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1 Introduction

In this section we will review basic integration theory, and discuss some aspects used later in the course.

1.1 Vector-valued Riemann integration

1.1 Definition. A Banach space is a real (or complex) vector space X , equipped with a norm ‖ · ‖, i.e.

1. ‖x‖ ≥ 0 for x ∈ X (non-negative).

2. ‖x‖ = 0 if and only if x = 0 (non-degenerate).

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for x, y ∈ X (sub-additivity).

4. ‖λx‖ = |λ|‖x‖ for λ ∈ R (or C), x ∈ X (| · |-homogeneity).

such that (X , ‖ · ‖) is complete, that is, any Cauchy1 sequence (xn)∞n=1 ⊆ X admits a limit2,

x = lim
n→∞

xn.

1.2 Definition. Let X be a Banach space, a < b in R, and f : [a, b]→ X be a function. Then a partition of [a, b]
is a collection of points

P = {a = t0 < t1 < . . . < tn = b}.
A Riemann sum for f , over P, is any sum of the form

S(f,P) =

n∑
i=1

f(t∗i )︸ ︷︷ ︸
vector

(ti − ti−1)︸ ︷︷ ︸
scalar

, t∗i ∈ [ti−1, ti], i = 1, . . . , n.

Note that:

1. Riemann sums are not unique but depend on the choice of “tags” t∗i . However, we will notationally omit the
dependence of the sum on the tags.

2. Each Riemann sum is an “average value”

1

b− a
S(f,P) =

n∑
i=1

f(t∗i )
ti − ti−1

b− a︸ ︷︷ ︸
:=λi

where
∑
i λi = 1, λi ≥ 0 (a convex combination).

3. In the case X = R (norm given by the absolute value), and f ≥ 0 then a Riemann sum

S(f,P) ≈ {area under curve y = f(x) : a ≤ x ≤ b}

1This means that for every ε > 0 there is an N such that n,m ≥ N implies ‖xn − xm‖ < ε.
2This means that for every ε > 0, there is N so for n ≥ N we have ‖xn − x‖ < ε.
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1.3 Definition. We say f : [a, b] → X is Riemann integrable if there is x ∈ X such that for every ε > 0, there
is a partition Pε of [a, b] such that for every refinement, P ⊇ Pε and every Riemann sum S(f,P) with respect to P
we have that

‖x− S(f,P)‖ < ε.

1.4 Remark. Suppose both x, y ∈ X satisfy the definition of Riemann integrability, above. Then x = y, for
otherwise the definition will never be satisfiable with ε = ‖x−y‖

2 . Hence, if it exists, the point x is unique. We will
call this the Riemann integral of f over the interval [a, b], and denote it by∫ b

a

f =

∫ b

a

f(t) dt.

Note that this is a vector quantity (it lies in X ).
1.5 Theorem (Cauchy Criterion for Riemann integrability). Let a < b in R, and X be a Banach space, and
f : [a, b]→ X . Then f is Riemann integrable on [a, b] if and only if for every ε > 0 there is a partition Qε such that
for any pair of refinements P,Q ⊇ Qε and any associated Riemann sums,

‖S(f,P)− S(f,Q)‖ < ε.

Proof. The forward direction is an easy exercise (use ε/2). For the reverse direction, proceed as follows. For each
n, let Qn be a partition of [a, b] such that for refinements P,Q ⊇ Qn and any associated Riemann sums we have

‖S(f,Q)− S(f,P)‖ < 1

2n
.

We let P1 = Q1, P2 = Q1 ∪Q2, . . ., Pn =
⋃n
j=1Qj and we let xn = S(f,Pn) be a fixed Riemann sum with respect

to Pn. Notice that Pn ⊇ Qn, and P1 ⊆ P2 ⊆ . . .. Now if n > m we have

‖xn − xm‖ = ‖xn − xn−1 + xn−1 − . . .− xm+1 + xm+1 − xm‖
≤ ‖xn − xn−1‖+ ‖xn−1 − xn−2‖+ . . .+ ‖xm+1 − xm‖
= ‖S(f,Pn)− S(f,Pn−1)‖+ . . .+ ‖S(f,Pm+1)− S(f,Pm)‖

<
1

2n−1
+

1

2n−2
+ . . .+

1

2m
=

1

2m−1

(
1

2n−m
+ . . .+

1

2

)
<

1

2m−1

since Pn ⊇ Pn−1 ⊇ Qn−1. If ε > 0 is given, choose m so that 1
2m−1 < ε, and we see that (xn)∞n=1 is a Cauchy

sequence in X . Since X is a Banach space, we have a limit point

x = lim
n→∞

xn.

It remains to show that x =
∫ b
a
f , i.e. it satisfies the definition of Riemann integrability. Let ε > 0, and n be such

that
1

2n−1
<
ε

2
.

If Pn is as above, and P ⊇ Pn then for any Riemann sum S(f,P) we have

‖S(f,P)− x‖ ≤ ‖S(f,P)− xn+1‖+ ‖xn+1 − x‖
= ‖S(f,P)− S(f,Pn+1)‖+ lim

m→∞
‖xn+1 − xm‖︸ ︷︷ ︸

1
2n ,m>n

Now P ⊇ Pn ⊇ Qn, so this is strictly less than

1

2n
+

1

2n
=

1

2n−1
< ε.

1.2 Shortcomings

Having discussed the Riemann integral of f : [a, b] → X where X is a Banach space, we now examine some
shortcomings of Riemann integration.
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1.6 Example. For a subset S ⊆ R, we denote by χS the indicator function of S, that is,

χS(t) =

{
1 t ∈ S
0 t /∈ S

Let A = [0, 1] ∩Q. We observe that the Riemann integral∫ 1

0

χA

does not exist.

Proof. Let P be any partition of [0, 1], say

P = {0 = t0 < t1 < . . . < tn = 1}.

Since Q ∩ [0, 1] and [0, 1] \ Q are each dense in [0, 1], we can always find tags t∗1, . . . , t∗n, such that tj−1 ≤ t∗j ≤ tj
with t∗j ∈ Q and likewise we can find tags t∗∗1 , . . . , t∗∗n , such that tj−1 ≤ t∗∗j ≤ tj such that t∗∗j /∈ Q. Consider the
Riemann sums

S1(χA,P) =

n∑
j=1

=1︷ ︸︸ ︷
χA(t∗j )(tj − tj−1) = 1

S2(χA,P) =

n∑
j=1

χA(t∗∗j )︸ ︷︷ ︸
=0

(tj − tj−1) = 0.

Thus for ε = 1
2 , no partition Pε will satisfy the definition of Riemann integrability. The details are left as an

exercise.

Now, we can enumerate Q ∩ [0, 1] as {q1, q2, . . .} = {qn}∞n=1. Let us define

fn = χ{q1,...,qn}.

Then f1 ≤ f2 ≤ . . . pointwise, i.e. f1(t) ≤ f2(t) ≤ . . . for all t ∈ [0, 1]. Also, {fn} → χA pointwise. Yet∫ 1

0

fn = 0 while
∫ 1

0

χA fails to exist.

2 Lebesgue measure

2.1 Motivation

We want to develop a new integral (the Lebesgue integral). The idea is as follows. Suppose X = R and f : [a, b]→ R
is a bounded function which satisfies f ≥ 0. We now “chop up” the range of the function, such that the range of f
is contained in [y0, yn).

y0 < y1 < . . . < yn

Let Ei = {t : f(t) ∈ [yi−1, yi]}. We estimate “
∫ b

a

f ” by sums of the form

n∑
j=1

yj−1λ(Ej).

The first problem is: what is λ(Ej)? Let us investigate this.
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2.2 Lebesgue outer measure

Step 1: We first consider open intervals. Let a, b ∈ R, a ≤ b

(a, b) =

{
{t ∈ R : a < t < b} if a < b

∅ if a = b.

Declare `((a, b)) = b− a. Also, `((a,∞)) = `((−∞, b)) =∞.

Step 2: Lebesgue outer measure.

2.1 Definition. If E ⊆ R, a sequence {In}∞n=1 of open intervals is a cover of E if E ⊆
⋃∞
n=1 In. In this case we

also say the sequence of intervals covers E. We define the outer measure of E by

λ∗(E) = inf

{ ∞∑
n=1

`(In) : {In}∞n=1 is a cover of E by open intervals

}
.

Observe that this infimum could be infinite.

2.2 Definition. Let P(R) = {E ⊆ R} be the power set of R. We may think of outer measure as a function

λ∗ : P(R)→ R ∪ {∞}.

2.3 Proposition (Properties of outer measure). We have the following:

1. λ∗(∅) = 0.

2. λ∗(E) ≥ 0 for all E ⊆ R (nonnegativity).

3. If E ⊆ F ⊆ R, then λ∗(E) ≤ λ∗(F ) (increasing).

4. λ∗
( ∞⋃
n=1

En

)
≤
∞∑
n=1

λ∗(En) for all E1, . . . ∈ P(R) (σ-subadditivity).

Proof. Parts 1 and 2 are easy. We have:

3. We note that any cover of F , by a sequence of open intervals, is also a cover of E.

λ∗(E) = inf

{ ∞∑
n=1

`(In) : {In}∞n=1 covers E

}
≤ inf

{ ∞∑
n=1

`(In) : {In}∞n=1 covers F

}
= λ∗(F ).

4. First, if
∑∞
n=1 λ

∗(En) =∞, we are done. So assume otherwise. Given ε > 0, let {Iin}∞i=1 be a cover of En by
open intervals for which

∞∑
i=1

`(Iin) < λ∗(En) +
ε

2n
.

Here we are using the definition of λ∗ and of “inf”. Now, we simply consider {Iin}∞i,n=1. Clearly, this is a cover

of
∞⋃
n=1

En =: E. We observe that

λ∗(E) ≤
∞∑
n=1

∞∑
i=1

`(Iin)︸ ︷︷ ︸
<λ∗(En)+(ε/2n)

≤
∞∑
n=1

(
λ∗(En) +

ε

2n

)
=

∞∑
n=1

λ∗(En) +

∞∑
n=1

ε

2n

=

∞∑
n=1

λ∗(En) + ε

and we can be liberal with interchanging sums, because it’s a non-negative series (if it’s summable, it’s
absolutely summable). Since ε > 0 was arbitrary, we have

λ∗(E) ≤
∞∑
n=1

λ∗(En).
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2.4 Proposition. Let a ≤ b in R and J be any of the intervals

(a, b), [a, b], (a, b], [a, b).

Then λ∗(J) = b− a.

Proof. First, let ε > 0. Then {(a− ε, b+ ε)} is a cover of J , hence

λ∗(J) ≤ `((a− ε, b+ ε)) = b− a+ 2ε.

Since ε > 0 is arbitrary, we see that λ∗(J) ≤ b − a. We assume J = [a, b). The proof for the others is similar.
Let ε > 0, with ε < b − a. We note that [a, b − ε] ⊆ [a, b) and [a, b − ε] is compact. Let {(ci, di)}∞i=1 be a cover
of J = [a, b) by open intervals. Then this is also a cover of [a, b − ε], hence admits a finite subcover {(ci, di)}ni=1

by compactness. By reordering indices, and dropping some intervals if necessary, we can arrange that c1 < a,
b− ε < dn, and moreover di > ci+1 (1 ≤ i ≤ n− 1). Then we have

∞∑
i=1

`((ci, di)) ≥
n∑
i=1

`((ci, di)) =

n∑
i=1

(di − ci) = d1 − c1 + d2 − c2 + . . .+ dn − cn

= −c1 + d1 − c2 + d2 − c3 + . . .+ dn

> −c1 + dn = dn − c1 > (b− ε)− a

Thus
∞∑
i=1

`((ci, di)) > b− a− ε

and since ε is arbitrary, as is the cover, λ∗(J) ≥ b− a.

Recall that our first goal was to describe λ(Ei) – the “length” of Ei. The desirable outcome: since Ei ∩Ej = ∅ for
i 6= j, we want

λ([a, b]) = λ

 n⊔
j=1

Ej

 =

n∑
j=1

λ(Ej)

(note that t is notation for a disjoint union).

2.3 Measurable sets

Step 3: We wish to define measurable sets.

2.5 Definition. We say that A ⊆ R is measurable (or Lebesgue measurable) if for any E ⊆ R, we have

λ∗(E) = λ∗(E ∩A) + λ∗(E \A).

In addition, we introduce the following notation. Let

L(R) = {A ⊆ R : A is measurable}.

2.6 Remark. We have the following notes:

1. This is known as Caratheodory’s criterion for defining measurable sets.

2. The inequality
λ∗(E) ≤ λ∗(E ∩A) + λ∗(E \A)

is always true by virtue of σ-subadditivity. Thus we generally need only verify the “≥” inequality to see that
A is measurable.

2.7 Theorem. We have:

1. ∅,R ∈ L(R).

2. If A ∈ L(R), then R \A ∈ L(R).
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3. If A1, A2, . . . ∈ L(R) is a sequence (countable) then

∞⋃
i=1

Ai ∈ L(R).

Moreover, if Ai ∩Aj = ∅ for i 6= j then

λ∗

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

λ∗(Ai).

Proof. We have:

1. If E ⊆ R, then E ∩∅ = ∅ and E \∅ = E. Therefore

λ∗(E) = 0 + λ∗(E \∅) = λ∗(E ∩∅) + λ∗(E \∅).

Hence ∅ ∈ L(R), i.e. it is Lebesgue measurable. Similar proof shows R ∈ L(R).

2. If A ∈ L(R), then for E ⊆ R we have

λ∗(E ∩ (R \A)) + λ∗(E \ (R \A)) = λ∗(E \A) + λ∗(E ∩A) = λ∗(E)

by the measurability of A, and hence R \A ∈ L(R).

3. Let A1, A2, . . . ∈ L(R) be a sequence of measurable sets and E ⊆ R. We write A :=
∞⋃
i=1

Ai. Then

E ∩A =

∞⋃
i=1

(E ∩Ai) = (E ∩A1) ∪ (E ∩A2) ∪ (E ∩A3) ∪ . . .

= (E ∩A1) ∪ ((E \A1) ∩A2) ∪ ((E \ (A1 ∪A2)) ∩A3) ∪ . . .

=

∞⋃
i=1

[(
E \

i−1⋃
k=1

Ak

)
∩Ai

]
.

Hence, by σ-subadditivity, we have

λ∗(E) ≤ λ∗(E ∩A) + λ∗(E \A) ≤
∞∑
i=1

λ∗

((
E \

i−1⋃
k=1

Ak

)
∩Ai

)
+ λ∗(E \A). (†)

Since each of the Ai is measurable,

λ∗(E) = λ∗(E ∩A1) + λ∗(E \A1)

= λ∗(E ∩A1) + λ∗((E \A1) ∩A2) + λ∗((E \A1) \A2)︸ ︷︷ ︸
=E\(A1∪A2)

...

=

n∑
i=1

λ∗

((
E \

i−1⋃
k=1

Ak

)
∩An

)
+ λ∗

(
E \

n⋃
i=1

Ai

)

≥
n∑
i=1

λ∗

((
E \

i−1⋃
k=1

Ak

)
∩Ai

)
+ λ∗(E \A)

by the increasing condition of λ∗. Now, take n→∞, and obtain

λ∗(E) ≥
∞∑
i=1

λ∗

((
E \

i−1⋃
k=1

Ak

)
∩Ai

)
+ λ∗(E \A). (††)

Combining (†) and (††), we see that

λ∗(E) = λ∗(E ∩A) + λ∗(E \A)
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and, since E is arbitrary, it follows that A =
∞⋃
i=1

Ai ∈ L(R). Now, if Ai ∩Aj = ∅ for i 6= j, then

(
E \

i−1⋃
k=1

Ak

)
∩Ai = E ∩Ai.

Hence if we let E = A, it follows from (††) that

λ∗(A) ≥
∞∑
i=1

λ∗(A ∩Ai︸ ︷︷ ︸
=Ai

) + λ∗(A \A)︸ ︷︷ ︸
=0

=

∞∑
i=1

λ∗(Ai).

The other (≤) inequality follows from σ-subadditivity, so we are done.

2.4 Lebesgue measure

2.8 Definition. We can regard λ∗ as a map P(R) → [0,∞]. We define the Lebesgue measure λ by restricting
λ∗ to measurable sets, that is,

λ = λ∗
∣∣∣
L(R)

: L(R)→ [0,∞].

That is, the Lebesgue measure is the same as the Lebesgue outer measure but only accepting measurable sets.

2.9 Theorem. The Lebesgue measure λ satisfies:

1. [non-negativity] λ(∅) = 0 and λ(A) ≥ 0 for A ∈ L(R).

2. [increasing] If A,B ∈ L(R) and A ⊆ B, then λ(A) ≤ λ(B).

3. [σ-additivity] If A1, A2, . . . ∈ L(R) are such that Ai ∩Aj = ∅ for i 6= j, then

λ

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

λ(Ai).

Proof. Collect prior facts about λ∗ and L(R). Notice that #2 follows from #1 and #3, i.e.

λ(B) = λ∗(B) = λ∗( B ∩A︸ ︷︷ ︸
=A since B⊇A

) + λ∗(B \A)︸ ︷︷ ︸
≥0

≥ λ∗(A) = λ(A).

2.10 Lemma. If a < b in R, then (a, b) ∈ L(R).

Proof. We need to establish for E ⊆ R that

λ∗(E) ≥ λ∗(E ∩ (a, b)) + λ∗(E \ (a, b)).

If λ∗(E) = ∞, we are done. Suppose otherwise, that is, say λ∗(E) < ∞, and let ε > 0. Find a cover {In}∞n=1 of
open intervals for E such that

∞∑
n=1

`(In) < λ∗(E) +
ε

2
.

For each n, let

Jn = In ∩ (a, b)

Ln = In ∩ (−∞, a)

Rn = In ∩ (b,∞).

Many of these may be empty, hence of length 0. Then {Jn}∞n=1 covers E ∩ (a, b), and

{Ln, Rn, (a− ε
8 , a+ ε

8 ), (b− ε
8 , b+ ε

8 )}

covers E \ (a, b). Let us relabel the latter collection by {Kn}∞n=1. Notice

∞∑
n=1

`(Kn) =

∞∑
n=1

(`(Ln) + `(Rn)) +
ε

2
.
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By definition of λ∗ we have

λ∗(E ∩ (a, b)) + λ∗(E \ (a, b)) ≤
∞∑
n=1

`(Jn) +

∞∑
n=1

`(Kn) =

∞∑
n=1

(`(Jn) + `(Ln) + `(Rn)) +
ε

2

=︸︷︷︸
check

∞∑
n=1

`(In) +
ε

2

however
∞∑
n=1

`(In) +
ε

2
< λ∗(E) +

ε

2
+
ε

2
= λ∗(E) + ε.

Since ε > 0 is arbitrary, λ∗(E ∩ (a, b)) + λ∗(E \ (a, b)) ≤ λ∗(E) as required.

2.11 Corollary. Let G be open. Then G ∈ L(R).

Proof. First note that

(a,∞) =

∞⋃
n=1

(a, n) ∈ L(R)

where (a, n) = ∅ if n ≤ a. Similarly, (−∞, b) ∈ L(R). From Assignment 1 question 4, we have that any open G is
of the form

G =

∞⊔
n=1

(an, bn)

for ai, bi ∈ R ∪ {±∞} so we are done.

2.5 Scope of L(R)

2.12 Definition. Let X be a set. An algebra3 (of subsets of X) is any familyM⊆ P(X) such that

1. ∅, X ∈M.

2. If A ∈M, then X \A ∈M.

3. If A1, . . . , An ∈M, then
n⋃
i=1

Ai ∈M.

We further sayM is a σ-algebra if it satisfies the above, in addition to

4. If A1, . . . ∈M then
∞⋃
n=1

An ∈M.

2.13 Example. We have the following examples:

1. We always have the trivial σ-algebra on X,M = {∅, X}.

2. We can consider P(X) itself. This is always a σ-algebra on X.

3. L(R) is a σ-algebra on R.

4. If {Mβ}β∈B ⊆ P(X) is a family of σ-algebras, then⋂
β∈B

Mβ = {A ⊆ X : A ∈Mβ for all β ∈ B}.

is also a σ-algebra.

Proof. Easy exercise.

5. Define the Borel σ-algebra by

B(R) =
⋂
{M :M⊆ P(R) is a σ-algebra such thatM contains all open sets} .

This is the smallest σ-algebra containing all open sets. Then clearly since every open set is Lebesgue measur-
able, we observe that B(R) ⊆ L(R). We call the members of B(R) Borel sets.

3This is not related to the notion of an algebra over a ring or field. Wikipedia calls this a field of sets, but note that the word
“field” here is also not related to field theory.
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2.14 Remark (Notation). Let A ⊆ P(X) be a family of sets such that ∅, X ∈ A. Let

Aσ =

{ ∞⋃
n=1

An : A1, A2, . . . ∈ A

}
, Aδ =

{ ∞⋂
n=1

An : A1, A2, . . . ∈ A

}
.

2.15 Proposition. IfM is a σ-algebra and A1, A2, . . . ∈M, then
∞⋂
n=1

An ∈M.

Proof. SupposeM⊆ P(X) is a σ-algebra. Then each X \An ∈M. Hence

∞⋃
n=1

(X \An) ∈M.

Then
∞⋂
n=1

An = X \

(
X \

∞⋂
n=1

An

)
= X \

( ∞⋃
n=1

(X \An)

)
∈M.

Let G be the family of all open sets in R, and let F be the family of all closed sets.

2.16 Remark. Note that Gσ = G and Fδ = F . However we also have the so-called Gδ sets: Gδ and the Fσ sets:
Fσ.
2.17 Proposition. We have G ⊆ Fσ and F ⊆ Gδ.

Proof. Let G ∈ G. By Assignment 1, question 4, we can write G as the disjoint union

G =

∞⊔
n=1

(an, bn).

Define, for each k, the set4

Fk =

k⋃
n=1

[an + 1
k , bn −

1
k ].

Then each Fk, being a finite union of closed sets, is closed. Also, G =
⋃∞
k=1 Fk. So G ⊆ Fσ. On the other hand if

F ∈ F , then G = R \ F ∈ G, so that R \ F =
⋃∞
k=1 Fk with each Fk ∈ F . Thus

F = R \ (R \ F ) = R \
∞⋃
k=1

Fk =

∞⋂
k=1

(R \ Fk)︸ ︷︷ ︸
∈G

∈ Gδ.

2.18 Remark. The following is true. Let Aδσ = (Aδ)σ. Then we have the inclusions

G ( Gδσ ( (Gδσ)δσ ( . . .

For this reason we write G0 = G, and Gn+1 = (Gn)δσ for n ≥ 0. One might hope that

∞⋃
n=1

Gn = B(R).

However, this is false. We have to index over all countable ordinals. Any finite number is an ordinal. Then there
is a first infinite (limit ordinal), say ω. Then we can take ω + 1 and ω + 2 and so on, until we get to ω + ω = 2ω.

4We follow the usual convention that if the closed interval makes no sense, we just declare it to be the empty set. Also [a,∞− 1
k
] =

[a,∞) and similarly on the other side.
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2.6 Cantor set

Define

C0 = [0, 1]

C1 = [0, 1
3 ] ∪ [ 2

3 , 1] = C0 \
open middle 3rd︷︸︸︷

I11

C2 = [0, 1
9 ] ∪ [ 2

9 ,
1
3 ] ∪ [ 2

3 ,
7
9 ] ∪ [ 8

9 , 1] = C1 \ ( I21︸︷︷︸
open middle of [0,

1
3 ]

∪I22)

...
Cn = Cn−1 \ (In,1 ∪ . . . ∪ In,2n−1).

2.19 Definition. Let C =

∞⋂
n=1

Cn. We call C the Cantor set.

We claim that C 6= ∅. We note each Cn 6= ∅ and compact,
n⋂
i=1

Ci = Cn 6= ∅

By finite intersection property, C 6= ∅ and is compact.

