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Abstract

Declarative behavioural modelling is a powerful modelling paradigm that enables users to model
system functionality abstractly and formally. An abstract model is a concise and compact representation
of key characteristics of a system, and enables the stakeholders to reason about the correctness of the
system in the early stages of development.

There are many different declarative languages and they have greatly varying constructs for represent-
ing a transition system, and they sometimes differ in rather subtle ways. In this thesis, we compare seven
formal declarative modelling languages B, Event-B, Alloy,Dash, TLA+, PlusCal, and As-
metaL on several criteria. We classify these criteria under three main categories: structuring transition
systems (control modelling), data descriptions in transition systems (data modelling), and modularity
aspects of modelling. We developed this comparison by completing a set of case studies across the data-
vs. control-oriented spectrum in all of the above languages.

Structurally, a transition system is comprised of a snapshot declaration and snapshot space, initializa-
tion, and a transition relation potentially composed of individual transitions. We meticulously outline
the differences between the languages with respect to how the modeller would express each of the above
components of a transition system in each language, and include discussions regarding stuttering and
inconsistencies in the transition relation. Data-related aspects of a formal model include use of basic and
composite datatypes, well-formedness and typechecking, and separation of name spaces with respect to
global and local variables. Modularity criteria includes subtransition systems and data decomposition.
We employ a series of small and concise exemplars we have devised to highlight these differences in each
language. To help modellers answer the important question of which declarative modelling language
may be most suited for modelling their system, we present recommendations based on our observations
about the differentiating characteristics of each of these languages.
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Chapter 1

Introduction

Architects draw detailed plans before a brick is
laid or a nail is hammered. Programmers and
software engineers do not. Can this be why houses
seldom collapse and programs often crash?

—Leslie Lamport, Turing AwardWinner, 2013

Distinguished Computer Scientist Leslie Lamport explains that blueprints help architects make sure
what they are planning to build will work. Furthermore, “working” means more than merely not
collapsing, but rather serving the intended purpose. Engineers and architects use blueprints as a common
language between themselves and their clients, and use it to precisely plan out ahead of time the structure
that they will build. However, programmers and software engineers rarely even sketch out what their
programs are intended to do, before starting to write the code. Even the simplest and most commonly
taught algorithms such as binary sort sometimes require careful thinking about their intricate details to
ensure their correctness, let alone complex systems with dozens or more subsystems and parts intended
to work together.

When designing complex systems, Lamport argues, the need for formal specifications should be
as obvious as the need for blueprints when designing a skyscraper. However, few programmers even
know of existence of specification languages and their supporting tools, much less how to use and write
specifications for the systems they design.

There are a number of reasons why formal specifications are important and useful. Mostmainstream
programming languages currently commonly used by programmers, such as C, C++, or Java, usually
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require programmers to be deep into the implementation details, imperatively specifying exactly how
each task should be carried out. It is often challenging to keep in mind the big picture of what the parts
are supposed to do individually and as a group, while getting bogged down with other less relevant
details. Having formal specifications in one’s toolbox enables abstracting away from irrelevant details,
focusing only on the heart of the matter and making sure it is well understood, and that the proposed
solution correctly fits and serves the required purpose.

1.1 Declarative Modelling Languages

The languages studied in this thesis are declarative modelling languages for behavioural formal specifica-
tion using a state-machine-oriented/transition system approach. These languages in essence model a
Kripke structure underneath. Declarative behavioural modelling is a powerful technique for modelling
systems in a concise way, free of design or implementation details. Declarative modelling languages allow
describing systems in a higher level of abstraction than permitted by typical mainstream programming
languages like C or Java.

Models written using declarative behavioural modelling languages, such as Z [73], Alloy [43],
and TLA+ [47], have the following general characteristics [12]:

1. they describe the transitions in a declarative manner using constraints, rather than through
imperative calculations and/or statements;

2. they include user-defined and -axiomatized units of data, which can represent rich datatypes such
as lists and trees;

3. they have a formal mathematical and logical foundation, usually first-order logic (FOL) and/or
set theory; and

4. they allow writing models without specifying the size of sets (the scopes); the scopes may need to
be specified for analysis.

We are motivated to do this study by the many applications and demonstrated usefulness of declar-
ative modelling languages and model checking to help design systems or analyze and verify proper-
ties about the design of existing systems. Examples include Zave’s use of Alloy and Spin to find
specification-level bugs in the specification of the Chord network protocol [77], Newcombe’s report
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on the use of TLA+ by engineers at Amazon which has helped find subtle bugs in complex real-world
systems and prevent the bugs from reaching production [61], and the use of B by Huynh et al. for for-
malizing a new healthcare access control model with conflict resolution for managing patients’ consent
as to who can access their Electronic Health Records (EHR), while taking into account the regional
laws and regulations of Québec and Canada that allow overriding patient consent regarding access to
their EHR under certain strictly defined scenarios to protect the patient’s life [41].

Declarative models allow modellers to sketch out and reason about systems and how they change
over time in an abstract and declarative way, without having to worry about irrelevant details. An
important question, given that there are a great many number of languages to choose from is how does
one make a choice of which language to use? This thesis presents a comparison criteria and compares a
number of popular declarative languages, highlighting the control and data modelling aspects, as well
as the modularity of models in each language. Comparisons between modelling languages are useful
to provide a means of discerning which modelling language is most suitable for modelling a system.
Models in these languages may vary in length and organization, and by doing a number of case studies
in multiple languages helps us better expose the differences in paradigms, conventions, and structures
among the languages. Common constructs in the languages often vary in subtle ways, and through
our case studies, we tease these differences apart for each language. The equivalence of our models is by
observations, using a model checker and potentially other available tool support for each language to
verify a series of properties about the models across all of the selected languages.

In comparison to other works comparing declarative modelling languages [61, 77, 34, 21], we focus
on models of transition systems. We develop a set of categorized comparison criteria and examine in
depth each language with respect to each of the criterion. Further, we use these criteria to compare a
diverse range of examples on the data- vs. control-oriented characterization spectrum, modelling each
of the five examples in all of the seven languages, producing a total of thirty-five models. We use these
models and our observations from carrying out the case studies to make recommendations as to which
language(s) we think would be the best fit for modelling various kinds of transition systems.

1.2 Selection of Languages

We selected the seven popular, declarative modelling languages B, Event-B, Alloy,Dash, TLA+,
PlusCal, and AsmetaL for comparison. We chose languages that have tool support for model
checking. However, we are not comparing the languages on their tool support, because tool support and
the analysis performance of those tools are subject to change, and can change much more easily than the
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logic and semantics of the language. This point of view is also shared by Lamport, with TLA+ existing
for several years before the TLCmodel checker and the rest of the TLA+ Toolbox were created for it.

We did not include other formal specification languages for various reasons. For instance, we omitted
the Z [73] and VDM [45] specification languages, due to the lack of model checking tool support for
them, and formalisms based on process algebras and Petri Nets, as they are at a different (often lower)
level of abstraction compared to declarative modelling languages.

Statecharts-based languages and UML state machines [9] provide a graphical manner to describe
system behaviour, but do not completely fall into the category of declarative specification languages:
their semantics are often not fully formal and they lack support for declaring datatypes. OCL [8] is a
declarative language that can be used in combination withUML to constrain the pre and postconditions
of transitions.

The languages of model checkers such a SMV [60] and Spin [40] are lower-level descriptions than
what is often convenient for a user. nuXmv [27] is a re-implementation and extension of SMV that adds
support for verification of infinite datatypes, such as integers and reals, and incorporates a verification
engine with state-of-the-art SAT-based algorithms. However, they all have limited support for user-
declared datatypes. Furthermore, in SMV/nuXmv the scope of datatypes and relations must be set at
modelling time, which forces users to modify their models every time they want to analyze and check
properties in at larger scope.

1.3 Thesis Contributions

The contributions of this thesis are

• a set of criteria to compare declarative modelling languages;

• the comparison of the selected declarative modelling languages (B, Event-B, Alloy,Dash,
TLA+, PlusCal, and AsmetaL) based on these criteria; and

• our recommendations for the choice of modelling language based on the characteristics of the
transition system under description, rooted in our observations of the differences and similarities
between the languages with respect to our comparison criteria from the several case studies we
carried out.
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The overview of the methodology for comparing the selected languages for this thesis is to do a
number of case studies in each language, taking notes on their characteristics and differences while doing
so. Each of the chosen case studies is a model previously done in one (or possibly more) of the selected
languages. The choice of the order of languages for each case study was made randomly to address any
potential concerns for bias in that regard.

1.4 Thesis Outline

Chapter 2 provides background on the seven declarative modelling languages used in this work. Chap-
ter 3 describes our methodology for carrying out the research and modelling of the case studies across
the languages, as well as addressing potential threats to validity. In Chapter 4, we discuss the control
modelling aspects in each language, meaning the structuring of transition systems in terms of a individual
transitions, in Chapter 5 we consider the data modelling aspects of each language and the structuring of
transition systems in terms of their data descriptions, and in Chapter 6 we investigate the constructs
relating to modularity of models in the languages and the structuring of transition systems on a larger
scale in terms of files as well as subtransition systems. Chapter 7 provides an overview of our case studies,
and how our comparison criteria highlighted interesting and/or different features and characteristics
of each language while modelling each case study. Finally, Chapter 8 presents related work, and Chap-
ter 9 provides concluding remarks, including recommendations for the choice of declarative modelling
language based on the characteristics of the transition system under description.
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Chapter 2

Background

In this chapter, we provide background on the seven declarative modelling languages we selected to
study and carry out our case studies in this work. For each language, we give a brief background about
its history and origins, and its logic. Detailed information about the language will be covered in the
comparisons of the following chapters. We also report on the tools we used to support our modelling
efforts. Information about the version of each tool we used is available in Appendix A.

Aswewill be frequently referring to languages by name in the next chapters of this thesis, tomake the
language names easier to spot and discussions easier to follow, we adopt the language name stylizations
shown in Table 2.1. Further, the keywords in each of the languages are colour-coded, to help make
distinguishing between the code snippets across the languages easier in later chapters.

2.1 B

B [14, 29] is a formal method originally developed by Jean-Raymond Abrial in the 1980s as a successor
to Z, and using an Abstract Machine Notation (AMN) for specification of systems. B is used in the
development of correct by construction software, with tool support for specification, design, and
verification (animating, model checking, and theorem proving) of software systems.

The logic of B is rooted in first-order logic and set theory. Sets are created using either set compre-
hension, or set operations (such as Cartesian product, intersection, power set, etc.) and can be used
for updating a variable’s value to create a transition system. Predicates can be axiomatized or defined
using propositional logic operations and set predicates. Functions can be declared both explicitly using
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Table 2.1: Language name stylizations and colours

Original Stylized

B B

Event-B Event-B

Alloy Alloy

Dash Dash

TLA+ TLA+

PlusCal PlusCal

AsmetaL AsmetaL

function types (partial, total, surjective, etc.), or implicitly by restricting relations. B supports refinement
of machines, allowing the modeller to start at a high level of abstraction, and gradually refine their model
to more concrete ones.

Given B’s longevity, various tooling software has been developed over the years to support the B
method and development of Bmodels. These include the B-Toolkit originally developed by B-Core and
now available as free software [7] under the 2-clause BSD license [6], the proprietary Atelier B industrial
tool developed by ClearSy, and the ProB animator and model checker [55] released as free software
under the EPL v1.0 license [4]. Of these tools, we used the ProB tool for writing and checking our B
models.

2.2 Event-B

Event-B [15] is a simplification and extension of the Bmethod. While B is largely used for specifica-
tion and verification of software systems, Event-Bwas designed to enable the modelling of complete
systems (software, hardware, as well as the surrounding environment), merging the gap between speci-
fication of the software and the rest of the system. Event-B is a successor of B, and its logic is very
similar to that of B and is rooted in first-order logic and set theory.

Although Event-B is a successor of B and its syntax is a simplification and extension of that of B,
where a Bmodel is simply a plaintext file with its content directly matching the B syntax, an Event-B
model is a series of multiple complex XML files. This means Bmodels can easily be read and written
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using any text editor, but reading and writing Event-Bmodels effectively requires a special-purpose
text editor for parsing and modifying the XML files without getting in the way of the modeller. At the
time of writing this work, the only available tool support for Event-B is the Rodin Platform [16, 44],
an eclipse-based IDE released as free software under the EPL v1.0 license [5]. The Rodin Platform is
comprised of a set of plugins, including a text editor for creating and editing Event-Bmodels, plugins
for integration with the ProB animator and model checker, a LATEX exporter plugin for generating
typeset documents from Event-Bmodels, andmore. Even though the Rodin Platform’s model editor
is capable of editing Event-Bmodels, the user has to point and click or use several keyboard shortcuts
to make various parts of the model description editable. We believe that this, along with the fact that the
text editor is barely customizable, makes Rodin less suitable for writing larger models.

Lastly, the current latest release of the Rodin Platform as of the time of this writing is over two
years old, and is based on a version of Eclipse that suffers from a known bug that causes it to crash
immediately when used with any Java version newer than Java 8. Considering that many GNU/Linux
distributions have been dropping this old release of Java from their repositories, and as time goes by
more distributions continue to do so, this effectively means that the Rodin Platform cannot be used on
newer machines and operating systems.

For the Event-B models of our case studies, we used the Rodin Platform, as well as the ProB
plugin for Rodin, which supports exporting Event-Bmodels from the Rodin Platform for analysis
using the standalone ProB tool.

2.3 Alloy

Alloy [42, 43] is a declarative modelling language designed for exploring and describing structures
and their properties. Alloy’s logic is a relational logic with set theory, that is both powerful enough to
express complex structures and constraints on them while allowing fully automated analysis of models
written in the language.

Alloy is primarily supported by the Alloy Analyzer [43] tool, a finite model finder for analyzing
Alloymodels by finding satisfying instances for predicates or counterexamples to assertions in finite
scopes. The Alloy Analyzer comes with a visualizer and evaluator, which are invaluable for visualizing
generated instances and evaluating Alloy expressions when writing or debugging Alloymodels.
Properties to be checked are written in Alloy itself as predicates or assertions along with the main
specification of the model. The Alloy Analyzer through Kodkod [75] integrates with multiple SAT
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solvers, allowing the modeller to easily switch solvers and choose the one that performs the best for their
use-case.

Besides the Alloy Analyzer, a variety of other tools have been developed by the Alloy community.
These include Astra [13] for Alloy to SMT-LIB translation, as an alternative to Kodkod; and ALDB [1],
a command-line tool for debugging transition system models written in Alloy, which allows the
modeller to step through the transitions of a transition systemmodel, similar to stepping through the
lines of code of a program using a debugger for a programming language.

2.4 Dash

Dash [69, 70] is a new modelling language for writing declarative behavioural models, combining the
logic of Alloywith common control-oriented modelling constructs of labelled control state hierarchy
and named events, as introduced by Harel [38]. Dash is built as an extension to Alloy, with its
language being a superset of the Alloy language. Dash provides syntactic constructs for specifying
and factoring transitions. Transitions can be factored by states, like in Statecharts, or by events and/or
conditions; makingDash a flexible language capable of accommodating different modelling paradigms.
Dash implements transition comprehensions, enabling the description of a group of transitions using
a single statement. Dash follows the usual semantics of Statecharts: transitions from states higher in
the hierarchy have priority over those lower in the hierarchy, and concurrent states can each take one
transition in response to an environmental input forming big steps (consisting of multiple transitions).
Properties to be checked are written along with the main specification of the model either in the form
of Alloy expressions in escape blocks, or in a small domain-specific subset ofDash, based on the
underlying CTLmodule used byDash’s tool support for model checking.

Tooling aroundDash is built using Xtext [10], and includes a compiler for translatingDash to
Alloy, allowing the modeller to benefit from use of the Alloy Analyzer for model checking [68] and
model finding like regular Alloymodels. A text editor with syntax highlighting forDash is available
as an Eclipse plugin. Also, theDashwebsite at http://dash.uwaterloo.ca:8080/dash/ includes an
online editor for writingDashmodels and translating them to Alloy in the browser.
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2.5 TLA+

TLA+ is a formal specification language developed by Leslie Lamport, based on the idea that using
simple mathematics is the best way to write formal descriptions; and that a specification language should
provide the bare minimum required for writing simple mathematics to describe systems precisely. TLA+

has first-order logic with an untyped classical set theory as its modelling language, and was originally
designed for writing high-level specifications of reactive, distributed, and asynchronous systems. LTL
properties to be checked are written along with the main specification of the model using the full TLA+

language, including several temporal operators such as ^ and � for expressing temporal properties.

Tool support for TLA+ is mainly the TLA+ Toolbox, an Eclipse-based IDE tailored for writing and
working withTLA+ specifications. TheTLA+ Toolbox includes the SANY parser and semantic analyzer
for TLA+ [47], the TLCmodel checker [76, 47], the PlusCal algorithm language [49], the TLATEX
pretty printer [47], and the TLAPS (TLA+ Proof System) [28]. TLA+ supports model refinement.

For the TLA+ models of our case studies in this work, we used the TLA+ Toolbox and the TLC
model checker, which is already set to use multiple worker threads out of the box. For model checking
very large models, TLC can run on a cluster of compute nodes.

2.6 PlusCal

PlusCal [49] is a formal specification language created by Leslie Lamport fifteen years after TLA+

for describing and reasoning about algorithms, as an alternative to traditional informal pseudocode.
PlusCal has two separate syntaxes: a C-syntax [50] similar to the C family of programming languages,
and a more verbose but clearer P-syntax [51] which we have opted to use in this work. The verbosity of
the P-syntaxmakes themeaning of the code clearer. While each of PlusCal’s syntaxes resemble that of
an imperative programming language, semantically PlusCal is more expressive than a programming
language, since any mathematical formula that can be represented in TLA+ may be used as a PlusCal
expression. PlusCalmodels are translated into TLA+, and may then be verified using the TLCmodel
checker and the other TLA+ tools. LTL properties to be checked are written using the full TLA+

language, including several temporal operators such as ^ and � for expressing temporal properties.

For our PlusCalmodels, we used the TLA+ Toolbox, which as described above, has a plugin
for translating PlusCal to TLA+. The PlusCal syntax is embedded in TLA+ as a special block
comment in a TLA+ module.
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2.7 AsmetaL

AsmetaL [67, 35, 36] (Asmeta Language) is a modelling language developed by Gargantini et al. as
part of the Asmeta framework, based on the Abstract State Machines (ASMs) [25, 37] formal method.
The logic of AsmetaL is first-order logic, with added semantics for snapshot variable updates and
transition definitions, as formalized in [25]. Properties to be checked are written along with the main
specification of the model using AsmetaL expressions, as well as additional LTL and CTL temporal
operators available from libraries distributed with the model checker. Asmeta is a framework comprised
of a variety of tools to aid with validation and verification of ASMmodels. At the time of writing this
work, Asmeta is an active research project consisting of an extensive collection of tools for verification
and validation of ASMs, released as free software [7] under the GPLv2+ license [2, 3].

The most relevant of these tools for our comparison are the Asmee editor for AsmetaL, the
AsmetaLc compiler and parser for AsmetaL, theAsmetaS simulator, theAsmetaA animator, and
the AsmetaSMVmodel checker based on NuSMV. As our work is centred around a comparison of
modelling languages with model checking tool support, we were hoping to make extensive use of the
various Asmeta tools, especially the AsmetaSMVmodel checker, which supports model checking both
LTL and CTL properties. Unfortunately, we found that AsmetaSMV currently only supports a limited
subset of the AsmetaL language, and we ran into these limitations with our models. Further, we
learned that the AsmetaA animator and AsmetaS simulator suffer from similar limitations. For our case
studies, since our goal is to compare the modelling languages and not their available tool support, we
opted to use the full capabilities of the AsmetaL language, which is not yet fully supported by the
tooling as of today. As such, for verifying our AsmetaLmodels we rely on the parser and typechecker
for AsmetaL, and additionally the animator and simulator when possible.
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Chapter 3

Methodology

In this chapter we describe the methodology used for carrying out the research andmodelling of the case
studies across the languages. We describe the principles put into designing our methodology, including
how we devised the comparison criteria, and the measures we took to avoid bias in the work as much as
possible.

To compare declarative modelling languages for writing models of transition systems, we began by
selecting six relatively small examples and modelled them in three declarative modelling languages, with
help frommy colleagues and now former students Ali Abbassi and Jose Serna. We collaborated while
writing the models, answering each other’s questions and providing clarifications about any aspect of
the models. These examples are those without an asterisk in Figure 3.1 of the data- vs. control-oriented
characterization spectrum. Amodel is more control-oriented if it has complex conditions for when a
transition is relevant that are naturally expressed using modes, control states, or concurrency. A model
is more data-oriented if it has complex constructions of data. Based on our experience modelling these
examples, we described the differences and similarities we observed across the languages, forming an
initial set of comparison criteria to compare the languages against; and published our results [12]. These
criteria included datatypes and typechecking, expressions, constructs for specifying the structure of
transition systems and their semantics, and scalability of models.

