

Intel[®] Server Boards S3000AHLX, S3000AH, and S3000AHV

Technical Product Specification

Intel Order Number: D72579-002

Revision 1.1

December 2006

Enterprise Platforms and Services Division

Revision History

Date	Revision Number	Modifications	
August 2006	1.0	Initial external release.	
December	1.1	Removed AHCI from BIOS setup menu.	
2006		 Added "SPI/FWH Selection Header" section. 	
		 Revised memory section. 	
		 Updated S3000AH and S3000AHV SKU NIC controller from 82573V to 82573E. 	
		 Updated "Clear CMOS and System Maintenance Mode Jumpers" section. 	
		 Added Intel[®] Matrix Storage Technology feature support. 	

ii Revision 1.1

Disclaimers

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local sales office that you have the latest datasheet before finalizing a design.

The Intel® Server Boards S3000AHLX, S3000AH, and S3000AHV may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document and the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Intel, Pentium[®], Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2006.

Table of Contents

1.	Introdu	ıction	1
1	.1	Chapter Outline	1
1	.2	Server Board Use Disclaimer	1
2.	Server	Board Overview	2
2	.1	Server Board Feature Set	2
2	.2	Server Board Layout	11
	2.2.1	Server Board Mechanical Drawings	12
3.	Function	onal Architecture	15
3	.1	Processor Sub-System	16
	3.1.1	Processor Voltage Regulator Down (VRD)	16
	3.1.2	Reset Configuration Logic	16
3	.2	Intel® 3000 Chipset	17
	3.2.1	Memory Controller Hub (MCH)	17
	3.2.2	PCI-X* Hub (PXH)	19
	3.2.3	I/O Controller Hub	20
3	.3	Memory Sub-System	23
	3.3.1	Memory Configuration	23
	3.3.2	Memory DIMM Support	26
3	.4	I/O Sub-System	26
	3.4.1	PCI Subsystem	26
	3.4.2	Interrupt Routing	28
3	.5	On Board Components	33
	3.5.1	Video Support	33
	3.5.2	Network Interface Controller (NIC)	34
	3.5.3	Super I/O Chip	35
	3.5.4	BIOS Flash	36
	3.5.5	System Health Support	36
3	.6	Replacing the Back-Up Battery	37
4.	System	1 BIOS	38
4	.1	BIOS Identification String	38
4	.2	Logo / Diagnostic Window	39
4	.3	BIOS Setup Utility	39

	4.3.1	Operation	39
	4.3.2	Server Platform Setup Screens	42
2	1.4	Loading BIOS Defaults	63
2	1.5	Multiple Boot Blocks	63
2	1.6	Recovery Mode	63
2	1.7	Intel® Matrix Storage Manager	64
2	1.8	Intel® Embedded Server RAID Technology	65
5.	Error R	Reporting and Handling	66
5	5.1	Error Handling and Logging	66
	5.1.1	Error Sources and Types	66
	5.1.2	Error Logging via SMI Handler	67
	5.1.3	SMBIOS Type 15	67
	5.1.4	Logging Format Conventions	67
5	5.2	Error Messages and Error Codes	69
	5.2.1	Diagnostic LEDs	70
	5.2.2	POST Code Checkpoints	71
	5.2.3	POST Error Messages and Handling	73
	5.2.4	POST Error Beep Codes	74
	5.2.5	POST Error Pause Option	74
6.	Conne	ctors and Jumper Blocks	75
6	6.1	Power Connectors	75
	6.1.1	Main Power Connector	75
6	6.2	Intel® Adaptive Slot	76
6	3.3	SMBus Connector	80
6	6.4	IDE Connector	80
6	6.5	Front Panel Connector	81
6	6.6	I/O Connectors	81
	6.6.1	VGA Connector	81
	6.6.2	NIC Connectors	82
	6.6.3	SATA Connectors	83
	6.6.4	Floppy Controller Connector	83
	6.6.5	Serial Port Connectors	84
	6.6.6	Keyboard and Mouse Connector	84
	6.6.7	USB Connector	85
6	6.7	Fan Headers	85