2.20 Proposition. We have the following:

1. C is nowhere dense in R.

2. λ(C) = 0.

Proof. Assignment 2, Question 3.

2.21 Proposition. |C| = c, where c = |R| is the cardinality of the real line.

Proof. If x ∈ [0, 1], we can write x in ternary expansion

x = 0.t1t2 . . . =

∞∑
i=1

ti
3i

where ti ∈ {0, 1, 2}. This is not unique: 1
3 = 0.1000 . . . = 0.02222 . . .. We claim that

C = {x ∈ [0, 1] : x admits a ternary expansion without 1s}.

Notice that
I11 = ( 1

3 ,
2
3 ) = {x = 0.1t2t3 . . . : t` 6= 2 for some ` ≥ 2 and t` 6= 0 for some ` ≥ 0}

also
I21 = ( 1

9 ,
2
9 ) = {x = 0.01t3t4 . . . : t` 6= 2 for some ` ≥ 3 and t` 6= 0 for some ` ≥ 0}

For 1 ≤ k ≤ 2n−1,

Ink =

{
0.t1t2 . . . tn−11tn+1tn+2 . . . : t` 6= 0 for some ` ≥ n+ 1,

k = 1 +

k∑
`=1

t`2
`−1, ti 6= 1 for 1 ≤ i < n

}
.

We notice that

C =

∞⋂
n=1

Cn = [0, 1] \
∞⋃
n=1

2n−1⋃
k=1

In,k

observing that
2n−1⋃
k=1

In,k

is the set of all points necessarily admitting a 1 for tn. We thus have an obvious bijection ϕ : C → {0, 2}N, in other
words ϕ(0.t1t2 . . .) = (ti)

∞
i=1 where each t` is 0 or 2. By Assignment 1, question 2, |{0, 2}|N = c.
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2.7 Non-measurable sets

2.22 Definition. If E ⊆ R, we define the translate of E by x as follows:

x+ E = {x+ y : y ∈ E}.

2.23 Proposition. We have the following:

1. If E ⊆ R and x ∈ R, then λ∗(E) = λ∗(x+ E).

2. If E ∈ L(R), and x ∈ R, then x+ E ∈ L(R).

Thus we conclude that for E ∈ L(R), x ∈ R, λ(x+E) = λ(E). This property is called translation invariance of
the Lebesgue measure.

Proof. We have:

1. First, let G ⊆ R be open. By Assignment 1, question 4, we can write G as a disjoint union G =
∞⊔
n=1

(an, bn)

with

λ(G) =

∞∑
n=1

λ((an, bn)) =

∞∑
n=1

λ∗((an, bn)) =

∞∑
n=1

(bn − an).

This is a series of nonnegative terms. Then for x ∈ R, we obtain the disjoint union

x+G =

∞⊔
n=1

(x+ an, x+ bn) =⇒ λ(x+G) =

∞∑
n=1

((x+ bn)− (x+ an)) =

∞∑
n=1

(bn − an) = λ(G).

Now if E ⊆ R, x ∈ R we have for open G ⊆ R that E ⊆ G exactly when x+ E ⊆ x+G. Hence

λ∗(E) = inf{λ(G) : E ⊆ G, G open} = inf{λ(x+G) : x+ E ⊆ x+G, G open} = λ∗(x+ E).

2. If E ∈ L(R) and A ⊆ R,

λ∗(A ∩ (x+ E)) + λ∗(A \ (x+ E)) = λ∗(x+ [(−x+A) ∩ E]) + λ∗(x+ [(−x+A) \ E])

which we see is equal to

λ∗((−x+A) ∩ E) + λ∗((−x+A) \ E) = λ∗(−x+A)

since E is measurable, which is equal to λ∗(A) by part 1.

2.24 Theorem. There exists a subset E ⊆ R such that E is not measurable.

Proof. Fix a > 0. On (−a, a) define a relation by x ∼ y if and only if x − y ∈ Q. This is an equivalence relation.
To see reflexivity, note that x ∼ x since x − x = 0 ∈ Q. To see symmetry, note that x ∼ y implies y ∼ x since
−(x− y) = y − x ∈ Q. To see transitivity, note x ∼ y and y ∼ z implies x ∼ z since

z − x = (z − y) + (y − x) ∈ Q.

For each x ∈ (−a, a) we let its equivalence class

[x] = {y ∈ (−a, a) : x ∼ y} = {y ∈ (−a, a) : x− y ∈ Q} = {y ∈ (−a, a) : y − x ∈ Q}

which is to say that y ∈ x+Q. Hence we see [x] = (x+Q) ∩ (−a, a). Let E be a subset of (−a, a) such that

1. If x, y ∈ E, x 6= y then x � y.

2. (−a, a) =
⋃
x∈E [x].

Thus, E contains exactly one point from each equivalence class. Such a thing exists due to the Axiom of Choice.
We enumerate

(−2a, 2a) ∩Q = {rk}∞k=1.

We claim that

(−a, a) ⊆
∞⊔
k=1

(rk + E) ⊆ (−3a, 3a) (††)

12



and we note that (rk +E) ∩ (r` +E) = ∅ for k 6= `, since if x = rk + y = r` + z for y 6= z in E it would imply that
y − z = r` − rk ∈ Q which is impossible by definition of E. To see the first inclusion, note that if x ∈ (−a, a) then
x ∈ [y] for some y ∈ E, so x− y ∈ Q and |x− y| < 2a so x− y = rk for some k. Hence x = rk + y ⊆ rk +E. To see
the second inclusion, we have that |rn + x| < 3a for any x ∈ (−a, a) and rk ∈ (−2a, 2a).

We now show that E /∈ L(R). Assume otherwise. Then either λ(E) = 0 or λ(E) = α > 0. If λ(E) = 0, then
λ(rk + E) = 0 for all k, but then by the increasing and σ-additivity properties, we would find

2a = λ((−a, a)) ≤ λ

( ∞⋃
k=1

(rk + E)

)
=

∞∑
k=1

λ(rk + E)︸ ︷︷ ︸
0

= 0.

where the union is disjoint, but this is absurd. Hence λ(E) = α > 0. But then for any n ∈ N, using the increasing,
σ-additivity, and translation invariance properties on (††),

nα =

n∑
k=1

λ(rk + E) = λ

(
n⋃
k=1

(rk + E)

)
≤ λ

( ∞⋃
k=1

(rk + E)

)
≤ λ((−3a, 3a)) = 6a.

where the first union is disjoint. Clearly this cannot hold for n > 6a
α . Thus E /∈ L(R).

2.25 Remark. R. M. Solovay, Ann. of Math (2), v. 92, 1970. Shows that if Axiom of Choice is weakened to only
allowing countable choice, then we get the surprising consequence that

P(R) = L(R) = B(R).

2.26 Remark. We have the following notes: with E as above we have

1. 0 < λ∗(E) ≤ 2a.

2. 0 = λ∗(E), where λ∗ is defined in Assignment 2, question 2.

2.27 Definition. A subset N ⊆ R is called a (Lebesgue) null set if λ∗(N) = 0.

2.28 Proposition. A null set is measurable.

Proof. For any E ⊆ R, we have5

λ∗(E ∩N︸ ︷︷ ︸
⊆N

) + λ∗(E \N︸ ︷︷ ︸
⊆E

) ≤ λ∗(N)︸ ︷︷ ︸
0

+λ∗(E) = λ(E).

Thus N ∈ L(R).

3 Lebesgue integration

3.1 Measurable functions

Idea: As far as notation is concerned, we let χA be the characteristic or indicator function,

χA(x) =

{
1 if x ∈ A
0 if x /∈ A

.

It would be reasonable that ∫
R
χA = λ(A),

∫
R

(f + g) =

∫
R
f +

∫
R
g.

3.1 Definition. A function f : R→ R is called measurable if

f−1((α,∞)) = {x ∈ R : f(x) > α}

is measurable for all α ∈ R. We say f is Borel measurable if f−1((α,∞)) ∈ B(R) for all α ∈ R.
3.2 Example. Let A ⊆ R. We have that χA is measurable if and only if A ∈ L(R).

5Uh, why does this say λ(E)? E isn’t necessarily measurable...
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Proof. Note that

χ−1
A ((α,∞)) =


∅ if α ≥ 1

A if 0 ≤ α < 1

R if α < 0

so χ−1
A ((α,∞)) ∈ L(R) for all α ∈ R if and only if A ∈ L(R).

3.3 Proposition. Let f : R→ R. Then the following are equivalent:

1. f is measurable.

2. f−1((−∞, a]) ∈ L(R) for all α ∈ R.

3. f−1((−∞, a)) ∈ L(R) for all α ∈ R.

4. f−1([α,∞)) ∈ L(R) for all α ∈ R.

Proof. To prove 1 ↔ 2:

f−1((−∞, α]) = {x ∈ R : f(x) ≤ α} = R \ {x ∈ R : f(x) > α} = R \ f−1((α,∞)).

We recall for A ⊆ R, A ∈ L(R) if and only if R \A ∈ L(R).

To prove 2 → 3: Note that

f−1((−∞, α)) = f−1

( ∞⋃
n=1

(−∞, α− 1
n ]

)
=

∞⋃
n=1

f−1((−∞, α− 1
n ]).

As each f−1((−∞, α− 1
n ]) ∈ L(R), their countable union is as well.

3→ 4 is similar to 1→ 2. 4→ 1 is similar to 2→ 3.

3.4 Corollary. Let f : R→ R. Then f is measurable if and only if6 f−1(B) ∈ L(R) for any B ∈ B(R).

Proof. Observe that only one direction requires proof. Suppose f is measurable. First, let G be open. Then

G =
∞⊔
k=1

(ak, bk). Hence

f−1(G) = f−1

( ∞⋃
k=1

(ak, bk)

)
=

∞⋃
k=1

f−1( (ak, bk)︸ ︷︷ ︸
(ak,∞)∩(−∞,bk)

)

=

∞⋃
k=1

[
f−1((ak,∞)) ∩ f−1((−∞, bk))

]
∈ L(R).

Now, let
Mf = {M ⊆ R : f−1(M) ∈ L(R)}.

We note that f−1(R) = R, therefore R ∈Mf . Also, if M1,M2, . . . ∈Mf then

f−1

( ∞⋃
i=1

Mi

)
=

∞⋃
i=1

f−1(Mi)︸ ︷︷ ︸
L(R)

∈ L(R)

Also, if M ∈Mf , then
f−1(R \M) = R \ f−1(M)︸ ︷︷ ︸

L(R)

∈ L(R).

Thus Mf is a σ-algebra. From above, G ⊆ Mf , and B(R) is the smallest σ-algebra containing G. Thus B(R) ⊆
Mf .

3.5 Proposition. Let f, g : R→ R be measurable, c ∈ R, and ϕ : R→ R be continuous. Then

(i) cf : R→ R, i.e. (cf)(x) = cf(x), is measurable.

(ii) f + g : R→ R, i.e. (f + g)(x) = f(x) + g(x), is measurable.
6Of course, f is measurable if and only if f−1(U) is measurable for any open U , too.
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(iii) ϕ ◦ f : R→ R is measurable.

(iv) fg : R→ R, i.e. (fg)(x) = f(x)g(x), is measurable.

Proof. We have:

(i) For α ∈ R, note that

(cf)−1((α,∞)) =


f−1((αc ,∞)) if c > 0

R if c = 0, α < 0

∅ if c = 0, α ≥ 0

f−1((−∞, αc )) if c < 0

and note that all these values are in L(R) by assumption on f .

(ii) Enumerate Q = {rn}∞n=1. Observe

(f + g)−1((α,∞)) = {x ∈ R : f(x) + g(x) > α} = {x ∈ R : f(x) > α− g(x)}

However Q = R, so we can consider this as

∞⋃
k=1

{x ∈ R : f(x) > rk and rk > α− g(x)} =

∞⋃
k=1

{x ∈ R : f(x) > rk} ∩ {x ∈ R : g(x) > α− rk}

=

∞⋃
k=1

f−1((rk,∞))︸ ︷︷ ︸
∈L(R)

∩ g−1((α− rk,∞))︸ ︷︷ ︸
∈L(R)

 ∈ L(R).

(iii) Let α ∈ R.
(ϕ ◦ f)−1((α,∞)) = f−1(ϕ−1((α,∞)︸ ︷︷ ︸

open

)) ∈ L(R).

(iv) We observe

fg =
1

4

[
(f + g)2 − (f − g)2

]
and f + g is measurable by (ii), −g is measurable by (i), so f − g is measurable by (ii). Also, x 7→ x2 is a
continuous function, so the squares are measurable. It easily follows that fg is measurable.

3.6 Remark (Notation). For f : R→ R we let

|f |(x) = |f(x)|
f+(x) = max{f(x), 0}
f−(x) = max{−f(x), 0}.

Observe that
f = f+ − f− and |f | = f+ + f−. (∗)

3.7 Corollary. If f : R→ R is measurable, then f+, f−, and |f | are all measurable.

Proof. We first note that x 7→ |x| is continuous so the measurability of |f | follows from (iii) of the proposition. Also,
f+ = 1

2 (|f |+ f) by (∗), and f− = 1
2 (|f | − f).

3.8 Remark. For A ∈ L(R), we let

M(A) = {f : A→ R | f is measurable}.

We can extend f to f̃ : R→ R by putting f̃(x) = f(x) if x ∈ A, and f̃(x) = 0 otherwise. We say f is measurable if
and only if f̃ is.

3.9 Remark. The previous proposition (i), (ii), (iv) shows thatM(A) is an algebra of functions. Further, condition
(iii) tells us that “continuous functions operate onM(R)”.

3.10 Definition. We define R = R ∪ {−∞,∞} = [−∞,∞]. We call R the set of extended real numbers.
A function f : R → R (or f : A → R) is called extended real valued. We say that f is measurable if
f−1(B) ∈ L(R) for each B ∈ B(R) and f−1({±∞}) ∈ L(R).
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3.11 Proposition. Let fn : R→ R (usually fn : R→ R) be a measurable function for each n. Then the following
are measurable:

(i) supn{fn}, i.e. supn fn(x).

(ii) infn{fn}, i.e. infn fn(x).

(iii) lim supn→∞ fn, i.e. lim supn→∞ fn(x) = limn→∞
[
supk≥n fk(x)

]
.

(iv) lim infn→∞ fn.

Proof. We have:

(i) Fix α ∈ R. (
sup
n
fn

)−1

([−∞, α]) = {x ∈ R : sup
n
fn(x) ≤ α} =

∞⋂
n=1

{x ∈ R : fn(x) ≤ α}

=

∞⋂
n=1

f−1
n ([−∞, α]) ∈ L(R).

(ii) Similarly show
(

inf
n
fn

)−1

([α,∞]) ∈ L(R).

(iii) We have
lim sup
n→∞

fn = lim
n→∞

sup
k≥n

fk = inf
n

sup
k≥n

fn

and for all n, supk≥n fk is measurable by (i).

sup
k≥n

fk ≥ sup
k≥n+1

fk.

(iv) Same as (iii).

3.12 Corollary. If fn : R→ R is measurable for each n and limn→∞ fn(x) exists for each x (we accept −∞,∞ as
limits) then lim fn is measurable.

Proof. In this case we have
lim
n→∞

fn = lim sup
n→∞

fn = lim inf
n→∞

fn.

Rough outline:

• Non-negative measurable simple function – “proto-integral”

• Non-negative extended real-valued measurable functions – approximation from below.

• Integrable functions – differences of non-negative integrable functions.

3.2 Simple functions

3.13 Definition. Let A ∈ L(R) (usually A ⊆ R an interval). A function f : A→ R is simple if

f(A) = {a1, . . . , an},

in other words f is finite-valued. Standard form: suppose f(A) = {a1 < . . . < an}. Let

Ei = f−1({ai}), ∀i (1 ≤ i ≤ n).

We write f =
n∑
i=1

aiχEi .

3.14 Proposition. A simple function f : A → R is measurable if and only if when written in standard form

f =
n∑
i=1

aiχEi for a1 < . . . < an, we have that each Ei is measurable.
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Proof. (→) If f is measurable, we note that each set {ai} is Borel, hence

Ei = f−1({ai}) ∈ L(R).

(←) We note that χEi is measurable (as a function) if and only if Ei ∈ L(R). Linear combinations of measurable
functions are measurable.

Let us now define

S(A) = {ϕ : A→ R : ϕ is simple and measurable}.
S+(A) = {ϕ ∈ S(A) : ϕ ≥ 0 (pointwise)}.

3.3 Proto-integral

3.15 Definition. If ϕ ∈ S+(A) written in standard form, ϕ =
n∑
i=1

aiχEi with ai 6= aj if i 6= j, Ei ∩Ej = ∅ if i 6= j,

then we define

IA(ϕ) =

n∑
i=1

aiλ(Ei)

noting that this quantity may be ∞. We have 0 · ∞ = 0. We call this the proto-integral of ϕ.

3.16 Proposition. If ϕ,ψ ∈ S+(A), c ≥ 0, then we have

(i) IA(cϕ) = cIA(ϕ).

(ii) IA(ϕ+ ψ) = IA(ϕ) + IA(ψ), where we say α+∞ =∞ =∞+ α for α ≥ 0.

(iii) ϕ ≤ ψ implies IA(ϕ) ≤ IA(ψ).

Proof. We have:

(i) Easy exercise.

(ii) Let ϕ(A) = {a1 < . . . < an} and ψ(A) = {b1 < . . . < bm}, Ei = ϕ−1({ai}) and Fj = ψ−1({bj}). Let

{ai + bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} = {c1 < . . . < c`}.

For k with 1 ≤ k ≤ `, define
Dk =

⋃
{Ei ∩ Fj : ai + bj = ck}

We write

ϕ+ ψ =

n∑
i=1

aiχEi +

m∑
j=1

bjχFj .

We observe that7
χE + χF = χE∪F + χE∩F .

So we can rewrite the above as

ϕ+ ψ =

n∑
i=1

ai

m∑
j=1

χEi∩Fj +

m∑
j=1

bj

n∑
i=1

χEi∩Fj =

n∑
i=1

m∑
j=1

(ai + bj)χEi∩Fj =
∑̀
k=1

ckχDk

7Does anyone know how exactly this gets used?
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by definition of Dk. This is in standard form. On the other hand,

IA(ϕ) + IA(ψ) =

n∑
i=1

aiλ(Ei) +

m∑
j=1

bjλ(Fj)

=

n∑
i=1

ai

m∑
j=1

λ(Ei ∩ Fj) +

m∑
j=1

bj

n∑
i=1

λ(Ei ∩ Fj), by σ-add.

=

n∑
i=1

m∑
j=1

(ai + bj)λ(Ei ∩ Fj)

=
∑̀
k=1

ckλ(Dk), by σ-add.

= IA(ϕ+ ψ), by the above rewriting.

(iii) If ai, bj , Ei, Fj are as above, we have that ai ≤ bj whenever Ei ∩ Fj 6= ∅ since ϕ ≤ ψ. Then

IA(ϕ) =

n∑
i=1

m∑
j=1

aiλ(Ei ∩ Fj) ≤
n∑
i=1

m∑
j=1

bjλ(Ei ∩ Fj) = IA(ψ).

3.4 Non-negative integral

We now use proto-integrals to define an integral for non-negative extended real-valued measurable functions.

3.17 Definition. Now, given A ∈ L(R), let

M+
(A) = {f : A→ [0,∞] : f is measurable}.

3.18 Remark. If f, g ∈ M+
(A) then f + g ∈ M+

(A) makes sense. Also, we can define cf ∈ M+
(A), for c ≥ 0,

f ∈ M+
(A). [0 · f = 0]. Also if f = limn→∞ fn, lim supn→∞ fn, supn∈N fn, where (fn)∞n=1 ⊆ M

+
(A) then

f ∈M+
(A). Also fg ∈M+

(A) if each f, g ∈M+
(A) since we can allow ∞2 =∞.

3.19 Definition. If A ∈ L(R) and f ∈M+
(A) we let S+

f (A) = {ϕ ∈ S+(A) : ϕ ≤ f}, and define∫
A

f = sup{IA(ϕ) : ϕ ∈ S+
f (A)}.

We call this the Lebesgue integral of f .

3.20 Proposition. Let ∅ 6= A ∈ L(R) and f, g ∈M+
(A).

(i) If f ≤ g on A, then
∫
A
f ≤

∫
A
g.

(ii) If ∅ 6= B ⊆ A is measurable, then
∫
B
f =

∫
A
fχB .

(iii) If ϕ ∈ S+(A), then
∫
A
ϕ = IA(ϕ).

Proof. We have:

(i) We note that S+
f (A) ⊆ S+

g (A) since f ≤ g. Hence∫
A

f = sup
ϕ∈S+

f (A)

IA(ϕ) ≤ sup
ψ∈S+

g (A)

IA(ψ) =

∫
A

g.

(ii) If ϕ ∈ S+
f (B), define ϕ̃ on A by

ϕ̃(x) =

{
ϕ(x) if x ∈ B
0 if x ∈ A \B.

Then it is clear that ϕ̃ is simple, and measurable (check!), so ϕ̃ ∈ S+
f (A). We also note that

{ϕ̃ : ϕ ∈ S+
f (B)} = S+

fχB
(A).
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Hence ∫
A

fχB = sup{IA(ϕ) : ϕ ∈ S+
fχB

(A)} = sup{IA(ϕ̃) : ϕ ∈ S+
f (B)}

= sup{IB(ϕ) : ϕ ∈ S+
f (B)} =

∫
B

f.

(iii) First, if ψ ∈ S+
ϕ (A), then IA(ψ) ≤ IA(ϕ) from last class (proposition) since ψ ≤ ϕ. Hence∫

A

ϕ = sup
ψ∈S+

ϕ (A)

IA(ψ) ≤ IA(ϕ)

and on the other hand, ϕ ∈ S+
ϕ (A), so that IA(ϕ) ≤

∫
A
ϕ.

3.21 Lemma. If A1 ⊆ A2 ⊆ A3 ⊆ . . . in L(R), then

λ

( ∞⋃
n=1

An

)
= lim
n→∞

λ(An).

Proof. Let C1 = A1, and in general Cn = An \An−1 for n ≥ 2. Since A1 ⊆ A2 ⊆ . . ., we have that Cn ∩Cm = ∅ if
n 6= m. We then have

λ

( ∞⋃
n=1

An

)
= λ

( ∞⊔
n=1

Cn

)
=

∞∑
n=1

λ(Cn) = lim
N→∞

N∑
n=1

λ(Cn) = lim
N→∞

λ

(
N⊔
n=1

Cn

)
= lim
N→∞

λ(AN ).

3.5 Monotone Convergence Theorem

3.22 Theorem (Lebesgue Monotone Convergence Theorem). Let (fn)∞n=1 ⊆M
+

(A), with f1 ≤ f2 ≤ f3 ≤
. . . pointwise. Let f = limn→∞ fn. Then ∫

A

f = lim
n→∞

∫
A

fn.

In particular,

sup
n∈N

∫
A

fn <∞ =⇒
∫
A

f <∞.

Proof. We first note that since f1 ≤ f2 ≤ . . ., we have
∫
A
f1 ≤

∫
A
f2 ≤ . . . and hence,

lim
n→∞

∫
A

fn = sup
n∈N

∫
A

fn.

Also, we note that f ∈M+
(A), by result on measurable functions. Since fn ≤ f , for each n, we find that∫

A

fn ≤
∫
A

f.

Therefore,

lim
n→∞

∫
A

fn ≤
∫
A

f.

Thus, it remains to establish that limn→∞
∫
A
fn ≥

∫
A
f . Let ϕ ∈ S+

f (A), and choose 0 < η < 1. We will first show
that

lim
n→∞

∫
A

fn ≥ η
∫
A

ϕ (†)

Let An = {x ∈ A : fn(x) ≥ ηϕ(x)}. We have that

(i) A1 ⊆ A2 ⊆ A3 ⊆ . . ., since if fn(x) ≥ ηϕ(x), then fn+1(x) ≥ fn(x) ≥ ηϕ(x).