Next, we expanded on our initial set of comparison criteria to include other interesting characteristics
of declarative modelling languages that we did not previously consider. Further, we expanded our set
of chosen declarative modelling languages from the initial three languages (B,Dash, and TLA+) to
include AsmetaL, Alloy, Event-B, and PlusCal as well. We then chose a diverse set of the
three most interesting examples from our initial set of examples across the characterization spectrum,
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Figure 3.1: Our case studies, across the data- vs. control-oriented characterization spectrum

and modelled them in the newly added languages as well. This helped us make sure we correctly set up
the tool support available for each of the languages.

Having made sure we are set up to use the supporting tools available for each language by modelling
our previous examples in the newly added languages, we expanded our set of examples with two new
larger systems. These two are the Library and Railway systems, marked with an asterisk in Figure 3.1.
Collectively, we increased our number of models from eighteen (six models in three languages) small
models to thirty-five (five models in seven languages) including larger examples. Our final case studies
are those typeset in bold in Figure 3.1, presented in this thesis. Table 7.1 in Chapter 7 shows the sizes of
the models in the commonmeasuring unit Lines of Code, highlighting our use of larger and realistic
examples for our case studies in this work.

Table 3.1 shows the case studies and languages considered in this work. For each case study (row),
the number in each column indicates the order in which the model was completed in that language. We
tried to make the table such that most columns include either a 1 or an E, meaning that at least one of
the case studies was first modelled by us in that language, or originated in that language. We then used
that version as the reference model for the next models of that case study ported to the other languages.
Our first three models of EHealth, digital watch, and musical chairs were completed concurrently, and
thus are all labelled ‘1’ in the table. For the case studies where no reference model was available, we used
the informal or semi-formal description of the system from the originating paper to write a first model,
and used that model as our reference for the subsequent models of the case study. To avoid any bias, we
assigned a random order to each model of each case study in each of the languages. We carried out the
case studies top to bottom, starting with the EHealth system and ending with Railway, learning new
languages as needed. While doing so, we observed and took notes about various characteristics of the
modelling languages according to our comparison criteria, focusing on those used in the current model,
and howwe believed they affected themodelling process. With the help of these notes, we later developed
isolated exemplars, which are small examples meant to demonstrate the differences between languages
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with respect to a particular criterion. If a model needed updating (e.g. addition of new properties, new
criteria, new insights, etc.), we iterated through the versions of the model in all languages, updating those
accordingly as well. Through this process we further expanded our set of comparison criteria.

Table 3.1: Order of modelling case studies across languages

Case study
Language

B Event-B Alloy Dash TLA+ PlusCal AsmetaL

EHealth [64] 1 2 3 1 1 4 5
Musical Chairs [62] 1 4 E [32] 1 1 3 2
Digital Watch [38] 1 2 5 1 1 4 3
Library [33, 34] E [34] 1 E [34] 3 5 2 4
Railway [59] 1 7 3 5 6 4 2

Legend: E indicates Existing models, i.e. those that we had no influence on. The numbers in each row
indicate the order of languages the case study was done in.

Our methodology was designed to limit bias towards one language or another when drawing our
conclusions regarding language comparisons and recommendations based on them. For threats to
validity, a possible threat to internal validity is that not all languages were the source/reference language
in which a case study was modelled in. To partially alleviate this, we made sure that at least most of
chosen languages were the source/reference for at least one case study. To further minimize threats to
internal validity, we randomized the order in which we carried out each case study across the languages.
A possible threat to external validity is that we may be missing comparison criteria that could have risen
have we had done more case studies. Further, we only have five examples as part of our case studies. To
partially remedy this, we made sure to use a diverse set of examples across the data- vs. control-oriented
characterization spectrum, and of different sizes. A possible threat to construct validity is that our
recommendations for each case study may be biased by our previous knowledge of some language, as
we are more familiar with some languages more than others. To alleviate this bias, we have included
multiple new languages and new case studies, that we were not previously familiar with. Threats to
conclusion validity are those concerning the validity of our conclusions and recommendations about the
choice of modelling language. To address these, we devised an extensive set of comparison criteria to
compare the languages against while carrying out the case studies, and used a diverse set of examples for
our case studies based on which we make our recommendations.
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Chapter 4

Control Modelling

In this chapter, we discuss in depth the control aspects and the structure of transition systems as
modelled in each of our selected modelling languages. Each section starts with a brief summary of the
characteristics of the languages with respect to the section’s comparison criterion, followed by detailed
discussion of the criterion across the languages. Table 4.1 summarizes the differences in the structure of
transition systems as modelled in each of our selected declarative modelling languages in alphabetical
order.

As a reminder, the main concern of this thesis is comparison of the selected modelling languages for
modelling transition systems, even though someof these languagesmay be used formore general-purpose
modelling. Namely, the PlusCal algorithm language is a language designed for formal specification
of algorithms and a counterpoint to pseudo-code, and Alloy is a declarative specification language
capable of modelling complex structural and behavioural constraints of software systems.

4.0 Terminology

As choice of terminology varies from one language to the next, we first define some standard terminology
that we will use throughout this chapter when comparing the seven languages. We will use the words
implicit and explicit carefully when referring to language constructs in this chapter: we say a construct
is explicit in a language if the language has a textual representation corresponding to that construct; and
otherwise we say it is implicit, which may potentially be built/calculated by the tool support behind the
scenes.
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Table 4.1: Structuring Transition Systems - Summary

Criteria
Language B Event-B Alloy Dash TLA+ PlusCal AsmetaL

Snapshot variables VARIABLES VARIABLES varies in state VARIABLES variables signature

Initialization INITIALISATION INITIALISATION init init Init variables default init

TR representation I I E I ME I ME
Control state hierarchy — — — X — — —

Deadlock P P P P P P P
Contradictory TR Ind Ind P Ind P Ind P
Contradictory TP P P P P P P P

Stuttering E E E I(m) + E I(a) + E I(a) + E I(m) + E
Frame problem unchanged unchanged may change env UNCHANGED unchanged monitored

Legend:
TR: Transition Relation. TP: Transition Postcondition. E: Explicit. ME: Mostly Explicit. I: Implicit. P: Possible.
NP: Not Possible. I(a): Implicit with all variables unchanged. I(m): Implicit withmonitored variables unchanged.
Ind: Indirectly possible: when no other transition is ever enabled, contradictory TP results in a contradictory TR.

• Snapshot: is a mapping of variables to values.

• Snapshot space: is the set of all possible snapshots of a transition system, i.e. the cross product
of variable values.

• Transition System: a transition system TS is a tuple (S, TR, I ) where S is a set of snapshots,
TR ⊆ S × S a transition relation, and I ⊆ S a set of initial snapshots. A model in a declarative
modelling language defines a transition system that starts in an initial snapshot s0 ∈ I and
progresses from a snapshot s to the next snapshot s′ for (s, s′) ∈ TR.

• Labelled control state: is a distinguished set of variables with a finite set of values, that are used
to control when a transition can be taken. Languages with labelled control states can have control
state hierarchy and concurrency.

• Transition: a transition relation may be composed of a set of transitions, each T ⊆ TR ⊆ S × S
with potentially multiple (s, s′)mappings from source snapshot s to destination snapshot s′.

• Step: is a pair (s, s′) of snapshots where (s, s′) ∈ TR.

• Monitored variable: also referred to as an environmental variable, is one that canbe only observed
by the model but not changed by it— they are only changed by the environment. Monitored
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variables are commonly used for modelling environmental phenomena such as temperature as
obtained from a sensor. Conversely, a controlled variable (a non-environmental variable) is one
that may be both observed and changed by the model.

• Frame problem: refers to the issue of how snapshot variables that are not explicitly changed
in a transition may or may not change from one snapshot to the next. The frame problem
is particularly an issue in declarative languages that rely on logical constraints on variables for
describing the changed and unchanged variables in a transition. Since in all studied languages
only one transition is taken per step, the frame problem can be discussed at the transition level
(Section 4.4). If in a language more than one transition may be taken in a step, the frame problem
would need to be discussed in the context of the transition relation as well.

• Stuttering step: is often used to allow a change in the external environment. The exact semantics
of stuttering steps—when theymight occur, and which variables they allow to change andwhich
ones they keep unchanged—may differ between two declarative modelling languages, and from
onemodel to the next. A declarativemodelling languagemay have an implicit notion of stuttering,
in which case it will also have accompanying semantics as to when stuttering steps may occur:
whether stuttering steps have a lower ‘priority’ and may occur only when no other transitions
are enabled, or if they have the same priority as other transitions and may occur even when one
or more other transitions are enabled. In a language with implicit stuttering, if it differentiates
between monitored and controlled variables then usually its stuttering steps will allowmonitored
variables to change while keeping controlled variables unchanged, otherwise its stuttering steps
will keep all variables unchanged (each stuttering step is a self-loop from a snapshot back onto
itself). In languages without implicit stuttering, a stuttering step must be modelled using an
explicit transition definition, and the modeller may decide which variables may change and which
are kept unchanged. Explicitly-added stuttering steps (as transition definitions) always have the
same priority as other transitions. Adding stuttering steps is one way of ensuring the totality of a
transition relation.

4.1 Snapshot and Snapshot Space

A snapshot is amapping from variables to values. The first criterionwewill compare across the languages
is representation of snapshots and variables of a transition system in each language. Note that the more
data-oriented aspects of snapshots and the snapshot space are discussed in Chapter 5.
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In B, Event-B, TLA+, PlusCal, and AsmetaL a model has a clause for declaring variables,
inDash variables are declared at the top of the main snapshot block, and in Alloy the declaration
location of variables varies depending on the choice of snapshot representation. Figure 4.1 has exemplars
showing snapshot declarations across the languages.

• In B, the variables are declared in the VARIABLES clause of the machine.

• In Event-B, the variables are declared in the VARIABLES part of the machine.

• Alloy is a more general-purpose modelling language not dedicated specifically to modelling
transition systems, and does not have an explicit construct/keyword for declaring a snapshot or its
variables. Thus, the choice of snapshot representation is with the modeller. A common paradigm
for representing snapshots in Alloy is using a State signature, with its fields corresponding to
variables. See [74] for other techniques for snapshot modelling in Alloy.

• InDash, a snapshot is explicitly declared using the state keyword, and variables are usually
declared at the top of each state block. AsDash supports labelled control state hierarchies,
snapshot definitions can be distributed through nested state blocks. Also,Dash has explicit
syntax for marking a variable as part of the environment, using the env keyword.

• In TLA+, the variables are declared using VARIABLES.

• In PlusCal, global variables are declared using the variables keyword in an algorithm.

• In AsmetaL, variables are declared in a signature block. Variables fall into two general cat-
egories of static constants—which do not change during a machine’s run—and dynamic

variables—which may be changed by an agent’s actions or updates. Dynamic variables are the
snapshot variables, and are further classified into monitored and controlled.

4.2 Initialization

This section discusses how to specify the value of the variables for the initial snapshot(s) of the transition
system in each language. All the studied languages distinguish syntactically variable initialization from
variable declaration, except for PlusCal which not only allows but recommends specifying the
initial value of each variable together with its declaration. Further, all the languages except AsmetaL
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1 // B

2 ABSTRACT_VARIABLES

3 loan,

4 member,

5 book,

6 reservation

1 // Dash

2 conc state Library {

3 env in_m: lone MemberID

4 env in_b: lone BookID

5 members: set MemberID

6 books: set BookID

7 loans: books one -> one

(members)

8 reservations: books one

-> one (seq members)

9 ...

10 }

1 \* TLA+

2 VARIABLES members, books,

loans, reservations

1 // Event-B

2 VARIABLES

3 loans

4 members

5 books

6 reservations

1 // Alloy

2 sig Lib {

3 members:set Member,

4 books: set Book ,

5 loan: books -> members,

6 membersReservingOneBook: seq

members -> books,

7 Renew: books -> members

8 }

1 \* PlusCal

2 variables loans, members,

3 books, reservations;

1 // AsmetaL

2 signature:

3 ...

4 controlled members: Powerset(MemberID)

5 controlled books: Powerset(BookID)

6 controlled loans: Powerset(Prod(BookID, Powerset(MemberID)))

7 controlled reservations: Powerset(Prod(BookID, Seq(MemberID)))

8 ...

Figure 4.1: Snapshots and variables
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support some form of nondeterministic assignment for initialization of variables. Figure 4.2’s exemplars
demonstrate initialization across languages.

• InB, the INITIALISATION clause is used to assign values to variables for the initial snapshot(s). The
INITIALISATION keyword is followed by one or more substitutions (see Chapter 6 of [29]), using
any of the := (becomes equal substitution), :∈ (becomes part of substitution), and : () (becomes
such that substitution) operators.

• In Event-B, the INITIALISATION clause is used to assign values to variables for the initial snap-
shot(s), with actions using any of the := (deterministic assignment), :∈ (nondeterministic
assignment of a set member), and : | (nondeterministic assignment with a before-after predicate)
operators (see Section 3.3.8 of [44]).

• Alloy does not have an explicit construct/keyword for initializing variables. Commonly, a
predicate, conventionally named init, is used to constrain the variable values for the initial
snapshot(s). Any Alloy expression over the variables may be used to constrain each variable.

• InDash, an init block is used within a conc state to declare the values of the variables in the
initial snapshot(s). Any Alloy expression may be used for constraining the variables.

• In TLA+, a predicate, conventionally named Init, is used to describe the values of variables in the
initial snapshot(s). Any TLA+ formula may be used to constrain the values of the variables in the
Init predicate. Note that there is nothing special about the name Init, and any other name may
be used, since it is not a built-in keyword.

• In the PlusCal algorithm language, the initial values of the variables are often specified along
with their declaration in the variables part of the algorithm. Typical TLA+ formulas may be
used for constraining the variables.

• In AsmetaL, the initial values of the variables are given in a default init block, using the =
operator. AsmetaL does not support any form of nondeterministic variable initialization.

4.3 Transition Relation

This section describes how each language allows a modeller to create a transition relation, TR, of a
transition system. We describe the languages with respect to this criterion, ranging from those wherein
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1 // B

2 INITIALISATION

3 loan := {} ||

4 book := {} ||

5 member := {} ||

6 reservation := {}

1 // Dash

2 conc state Library {

3 ...

4 init {

5 no members

6 no books

7 no loans

8 no reservations

9 }

10 }

1 \* TLA+

2 Init ==

3 /\ members = {}

4 /\ books = {}

5 /\ loans = <<>>

6 /\ reservations = <<>>

1 // Event-B

2 INITIALISATION

3 THEN

4 loans, members, books,

reservations := {}, {},

{}, {} // act1

5 END

1 // Alloy

2 // Lib is the snapshot sig

3 pred Init [L: Lib] {

4 no L.books

5 no L.members

6 no L.loan

7 no L.membersReservingOneBook

8 no L.Renew

9 }

1 \* PlusCal

2 variables loans = <<>>,

3 members = {},

4 books = {},

5 reservations = <<>>;

1 // AsmetaL

2 default init s0:

3 function members = {}

4 function books = {}

5 function loans = {}

6 function reservations = {}

Figure 4.2: Initialization
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the representation of TR is the most explicit, to those where it is the least explicit. For each language,
we examine its constructs for defining a transition relation, and how stuttering steps are represented in
the language. In the next section, Section 4.4, we will examine each language’s constructs for defining
transitions that are composed together to form TR.

Of the languages studied in this thesis, Alloy, TLA+, and AsmetaL require a more explicit
representation of a transition relation, where TR is defined mostly in the model text. Figure 4.4 shows
exemplars defining a transition relation in each of these three languages. Because TR is described via a
set of constraints, and not imperative definitions, a declarative modelling language may allow expressing
inconsistent transition relations.

In Alloy, the transition relation, TR, is defined completely explicitly, and its form can vary greatly
depending on how the snapshot, variables, and transitions are defined. For instance, with a State

signature as the snapshot representation and its fields as variables,TR can be decomposed into predicates
that can be viewed as transitions. In Section 4.4, we will discuss conventions used for defining transitions
inAlloy. Stuttering inAlloymaybemodelled explicitly, bywriting a transition that constrains some
or all of the variables (depending on whether the model divides the variables into separate monitored
and controlled variables) to remain unchanged.

InTLA+, the transition relation is defined mostly explicitly. By convention, the transition relation is
a predicate Next defined as the disjunction of all of themodel’s transition predicates, which is themethod
best supported by TLC, the accompanying model checker for TLA+. Though in TLA+ one could write
models not using disjunctions to join the transition predicates, TLC is not optimized to handle such
models as well, because it rewrites the transition relation as a disjunction of as many simple subactions
as possible [76]. If TR is not a disjunction, two possible issues arise: First, from a debugging perspective,
the visualizer willnot showTR as a composition of smaller transition predicates, therebymaking it harder
to reason about the model and its behaviour. Second, from a model checking performance perspective,
TLC spawns a worker thread for each subaction to explore the snapshot space, but because TRwas not
broken down into smaller subactions, TLCmay not spawn an optimum number of worker threads. For
predicates taking one or more arguments, existential quantification over the corresponding set(s) may
be used to bind an element from that set and pass to the predicate. TLA+ has implicit stuttering, and
stuttering steps may occur between any two transitions, including when the system has not reached a
deadlock. This implicit addition of stuttering to TR does not change the meaning of a model, since all
TLA formulas are invariant under stuttering (i.e. adding or removing stuttering steps does not affect
whether or not a behaviour satisfies a temporal formula).

In AsmetaL, the transition relation TR is defined mostly explicitly using a special rule named
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r_Main, themain rule. The main rule is by convention broken down into smaller rules, each a transition.
The main rule specifies when and how each transition will be called. AsmetaL is an imperative-style
language, and does not support defining the transition relation as a disjunction of multiple transitions
like the other languages with explicit TR representation do. Thus, to write a transition relation that
would take a randomly-chosen transition each time, we have to declare an enumerated set with each
element corresponding to one transition, use the choose rule in the definition of the transition relation
to choose an element from that set, and use a switch with a case for each transition, executing the
transition corresponding to the chosen element of the enumerated set. This can be cumbersome and
error-prone in a model with a large number of transitions, since the modeller may forget to update the
switch cases when adding or removing transitions. Stuttering in AsmetaL can be added explicitly,
using the skip rule, as well as occurring implicitly in the case of a deadlock, which happens when the
update set corresponding to a transition is empty (i.e. no variable assignments in the transition) or when
the update set is inconsistent (i.e. there are conflicting assignments to the same variable, one form of
which is simultaneous assignment two the same variable in a parallel block, as shown on Figure 4.3.
Implicit stuttering in an ASM allows changes to the monitored variables by the environment, so as
to enable potential further progress of the transition system [71]. This stuttering behaviour added
implicitly to TR also ensures that TR is total.

The remaining languages—B, Event-B, PlusCal, andDash—each have an explicit con-
struct for defining transitions, which are implicitly composed together to form a transition relation. In
each language, only one transition is allowed to be taken in each step, and all different interleavings of
the transitions are considered for modelling concurrency.

The transition relation in B, Event-B, and PlusCal is implicitly formed as follows: at any
step, any transition whose precondition is satisfied (i.e. is enabled) may be chosen to be taken. There
is no requirement on the preconditions of the transitions to be non-overlapping, and more than one
transition may be enabled at the same time, resulting in a branch in the snapshot space graph. In the
remainder of this section, we will refer to this formation of TR as TRIMP .

In B, the transition relation is implicitly formed, per TRIMP , and is a composition of transitions,
referred to as operations inB, whichmay have zero ormore preconditions, and one ormore substitutions
from which postconditions may be derived. A stuttering step in Bmust be represented explicitly, using
the skip generalized substitution— also referred to as the identity substitution—which takes no action.

In Event-B, the transition relation is formed implicitly, per TRIMP , and consists of transitions,
referred to as events in Event-B, whichmay have zero or more preconditions, and one or more actions
from which postconditions may be derived. In Event-B, a stuttering step must be denoted explicitly,
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1 // AsmetaL

2 asm inconupd

3 import StandardLibrary

4

5 signature:

6 controlled var: Integer

7

8 definitions:

9 rule r_varinc = var := var + 1

10 rule r_vardec = var := var - 1

11

12 main rule r_Main =

13 par

14 r_varinc[]

15 r_vardec[]

16 endpar

17

18 default init s0:

19 function var = 42

Figure 4.3: Inconsistent update of a snapshot variable in AsmetaL

using a skip event, which is a transition that is always enabled (its guard is TRUE) and does nothing (it
has no actions).