6.8	Miscellaneous Headers and Connectors	86
6.8.1	Back Panel I/O Connectors	86
6.8.2	Chassis Intrusion Header	87
6.8.3	HDD ACTIVE LED Header	87
6.9	Jumper Blocks	88
6.9.1	NIC1 NVM Protect	88
6.9.2	Clear CMOS and System Maintenance Mode Jumpers	88
6.9.3	SPI/FWH Selection Header	89
7. Absolu	ute Maximum Ratings	90
7.1	Mean Time Between Failures (MTBF) Test Results	90
7.2	Calculated Mean Time Between Failures (MTBF)	90
8. Desigi	n and Environmental Specifications	91
8.1	Power Budget	91
8.2	Power Supply Specifications	92
8.2.1	Power Timing Requirements	92
8.2.2	Dynamic Loading	95
8.2.3	AC Line Transient Specification	95
8.2.4	AC Line Fast Transient (EFT) Specification	96
8.3	Product Regulatory Compliance	96
8.3.1	Product Safety Compliance	96
8.3.2	Product EMC Compliance – Class A Compliance	97
8.3.3	Certifications / Registrations / Declarations	97
8.3.4	RoHS	98
8.3.5	Product Regulatory Compliance Markings	99
8.4	Electromagnetic Compatibility Notices	100
8.4.1	FCC (USA)	100
8.4.2	ICES-003 (Canada)	101
8.4.3	Europe (CE Declaration of Conformity)	101
8.4.4	VCCI (Japan)	10
8.4.5	Taiwan Declaration of Conformity (BSMI)	101
8.4.6	Korean Compliance (RRL)	102
8.4.7	CNCA (CCC-China)	102
8.5	Mechanical Specifications	103
9. Hardw	vare Monitoring	106
9.1	Monitored Components	106

Reference D	Documents	112
Glossary		109
9.2	Chassis Intrusion	108
9.1.1	Fan Speed Control	107

List of Figures

Figure 1. Intel [®] Server Board S3000AHLX Layout	5
Figure 2. Intel [®] Server Board S3000AHLC Diagram	7
Figure 3. Intel [®] Server Board S3000AHV SKU Diagram	9
Figure 4. Intel [®] Server Board S3000AH	11
Figure 5. Intel $^{ ext{@}}$ Server Board S3000AHLX – Hole and Component Positions (1 of 2)	12
Figure 6. Intel $^{ ext{@}}$ Server Board S3000AHLX – Hole and Component Positions (2 of 2)	13
Figure 7. Intel [®] Server Board S3000AHLX – Restricted Areas	14
Figure 8. Server Board Block Diagram	15
Figure 9. Memory Bank Label Definition	25
Figure 10. Interrupt Routing Diagram	30
Figure 11. Intel [®] ICH7R Interrupt Routing Diagram	31
Figure 12. PXH-V Interrupt Routing Diagram	32
Figure 13. Setup Utility — Main Screen Display	42
Figure 14. Setup Utility — Advanced Screen Display	44
Figure 15. Setup Utility — Processor Configuration Screen Display	45
Figure 16. Setup Utility — Memory Configuration Screen Display	46
Figure 17. Setup Utility — IDE Controller Configuration Screen Display	47
Figure 18. Setup Utility — Serial Port Configuration Screen Display	49
Figure 19. Setup Utility — USB Controller Configuration Screen Display	50
Figure 20. Setup Utility — PCI Configuration Screen Display	51
Figure 21. Setup Utility — Boot Configuration Screen Display	53
Figure 22. Setup Utility — Hardware Health Configuration Screen Display	53
Figure 23 Setup Utility — Hardware Health Configuration Screen Display	54
Figure 24 Setup Utility — Hardware Monitor Screen Display	54
Figure 25. Setup Utility — Security Configuration Screen Display	55
Figure 26. Setup Utility — Server Management Configuration Screen Display	56
Figure 27. Setup Utility — View Event Log	57
Figure 28. Setup Utility — Console Redirection Screen Display	58
Figure 29. Setup Utility — Server Management System Information Screen Display	59
Figure 30. Setup Utility — Boot Options Display	60
Figure 31. Setup Utility — Boot Options Display	61
Figure 32. Setup Utility — Error Manager Screen Display	61

Figure 33. Setup Utility — Exit Screen Display	62
Figure 34. Intel [®] Server Board S3000AHLX Back Panel I/O connectors	86
Figure 35. Intel [®] Server Board S3000AH Back Panel I/O connectors	86
Figure 36. Intel [®] Server Board S3000AHV Back Panel I/O connectors	87
Figure 37. Output Voltage Timing	93
Figure 38. Turn On/Off Timing (Power Supply Signals)	94
Figure 39. Intel [®] Server Board S3000AH Mechanical Drawing	. 103
Figure 40. Pedestal Mount I/O Shield Mechanical Drawing for Intel $^{ exttt{@}}$ Server Board S3000AH	V104
Figure 41. Pedestal Mount I/O Shield Mechanical Drawing for Intel [®] Server Boards S3000AI and S3000AHLX	
Figure 42. Fan Speed Control Block Diagram	. 107