(ii)
∞⋃
i=1

Ai = A, since limn→∞ fn(x) = f(x), and ηϕ(x) < ϕ(x) ≤ f(x).
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Now, let ηϕ(A) = {a1 < a2 < . . . < am}, Ei = (ηϕ)−1({ai}) ⊆ A, for i (1 ≤ i ≤ m). We have, for each n,∫
A

fn ≥
∫
A

fnχAn =

∫
An

fn

≥
∫
An

ηϕ, by definition of An

=

m∑
i=1

aiλ(Ei ∩An).

Now, by the lemma, take n → ∞, and since each Ei = Ei ∩ A =
∞⋃
n=1

(Ei ∩ An), we have that the last term above

has limit
m∑
i=1

aiλ(Ei) =

∫
A

ηϕ = η

∫
A

ϕ.

Thus
lim
n→∞

∫
A

fn ≥ η
∫
A

ϕ

as required in (†). Since this is true for all choices of η (0 < η < 1), we then have

lim
n→∞

∫
A

fn ≥ lim
η→1

η

∫
A

ϕ =

∫
A

ϕ.

Thus, as we chose ϕ ∈ S+
f (A),

lim
n→∞

∫
A

fn ≥ sup
ϕ∈S+

f (A)

∫
A

ϕ =

∫
A

f.

3.23 Lemma. Let f : A→ [0,∞], where ∅ 6= A ∈ L(R). Then

f ∈M+
(A) ⇐⇒ ∃ a sequence (ϕn)∞n=1 ⊆ S+(A) s.t. lim

n→∞
ϕn = f pointwise.

Moreover, we can arrange ϕ1 ≤ ϕ2 ≤ . . . ≤ f (pointwise).

Proof. (←) A limit of a sequence of measurable functions is still measurable.

(→) For each k ∈ N, let Fk = f−1([k,∞]) and for each i = 1, . . . , k2k, let Ek,i = f−1([ i−1
2k
, i

2k
]). Then for each

k ∈ N,

A = Fk t
k2k⊔
i=1

Ek,i.

Let

ϕk = kχFk +

k2k∑
i=1

i−1
2k
χEk,i .

Check ϕ1 ≤ ϕ2 ≤ . . . and limk→∞ ϕk = f .

We have the following corollary to the MCT and to the lemma, which establishes several familiar properties of the
integral like linearity, additivity across sets, and compatibility with infinite sums.

3.24 Corollary. Let ∅ 6= A ∈ L(R). Then we have:

(i) If f, g ∈M+
(A), c ≥ 0, then ∫

A

cf = c

∫
A

f and
∫
A

f + g =

∫
A

f +

∫
A

g.

(ii) If (fn)∞n=1 ⊆M
+

(A), then ∫
A

∞∑
n=1

fn =

∞∑
n=1

∫
A

fn.
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(iii) If A1, A2, . . . ⊆ A are measurable sets such that A =

∞⊔
i=1

Ai and Ai ∩Aj = ∅ if i 6= j, then

∫
A

f =

∞∑
i=1

∫
Ai

f

for f ∈M+
(A).

Proof. We have:

(i) Let (ϕn)∞n=1, (ψn)∞n=1 ⊆ S+(A) such that ϕ1 ≤ ϕ2 ≤ . . . and ψ1 ≤ ψ2 ≤ . . . and limn→∞ ϕn = f , limn→∞ ψn =
g. Then

ϕ1 + ψ1 ≤ ϕ2 + ψ2 ≤ . . .

and furthermore limn→∞ ϕn + ψn = f + g. Using MCT, and the linearity of proto-integrals,∫
A

(f + g) = lim
n→∞

∫
A

(ϕn + ψn)︸ ︷︷ ︸
IA(ϕn)+IA(ψn)

= lim
n→∞

(∫
A

ϕn +

∫
A

ψn

)

= lim
n→∞

∫
A

ϕn + lim
n→∞

∫
A

ψn =

∫
A

f +

∫
A

g.

Similarly, using properties of the proto-integral IA(ϕn),∫
A

cf = lim
n→∞

∫
A

cϕn = lim
n→∞

c

∫
A

ϕn = c lim
n→∞

∫
A

ϕn = c

∫
A

f.

(ii) Let gn =
n∑
k=1

fk ∈M
+

(A). We note that g1 ≤ g2 ≤ . . . and

lim
n→∞

gn =

∞∑
k=1

fk

(by definition). We just use (i) to see that ∫
A

gn =

n∑
k=1

∫
A

fk

and use MCT to see that
∞∑
k=1

∫
A

fk = lim
n→∞

∫
A

gn =

∫
A

∞∑
k=1

fk.

(iii) We let fn = fχAn and we have fχAn ∈M
+

(A). Also, f =
∞∑
i=1

fχAi , so we appeal to (i) to get

∫
A

f =

∞∑
i=1

∫
Ai

f.

3.6 Lebesgue integral

Let M(A) = {f : A → R = [−∞,∞] : f is measurable}. For f ∈ M(A), let f+ = max{f, 0}, f− = max{−f, 0}
(pointwise). So f = f+ − f−, and also |f | = f+ + f−.

3.25 Definition. Let ∅ 6= A ∈ L(R). We say f : A → R is (Lebesgue) integrable if f ∈ M(A), and∫
A
f+ −

∫
A
f− <∞. In this case we define its (Lebesgue) integral by∫

A

f =

∫
A

f+ −
∫
A

f−.

We denote the set of such functions by L(A).
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3.26 Aside. Part (i) of the next lemma tells us that R-valued integrable functions are finite except on a set of
measure zero. Part (ii) incidentally has an application to Lp spaces; in particular, it will give us the nondegeneracy
of the norm in the case p = 1.

3.27 Lemma. We have:

(i) f ∈ L(A) implies λ
(
f−1({−∞,∞})

)
= 0.

(ii) If f ∈M(A), then
∫
A
|f | = 0 if and only if λ

(
f−1([−∞, 0) ∪ (0,∞])

)
= 0.

Proof. We have:

(i) Since f ∈ L(A), we know
∫
A
f+ <∞. Define E+ = f−1({∞}). Then for any n, we have nχE+ ≤ f+ (because

f+ =∞ on E+). Thus

nλ(E+) =

∫
A

nχE+ ≤
∫
A

f+ <∞

which means λ(E+) ≤ 1
n

∫
A
f+ for each n, so λ(E+) = 0. Similarly, put E− = f−1({−∞}) and show

λ(E−) = 0. Finally

λ(f−1({−∞,∞})) = λ(f−1({∞}) ∪ f−1({−∞})) = λ(E+ ∪ E−) = 0.

(ii) (→) Suppose
∫
A
|f | = 0. For all n ∈ N, let

En = {x ∈ A : |f(x)| ≥ 1
n}.

Then 1
nχEn ≤ |f |. So

1
nλ(En) =

∫
A

1
nχEn ≤

∫
A
|f | = 0. Hence λ(En) = 0. Hence

∞⋃
n=1

En = {x ∈ A : f(x) 6= 0} = f−1([−∞, 0) ∪ (0,∞])

and the countable union of null sets is null. By σ-subadditivity,

λ

( ∞⋃
n=1

En

)
≤
∞∑
n=1

λ(En), and λ(En) = 0 so λ

( ∞⋃
n=1

En

)
= 0.

(←) Suppose conversely that λ
(
f−1([−∞, 0) ∪ (0,∞])

)
= 0. Let ϕ ∈ S+

|f |(A). Write

ϕ =

n∑
i=1

aiχEi

for a1 < a2 < . . . < an. If at least one ai > 0, then 0 < aiχEi ≤ ϕ ≤ |f |, so that Ei ⊆ f−1(R \ {0}). By the
increasing property of λ, we have

λ(Ei) ≤ λ
(
f−1([−∞, 0) ∪ (0,∞])

)
= 0

which implies λ(Ei) = 0. Hence for all ϕ ∈ S+
|f |(A), we have∫
A

ϕ = IA(ϕ) = 0,

and so it follows that ∫
A

|f | = sup{IA(ϕ) : ϕ ∈ S+
|f |(A)} = 0.

3.28 Remark. For ∅ 6= A ∈ L(R),

M(A) = {f : A→ R : f is measurable}
L(A) = {f : A→ R : f is integrable}
L(A) = {f : A→ R : f ∈M(A), f is integrable}.
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3.29 Corollary (to lemma of last class). Let f ∈ L(A). Then there is f0 ∈ L(A) such that

f(x) = f0(x)

except for x ∈ N ⊆ A, where λ(N) = 0. We will simply say that f = f0 almost everywhere (a.e.) when this
condition holds.

Proof. We saw that since f ∈ L(A), we have λ(f−1({−∞,∞})) = 0. We define f0 : A→ R by

f0(x) =

{
f(x) x /∈ f−1({−∞,∞})
0 otherwise.

3.30 Remark. We will write for a function f : A→ R and a sequence (fn)∞n=1 ⊆M(A)

f = lim
n→∞

fn (a.e.)

to mean that there is some set N with λ(N) = 0 and

lim
n→∞

fn(x) = f(x), ∀x ∈ A \N.

Since null sets are measurable, we note that such f , as above, remain measurable i.e. f ∈M(A).

Recall that if f ∈ L(A) then ∫
A

f =

∫
A

f+ −
∫
A

f−

is the Lebesgue integral of f over A.

3.31 Theorem (Properties of the integral). If f, g ∈ L(A) and c ∈ R then

(i) cf ∈ L(A) with
∫
A
cf = c

∫
A
f .

(ii) f + g ∈ L(A) with
∫
A

(f + g) =
∫
A
f +

∫
A
g.

(iii) |f | ∈ L(A) and we have |
∫
A
f | ≤

∫
A
|f |.

In fact, for f : A→ R, we have
f ∈ L(A) ⇐⇒ |f | ∈ L(A) and f ∈M(A).

Proof. We have:

(i) Straightforward.

(ii) First, we note that f + g = (f + g)+ − (f + g)−, and we have that

(f + g)+ ≤ f+ + g+, (f + g)− ≤ f− + g−.

Hence, using previous results about integrating non-negative functions,∫
A

(f + g)+ ≤
∫
A

(f+ + g+) =

∫
A

f+︸ ︷︷ ︸
<∞

+

∫
A

g+︸ ︷︷ ︸
<∞

<∞

and similarly, ∫
A

(f + g)− <∞

so that f + g ∈ L(A).

We now claim the following: if h, k, ϕ, ψ ∈ L+(A) and h− k = ϕ− ψ then∫
A

h−
∫
A

k =

∫
A

ϕ−
∫
A

ψ.

To see this, note that we have h+ ψ = ϕ+ k, so by the corollary (to MCT) we obtain∫
A

h+

∫
A

ψ =

∫
A

(h+ ψ) =

∫
A

(ϕ+ k) =

∫
A

ϕ+

∫
A

k
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where each integral is finite. We subtract
∫
A
k +

∫
A
ψ from both sides.

Back to the proof of (ii), we observe that

(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g− = (f+ + g+)− (f− + g−)

where (f + g)+, . . . , f− + g− ∈ L+(A). Hence, by the claim,∫
A

(f + g) =

∫
A

(f + g)+ −
∫
A

(f + g)− =

∫
A

(f+ + g+)−
∫
A

(f− + g−)

=

∫
A

f+ +

∫
A

g+ −
(∫

A

f− +

∫
A

g−
)

=

∫
A

f+ −
∫
A

f− +

∫
A

g+ −
∫
A

g− =

∫
A

f +

∫
A

g.

(iii) |f | = f+ + f−. Hence ∣∣∣∣∫
A

f

∣∣∣∣ =

∣∣∣∣∫
A

f+ −
∫
A

f−
∣∣∣∣

≤
∣∣∣∣∫
A

f+

∣∣∣∣+

∣∣∣∣−∫
A

f−
∣∣∣∣

=

∫
A

f+ +

∫
A

f−

=

∫
A

(f+ + f−) =

∫
A

|f |.

Note that
∫
A
f+,

∫
A
f− <∞ and hence the sum is finite. Finally, we note that if |f | ∈ L(A) and f ∈ M(A),

the latter assumption tells us that f+, f− ∈M(A). The first assumption gives that∫
A

f+,

∫
A

f− ≤
∫
A

f+ +

∫
A

f− =

∫
A

(f+ + f−) =

∫
A

|f | <∞.

3.7 Dominated Convergence Theorem

Before introducing the Lebesgue dominated convergence theorem, we will require the following lemma.

3.32 Lemma (Fatou’s lemma). If (fn)∞n=1 ⊆M
+

(A) then∫
A

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

fn

Proof. Let gn = inf{fk : k ≥ n}. Then 0 ≤ g1 ≤ g2 ≤ . . . and limn→∞ gn = lim infn→∞ fn by definition. Thus by
MCT, ∫

A

lim inf
n→∞

fn = lim
n→∞

∫
A

gn. (†)

Now, gn ≤ fk for each k ≥ n, so we find
∫
A
gn ≤

∫
A
fk and we have∫

A

gn ≤ lim inf
k→∞

∫
A

fk (††)

Combining (†) and (††) we find ∫
A

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

fn.

3.33 Example. Let fn = nχ
(0,

1
n )
. Then limn→∞ fn = 0, pointwise, so

lim inf
n→∞

fn = 0.

However ∫
R
fn =

∫
R
nχ

(0,
1
n )

= nλ((0, 1
n )) = n

1

n
= 1.
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Hence
lim inf
n→∞

∫
R
fn = 1.

Hence strict inequality can hold in Fatou’s lemma.

3.34 Remark. Both MCT and Fatou’s lemma hold when

f = lim inf
n→∞

fn

pointwise is replaced by
f = lim inf

n→∞
fn (a.e.).

3.35 Theorem (Lebesgue Dominated Convergence Theorem). If A ∈ L(R) with λ(A) > 0, and (fn)∞n=1 ⊆
M(A) and g ∈ L+(A) such that

(i) there is f : A→ R such that
f = lim

n→∞
fn (a.e.)

on A.

(ii) |fn| ≤ g (a.e.) for each n (we call g an integrable majorant).

Then f ∈ L(A), and we have ∫
A

f = lim
n→∞

∫
A

fn.

Proof. Let

N =

∞⋃
n=1

{x ∈ A : |fn(x)| > g(x)} ∪ {x ∈ A : lim
n→∞

fn(x) 6= f(x) or limit DNE}

so by σ-subadditivity of λ (i.e. of λ∗), λ(N) = 0. We note that∫
N

fn,

∫
N

g = 0

by the lemma, so we can replace A by A \ N , and just call the new set A. We note that f = limn→∞ fn (now
pointwise) is measurable. Also

|f | = lim
n→∞

|fn| ≤ g

so
∫
A
|f | ≤

∫
A
g < ∞ so f is integrable. We consider, first, the functions g + fn ≥ 0 by assumption and g + f =

limn→∞(g + fn) = lim infn→∞(g + fn) (pointwise). Then, by Fatou’s lemma, we get∫
A

(g + f) ≤ lim inf
n→∞

∫
A

(g + fn)

thus ∫
A

g +

∫
A

f =

∫
A

(g + f) ≤ lim inf
n→∞

∫
A

(g + fn) = lim inf
n→∞

(∫
A

g +

∫
A

fn

)
=

∫
A

g + lim inf
n→∞

∫
A

fn.

Thus ∫
A

f ≤ lim inf
n→∞

∫
A

fn (†)

and we also note that g − fn ≥ 0 with g − f = limn→∞(g − fn) = lim infn→∞(g − fn). As above, we obtain the
following:∫

A

g −
∫
A

f =

∫
A

(g − f) ≤ lim inf
n→∞

∫
A

(g − fn) = lim inf
n→∞

(∫
A

g −
∫
A

fn

)
=

∫
A

g + lim inf
n→∞

(
−
∫
A

fn

)
=

∫
A

g − lim sup
n→∞

∫
A

fn

thus we have ∫
A

f ≥ lim sup
n→∞

∫
A

fn (††)

combining (†) and (††) we have

lim sup
n→∞

∫
A

fn ≤
∫
A

f ≤ lim inf
n→∞

∫
A

fn

thus ∫
A

f = lim
n→∞

∫
A

fn.
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4 Lp spaces

4.1 p = 1 case

We first treat Lp spaces where p = 1. Let A ∈ L(R), λ(A) > 0. (Usually, A = [a, b], [a,∞), R.) Recall

L(A) = {f : A→ R : f is measurable and integrable}.

4.1 Proposition. Define, for f ∈ L(A), ‖f‖1 =
∫
A
|f |. Then

(i) ‖cf‖1 = |c|‖f‖1 for c ∈ R (| · |-homogeneity)

(ii) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 for another g ∈ L(A) (subadditivity)

Hence ‖ · ‖1 is a seminorm. We are lacking nondegeneracy, so it is not a norm.

Proof. We have:

(i) Straightforward.

(ii) ‖f + g‖1 =

∫
A

|f + g| ≤
∫
A

(|f |+ |g|) =

∫
A

|f |+
∫
A

|g| = ‖f‖1 + ‖g‖1.

4.2 Definition. We define an equivalence relation on L(A) by

f ∼ g ⇐⇒ f = g (a.e.)

Check that this is an equivalence relation. We observe, from an earlier lemma8, that

f ∼ g ⇐⇒
∫
A

|f − g| = 0.

We define L1 space on A by
L1(A) = L(A)/∼.

We note that ∼ is a linear equivalence:

f ∼ f1, g ∼ g1, c ∈ R =⇒ f + cg ∼ f1 + cg1

Hence L1(A) is a vector space. Also f ∼ f1 implies |f | ∼ |f1| so ‖f‖1 = ‖f1‖1 and hence ‖ · ‖1 is well-defined on
L1(A). Moreover, for f ∈ L(A), ‖f‖1 = 0 if and only if

∫
A
|f | = 0 if and only if f ∼ 0. On L1 we have

(iii) ‖f‖1 = 0 if and only if f = 0 (in L1(A)).

We think of elements of L1(A) as integrable functions with the agreement that f = f1 in L1(A) if and only if
f = f1 (a.e.).

4.3 Remark (warning). For all x ∈ A, λ({x}) = 0. Hence for any c ∈ R, f = f + cχ{x} in L1(A). Hence for
f ∈ L1(A), we cannot make sense of “f(x)”. However, we can make sense of “f(x) for almost every x”.∫

A

f =

∫
A

f(x) dx︸ ︷︷ ︸
dealing with x “in the large”

Note:
L(A) = {f : A→ R : measurable and integrable}

is a set of functions. On the other hand, L1(A) = L(A)/∼ is a set of a.e.-equivalence classes.

4.4 Definition (L1 convergence). We say that

f = lim
n→∞

fn

in L1 if limn→∞ ‖f − fn‖1 = 0.
8Which lemma?
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4.5 Remark. If f, (fn)∞n=1 in L(A) and f = limn→∞ fn (a.e.) and there is g ∈ L+(A) such that |fn| ≤ g (a.e.) then
(by LDCT) f = limn→∞ fn (in L1). Indeed,

|f − fn| ≤ |f |+ |fn| ≤ 2g

lim
n→∞

|f − fn| = 0 (a.e.).

Thus,

lim
n→∞

‖f − fn‖1 =

∫
A

|f − fn|
n→∞−−−−→

∫
A

0 = 0.

Question: Is it true that for f, (fn)∞n=1 in L(A) that f = limn→∞ fn (in L1) implies f = limn→∞ fn almost
everywhere?

4.2 1 < p <∞ case

4.6 Definition. Let A ∈ L(R), λ(A) > 0. (Usually, A = [a, b], [a,∞), R.) Define

Lp(A) =

{
f ∈M(A) :

∫
A

|f |p <∞
}/
∼

where f ∼ g if and only if f = g (a.e.). For f ∈ Lp(A), let

‖f‖p =

(∫
A

|f |p
)1/p

.

We wish to show that Lp(A) is a linear space, and that ‖ · ‖p is a norm on Lp(A).

4.7 Definition. If 1 < p <∞ is fixed, we let q be defined by the expression

1

p
+

1

q
= 1.

That is, q = p
p−1 and we call q the conjugate (or dual9) index to p.

4.8 Lemma (Young’s Inequality). If 1 < p <∞ and q is the conjugate index, then for any a, b ≥ 0 we have

ab ≤ ap

p
+
bq

q

with equality if and only if ap = bq.

Proof. Let 0 < α < 1 and define ϕ : [0,∞)→ R by

ϕ(t) = αt− tα.

We have
ϕ′(t) = α− αtα−1 = α

(
1− 1

t1−α

)
and we have ϕ′(t) < 0 for 0 < t < 1 and ϕ′(t) > 0 for t > 1. Thus, by MVT we have that

αt− tα−1 = ϕ(t) ≥ ϕ(1) = α− 1

with equality exactly when t = 1. Thus, for t ≥ 0,

tα ≤ αt− (1− α)

with equality only for t = 1. Assume b 6= 0 since for b = 0 the desired inequality is obvious. Let t = ap/bq. We get

apα

bqα
≤ αa

p

bq
− (1− α)

and hence
apαbq(1−α) ≤ αap + (1− α)bq.

Now we let α = 1
p so 1− α = 1

q , and we’re done.

9This terminology is no mistake: the continuous dual of Lp is isomorphic to Lq , where q is the dual index to p (we consider 1 and
∞ as a dual pair of indices). Observe that p = 2 is self-dual.
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4.9 Theorem (Hölder’s inequality). Let 1 < p < ∞, A ∈ L(R), λ(A) > 0. Let q be the conjugate index. If
f ∈ Lp(A), and g ∈ Lq(A), then fg ∈ L1(A) and

‖fg‖1 ≤ ‖f‖p‖g‖q

with equality holding only if ‖g‖qq|f |p = ‖f‖pp|g|q.

Proof. If either ‖f‖p = 0 or ‖g‖q = 0 then fg = 0 (a.e.) and the (in)equality is trivial. We assume that ‖f‖p‖g‖q > 0.
Let for almost every x ∈ A

a(x) =
|f(x)|
‖f‖p

, b(x) =
|g(x)|
‖g‖q

we have for almost every x ∈ A that

|f(x)g(x)|
‖f‖p‖g‖q

= a(x)b(x) ≤ a(x)p

p
+
g(x)q

q
=
|f(x)|p

p‖f‖pp
+
|g(x)|
q‖g‖qq

(∗)

with equality holding if and only if a(x)p = b(x)q, i.e.

|f(x)|p

‖f‖pp
=
|g(x)|q

‖g‖qq

we note that fg defines a measurable function and hence |fg| is measurable. Integrating (∗) we find

1

‖f‖p‖g‖q

∫
A

|fg| ≤
∫
A

(
|f |p

p‖f‖pp
+
|g|q

q‖g‖q

)
=

1

p‖f‖pp

∫
A

|f |p︸ ︷︷ ︸
‖f‖pp

+
1

q‖g‖qq

∫
A

|g|q︸ ︷︷ ︸
‖g‖qq

=
1

p
+

1

q
= 1.

Hence
‖fg‖1 =

∫
A

|fg| ≤ ‖f‖p‖g‖q.

We note that equality holds only when equality holds in (∗) for almost every x.

4.10 Theorem (Minkowski’s inequality). Let 1 < p < ∞, A ∈ L(R), λ(A) > 0. If f, g ∈ Lp(A) then
f + g ∈ Lp(A) and moreover

‖f + g‖p ≤ ‖f‖p + ‖g‖p
with equality holding if and only if there are constants c1, c2 ≥ 0 such that c1 + c2 > 0 and c1f = c2g (a.e.).

Proof. First, note that pointwise almost everywhere,

|f + g|p ≤ (2 max{|f |, |g|})p = 2p max{|f |p, |g|p} ≤ 2p(|f |p + |g|p)

and hence ∫
A

|f + g|p ≤ 2p
(∫

A

|f |p
∫
A

|g|p
)
<∞.