In PlusCal, the transition relation is formed implicitly, per TRIMP , wherein the transitions are
implicitly disjoined together, A stuttering step in a PlusCal algorithmmay be represented explicitly
in a process, using the skip atomic instruction, or implicitly, between any two PlusCal steps (defined
in Section 4.4 below). Since PlusCal specifications are ultimately translated to TLA+ and checked by
TLC, one may opt to not use the automatically generated transition relation and write their own. In the
next section, for PlusCalwe will look at how transitions are created from the process descriptions.

InDash, the transition relation is formed implicitly following the semantics of concurrent, hi-
erarchical state machines. For a transition to be taken, the snapshot must include the source state of
the transition, and transitions exiting states at a higher level in the hierarchy have priority over lower
states. Particularly distinct from the other languages is the concurrent and hierarchical states found
in aDashmodel. Because of this concurrency,Dashmakes the distinction between big steps and
small steps in the transition relation, as shown in Figure 4.5. Big steps consist of multiple small steps,
which are each one transition. In a big step, at most one transition per concurrent region can be taken.
Monitored (environmental) events can change only at big step boundaries (called a stable snapshot),
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1 \* TLA+

2 Next ==

3 \/ \E b \in BookID:

4 \/ Acquire(b)

5 \/ Discard(b)

6 \/ Return(b)

7 \/ \E m \in MemberID:

8 \/ Join(m)

9 \/ Leave(m)

10 \/ \E m \in MemberID, b \in BookID:

11 \/ Cancel(m, b)

12 \/ Lend(m, b)

13 \/ Renew(m, b)

14 \/ Reserve(m, b)

15 \/ Take(m, b)

1 // Alloy

2 pred TransLCR[m: Member]

3 {

4 all l: Lib - LibOrd/last |

5 LCR[m, l, l.LibOrd/next]

6 }

7 pred LCR[m: Member, L, L': Lib]

8 {

9 some b: Book |

10 Cancel[m, b, L, L']

11 or Return[m, b, L, L']

12 // For test switch Leave and BuggyLeave

13 or Leave[m, L, L']

14 // or BuggyLeave[L, L']

15 }

1 // AsmetaL

2 main rule r_Main =

3 choose $b in BookID, $m in MemberID, $rule in RuleId with true do

4 switch($rule)

5 case ACQUIRE:

6 r_Acquire[$b]

7 case CANCEL:

8 r_Cancel[$m, $b]

9 case DISCARD:

10 r_Discard[$b]

11 case JOIN:

12 r_Join[$m]

13 case LEAVE:

14 r_Leave[$m]

15 case LEND:

16 r_Lend[$m, $b]

17 case RENEW:

18 r_Renew[$m, $b]

19 case RESERVE:

20 r_Reserve[$m, $b]

21 case RETURN:

22 r_Return[$b]

23 case TAKE:

24 r_Take[$m, $b]

25 endswitch

Figure 4.4: Explicit transition relation
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sp0
stable

env input

sp1 sp2 spn−1 spn
stable

env input

ss1 ss2 … ssn

big step

Figure 4.5: Big step (sp is a snapshot; ss is a small step)

T (s, s′)
=

[
preT (s)

]
?
[
postT (s, s′)

]
=

[
guardT (s) ∧ srcT (s) ∧ evtT (s)

]
?
[
actT (s, s′) ∧ destT (s′) ∧ genevtT (s′)

]
Figure 4.6: Decomposition of a transition T

so the occurrence of a monitored event can trigger multiple transitions as long as the transitions are
in different concurrent regions. Events generated by one transition can trigger other transitions (in
different concurrent regions) within the same big step. Implicit stuttering inDash happens only at
the big step boundaries, when no more transitions may be taken. For stuttering when one or more
transitions are enabled, an explicit stuttering transition must be used.

4.4 Transitions

This section describes how each language can represent a transition T of a transition system. As we are
working with declarative modelling languages, each transition describes a set of pairs (s, s′) ∈ T . To
create a transition T ⊆ TR ⊆ S × S we may use two-snapshot predicates, assignment operators, or
both; depending on the language. A predicate corresponding to a transition T describing a set of pairs
(s, s′) ∈ T can be broken down into preT on the source snapshot and postT on the source and destination
snapshots, combined using some logical connective ? , as shown in Figure 4.6. The transitionmay only
be taken when preT is true. Each of preT and postT may in turn consist of one or more explicit language
constructs. The preconditions preT of the transition may consist of guards guardT , a source labelled
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control state srcT , and triggering event evtT ; and the postconditions postT may consist of actions actT ,
destination control state destT , and generated events genevtT , constraining the snapshot and variables
after the transition is taken. We will describe the languages in increasing order of explicit language
constructs for describing a transition. Figure 4.7 shows exemplars for declaring transitions in each
language.

Alloy does not have a special construct for defining transitions. Commonly, a transition is
modelled as a predicate—defined using the pred keyword—over unprimed and primed variables, con-
straining the value of the variables in the source and destination snapshots. Unlike the other languages,
primed variables do not carry any special meaning in Alloy, and are used as a common modelling
convention. Though a transition may be represented using a single predicate, Farheen’s guidelines [32]
separate a transition definition into two separate predicates—one for preconditions over the variables
in the source snapshot, and another for postconditions over the variables in the source and destination
snapshots— to promote structure. Commonly, the pre and post predicates for each transition are
conjoined together to form the main transition predicate (i.e. ? in Figure 4.6 would be ∧), and the
transition predicates are then disjoined together to form the transition relation. This is referred to as
the disjunctive modelling method in Farheen’s guidelines. The guidelines recommend this method for
decomposing the transition relation and transitions of a transition system because using this method,
adding a transition does not change the behaviour of other existing transitions, and is thus more likely to
produce a transition relation expected by the modeller. With respect to the frame problem, in Alloy
any variable not constrained in a transition predicate may change nondeterministically from the source
to the destination snapshot, and there is no distinction between monitored and controlled variables.

In TLA+, a transition (an action in TLA+ terminology) is a two-snapshot predicate over unprimed
and primed versions of all variables, constraining each variable in the source and destination snapshots.
Similarly to Alloy, in TLA+ a transition may be further broken down into separate pre and post parts
for clarity. The preconditions of a transition are commonly a series of one or more conjoined formulas
over unprimed variables in the source snapshot and optionally over the transition arguments if any, and
the postconditions or actions of a transition are conjoined formulas over primed and unprimed variables,
constraining each variable in the destination snapshot. The pre and postconditions are often conjoined
together, i.e. ? in Figure 4.6 would be ∧. With regards to the frame problem, TLA+ requires that
all transitions constrain the value of every variable, either by constraints on the primed and unprimed
variables or by marking them with the UNCHANGED keyword. TLA+ does not make a distinction between
monitored and controlled variables.

AsmetaL does not have any construct for decomposing a transition into separate pre and post
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parts; and a transition definition consists only of an action—a rule in AsmetaL terminology. An
actionmay be one of several rules, producing a set of assignments to controlled variables. The transition
rule may be a simple rule such as the skip rule or the update rule (i.e. variable assignment, using the
:= operator), or a more complex rule such as parallel or sequential block, if, case, forall, choose, etc.,
which enables composition and combinations of other rules together. A transition in AsmetaL does
not have preconditions on when it may be taken, and conditional rules such as if and casemay be
used to constrain the execution of the action(s) of that transition. In AsmetaL, for (s, s′) ∈ T the
transformation of s to s′ is defined as the effect of applying as an atomic step the result of a consistent
update set (one with no conflicting variable assignments) on s. With respect to the frame problem, any
controlled variable not assigned to in a transition is unchanged by that transition, and retains its value
from the source snapshot.

In B, a transition is referred to as an operation, each consisting of one or more actions— called a
generalized substitution—which may take several forms (see Chapter 6 of [29] for an exhaustive list of
the forms). An actionmay be a compound substitution— such as a block substitution (BEGIN S END) or
a preconditioned substitution (PRE P THEN S END) with precondition P required to be true before calling
the operation (otherwise the operation will not be enabled and cannot be executed) and S the body of
the substitution—or a simple one like := (becomes equal), :∈ (becomes part of), or : ( ) (becomes
such that). The simpler substitutions can either be the entire body of a substitution, or be used in one
of the compound substitutions like the ones mentioned above. Note that := and :∈ are used similar to
assignment in typical programming languages, whereas with : ( ) the modeller may refer to the value of
the variable before substitution (in the source snapshot) using the $0 suffix. For example, x$0would refer
to the value of x in the source snapshot, and x to its value in the destination snapshot. With respect to
the frame problem, in B any variable not assigned to in a substitution retains its value and is unchanged
by that transition. B does not distinguish between monitored and controlled variables.

InEvent-B, a transition is referred to as an event, and is a simplification of aB operation. In contrast
toB, inEvent-B a transitionhas only one general form, consisting of one ormore of the followingparts:
parameters, guards, and actions. A guard, defined in the WHERE clause of the transition and the only form
of precondition in Event-B, is the precondition required to be true for the transition to be enabled. A
transition may have an arbitrary number of parameters. Like a snapshot variable, each parameter has a
type—whichmust be declared as a guard of that transition— and a unique name. An action, consisting
of an assignment, describes how the source and destination snapshots relate, and is a simplification of
B’s generalized substitutions. Each action has a label, used for identifying and/or referring to that action.
Labels are used throughout Event-B tool support, and are useful for identifying the role/kind of
a construct involved in a machine or proof about the machine. By convention, an action label starts

28



with the act prefix, and a guard label starts with the grd prefix. An Event-B assignment operator
is either deterministic or nondeterministic. The := operator is for deterministic assignment of the
right-hand side value to the left-hand side variable, :∈ for nondeterministic assignment of an element of
the right-hand side set to the left-hand side variable, and : | for (nondeterministically) constraining the
value of the left-hand side variable with the before-after predicate given on the right-hand side. Similarly
to B, := and :∈ are used without primed variables, and : | is used with primed version of variables
referring to their value in the destination snapshot. Regarding the frame problem, similarly to B, in
Event-B any variable not assigned to using an assignment operator is unchanged by the transition
and retains its value. No distinction is made between monitored and controlled variables in Event-B.

In PlusCal, we can leverage the language’s constructs for expressing concurrency and nondeter-
minism to model a transition system in the form of an algorithm. Similar to a programming language,
PlusCal has a control flow semantics that defines the meaning for the algorithm text and how it may
be executed. Whenmodelling a transition system in PlusCal, a single-step processwill be a transition
in the resulting transition system. The preconditions of a transition are specified using an await (or
when) statement which acts like a guard, allowing the process body to be executed only when the guard
expression evaluates to TRUE. In PlusCal, a single step, referred to as an atomic action, corresponds
to the execution of the statements contained between one label and the next. A label is an identifier
marking a location in a PlusCal algorithm, similar to a label in a traditional programming language
like C. An algorithm has a program counter pointing to the current label being executed, and may be
thought of as corresponding to non-hierarchical control states. Since normally the body of a PlusCal
process is executed only once, whereas a transition in a transition system may be taken any number
of times as long as it is enabled, we add a goto statement at the very end of each process to jump back
to the label at the very beginning of that process, allowing the process to be taken again. In addition
to global (algorithm-wide) variables, each PlusCal processmay have local variables declared using
the variables keyword. A local or global variable x can be initialized to expr using a declaration of
the form variable x = expr. In process body, variables may be assigned to using the := operator, and
will otherwise retain their value from the source snapshot. PlusCal does not distinguish between
monitored and controlled variables.

Dash is the language with the most language constructs for modelling a transition of a transition
system studied in this thesis. A transition in Dash is defined using the trans keyword, optionally
consisting of the parts described below. The preconditions of aDash transition may be divided into
three parts:

1. The guard condition of the transition, denoted using the when keyword, which is an Alloy
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expression over the snapshot variables that when true the transition would be enabled.

2. The source labelled control state of the transition, denoted using the from keyword. SinceDash
has explicit control state representation using state blocks, labelled control state blocks may be
nested to form a control state hierarchy, useful for grouping related states together. In
the absence of an explicit from part, the most immediate state containing the transition definition
will be used as the source labelled control state of that transition.

3. The event triggering the transition, denoted using the on keyword, for triggering the transition
whenever a certain event is fired. Events are useful for modelling broadcast communication and
cascading effects. The (optional) on part indicates the name of the event triggering the transition.

The postconditions of aDash transition may be divided into three parts:

1. The actions of the transition, denotedusing the dokeyword, are two-snapshotAlloy expressions
over unprimed and primed variables describing the value of each variable in the destination
snapshot, modelling the effects of executing the transition.

2. The destination labelled control state of the transition, denoted using the goto keyword. In the
absence of an explicit goto part, the most immediate state containing the transition definition
will be used as the destination labelled control state of that transition.

3. The generated events, denoted using the send keyword, for firing one or more events upon the
execution of the transition. The (optional) send part denotes the name of an event or a set of
comma-separated events to be generated when the transition is taken.

Dash semantics define two kinds of steps: big steps and small steps. A big step consists of one or
more sequential small stepsmeant to represent the transition system reacting to the external environment
or its own internal changes. Each small step corresponds to a transition, and small steps are taken until
the system cannot take anymore transitions, at which point it is said to have become stable. With respect
to the frame problem, monitored variables (marked with env) inDash are allowed to change from one
snapshot to the next when the next snapshot is stable (i.e. at the big step boundaries), and will otherwise
retain their values from the source snapshot. For controlled variables, if the primed version is mentioned
in the action of a transition, it is assumed that the action will constrain it; otherwise, they are forced to
retain their value from the source snapshot.
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1 // B

2 Join (member_) =

3 PRE

4 member_ : MEMBERID &

5 member_ /: member

6 THEN

7 member := member \/ { member_ }

8 END;

1 // Dash

2 trans join {

3 when !(in_m in members)

4 do members' = members + in_m

5 }

1 \* TLA+

2 Join(member) ==

3 /\ member \in MemberID

4 /\ member \notin members

5 /\ members' = members \union {member}

6 /\ UNCHANGED << books, loans, reservations >>

1 // Event-B

2 Join: // not extended ordinary

3 ANY

4 member

5 WHERE

6 member : MemberID not theorem // grd1

7 member /: members not theorem // grd2

8 THEN

9 members := members \/ {member} // act1

10 END

1 // Alloy

2 // Lib is the snapshot sig

3 /*-------------------

4 Join

5 -------------------*/

6 pred CanJoin[m: Member, L: Lib] {

7 // m does not exist in the Library.

8 no (m & L.members)

9 }

10

11 pred Join[m: Member, L, L': Lib] {

12 ----Precondition-----

13 CanJoin[m, L]

14 -----Postcondition------

15 // add the m in the set of members

16 L'.members = L.members + m

17 ------Nochanges-----

18 NoChangebooks[L, L']

19 NoChangeloan[L, L']

20 NoChangeSeqBook[L, L']

21 NochangeRenew[L, L']

22 }

1 \* PlusCal

2 process Join = "Join"

3 variable member \in MemberID

4 begin

5 join:

6 when member \notin members;

7 members := members \union {member};

8 goto join

9 end process

1 // AsmetaL

2 rule r_Join($m in MemberID) =

3 if (notin(members, $m)) then

4 members := union(members, {$m})

5 endif

Figure 4.7: Transitions
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4.5 Invariants

This section describes how invariants for a transition system are represented in each language. An
invariant of a transition system is a formula that is true in every snapshot of the transition system. In
other words, an invariant must hold in the initial snapshot and after every transition.

In B and Event-B, invariants are written in the INVARIANT and INVARIANTS section of a machine
respectively. In amodel checking setting, e.g. using ProB, the invariants are checked to hold in every snap-
shot. In a theorem proving setting, the invariants must be proven to be established by the initialization,
and be preserved by every transition.

In Alloy andDash, invariants are written in fact blocks. Dash additionally has invariant
blocks. In both languages, invariants are constraints on snapshots and limit the reachable snapshot space
of the model.

In TLA+ and PlusCal, invariants are defined as TLA+ predicates. In a model checking setting,
these predicates must be added to the Invariants portion of the TLC settings for the model, which will
then be checked to hold in every snapshot. In a theorem proving setting, invariants appear as consequent
of an implication in a THEOREM.

In AsmetaL, invariants are defined using the invariant over keywords, in the definitions

section of an ASM after the rule (transition) definitions. AsmetaL invariants are verified to hold in
every snapshot of the model during analysis (e.g. animating or model checking).

4.6 Inconsistency

In declarative models, inconsistency stems from contradictions in logical formulas. In the context of
declarative transition systems, we consider three kinds of inconsistency that may occur in the description
of a transition system:

• Deadlock: refers to a snapshot that has no explicitly modelled outgoing transitions. In the
absence of stuttering steps in a declarative modelling language, this means a non-total transition
relation. Some languages perform implicit stuttering steps when a transition system reaches a
deadlock, thereby ensuring the totality of the transition relation and enabling potential further
progress of the transition system. Anothermethod for ensuring the totality of a transition relation
is making the transition preconditions complete; i.e. setting up the transitions such that the
disjunction of the preconditions of all transitions combined is true.
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• Contradictory TR: when the logical formula corresponding to the transition relation, TR, is a
contradiction (i.e. is never true), and therefore there does not exist a snapshot trace satisfying the
constraints ofTR’s definition. InB,Event-B, PlusCal, andDash, creating a contradictory
TR explicitly is not a concern, since the transition relation of the model is created implicitly from
the elements described by the modeller, and the above languages do not have an explicit language
construct for defining TR in the model text.

• Contradictory transition postcondition: when the logical formula corresponding to the post-
condition of a transition is a contradiction. One possible form of contradictory transition
postconditions is simultaneous assignment (also sometimes referred to as parallel assignment) to
the same variable in a transition.

In Alloy andDash, it is possible to have a non-total transition relation that reaches a deadlock
wherein no transitions can be taken, or a contradictory TR for which no satisfying instances exists. In
Alloy, TR is written explicitly by the modeller and thus may be the direct source of inconsistency;
whereas inDash,TR is constructed implicitly, andTR-related inconsistencies would be those trickling
up from the individual transitions. It is also possible to write contradictory transition postconditions
in both Alloy and Dash, possibly resulting in a contradictory TR (when no other transition is
enabled). ThoughDash has implicit stuttering at the big step boundaries, they only happen when
all the transition preconditions are false; and they will not help when a transition’s precondition is
true but its postcondition is false. Figure 4.9 is an exemplar of a transition system with a contradictory
transition postcondition. A particular case of contradictory TR in Alloy andDash happens when
Alloy’s util/orderingmodule is used to impose an order on the snapshot signature, and the scope
specified for the snapshot signature does not match exactly the number of snapshots needed for the
snapshot trace for the property being checked. For example, if the scope of a signature S is set to 4,
then open util/ordering[S]will force S to have four elements, and creates a linear ordering over those
four elements. This is because the ordering module constrains all the atoms permitted by the given
scope to exist, to enable an optimization on the internal representation of the order. Dash’s use of the
ordering module by default implies this behaviour, but it can be disabled by unchecking the “Path based
instances” option in theDash editor. Figure 4.8 shows an example of this type of inconsistency in
both Alloy andDash. One possible fix would be to change the scope of Snapshot from 4 to 3.

In TLA+, it is possible to write a transition relation that eventually reaches a deadlock, as well
as writing a contradictory TR for which no satisfying instances exists. A contradictory transition
postcondition results in that transition never being enabled. Inconsistency in TLA+ comes in several
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1 // Alloy

2 open util/ordering[Snapshot] as SO

3

4 abstract sig A {}

5 one sig a1, a2, a3 extends A {}

6

7 sig Snapshot {

8 v: one A

9 }

10

11 pred a1_to_a2[s, s': Snapshot] {

12 s.v = a1

13 s'.v = a2

14 }

15

16 pred a2_to_a3[s, s': Snapshot] {

17 s.v = a2

18 s'.v = a3

19 }

20

21 pred init[s: Snapshot] {

22 s.v = a1

23 }

24

25 pred next[s, s': Snapshot] {

26 a1_to_a2[s, s']

27 or a2_to_a3[s, s']

28 }

29

30 pred path {

31 init[SO/first]

32 all s: Snapshot, s': s.SO/next |

33 next[s, s']

34 }

35

36 run path for 4 Snapshot

1 // Dash

2 abstract sig A {}

3 one sig a1, a2, a3 extends A {}

4

5 conc state Example {

6 v: one A

7

8 trans a1_to_a2 {

9 when { v = a1 }

10 do { v' = a2 }

11 }

12

13 trans a2_to_a3 {

14 when { v = a2 }

15 do { v' = a3 }

16 }

17

18 init {

19 v = a1

20 }

21 }

22

23 // with the ``Snapshot scope'' option set to 4; i.e.

