ , and must be an affine function of λ . The precise definition follows.

Definition 0.1. Let Λ be the feasible region for the SDP:

(A) max 0
subject to
$$\Omega(\lambda) = E$$

 $\lambda \in Pos(\mathcal{P})$

where \mathcal{P}, \mathcal{Q} are complex Euclidean spaces, $\Omega : \mathcal{L}(\mathcal{P}) \to \mathcal{L}(\mathcal{Q})$ is linear and Hermitian-preserving, and $E \in Herm(\mathcal{Q})$. A parameterized SDP scheme (PSS) over Λ is a family of SDPs:

$$(P_{\lambda}) \max \{C, X\}$$

subject to $\Psi(X) = B(\lambda)$
 $X \in Pos(\mathcal{X})$

where \mathcal{X}, \mathcal{Y} are complex Euclidean spaces, $\Psi : \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is linear and Hermitian-preserving, $C \in Herm(\mathcal{X})$, and $B : \Lambda \to \mathcal{L}(\mathcal{Y})$ is affine-Hermitian. That is, a PSS over Λ is given by a tuple (Φ, C, B) ; for each $\lambda \in \Lambda$, it defines the SDP (P_{λ}) . Furthermore, a Slater parameterized SDP scheme (SPSS) is a PSS such that each problem (P_{λ}) satisfies the Slater condition, i.e., both (P_{λ}) and its dual have Slater points.

We quickly observe that the dual of the problem (P_{λ}) is:

$$(D_{\lambda}) \qquad \min \quad \langle B(\lambda), Y \rangle$$

subject to $\Psi^{*}(Y) \geq C$
 $Y \in \operatorname{Herm}(\mathcal{Y})$

and if (P_{λ}) and (D_{λ}) both have Slater points, then feasible primal and dual solutions $X \in \text{Pos}(\mathcal{X})$ and $Y \in \text{Herm}(\mathcal{Y})$ are optimal if and only if they satisfy the complementary slackness condition:

$$(CS) \qquad X \cdot \left[\Psi^*(Y) - C\right] = 0$$

Definition 0.2. Let $P = (\Phi, C, B)$ be a SPSS over Λ . We say a function $f : \Lambda \to \mathcal{L}(\mathcal{Y})$ is a dual oracle for P if for every $\lambda \in \Lambda$, $f(\lambda)$ is an optimal solution for (D_{λ}) , the dual of (P_{λ}) .

A dual oracle is valuable in that, for each λ , it provides a means of checking the optimality of a primal solution X; one can simply check if X has the same objective value as $f(\lambda)$.

One might be interested in "solving" a PSS by finding the value of λ which maximizes the optimal value of (P_{λ}) . It is straightforward to write this problem as a semidefinite program, in which λ simply becomes a variable. We are specifically interested in the case where we have several SPSS's, $P_k = (\Psi_k, C_k, B_k)$ for $k \in \{1, \ldots, n\}$, and wish to maximize their sum. We can think of each P_k as describing a function F_k of λ , and we want to maximize $\sum_{k=1}^{n} F_k(\lambda)$. This is easily formulated as an SDP; for each k, let $B_k(\lambda) \coloneqq A_k(\lambda) + D_k$.

$$(P_{\Sigma}) \max \langle C_k, X_k \rangle$$

subject to $\Psi_k(X_k) - A_k(\lambda) = D_k \quad \forall k$
 $\Omega(\lambda) = E$
 $X_k \in \operatorname{Pos}(\mathcal{X}_k) \quad \forall k$
 $\lambda \in \operatorname{Pos}(\mathcal{P})$

The dual of this SDP is:

$$(D_{\Sigma}) \qquad \min \quad \sum_{k=1}^{n} \langle D_{k}, Y_{k} \rangle + \langle E, Z \rangle$$

subject to $\Psi_{k}^{*}(Y_{k}) \geq C_{k} \qquad \forall k$
 $\Omega^{*}(Z) \geq \sum_{k=1}^{n} A_{k}^{*}(Y_{k})$
 $Y_{k} \in \operatorname{Herm}(\mathcal{Y}_{k})$
 $Z \in \operatorname{Herm}(\mathcal{Q})$

The complementary slackness conditions for these problems are

$$(CS1_k) \quad X_k \cdot \left[\Psi^*(Y_k) - C_k\right] = 0$$
$$(CS2) \quad \lambda \cdot \left[\Omega^*(Z) - \sum_{k=1}^n A_k^*(Y_k)\right] = 0$$

Now, if each problem P_k has a dual oracle f_k , then one might wonder if we can obtain some sort of dual oracle for (P_{Σ}) . That is, can we find some sort of function f_{Σ} such that, if $\lambda \in \Lambda$ is optimal for (P_{Σ}) , then $f_{\Sigma}(\lambda)$ is a dual solution which verifies its optimality?