So f + g ∈ Lp(A). If ‖f + g‖p = 0, then the inequality is trivial. Let’s assume ‖f + g‖p > 0. Now, we have

|f + g|p = |f + g||f + g|p−1 ≤ |f ||f + g|p−1 + |g||f + g|p−1 (a.e.) (†)

so note that |f + g|p−1 ∈ Lq(A), since q = p
p−1 . Thus, by Hölder’s inequality we have∫

A

|f ||f + g|p−1 ≤ ‖|f |‖p‖|f + g|p−1‖q =

(∫
A

|f |p
)1/p(∫

A

|f + g|(p−1)q

)1/q

= ‖f‖p‖f + g‖p/qp (††)

and similarly ∫
A

|g||f + g|p−1 ≤ ‖g‖p‖f + g‖p/qp .

Combining (†) and (††) we see that∥∥f + g
∥∥p
p

=

∫
A

|f + g|p

≤
∫
A

|f ||f + g|p−1 +

∫
A

|g||f + g|p−1 (A)

≤
(∥∥f∥∥

p
+
∥∥g∥∥

p

)
‖f + g‖p/qp (B)
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and we note that
p− p

q
= p(1− 1

q
) = p

1

p
= 1

so we have
‖f + g‖p ≤ ‖f‖p + ‖g‖p

Equality at (A) requires |f + g| = |f |+ |g| (a.e.) and at (B) is the equality condition from Hölder.

4.3 Completeness

We will see that Lp(A) is actually not just a normed linear space, but a Banach space (it is complete).

Lp(A) =

{
f ∈M(A) :

∫
A

|f |p <∞
}
/∼

where A ∈ L(R), λ(A) > 0.

4.11 Lemma. Let (X , ‖ · ‖) be a normed vector space. Then X is complete if and only if for every sequence
(xn)∞n=1 ⊆ X with

∞∑
n=1

‖xn‖ <∞

then we have
∞∑
n=1

xn = lim
N→∞

N∑
n=1

xn

converges in X .

Proof. (→) (Abstract Weierstrass Test) Let (xn)∞n=1 ⊆ X with
∑∞
n=1 ‖xn‖ < ∞. Let sn =

∑n
k=1 xk. Then if

m < n, we observe

‖sm − sn‖ =

∥∥∥∥∥
m∑

k=n+1

xk

∥∥∥∥∥ ≤
m∑

k=n+1

‖xk‖

Since
∑∞
k=1 ‖xk‖ < ∞, ‖sm − sn‖ can be made small. So {sn}n∈N is Cauchy in X . As X is complete, {sn}n∈N

converges, to s ∈ X .

s = lim
n→∞

sn = lim
n→∞

n∑
k=1

xk =

∞∑
k=1

xk.

(←) Let (xn)∞n=1 ⊆ X be Cauchy. Pick n1 such that n,m ≥ n1 implies ‖xn − xm‖ < 1
2 . Pick n2 such that n2 ≥ n1

and n,m ≥ n2 implies ‖xn − xm‖ < 1
22 . And so on; in general choosing nk such that nk ≥ nk−1 and n,m ≥ nk

implies ‖xn − xm‖ < 1
2k
. So we get a subsequence (xnk)∞k=1. For each k, let yk = xnk+1

− xnk . Then

k∑
j=1

‖yj‖ =

k∑
j=1

‖xnj − xnj−1‖ <
k∑
j=1

1

2j
.

So,
∞∑
j=1

‖yj‖ = lim
N→∞

N∑
j=1

‖yj‖ ≤ lim
N→∞

N∑
j=1

1

2j
= 1.

By hypothesis,

x = lim
j→∞

j∑
k=1

yk exists.

We observe that by telescoping,
j∑

k=1

yk =

j∑
k=1

xnk − xnk−1 = xnk+1
− xn1

hence
x+ xn1

= lim
j→∞

xnj+1

exists. However (xn)∞n=1 is a Cauchy sequence and we have shown that it has a convergent subsequence. So, (xn)∞n=1

itself also converges. (Details left as exercise).
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4.12 Theorem. Let A ∈ L(R), with λ(A) > 0. Then Lp(A) is complete.

Proof. We use the lemma. Let (fn)∞n=1 ⊆ Lp(A). Call

M :=

∞∑
n=1

‖fn‖p <∞.

We consider each fn as a measurable function on A with
∫
|f |p <∞. Let

gn =

n∑
k=1

|fk|

so g1 ≤ g2 ≤ g3 ≤ . . . and for each x, put g(x) = limn→∞ gn(x) (pointwise). We observe that

‖gn‖p ≤
n∑
k=1

‖|fk|‖p =

n∑
k=1

‖fk‖p ≤
∞∑
k=1

‖fk‖p︸ ︷︷ ︸
M

<∞.

Hence by MCT we find that10 ∫
A

gp = lim
n→∞

∫
gpn = lim

n→∞
‖gn‖pp ≤Mp <∞.

So gp is integrable, hence by a previous lemma g(x) < ∞ almost everywhere on A. Thus g represents an element
in Lp(A). We then observe that, for almost everywhere x ∈ A,

n∑
k=1

|fk(x)| = gn(x) ≤ g(x)

thus
∞∑
k=1

|fk(x)| <∞

for almost everywhere x ∈ A. Hence for such x,

f(x) = lim
n→∞

n∑
k=1

fk(x).

That is,

f = lim
n→∞

n∑
k=1

fk (a.e.).

Observe that

|f |p =

∣∣∣∣∣ lim
n→∞

n∑
k=1

fk

∣∣∣∣∣
p

≤ lim
n→∞

(
n∑
k=1

|fk|︸ ︷︷ ︸
gn

)p
= lim
n→∞

gpn = gp (a.e.)

So, ∫
A

|f |p ≤
∫
A

gp <∞

thus f is a representative of an element in Lp(A). It remains to show that∥∥∥∥∥f −
n∑
k=1

fk

∥∥∥∥∥
p

→ 0

as n→∞. We observe that ∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
p

≤

(
|f |+

∣∣∣∣∣
n∑
k=1

fk

∣∣∣∣∣
)p
≤ (g + g)p = 2pgp

10We liberally neglect absolute value signs here, since g and gk are all non-negative by definition.
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where ∫
2pgp <∞.

Note that

lim
n→∞

∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣ = 0 (a.e.) =⇒ lim
n→∞

∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
p

= 0 (a.e.).

Therefore, the Lebesgue dominated convergence theorem allows us to conclude that

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

fk

∥∥∥∥∥
p

p

= lim
n→∞

∫
A

∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣
p

=

∫
A

0 = 0.

Hence,
∑∞
k=1 fk = f in (Lp(A), ‖ · ‖p). Therefore by the lemma Lp(A) is complete.

4.13 Remark (analogy). Take R2, 1 ≤ p <∞.∥∥(x1, x2)
∥∥
p

= (|x1|p + |x2|p)1/p
.

Unit ball Bp = {(x1, x2) ∈ R2 : ‖(x1, x2)‖p ≤ 1}.

4.4 p =∞ case

4.14 Definition. If f ∈M(A), A ∈ L(R), λ(A) > 0, we define

‖f‖∞ = ess sup
x∈A

|f(x)| = inf{C > 0 : λ({x ∈ A : |f(x)| > C}) = 0}.

If ‖f‖∞ <∞ we say f is essentially bounded. Let

L∞(A) = {f ∈M(A) : ‖f‖∞ <∞}/∼

Hence L∞(A) consists of (equivalence classes of) essentially bounded and measurable functions. We agree that
f = g in L∞(A) if f = g almost everywhere.

4.15 Proposition. ‖ · ‖∞ is a norm on L∞(A).

Proof. First, if f ∈ L∞(A) then ‖f‖∞ ≥ 0, by definition. If ‖f‖∞ = 0 then

λ({x ∈ A : |f(x)| > 1
n}) = 0

hence {x ∈ A : f(x) 6= 0} = {x ∈ A : |f(x)| > 0} =
⋃∞
n=1{x ∈ A : |f(x)| > 1

n} and a countable union of null sets is
null. Check that ‖cf‖∞ = |c|‖f‖∞, c ∈ R, f ∈ L∞(A). Now let f, g ∈ L∞(A). First, note that

{x ∈ A : |f(x)| > ‖f‖∞} =

∞⋃
n=1

{x ∈ A : |f(x)| > ‖f‖∞ + 1
n}︸ ︷︷ ︸

null set by definition of ess sup and inf

so that
λ({x ∈ A : |f(x)| > ‖f‖∞}) = 0.

We may assume ‖f‖∞ + ‖g‖∞ > 0 otherwise the proof is trivial. Consider

{x ∈ A : |f(x) + g(x)| > ‖f‖∞ + ‖g‖∞} ⊆ {x ∈ A : |f(x)|+ |g(x)| > ‖f‖∞ + ‖g‖∞}
⊆ {x ∈ A : |f(x)| > ‖f‖∞} ∪ {x ∈ A : |g(x)| > ‖g‖∞}

but these are both null sets, and the union of two null sets is null. Hence it follows that

‖f + g‖∞ = inf{C > 0 : λ({x ∈ A : |f(x) + g(x)| > C}) = 0}.
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4.16 Theorem. (L∞(A), ‖ · ‖∞) is complete and hence a Banach space.

Proof. We take (fk)∞k=1 ⊆ L∞(A), and suppose that

∞∑
k=1

‖fk‖∞ <∞.

We need to show that
∑∞
k=1 fk defines an element of L∞(A). Let

Ek = {x ∈ A : |fk(x)| > ‖fk‖∞},

which is null. Hence, if we put E =
∞⋃
k=1

Ek then this is null as well. Now, if x ∈ A \E, then we have for each n ∈ N,

that ∣∣∣∣∣
n∑
k=1

fk(x)

∣∣∣∣∣ ≤
n∑
k=1

|fk(x)|︸ ︷︷ ︸
≤‖fk‖∞ since x/∈Ek

≤
n∑
k=1

‖fk‖∞ ≤
∞∑
k=1

‖fk‖∞ <∞.

Thus for x ∈ A \ E we have by absolute convergence,∣∣∣∣∣
∞∑
k=1

fk(x)

∣∣∣∣∣ ≤
∞∑
k=1

‖fk‖∞

and thus
∞∑
k=1

fk (pointwise almost everywhere) defines an element of L∞(A).

4.5 Modes of convergence

Suppose (fk)∞k=1, f inM(A). We have, already, notions of

lim
k→∞

fk = f (pointwise),

lim
k→∞

fk = f (a.e.),

lim
k→∞

fk = f ∈ Lp.

By the latter, we mean to say that each fk is in Lp(A) and

lim
k→∞

‖fk − f‖p = lim
k→∞

(∫
A

|fk − f |p
)1/p

= 0

(for 1 ≤ p <∞). In L∞ case,

lim
k→∞

‖fk − f‖∞ = lim
k→∞

ess sup
x∈A

|fk(x)− f(x)| = 0.

4.17 Example. Let
f1 = χ[0,1],

f2 = χ
[0,

1
2 ]
, f3 = χ

[
1
2 ,1]

f4 = χ
[0,

1
3 ]
, f5 = χ

[
1
2 ,

2
3 ]
, f6 = χ

[
2
3 ,1]

f7 = χ
[0,

1
4 ]
, . . .

f8 = χ
[0,

1
5 ]
, . . .

First, note that for x ∈ [0, 1]
lim
k→∞

fk(x) does not exist.

Indeed, lim sup fk(x) = 1 and lim inf fk(x) = 0 for all x. Hence,

lim
k→∞

fk D.N.E. (a.e.)
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‖fk − 0‖p =

(∫
[0,1]

|fk|p
)1/p

but |fk|p is the indicator function of an interval length 1/nk, so the above is(
1

nk

)1/p
k→∞−−−−−−−−−−→

nk→∞ as k→∞
01/p = 0

(Likely, there is c > 0, nk = c log k.) Note, for every fk = χ[ak,bk], ak < bk, we have

‖fk − 0‖∞ = ‖fk‖∞ = 1.

Each c > 1 is an essential bound, but no c < 1 is an essential bound as λ([ak, bk]) = bk − ak > 0.

4.6 Inclusion relations

4.18 Theorem. Let [a, b] be a compact interval with b > a (i.e. A ∈ L(R) such that 0 < λ(A) < ∞). Then for
1 ≤ p < r <∞ we have that

Lr[a, b] ⊆ Lp[a, b]

and for f ∈ Lr[a, b],
‖f‖p ≤ (b− a)

r−p
pr ‖f‖r

where the coefficient
C = (b− a)

r−p
pr

is just a constant11 C which depends on [a, b], p and r.

Proof. Let f ∈ Lr[a, b]. Then
|f |p ∈ Lr/p[a, b]

i.e. ∫
[a,b]

(|f |p)r/p =

∫
[a,b]

|f |r <∞,

by assumption. Let q be the conjugate index to r/p, i.e.

1

q
+

1

r/p
= 1 =⇒ 1

q
= 1− p

r
=
r − p
r

=⇒ q =
r

r − p
.

By Hölder’s inequality we have∫
[a,b]

|f |p =

∫
[a,b]

|f |p · 1 ≤

(∫
[a,b]

(|f |p)r/p
)p/r (∫

[a,b]

|1|q
)1/q

=

(∫
[a,b]

|f |r
)1/r

p (b− a)1/q

= ‖f‖pr(b− a)1/q.

Hence
‖f‖p ≤ ‖f‖r(b− a)

1
pq

but 1
pq = r−p

pr .

4.19 Remark. We have the following:

1. It is an easy exercise to show that L∞[a, b] ⊆ Lp[a, b], for 1 ≤ p <∞, and there is k > 0 (depending on [a, b]
and p) such that ‖f‖p ≤ k‖f‖∞.

C[a, b] ( L∞[a, b] ( Lp[a, b] ( L1[a, b]

with the first two coming from A4, and the last being shown below.
11There is no need to memorize this constant.
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2. If 1 ≤ p < r <∞, then Lp[a, b] * Lr[a, b].

Proof. Let [a, b] = [0, 1]. Let

f(x) =
1

x1/r
(a.e.)

Compute (where we have applied A3Q4 in the second step)∫
[0,1]

|f(x)|p dx =

∫
[0,1]

1

xp/r
dx = lim

a→0+

∫ 1

a

x−p/r dx = lim
a→0+

1

1− p
r

x1− pr

∣∣∣∣∣
1

a

noting that p < r so p/r < 1 so 1− p
r > 0 we get that the above is

r

r − p
<∞

so f ∈ Lp([0, 1]). It is easy to check that ∫
[0,1]

|f |r =∞.

Are there any containment relations for Lp(R) and Lr(R) with 1 ≤ p < r <∞? No. This is proved below.

4.20 Theorem. Lp(R) * Lr(R).

Proof. We have for each s ≥ 1, an embedding

Ls([0, 1]) ↪→ Ls(R),

if f ∈ Ls([0, 1]) we define

f̃ =

{
f on [0, 1] (a.e.)
0 off [0, 1].

Then
‖f‖s︸︷︷︸
∈Ls([0,1])

= ‖f̃‖s︸︷︷︸
∈Ls(R)

.

We pick our favourite f ∈ Lp([0, 1]) \ Lr([0, 1]) and then f̃ ∈ Lp(R) \ Lr(R).

4.21 Theorem. Lr(R) * Lp(R).

Proof. Define

f(x) =

{
1

x1/p for a.e. x ≥ 1

0 for a.e. x < 1.

Check that f ∈ Lr(R) \ Lp(R).

4.22 Theorem (separability). If a < b in R, and 1 ≤ p < ∞, then Lp[a, b] is separable (that is, we can find a
countable dense subset).

Proof. First, by A4, we note C[a, b] ⊆ Lp[a, b] with ‖f‖p ≤ k‖f‖∞ for f ∈ C[a, b] with a fixed constant k > 0. And
C[a, b] is dense in Lp[a, b] (with respect to the p-norm). We “recall” that (C[a, b], ‖ · ‖∞) is separable. First, let R[x]

denote the space of polynomials on [a, b]. By the Stone-Weierstrass theorem, R[x]
‖·‖∞

= C[a, b]. Now we have Q[x]
is countable, call this set {dn}∞n=1. For each p ∈ R[x] and ε > 0 there is a polynomial d ∈ Q[x] such that

‖p− d‖∞ < ε.

Now, if f ∈ Lp[a, b], and ε > 0, we first find h ∈ C[a, b] such that

‖f − h‖p <
ε

2
(A4).

Then, find a p ∈ R[x] such that
‖h− p‖∞ <

ε

4k

and then dn ∈ Q[x] such that
‖p− dn‖∞ <

ε

4k
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We have
‖f − dn‖p ≤ ‖f − h‖p + ‖h− dn‖p <

ε

2
+ k‖h− dn‖∞ < ε.

This is because ‖h− dn‖∞ ≤ ε
2k , by choices above.

4.23 Theorem. L∞[0, 1] is not separable.

Proof. For each binary sequence a = {a1, a2, . . .} ⊆ {0, 1}, that is, a ∈ {0, 1}N we let

fa =

∞∑
n=1

anχ[ 1
n+1 ,

1
n ]

We observe that if a, b ∈ {0, 1}N, then

‖fa − fb‖∞ =

∥∥∥∥∥∥∥∥∥∥
∞∑
n=1

(an − bn)︸ ︷︷ ︸
pointwise a.e.

χ[ 1
n+1 ,

1
n ]

∥∥∥∥∥∥∥∥∥∥
∞

= sup
n∈N
|an − bn|.

Thus, if a 6= b, ‖fa − fb‖∞ = 1. If there were a dense subset {dn}∞n=1 of L∞[0, 1] then for each a ∈ {0, 1}N there
would be a n = n(a) such that ‖fa − dn(a)‖∞ < 1

2 . We note that n(a) 6= n(b) for a 6= b, for otherwise we have

‖fa − fb‖∞ ≤ ‖fa − dn(a) + dn(b)︸ ︷︷ ︸
0

−fb‖∞ ≤ ‖fa − dn(a)‖∞ + ‖dn(b) − fb‖∞ < 1

which contradicts (∗). Thus a 7→ n(a) : {0, 1}N → N is injective, which implies that |{0, 1}N| ≤ |N| which is
absurd.

4.24 Remark. We note that for a < b in R, if f ∈ L∞[a, b], then

lim
p→∞

‖f‖p = ‖f‖∞.

Proof outline. One might prove

(a) f ∈ S[a, b], then limp→∞ ‖f‖p = ‖f‖∞.

(b) If f ∈ L∞[a, b] and ε > 0 then there is a g ∈ S[a, b] with ‖f − g‖∞ < ε.

Combine (a) and (b) carefully to finish.

5 Fourier analysis

We need to talk about some functional analysis on our Lp spaces.

5.1 Bounded operators

5.1 Definition. Let X ,Y be Banach spaces. A linear transformation T : X → Y is bounded provided

|||T ||| = sup{‖Tx‖Y : x ∈ X , ‖x‖X < 1} <∞.

If Y = R, we call a linear map Γ : X → R a linear functional. We will write ‖Γ‖∗ = |||Γ|||.
5.2 Proposition. Let X ,Y be Banach spaces, and let T : X → Y be a linear operator. Then the following are
equivalent:

(i) T is continuous.

(ii) T is bounded.

(iii) T is Lipschitz, in fact,
‖Tx− Tx′‖Y ≤ |||T ||| · ‖x′ − x‖X

and moreover |||T ||| is the smallest12 C > 0 such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X .
12In other words, |||T ||| is the “best Lipschitz constant” for T .
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Of course, this holds for a functional Γ : X → R as well.

Proof. (i) → (ii): Let B1(Y) = {y ∈ Y : ‖y‖Y < 1} which is an open neighbourhood of 0Y . Since T is continuous
and T0X = 0Y we have that there is δ > 0 such that if

‖x− 0X ‖X < δ

then ‖Tx− 0Y‖Y < 1, i.e. ‖x‖X < δ implies ‖Tx‖Y < 1. Suppose x ∈ X , ‖x‖X < 1. Then

‖δx‖X = δ‖x‖X < δ · 1 = δ.

Hence
δ‖Tx‖Y = ‖T (δx)‖Y < 1

and thus ‖Tx‖Y < 1
δ , so

|||T ||| = sup{‖Tx‖Y : x ∈ X , ‖x‖X < 1} ≤ 1

δ
.

(ii) → (iii): We have for x ∈ X , ε > 0 that∥∥∥∥ 1

‖x‖X + ε
x

∥∥∥∥
X

=
1

‖x‖X + ε
‖x‖X < 1

and hence
1

‖x‖X + ε
‖Tx‖Y =

∥∥∥∥T ( 1

‖x‖X + ε
x

)∥∥∥∥
Y
≤ |||T |||.

Thus ‖Tx‖Y ≤ |||T |||(‖x‖X + ε). Letting ε→ 0+ we have ‖Tx‖Y ≤ |||T |||‖x‖X . If x, x′ ∈ X , we have

‖Tx− Tx′‖Y = ‖T (x− x′)‖Y ≤ |||T |||‖x− x′‖X .

Finally, if 0 < C < |||T ||| then since |||T ||| is the supremum, there is x ∈ B1(X ) such that

‖Tx‖Y > C > C‖x‖X

i.e. ‖Tx− T0‖Y > C‖x− 0‖X , so C is not a Lipschitz estimate.

(iii) → (i): Lipschitz implies uniformly continuous implies continuous.

5.2 Linear functionals

Fix A ∈ L(R), with λ(A) > 0.

5.3 Theorem (functionals on Lp, for 1 < p < ∞). Let 1 < p < ∞, and let q be the conjugate index. If
g ∈ Lq(A), then the functional

Γg : Lp(A)→ R, f 7→
∫
A

gf

is a bounded linear functional with ‖Γg‖∗ = ‖g‖q.

We have the following remark (whose proof is relegated to PMATH 451 ), which tells us that the correspondence
g 7→ Γg described above is actually a surjection from Lq(A)→ Lp(A)∗, where ∗ denotes the continuous dual space.
This correspondence is indeed an isomorphism, thereby justifying our use of the term “dual index”.

5.4 Remark. If Γ : Lp(A)→ R is a bounded linear functional then there is g ∈ Lq(A) such that Γ = Γg. (This is
the stuff of PMATH 451 – Radon-Nikodym theorem).

Proof of theorem. First, if g ∈ Lq(A) and f ∈ Lp(A) then by Hölder’s inequality, gf ∈ L1(A) and we have

|Γg(f)| =
∣∣∣∣∫
A

gf

∣∣∣∣ ≤ ∫
A

|gf | = ‖gf‖1 ≤ ‖g‖q‖f‖p.

We saw that ‖Γg‖∗ is the smallest C > 0 such that

|Γg(f)| ≤ C‖f‖p,

and thus ‖Γg‖∗ ≤ ‖g‖q (it is easy to verify that Γg is linear).
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To gain the converse inequality, let us take a cue (i.e. hint) from the “equality” case of Hölder’s inequality. We have
that ∫

A

|fg| = ‖f‖p‖g‖q

provided |f |p = C|g|q. We let sgn : R→ {−1, 1} be given by

sgn(x) =

{
1 x ≥ 0

−1 x < 0.

This is called the signum function. Notice that sgn is Borel measurable: sgn−1((α,∞)) ∈ B(R) for any α ∈ R.
Exercise:

(i) sgn−1(B) ∈ B(R) for any B ∈ B(R).

(ii) If g ∈M(A), then sgn ◦ g ∈M(A).

We define
f = C|g|q/psgn ◦ g

where C, to be defined later, is set so ‖f‖p = 1. We check∫
A

|f |p =

∫
A

∣∣∣C|g|q/psgn ◦ g
∣∣∣p = Cp

∫
A

(
|g|q/p

)p
|sgn ◦ g|p︸ ︷︷ ︸

=1

= Cp
∫
A

|g|q = Cp‖g‖qq.