24 // run path for 4 Snapshot, 0 EventLabel expect 1

25 // in the generated alloy translation

Figure 4.8: Inconsistency due to use of util/ordering and scope not matching exactly
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1 abstract sig A {}

2 one sig a1, a2, a3 extends A {}

3

4 conc state Example {

5 v: one A

6 trans a1_to_a2 {

7 when { v = a1 }

8 do { v' = a2 }

9 }

10 trans a2_to_a3 {

11 when { v = a2 }

12 // contradictory postcondition:

13 do {

14 v' = a2

15 v' = a3

16 }

17 }

18 init { v = a1 }

19 }

Figure 4.9: Dashmodel with a contradictory transition postcondition

forms. The simplest is an obviously false specification— for instance Init , 1 = 2, or Init , a ∈ �—
which results in TLC errors like “The spec is trivially false because Init is false” or “Init is never enabled”.

In AsmetaL, it is possible to write a transition relation for an ASM that eventually reaches a
deadlock. Figure 4.10 is an example of an ASM that eventually reaches a deadlock. The interpretation of
the deadlock depends on the tooling used: for instance, the interactive runner for Asmeta considers
the deadlock snapshot the end of execution and will terminate the run when that snapshot is reached,
whereas the Asmeta animator will stutter infinitely when the deadlock state is reached.

In B and Event-B, a transition with a contradictory postcondition (e.g. an action/substitution
like x :∈ � that is always false) is effectively never enabled (same as a transition with a false precondition),
and the transition system would thus reach a deadlock if no other transition is enabled. In Figure 4.11,
the transitions contra_pre and contra_post in both B and Event-B are always disabled and each
transition system is deadlocked. Both B and Event-B employ static checks as part of their type system
to catch variousmodelling errors like typemismatches (e.g. a = � in the above exemplar) or simultaneous
assignment to the same variable (e.g. a := a1; a := a2) in the same transition.

For PlusCal, the general conditions described for TLA+ above may apply to PlusCalmodels
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1 asm example

2

3 import StandardLibrary

4

5 signature:

6 domain Coord subsetof Integer

7 controlled v: Coord

8

9 definitions:

10 domain Coord = {1..5}

11

12 rule r_vinc =

13 while v < 3 do

14 v := v + 1

15

16 main rule r_Main = r_vinc[]

17

18 default init s0:

19 function v = 1

Figure 4.10: ASM that eventually reaches deadlock

as well. However, PlusCal has additional safeguards to make certain kinds of inconsistency un-
representable in valid models. This is achieved by using PlusCal labels to impose restrictions on
valid statements and expressions. For instance, each labelled section may only contain at most one
assignment statement for each variable. This eliminates a case of contradictory transition postcondition
corresponding to the logical formula a′ = b ∧ a′ = c where b , c. Figure 4.12 shows an example of this,
and PlusCalwill show an error about a missing label between lines 8 and 9.
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1 // B

2 MACHINE example

3 SETS

4 A = {a1, a2}

5 VARIABLES

6 a

7 INVARIANT

8 a: A

9 INITIALISATION

10 a := a1

11 OPERATIONS

12 contra_pre =

13 PRE

14 FALSE = TRUE

15 THEN

16 a := a2

17 END;

18 contra_post =

19 PRE

20 a = a1

21 THEN

22 a :: {}

23 END

24 END

1 // Event-B

2 CONTEXT

3 c0

4 SETS

5 A

6 CONSTANTS

7 a1

8 a2

9 AXIOMS

10 partition(A, {a1}, {a2}) // axm1

1 // Event-B (continued)

2 MACHINE

3 m0

4 SEES

5 c0

6 VARIABLES

7 a

8 INVARIANTS

9 a : A // inv1

10 EVENTS

11 INITIALISATION:

12 THEN

13 a := a1 // act1

14 END

15 contra_pre:

16 WHERE

17 FALSE = TRUE // grd1

18 THEN

19 a := a2

20 END

21 contra_post:

22 WHERE

23 a = a1 // grd1

24 THEN

25 a :: {} // act

26 END

Figure 4.11: A deadlocked transition system in B and Event-B

1 EXTENDS Naturals

2

3 (* --algorithm example

4 variables a = 1;

5 process contra_post = "contra_post"

6 begin

7 contra_post:

8 a := 2;

9 a := 3

10 end process

11 end algorithm *)

Figure 4.12: Invalid contradictory transition postcondition thanks to PlusCal’s label semantics
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Chapter 5

Data Modelling

In this chapter, we discuss in depth the description of the data aspects ofmodels in each of the declarative
modelling languages examined in this thesis. This data is constrained in the guards and actions of
transitions and in the invariants of the model. We first lay out the terminology we use in this chapter in
Section 5.0. In Section 5.1 and Section 5.2 we discuss the primitives and constructors of composite units
of data in each language respectively. In Section 5.3 we discuss the expression syntax of each language
and notable differences between them. Section 5.4 discusses the notion of events and how they can be
modelled in modelling languages that do not have that notion. Section 5.5 discusses the declaration of
constants across the languages. Section 5.6 discuses well-formedness conditions and typechecking of
type signatures in each language. In Section 5.7 we look at how the sizes of the sets used in the models
is set in each programming language. Finally, in Section 5.8 we mention some missing features and
constructs that are absent in all the languages we studied. Table 5.1 summarizes the differences in the
data aspects of the selected declarative modelling languages with respect to modelling transition systems.

5.0 Terminology

The following are the terminology we use to describe the data-related characteristics of declarative
modelling languages.

• Primitives: are the smallest unit of data in a language, usually consisting of scalars and sets.
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Table 5.1: Summary of comparison of data aspects of languages

Criteria
Language

B Event-B Alloy Dash TLA+ PlusCal AsmetaL

Primitives scalars, sets scalars, sets sets
same as
Alloy

scalars, sets
same as
TLA+

scalars, sets

Constructors
fun, rel, rec,
multiplicity

fun, rel,
multiplicity

rel,
multiplicity

same as
Alloy

fun, rel
same as
TLA+

rel

Built-ins
Z,N,N1,B,
str, seq, tree

Z,N,N1,B
Z,N,B,
str, seq,

ord, graph

same as
Alloy

Z,N,R,B,
str, rec,
seq, bag

same as
TLA+

Z,N,R,C,
B, char, str,
seq, bag,

map, Undef
Events — — — event — — —

Constants CONSTANTS CONSTANTS — — CONSTANTS CONSTANTS static

Type signatures
&

typechecking
X X X X — — X

Subtypes — X X X X X X

Scopes X X X X X X —

Legend:
Z: Integers,N: Naturals,N1: Naturals excluding zero,R: Reals,C: Complex numbers,B: Booleans.
fun: function, rel: relation, rec: record, seq: sequence, ord: ordering, str: string, char: character.
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• Constructors: are operators that create composite units of data from primitives or other com-
posite data units. For example, functions, relations, and records are constructors. Constructors
includemultiplicities, which impose constraints that limit the values in the composite data being
constructed.

• Built-ins: of a language are the names of particular primitives or particular composite data units
that are part of the syntax of the language or part of its standard libraries, and are available to the
modeller without declaration in the model.

• Standard library: of a language is the collection of one or more modules that are distributed
with the tool support for the language, and include the built-ins and utility functions that may or
may not be hard-coded and/or built into the language.

• Event: denotes an occurrence at a moment in time. In some languages, an event may be used as
a precondition of a transition. Events are often helpful in describing the abstract behaviour of
reactive systems.

• Constant: is a mapping from a name to a value, either a primitive or a composite data unit. In
contrast to a snapshot variable, a constant retains its value throughout all of the transitions of the
transition system. Not all of the languages distinguish between a variables and constants.

• Type signature: is syntax in a language to denote the kind of object contained in a snapshot
variable, constant, or quantified variable as either a primitive or a composite data unit.

• Typechecking: refers to checking that the constraints expressed in the type signatures are consis-
tent with the use of the data in the formulas.

• Subtype: is the name of a subset of values of another set that can be used in a type signature.

• Scope: is the size of a set of objects; i.e. the total number of distinct elements it contains.

5.1 Primitives

In this section, we examine the primitives of each language. Primitives are the smallest unit of data
in a language, and usually consist of scalars and sets. In declarative modelling languages, similar to
programming languages, scalars are objects like numbers, Booleans, strings, or a user-declared object.
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A set is an unordered collection of distinct objects, and is itself an object as well. Sets are a critically
important part of declarative modelling languages, and are the fundamental building blocks for more
complex units of data. We also examine whether each language supports subtypes, indicating whether
or not it is possible to declare a set that is a subset of another set and can be used in a type signature.

The primitives of B consist of scalars and sets. In B, sets are declared in the SETS section of the
machine, and are of two kinds: enumerated and deferred. An enumerated set is one where its elements
are listed in the declaration of the set, whereas the declaration of a deferred set does not include a list of
its elements. B does not support subtypes, but they can be modelled using membership predicates. For
example, a parent set A is declared on line 3, and a constant predicate isC is declared and constrained on
lines 8 and 11 to model the subtyping. isCmust be used as a precondition for any use of the R1 relation.
To declare a snapshot variable to be a scalar from a given set, we add a type signature using the ‘:’ set
element operator and the name of the set, as on line 16 of the B code block in Figure 5.1. To declare a
snapshot variable whose value is a set of elements from a given set, we use the POW operator (for powerset)
in the type signature, as on line 15.

The primitives of Event-B consist of scalars and sets. Sets are declared in the SETS section of a
context, separate from themachine definition. There are two kinds of sets in Event-B: carrier and
enumerated. A carrier set can be declared simply by adding its name to the SETS section of the context.
To declare an enumerated set, in addition to adding its name to the SETS section, we list its elements
under the AXIOMS section, using the partition operator. The first argument to partition is the name
of the set, and subsequent arguments are disjoint sets of elements, as on line 18 of the Event-B code
block in Figure 5.1. Declaring a subtype in Event-B is also done using the partition operator by
providing the name of the parent set as the first argument, and the names of the children as subsequent
arguments, as on line 16. To declare a snapshot variable to be a scalar from a given set, we add a type
signature using the ‘:’ set element operator and the name of the set, as on line 12. To declare a snapshot
variable whose value is a set of elements from a given set, we use the POW operator (for powerset) in the
type signature, as on line 11.

The primitives of Alloy consist only of sets, and there are no scalars in Alloy. A “scalar” in
Alloy is represented using a singleton set. For instance, 5 is really syntactic sugar for the singleton set
{5}. Sets are declared using the sig keyword (for signature). If formulas are added as ‘signature facts’
immediately following a signature, they are implicitly quantified over the elements of the signature.
Subset signatures can be declared using the in keyword. Note that multiple subsets declared using in
may not necessarily be disjoint. To declare disjoint subsets of a set, the extends keyword can be used, as
on line 3 of Figure 5.1. Enumerated sets can be declared using the enum keyword, as on line 4, which
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1 // textual description

2 sets and constants:

3 A, B: set

4 C: subset of A

5 c1: a constant of type C

6 c2: integer constant with value 3

7 variables and events:

8 v1: powerset of A

9 v2: integer

10 ev1, ev2: events

1 // AsmetaL

2 signature:

3 enum domain Event = {EV1 | EV2}

4 abstract domain A

5 abstract domain B

6 domain C subsetof A

7 monitored evs: Powerset(Event)

8 controlled v1: Powerset(A)

9 controlled v2: Integer

10 static c1: C

11 static c2: Integer

12 definitions:

13 function c2 = 3

1 // B

2 SETS

3 A; B;

4 Event = {ev1, ev2}

5 VARIABLES

6 v1, v2, evs

7 CONSTANTS

8 isC, c1, c2

9 PROPERTIES

10 // subtype predicate

11 isC : A --> BOOL &

12 c1 : A &

13 c2 : INTEGER & c2 = 3

14 INVARIANT

15 v1 : POW(A) &

16 v2 : INTEGER &

17 evs : POW(Event)

1 // Event-B

2 CONTEXT

3 c0

4 SETS

5 A

6 B

7 Event

8 CONSTANTS

9 C

10 nC

11 ev1

12 ev2

13 c1

14 c2

15 AXIOMS

16 partition(B, C, nC)

17 card(C) > 0

18 partition(Event, {ev1}, {ev2})

19 c1 : C

20 c2 : INT & c2 = 3

1 // Event-B (continued)

2 MACHINE

3 m0

4 SEES

5 c0

6 VARIABLES

7 v1

8 v2

9 evs

10 INVARIANTS

11 v1 : POW(A)

12 v2 : INT

13 evs : POW(Event)

Figure 5.1: Primitives in snapshot declarations across languages (part one)
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1 // Alloy

2 sig A, B {}

3 sig C extends A

4 enum Event { ev1, ev2 }

5 sig Const {

6 c1: one C,

7 c2: one Int

8 } { c2 = 3 }

9 sig Example {

10 v1: set A,

11 v2: one Int,

12 evs: set Event

13 }

1 // Dash

2 open util/integer

3 sig A, B {}

4 sig C extends A {}

5 sig Const {

6 c1: one C,

7 c2: one Int

8 }

9 state Example {

10 v1: set A,

11 v2: one Int,

12 event ev1 {}

13 event ev2 {}

14 invariant { Const.c2 = 3 }

15 }

1 \* TLA+

2 EXTENDS Integers, FiniteSets

3 CONSTANTS A, B, C, c1, c2

4 VARIABLES v1, v2, evs

5

6 Event == {"ev1", "ev2"}

7

8 TypeOK ==

9 /\ v1 \in SUBSET A

10 /\ v2 \in Singleton(Int)

11 /\ evs \in SUBSET Event

12 /\ c1 \in C

1 \* PlusCal

2 EXTENDS Integers, FiniteSets

3 CONSTANTS A, B, C, c1

4

5 (* --algorithm example

6 variables v1, v2, evs;

7

8 define

9 c2 == 3

10 \* helper predicate

11 Singleton(S) == {{i} : i \in S}

12 Event == {"ev1", "ev2"}

13

14 TypeOK ==

15 /\ v1 \in SUBSET A

16 /\ v2 \in Singleton(Int)

17 /\ evs \in SUBSET Event

18 /\ c1 \in C

19 /\ c2 \in Int

20 end define

21 end algorithm *)

Figure 5.1: Primitives in snapshot declarations across languages (part two)
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is syntactic sugar for declaring a parent abstract sig, and declaring its elements as one sig singleton
sets, each of which extends the parent set. To declare a snapshot variable whose value is an element of a
given set, we use the onemultiplicity keyword in the type signature, as on line 11. To declare a snapshot
variable whose value should be a set of elements from a given set, we use the set multiplicity, as on
lines 10 and 12. Dash’s state syntax is translated to an Alloy signature, and the above statements
about Alloy apply toDash as well.

The absence of real scalars in Alloy has various implications. On the one hand, everything being
sets implies having a simpler, non-overloaded set of operators that can readily be applied to various
objects in the language. On the other hand, it means there are some unusual characteristics of the
language. For instance, in Alloy Boolean values are not scalars, and even though formulas have
Boolean values, variables never do [43, p. 137]. The reason for the absence of Boolean-valued expressions
is that their presence would render an expression like not p ambiguous when p contains zero or more
than one Booleans. Instead, Boolean-like valuations can be mimicked using the Boolean set from the
util/Booleanmodule of Alloy’s standard library.

The primitives of TLA+ and PlusCal consist of scalars and sets. Sets can be declared either as
constants in the CONSTANTS section of a module, or as a predicate definition whose right-hand side is
a set-valued constant expression. To declare a set to be a subset of another set, we can use the SUBSET
keyword. To declare a snapshot variable whose value is an element from a given set, we add a type
signature using the ‘\in’ set membership operator and the name of the set, as on line 10 of the TLA+

code block in Figure 5.1. To declare a snapshot variable to be a scalar from a given set, we can either
use the powerset keyword SUBSET along with the set membership operator \in, or just use \subseteq.
Line 11 shows an example of the former.

In AsmetaL, the primitives are scalars and sets. Sets are declared using the abstract domain

keywords, as on lines 4 and 5 of the AsmetaL code block in Figure 5.1. To declare elements for
a set, one can either change the set declaration from abstract domain to enum domain and list the
enumeration elements as on line 3, or declare the elements using the static keyword, as on lines 10 and
11. In AsmetaL, a subtype is declared using the subsetof keyword, as on line 6. To declare a snapshot
variable to be a scalar from a given set, we add a type signature with the name of the set, as on line 9.
To declare a snapshot variable whose value is a set of elements from a given set, we use the Powerset
keyword, as on lines 7 and 8.

Each language consists of some built-in sets and scalars that are elements of those sets. In B and
Event-B, the built-ins are Booleans, naturals, and integers. B additionally has strings. TLA+ and
PlusCal have Booleans, naturals, integers, reals, and strings. InAsmetaL, the built-ins are Booleans,
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naturals, integers, reals, complex numbers, characters, and strings. Alloy andDash have integers
and Booleans, but the names typically used for scalars in these sets are actually singleton sets. Alloy
also has strings, but currently the only elements in the set of strings are the string literals used in the
current model, and the analyzer cannot find arbitrary instances for strings like it can do for other sets.

5.2 Constructors and Multiplicities

In this section, we examine constructors and multiplicities across the languages. Constructors are
operators that create composite units of data fromprimitives or other composite data units. Multiplicities
in a constructor impose constraints that limit the values in the composite data. Constructors appear in
type signatures. We also discuss how formulas can be used to constrain composite units of data in many
languages, but we do not consider these formulas to be constructors because they are not part of a type
signature, and a formula can domuchmore than constrain the form of one kind of data. Figure 5.2 helps
compare the languages with respect to constructors and multiplicities using an equivalent snapshot
declaration across the languages.

The composite units of data in B are functions, relations, and records, each with various pre-defined
operations available to the modeller. Functions can be created using the “arrow” operators built into
the B language. These arrow operators are: 7→ (partial functions),→ (total functions), 7� (partial
injections),� (total injections), 7� (partial surjections),� (total surjections), and�� (total bijections).
Relations can be created using the↔ arrow operator. The B code block in Figure 5.2 shows examples of
using some of these operators. Line 5 shows a total function f1, and line 6 shows a surjective function f2.
R1 on line 7 is a binary relation, with the additional 1-to-2 constraint imposed in a formula on lines 9 – 11.
s1 is declared to be a sequence of A’s, as on line 8. Since functions and relations inB are both represented
as sets of pairs, they can also be created using the set literal notation along with the 7→ (“maplet”) pair
constructor. In addition to functions and relations, B also has records with named fields, as shown in
the B code block of Figure 5.3. The struct operator denotes the set of records matching the given field
signatures, and is used in the type signature when declaring a new record. A new instance of a record can
be created using the rec operator. Built-in constructors in B include (zero-indexed) sequences and trees.

