
A Comprehensive Study of
Declarative Modelling Languages

B, Event-B, Alloy, Dash, TLA+, PlusCal, AsmetaL

Amin Bandali

June 30, 2020

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

• hello, welcome!
• i’m Amin Bandali, and today i’m presenting my master’s thesis,
A Comprehensive Study of Declarative Modelling Languages

• thank you to each and every one of you for being here
• especially Prof. Atlee and Prof. Rayside for agreeing to be my
second readers and reading my thesis in such a small amount of
time



Formal Specifications

Architects draw detailed plans before a brick is laid or a nail is ham-
mered. Programmers and software engineers don’t.

Can this be why houses seldom collapse and programs often crash?

To designers of complex systems, the need for formal specifications
should be as obvious as the need for blueprints of a skyscraper.

But few software developers write specifications because they have little
time to learn how on the job, and they are unlikely to have learned in
school.

— Leslie Lamport, Turing Award Winner, 2013

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Introduction & Motivation

Formal Specifications

1. i’d like to start my presentation with a quote from Leslie Lamport
about formal specifications, a shorter excerpt of which i used in my
first chapter’s epigraph

2. read the quote…
3. with this quote, Lamport makes the point for learning and using

formal specifications as an important tool for software developers
and especially software engineers



Declarative Behavioural Modelling

Declarative behavioural modelling is a powerful modelling paradigm that
enables users to model system functionality abstractly and formally.

An abstract model is a concise and compact representation of the key
characteristics of a system, and enables the stakeholders to reason about
the correctness of the system in the early stages of development.

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Introduction & Motivation

Declarative Behavioural Modelling

in this work we focus on the declarative behavioural modelling approach
for formal specification



Use of Declarative Models

· Zave’s use of Alloy and Spin to find specification-level bugs in
the specification of the Chord network protocol;

· Amazon’s use of TLA+ has helped find subtle bugs in complex
real-world systems and prevent the bugs from reaching
production; and

· Huynh et al.’s use of B for formalizing a new healthcare
access control model with conflict resolution for overriding
patient consent as to who can access their Electronic Health
Records (EHR) under strictly defined scenarios by regional
laws of Québec and Canada to protect the patient’s life.20

20
-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Introduction & Motivation

Use of Declarative Models

we are motivated to do this study by the many applications and demon-
strated usefulness of declarative modelling languages and model checking
to help design systems or analyze and verify properties about the design
of existing systems



Methodology (cont’d)

8. expand our set of examples with 2 new larger systems, Library and
Railway (marked with an asterisk), increasing our model count from
18 relatively small examples to 35 including the larger ones; our
final case studies are those typeset in bold; and

EH
ea
lth

Lib
ra
ry
*

Fa
rm
er
Pu
zz
le

Ra
ilw

ay
*

Mu
sic
al
Ch

air
s

Mu
tex

Di
gi
tal

W
atc

h
Bit

Co
un
ter

data-oriented control-oriented20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Methodology

Methodology (cont’d)

the figure shows the data- vs. control-oriented characterization spectrum



Methodology (cont’d)

Table 1: Order of modelling case studies across languages

Case study
Language B Event-B Alloy Dash TLA+ PlusCal AsmetaL

EHealth 1 2 3 1 1 4 5
Musical Chairs 1 4 E 1 1 3 2
Digital Watch 1 2 5 1 1 4 3

Library E 1 E 3 5 2 4
Railway 1 7 3 5 6 4 2

Legend: E indicates Existing models, i.e. those that we had no influence on. The
numbers in each row indicate the order of languages the case study was done in.

9. note the differences and similarities across the languages with
respect to our comparison criteria while modelling the examples.20

20
-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Methodology

Methodology (cont’d)

the table shows the order of modelling each of the case studies across the
languages



Control Modelling

concerned with control aspects and structure of transition systems

a transition system TS is a tuple (S ,TR, I ), where

· S is a set of snapshots,

· TR ⊆ S × S is a transition relation, and

· I ⊆ S: is a set of initial snapshots.

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Control Modelling

Control Modelling

A model in a declarative modelling language defines a transition system
that starts in an initial snapshot s0 ∈ I and progresses from a snapshot s to
the next snapshot s′ for (s, s′) ∈ TR.



Control Modelling Criteria

· snapshot variables

· initialization

· transition relation

· control state hierarchy

· invariants

· inconsistency

· frame problem

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Control Modelling

Control Modelling Criteria

• our criteria for control aspects of models are: …
• in the interest of time we will focus on the bold ones in this
presentation which we thought might be more interesting than the
others

• if asked about inconsistency, elaborate:
– deadlock
– contradictory TR
– contradictory TP
– stuttering



Control Modelling — Transition Relation

· completely explicit: Alloy

· mostly explicit: TLA+ and AsmetaL

· implicit: B, Event-B, Dash, and PlusCal

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Control Modelling

Control Modelling — Transition Relation

• in Alloy, TR is defined completely explicitly in model text, and its form can vary
greatly depending on how the snapshot, variables, and transitions are defined. e.g.
with a State signature as the snapshot representation and its fields as variables, TR
can be decomposed into predicates which can be viewed as transitions.