That is to say,
‖f‖pp = Cp‖g‖qq =⇒ ‖f‖p = C‖g‖q/pq .

So we want
C =

1

‖g‖q/pq

to obtain ‖f‖p = 1.

We compute

‖Γg‖∗ = sup{|Γg(f)| : f ∈ Lp(A), ‖f‖p ≤ 1}

≥

∣∣∣∣∣Γg
(

1

‖g‖q/pq

|g|q/psgn ◦ g

)∣∣∣∣∣ =

∣∣∣∣∣
∫
A

g
1

‖g‖q/pq

|g|q/psgn ◦ g

∣∣∣∣∣
and note that g sgn ◦ g = |g|, so the above is

1

‖g‖q/pq

∫
A

|g|
q
p+1︸ ︷︷ ︸

q( 1
p+ 1

q )=q

=
1

‖g‖q/pq

∫
A

|g|q = ‖g‖q−
q
p

q︸ ︷︷ ︸
q(1− 1

p )=1

= ‖g‖q

thus ‖Γg‖∗ = ‖g‖q.
5.5 Theorem (functionals on L1). If ϕ ∈ L∞(A), define Γϕ : L1(A)→ R by putting

Γϕ(f) =

∫
A

ϕf.

Then Γϕ is a bounded linear functional with
‖Γϕ‖∗ = ‖ϕ‖∞.

Proof. Let us first observe that for f ∈ L1(A), we have |ϕf | ≤ ‖ϕ‖∞|f | almost everywhere (recall ‖ · ‖∞ is the
essential supremum). Thus, ∫

A

|ϕf | ≤ ‖ϕ‖∞
∫
A

|f | = ‖ϕ‖∞‖f‖1.

Hence ϕf ∈ L1(A) and we have the “1-∞ Hölder inequality”

|Γϕ(f)| =
∣∣∣∣∫
A

ϕf

∣∣∣∣ ≤ ∫
A

|ϕf | ≤ ‖ϕ‖∞‖f‖1
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so ‖Γϕ‖∗ ≤ ‖ϕ‖∞. (Of course, we see that Γϕ is linear on L1(A)). It remains to verify ‖Γϕ‖∗ ≥ ‖ϕ‖∞. Let, for
ε > 0,

Aε = {x ∈ A : ‖ϕ‖∞ − ε ≤ |ϕ(x)|}.
Then λ(Aε) > 0 by definition of ‖ϕ‖∞. It may be that λ(Aε) = ∞; if this is the case, simply replace Aε with any
subset S ⊆ Aε satisfying 0 < λ(S) <∞. So we can assume 0 < λ(Aε) <∞. Let

fε =
1

λ(Aε)
χAεsgn ◦ ϕ

so that
‖fε‖1 =

∫
A

∣∣∣∣ 1

λ(Aε)
χAε

∣∣∣∣ =
1

λ(Aε)

∫
A

χAε =
λ(Aε)

λ(Aε)
= 1.

We have

‖Γϕ‖∗ ≥ |Γϕ(fε)| =
∣∣∣∣∫
A

ϕ
1

λ(Aε)
χAεsgn ◦ ϕ

∣∣∣∣ =
1

λ(Aε)

∫
A

|ϕ|χAε︸ ︷︷ ︸
≥(‖ϕ‖∞−ε)χAε

≥ ‖ϕ‖∞ − ε
λ(Aε)

∫
A

χAε

= ‖ϕ‖∞ − ε.

Thus ‖Γϕ‖∗ ≥ ‖ϕ‖∞ − ε. Taking ε→ 0 we obtain ‖Γϕ‖∗ = ‖ϕ‖∞.

5.6 Theorem (functionals on L∞ and C). Let a < b in R.

(a) If f ∈ L1[a, b] then the functional Γf : L∞[a, b] → R given by Γf (ϕ) =
∫

[a,b]
fϕ, is linear and bounded with

‖Γf‖∗ = ‖f‖1.

(b) Furthermore, we consider
Γf : C[a, b]→ R

(Recall, for A4Q1, this “is” a closed subspace13). Then

‖Γf‖∗ = sup{|Γf (h)| : h ∈ C[a, b], ‖h‖∞ ≤ 1} = ‖f‖1.

Proof. We have:

(a) We recall the 1-∞ version of Hölder’s inequality∫
[a,b]

|ϕf | ≤ ‖ϕ‖∞‖f‖1

which tells us that ‖Γf‖∗ ≤ ‖f‖1. (It is clear that Γf is linear). Consider ϕ = sgn f , so ‖ϕ‖∞ ≤ 1. We have
that

‖Γf‖∗ = sup

{∣∣∣∣∣
∫

[a,b]

fϕ

∣∣∣∣∣ : ϕ ∈ L∞[a, b], ‖ϕ‖∞ ≤ 1

}
≥

∣∣∣∣∣∣∣
∫

[a,b]

fsgn ◦ f︸ ︷︷ ︸
|f |

∣∣∣∣∣∣∣ =

∫
[a,b]

|f | = ‖f‖1.

Hence ‖Γf‖ = ‖f‖1.

(b) From the proof of A4Q1, we have that there exists a sequence (hn)∞n=1 ⊆ C[a, b], such that

• ‖hn‖∞ ≤ 1, i.e. |hn| ≤ 1.

• lim
n→∞

hn = sgn ◦ f a.e.

We note that |fhn| ≤ |f ||hn| ≤ |f |, so |f | is an integrable majorant of (fhn)∞n=1. Thus∣∣∣∣∣
∫

[a,b]

fhn

∣∣∣∣∣ n→∞−−−−→

∣∣∣∣∣
∫

[a,b]

fsgn ◦ f

∣∣∣∣∣ =

∫
[a,b]

|f | = ‖f‖1.

Hence, as a functional on C[a, b],

‖Γf‖∗ ≥ sup
n∈N

∣∣∣∣∣
∫

[a,b]

fhn

∣∣∣∣∣ ≥ lim
n→∞

∣∣∣∣∣
∫

[a,b]

fhn

∣∣∣∣∣ = ‖f‖1

whereas

sup

{∣∣∣∣∣
∫

[a,b]

fh

∣∣∣∣∣ : h ∈ C[a, b], ‖h‖∞ ≤ 1

}
≤ sup

{∣∣∣∣∣
∫

[a,b]

fϕ

∣∣∣∣∣ : ϕ ∈ L∞[a, b], ‖ϕ‖∞ ≤ 1

}
= ‖f‖1.

13There is an embedding, that is. Recall that things in Lp are equivalence classes, not “actual” functions.
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5.3 Fourier series

Motivation: heat equation on the disc. [diagram: unit circle in complex plane]. z = x + iy = |z|eiθ = reiθ (polar
coordinates). u = u(r, θ) – temperature on the disc.

0 =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
on interior, T (z) = T (eiθ) = f(θ) = u(1, θ) (boundary condition).

This is a PDE with boundary condition. Some candidate solutions:

u0(r, θ) = a0 (const.)
un(r, θ) = anr

n cos(nθ) + bnr
n sin(nθ), n ∈ N

= anr
n e

inθ + e−inθ

2
+ bnr

n e
inθ − e−inθ

2i

= rn(cne
inθ + c−ne

−inθ), cn =
an − ibn

2
, c−n =

an + ibn
2

Boundary condition (Fourier):

f(θ) = u(1, θ) = c0 +

∞∑
n=1

(
cne

inθ + c−ne
−inθ) =

∞∑
n=−∞

cne
inθ.

Question: What do we mean by

f(θ) =

∞∑
n=−∞

cne
inθ?

Pointwise convergence? Uniform convergence? Lp-convergence (1 ≤ p <∞)? Etc.?

We now discuss measurability of complex-valued functions.

5.7 Definition (complex-valued functions). A function f : [a, b] → C is measurable provided the real and
imaginary parts

Re f, Im f : [a, b]→ R

are measurable. If Re f, Im f are both integrable we define∫ b

a

f =

∫ b

a

Re f + i

∫ b

a

Im f.

It is a tedious exercise to verify that ∫ b

a

(f + αg) =

∫ b

a

f + α

∫ b

a

g

for integrable f, g : [a, b]→ C, α ∈ C.
5.8 Remark. LDCT, Hölder and Minkowski inequalities, all hold in this setting. However, MCT and Fatou’s
lemma are theorems for non-negative real-valued functions only.

5.9 Remark. From now on, we letMC[a, b] = {f : [a, b]→ C : f is measurable}. We then put

L[a, b] =

{
f ∈MC[a, b] :

∫ b

a

|f | <∞

}

Lp[a, b] =

{
f ∈MC[a, b] :

∫ b

a

|f |p <∞

}
/∼ 1 ≤ p <∞

L∞[a, b] = {f ∈MC[a, b] : ess sup
x∈[a,b]

|f(x)| <∞}/∼

C[a, b] = {f : [a, b]→ C : f is continuous}.

Notice θ 7→ einθ is 2π-periodic. That is, ein(θ+2π) = einθ.
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5.10 Definition (Spaces of 2π-periodic functions). Define

C(T) = {f : R→ C : f is continuous and 2π-periodic} ∼= {f ∈ C[−π, π] : f(−π) = f(π)}

and for 1 ≤ p ≤ ∞,

Lp(T) = {f ∈MC(R) : f is a.e. 2π-periodic and f
∣∣∣
[−π,π]

“∈” Lp[−π, π]}/∼

For 1 ≤ p <∞, we equip Lp(T) with the norm

‖f‖p =

(
1

2π

∫ π

−π
|f |p

)1/p

noting the modification factor of 1
2π .

5.11 Remark. We set up some notation.

1. For n ∈ Z, let en(t) := eint. Note that each en is 2π
n periodic.

2. Let

Trig(T) := spanC{en : n ∈ Z} =

{
N∑

n=−N
cne

n : N ∈ N, cn ∈ C

}
denote the set of trigonometric polynomials.

3. Let formal series of the form
∞∑

n=−∞
cne

n (cn ∈ C)

be called Fourier series.

Goal: Let f ∈ L(T), i.e. f is an a.e. 2π periodic, complex-valued, measurable function, which is Lebesgue integrable
on [−π, π] (note we may view as L[−π, π], with the understanding that f repeats outside of [−π, π]). (Note that
since Lp[a, b] ⊂ L1[a, b] for p ≥ 1, we may view L(T) as “containing” all spaces Lp(T) for p ≥ 1.) Our goal is to find
a Fourier series

∑∞
n=−∞ cn(f)en (where cn(f) means cn ∈ C is a function of f) which “represents” f .

5.4 Fourier coefficients

Let us suppose that we may write

f(t) =

∞∑
n=−∞

cn(f)en

where “=” is taken to mean pointwise equality. Observe that for every fixed N ∈ Z, if we permit ourselves the use
of a certain questionable operation (∗),∫ π

−π
fe−N =

∫ π

−π
f(t)e−iNt dt =

∫ π

−π

∞∑
n=−∞

cn(f)ei(n−N)t dt

=

∞∑
n=−∞

∫ π

−π
cn(f)ei(n−N)t dt (∗)

=

∞∑
n=−∞

cn(f)

[∫ π

−π
cos((n−N)t) dt+ i

∫ π

−π
sin((n−N)t) dt

]
= 2πcN (f)

since ∫ π

−π
cos((n−N)t) dt =

{
2π n = N

0 n 6= N
and

∫ π

−π
sin((n−N)t) dt = 0.

[“If the operation (∗) does not make you feel anxious, you will hate the rest of this course.” — N. Spronk.] Hence,
we may derive the nth Fourier coefficient of f , cn(f), by

cn(f) =
1

2π

∫
[−π,π]

fe−n =
1

2π

∫ π

−π
f(t)e−int dt.
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5.12 Definition. Define the nth Fourier sum of f by

sn(f) :=

n∑
k=−n

ck(f)ek, so that sn(f, t) := sn(f)(t) =

n∑
k=−n

ck(f)eikt.

We notice that if f = g (a.e.) then 2πck(f) =
∫ π
−π fe

−k =
∫ π
−π ge

−k = 2πck(g) and hence their Fourier sums should
be equal (pointwise).

Let us take another look at sn(f):

sn(f, t) =

n∑
k=−n

ck(f)eikt =

n∑
k=−n

1

2π

[∫ π

−π
f(s)e−iks ds

]
eikt =

n∑
k=−n

1

2π

∫ π

−π
f(s)eik(t−s) ds

(†)
=

n∑
k=−n

1

2π

∫ π

−π
f(t+ s)e−iks ds

(‡)
=

n∑
k=−n

1

2π

∫ π

−π
f(t− s)eiks ds (∗)

=

∫ π

−π

1

2π

n∑
k=−n

eiksf(t− s) ds.

where (†) is called translation invariance of the integral, and (‡) is called inversion invariance of the
integral (for periodic functions) and these are problems on Assignment 5. Notice the (∗) operation cropping up
again here.

5.13 Remark. The last line in the above derivation is usually shortened in applied mathematics to

Dn ∗ f(t) :=
1

2π

∫ π

−π
Dn(s)f(t− s) ds, where Dn :=

n∑
k=−n

ek.

Here, Dn is called the Dirichlet kernel of order n, and Dn ∗ f is called the convolution product of Dn and f .

Now that we have in place the notion of a partial sum of the Fourier series and we have “calculated” what we
suspect to be the coefficients of the series, it is a good time to ask ourselves again the question we posed earlier:
Given f ∈ L(T) (or f ∈ Lp(T)), how do we understand the statement f(t) =

∑∞
k=−∞ ck(f)eikt? (Pointwise, a.e.,

convergence in some Lp norm?)

5.14 Definition. A homogeneous Banach space over T is a subspace B ⊆ L1(T), where

L1(T) = {f : R→ C : f is measurable, a.e. 2π-periodic
∫ π

−π
|f | <∞}/∼.

together with its own norm ‖ · ‖B, under which B is a Banach space, and for which

(A) Trig(T) ⊆ B.

(B) s ∗ f ∈ B for s ∈ R, f ∈ B where (s ∗ f)(t) := f(t− s) for (a.e.) t ∈ R, and

(i) ‖s ∗ f‖B = ‖f‖B for all s ∈ R, f ∈ B.

(ii) For each f ∈ B, the map (s 7→ s ∗ f) : R→ B is continuous.

5.15 Example. Here are some examples:

(i) Consider the space
C(T) = {f : R→ C : f is 2π-periodic and continuous}.

We observe that since f(t+ 2π) = f(t) for all t,

sup
t∈R
|f(t)| = sup

t∈[−π,π]

|f(t)| <∞

since [−π, π] is compact. Clearly Trig(T) ⊆ C(T). Now we consider translations. If s ∈ R, f ∈ C(T), then
s∗f ∈ C(T) (exercise). Also ‖s∗f‖∞ = ‖f‖∞. We note that f ∈ C(T) is determined by its values on [−π, π],
and hence on [−2π, 2π]. Let ε > 0 be given. Since [−π, π] is compact, f is uniformly continuous on it, so we
can take δ > 0 such that for s, s′ ∈ [−π, π] with |s− s′| < δ we have

|f(s)− f(s′)| < ε.

If t ∈ R, find n ∈ Z such that
t+ 2πn ∈ [−π, π].
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We observe, by 2π-periodicity, that

|(s ∗ f)(t)− (s′ ∗ f)(t)| = |f(t− s)− f(t− s′)| = |f(t+ 2πn− s)− f(t+ 2πn− s′)| < ε

since t+ 2πn− s and t+ 2πn− s′ both live in [−2π, 2π], and |(t+ 2πn− s)− (t+ 2πn− s′)| = |s− s′| < δ.
Taking the supremum over all t ∈ R we find that

‖(s ∗ f)− (s′ ∗ f)‖∞ ≤ ε

and thus (s 7→ s ∗ f) : [−π, π]→ C(T) is (uniformly) continuous.

(ii) Consider Lp(T) where 1 ≤ p <∞:

Lp(T) = {f : R→ C : f is a.e. 2π-periodic, measurable, and
∫ π

−π
|f |p <∞}/∼

under the norm

‖f‖p =

(
1

2π

∫ π

−π
|f |p

)1/p

.

We saw that Lp(T) ⊆ L1(T). Also Trig(T) ⊆ C(T) ⊆︸︷︷︸
A4

Lp(T). We have that

∫ π

−π
|s ∗ f |p =

∫ π

−π
s ∗ |f |p =︸︷︷︸

A5

∫ π

−π
|f |p.

Before studying the existence of a non-measurable set, we saw a property called the translation invariance of
the Lebesgue measure (this is a hint for showing this on A5). Hence,

‖s ∗ f‖p = ‖f‖p
and s ∗ f ∈ Lp(T). Finally, if f ∈ Lp(T) and ε > 0, we find h ∈ C(T) such that ‖h− f‖p < ε/3 [practically a
question from A4]. By the (uniform) continuity of h, let δ > 0 be such that for s, s′ ∈ R with |s− s′| < δ we
have

‖s ∗ h− s′ ∗ h‖∞ <
ε

3
.

We have

‖s ∗ f − s′ ∗ f‖p = ‖s ∗ f + s ∗ h− s ∗ h+ s′ ∗ h− s′ ∗ h− s′ ∗ f‖p
≤ ‖s ∗ f − s ∗ h‖p + ‖s ∗ h− s′ ∗ h‖p + ‖s′ ∗ h− s′ ∗ f‖p

= ‖f − h‖p +

(
1

2π

∫ π

−π
|s ∗ h− s′ ∗ h|p

)1/p

+ ‖h− f‖p

however by construction of h, the first and third terms are < ε
3 , and the second is < ε

3 since ‖s∗h−s′∗h‖∞ < ε
3 .

So we conclude

‖s ∗ f − s′ ∗ f‖p <
ε

3
+

(
1

2π

∫ π

−π
(ε/3)p

)1/p

+
ε

3
= ε.

Hence (s 7→ s ∗ f) : R→ Lp(T) is (uniformly) continuous.

(iii) Consider L∞(T) with ‖ · ‖∞. Most conditions of a homogeneous Banach space are satisfied. However, given
f ∈ L∞(T), we may not have continuity of s 7→ s ∗ f : R → L∞(T). Consider the “square wave” given by
f = χ[0,π] on [−π, π] and then extending it 2π-periodically to all of R. Now if 0 < |s| < π, we have

‖s ∗ f − f‖∞ ≥ 1.

Indeed,
E = {t ∈ R : |f(t)− f(t− s)| ≥ 1} =

⋃
n∈Z

[nπ, nπ + s]

which is non-null (check this). Thus,(
lim
s→0

=
)

lim inf
s→0

‖s ∗ f − 0 ∗ f︸︷︷︸
f

‖∞ ≥ 1.

For homogeneous Banach spaces, we can define something called convolution by continuous functions. Convolution
is motivated by the computation with the Dirichlet kernel. We will show the convolution operators are always
continuous, and we will compute their norms, at least in the case when we’re dealing with L1 (continuous functions
with uniform norm) and study the particular norm applied to the Dirichlet kernel and get surprising results.
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5.5 Convolutions

Let B be a homogeneous Banach space over T and let h ∈ C(T) [we may also allow h to be 2π-periodic, bounded
and piecewise continuous.]

5.16 Definition. For f ∈ B, we define the convolution of h and f by

h ∗ f =
1

2π

∫ π

−π
h(s)s ∗ f ds︸ ︷︷ ︸

vector-valued Riemann

.

We observe that our assumptions on h provide that the map [−π, π]→ B given by

s 7→ h(s)s ∗ f

is continuous (piecewise continuous, bounded).

5.17 Remark. Convolution is commutative, since we have for a.e. t ∈ R,

h ∗ f(t) =
1

2π

∫ π

−π
h(s)f(t− s) ds T.I.=

1

2π

∫ π

−π
h(t+ s)f(−s) ds I.I=

1

2π

∫ π

−π
h(t− s)f(s) ds = f ∗ h(t).

Recall the Dirichlet kernel of order n.

Dn =

n∑
k=−n

ek ∈ Trig(T) ⊆ C(T).

Note that

Dn ∗ f(t) =
1

2π

∫ π

−π
Dn(t− s)f(s) ds

=

n∑
k=−n

1

2π

∫ π

−π
eik(t−s)f(s) ds

=

n∑
k=−n

1

2π

∫ π

−π
e−iksf(s) ds︸ ︷︷ ︸

ck(f),the kth Fourier coefficient

·eikt

=

n∑
k=−n

ck(f)eikt = sn(f, t).

5.18 Proposition. If B is a homogeneous Banach space over T and h ∈ C(T) [or, piecewise continuous, bounded,
2π-periodic] then the convolution operator C(h) : B → B given by

C(h)f := h ∗ f

is linear and bounded, with
|||C(h)|||B︸ ︷︷ ︸
Lipschitz

constant of C(h)

≤ ‖h‖1.

Proof. The linearity of C(h) is a consequence of the linearity of Riemann integration. Also we have for f ∈ B,

‖C(h)f‖B = ‖h ∗ f‖B =

∥∥∥∥ 1

2π

∫ π

−π
h(s)s ∗ f ds

∥∥∥∥
B

A1
≤ 1

2π

∫ π

−π
|h(s)|‖s ∗ f‖B ds ≤ ‖h‖1‖f‖B.

5.19 Theorem (norms of convolution operators). Let h ∈ C(T). Then

(i) |||C(h)|||C(T) = ‖h‖1.

(ii) |||C(h)|||L1(T) = ‖h‖1.

Proof. We have:
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(i) Let f ∈ C(T). Then

h ∗ f(0) =
1

2π

∫ π

−π
h(s)f(0− s) ds

[f 7→ f(0) is a linear functional with norm 1]. By inversion invariance,

=
1

2π

∫ π

−π
h(−s)︸ ︷︷ ︸
=:h̆(s)

f(s) ds = Γh̆(f).

Hence we have
‖C(h)f‖∞ ≥ |h ∗ f(0)| = |Γh̆(f)|.

Thus,

|||C(h)|||C(T) = sup{‖C(h)f‖∞ : f ∈ C(T), ‖f‖∞ ≤ 1}
≥ sup{|Γh̆(f)| : f ∈ C(T), ‖f‖∞ ≤ 1}
= ‖Γh̆‖∗ by definition

= ‖h̆‖1 by earlier theorem (5.6)
= ‖h‖1.

The last proposition showed that |||C(h)|||C(T) ≤ ‖h‖1.

(ii) As above, we need only establish that |||C(h)|||L1(T) ≥ ‖h‖1. Let for n ∈ N,

fn = πnχ[−1/n,1/n].

Then
‖fn‖1 =

1

2π

∫ π

−π
|fn| = 1.

Now for a.e. t we have

h ∗ fn(t) =
1

2π

∫ π

−π
h(s)fn(t− s) ds T.I=

1

2π

∫ π

−π
h(s+ t) fn(−s)︸ ︷︷ ︸

fn(s)

ds =
n

2

∫ 1/n

−1/n

h(s+ t) ds.

Given ε > 0 there is δ > 0 so that |h(t)− h(s+ t)| < ε for |s− 0| < δ. Then for n such that 1
n < δ, we have

‖h− h ∗ fn‖1 =
1

2π

∫ π

−π
|h(t)− h ∗ fn(t)| dt =

1

2π

∫ π

−π

∣∣∣∣∣h(t)− n

2

∫ 1/n

−1/n

h(s+ t) ds

∣∣∣∣∣ dt.
Now

h(t) =
n

2

∫ 1/n

−1/n

h(t) ds

so the above is

1

2π

∫ π

−π

n

2

∣∣∣∣∣
∫ 1/n

−1/n

(h(t)− h(t+ s)) ds

∣∣∣∣∣ dt A1
≤ 1

2π

∫ π

−π

n

2

∫ 1/n

−1/n

|h(t)− h(t+ s)|︸ ︷︷ ︸
≤ε

ds dt ≤ ε.