Event-B’s composite units of data are functions and relations. Event-B, similar to B, has
various arrow operators for constructing functions and relations. In addition to all of B’s functions and
relations arrowsmentioned above, Event-B has three additional arrows for constructing specific kinds
of relations. Namely,←↔ (total relations),↔→ (surjective relations), and↔↔ (total surjective relations).
In Figure 5.2, line 12 shows a total function f1, and line 13 shows a surjective function f2. R1 on line 14
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1 // textual description

2 uninterpreted sets from Figure 6.1

3 snapshot variables:

4 f1: total function from A to B

5 f2: monitored surjective function from

A to B

6 R1: 1-to-2 binary relation from C to B

7 s1: sequence of A's

1 // B

2 VARIABLES

3 f1, f2, R1, s1

4 INVARIANT

5 f1 : A --> B &

6 f2 : A -->> B &

7 R1 : A * B &

8 s1 : seq(A) &

9 !(v).(v: A & isC(v) <=>

10 card(R1(v)) = 2 &

11 not(isC(v)) => card(R1(v)) = 0)

1 // Event-B

2 MACHINE

3 m0

4 SEES

5 c0

6 VARIABLES

7 f1

8 f2

9 R1

10 s1

11 INVARIANTS

12 f1 : A --> B

13 f2 : A -->> B

14 R1 : C <-> B

15 s1 : NAT +-> A

16 !v . v : C =>

17 (card({v} <| R1) = 1 &

18 card(R1[ {v} ]) = 2)

1 // AsmetaL

2 signature:

3 controlled f1: Powerset(Prod(A, B))

4 monitored f2: Powerset(Prod(A, B))

5 controlled r1: Powerset(Prod(C, B))

6 controlled s1: Seq(A)

7 derived isfun: Powerset(Prod(D1, D2)) -> Boolean

8 derived issurfun: Powerset(Prod(D1, D2)) -> Boolean

9 derived is1to2: Powerset(Prod(D1, D2)) -> Boolean

10 derived ran: Powerset(Prod(D1, D2)) -> Powerset(D2)

11 definitions:

12 function dom($f in Powerset(Prod(D1, D2))) =

13 {$d1 in D1, $d2 in D2 |

14 contains($f, ($d1, $d2)): $d1}

15 function isfun($f in Powerset(Prod(D1, D2))) =

16 isEmpty({$d1 in D1, $d21 in D2, $d22 in D2 |

17 contains($f, ($d1, $d21))

18 and contains($f, ($d1, $d22))

19 and neq($d21, $d22): $d21})

20 function issurfun($f in Powerset(Prod(D1, D2))) =

21 isfun($f) and eq(D2, {$d1 in D1, $d2 in D2 |

22 contains($f, ($d1, $d2)): $d2})

23 function is1to2($r in Powerset(Prod(D1, D2))) =

24 eq(D1, {$d1 in dom($r), $d21 in D2, $d22 in D2 |

25 contains($r, ($d1, $d21))

26 and contains($r, ($d1, $d22))

27 and neq($d21, $d22): $d1})

28 invariant inv_f1_fun over f1: isfun(f1)

29 invariant inv_f2_surfun over f2: issurfun(f2)

30 invariant inv_r1_1to2 over r1: is1to2(r1)

Figure 5.2: Composite units of data in snapshot declarations across languages (part one)
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1 // Alloy

2 sig Example {

3 f1: A -> one B,

4 f2: A some -> one B,

5 R1: C -> B,

6 s1: seq A

7 }

8

9 fact R1_multiplicity {

10 all a: A | #(a.R1) = 2

11 }

1 // Dash

2 state Example {

3 f1: A -> one B,

4 env f2: A some -> one B,

5 R1: C -> B,

6 s1: seq A,

7

8 fact R1_multiplicity {

9 all a: A | #(a.R1) = 2

10 }

11 }

1 \* TLA+

2 EXTENDS Integers, FiniteSets, Sequences

3 VARIABLES f1, f2, R1, s1

4

5 \* helper operators

6 Range(f) == {f[x] : x \in DOMAIN f}

7 SurFun(a, b) == {f \in [a -> b] : b = Range(f)}

8 RelRange(R) == {x[2] : x \in R}

9 RelDomRes(S, R) == {x \in R : x[1] \in S}

10 OneToN(R, n) ==

11 \A x \in RelDom(R) :

12 Cardinality(RelRan(RelDomRes(R, {x}))) = n

13

14 TypeOK ==

15 /\ f1 \in [A -> B]

16 /\ f2 \in SurFun(A, B)

17 /\ R1 \in C \X B \* \X is cross product

18 /\ OneToN(R1, 2)

19 /\ s1 \in Seq(A)

1 \* PlusCal

2 EXTENDS Integers, FiniteSets, Sequences

3

4 (* --algorithm example

5 variables f1, f2, R1, s1;

6

7 define

8 \* helper operators

9 Range(f) == {f[x] : x \in DOMAIN f}

10 \* ... all helpers identical to the TLA+ ones

11

12 TypeOK ==

13 /\ f1 \in [A -> B]

14 /\ f2 \in SurFun(A, B)

15 /\ R1 \in C \X B \* \X is cross product

16 /\ OneToN(R1, 2)

17 /\ s1 \in Seq(A)

18 end define

19 end algorithm *)

Figure 5.2: Composite units of data in snapshot declarations across languages (part two)
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1 // B

2 MACHINE rectest

3 VARIABLES vrec, vbar

4 INVARIANT

5 vrec : struct(foo : INTEGER, bar : BOOL) &

6 vbar : BOOL

7 INITIALISATION

8 vrec := rec(foo : 9, bar : FALSE) ||

9 vbar := TRUE

10 OPERATIONS

11 setvbar = vbar := vrec'bar

12 END

1 \* TLA+

2 ------------ MODULE rectest ------------

3 EXTENDS Integers

4 VARIABLES vrec, vbar

5

6 Init ==

7 /\ vrec = [vrec |-> 9, bar |-> FALSE]

8 /\ vbar = TRUE

9

10 setvbar ==

11 /\ vbar' = vrec.bar

12 /\ UNCHANGED vrec

13

14 TypeOK ==

15 /\ vrec \in [foo : Int, bar : BOOLEAN]

16 /\ vbar \in BOOLEAN

17

18 Spec ==

19 /\ Init

20 /\ [][setvbar]_<<vrec, vbar>>

21 /\ []TypeOK

22 ========================================

Figure 5.3: Records in B and TLA+
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is a binary relation, with the additional 1-to-2 constraint imposed on lines 16 – 18. Since Event-B
does not have a built-in sequence constructor, we can use a partial function from NAT to A to represent
s1 as a sequence of A’s, as on line 15.

TLA+ does not have type signatures, and thus no constructors; but composite units of data can be
specified using TLA+ formulas. The composite data units in TLA+ are functions and relations. TLA+

also supports records, which are built on top of functions. The TLA+ code block of Figure 5.3 shows
an example of declaring and using TLA+ records. Lines 6 – 12 showcase formulas that constrain data to
be of a certain composite form. For instance, we define SurFun(a, b) to return the set of all surjective
functions from a to b, f1 is required to be a total function from A to B (line 15), f2 a surjective function
from A to B (line 16), R1 a binary relation between C and B (line 17) and constrained to be a 1-to-2 relation
(line 18), and s1 a sequence of A’s (line 19).

AsmetaL’s primary composite data unit is relations, created using the Powerset and Prod construc-
tors for creating sets and tuples respectively. Although AsmetaL has a dedicated function constructor
arrow that can be used in type signatures, it is not always be the best representation for a function, since
the possible operations on a function are limited. Lines 3 – 5 show the declaration of three relations,
which are constrained by the invariants on lines 28 – 30. The f1 total function from A to B is defined as
a set of pairs, where the set elements satisfy the constraint laid out in isfun: the set of elements from
f1’s domain that map to two different elements in f1’s range must be empty. The surjective function f2

from A to B is defined as a set of pairs, where the set elements satisfy the constraint laid out in issurfun:
first, f2must already be a function; and additionally, f2’s codomain must match the set of elements
mapped to by f2 (i.e. every element of f2’s codomain must be mapped to by an element in f2’s domain).
The 1-to-2 binary relation r1 from C to B is defined as a set of pairs, where the set elements satisfy the
constraint laid out in is1to2: each element of r1’s domain must map to two different elements from its
range. Lastly, s1 is declared to be a sequence of A’s.

Alloy’s composite unit of data is relations, created using the -> arrow constructor. As relations
are ubiquitously used in Alloymodels, Alloy provides convenient dot join (.) and box join ([])
operators [43, p. 57-62], which resemble record field access and array indexing respectively. Somewhat
hidden to users of Alloy is that Alloy does not actually have record objects; and though signatures
and their fields mimic records and record fields, signatures are actually sets (i.e. unary relations) and
signature fields are top-level identifiers themselves, each a relation mapping their parent signature to the
field’s value from the set declared in the field’s type signature. This can be confusing to new users trying
to understand the output of the analysis (e.g. counterexamples for model checking), when a variable
name is actually a relation.
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Alloy provides a range of multiplicity constraints within its type signatures. A multiplicity
constraint is a constraint limiting the number of elements in the range associated with elements in the
domain. Alloy has four multiplicity keywords, set (any number), lone (zero or one), one (exactly
one), and some (one or more). When the type signature is a set (i.e. unary relation), it can be prefixed
with a multiplicity keyword as in x: m e, where x is the set being constrained, m is the multiplicity
keyword, and e is the set-valued bounding expression. The default multiplicity for a set-valued type
signature is one. Thus, if the multiplicity keyword m is omitted, x: e makes x a ‘scalar’ (i.e. a singleton
set). Here is the meaning of the other multiplicities on sets:

x: set A x becomes a subset of the set A
y: lone B y can either be empty or a singleton subset of the set B
z: one C z becomes a singleton subset of the set C; equivalent to z: C

x: some D x becomes a nonempty subset of the set D

When the type signature is a relation (of arity greater than one), it cannot be prefixedwith amultiplic-
ity keyword. Multiplicity keywords may appear around the -> arrow constructor, as in x: e1 m->n e2,
where m and n are multiplicity keywords, and e1 and e2 are sets. The expression x: e1 m->n e2 means
the relation x is constrained to map each member of e1 to nmembers of e2, and to map mmembers
of e1 to each member of e2. e1 and e2 need not be sets (unary relations) or even named relations; and
they may be any arbitrary expressions. The above description is generalized by replacing ‘member’ with
‘tuple’. Below are examples of some commonly-used multiplicities on relations:

x: A ->one B x becomes a total function from A to B

y: A ->lone B y becomes a partial function from A to B

z: A one->one C z becomes a total bijective function from A to C

x: A some->one C x becomes a total surjective function from A to C

y: A some->lone D y becomes a partial surjective function from A to D

z: A some->some D z becomes a nonempty relation from A to D

Dash has the same constructors and multiplicities as Alloy.

Having considered constructors across the languages, we now briefly touch on the names of built-ins
in each language. B’s built-ins include sequences and trees. Alloy’s built-ins include a constructor
that imposes linear total order on other sets, (zero-indexed) sequences, strings, and graphs. Dash shares
Alloy’s built-ins. TLA+’s built-in’s include composite data units like records, bags, and (one-indexed)
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sequences, from TLA+’s standard modules. Recent TLC versions override the definitions frommost of
these standard modules in the host language (Java) for improved efficiency. PlusCal shares TLA+’s
built-ins. AsmetaL’s StandardLibrary.asm [11] contains a large number of built-ins such as bags,
maps, products (tuples or pairs), and (zero-indexed) sequences.

5.3 Expressions

In this section, we discuss briefly the syntax of each language for writing formulas, and the operators
and constructs provided in each language for writing expressions. Since all of the languages are based
on first-order logic and set theory, their expressions are reasonably similar in succinctness. They all
provide operations to create and modify primitives and composite data units, such as sets, relations, and
functions. In the following, we discuss only the interesting differences in the expression syntax of each
language.

The expressions of B and Event-B have a more imperative style than declarative, in that initial-
ization and changing of variables are primarily done using the := assignment operator. Additionally,
both languages have a nondeterministic assignment operator :∈ for setting the value of a variable to a
nondeterministically-chosen element from a set. However, as declarative modelling languages, both
B and Event-B support changing a variable in a declarative style using the : ( ) and : | operators
respectively, for when an a regular assignment is not flexible enough. In B, assignments statements
are combined using the || and ; operators, for parallel and sequential assignments respectively. Since
both relations and functions in B and Event-B are represented as sets of pairs, in addition to the
arrow operators described earlier they can also be created using the set literal notation along with the 7→
(“maplet”) pair constructor.

Alloy and Dash have expression languages that include set operators mixed with first-order
logic. Models typically make extensive use of the join operator because every unit of data is a relation.

TLA+ has a small number of essential operators for conveniently working with sets and functions,
TLA+ also has the a CHOOSE operator, IF..THEN..ELSE expressions, CASE expressions, LET..IN expressions,
and LAMBDA. Even though TLA+ is a very small language, one can easily define new operators . For
instance, on line 6 of Figure 5.2 we define the Range operator which is absent in TLA+, to return the
range of a function. TLA+ uniquely supports recursive and higher-order operators, which take other
operators as arguments.

The AsmetaL language rarely uses symbols and most operators have long-form textual names.
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AsmetaL’s built-in units of data are opaque, in that operations defined on primitives cannot be
applied to composite data units. This means that the operations on the built-in composite data units are
limited by what is currently implemented in the tool support for the language. As of now, inAsmetaL
sets are the most flexible/featureful construct in the language, and the modeller may need to fall back
to using them as the underlying representation of a data unit if the built-in data unit provided by the
language does not include the operations they need. For instance, few operations are available for the
built-in function constructor in AsmetaL. Since an AsmetaL function cannot be treated as a set of
tuples, the set operations are not defined on functions. As such, when more flexibility is needed, e.g. for
writing formulas for dealing with a function as a whole, the built-in function constructor cannot be
used, and instead the more flexible ‘set of pairs’ representation must be used.

5.4 Events

An event denotes an occurrence at a moment in time, such as a button being pressed or a card swiped.
An event may be used as a precondition of a transition. Among the declarative modelling languages
studied in this work, events are a feature unique toDash. A statechart event inDash can be added to
a snapshot using the event keyword, as on lines 12 and 13. The semantics of events inDash is that
they persist as long as transitions are enabled, allowing multiple transitions to be taken in response to an
input from the environment.

To model events in languages other thanDashwhich do not have a notion of events built into
them, we use regular snapshot variables tomodel them. There are several possible approaches for keeping
track of the triggered state of the events of a model. One approach is to use one snapshot variable for
each event, with the value of each variable drawn from a two-element set, for whether or not the event is
currently triggered. A language’s built-in Boolean set or another two-element set withmore descriptively-
named elements are good candidates for the type signature of this snapshot variable. Another approach
is to declare an enumerated set with one element per event. Then, declare one set-valued snapshot
variable whose value is a subset of the enumerated set of events, with each currently triggered event
being a member of this set. Constraints must be added to specify the desired semantics of events, such as
whether the event persists. Figure 5.1 shows exemplars using this approach across the languages (besides
Dash, which has built-in support for events).
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5.5 Constants

A constant is a mapping from a name to a value, either a primitive or a composite data unit. Constants
retain their value throughout all of the transitions of the transition system. Figure 5.1 shows examples
of declaration of constants across the languages. In B, constants are declared under the CONSTANTS
section of a machine, and are further constrained in the PROPERTIES section. In Event-B constants are
declared under the CONSTANTS sections of a context, and are further constrained in the AXIOMS section
of the context. The B and Event-B code blocks in Figure 5.1 show examples of this. In AsmetaL,
constants are declared under the signature section after snapshot variables, using the keyword static,
as shown on lines 10 and 11 of the AsmetaL code block in Figure 5.1. A constant may be assigned a
specific value under the definitions section, as on line 13.

Alloy andDash do not have a keyword or construct for constants. A constant is declared like
a regular variable as a field of a signature. To avoid confusing constants with snapshot variables, we
declare them in a separate signature, conventionally named Const. In Alloy, further constraints, such
as having the constant be a certain literal value, can be imposed using either a fact or a predicate. In
Dash, the constraints are added in an invariant block inside a state. Lines 5 – 8 and 5 – 8 of the
Alloy andDash code blocks of Figure 5.1 show examples of constant declarations in Alloy and
Dash; and lines 8 and 14 of theAlloy andDash code blocks show an example of a constraint being
imposed on the constant c2 using a signature fact and an invariant in Alloy andDash respectively.

In TLA+ and PlusCal, constants are declared under the CONSTANTS section of the module. For
model checking with TLC, every constant must be constrained in the “Model Overview” page of the
model in the TLA+ toolbox. A constant can be constrained using either an “ordinary assignment” (any
valid TLA+ expression that can be assigned to a variable), or can be constrained to be a “model value”
or a “set of model values”. In TLC terminology, a “model value” is a unique value equal only to itself.
Alternatively, if we use a predicate definition like c2 == 3, we will not have to declare c2 as a constant
under CONSTANTS, and every mention of c2 is replaced with 3 during analysis. This works in both TLA+

and PlusCal, and is similar to the practice of defining constants andmagic values in C programs using
preprocessormacros. Note that this approach only yields a constant when the right-hand side expression
is a constant expression, such as an integer literal, and for instance c2 == CHOOSE cc \in Integer: TRUE

would not result in c2 being a constant, since CHOOSE is not guaranteed to always return the same value
each time it is evaluated. The TLA+ and PlusCal code blocks of Figure 5.1 show an example of the
former and latter method respectively.
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5.6 Well-formedness and Typechecking

Well-formedness is a condition under which a formula or expression is valid in a formal language, and
has a well-defined meaning. In this section, we investigate the notions of well-formedness across the
seven declarative modelling languages, and the constructs in each language that help make it easier for
modellers to find or avoid mistakes in their models, such as use of type signatures and typechecking.
In this section, we focus on static well-formedness checking techniques, which include parsing and
typechecking. All the languages studied in this work do basic forms of syntax checking when parsing
input models.

Typechecking is the process of checking whether the use of data in the formulas conforms to the
constraints expressed in the type signatures. With respect to typechecking, the following two questions
arise: First, does a language have type signatures? The answer is that B, Event-B, Alloy,Dash,
and AsmetaL do have type signatures, and TLA+ and PlusCal do not. Second, does a language
with type signatures have a separate typechecking pass from other forms of analysis? The answer to this
question is yes; all of the languages we studied that have type signatures also have a typechecking pass
separate from the main analysis (e.g. model checking).

In TLA+, there are few well-formedness checks beyond the basic syntax checking done by the parser.
TLA+ does not have type signatures, so variable and constant declarations only consist of names. Any
typing constraints must be stated with other invariants and are properties checked to hold in every
snapshot of the transition system during the main analysis. An example of such typing constraints is the
TypeOK predicate defined on lines 15 – 19 of Figure 5.2. In our experience, having tomanually add typing
invariants in the absence of a typechecker can be error-prone and can hinder the debugging experience,
as the errors arising from the violation of these typing constraints can result in cryptic error messages.

Compared to TLA+, PlusCal has a number of safeguards in place that make certain classes of
bugs syntactically invalid, thus allowing the parser to catch them when the modeller asks for the TLA+

translation of their PlusCalmodel [49]. Examples include mistakes such as multiple assignments to
the same variable in a transition, and having unreachable statements. These are eliminated by Plus-
Cal’s notion of labels, and where they may or must appear in the transition definition. For the above
two examples, the former is prevented due to the rule that a variable may only be assigned to once
between any two labels in a PlusCal process, and the latter is eliminated by the requirement that a
label must be added for any statement that follows a goto or return statement. For PlusCalmodels,
typing constraints can be added using the same approach as TLA+ described earlier.

In Alloy, the only well-formedness checking is a kind of typechecking. Type signatures constrain
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the model’s reachable snapshot space. There are two kinds of type errors in Alloy [43, 31]:

1. since Alloy’s logic assumes each relation has one fixed arity, an expression resulting in relations
of mixed arity is illegal; and

2. an expression that can be shown to be redundant itself or contain a redundant sub-expression,
based on the declarations alone, is ill-typed. A common example of this is an expression that is
redundant due to being equal to the empty relation.

The current implementation of Dash performs several well-formedness checks in addition to
Alloy’s. Currently, typechecking inDash is not as thorough as inAlloy, and some type errors will
only be caught in the generated Alloymodel. Dash’s well-formedness checks are as follows [70]:

• Every top level statemust be declared as conc (error).
• If a model has state hierarchy then there must be one default child state defined (error).
• Either all children states at the same level of the hierarchy are concurrent or none at all (error).
• Only snapshot variable declarations can be primed (error).
• Monitored (environmental) events cannot be generated in a transition (warning).
• Monitored (environmental) variables cannot be primed (error).
• A transition action must constrain the next value of a variable (error).
• Elements in a state should have different name (not currently enforced).

Besides well-definedness conditions, B and Event-B also use typechecking to statically catch type
errors like assigning a value froma set to a variablewith a type signature declaring a different/incompatible
set, and applying a function to an argument not matching its type signature. To ensure that models only
contain well-defined formulas, B and Event-B rely on well-definedness proof obligations. These are
formulas corresponding to conditions that are expected to hold when performing certain actions, such
as integer division and function application, in order for the action to be well-defined. For example,
division by zero is not well-defined, and neither is applying a function to an element outside its domain.
In a theorem proving setting, these well-definedness conditions have to be proven, along with other
proof obligations. In a model checking or animation setting, ProB performs well-definedness checking
during constraint solving, model checking, or animating. In B, type signatures are declared in the
INVARIANT section along with other invariants. Similarly, type signatures in Event-B are declared in
the INVARIANTS section along with the other invariants of the machine.

Type signatures in AsmetaL are included along with each variable declaration. Further, the
AsmetaL grammar uses various syntactic rules to distinguish between language elements:

• name of (local) variables must start with a dollar sign ($);
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• enumerated set elements must start with two upper-case letters, followed by zero or more upper-
case letters, underscores, or digits;

• domain (set) names must start with an upper-case letter;
• rule names must start with a lower-case ‘r’, followed by an underscore (i.e. “r_”);
• function names (including snapshot variables) must start with a lower-case letter, but not start
with the string “r_” (to avoid confusion with rule names);

• invariant names must start with the letters “inv” followed by an underscore (i.e. “inv_”); and
• natural numbers must have a ‘n’ suffix (e.g. 14n is the natural literal for the number fourteen),
and integers must not (e.g. 13 is the integer literal for the number thirteen).

These syntactic rules allow the Asmeta parser to detect a variety of errors statically during parsing,
including some type errors that would normally be caught by a typechecker rather than a parser. For
example, (mis)using an integer where a natural number is expected, or confusing an enumerated set
element with the parent set or a variable. The Asmeta typechecker in turn helps catch other ill-typed
formulas and errors like trying to calculate the sum of one and the empty set ({} + 1), or assigning a set
to a variable previously declared to be a string.