• in TLA+, TR is by convention a predicate named Next, defined as the disjunction of
all of the model’s transition predicates (method best supported by TLC, TLA+’s
accompanying MC). AsmetaL has a more imperative style, and does not have a
disjunction operator for combining transitions; and as such, we have have to use the
choose rule instead. TR said to be defined mostly explicitly because in addition to
the model text, both languages add implicit stuttering under certain conditions.

• the remaining languages have implicit TR, constructed automatically behind the
scenes from the transitions. it’s worth mentioning that PlusCal allows writing one’s
own TR if need to.

TR in B, Event-B, and PlusCal is implicitly formed as follows: at any step, any
transition whose precondition is satisfied (i.e. is enabled) may be chosen to be
taken. There is no requirement on the preconditions of the transition to be
non-overlapping, and more than one trans may be enabled at a time, resulting in a
branch in the snapshot space graph.



Control Modelling — Frame Problem

refers to the issue of how snapshot variables that are not explicitly
constrained in a transition may or may not change from one
snapshot to the next

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Control Modelling

Control Modelling — Frame Problem

is particularly an issue in declarative languages that rely on logical con-
straints on variables for describing the changed and unchanged variables
in a transition



Data Modelling Criteria

· primitives & subtypes

· constructors

· built-ins

· expressions

· events

· constants

· well-formedness & typechecking

· scopes

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Data Modelling

Data Modelling Criteria

• our criteria for data aspects of models are: …
• we will focus on the bold ones in this presentation for similar
reasons to Control Modelling earlier

• primitives in all languages consist of scalars and sets, with the
exception of Alloy, which does not have scalars and “scalars” are
represented using singleton sets



Data Modelling — Constructors

examples:

· B and Event-B have arrow constructors for creating functions; e.g.

· 7→ and → for partial and total functions
· 7� and � for partial and total surjective functions

· Alloy and Dash have multiplicity keywords such as lone, one, and
some that can be used to create various kinds of functions; e.g.

· ->lone and ->one for partial and total functions
· some->lone and some->one for partial and total surjective

functions

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Data Modelling

Data Modelling — Constructors

the -> operator in Alloy (and Dash) is actually the relation constructor, and
the multiplicity keywords can constrain the constructed relation e.g. to be
a function



Data Modelling — Typechecking

· TLA+ and PlusCal have no type signatures, and typing
constraints are stated and checked along with other invariants

· in Alloy and Dash typechecking consists of checking that no
relation has been given different arities and that no
expression can be shown to be redundant or contain a
redundant sub-expression using solely the declarations

· B, Event-B, and AsmetaL have type signatures and
typechecking that help statically catch errors like assigning a
value from a set to a variable with a type signature declaring a
different/incompatible set, and applying a function to
arguments that do not match its type signature20

20
-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Data Modelling

Data Modelling — Typechecking

a common example of the second form of type error in Alloy/Dash is an
expression being redundant due to being equal to the empty relation (e.g.
due to mismatched type signatures)



Modularity Criteria

· decomposition into subtransition relations

· namespaces of subtransition relations

· data decomposition into multiple files

· file import

· file export

· file parameterization

· file namespaces

· syntax overloading

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Modularity

Modularity Criteria

• our criteria for modularity aspects of models are: …
• all of the languages allow data decomposition; i.e. allow
subformulas relevant to the data aspects of the model, such as
axioms for a unit of data, to be declared separately

• but we will focus on decomposition into subtransition relations in
this presentation



Modularity — Subtransition Relations

· a subtransition system is a full description of a transition
system

· subtransition systems are composed to create the single
top-level transition relation implicitly or explicitly

· B, Alloy, TLA+, and AsmetaL support decomposition into
subtransition systems

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Comparison Criteria
Modularity

Modularity — Subtransition Relations

Alloy, TLA+, and AsmetaL have explicit representation of TR, while B has
implicit representation of TR and achieves subtransition system decom-
position by effectively prepending the components of the subtransition
system(s) to those of the parent transition system to compose the resulting
final transition system



Introduction & Motivation

Methodology

Comparison Criteria
Control Modelling
Data Modelling
Modularity

Contributions

20
20

-0
6-
29

A Comprehensive Study of Declarative Modelling
Languages

Contributions

for contributions, in addition to the set of comparison criteria and compar-
ing the languages with respect to those criteria, we offer recommendations
for the choice of modelling language, the research question we set out to
answer


	Introduction & Motivation
	Methodology
	Comparison Criteria
	Control Modelling
	Data Modelling
	Modularity

	Contributions
	Appendix