Hence
lim
n→∞

‖h− h ∗ fn‖1 = 0

and thus due to the reverse triangle inequality,

lim
n→∞

∣∣∣‖h‖1 − ‖h ∗ fn‖1∣∣∣ ≤ lim
n→∞

‖h− h ∗ fn‖1 = 0.

Thus

|||C(h)|||L1(T) = sup{‖C(h)f‖1 : f ∈ L1(T), ‖f‖1 ≤ 1}
≥ sup
n∈N
{‖C(h)fn‖1}

≥ lim
n→∞

‖C(h)fn︸ ︷︷ ︸
h∗fn

‖1 = ‖h‖1.
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Consequence: if f ∈ C(T) [or f ∈ L1(T)]

‖sn(f)‖B = ‖Dn ∗ f‖B = ‖C(Dn)f‖B.

If we can understand the sequence of operators C(Dn) acting on B, then we may be able to understand

sn(f) =

n∑
k=−n

ck(f)ek.

5.20 Theorem (Properties of the Dirichlet kernel). The Dirichlet kernel of order n, Dn, satisfies:

(i) Dn is R-valued, 2π-periodic and even.

(ii)
1

2π

∫ π

−π
Dn = 1.

(iii) For t ∈ [−π, π] we have

Dn(t) =


sin((n+ 1

2 )t)

sin( 1
2 t)

if t 6= 0

2n+ 1 if t = 0.

(iv) lim
n→∞

‖Dn‖1 =∞.

Note that we often call ‖Dn‖1 =: Ln the nth Lebesgue constant.

Proof. We have:

(i) Dn is 2π-periodic, because

Dn =

n∑
j=−n

ej ∈ Trig(T).

Also, it is even, because

Dn(−s) =

n∑
j=−n

eij(−s) =

n∑
j=−n

ei(−j)s =

n∑
j=−n

eijs = Dn(s).

We shall see from (iii) that Dn is R-valued.

(ii) We have
1

2π

∫ π

−π
Dn =

1

2π

n∑
k=−n

∫ π

−π
ek

but ∫ π

−π
ek =

{
0 if k 6= 0

2π if k = 0

therefore the above is simply equal to 1.

(iii) Suppose, first, that t 6= 0. We have

Dn(t)(e−i
1
2 t − ei

1
2 t) = (e−int + e−i(n−1)t + . . .+ ei(n−1)t + eint)(e−i

1
2 t − ei

1
2 t)

= (e−i(n+
1
2 )t + . . .+ ei(n−

1
2 )t)− (e−i(n−

1
2 )t + . . .+ ei(n+

1
2 )t)

= e−i(n+
1
2 )t − ei(n+

1
2 )t

and we have

Dn(t) =
e−i(n+

1
2 )t − ei(n+

1
2 )t

e−i
1
2 t − ei

1
2 t

=
−2i sin(n+ 1

2 )t

−2i sin( 1
2 t)

.

If t = 0,

Dn(0) =

n∑
k=−n

eik0︸︷︷︸
1

= 2n+ 1
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(iv) We have, due to evenness of the Dirichlet kernel, that

Ln =
1

2π

∫ π

−π
|Dn| =

1

π

∫ π

0

|Dn|.

This is
1

π

∫ π

0

∣∣∣∣ sin(n+ 1
2 )t

sin( 1
2 t)

∣∣∣∣ dt ≥ 1

π

∫ π

0

| sin(n+ 1
2 )t|

1
2 t

dt

because | sin( 1
2 t)| ≤

1
2 t.

=
2

π

∫ (n+
1
2 )π

0

| sin s|
s

n+
1
2

1

n+ 1
2

ds,

by substituting s = (n+ 1
2 )t (change of variables in Riemann integral).

≥ 2

π

∫ nπ

0

| sin s|
s

ds =
2

π

n∑
j=1

∫ jπ

(j−1)π

| sin s|
s

ds ≥ 2

π

n∑
j=1

∫ jπ

(j−1)π

| sin s|
jπ

ds

and so

=
2

π2

n∑
j=1

1

j

=2︷ ︸︸ ︷∫ jπ

(j−1)π

| sin s| ds =
4

π2

n∑
j=1

1

j
.

Hence,

Ln ≥ C
n∑
j=1

1

j

n→∞−−−−→∞.

for some fixed constant C.

5.21 Remark (Baire Category terminology). Let X be a metric space. A set F ⊆ X is of first category (or
is meager) if

F ⊆
∞⋃
n=1

Fn

where each Fn is closed and nowhere dense F ◦n = ∅ where S◦ is the interior of S. We will say a set U ⊆ X is of
second category (or is non-meager) if it is not meager.

Recall the Baire Category Theorem.

5.22 Theorem (Baire Category). If X is a complete metric space, then it is non-meager.

This is often presented in a dual manner using open sets.

5.23 Theorem (Banach-Steinhaus Theorem). Let B and X be Banach spaces (usually X = B or C) and F be
a family of bounded linear maps from B to X . Then if

sup{‖Tf‖X : T ∈ F} <∞

for each f in a non-meager set U ⊆ B, then

sup{|||T ||| : T ∈ F} <∞.

Proof. Let, for each n ∈ N,

Fn = {f ∈ B : ‖Tf‖X ≤ n for all T ∈ F}

=
⋂
T∈F
{f ∈ B : ‖Tf‖X ≤ n}︸ ︷︷ ︸

closed

If gT (f) = ‖Tf‖X then the set above is merely

g−1
T (

closed︷ ︸︸ ︷
{z ∈ C : |z| ≤ n}).
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Then, for our specified non-meager U ⊆ B we have that, by our hypothesis,

U ⊆
∞⋃
n=1

Fn

and hence at least set F ◦n0
6= 0. Hence there is f0 ∈ B and r > 0 such that

Br(f0) = {f ∈ B : ‖f − f0‖B < r} ⊆ Fn0
.

Notice that if f ∈ Br(f0) ⊆ Fn0
, then ‖Tf‖X ≤ n0 for T ∈ F . Now fix f ∈ B with ‖f‖B ≤ 1 and we note that

f0 +
r

2
f, f0 −

r

2
f ∈ Br(f0).

Thus if T ∈ F , we have that

‖Tf‖X =

∥∥∥∥T (1

r

[
f0 +

r

2
f − (f0 −

r

2
f)
])∥∥∥∥

X
=

1

r

∥∥T (f0 + r
2f)− T (f0 − r

2f)
∥∥
X

≤ 1

r

‖T (f0 + r
2f)‖X︸ ︷︷ ︸

≤n0

+ ‖T (f0 − r
2f)‖X︸ ︷︷ ︸

≤n0


≤ 2n0

r
<∞.

Hence |||T ||| = sup{‖Tf‖X : f ∈ B, ‖f‖B ≤ 1} ≤ 2n0

r <∞. This is for all T ∈ F .
5.24 Corollary. Let B,X be Banach spaces, and for n ∈ N, let Tn : B → X be a bounded linear map and suppose

sup
n∈N
|||Tn||| =∞. (†)

Then, there is a set U ⊆ B with meager complement such that

sup
n∈N
‖Tnf‖X =∞

for all f ∈ U .

Proof. Let

F =

{
f ∈ B : sup

n∈N
‖Tnf‖X <∞

}
.

If it were the case that F were non-meager, the Banach-Steinhaus theorem would show that supn∈N |||Tn||| < ∞,
violating (†). Hence F is meager. Thus U = B \ F .

Note that the set U above is necessarily non-meager (indeed it is the complement of a meager set). [Exercise, since
B is complete].

5.25 Theorem. We have:

(i) The set of f ∈ C(T) for which supn∈N ‖sn(f)‖∞ < ∞ (in particular for which limn→∞ ‖sn(f)− f‖∞ = 0) is
a meager subset of C(T).

(ii) The set of f ∈ L1(T) for which supn∈N ‖sn(f)‖1 <∞ (in particular for which limn→∞ ‖sn(f)− f‖1 = 0) is a
meager subset of L1(T).

Proof. We have:

(i) We saw the following facts:

• sn(f) = Dn ∗ f = C(Dn)f (computation).

• |||C(Dn)|||C(T) = ‖Dn‖1 (theorem).

• ‖Dn‖1 = Ln →∞ as n→∞, where Ln is called the Lebesgue constant (theorem).

Hence by the Banach-Steinhaus theorem (corollary) we see that

sup
n∈N
‖sn(f)‖∞ =∞

for all f ∈ C(T) \ F where F is meager.

(ii) Similar.
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5.6 Averaging to the rescue

We introduce a technique of Cesàro averages.

5.26 Definition. If (xn)∞n=1 is a sequence in a Banach space X , we shall call the term

σn =
1

n
(x1 + . . .+ xn)

the nth Cesàro mean.

5.27 Exercise. If limn→∞ xn = x0 exists, then

lim
n→∞

σn = x0.

5.28 Definition. Suppose now that f ∈ L1(T). We define the nth Cesàro sum of f by

σn(f) =
1

n+ 1
(s0(f) + . . .+ sn(f)).

We observe
σn(f) =

1

n+ 1
(D0 +D1 + . . .+Dn)︸ ︷︷ ︸

=:Kn

∗f.

We call Kn the Fejér kernel. In summary,
σn(f) = Kn ∗ f.

5.29 Theorem (Properties of Fejér kernel). We have:

(i) Kn is R-valued, 2π-periodic and even.

(ii) We have the following ugly formula14

Kn(t) =

 1
n+1

(
sin( 1

2 (n+1)t)

sin( 1
2 t)

)2

t 6= 0

n+ 1 t = 0

for t ∈ [−π, π]. In particular Kn ≥ 0.

(iii) ‖Kn‖1 =
1

2π

∫ π

−π
Kn = 1.

(iv) If 0 < |t| < π, then

0 ≤ Kn(t) ≤ π2

(n+ 1)t2

Proof. We have:

(i) Kn = 1
n+1 (D0 +D1 + . . .+Dn), where each Dj (0 ≤ j ≤ n) is R-valued, 2π-periodic and even.

(ii) We have

Kn =
1

n+ 1

n∑
j=0

Dj =
1

n+ 1

n∑
j=0

j∑
k=−j

ek

=
1

n+ 1

n∑
k=−n

(n+ 1− |k|)ek

=
1

n+ 1
(e−n + 2e−(n−1) + . . .+ 2en−1 + en)

14“No book I could find actually does this explicitly, and I taught for many many years by saying “just check it”. So one day I thought
“I should check it”, and it sucks! So, now you will suffer with me.” – N. Spronk
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thus

(n+ 1)Kn(t)(e−it − 2 + eit) = e−i(n+1)t + 2e−int + 3e−i(n−1)t + . . .+ (n+ 1)e−it

+ n+ (n− 1)eit + . . .+ ei(n−1)t

− (2e−int + 2 · 2ei(n−1)t + . . .+ 2ne−it + 2(n+ 1) + 2neit

+ . . .+ 2 · 2ei(n−1)t + 2eit)− e−i(n−1)t + . . .+ (n− 1)e−it + n︸︷︷︸
leaves−2

+(n+ 1)eit

+ . . .+ 3ei(n−1)t + 2eint + ei(n+1)t

= e−i(n+1)t − 2 + ei(n+1)t

Hence, if t 6= 0, we get

Kn(t) =
1

n+ 1

e−i(n+1)t − 2 + ei(n+1)t

e−it − 2 + eit
=

1

n+ 1

(
e−i

1
2 (n+1)t − ei 12 (n+1)t

e−i
1
2 t − ei 12 t

)2

=
1

n+ 1

(
sin( 1

2 (n+ 1)t)

sin( 1
2 t)

)2

and for t = 0,

Kn(0) =
1

n+ 1
(D0)(0) + . . .+ (Dn)(0)) =

1

n+ 1

n∑
j=0

(2j + 1) = n+ 1.

(iii) ‖Kn‖1 =
1

2π

∫ π

−π
|Kn| =

1

2π

1

n+ 1

n∑
j=0

∫ π

−π
Dj =

2π · (n+ 1)

2π · (n+ 1)
= 1.

(iv) First note 2
π θ ≤ sin θ, 0 ≤ θ ≤ π

2 . Since sin θ is concave down, that line must lie below it. Hence for 0 < t < π,

1

sin( 1
2 t)
≤ 1

t
π

=
π

t
.

Hence for 0 < t < π,

Kn(t) =
1

n+ 1

(
sin( 1

2 (n+ 1)t)

sin( 1
2 t)

)2

≤ 1

n+ 1

(π
t

)2

=
π2

(n+ 1)t2
.

We know that the Fejer kernel is even so Kn(−t) = Kn(t).

5.30 Definition. A summability kernel is a sequence (kn)∞n=1 of 2π-periodic bounded piecewise-continuous
functions such that

(i) 1
2π

∫ π
−π kn = 1

(ii) supn∈N ‖kn‖1 <∞.

(iii) For any 0 < δ ≤ π,

lim
n→∞

(∫ −δ
−π
|kn|+

∫ π

δ

|kn|

)
= 0

(mass concentrates at 0).

5.31 Proposition. The Fejér kernel (Kn)∞n=1 is a summability kernel.

Proof. We saw

(i)
1

2π

∫ π

−π
Kn = 1.

(ii) supn∈N ‖Kn‖1 = 1.

(iii) We have for 0 < δ ≤ π,

0 ≤
∫ π

δ

|Kn(t)| dt ≤
∫ π

δ

π2

(n+ 1)t2
dt =

π2

n+ 1

(
1

δ
− 1

π

)
→ 0
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as n→∞. So applying squeeze theorem, we know the integral goes to 0 as well. By symmetry, we also get∫ −δ
−π
|Kn| → 0

by symmetry.

5.32 Example. Here are some other examples:

• kn = nπχ[− 1
n ,

1
n ]

• kn = 2nπχ[0, 1n ]

• We can make these continuous [diagram on camera] where cn is chosen so that

1

2π

∫ 2/n

−2/n

kn = 1

5.33 Theorem (Abstract Summability Kernel Theorem). Let B be a homogeneous Banach space on T and
(kn)∞n=1 be a summability kernel. Then for f ∈ B,

lim
n→∞

‖kn ∗ f − f‖B = 0

i.e. limn→∞ kn ∗ f = f in B.

Proof. Fix f ∈ B. Let F : R → B given by F (s) = s ∗ f (i.e. s ∗ f(t) = f(t − s) for almost every t). The axioms
of a homogeneous Banach space tell us that F is continuous, 2π-periodic, and ‖F (s)‖B = ‖s ∗ f‖B = ‖f‖B. Also,
F (0) = 0 ∗ f = f . Let us compute

kn ∗ f − f =
1

2π

∫ π

−π
kn(s)s ∗ f ds− f =

1

2π

∫ π

−π
kn(s)F (s) ds− F (0)

=
1

2π

∫ π

−π
kn(s)F (s) ds− 1

2π

∫ π

−π
kn(s)F (0) ds

=
1

2π

∫ π

−π
kn(s)[F (s)− F (0)] ds

Thus we have

‖kn ∗ f − f‖B =

∥∥∥∥ 1

2π

∫ π

−π
kn(s)[F (s)− F (0)] ds

∥∥∥∥ A1
≤ 1

2π

∫ π

−π
|kn(s)| · ‖F (s)− F (0)‖B ds.

Given ε > 0, find δ > 0 such that ‖F (s)− F (0)‖B < ε
M for |s| < δ, where

M = sup
n∈N
‖kn‖1 <∞.

Then, choose n ∈ N, so for n ≥ N we have

1

2π

∫
[−π,−δ]∪[δ,π]

|kn| <
ε

4 · ‖f‖B
.

(We may assume ‖f‖B > 0). Then for n ≥ N ,

‖kn ∗ f − f‖B ≤
1

2π

∫
[−π,−δ]∪[δ,π]

|kn| · ‖F (s)− F (0)‖B +
1

2π

∫
[−δ,δ]

|kn(s)| · ‖F (s)− F (0)‖︸ ︷︷ ︸
≤ε/2M

ds.

Now ‖F (s)− F (0)‖B ≤ ‖F (s)‖+ ‖F (0)‖ = 2‖f‖B so that

≤ 2‖f‖B
1

2π

∫
[−π,−δ]∪[δ,π]

|kn(s)| ds+
ε

2M

1

2π

∫
[−δ,δ]

|kn(s)| ds︸ ︷︷ ︸
≤ 1

2π

∫ π
−π |kn(s)| ds=‖f‖1

≤ 2‖f‖B
ε

4‖f‖B
+

ε

2M
‖kn‖1︸ ︷︷ ︸
≤M

= ε.
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5.34 Corollary. We have:

(i) For f ∈ C(T) we have
lim
n→∞

‖σn(f)− f‖∞ = 0,

i.e. limn→∞ σn(f) = f uniformly.

(ii) If 1 ≤ p <∞, for f ∈ Lp(T) we have that

lim
n→∞

‖σn(f)− f‖p = 0.

Proof. We recall that
σn(f) = Kn ∗ f

where Kn is the Fejér kernel and (Kn)∞n=1 is a summability kernel. Hence we use Abstract Summability Kernel
Theorem.

5.35 Corollary. Suppose f, g ∈ L1(T) and ck(f) = ck(g) for each k ∈ Z. Then f = g a.e.

Proof. We have

σn(f, t) =

n∑
j=0

sj(f, t) =

n∑
j=0

j∑
k=−j

ck(f)eikt.

If ck(f) = ck(g) for all k, so we have that for each n

‖f − g‖1 = ‖f −σn(f) + σn(g)︸ ︷︷ ︸
0

−g‖1 ≤ ‖f − σn(f)‖1 + ‖σn(g)− g‖1 → 0

as n→∞. So ‖f − g‖1 = 0 which means f = g (a.e.).

Recall that
L(T) =

{
f : R→ C : f is measurable, a.e. 2π-periodic, and

∫ π

−π
|f | <∞

}
and L1(T) = L(T)/∼a.e.. For f ∈ L(T), s ∈ R (usually s ∈ [−π, π]) we let

ωf (s) =
1

2
lim
h→0+

[f(s− h) + f(s+ h)]

provided the limit exists. This is called the “average value of f at s”.

5.36 Theorem (Fejér’s Theorem). We have:

(i) If f ∈ L(T), and x ∈ [−π, π] is such that ωf (x) exists, then

lim
n→∞

σn(f, x) = ωf (x).

(ii) If I is an open interval on which f is continuous, then for any closed subinterval J of I,

lim
n→∞

sup
t∈J
|σn(f, t)− f(t)| = 0

i.e.
lim
n→∞

σn(f, t) = f(t)

uniformly on closed subintervals of I.

Proof. Recall that where Kn is the Fejér kernel, we have

σn(f, x) = Kn ∗ f(x)

where convolution is understood in the sense of A515. We also recall

• Kn is even and non-negative R-valued.

• 1

2π

∫ π

−π
Kn = 1.

15Hint: Use Dominated convergence theorem.
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• If 0 ≤ |t| ≤ π, then

Kn(t) ≤ π2

(n+ 1)t2
.

Now, we suppose ωf (x) is finite [we leave the case ωf (x) = ∞ to A5]. Then, given ε > 0, let δ > 0 be so that
0 < |s| ≤ δ we have ∣∣∣∣ωf (x)− 1

2
(f(x− s) + f(x+ s))

∣∣∣∣ < ε.

[Note that if f is continuous on an open interval I, and J ⊆ I is a closed subinterval, then in fact for x ∈ J we have
ωf (x) = f(x) due to continuity from both sides, and, moreover, if J ′ is any closed interval such that J ⊆ (J ′)◦ ⊆ I,
then f is uniformly continuous on J ′ and we can choose δ > 0 such that

|f(x− s)− f(x)| < ε, ∀x ∈ J ′.]

Then we have

|σn(f, x)− ωf (x)| =
∣∣∣∣ 1

2π

∫ π

−π
Kn(s)f(x− s) ds− ωf (x)

∣∣∣∣
=

1

2π

∣∣∣∣∫ π

−π
Kn(s)(f(x− s)− ωf (x)) ds

∣∣∣∣
≤ 1

2π

∣∣∣∣∣
∫ δ

−δ
Kn(s)(f(x− s)− ωf (x)) ds

∣∣∣∣∣+
1

2π

∣∣∣∣∣
(∫ −δ
−π

+

∫ π

δ

)
Kn(s)(f(x− s)− ωf (x)) ds

∣∣∣∣∣
and now for every n, we have

1

2π

∫ δ

−δ
Kn(s)(f(x− s)− ωf (x)) ds =

1

2π

∫ δ

−δ
Kn(−s)︸ ︷︷ ︸
=Kn(s)

(f(x+ s)− ωf (x)) ds.

Thus

1

2π

∫ δ

−δ
Kn(s)(f(x− s)− ωf (x)) ds =

1

4π

∫ δ

−δ
Kn(s)(f(x− s)− ωf (x))+

1

4π

∫ δ

−δ
Kn(s)(f(x+ s)− ωf (x)) ds

=
1

2π

∫ δ

−δ
Kn(s)

(
1

2
(f(x− s) + f(x+ s))− ωf (x)

)
ds

Thus, using our choice of δ, we have

1

2π

∣∣∣∣∣
∫ δ

−δ
Kn(s)(f(x− s)− ωf (x)) ds

∣∣∣∣∣ =
1

2π

∣∣∣∣∣
∫ δ

−δ
Kn(s)

(
1

2
(f(x− s) + f(x+ s))− ωf (x)

)
ds

∣∣∣∣∣
=

1

2π

∫ δ

−δ
Kn(s)

∣∣∣∣12(f(x− s) + f(x+ s))− ωf (x)

∣∣∣∣ ds
≤ ε

2π

∫ δ

−δ
Kn(s) ds

≤ ε 1

2π

∫ π

−π
Kn(s) ds = ε.
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Also,

1

2π

∣∣∣∣∣
(∫ −δ
−π

+

∫ π

δ

)
Kn(s)(f(x− s)− ωf (x)) ds

∣∣∣∣∣ ≤ 1

2π

(∫ −δ
−π

+

∫ π

δ

)
Kn(s)|f(x− s)− ωf (x)| ds

≤ π2

2(n+ 1)s2
≤ π2

2(n+ 1)δ2

≤ π2

2(n+ 1)δ2

1

2π

(∫ −δ
−π

+

∫ π

δ

)∣∣∣∣∣∣∣∣ f(x− s)︸ ︷︷ ︸
f̆(s−x)=x∗f̆(s)

−ωf (x)

∣∣∣∣∣∣∣∣ ds
where f̆(t) = f(−t), so the above is

≤ π2

2(n+ 1)δ2

1

2π

∫ π

−π
|f̆(s− x)− ωf (x)| ds =

π2

2(n+ 1)δ2
‖x ∗ f̆ − ωf (x)1‖1 → 0

as n→∞. Hence, we conclude that
lim sup
n→∞

|σn(f, x)− ωf (x)| ≤ ε.

However ε was arbitrary, so we conclude that the limit exists and is equal to 0. This concludes the proof of (i).

To see (ii), notice that all estimates performed were done uniformly over x in J [i.e. choice of δ]. So (ii) follows
immediately.

5.37 Corollary. Suppose f ∈ L(T), x ∈ [−π, π] such that ωf (x) exists, and suppose lim
n→∞

sn(f, x) exists (sn are
the regular Fourier sums). Then

lim
n→∞

sn(f, x) = ωf (x).

Proof. If lim
n→∞

sn(f, x) exists, then

lim
n→∞

σn(f, x) = lim
n→∞

1

n+ 1

n∑
j=0

sj(f) = lim
n→∞

sn(f, x).

Hence, lim
n→∞

sn(f, x) = lim
n→∞

σn(f, x) = ωf (x) by Fejér’s theorem.

5.38 Definition. If f ∈ L[a, b], a point x ∈ (a, b) is called a Lebesgue point of f if

lim
h→0+

1

h

∫ h

0

∣∣∣∣f(x− s) + f(x+ s)

2
− f(x)

∣∣∣∣ ds = 0.