5.7 Scopes

In this section, we look at the constructs in each of the declarative modelling languages and/or their tool
support provide for setting the scope (size) of each of the sets used in the model. None of the languages
studied in this work require specifying the scopes as part of the model. However, some of the languages
allow the definition of scopes to be part of the model.

In AsmetaL, there is no default set size, and user-defined domains and their elements must be
explicitly stated if needed. For instance, a signature like abstract domain A is sufficient for declaring a
new set A and using it in the model, including with a choose rule. However, the Asmeta Animator and
Simulator currently enter an infinite loop if we try to animate or simulate a model without scopes for all
sets. To use the abstract domain, we have to declare its elements. For example, static a1: A declares
an element a1 in A. Alternatively, we could either declare a new concrete domain that is a subsetof the
abstract domain and specify elements for it and use it instead of using A directly; or, change A into an
enumerated domain like enum domain A = {AA1 | AA2} .

For B, the ProB animator and model checker requires that all deferred sets to be given a finite
cardinality. This is done by adding to the PROPERTIES section a card(SETNAME) = n predicate for each
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deferred set SETNAME, or by adding to the DEFINITIONS section a definition scope_SETNAME == m..n

; or alternatively scope_SETNAME == n, equivalent to 1..n. For sets with no specified cardinality, a
DEFAULT_SETSIZE=2 will be used. To limit the scope of implementable integers (INT) and naturals
(NAT and NAT1), we can add the definitions SET_PREF_MININT == x and SET_PREF_MAXINT == y in the
DEFINITIONS section to set MININT to x and MAXINT to y, which default to -1 and 3 respectively.

As ProB integrates into Rodin (the tool support for Event-B), the above descriptions about
adding scopes to Bmodels mostly apply to Event-Bmodels as well. The difference is that Event-B
does not have a DEFINITIONS section like B does; so the only method for setting specific sizes for carrier
sets is by adding a card(SETNAME) = n axiom for each carrier set SETNAME. The default set size, the default
values of MININT and MAXINT, and other ProB preferences may be changed from the Rodin tool by going
to the Windowmenu, selecting Preferences, and clicking on ProB in the left pane.

In TLA+, the size of sets may be specified under the ASSUME section of a model using the Card

operator. The cardinality of the largest set that the TLCmodel checker can handle is 1000000 by default.
This can be changed using the -maxSetSize x command-line option to set the value to x, if using TLC
from the command-line. When using theTLA+ toolbox, the value can be changed by opening the Model
Overview, clicking on Additional TLC Options, expanding the Parameters section, and changing the
option there. The upper bound for this option is Java’s Integer.MAX_VALUE. The largest value forTLA+’s
Int and Nat sets is Integer.MAX_VALUE, and the smallest value for Int is Integer.MIN_VALUE.

In Alloy andDash, scopes are upper bounds or exact sizes of sets, and are specified for each
run or check command. All top-level signatures have a default scope of 3. The two exceptions to this
rule are the two special Int and seq signatures, both of which have a default scope of 4. Int’s scope
is the maximum bit-width for integers. For example, a scope of 6 allows Int to range from -32 to +31.
For seq, the assigned scope is the length of the largest allowed sequence. For example, a scope of 5 on
seq allows sequences of up to 5 elements. Given a predicate x and an assertion y, in its simplest but
still useful form, a command may look like run x or check y, where no scope is specified and thus
the above default scopes will be used. Note that this does not apply to the special signatures Int and
seq, and their scopes only change when set explicitly, as explained below. The following explanations
apply to both run and check commands, but we will use run in our examples. Given the signatures A, B,
and C, run x for 5 sets the upper bound scope for A, B, and C to 5. To use a different scope for some
signatures, we use the but keyword: run x for 5 but 4 B sets the upper bound for every signature
to 5, except for B, which is given an upper bound of 4. To force an exact scope for a specific signature,
we can use the exactly keyword: run x for 5 but 4 B, exactly 6 A sets an upper bound of 5 for
all signatures, except for Bwhich is given an upper bound of 4, and Awhich is forced to have an exact
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size of 6. We do not have to set a default scope for all signatures in a command, as long as we explicitly
specify the scope for each signature or ifAlloy can infer it implicitly. For details about the cases where
Alloy can calculate the scopes implicitly, see [43, p. 283].

5.8 Missing Features

None of the languages explicitly support operators for dynamic allocation of parts of the state (i.e. “new”
as in Spin [40]). Further, none of the languages have a “message passing channel” feature like Spin
does, and such a construct must be modelled using snapshot variables and techniques ensuring correct
synchronization. Also, none of the languages have a built-in construct for time; but it can be modelled
using techniques such as the “explicit-time” approach explained in [48, 78], wherein the current time
is represented as the current value of a snapshot variable, and the passage of time is modelled using a
transition that increments the value of that variable.
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Chapter 6

Modularity

To create largemodels, some form ofmodularity is needed. In this chapter, we discuss how each language
provides support for modularity in a description of a transition system. Modularity can be evaluated
from two points of view:

(1) How can a description of a single transition relation be decomposed into multiple parts? This
decomposition may take the form of

(a) subtransition systems that are composed to create the single top-level transition relation
implicitly or explicitly, or

(b) subformulas relevant to other aspects of themodel, such as a grouping information (axioms,
etc.) regarding a unit of data.

A subtransition system is a full description of a transition system. We call (1)(b) a data decompo-
sition.

(2) How can a description of a single transition system be decomposed into multiple files? Typically
a decomposition into multiple files involves interfaces that can be parameterized and have private
and public parts.

It may be possible for the decompositions of (1) to be realized in multiple files. In the following, we
describe the different means within a language of decomposing the transition relation (i.e., (1) above)
and within this discussion address when/how different parts of the transition relation can be realized in
multiple files. Both (1) and (2) may involve differing namespaces.
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Table 6.1: Summary of comparison of modularity across the languages

Criteria
Language

B Event-B Alloy Dash TLA+ PlusCal AsmetaL

subTRs X — X — X — X

subTR namespaces — — — X — — —
Data decomposition
into multiple files

X X X X X X X

File import SEES, … SEES open open EXTENDS EXTENDS import

File export varies entire context non-private — non-LOCAL non-LOCAL export

File parameterization X — X X X X —
File namespaces — — X — X X —

Syntax overloading — — X X — — X

In B, the definition of the transition relation is implicit, and it is possible to decompose a transition
system into subtransition systems. Each Bmachine resides in one file, under one namespace. The B
language has extensive constructs for creating relationships between machines, using the keywords SEES,
INCLUDES, PROMOTES, EXTENDS, USES, and IMPORTS [29]. A Bmachine can reference the name of another
machine along with these keywords to establish the desired kind of relationship with that machine. The
SEES keyword grants a module read-only access to see the data components (i.e. sets, constants, and
variables) of anothermodule, and the INCLUDES keyword grants read-write access to the data components
of the included machine, allowing instantiation if the machine is parameterized (over a scalar or set
parameter). More specifically, INCLUDES allows establishing a subtransition system relationship where
the SETS, CONSTANTS, PROPERTIES, VARIABLES, INVARIANT, ASSERTIONS, and INITIALISATION sections of
the included machine are in effect prepended to those of the including machine. The details of the
remaining keywords and the relationships they establish are beyond the scope of this work. There is no
support for syntax overloading in B.

In Event-B, the definition of the transition relation cannot be further decomposed into subtran-
sition systems. In Event-B, there are two kinds of files: contexts and machines. Contexts describe
non-changing parts of the system, namely the sets, constants, and axioms; and a machine contains the
snapshot and transitions (the transitions are implicitly combined to build the transition relation). A
machine can see any number of contexts by adding their names under its SEES section. The only possible
relationship between two machines in a project is where one machine REFINES another. There is no
support for syntax overloading in Event-B.

An orthogonal perspective on the notion of modularity in B and Event-B is the concept of
refinement [14, 15, 29, 44]. The idea behind refinement is starting the description of a transition system
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at a very abstract level and with minimal details, and gradually refining that description over several
refinement steps to arrive at a more concrete and complete description. Both B and Event-B have
tool support dedicated to assisting the modeller with performing refinement steps and doing them
correctly, by presenting various proof obligations that need to be proven correct at each step. Details on
refinement is beyond the scope of this work.

In Alloy, the definition of the transition relation is explicit as a formula. Therefore any means in
Alloy of decomposing formulas can be used to decompose the description of a transition system. In
Chapter 4, we discussed some typical styles of decomposing transition systems into different formulas
(e.g., with pre and postconditions). Within oneAlloy file, the namespace includes all of the identifiers
declared/defined in the current file.

In Alloy, formula decomposition can be split across multiple files. This decomposition could be
for subformulas of the transition system or for a grouping of axioms regarding a unit of data. Alloy
refers to each file as a module, which may be given a name using the module keyword at the beginning of
the file. By default, all of the identifiers declared or defined in a file are exported, along with the exported
identifiers of all of the other files imported into the current file using the open keyword. However,
signatures, their fields, functions, and predicates can be marked as private, making them private to the
current module and not appear in the namespaces of other modules that import the current module. To
assign a dedicated namespace to the identifiers of an importedmodule, we can use open..as. For example,
open utils as uwill bring the definitions of the utilsmodule into scope under the u namespace, and
an identifier named test can be referred to using u/test. In Alloy, a module can be parameterized
over an argument, similar to the notion of genericity in programming languages. For instance,Alloy’s
ordering module is parameterized over a signature on which the module will impose a linear total order.
In Alloy, for syntax overloading, fields in different signatures can use the same name, as long as the
two signatures do not overlap (by one being a subset of the other). In other words, the type signatures
for two fields with the same name must different at least in the first column. Further, two predicates or
functions may share the same name, so long as the type signatures for their arguments are not identical
(i.e. an unambiguous name resolution possible).

InDash, the definition of the state hierarchy for the transition relation must all reside together in
one file because the transition relation is defined implicitly. This includesDash invariants (declared
using invariant or fact), which must be in the same file as the transition system. InDash, each state

has a dedicated namespace. Separate namespaces create interfaces between states, while still allowing
global communication. A reference to an identifier in another state must be given by its fully qualified
name. A qualified name is formed by following the state hierarchy separating state names with ‘/’ and
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then adding the element name. InDash, the data modelling aspects of a transition system are described
separately from the state hierarchy and therefore can be separated into multiple files as in Alloy.
Alloy’s file-level module system and namespaces are available toDashmodels, with the exception of
per-file dedicated namespaces (using open..as), which are not yet implemented inDash. The details
of Alloy’s syntax overloading apply toDash as well.

InTLA+, the definition of the transition relation is explicit as a formula. Therefore any of the means
of decomposing formulas in TLA+ can be used to decompose the description of a transition system.
Within one TLA+ file, the namespace includes all of the identifiers declared/defined in the current file.

In TLA+, formula decomposition can be split across multiple files. This decomposition could be
for subformulas of the transition system or for a grouping of axioms regarding a unit of data. TLA+

refers to each file as a module, which must be given a name using the MODULE keyword at the beginning
of the file. By default, the identifiers of all of the predicates defined in a module are exported, along
with those of the other modules imported into the current module. To import another module into the
current module, we use the EXTENDS keyword. To import the definitions of a module M into a dedicated
namespace, instead of importing it directly, we add a definition M == INSTANCE M. We can then use M!def
to refer to a definition def from the Mmodule. In TLA+, a module is parameterized over its CONSTANTS.
As such, if M has declared CONSTANTS A, B (which may potentially be higher-order operators), they must
be instantiated using M == INSTANCE M WITH A <- e1, B <- e2, where e1 and e2 areTLA+ expressions
such as literals or identifiers of sets or constants from the current namespace. To mark a definition or an
instantiation as local to the current module, we use the LOCAL keyword, preventing it from appearing in
the namespaces of the other modules importing the module. TLA+ supports a number of user-definable
symbols, but as with other definitions, they must not clash with any existing definitions for those
symbols, as TLA+ does not support syntax overloading.

InPlusCal, a transition system is defined in an algorithmblock. The definitions of the transitions
represented using PlusCal processes must all reside together in that algorithm all in one file, because
the transition relation is defined implicitly. Each process can optionally have local variables only available
to that process, declared and initialized using the variables keyword before the beginning of the body
of the transition. Locally-scoped bindings using LET..IN TLA+ expressions are possible as well. In
PlusCal, the data modelling aspects of a transition system can be described separately from the
transition definitions, and therefore can be separated into multiple files as in TLA+. TLA+’s file-level
module system is available to PlusCalmodels as well. The details of TLA+’s user-definable symbols
and lack of syntax overloading apply to PlusCal as well.

In AsmetaL, the definition of the transition relation is explicit as an AsmetaL rule. Therefore
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any of the means of decomposing rules in AsmetaL can be used to decompose the description of a
transition system. Within one AsmetaL file, the namespace includes all of the identifiers declared or
defined in the current file.

In AsmetaL, a model can be split across multiple files for subtransition systems and data decom-
position. AsmetaL refers to each file as a module, and there are two kinds of modules. A module
containing a transition system— i.e. a main rule (transition relation) and an init (initial snapshot)
section— is given a name using the asm keyword. Modules not including the above two constructs can
be created using the module keyword, and may contain type signatures and specifications for data units.
A module can selectively export a subset of its definitions using a comma-separated list of identifiers
with the export keyword, or export everything at once using export *. To import a module, we use the
import keyword along with the name of the module, and optionally a parenthesized comma-separated
list of identifiers if only some of the module’s definitions are desired. AsmetaL does not support
prefixed/namespaced imports, and there is no support for parameterized modules. In AsmetaL,
functions and transition definitions may be overloaded, so that functions with different type signatures
can share the same name.

In summary, the B, Alloy, and TLA+ languages allow decomposition of the model into subtran-
sition systems across multiple files, while Event-B,Dash, PlusCal, and AsmetaL only allow
data decomposition across multiple files.

63



Chapter 7

Case Studies

In this chapter we present several case studies across the data- vs. control-oriented spectrum that we
carried out to help us compare the languages with respect to our developed comparison criteria. We
dedicate a section to each case study, in which we examine the models of that case study in each language,
mentioning the noteworthy characteristics and the differences between them based on the criteria in the
control and data modelling chapters. When discussing a particular criterion, we put the criterion’s name
in bold in the sentence. Our case studies were not large enough to exercise the differences presented in
the modularity chapter. We conclude each section with our recommendations as to which language(s)
are better suited for modelling that particular case study.

Table 7.1 shows the sizes of each model of each system across the languages. The entry in row i
column j is the number of lines of code for the model of the case study i in the language j.

Table 7.1: Lines of code for each case study across the languages

Case study
Language

B Event-B Alloy Dash TLA+ PlusCal AsmetaL

EHealth 62 111 135 95 120 101 87
Digital Watch 135 210 295 112 197 160 142
Musical Chairs 68 84 130 65 101 106 97

Library Management 180 164 317 120 146 151 207
Railway 82 86 387 280 79 84 78
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7.1 EHealth

The first case study tackled in this thesis is the EHealth (Electronic Health) system, originally done
in TLA+ by Professor Jonathan S. Ostroff [64]. The goal of the EHealth system is to make sure that
medications prescribed to patients are safe, by keeping track of dangerous interactions between the
medications recorded in the system. The system allows a transition adding a medication to a patient’s
prescription if and only if it does not interact dangerously with any of the other medications previously
prescribed to that patient.

The EHealth system falls on the very data-oriented end of the data- vs. control-oriented characteri-
zation spectrum due to its use of rich primitives (such as sets and tuples) and constructors (such as
relations and functions), and having no need for fine control of when a transition is relevant beyond the
preconditions of each action. It consists of the following components:

• two sets representing all patients and medications in the universe;

• four snapshot variables representing sets of patients, medications, interactions, and prescriptions
registered in the system; where the variable for interactions maps each medication to a set of
medications with which it has undesired interactions, and the variable for prescriptions maps
each patient to a set of medications prescribed to that patient; and

• transitions for adding patients and medications, and for adding and removing interactions and
prescriptions.

We consider the following three safety properties for the EHealth system:

• Symmetry of interactions: medicationm1 has an undesired interaction with a medicationm2 if
and only ifm2 has an undesired interaction withm1.

• Irreflexivity of interactions: no medication has an undesired interaction with itself.

• Safety of prescriptions: for all pairs of medicationsm1 andm2 and patient p, ifm1 andm2 are
prescribed to p thenm1 andm2 do not have an undesired interaction.

The transitions for adding an interaction and adding a prescription must have appropriate pre-
conditions to ensure that the above safety properties are always satisfied. Namely, prescription of a
mediation for a patient must only be allowed if the newly prescribed medication does not have an
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undesired interaction with any of the patient’s existing prescribed medications. Further, addition of a
pair of medications as having undesired interaction must only be allowed if the two medications are
different, and that they are not both prescribed to any patient already.

The TLA+ model of the EHealth system is used as reference for modelling the system in the other
languages studied in this work. I had written the TLA+ version, as a completed extension of the snippets
in Prof. Ostroff’s technical report [64], based on the descriptions there. As TLA+ does not have
constructors for partial functions, the model uses relations for representing the prescriptions and
interactions data. Although we wrote the transitions such that the relations represent partial functions,
we did not impose any additional constraints enforcing this.

The B and Dash models of the EHealth system were written by Ali Abbassi and Jose Serna
respectively. Compared to TLA+ where there are no type signatures, B has type signatures with
automatic typechecking. The B model of the EHealth system was incorrectly written to use the
constructor of a total function representation for both prescriptions and interactions data over the set
of all patients and all medications in the universe. This results in the invariants being violated from the
very beginning in the initial snapshot.

Similar to the B EHealth model, the Event-Bmodel also has type signatures with automatic
typechecking. In contrast to the Bmodel, the Event-B version correctly uses type signatures that
are consistent with the use of data in the model. The Event-Bmodel uses the constructor a partial
function representation for prescriptions and interactions data over only the set of people and medica-
tions that have been added to the system. This representation establishes the invariants in the initial
snapshot and preserves them in future snapshots.

The notable difference between theDash EHealth model and the reference TLA+ version is the
use ofDash’smonitored variables for the input variable declarations, by marking the input patient
and input medications snapshot variables with the env keyword.

The first notable difference between the Alloy and TLA+ models of the EHealth system is that
in the Alloymodel, we represent the input variables as snapshot variables prefixed with “in_” that
are never constrained in the destination snapshot. Due to the nature of the frame problem in Alloy,
this effectively makes these variablesmonitored variables. Although one could use a similar approach
in TLA+, it makes little sense to do so, because in TLA+ every snapshot variable must be constrained
in every transition, and making the input variables part of the snapshot would make the transitions
needlessly more verbose. In fact, this is the reason why all of our Alloymodels for the case studies are
the largest, because inAlloy all (non-monitored) snapshot variables that are to remain unchanged by a
transition must be constrained by that transition. The second difference between the two models is that
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in the Alloymodel, the predicate for every transition requires the source and destination snapshot of
the transition as arguments. However, in the TLA+ model, the arguments to each snapshot are only the
input variables, as TLA+ has built-in support for source and destination snapshots using unprimed and
primed variable names, and the packaging of the snapshot is implicit; whereas in Alloy, unprimed
and primed variables do not have any significant meaning in the language, and the packaging of the
snapshot is an explicit signature.

The PlusCal model of the EHealth system closely resembles the TLA+ version, with many
common/overlapping TLA+ expressions between the two models. Where the TLA+ model used a
TLA+ action (definition) directly for defining each transition, in the PlusCal version each process

corresponds to one transition. Since the processes each contain a single PlusCal label, the translation
of the PlusCalmodel back to TLA+ results in one TLA+ transition per each PlusCal process.

The AsmetaL EHealth model, like the reference TLA+ model, uses a relation representation for
the prescriptions and interactions data because of AsmetaL’s lack of a partial function constructor.
This model is one of two AsmetaLmodels among our case studies for which we were able to use the
AsmetaSMVmodel checker, because as previously mentioned, AsmetaSMV currently only supports
a limited subset of the AsmetaL language, and in this model we were able to confine ourselves to
using the limited subset of the language. For instance, use of Powerset in type signatures for declaring
set-valued snapshot variables is not supported by the model checker, so we did not use it in this model.
To work around the limitation, we used membership predicates for representing membership in the sets
and functions in the type signatures of the snapshot variables, as shown in Figure 7.1.