5.39 Remark (fact). Since f is integrable, it is the case that almost every x ∈ (a, b) is a Lebesgue point.

Proof. PMATH 451, part of Lebesgue Differentiation Theorem.

5.40 Theorem (Lebesgue-Fejér Theorem). If x ∈ [−π, π] is a Lebesgue point for f ∈ L(T), then

f(x) = lim
n→∞

σn(f, x). (*)

In particular, the above statement (*) occurs almost everywhere.

Proof. Omitted.

Recall: Given f ∈ L1(T) (or f ∈ L(T)), f has a Fourier series given by
∞∑

k=−∞

ck(f)ek.

We know that it is not always the case that f is equal to its Fourier series (sometimes this fails catastrophically, as
seen in A5), however, it is always the case that

f = lim
n→∞

σn(f) = lim
n→∞

1

n+ 1

n∑
j=0

j∑
k=−j

ck(f)ek

= lim
n→∞

n∑
k=−n

n+ 1− |k|
n+ 1

ck(f)ek.

53



5.7 On the Fourier Coefficients

Question: If (ck)k∈Z is a sequence of R (or C) numbers, is there f ∈ L1(T) such that f ≈
∑∞
k=−∞ cke

k (i.e.,
ck = ck(f) for all k ∈ Z)?
5.41 Lemma. If f ∈ L1(T) then for all k ∈ Z, |ck(f)| ≤ ‖f‖1.

Proof. Observe that

|ck(f)| =
∣∣∣∣∫ π

−π
f(t)e−ikt dt

∣∣∣∣ ≤ ∫ π

−π
|f(t)||e−ikt| dt =

1

2π

∫ π

−π
|f(t)| dt = ‖f‖1.

5.42 Theorem (Riemann-Lebesgue Lemma). If f ∈ L1(T), then

lim
k→∞

|ck(f)| = 0 and lim
k→−∞

|ck(f)| = 0.

Proof. Let ε > 0. We may find n0 ∈ N such that ‖σn0
(f) − f‖1 < ε (by properties of the abstract summability

kernel). Let bj = n0+1−|j|
n0+1 · cj(f) so that σn0

(f) =
∑n0

j=−n0
bje

j . Thus, if |k| ≥ n0, we have that

ck(σn0
(f)− f) = ck(σn0

(f))− ck(f)

=
1

2π

∫ π

−π

n0∑
j=−n0

bje
j−k

− ck(f)

=
1

2π

 n0∑
j=−n0

bj

∫ π

−π
ej−k

− ck(f)

= −ck(f)

since |k| > n0 implies that j−k 6= 0 for all j in the above sum, hence every term in the sum is equal to 0. It follows
that |ck(f)| = |ck(σn0

(f)− f)| ≤ ‖σn0
(f)− f‖1 < ε, where the inequality is due to the earlier lemma.

5.43 Corollary. Let f ∈ L(T). Then

lim
n→∞

∫ π

−π
f(t) cos(nt) dt = 0 and lim

n→∞

∫ π

−π
f(t) sin(nt) dt = 0

Proof. We have cos(nt) = 1
2 (eint + e−int) = 1

2 (en + e−n). Hence,∫ π

−π
f(t) cos(nt) dt =

1

2π

∫ π

−π
fen + fe−n dt = cn(f) + c−n(f)→ 0

as n→∞. We may similarly show the latter claim by using the identity sin(nt) = 1
2i (e

int−e−int) = 1
2i (e

n−e−n).

Hence, if (ck)k∈Z is such that ck = ck(f) for all k ∈ Z for some f ∈ L1(T), then the Riemann-Lebesgue Lemma tells
us that (ck)k∈Z need necessarily satisfy limk→∞ |ck| = 0 and limk→−∞ |ck| = 0, or more concisely, lim|k|→∞ |ck| = 0.

Let c0(Z) = {(ck)k∈Z : ck ∈ C, lim|k|→∞ ck = 0}. Recall from PMATH 351 that c0(Z) under the ∞-norm
(‖(ck)k∈Z‖∞ = maxk∈Z |ck|) with operations (ck)k∈Z + (dk)k∈Z = (ck + dk)k∈Z and α(ck)k∈Z = (αck)k∈Z for α ∈ C
is a Banach space (i.e., c0(Z) is essentially the space c0 = c0(N) ⊂ `∞ introduced in PMATH 351). Does every
(ck)k∈Z ∈ c0(Z) correspond to a sequence of Fourier coefficients of some f ∈ L1(T)?

5.44 Theorem (Open Mapping Theorem (PMATH 753)). Let X, Y be Banach spaces, and let T : X → Y
be a bounded linear map. If T is surjective, then T (U) is open in Y for every open set U ⊂ X.

5.45 Corollary (Inverse Mapping Theorem). Let X, Y be Banach spaces, and let T : X → Y be linear and
bounded. If T is bijective, then T−1 : Y → X is bounded.

5.46 Corollary. There exists (ck)k∈Z ∈ c0(Z) such that there is no f ∈ L1(T) with ck(f) = ck for all k ∈ Z.

Proof. (Proof taken from PMATH 450 site.) Let T : L1(T)→ c0(Z) be given by Tf = (ck(f))k∈Z. Thus T is linear
and bounded with |||T ||| ≤ 1 (i.e. ‖Tf‖∞ = supk∈Z |ck(f)| ≤ ‖f‖1) and range is in c0(Z) by the Riemann-Lebesgue
Lemma. Also T is injective (corollary to Abstract Summability Kernel Theorem: ck(f) = ck(g) for all k ∈ Z implies
f = g a.e., i.e. in L1(T)). If T were bijective then we would have bounded T−1 : c0(Z)→ L1(T) (Inverse Mapping
Theorem). However, let

dn = (. . . , 0, 1︸︷︷︸
−n

, 1, . . . , 1︸︷︷︸
0

, . . . , 1, 1︸︷︷︸
n

, 0, . . . ) ∈ c0(Z)

54



so that ‖dn‖∞ = 1. Then T−1(dn) = Dn, the Dirichlet kernel of order n. But then

|||T−1||| ≥ sup
n∈N
‖T−1(dn)‖1 = sup

n∈Z
‖Dn‖1 =∞,

which contradicts the Inverse Mapping Theorem.

ERRATUM. I blew the proof of the fact that

T : L1(T) 3 f 7→ (ck(f))∞k=−∞ ∈ c0(Z)

is not surjective. Please find a correct proof on the website.

5.8 Localisation and Dini’s theorem

Recall that if f ∈ L(T) and t ∈ [−π, π] we have

n∑
j=−n

cj(f)eijt = sn(f, t) = Dn ∗ f(t) =
1

2π

∫ π

−π
Dn(s)f(t− s) ds

=
1

2π

∫ π

−π

sin(n+ 1
2 )s

sin 1
2s︸ ︷︷ ︸

even

f(t− s) ds

=
1

2π

∫ π

−π

sin(n+ 1
2 )s

sin 1
2s

f(t+ s) ds (†)

by inversion invariance.

5.47 Lemma. If f ∈ L(T) with ∫ π

−π

∣∣∣∣f(t)

t

∣∣∣∣ dt <∞,
then

lim
n→∞

sn(f, 0) = 0

Proof. Recall sin(x+ y) = sinx cos y + cosx sin y and hence

Dn(s) =
sin(n+ 1

2 )s

sin 1
2s

=
sin(ns) cos 1

2s

sin 1
2s

+ cos(ns).

Hence by (†),

sn(f, 0) =
1

2π

∫ π

−π
Dn(s)f(s) ds

=
1

2π

∫ π

−π

sin(ns) cos 1
2s

sin 1
2s

f(s) ds+
1

2π

∫ π

−π
cos(ns)f(s) ds

We note that for 0 ≤ |θ| ≤ π
2 , we get | sin θ| ≥ 2

π |θ| [DIAGRAM]. So we have

| sin 1

2
t| ≥ 1

π
|t|

for t ∈ [−π, π]. Thus ∫ π

−π
| cos 1

2s|
∣∣∣∣ f(s)

sin 1
2s

∣∣∣∣ ds ≤ ∫ π

−π

|f(s)|
1
π |s|

ds = π

∫ π

−π

∣∣∣∣f(s)

s

∣∣∣∣ ds <∞
by assumption. So

s 7→
cos 1

2sf(s)

sin 1
2s
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almost everywhere s ∈ [−π, π] extended 2π-periodically, defines an element in L(T). Hence, we can use (Corollary
to) the Riemann-Lebesgue lemma to see

sn(f, 0) =
1

2π

∫ π

−π
sin(ns)

cos 1
2sf(s)

sin 1
2s

ds+
1

2π

∫ π

−π
cos(ns)f(s) ds→ 0

as n→∞.

5.48 Theorem (Localisation Principle). If f ∈ L(T) and I is an open interval on which f(t) = 0 for a.e. t ∈ I,
then for t ∈ I,

lim
n→∞

sn(f, t) = 0.

5.49 Corollary. If f, g ∈ L(T) and I is an open interval on which f(t) = g(t) for a.e. t ∈ I, then for t ∈ I

lim
n→∞

sn(f, t)

converges if and only if
lim
n→∞

sn(g, t)

exists, and the two limits coincide.

Proof. Observe that lim
n→∞

sn(f − g, t) = lim
n→∞

sn(f, t)− sn(g, t) = 0.

Proof of localisation principle. Let g ∈ L(T) be given by g(s) = f(t− s) = f̆(s− t), so g = t∗ f̆ , when t ∈ I is fixed.
Then g(s) = 0 for a.e. s in a neighbourhood of 0, say for s ∈ (−δ, δ). Hence∫ π

−π

∣∣∣∣g(s)

s

∣∣∣∣ ds =

∫ δ

−δ

∣∣∣∣0s
∣∣∣∣ ds+

(∫ π

δ

+

∫ −δ
−π

) ∣∣∣∣g(s)

s

∣∣∣∣︸ ︷︷ ︸
≤|g(s)|/δ

ds

≤
∫ π

−π

1

δ
|g(s)| ds

=
1

δ

∫ π

−π
|t ∗ f̆(s)| ds

=
1

δ
2π‖t ∗ f̆‖1 =

2π

δ
‖f‖1 <∞

by translation and inversion invariance and hence, by the lemma,

lim
n→∞

sn(g, 0) = 0.

We have

sn(g, 0) =
1

2π

∫ π

−π
Dn(s) g(s− 0)︸ ︷︷ ︸

t∗f̆(s)

ds

=
1

2π

∫ π

−π
Dn(s)

︷ ︸︸ ︷
f(t− s) ds = sn(f, t)

thus limn→∞ sn(f, t) = limn→∞ sn(g, t) = 0.

5.50 Theorem (Dini’s Theorem). If f ∈ L(T) and f is differentiable at t in [−π, π], then

lim
n→∞

sn(f, t) = f(t).

Proof. Given ε > 0, there is δ > 0 such that |s| < δ yields∣∣∣∣f(t− s)− f(t)

s
− f ′(t)

∣∣∣∣ < ε. (*)

Thus
s 7→ f(t− s)− f(t)

s
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is bounded on (−δ, δ). Let g = t ∗ f̆ − f(t), or

g(s) = t ∗ f̆(s)− f(s) = f(t− s)− f(s).

We have ∫ π

−π

∣∣∣∣g(s)

s

∣∣∣∣ ds =

∫ δ

−δ

∣∣∣∣g(s)

s

∣∣∣∣ ds+

∫
[−π,−δ]∪[δ,π]

∣∣∣∣g(s)

s

∣∣∣∣ ds
≤
∫ δ

−δ
(|f ′(t)|+ ε)︸ ︷︷ ︸

by (∗)

ds+
1

δ

∫ π

−π
|g|

= 2δ(|f ′(t)|+ ε) +
1

δ

∥∥∥t ∗ f̆ − f(t)
∥∥∥

1
<∞

Thus, by the lemma, limn→∞ sn(g, 0) = 0. As before

sn(g, 0) = sn(t ∗ f̆ − f(t), 0) = sn(t ∗ f̆ , 0)− sn(f(t), 0) = sn(f, t)− f(t).

Of course, we have

sn(f(t), 0) = f(t)sn(1, 0) =
f(t)

2π

∫ π

−π
Dn(s)1 ds = f(t).

5.51 Theorem (Dini’s Theorem for Lipschitz functions). Suppose f ∈ L(T) and f is Lipschitz on an open
interval I, that is there is M > 0 such that

|f(t)− f(s)| ≤M |t− s|,

for s, t ∈ I. Then for t ∈ I we have
lim
n→∞

sn(f, t) = f(t).

Proof. Fix t ∈ I. Then (t− δ, t+ δ) ⊆ I for some δ > 0, so for s ∈ (−δ, δ) let

g(s) = t ∗ f̆(s)− f(t) = f(t− s)− f(t)

and we see that for s ∈ (−δ, δ) with s 6= 0,∣∣∣∣g(s)

s

∣∣∣∣ =

∣∣∣∣f(t− s)− f(t)

(t− s)− t

∣∣∣∣ ≤M.

As before, we partition ∫ π

−π
=

∫ δ

−δ
+

∫
[−π,−δ]∪[δ,π]

to see that ∫ π

−π

∣∣∣∣g(s)

s

∣∣∣∣ ds <∞.
Thus,

lim
n→∞

sn(g, 0) = 0

so we can conclude, as above, that
lim
n→∞

sn(f, t) = f(t).

6 Inner products and Hilbert spaces

6.1 Definition. Let X be a C-vector space (or a R-vector space). An inner product on X is a map

(·, ·) : X × X → C

such that for f, g, h ∈ X we have

(i) (f, f) ≥ 0 (positivity).
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(ii) (f, f) = 0 if and only if f = 0 (non-degeneracy).

(iii) (f, g) = (g, f).

(iv) (αf, g) = α(f, g).

(v) (f + g, h) = (f, h) + (g, h).

The last three properties are known as sesquilinearity.

Observe that (iii) combined with (iv) yields that

(f, αg) = α(f, g).

Also (iii) and (v) gives
(f, g + h) = (f, g) + (f, h).

6.2 Definition. We define, for f ∈ X ,
‖f‖ =

√
(f, f).

6.3 Theorem (Cauchy-Schwarz Inequality). For a vector space X with inner product (·, ·), we have

|(f, g)| ≤ ‖f‖‖g‖

for f, g ∈ X , with equality only if g = tf for t ∈ R with t ≥ 0.

Proof. First, replace g by (f, g)g so that

(f, (f, g)g) = (f, g)(f, g) ≥ 0

i.e. we will assume that (f, g) ≥ 0. If t ∈ R, then t = t and we have

0 ≤ (tf + g, tf + g) = t2(f, f) + t(f, g) + t

(f,g)︷ ︸︸ ︷
(g, f) +(g, g)

= t2‖f‖2 + 2t · Re(f, g)︸ ︷︷ ︸
(f,g)=|(f,g)|

+‖g‖2 = p(t).

Therefore, we have a quadratic polynomial p(t) ≥ 0, and hence by quadratic formula we have

(2 · Re(f, g))2 − 4‖f‖2‖g‖2 ≤ 0 (*)

and that
|(f, g)| ≤ ‖f‖‖g‖.

Notice that equality is going to hold only if (∗) = 0 i.e. p(t) = 0 for some t, in which case

t = −Re(f, g)

‖f‖2

and we see that tf + g = 0, by non-degeneracy.

6.4 Proposition. ‖ · ‖ is a norm.

Proof. First, ‖αf‖ = |α|‖f‖ is straight forward. Also,

‖f + g‖2 = (f + g, f + g) = ‖f‖2 + 2 · Re(f, g) + ‖g‖2

≤ ‖f‖2 + 2 · |Re(f, g)|+ ‖g‖2

≤ ‖f‖2 + 2‖f‖‖g‖+ ‖g‖2

= (‖f‖+ ‖g‖)2.

6.5 Definition. An inner product space is a vector space X with an inner product (·, ·). A Hilbert space is
an inner product space which is complete with respect to the induced norm ‖f‖ = (f, f)1/2.

6.6 Example. We have:
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(i) In Cn we have inner product

((x1, . . . , xn), (y1, . . . , yn)) =

n∑
i=1

xiyi

so

‖(x1, . . . , xn)‖ =

√√√√ n∑
i=1

(xi)2.

This is always complete, hence a Hilbert space.

(ii) Let A ∈ L(R), with λ(A) > 0. L2(A) has inner product

(f, g) =

∫
A

fg.

Recall that fg ∈ L1(A), thanks to Hölder’s inequality. It is an exercise to see that this is an inner product.
Note that

‖f‖2 =

(∫
A

|f |2
)1/2

=

(∫
A

ff

)1/2

= inner product norm.

This is complete, hence a Hilbert space.

(iii) Consider C[a, b]. We let for f, g ∈ C[a, b]

(f, g) =

∫ b

a

fg

(Riemann integral). It’s easy to verify that this is an inner product. Note that C[a, b] ⊆ L2[a, b] and C[a, b]
is ‖ · ‖2-dense in L2[a, b]. Hence if f ∈ L2[a, b] \ C[a, b], for example

f = χ[a, a+b2 ]

(f 6= h for a continuous h) then there are (fn)∞n=1 ⊆ C[a, b] such that

lim
n→∞

‖f − fn‖2 = 0.

Thus, (fn)∞n=1 is a Cauchy sequence with respect to the inner product norm, which converges to no continuous
function in this norm. Hence this is a non-complete inner product space.

(iv) `2 =

{
x = (x1, . . .) ∈ CN :

∞∑
i=1

|xi|2 <∞

}
. The inner product is given by

(x, y) =

∞∑
i=1

xiyi.

We need to show that this series converges. First, note that if x(n) = (x1, . . . , xn, 0, 0, . . .) then

‖x− x(n)‖ =

( ∞∑
i=n+1

|xi|2
)1/2

n→∞−−−−→ 0

for x, y ∈ `2 with n > m,

|(x(n) − x(m), y)| =

∣∣∣∣∣
n∑

i=m+1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=m+1

|xi|2
)1/2( n∑

i=m+1

|yi|2
)
−−−−−−→
m<n→∞

0.

In fact, ∣∣∣∣∣
n∑

i=m+1

xiyi

∣∣∣∣∣ ≤
n∑

i=m+1

|xiyi|︸ ︷︷ ︸
|xi||yi|

≤

(
n∑

i=m+1

|xi|2
)
‖y‖

so the sum
∑∞
i=1 xiyi is absolutely convergent, hence converging in C.
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ERRATUM/exercise. (·, ·) an inner product on X .

|(f, g)| = ‖f‖‖g‖ ⇐⇒ αf = βg

for some α, β ∈ C. Meanwhile
(f, g) = ‖f‖‖g‖ ⇐⇒ t1f = t2g

for some t1, t2 ∈ R with t1, t2 ≥ 0. Also

‖f + g‖ = ‖f‖+ ‖g‖ ⇐⇒ t1f = t2g

for t1, t2 ∈ R, t1, t2 ≥ 0.

6.7 Definition. Let (X , (·, ·)) be an inner product. A set {ei}i∈I ⊆ X is orthogonal if no ei = 0, and (ei, ej) = 0
for i 6= j. Moreover, we say {ei}i∈I is orthonormal if

(ei, ej) = δij =

{
1 if i = j

0 if i 6= j.

Notice, in the orthonormal case, ‖ei‖ = (ei, ei)
1/2 = 1.

6.8 Proposition (Pythagorean property). If {f1, . . . , fn} is an orthogonal set in an inner product space
(X , (·, ·)), then

‖f1 + . . .+ fn‖2 = ‖f1‖2 + . . .+ ‖fn‖2.

Proof. Let n = 2. Then

‖f1 + f2‖2 = (f1 + f2, f1 + f2)

= ‖f1‖2 + 2Re(f1, f2) + ‖f2‖2

= ‖f1‖2 + ‖f2‖2.

For n > 2, use induction, noting that
(f1 + . . .+ fn−1, fn) = 0.

6.9 Lemma (Linear approximation lemma). Suppose {e1, . . . , en} is an orthonormal set in an inner product
space (X , (·, ·)). Let E = span{e1, . . . , en}. Define for f ∈ X ,

dist(f,E) = inf{‖f − g‖ : g ∈ E}.

Then

dist(f,E)2 =

∥∥∥∥∥f −
n∑
i=1

(f, ei)ei

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|(f, ei)|2.

Moreover,
∑n
i=1(f, ei)ei is the unique vector g ∈ E such that ‖f − g‖ = dist(f,E).

[Suggestive picture: R2, usual dot product.] [Suggestive picture: R2, ‖(x1, x2)‖1 = |x1|+ |x2|.]
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Proof. Let g =

n∑
i=1

αiei be an arbitrary element of E. Then

‖f − g‖2 = (f − g, f − g) = ‖f‖2 − 2Re(f, g) + ‖g‖2

= ‖f‖2 − 2Re

[
n∑
i=1

αi(f, ei)

]
+

n∑
i=1

|αi|2︸ ︷︷ ︸
Pythagoras

(†)

≥ ‖f‖2 − 2

n∑
i=1

|αi||(f, ei)|+
n∑
i=1

|αi|2

= ‖f‖2 −
n∑
i=1

|(f, ei)|2 +

n∑
i=1

|(f, ei)|2 − 2

n∑
i=1

|αi||(f, ei)|+
n∑
i=1

|αi|2

= ‖f‖2 −
n∑
i=1

|(f, ei)|2 +

n∑
i=1

(|(f, ei)| − |αi|)2

≥ ‖f‖2 −
n∑
i=1

|(f, ei)|2. (††)

Notice that both inequalities are equalities exactly when α = (f, ei) for i (1 ≤ i ≤ n). Moreover, if

g =

n∑
i=1

(f, ei)ei

then (†) turns to exactly (††). Hence this vector g corresponds to exactly

inf{‖f − h‖ : h ∈ E} = ‖f − g‖.

6.10 Proposition. If (X , (·, ·)) is an inner product space and g ∈ X , then Γg : X → C, given by

Γg(f) = (f, g)

is linear and bounded with ‖Γg‖∗ = ‖g‖.

Proof. Linearity follows from properties of the inner product. By Cauchy-Schwarz inequality,

|Γg(f)| = |(f, g)| ≤ ‖f‖‖g‖

so that ‖Γg‖∗ ≤ ‖g‖. Also, if g 6= 0,

Γg

(
1

‖g‖
g

)
=

(
1

‖g‖
g, g

)
=

1

‖g‖
(g, g) =

‖g‖2

‖g‖
= ‖g‖.

Therefore, ‖Γg‖∗ ≥ ‖g‖.
6.11 Remark (Riesz representation theorem). If H is a Hilbert space, then every bounded linear functional
Γ : H → C is of the form Γ = Γg, g ∈ H.
6.12 Theorem (Orthonormal Basis Theorem). Let X be an inner product space and {ei}∞i=1 be an orthonormal
sequence. The following are equivalent:

(i) span{ei}∞i=1 =

{
n∑
i=1

αiei : n ∈ N, αi ∈ C

}
is dense in X .

(ii) For every f ∈ X , we have ‖f‖2 =

∞∑
i=1

|(f, ei)|2 (Bessel’s Equality).

(iii) For every f ∈ X , we have (where limits occur under ‖ · ‖)

f = lim
n→∞

n∑
i=1

(f, ei)ei

we write

f =

∞∑
i=1

(f, ei)ei.
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(iv) For every f, g ∈ X we have

(f, g) =

∞∑
i=1

(f, ei)(ei, g)

(Parseval’s identity).

Note that (iii) justifies calling {ei}∞i=1 an orthonormal basis.

Proof. (i) ↔ (iii): Let En = span{e1, . . . , en}. Then En ⊆ En+1 for each n. Thus for f ∈ X ,

dist(f,En) ≥ dist(f,En+1).