1 controlled patients: Patients -> Boolean

2 controlled medications: Medications -> Boolean

3 controlled interactions: Prod(Medications, Medications) -> Boolean

4 controlled prescriptions: Prod(Patients, Medications) -> Boolean

Figure 7.1: Membership predicate representation for sets and functions in AsmetaL

For the EHealth case study, we found all languages and their tooling to be adequate and useful for
modelling and debugging the system, as there is little structure in the control aspects of the transition
system, and the primitives and constructors used in the example are fairly standard across declarative
modelling languages. For the AsmetaL EHealth model, though the need to use a membership
predicate representation for sets just so we could use the AsmetaSMVmodel checker did not pose a
serious issue in our modelling and verification process, we did find it to be an annoyance and deviation
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from the reference model nonetheless. More importantly, AsmetaL does not have a constructor
for partial functions. Further, while writing the Alloy model, we found ourselves running into
strange behaviours with our model, which we eventually noticed was due to under-specification in
some of our transition definitions, relating to the frame problem, where in Alloy any variable not
constrained in a transition may freely change from the source to the destination snapshot. This may
be a commonmistake by modellers of varying levels of experience, and may be hard to debug due to it
causing unexpected behaviour and/or inconsistency in various parts of the model. As such, we would
be less inclined to recommend Alloy for modelling this example.

7.2 Digital Watch

The second case study in this thesis is the digital watch example, an adaptation of Harel’s model [38].
The digital watch system consists of a digital display and four buttons a, b, c, and d. Thewatch has several
modes/states of operation that may be accessed using specific sequences of button presses. The digital
watch system has a large number of control states and many events triggering transitions between
them, and depends on control state hierarchy to decompose these into related parts. Considering this,
and the model’s limited use of primitives and constructors, the digital watch example falls on the very
control-oriented end of the data- vs. control-oriented characterization spectrum. For the digital watch
system, we consider the following reachability property: from any snapshot, when a is pressed, it is
possible to get to a snapshot in which in the next snapshot the watch will be in the Time state.

The reference model for the digital watch system is written inDash by Jose Serna [12]. The model
makes extensive use of Dash’s state construct to hierarchically decompose the watch’s behaviour.
The model’s control state hierarchy consists of two concurrent regions, one representing the state of
the watch’s display light, and the other representing the current active display. It also uses Dash’s
environmental (monitored) events for representing the button presses of the watch and passage of
time, to enable transitions. The above reachability property does not always hold in theDashmodel
and is not an invariant of the system, as expected.

The B and TLA+ models of the digital watch system were written by Ali Abbassi and myself
respectively. Since control state hierarchy and events are not supported by any of the modelling
languages studied in this work besidesDash, we model these features using other constructs available
in each language. For control state hierarchy, we model all transitions flatly (i.e. no hierarchy), which
required extra care to ensure that the preconditions of the transitions of the flat model are written
correctly, so that each transition in the flat model is only enabled if and only if its corresponding

68



transition in the hierarchical model is enabled. This involves making sure that the hierarchical and
concurrent states of the reference model are faithfully represented in the non-hierarchical versions.
We use one variable for representing each concurrent region of the reference model, ensuring that
the concurrent regions can change independently of each other. For events, we model each using a
combination of a variable keeping the triggered state of the event, and a transition (or pair of transitions)
to change that variable. We allow events to persist arbitrarily long into the future. The advantages of
these approaches include the fact that the flat model closely resembles the original hierarchical model.
The disadvantages include that extra care needs to be taken to make sure that the preconditions for each
transition are set up correctly to faithfullymatch the behaviour of the transition in the hierarchicalmodel
as closely as possible. In the absence ofDash’s per-state namespaces, we use a naming convention
for the names of transitions to highlight the state of the reference model each transition belongs to. The
above descriptions apply to the remainder of the digital watch models in all of the languages (besides
Dash).

The behaviour of the Bmodel by Abbassi does not fully match the earlier descriptions, particularly
with respect to events. In Abbassi’s model, the transitions modifying the display state also change the
triggered state of the events. However, these two belong in separate concurrent regions, and doing so
effectively ties together the two concurrent regions of the reference model. This results in a special-case
behaviour not necessarily guaranteed by the original model.

One difference between the TLA+ and Event-Bmodels of the digital watch system and the rest
of the models is that for the pressed/released state of the four buttons, we used a total function that
maps each button to a Boolean value, instead of four separate Boolean variables. This allows for a more
compact representation of events, with only one or two transitions that could change the state of any of
the events, as opposed to requiring one or two transitions per each event.

In the AsmetaL digital watch model, we represent events as monitored variables (using the
monitored keyword) which may change freely from one snapshot to the next. This eliminates the need
to include transitions for toggling the variable(s) representing the triggered state of the events. As
discussed in Chapter 4, AsmetaL does not support defining the transition relation as a disjunction
of multiple transitions. To write a transition relation that would take a randomly-chosen transition
each time, we have to declare an enumerated set with each element corresponding to one transition, use
the choose rule in the definition of the transition relation to choose an element from that set, and use a
switchwith a case for each transition, executing the transition corresponding to the chosen element of
the enumerated set. This is especially cumbersome and error-prone in a model such as the digital watch
system with many transitions, as the modeller may forget to update the switch cases when adding or
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removing transitions. The AsmetaL digital watch model is the second of the two AsmetaLmodels
among our case studies for which we was able to use the AsmetaSMVmodel checker, finding a satisfying
instance for the reachability CTL property.

The PlusCal digital watch model closely resembles the TLA+ version, with many common
TLA+ expressions between the two models. These include the reachability property written as a TLA+

expression. Where theTLA+model used aTLA+ action (definition) directly for defining each transition,
in the PlusCal version each process corresponds to one transition. Since the processes each contain
a single PlusCal label, the translation of the PlusCalmodel back to TLA+ results in one TLA+

transition per each PlusCal process.

For the digital watch case study, we found Dash’s unique control state hierarchy and events
constructs to be powerful and convenient abstractions for modelling the various states/modes of the
control-oriented digital watch system. We thus recommendDash as the most suitable language for
this example.

7.3 Musical Chairs

Themusical chairs case study (originally in [62]) resides near the middle of the data- vs. control-oriented
characterization spectrum. The musical chairs example is a game consisting of a number of players and
chairs. At any time during the game, there is always exactly one less chair than there are players. In
each round, the players circle the chairs while music plays. The music is then stopped abruptly, and the
players have to scramble to sit on a chair. The one player who did not manage to sit down is eliminated.
The music then resumes, and the next round begins. This process is repeated until only one player
remains, dubbed the winner.

The snapshot variables in a musical chairs model consist of two sets for active players and active
chairs, and a mapping from chairs to players for keeping track of the occupied chairs. Further, the
current mode of the game (players are sitting, walking, etc.) is represented either as an enumerated set
or using control states. The status of music (playing or paused) is represented either using events for
control states, or as a snapshot variable and transition(s) changing it.

For the musical chairs case study, we consider the following safety and liveness properties:

• The number of players is always one greater than the number of chairs.

• It is possible that a specific player named Alice wins.
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• The game will always eventually be in the “sitting” state.

• The number of active players always eventually reaches one and remains at one.

The reference model for the musical chairs example is written inDash by Jose Serna. The model
usesDash’s control state hierarchy for representing the different modes of the game. Further, two
environmental (monitored) events MusicStops and MusicStarts are used tomodel the abrupt stopping
and starting of music. The above four properties were verified to hold for theDashmusical chairs
model.

TheDashmodel of the musical chairs example used as the reference for the other models in this
work was itself modelled after an Alloy musical chairs model [32] by Sabria Farheen. A notable
difference between this Alloymodel and theDashmodel of this system is the absence of control
states and events in Alloy. Thus, the current mode of the game is represented using a snapshot
variable with its value a member of an enumerated set, and the starting and stopping of music are
modelled as transitions that directly change the snapshot variables, including the mode of the game.
The above four properties were included and verified to hold for the Alloymusical chairs model as
well.

Similar to the Alloymusical chairs model, the Bmusical chairs model [12] by Ali Abbassi uses
a snapshot variable for representing the mode of the game along with two snapshot variables keeping
the sets of active players and active chairs, and an occupancy mapping between the two. There are
some notable differences between the two models. Namely, the B version uses the constructor of a
total function in the type signature of the occupancy mapping, and has two extra variables keeping
the player and chair to be eliminated at the end of the current round. Further, an Assign constant
predicate is defined and used to constrain the occupancy mapping according to the given sets of chairs
and players. Also, there is no snapshot variable keeping the status of music explicitly, and there are no
separate transitions dedicated to starting and stopping of music. Instead, the effects of starting and
stopping the music are carried out in the main transitions of the system. This choice of representation
makes the Bmusical chairs model more different than the models of this system in the other languages,
since starting and stopping of music is not a standalone event in this model, and is always accompanied
by a change/progress in the game. These changes are not inherently necessary, and it is possible to model
the system in Bwithout them.

The differences between the TLA+ and Dashmusical chairs models stem from the absence of
control states and events in TLA+. As with the previous TLA+ models, we used a snapshot variable
for tracking the current state of the game, corresponding toDash’s use of control state hierarchy.
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This makes the TLA+ model more similar to the Alloy version. However, in contrast to the Alloy
model, for the TLA+ model we used a Boolean variable for modelling the status of the music, and used a
separate transition ChangeMusicPlaying for changing the status of music. For this reason, along with
the fact that we are checking liveness properties for the system, we impose fairness conditions on the
transitions [54, 20, 46]. As such, we added weak fairness (justice) on the ChangeMusicPlaying transition
and strong fairness (compassion) on the rest of the transitions, so that the firing of the music change
transition would not starve the main transitions.

The expressions of the AsmetaLmusical chairs model are less declarative and more imperative
than our other musical chairs models, because in AsmetaL we cannot constrain the destination
snapshot value of the occupancy function in a declarative manner, as we would in the other languages.
We could useAsmetaL’s set comprehension notation if the occupancymapping was a relation; but we
cannot use a formula or constructor to further constrain that set of pairs to be a function in a declarative
way. Instead, for filling up the occupancy function when the music stops, we have to use a helper
transition to update the occupancymapping for each chair one by one using a forall rule over the active
chairs and a nested choose rule over the active players (excluding the loser of the round). A reasonable
idea may be to keep the type signature of the occupancy function as Powerset(Prod(Chair, Player)),
but this will not work because gradually updating the occupancy mapping using the union function
is seen as assigning multiple different values to the same snapshot variable, and thus an inconsistent
update. Therefore we have to change the type signature to Chair -> Player. We will not be able
to easily extract all the information we need from a variable with this type signature; for instance we
need to introduce a separate variable to keep track of the number of occupied chairs. Due to these
limitations, the AsmetaLmusical chairs model has tedious imperative-style operations for updating
the function-valued snapshot variables.

The PlusCalmusical chairs model for the most part resembles the TLA+ version, with many
common TLA+ expressions between the two models. Aside from the inherent differences between
PlusCal and TLA+ in terms of defining transitions, the two models also differ in how they constrain
the occupancy function: Assignment to snapshot variables in PlusCal is done only using the :=
assignment operator and the constraints need to be described all at once, whereas in TLA+’s declarative
approach, the modeller describes how each snapshot variable changes, using one or more conjuncts.
Also related, in regular TLA+ expressionswe can always refer to the source snapshot value of a variable
in a transition using its unprimed name, whereas we cannot do so in PlusCal if the variable is assigned
to in the current transition. In PlusCal, we can declare a variable local to the namespace of that
process and initialize it with the source snapshot value of that variable, and use the local variable where
needed in the process (transition) body.
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The Event-Bmusical chairs model uses the language’s rich arrow constructors for various func-
tional and relational units of data in type signatures as well as snapshot variable assignments. These
arrows, when combinedwith the : | nondeterministic assignment operator, are a powerful way of writing
terse and concise descriptions of functions. We declare the occupancy mapping to be a partial injection
from chairs to players, and in the Sit transition we assign to the occupancy function a total injection
from the sets of active players to active chairs, enforcing the two criteria that each chair can have only
one player sitting on it, and each player may only sit on one chair.

For the musical chairs case study, we foundDash’s control state hierarchy and events to lend
themselves well to modelling this system. The control states and their hierarchy are used to concisely
and precisely represent the current state/mode of the game, andDash’s environmental (monitored)
events are a natural candidate for modelling the starting and stopping of music. Since these features are
unique toDash, we believe they giveDash an advantage over the other languages. AfterDash, we
found B and Event-B’s extensive set of arrow constructors to be convenient and powerful tools for
writing concise type signatures and constrains on functional and relational data units.

7.4 Library Management

The library management case study (originally by Frappier et al. in [33, 34]) resides at the very data-
oriented end of our data- vs. control-oriented characterization spectrum. The library management
information system has a set of members and a set of books available in the library. Members can join
and leave the library, and books may be acquired or discarded by the library. Each member can borrow a
certain maximum number of books and return any of them when they wish. Members can also reserve
a book if it has already been lent to another member. Doing so will add the member to a wait list for
the book, and they can pick up the book when it becomes available to them. They can also cancel their
reservation at any time if they wish to. Members may renew any of their borrowed books if no other
member has entered the reservation waiting list for that book. A member may only leave the library
(relinquish their membership) when they are not borrowing or reserving any of the library’s book, and a
book may only be discarded by the library if it is not loaned to or reserved by any members.

The snapshot variables in the library management system consist of two sets for acquired books
and registered members, and two mappings, one for keeping track of the books loaned to members,
and the other for tracking the reservations placed for the currently-unavailable books. This mapping
should store the order in which reservations were placed, so as to allow a pickup only by the member
who placed the current oldest reservation for that book.
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The referencemodel for the librarymanagement case study is inB by Frappier et al. [34]. Themodel
uses the constructor of a partial function from books to members for keeping track of the lent books,
and a total function from books to an injective sequence of members for tracking the reservations. A
number of safety and liveness properties are included in the reference Bmodel, such as:

• A book may be reserved only if it has been lent or already reserved by another member.

• A book cannot be lent to a member if it is reserved.

• A member is allowed to pick up a reservation only if their reservation is the current oldest.

• Ultimately, a member can leave the library. (CTL property, not expressible in LTL)

In addition to the B library management model used as reference for our subsequent models, the
above paper by Frappier et al. also contains anAlloymodel of the system. This model, thoughwritten
well before Farheen wrote her style guidelines [32], adheres to several of Farheen’s recommendations
promoting structure, including decomposing each transition definition into two separate predicates,
for preconditions over the variables in the source snapshot and postconditions over the variables in
the source and destination snapshots, respectively. With respect to the frame problem in Alloy, the
modellers also took the extra step to put the no-change formula for each snapshot variable into a separate
predicate, and use those predicates in the transition definitions instead of repeating the constraints. We
believe this may be excessive, given the simplicity and triviality of such constraints.

The Event-B library management model is in many ways similar to the reference Bmodel, con-
sidering the closeness of the two languages. A notable difference between the two is the absence of a
sequence constructor in Event-B. As such, we had to use a partial injective function from the set of
natural numbers to members to model the injective sequence of members from the reference Bmodel.
Event-B’s lack of built-in sequences and operations on them was particularly inconvenient when
writing the Reserve transition, where we need to update the reservation mapping for the given book
and insert the newmember with the correct index in the book’s reservation function.

The TLA+ and PlusCalmodels of the library management system are similar to the reference B
model in their use of a partial function for representing the loans mapping from books to members.
They differ from the Bmodel in that the TLA+ and PlusCalmodels do not have type signatures
and constructors, and use a formula definition in the typing constraint to express that loans should
be a partial function. However, since all TLA+ functions are by default total, it may not be obvious
to a modeller how to specify a partial function. To declare a partial function, we first add a helper

74



definition PFun(S, T) == UNION {[s -> T] : s \in SUBSET S} describing all partial functions from
S to T, where the domain could be any subset of S. We can then use this predicate to write a constraint
such as loans \in PFun(books, members), making loans a partial function from books to members.
There are other possible representations and constraints for loans, such as [books -> SUBSET members]

and [books -> members \union NULL], but aside from diverging from the reference specification, the
other disadvantages of using these include adding unnecessary verbosity to the model and requiring
special treatment of the NULL constant throughout the model, respectively.

Modelling the library management system in PlusCal and checking it using the TLC model
checker helped expose a bug in one of the properties from the reference B model, due to incorrect
assumptions about operator precedence and associativity in B along with using = instead of ,.

With respect to the criterion of syntax of expressions, theAsmetaL library management model is
more verbose compared to our other models of this system, due to AsmetaL’s rare use of symbols and
most operators having long-form textual names. However, in terms of transitions and type signatures it
is very similar to our other library management models. SinceAsmetaL transitions are always enabled
and there is no keyword for checking whether a transition is enabled, we factored out the conditions of
the top-level if rule for each transition into separate derived functions. We then used these functions
in the properties to check when each transition can be taken.

TheDashmodel of the library management system is fairly similar to the reference Bmodel. We
were able to translate and check the properties from the original Bmodel toDash, as they all happened
to lie in the set of properties expressible in both LTL and CTL. Additionally, asDash’s tool support
supports CTLmodel checking, we were able to express inDash one of the CTL properties that was
commented out in the original model and not expressible in LTL.

For the library management case study, we found the Cancel and Reserve operations to be the most
challenging to model correctly across the languages. This is because these operations require correctly
updating or overriding the entry corresponding to a book in the reservations mapping, where each
entry itself is an ordered collection of members. This has to be done while preserving the structural
correctness of the underlying data unit. This was hardest to do in Event-B, TLA+/PlusCal, and
AsmetaL. For Event-B, the absence of a built-in sequence constructor and supporting operations
was what made this challenging. For TLA+/PlusCal, even though TLA+ has built-in sequences, we
found the available operations for correctly modifying sequences to be lacking for our purposes in the
expressions. Thus, the challenge was writing correct custom definitions for operations on functions
and sequences. We found that AsmetaL’s more imperative-style expressionsmake modelling this
system more challenging. Namely, the lack of certain declarative operations and the difficulty of writing

75



a transition relation that would take a randomly-chosen transition, described earlier. As such, we
recommend B,Dash, or Alloy for modelling this system. We would recommend exercising caution
while using Alloy, due to the dangers of under-specification relating to the frame problem.

7.5 Railway Scheduling Deadlock Freedom

The railway scheduling deadlock freedom (railway for short) case study originally by Mazzanti et al.
in [59] resides near the middle of the data- vs. control-oriented characterization spectrum. The railway
system is a model of a yard consisting of eight trains and their missions. The yard contains a number of
critical sections of railway tracks that the scheduling algorithmmust ensure are never saturated, which
would cause a deadlock in the system where no train could proceed. Briefly, this is done by keeping
track of the number of trains currently present in each critical section, and making sure that number is
always below a certain maximum that would not cause the system to reach a deadlock. For the railway
case study, the property we are interested in is whether all of the trains always eventually reach their
final destination, i.e. the last station on their mission. For a model to satisfy this property, it must be
accompanied with appropriate fairness constraints.

The railway system was originally modelled in UMC, Promela/SPIN, NuSMV, mCRL2, CPN
Tools, FDR4, and CADP. Thus, for our first model of this system that we wrote (in B), we based our
work mostly on the descriptions in the original paper, occasionally comparing our model against the
paper’s accompanying NuSMV and Promela models for clarification. For the subsequent models of the
system, we used our Bmodel as the reference.

The B and Event-B railway models use type signatures to specify what the precise ranges of
the valid natural numbers of the model’s primitives are. Compared to the models accompanying the
original paper, our B and Event-Bmodels use a more compact representation for the train missions
and critical section constraints. Instead of declaring eight separate snapshot variables one for each
train, we use the constructor for a total function with the domain 0..7. This allows accessing the
missions and constraints using the index for each train, alleviating the need for writing eight separate
move_train transitions, one for moving each train. Instead, the B and Event-Bmodels each have only
one transition for moving all of the trains, which indexes into the relevant snapshot variables using the
currently chosen train ct as the index. The chosen train index, represented by the ct snapshot variable,
is updated in a round-robin fashion each time the choose_train transition is executed.

The AsmetaL model of the railway system is similar to the reference B version. The notable
difference is AsmetaL’s distinction between controlled andmonitored variables. We designate the

76



snapshot variable for the currently chosen train as a monitored variable, eliminating the need for having
a choose_train transition.

TheAlloy railwaymodel differs from the referenceBmodel in a number ofways. These differences
stem from the fact that Alloy’s built-in integers are highly inefficient in analysis (it is not a modelling
language problem; see Section 5.1 and Section 5.7), and increases in scope of integers results in them
quickly becoming a performance bottleneck during the analysis. As such, instead of using integers for
modelling trains and stations, we use an enumerated set for each, allowing us to avoid increasing the
scope of integers. The downside of this approach is that it makes writing the model more tedious, and
drastically increases the line count for the Alloymodel, as we can no longer use only one transition
capable of moving any of the trains, and have to write one transition per each train.