Thus, by the Linear Approximation Lemma we have

span{ei}∞i=1 =

∞⋃
n=1

En

if and only if for each f ∈ X , ∥∥∥∥∥f −
n∑
i=1

(f, ei)ei

∥∥∥∥∥ = dist(f,En)
n→∞−−−−→ 0.

We saw (i) ↔ (iii) last class.

(ii) ↔ (iii). By the Linear Approximation Lemma,∥∥∥∥∥f −
n∑
i=1

(f, ei)ei

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|(f, ei)|2.

Hence,

‖f‖2 = lim
n→∞

n∑
i=1

|(f, ei)|2 ⇐⇒ lim
n→∞

∥∥∥∥∥f −
n∑
i=1

(f, ei)ei

∥∥∥∥∥
2

= 0.

(iii) → (iv). Let g ∈ X . By an earlier proposition, the function Γg : X → C given by Γg(f) = (f, g) is continuous.
Hence,

(f, g) = Γg(f) = Γg

(
lim
n→∞

n∑
i=1

(f, ei)ei

)

= lim
n→∞

Γg

(
n∑
i=1

(f, ei)ei

)
(continuity)

= lim
n→∞

n∑
i=1

(f, ei)Γg(ei) (linearity)

= lim
n→∞

n∑
i=1

(f, ei)(ei, g).

(iv) → (ii). Take f = g and note that (f, ei)(ei, f) = (f, ei)(f, ei) = |(f, ei)|2.

Notice that for any orthonormal sequence {ei}∞i=1, f ∈ X , we have that

0 ≤ dist (f, span{ei}ni=1)
2

= ‖f‖2 −
n∑
i=1

|(f, ei)|2 =⇒ ‖f‖2 ≥
n∑
i=1

|(f, ei)|2

for every n ∈ N, by the Linear Approximation Lemma. Thus, if we take n→∞, we immediately obtain

‖f‖2 ≥
∞∑
i=1

|(f, ei)|2 (Bessel’s Inequality).

Equality holds when f ∈ span{ei}∞i=1 (here we mean the closure).
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6.13 Theorem (Abstract Plancherel Theorem). Let X be an inner product space and let {ei}∞i=1 ⊂ X be
an orthonormal basis for X (in the sense of the earlier theorem). Then the operator U : X → `2 given by
Uf = ((f, ei))

∞
i=1 is an isometry; i.e. ‖Uf‖2︸ ︷︷ ︸

in `2

= ‖f‖︸︷︷︸
in X

and (Uf,Ug)︸ ︷︷ ︸
in `2

= (f, g)︸ ︷︷ ︸
in X

.

Proof. By Bessel’s Inequality, we have that for any f ∈ X ,

‖Uf‖22 =

∞∑
i=1

|(f, ei)|2 ≤ ‖f‖2,

so U is indeed a linear map into `2. Next, we observe that

(Uf,Ug) = (((f, ei))
∞
i=1, ((g, ei))

∞
i=1)

=

∞∑
i=1

(f, ei)(ei, g) (Parseval’s Equality)

= (f, g).

Note that we applied Parseval’s Equality twice, first to go from (Uf,Ug) to the sum, and then to go from the sum
to (f, g); the first application may be justified by the fact that

U({ei}∞i=1) = {Uei : n ∈ N} = {(0, . . . , 0, 1︸︷︷︸
i

, 0, 0, . . . ) : i ∈ N}

the latter of which we shall soon see is an orthonormal basis for `2, and hence {Uei}∞i=1 ⊂ `2 is an orthonormal
basis for `2, furthermore,

(Uf,Uei)(Uei, Ug) = (f, ei)(ei, g) since (Uei)j =

{
1 i = j

0 i 6= j
;

the second application may be justified by the fact that {ei}∞i=1 is an orthonormal basis for X , by assumption.

We may now take f = g and obtain the desired result.

6.14 Example. We have the following examples:

1. X = `2, with {ei}∞i=1 satisfying (ei)j = 0 if i 6= j, and (ei)i = 1. It is easy to see that (ei, ej) = 0 if i 6= j, and
(ei, ei) = 1. Notice that if x = (x1, x2, . . . ) ∈ `2 (so that

∑∞
i=1 |xi|2 <∞), we have that

x(n) := (x1, . . . , xn, 0, 0, . . . ) =

n∑
i=1

(x, ei)ei ∈ span{ei}ni=1.

Furthermore, note that

‖x− x(n)‖2 =

( ∞∑
i=n+1

|xi|2
)1/2

→ 0 as n→∞.

Thus, span{ei}∞i=1 =
⋃∞
i=1 span{ei}ni=1 is dense in `2 and, therefore, is an orthonormal basis for `2.

2. Consider {ek}k∈Z ⊂ L2(T) (since {ek}k∈Z ⊂ Trig(T) ⊂ C(T) ⊂ L2(T)). We have

(ek, e`) =
1

2π

∫ π

−π
eke` =

1

2π

∫ π

−π
ek−` =

{
1 k = `

0 k 6= `
.

Hence, {ek}k∈Z is an orthonormal set in L2(T). We shall show that it is, furthermore, dense in L2(T).

6.15 Theorem.

1. {ek}k∈Z is an orthonormal basis for L2(T).

2. {ek}k∈Z is an orthonormal basis for C(T) with inner product

(f, g) =
1

2π

∫ π

−π
fg.
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Proof. Notice these are essentially the same statements since C(T) is dense in L2(T); nevertheless, we give two
distinct proofs to illustrate some techniques for proving orthonormal sets are dense in an inner product space.

(1.) We have already seen that {ek}k∈Z is an orthonormal set, thus, we need only verify that {ek}k∈Z is dense in
L2(T). We have that σn(f) ∈ span{ek}nk=−n and dist(f, span{ek}nk=−n) ≤ ‖f − σn(f)‖2 → 0 as n → ∞ (by the
Abstract Summability Kernel Theorem). Hence, condition (3.) of the Orthonormal Basis Theorem is satisfied and
{ek}k∈Z is therefore an orthonormal basis for L2(T). [To use (1.) to imply (2.), use estimate of ‖ · ‖∞ with respect
to ‖ · ‖2.]

(2.) Notice that Trig(T) = span{ek}k∈Z is an algebra of functions on T/∼−π=π (that is, we identify −π with π)
which is point separating and is conjugation closed. Thus, by the Stone-Weierstrass Theorem, we have that Trig(T)
is dense with respect to the norm ‖ · ‖∞ in C(T). Therefore, for any given ε > 0 and for every f ∈ C(T), we may
find h ∈ Trig(T) such that ‖f − h‖∞ < ε and hence ‖f − h‖2 ≤ ‖f − h‖∞ < ε so Trig(T) is dense with respect to
the norm ‖ · ‖2 in C(T).

6.16 Corollary (L2-convergence of Fourier Series). Let f ∈ L2(T). Then

lim
n→∞

‖f − sn(f)‖2 = 0.

Proof. Note that

sn(f) =

n∑
k=−n

ck(f)ek =

n∑
k=−n

(
1

2π

∫ π

−π
f(t)e−ikt dt

)
ek =

n∑
k=−n

(f, ek)ek.

Since {ek}k∈Z is an orthonormal basis, we have by the Orthonormal Basis Theorem that

lim
n→∞

∥∥∥∥∥f −
n∑

k=−n

(f, ek)ek

∥∥∥∥∥
2

= 0.

Recall that sn(f) = C(Dn)f = Dn ∗ f and that

|||C(Dn)|||L1(T) = |||C(Dn)||| = Ln →∞

as n → ∞ (Ln is the nth Lebesgue constant). In L2(T), the situation is radically different: we actually have
|||C(Dn)|||L2(T) = 1. To see this, notice that

‖C(Dn)f‖2 = ‖sn(f)‖2 =

∥∥∥∥∥
n∑

k=−n

(f, ek)ek

∥∥∥∥∥
2

≤ ‖f‖2

by Bessel’s Inequality.

6.17 Theorem (Riesz-Fischer Theorem). Let f ∈ L1(T). Then

f ∈ L2(T) ⇐⇒
∞∑

k=−∞

|ck(f)|2 <∞.

Proof. (→) Since ck(f) = (f, ek), we have that

‖f‖22 ≥
n∑

k=−n

|ck(f)|2

by Bessel’s Inequality. Thus,
∞∑

k=−∞

|ck(f)|2 = sup
n∈N

n∑
k=−n

|ck(f)| ≤ ‖f‖22 <∞ (f ∈ L2(T)).

(←) Define fn =
∑n
k=−n ck(f)ek and let n > m. We thus have that

‖fn − fm‖22 =

−(m+1)∑
k=−n

|ck(f)|2 +

n∑
k=m+1

|ck(f)|2 (Pythagoras’ Theorem)

→ 0 as n→∞ (tails of convergent series).
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It follows that (fn)∞n=1 is Cauchy in L2(T). Thus, by the completeness of L2(T), we have that there is f̃ ∈ L2(T)
such that ‖f̃ −

∑n
k=−n ck(f)ek‖ → 0 as n → ∞. We note that ck(f̃) = ck(f) by using the function Γek . Hence

f̃ = f a.e. so f = f̃ in L2(T).

Warning: If f ∈ C(T), then we know:

•
∞∑

n=−∞
|cn(f)|2 <∞.

• lim
n→∞

‖f − sn(f)‖2 = 0.

We may not have that limn→∞ sn(f) = f pointwise! There is no known characterization of sequences (cn)∞n=−∞
such that cn = cn(f) for some f ∈ C(T). In A6, we show that if

∞∑
n=−∞

|cn(f)| <∞

then in fact f ∈ A(T) (the Fourier algebra) and furthermore limn→∞ ‖f − sn(f)‖∞ = 0 – this is the strongest
possible conclusion!

6.18 Theorem (Plancherel’s Theorem). The map U : L2(T)→ l2(Z) given by

f 7→ (cn(f))∞n=−∞

is a surjective isometry, with (Uf,Ug) = (f, g)L2 .

Proof. This is nearly a restatement of the Riesz-Fischer theorem. However, if (cn)∞n=−∞ ⊆ l2(Z), we need to show
that f ∈ L2(T), so cn(f) = cn for all n. Define

fn =

n∑
k=−n

cke
k.

Verify that (fn)∞n=1 is Cauchy in L2(T) and hence converges to f ∈ L2(T). Moreover, cn(f) = cn for each n. That
U is an isometry which preserves inner product is a result of Bessel’s equality and Parseval’s identity, from the
Orthonormal Basis Theorem.

6.19 Corollary. l2(Z) is complete.

Proof. If ((c
(n)
k )∞k=−∞)∞n=1 ⊆ l2(Z) is Cauchy, then for each (c

(n)
k )∞k=−∞, there is fn ∈ L2(T) such that ck(fn) = c

(n)
k

for each k, and each n. We have

‖fn − fm‖L2
= ‖Ufn − Ufm‖l2 = ‖(c(n)

k )∞k=−∞ − (c
(m)
k )∞k=−∞‖l2 ,

so that (fn)∞n=1 ⊆ L2(T) is Cauchy. So put f = limn→∞ fn and so (ck(f))∞k=−∞ is the limit of (ck(fn))∞k=−∞ =

(c
(n)
k )∞k=−∞.

6.20 Remark. If f ∈ L(T) satisfies ∫ π

−π
|f |p <∞

for some 1 < p <∞, then is it the case that

lim
n→∞

sn(f, x) = f(x)

for a.e. x? The answer is yes (see Carleson’s Theorem from the 1960s for p = 2).

6.21 Lemma. Let X be a Banach space and (ak)∞k=−∞ ⊆ X . Define

sn =

n∑
k=−n

ak, σn =
1

n+ 1

n∑
j=0

sj .

If limn→∞ σn exists and also supk∈N ‖ak‖ <∞ then limn→∞ sn exists and is equal to limn→∞ σn.
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Proof. Fix, for the moment, λ > 1. If n ∈ N, then n+ 1 ≤ bλnc (i.e. we have λn
n+1 > 1), then

bλnc∑
k=n+1

1

k
≤ log

bλnc
n
≤ log λ.

We recall that

σn =

n∑
k=−n

(
1− |k|

n+ 1

)
σk.

Hence for n large enough we have n+ 1 ≤ bλnc,

bλnc
n+ 1

σbλnc − σn =
bλnc+ 1

n+ 1

 −(n+1)∑
k=−bλnc

+

bλnc∑
k=n+1

(bλnc+ 1− |k|
bλnc+ 1

)
ak+

n∑
k=−n

(
bλnc+ 1

n+ 1
− |k|
n+ 1

)
ak −

n∑
k=−n

(
1− |k|

n+ 1

)
ak.

For convenience, denote

En =
bλnc+ 1

n+ 1

 −(n+1)∑
k=−bλnc

+

bλnc∑
k=n+1

(bλnc+ 1− |k|
bλnc+ 1

)
ak

so the above thing is equal to

= En +
bλnc − n
n+ 1

.

Thus,

sn −
bλnc+ 1

bλnc − n
σbλnc +

n+ 1

bλnc − n
σn =

n+ 1

bλnc − n
En.

So then we have ∥∥∥∥ n+ 1

bλnc − n
En

∥∥∥∥ ≤ bλnc+ 1

bλnc − n

 −(n+1)∑
k=−bλnc

+

bλnc∑
k=n+1

(bλnc+ 1− |k|
bλnc+ 1

)
‖ak‖,

which follows from the fact that

n+ 1

bλnc − n
bλnc+ 1

n+ 1
≤ bλnc+ 1− (n+ 1)

bλnc+ 1
=
bλnc − n
bλnc+ 1

.

Thus, we get that ∥∥∥∥ n+ 1

bλnc − n
En

∥∥∥∥ ≤
 −(n+1)∑
k=−bλnc

+

bλnc∑
k=n+1

 C

|K|

where we put
C = sup

k
|k|‖ak‖.

Fix ε > 0, pick λ > 1 such that 2C log λ < ε. Also note that λn− 1 ≤ bλnc ≤ λn. This implies that

lim
n→∞

bλnc
n

= λ

thus we get

lim
n→∞

Hn = lim
n→∞

(
bλnc
n + 1

n
bλnc
n − n

n

σbλnc −
n
n + 1

n
bλnc
n − n

n

σn

)
=

λ

λ− 1
lim
n→∞

σn −
1

λ− 1
lim
n→∞

σn = lim
n→∞

σn

so we have for large enough n,

‖sn − lim
n→∞

σn‖ ≤ ‖sn −Hn‖+ ‖Hn − lim
n→∞

σn‖

≤
∥∥∥∥ n+ 1

bλnc − n
En

∥∥∥∥+
ε

2

≤ ε

2
+
ε

2
= ε.
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Assignment #6 - may hand in Monday. Assignment #5 - may retrieve from pick-up box by my office today.

6.22 Theorem (Hardy’s Tauberian Theorem). We have:

(i) If f ∈ L(T) and supk |kck(f)| < ∞ then for any t ∈ [−π, π] for which limn→∞ σn(f, t) exists, we have
limn→∞ sn(f, t) exists as well. In particular, if ωf (t) = limh→0+

1
2 [f(t−s)+f(t+s)] exists, and supk |kck(f)| <

∞, then
lim
n→∞

sn(f, t) = ωf (t).

Moreover if I is any open interval on which f is continuous, and supk |kck(f)| < ∞, then for any closed
interval J ⊆ I

lim
n→∞

sup
t∈J
|sn(f, t)− f(t)| = 0

(ii) If B is a homogeneous Banach space such that ‖ek‖B ≤ C (some fixed C) for all k, and f ∈ B, such that
supk |kck(f)| <∞ then

lim
n→∞

‖sn(f)− f‖B.

Proof. We have:

(i) We let, in the context of the last lemma, X = C. Then we have for t ∈ [−π, π], that

|k ck(f)eikt︸ ︷︷ ︸
C

| = |kck(f)|,

the supremum of which, over k, is finite. Hence we always get the conditions of the lemma. Now, appeal to
Fejér’s theorem.

(ii) Let X = B.
‖kck(f)ek‖B = |kck(f)|‖ek‖B ≤ |kck(f)|C

and we note that limn→∞ σn(f) = f in B, by virtue of the Abstract Summability Kernel Theorem.

7 Gibbs phenomenon

7.1 Example (special example). Let

F (t) =
1

2
− t

2π

for all t ∈ (0, 2π) continued 2π-periodically to R. [diagram].

7.2 Proposition. We have ck(F ) = 1
2πik for choices of k 6= 0, noting that c0(F ) = 0, and

sn(F, t) =

n∑
k=1

sin kt

πk
.

In particular,

(i) limn→∞ sn(F, 0) = 0 = ωf (0).

(ii) limn→∞ sn(F, t) = F (t), for t ∈ [−π, π] \ {0} and on intervals of the form [δ, 2π − δ], δ > 0 we have

lim
n→∞

sup
t∈[δ,2π−δ]

|sn(F, t)− F (t)| = 0.

Sketch of proof. Computations of ck(F ), sk(F, t) are left as exercise. Point (i) is obvious. Point (ii) is a consequence
of Hardy’s Tauberian Theorem.

The following was noticed: [illustration of this using Maple on the web site] [diagram].

7.3 Lemma. Let F (t) = 1
2 −

t
2π for almost every t ∈ [0, 2π], continued 2π-periodically to R. Then

lim
n→∞

sn(F, πn ) =
1

π

∫ π

0

sinx

x
dx ≈ 0.59.

Thus, we define
Gs := lim

n→∞

[
sn(F, πn )− F (πn )

]
≈ 0.089

and call this the Gibbs constant.
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Proof. Recall

sn(F, t) =

n∑
k=1

sin(kt)

πk
.

So

sn(F, πn ) =

n∑
k=1

sin(kπn )
πk
n

· 1

n
=

1

π

n∑
k=1

sin(kπn )
kπ
n

[
kπ

n
− (k − 1)π

n

]
n→∞−−−−→ 1

π

∫ π

0

sinx

x
dx.

The rest is numerical estimation.

Bonus question: Let f : [a, b]→ R be Lipschitz. Show that f ′ exists a.e. on [a, b]. Will accept submissions up
to April 11.

Also, show that ∫ b

a

f ′ = f(b)− f(a).

7.4 Theorem (Gibbs). Let f ∈ L(T) be boundedly piecewise differentiable, i.e. f ′(t) exists except at finitely
many points, and |f ′(t)| ≤M where f ′(t) exists. Let s1, . . . , sm ∈ [−π, π] be the points where differentiability fails.
Then if

f(s−j ) := lim
h→0+

f(sj − h), f(s+
j ) := lim

h→0+
f(sj + h)

we have that these limits exist, and if we let

γj = γf (sj) = f(s+
j )− f(s−j )

(this is the size of the jump). Then

lim
n→∞

[
sn(f, sj ± π

n )− f(sj ± π
n )
]

= ±γf (sj)Gs

where
Gs =

1

π

∫ π

0

sinx

x
dx ≈ 0.09

is the Gibbs constant.

Proof. First, if we fix j (1 ≤ j ≤ m), then there is δ > 0 such that f is boundedly differentiable on (sj − δ, sj) and
on (sj , sj + δ). Thus, f is uniformly continuous on each of these intervals, in fact Lipschitz (like A6Q2c). Hence if
sj − δ < t1 < . . . < sj with

lim
`→∞

t` = sj

then (f(t`))
∞
`=1 is Cauchy, so

f(s−j ) = lim
`→∞

f(t`)

exists (this is a PM351 type argument). Similarly f(s+
j ) exists. As usual, we let

ωf (sj) =
1

2

[
f(s−j ) + f(s+

j )
]
.

We define16 g ∈ L(T) for t ∈ [−π, π] by

g(t) =


f(t)−

n∑
j=1

γjF (t− sj) if t /∈ {s1, . . . , sm}

ωf (sj)−
m∑
i=1
i 6=j

γjF (sj − si) if t = sj .

It is straightforward, though tedious, to check that

g(s+
j ) = g(sj) = g(s−j ).

16“OK – what’s g going to do for a living?”
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So g is continuous, i.e. g is differentiable for t /∈ {s1, . . . , sm}. In fact, g ∈ D(T) [A6Q2c]. So in particular, g ∈ A(T)
and thus the Fourier series converges uniformly:

lim
n→∞

‖sn(g)− g‖∞ = 0.

Thus, for each j, we have

|sn(g, s+ j ± π
n )− g(sj)| ≤ |sn(g, sj ± π

n )− g(sj ± π
n )|+ |g(sj ,±πn )− g(sj)|

≤ ‖sn(g)− g‖∞ + |g(sj ± π
n )− g(sj)| (†)

as n→∞, the first term above goes to 0, and

g(sj ± π
n )→ g(sj)

since g is continuous. Now

f = g +

m∑
j=1

γjsj ∗ F

off of {s1, . . . , sm} and hence we have for each j

lim
n→∞

[
sn(f, sj ± π

n )− f(sj ± π
n )
]

= lim
n→∞

sn(g, sj ± π
n ) +

m∑
i=1

γi sn(F, sj − si ± π
n )︸ ︷︷ ︸

just like in proof of Dini etc

−f(sj ± π
n )


= g(sj)︸ ︷︷ ︸

by (†)

±γj (Gs + 1
2 )︸ ︷︷ ︸

by Gibbs lemma

+

m∑
i=1
i 6=j

γi F (sj − si)︸ ︷︷ ︸
*

−f(s±j )

and (*) is true by Hardy’s Tauberian Theorem applied to an interval on which F is continuous. The above is equal
to

g(sj)︷ ︸︸ ︷
1

2
[f(s+

j ) + f(s−j )]︸ ︷︷ ︸
ωf (sj)

−
m∑
i=1
i 6=j

γiF (sj − si)±[f(s+
j )− f(s−j )](Gs + 1

2 )+

m∑
i=1
i6=j

γiF (sj − si)− f(s±j ) = ±[f(s+
j )− f(s−j )]Gs

= ±γf (sj)Gs.

7.5 Remark. Recall that we had the function

F (t) =
1

2
− t

2π

which was designed specifically to put a gap of size 1 at 0. Suppose we take a look at the Fourier sums of F at this
“travelling point” π

n :

lim
n→∞

 σn︸︷︷︸
Césaro sums

(F, πn )− F (πn )

 ≈ −0.11.

[DIAGRAM with Gs and Gσ].

7.6 Theorem. Let f ∈ L(T) satisfy

• f is piecewise differentiable (i.e. f is differentiable except at finitely many points in [−π, π])

• 1

2π

∫ π

−π
|f ′| = ‖f ′‖1 <∞.

• f is bounded, i.e. ‖f‖∞ <∞.

Then in fact,
sup
k∈Z
|kck(f)| <∞.

Proof. See website.
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7.7 Remark (application). Let f(t) =
√
|t|, t ∈ [−π, π] continued 2π-periodically. Notice that f is piecewise

differentiable, and

|f ′(t)| = 1√
|t|

almost everywhere, so that ‖f ′‖1 <∞. Thus

sup
k∈Z
|kck(f)| <∞

(i.e. ck(f) = O( 1
|k| )). Then by Hardy’s Tauberian Theorem,

lim
n→∞

‖sn(f)− f‖∞ = 0.

Notice that f /∈ D(T) from A6.

7.8 Remark (fact). It is true that f ∈ A(T), which can be gleamed from a theorem in a book of Katznelson.

Important points for the final exam:

• continuous functions are dense in Lp (the case p = 1 too).

• development of the Fourier algebra (functions whose Fourier coefficients are summable).

• important function spaces and their related spaces of Fourier coefficients (ordered by inclusion)

– A(T) and `1(Z) by definition

– C(T) and ?

– L2(T) and `2(Z) due to Riesz-Fischer and Plancherel

– L1(T) and A(Z)

– ?? and c0(Z)

It turns out that ? = C∗(Z), and ?? = C∗(T). They are not identifiable as a space of “functions”. Also,
Riemann-Lebesgue tells us that A(Z) ( c0(Z).

• there may be questions about which function spaces a given function is a member of.

Review diagram is posted on mlbaker.org.
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