The PlusCal and TLA+ models of the railway system differ from our reference Bmodel due
to the absence of constructors and type signatures in TLA+ and PlusCal. The PlusCal and
TLA+ models are very similar to each other. Both models have two transitions, one for moving any
train, and another for choosing the train to be moved, with strong fairness imposed on the former and
weak fairness on the latter. This helps make sure the transition for changing trains does not starve the
transition for moving a train.

TheDash railway model is similar to the Alloymodel, differing from the reference Bmodel
in their use of an enumerated set representation instead of integers for the train stations. Aside from
the inherent differences betweenDash and Alloy, the two models differ in their use of Alloy’s
more recent features in its expressions language. Namely,Dash does not yet support Alloy’s let
expressions and the enum short-hand for declaring an enumerated set. The othermain difference between
the twomodels is that in theDashmodel, we use the env keyword for the chosen train snapshot variable
to mark it as amonitored variable, allowing the environment to choose which train to move next. This
lets us eliminate the choose_train transition in favour of a more general train-choosing mechanism.
However, similar to the Alloymodel, theDash railway model is noticeably larger than the other
models of the railway system, as we have to write one transition per each train, for the same reasons as
the Alloymodel, explained earlier. While writing theDashmodel, we ran into aContradictory
TR issue stemming fromDash’s use of Alloy’s ordering module by default and the scope we set on
the Snapshot signature not matching exactly the number of snapshots needed for the snapshot trace of
the property we were checking. We resolved this problem by using a scope exactly matching the number
of needed snapshots.

For the railway scheduling deadlock freedom case study, the limitations of integers in Alloy really
shows during analysis, and needs to be worked around if possible. For the Alloy andDash railway
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models, we kept the scope of integers at a minimum by using enumerated sets instead of integers for
representing the 27 train stations. We believe thatB, Event-B,TLA+, PlusCal, andAsmetaL are
better equipped to handle this model’s use of integers. Dash and PlusCal in particular distinguish
between controlled andmonitored variables, allowing the modeller to denote the snapshot variable for
the currently chosen train as a monitored variable changed by the environment. This eliminates the
need for a transition for changing the variable.
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Chapter 8

Related Work

In this chapter, we discuss related work on comparing declarative modelling languages.

The Software Abstractions book [43] includes an appendix that discusses alternative modelling
languages to Alloy. Jackson compares Alloy to four other formal frameworks (B, OCL, VDM, and Z)
by using a simplified version of one of the running examples used earlier in the book and modelling the
example in the other four languages. Jackson’s comparison consists largely of discussing the historical
background as well as tool support for the languages, and goes into little detail about the constructs of
the language or a comparison criteria for comparing the languages.

Newcombe [61] comparesTLA+ andAlloy, and concludes thatTLA+’s data operations, together
with its higher-order and recursive operators, make descriptions simpler than Alloy’s for engineers,
particularly with respect to nested record structures. Our comparison looks in detail at the constructs
and semantics of the transition system representations across the languages, whereas Newcombe focuses
on the usage of the languages and their tool support, as well as more on non-functional criteria such as
each language’s minimization of cognitive burden on the modeller, high return on investment, and the
handling of subtle or complex problems.

Zave [77] comparesAlloy and Spin by using them tomodel a complex system, the Chord network
protocol for a distributed hash table, with the goal of recommending a lightweight formal method
for modelling and analyzing complex network protocols. Zave’s comparison includes a few common
criteria with ours, such as implicit vs. explicit snapshot representation, building blocks for control
and data aspects of the model, scope (size bound) of sets, and the frame problem. Through modelling
and analyzing Chord in Alloy, Zave arrives at the surprising result that Chord is not correct, as it
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was previously thought to be. Zave notes that although several previous work had reported on the
application of model checking to implementations of Chord, due to implementations being immensely
more complex than an abstractmodel, the analyseswere necessarily incomplete. Although those previous
works were able to find bugs in the implementations they had analyzed, none of them had found the
specification-level bugs that Zave found. In terms of differences between Alloy and Spin, Zave notes
that because the Chord specification did not include a strong global invariant, she had to resort to using
Spin to find a provably correct global invariant. Otherwise, Zave notes, the presence of a sufficiently
strong global invariant would have givenAlloy a performance boost sufficient to make it the ‘clear
winner’ of the comparison (by using the invariant to restrict the model’s reachable snapshot space).

Sullivan et al. [74] compare three snapshot modelling techniques for transition systems in Alloy
for performance, using four examples. They compare two commonly-used snapshot representation
techniques with a new “parameterization” approach, in which all signature fields are removed from
signature declarations, and are instead added as arguments to all predicates, and fact blocks are converted
to a predicate, referenced in other predicates where needed. Their results suggest that the Alloy Analyzer
exhibits improved performance on examples using their new parameterization technique. In contrast to
Sullivan et al.’s work, the focus of our comparison is more generally on the techniques for modelling
transition systems across modelling languages, and we do not consider the performance of tool support
for languages as part of our comparison criteria.

Frappier et al. [34] compare six model checking tools (Alloy, CADP, FDR2, NuSMV, ProB, and
Spin) for validation of specification of information systems. Their comparison focuses on the ease of
specifying behaviours, properties, and the number of instances that can be checked by each tool for
information systems. They present the requirements for a library management system to be modelled
and checked with the above tools and languages. Their paper is the original source for our library
management case study (Section 7.4). Frappier et al. conclude that a suitable language for validating
information systems using model checking should support a notion of snapshots and transitions, and
that process algebraic operators would be useful for easily expressing information system scenarios.
Further, they conclude that CTL is powerful enough for expressing the kinds of properties they are
interested in, whereas LTL falls short of expressing some of the properties.

Deutsch et al. [30] study the specification and verification of data-driven information systems,
particularly an interactive web application that receives input from the user, potentially interacts with a
database, and displays output to the user. They verify various CTL and CTL∗ properties about their
model in an ASM-like specification language based on an earlier work [72].

Fraikin et al. [33] compare the two specification languagesB and eb3, representative of the snapshot-
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based and event-based modelling paradigms respectively, for modelling information systems. They
compare the two languages by modelling a library information system in each language, and comparing
the models on the four criteria of ease of specifying functional behaviour, validation, verification, and
evolution of a model to meet new requirements. The authors conclude that the two languages are
complimentary. While B seems better at expressing complex ordering and invariants, eb3 provides a
simpler, modular, explicit representation of temporal properties. The downside of eb3’s process algebra
is the difficulty of proving preservation of invariants, since it does not include an explicit representation
of pre and postconditions for transitions, while B’s drawback is the difficulty of understanding the
orderings of input events, due to the strong data coupling between transitions.

Mazzanti et al. [59] study and report on the use and diversity of formal methods in railway systems.
They do so in part by modelling and verifying a train scheduling deadlock avoidance algorithm in seven
formal environments (UMC, Promela/SPIN, NuSMV,mCRL2, FDR4, CPNTools, and CADP) from
three families of languages (state-machine-oriented, process algebras, and Petri Nets) and comparing
their findings. The authors observe that even small decisions in the design and verification process can
result in drastic changes in tooling performance, especially for the studied process algebraic approaches,
but also notice that a model can be ported to the other environments with limited effort. The authors
believe this helps propel the new idea of formal methods diversity, in which modellers port their model
to several potentially non-certified formal tools to increase their confidence in the correctness of the
results of their analysis and verification. Their paper is the original source for our railway scheduling
deadlock freedom case study (Section 7.5).

Aydal et al. [22] compare four tools (USE, Alloy Analyzer, ZLive, and ProZ) for three modelling
languages (UML, Alloy, and Z respectively) with respect to strengths and weaknesses of the tools
for analyzing and verifying the models written in each language. In particular, Aydal et al. study and
compare each tool against one another on a course assignment system example, with four comparison
criteria of animation of models, generation of pre and postconditions for transitions, information
reported about the analysis, and the required expertise. They also report on the performance and
efficiency of the tools on their models.

Ardis et al. [21] compare seven formal languages (Modechart, VFSM, Esterel, Basic LOTOS, Z, SDL,
and C) on the same example, a telephone switching system. None of the languages they compare are in
the set of languages we compare in this work. The criteria that Ardis et al. used to compare the languages
are much higher-level concerns, such as testability and language maturity, than our comparison, which
focuses on how a transition systemmodel is modelled in a declarative modelling language.

Huynh et al. [41] formalize SCAG, a new healthcare access control model with conflict resolution
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for managing each patient’s wishes as to who can access their Electronic Health Records (EHR). The
access control model takes into account regional laws and regulations applicable in Québec and Canada,
where under certain strictly defined scenarios, for safety reasons patient consent can be overridden to
protect the patient’s life. The authors formalize the access control policies in B and Alloy, and use
ProB and the Alloy Analyzer to verify properties about their models. The results show that without any
optimizations, the Alloy Analyzer performs better than ProB. However, when using ProB’s capability
for controlling the order of constraint solving, as well as storing frequently-used results in snapshot
variables of the Bmodel, ProB performs significantly better than Alloy for all of the checked properties.

Bruel et al. [26] survey the role of formalism in system requirements, discussing and comparing
more than twenty approaches to requirements. They classify the studied approaches into fives categories
of natural language, semi-formal, automata and graphs, mathematical, and seamless, based on how
they express requirements. The authors then use a running example of the Landing Gear System [24]
to compare the approaches with respect to nine criteria including level of abstraction, tool support,
separation of the external environment and the system, and verifiability of requirements. Bruel et al.
present a detailed and lengthy discussion of their results and conclusions; but in short, they conclude
that formal methods complement other (potentially informal) requirement approaches, and that they
should be seen as powerful tools available to every requirements engineer or business analyst.

Leuschel et al. [56] demonstrate the use of B as a high-level constraint modelling language, with
the ProB tool as the constraint solver. They compare B and ProB with Alloy and the Alloy Analyzer
on several examples, showing the strengths and weaknesses of each tool on the examples. The authors
note the ProB solver’s weaknesses compared to the Alloy Analyzer on certain relational operators such
as relational image and transitive closure, citing improvements to these as future work. Leuschel et al.
conclude that using B with ProB can be a nice trade-off between the high performance of low-level
constraints solvers and thehighdifficulty of encodingproblems in them, and the increased computational
power needed for solving problems encoded in higher levels of abstraction.

Samia et al. [66] compare the use of a high-level specification language and tooling such as B and
ProB with a low-level language and tooling such as Promela and Spin. They do so by modelling ten
examples in each language and comparing the models on three criteria of model length, modelling time,
and model checking performance.

Hatcliff et al. [39] survey designing and using behavioural interface specification languages. They
compare several specification languages— including JML, SPARK, Spec#, and Dafny—on several
examples. Hatcliff et al. focus on program verification and languages that allow verifying a program
satisfies certain properties, while our comparison focuses specifically on modelling transition systems in
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declarative modelling languages, at a higher level of abstraction than typical programming languages.

Maraee and Sturm [58] examine the usage of the OCL declarative language with that of the Java
imperative programming language for understanding and developing constraints in a controlled experi-
ment among a group of undergraduate students. The obtained results suggest that using a declarative
language such as OCL has many advantages for understanding and developing constraints over an
imperative language such as Java, with the differences increasing as the constraints growmore complex.
Writing constraints in a declarative language enables verification and validation of models, whereas
writing them in an imperative language inevitably shifts the focus to low-level implementation details
that are irrelevant to the essence of the constraints.

Lamport and Paulson [52] compare specificationwith andwithout a type system, stating advantages
and disadvantages for both typed and untyped specification languages. They compare set theory and
typed formalisms across four general criteria of flexibility, convenience, pitfalls, and abstractness; and
conclude that an untyped set theory could serve as a solid, common foundation upon which different
tool-specific type systems can be overlaid.

López et al. [57] propose a formal framework for assessing the expressivity of formal specification
languages, based on the mutation testing technique. The idea is to create mutated versions of a specifica-
tion that differ from the original specification in some aspect, with some of the mutants still exhibiting
correct behaviour and some behaving incorrectly. Then, model themutants in the specification language
under study. The authors’ measure of expressivity and suitability of languages for modelling a certain
class of systems is based on the ratio of the correctness of mutants and the correctness of the models of
those mutants in the given modelling language. In other words, whether the models of the correct and
incorrect mutants are distinguishable in the modelling language.

Some textbooks [62, 17, 65, 23, 53, 23, 18, 63] introduce various formal and informal modelling
languages, each with their own examples or occasionally the same example, to illustrate certain aspects
of the language. However, they generally do not compare the languages against one another.

In comparison to these related works, we focus on models of transition systems. We develop a set of
categorized comparison criteria and examine in depth each language with respect to each of the criterion.
Further, we use these criteria to compare a diverse range of examples on the data- vs. control-oriented
characterization spectrum, modelling each of the five examples in all of the seven languages, producing a
total of thirty-five models. We use these models and our observations from carrying out the case studies
to make recommendations as to which language(s) we think would be the best fit for modelling various
kinds of transition systems.
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Chapter 9

Conclusion

This thesis presents

• a set of criteria to compare declarative modelling languages;

• the comparison of the selected declarative modelling languages (B, Event-B, Alloy,Dash,
TLA+, PlusCal, and AsmetaL) based on these criteria; and

• our recommendations for the choice of modelling language based on the characteristics of the
transition system under description, rooted in our observations of the differences and similarities
between the languages with respect to our comparison criteria from the several case studies we
carried out.

We categorize our comparison criteria into three main categories of control modelling, data mod-
elling, and modularity; discussed in detail in Chapter 4, Chapter 5, and Chapter 6 respectively.

Based on our experience modelling each case study presented across the languages, we now present
more general recommendations for the choice of declarative modelling language depending on the
characteristics of the system under description.

For models where fine control over the transition relation of the transition system by the modeller
is desired, Alloy, TLA+, and AsmetaL are the most suitable languages, as they use an explicit
representation for the transition relation.

For modelling control-oriented systems where the relevance of the transitions and their being
enabled can be captured using (potentially hierarchical) control states, we believe Dash is a great
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choice for the modelling language. While our case studies showed that these systems can be modelled in
any of the languages we studied, we foundDash’s control state hierarchy and events to enable the
modeller to model control-oriented systems in an abstract, concise, and convenient way. Also,Dash’s
per-state namespaces allow separation of names, while still allowing global communication between
different states through a clear interface of fully-qualified names.

A common source of mistakes and inconsistency bugs inAlloymodels is the under-specification
of behaviours, relating to the frame problem. In Alloy, any variable not constrained in a transition
may freely change from the source to the destination snapshot. This can result in the model exhibiting
strange behaviours that could be especially hard to debug. TLA+, also a highly declarative language,
addresses this problem by requiring that every transition constrain every snapshot variable, either
explicitly using primed and unprimed names of variables, or denoting the unchanged variables using
the UNCHANGED keyword. For this reason, we believe TLA+ is a better choice than Alloy for modelling
larger data-oriented models, as it eliminates an entire common, hard-to-debug class of problems using
static syntactic checks.

For models where a clear distinction between the system and its surrounding environment is desired,
Dash and AsmetaL both distinguish between controlled andmonitored variables. Dash addi-
tionally supports environmental (monitored) events as well, which are those that are fired exclusively by
the environment and not by any of the system’s transitions.

For highly data-oriented systems, we found B and Event-B’s extensive set of arrow constructors
for various relational and functional units of data to be powerful tools for writing terse and concise
descriptions of highly-constrained composite units of data, both in type signatures and in formulas.
Although Alloy/Dash using multiplicities and TLA+/PlusCal through use of flexible and
expressive TLA+ expressions could describe the same set of constraints on data, B/Event-B allow
this in a more convenient way. We found AsmetaL to be the least declarative and least flexible in this
regard.

As B and Event-B are similar languages with the same roots, and Event-B is a successor of B,
the choice between the two languages may not be immediately obvious. Compared to B, Event-B is a
smaller and much simpler language. While B supports several kinds of relationships between machines,
in Event-B the only kinds of relationships are a machine importing one or more contexts, and a
machine refining another machine. Further, B has built-in constructors for sequences and trees while
Event-B does not. On the other hand, B only has one arrow constructor for declaring a relation,
whereas Event-B has three additional arrows for constructing specific kinds of relations; namely total,
surjective, and total surjective relations. Further, Event-B has support for declaring subtypes and
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partitioning a set into multiple disjoint subsets, whereas B does not.

PlusCal brings to the table the power and expressiveness of TLA+’s expressions, wrapped in
a semantics geared more towards modelling multi-process concurrent and parallel algorithms, with
additional well-formedness safeguards that make certain classes of bugs unrepresentable in a valid
model in the language. AsmetaL, too, has semantics for modelling multi-threaded systems.

With respect to modularity, Event-B,Dash, PlusCal, and AsmetaL allow data decompo-
sition of amodel acrossmultiple files. B,Alloy, andTLA+ additionally allow control decomposition
of a model into subtransition systems across multiple files.

Although we observed subtle and noteworthy differences across the languages with respect to the
stuttering criterion, it did not seem to affect the modelling of our case studies noticeably. Similarly, the
representation of snapshot variables, initialization, deadlock, contradictory transition postcondi-
tion, constants, scopes, and syntax overloading did not have a significant effect on our process of
modelling the case studies. However, these criteria are useful to acknowledge, helping the modeller see
the differences between the languages with respect to these criteria, when moving from one modelling
language to the next.

If we were creating an ideal declarative modelling language, it would include the following features
and characteristics:

• a more declarative rather than imperative expression style, so as to stay true to the declarative
behavioural modelling paradigm;

• a wide range of constructors for composite units of data, as well asmultiplicities for the con-
structors, with constructors for commonly used data units such as total, partial, and surjective
functions built as syntactic sugar on top ofmultiplicities; aswell as support for declaring subtypes;

• implicit representation for the transition relation by default for convenience, along with options
to supplement or tweak the transition relation by more knowledgeable modellers;

• improved tool support for helping the modeller find the sources of inconsistency in their model;

• notion of control state hierarchy or similar constructs to decompose a transition system from a
control modelling point of view into subtransition systems, each having their own (uniquely
addressable) namespace;
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• typechecking done as a separate pass, with typing constraints restricting the reachable snapshot
space for improving performance, as opposed to treating typing constraints as properties checked
with other invariants during the main analysis;

• dealing with the frame problem in a way that is both convenient and avoids the issue of under-
specification as seen in Alloymodels, by either adding implicit constraints that keep uncon-
strained variables in a transition unchanged (asDash does), or by requiring that every variable
either be constrained or marked as unchanged using a special keyword (as TLA+ does); and

• a flexible module system for data decomposition of models across multiple files, with each file
hosting one or more parameterizedmodules that support selective import and export of iden-
tifiers.

Dash already has several of the above characteristics and features, and we believe it has poten-
tial to become even closer to our described ideal language by implementing the missing features and
enhancements from the above list.

In future work, we would like to extend our comparison to include other similar languages and also
extend our comparison criteria to include an examination of tool support, which would address issues
such as performance, robustness, and ease of understanding counterexamples.
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Appendix A

Tool versions

This appendix lists the versions of the tool support for each language we used when carrying out our
case studies. The tools are all free software [7] and publicly available for use by anyone.

• For B, we used ProB:

ProB 1.9.0-release

718e254497d921bb4f82945fefdb73774780d007

Wed Jul 17 16:07:40 2019 +0200

TclTk 8.5.19

SICStus 4.5.1 (x86_64-linux-glibc2.17): Tue Apr 2 06:27:49 PDT 2019

• for Event-B, we used the Rodin Platform Version: 3.4.0.201802230927-6980ca1 along with
the ProB for Rodin3 3.0.10.201909041430 de.prob2.feature.feature.group HHU Düsseldorf

STUPS Group plugin.

• For Alloy, we used the Alloy Analyzer 5.1.0 built 2019-08-14T18:53:58.297Z.

• ForDash, we used commit 725cd790497cf561443033d2af666877df6d58f5 of
https://git.uwaterloo.ca/jserna/dash built using

Eclipse DSL Tools

Version: 2019-12 (4.14.0)

Build id: 20191212-1212
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• For TLA+ and PlusCal, we used the TLA+ Toolbox and its accompanying tools:

TLA+ Toolbox provides a user interface for TLA+ Tools.

This is Version 1.6.0 of 10 July 2019 and includes:

- SANY Version 2.1 of 23 July 2017

- TLC Version 2.14 of 10 July 2019

- PlusCal Version 1.9 of 10 July 2019

- TLATeX Version 1.0 of 20 September 2017

• For AsmetaL, we used

Eclipse IDE for Java Developers

Version: 2019-09 R (4.13.0)

Build id: 20190917-1200

with the following plugins:

Asmeta Animator 0.0.10

Asmeta editor and simulator 0.9.10

Asmeta model advisor 0.0.14

Asmeta model checker 1.0.6

Asmeta test generator 0.0.3

Asmeta visualizer 1.0.8
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