List of Tables

Table 1. Intel [®] Server Board S3000AHLX Layout Reference	6
Table 2. Intel® Server Board S3000AHLC Layout Reference	8
Table 3. Processor Support Matrix	17
Table 4. Segment F Connections	18
Table 5. Supported DDR2 Modules	19
Table 6. Segment E Configuration IDs	20
Table 7. Segment D Arbitration Connections	20
Table 8. Memory Bank Labels and DIMM Population Order	24
Table 9. Characteristics of Dual/Single Channel Configuration with or without Dynamic Mode	. 25
Table 10. PCI Bus Segment Characteristics	26
Table 11. Segment A Configuration IDs	27
Table 12. Segment A Arbitration Connections	27
Table 13. PCI AND PCI-X* Interrupt Routing/Sharing	28
Table 14. Interrupt Definitions	29
Table 15. Video Modes	33
Table 16. Intel [®] 82573E (NIC 1)	34
Table 17. Intel [®] 82541PI Gigabit Ethernet Controller (NIC 2)	35
Table 18. Serial A Header Pin-out	36
Table 19. BIOS Setup Page Layout	40
Table 20. BIOS Setup: Keyboard Command Bar	41
Table 21. Setup Utility — Main Screen Fields	43
Table 22. Setup Utility — Processor Configuration Screen Fields	45
Table 23. Setup Utility — Memory Configuration Screen Fields	46
Table 24. Setup Utility — ATA Controller Configuration Screen Fields	48
Table 25. Setup Utility — Serial Ports Configuration Screen Fields	49
Table 26. Setup Utility — USB Controller Configuration Screen Fields	50
Table 27. Setup Utility — PCI Configuration Screen Fields	51
Table 28. Setup Utility — Power Screen Fields	52
Table 29. Setup Utility — Boot Configuration Screen Fields	53
Table 30. Setup Utility — Security Configuration Screen Fields	55
Table 31. Setup Utility — Server Management Configuration Screen Fields	56
Table 32. Setup Utility — Console Redirection Configuration Fields	58

Table 33. Setup Utility — Server Management System Information Fields	59
Table 34. Setup Utility — Boot Options Display	60
Table 35. Setup Utility — Error Manager Screen Fields	61
Table 36. Setup Utility — Error Manager Screen Fields	62
Table 37. Setup Utility — Exit Screen Fields	62
Table 38. Event List	66
Table 39. SMBIOS Type 15 Event Log record format	68
Table 40. Event Type Definition Table	68
Table 41.: POST Progress Code LED Example	70
Table 42. POST Code Checkpoints	71
Table 43. POST Error Messages and Handling	74
Table 44. POST Error Beep Codes	74
Table 45. Power Connector Pin-out (J4G1)	75
Table 46. Auxiliary CPU Power Connector Pin-out (J9B2)	75
Table 47. Intel® Adaptive Slot Pin-out (J4B2)	76
Table 48. SMBus Connector Pin-out (J1E1)	80
Table 49. ATA 40-pin Connector Pin-out (J3J2)	80
Table 50. Front Panel 24-Pin Header Pin-out (J1J3)	81
Table 51. VGA Connector Pin-out (J8A1)	81
Table 52. NIC2-Intel® 82541PI (10/100/1000) Connector Pin-out (JA6A1)	82
Table 53. NIC1- Intel® 82573E (10/100/1000) Connector Pin-out (JA5A1)	82
Table 54. SATA Connector Pin-out (J1G2, J1H1, J1J2, J2J1)	83
Table 55. Legacy 34-pin Floppy Connector Pin-out (J2J3)	83
Table 56. External DB9 Serial A Port Pin-out (J8A1)	84
Table 57. Keyboard and Mouse PS/2 Connectors Pin-out (J9A1)	84
Table 58. USB Connectors Pin-out (JA5A1)	85
Table 59. Optional USB Connection Header Pin-out (J1F2)	85
Table 60. Four-pin Fan Headers Pin-out (J7J1, J8D1, J4J1, and J6B1, J6J1)	85
Table 61. Chassis Intrusion Header (J6J2) Pin-out	87
Table 62. HDD LED Header (J1H2) Pin-out	87
Table 63. NIC1 NVM Protect Mode (J4A1)	88
Table 64. System Maintenance Mode (J1H3)	88
Table 65. Clear CMOS Jumper Options (J1G3)	89
Table 66. SPI/FWH Selection Header (J1F1)	89
Table 67. Absolute Maximum Ratings	90

List of Tables

Table 68. MTBF Data	90
Table 69. Power Budget	91
Table 70. Server Board Power Supply Voltage Specification	92
Table 71. Output Voltage Timing	92
Table 72. Turn On/Off Timing	94
Table 73. Transient Load Requirements	95
Table 74. AC Line Sag Transient Performance	95
Table 75. AC Line Surge Transient Performance	96
Table 76. Product Certification Markings	99
Table 77. Monitored Components	106

< This page intentionally left blank. >

Revision 1.1 xiii

1. Introduction

This Technical Product Specification (TPS) provides a high-level technical description for the Intel® Server Boards S3000AHLX, S3000AH, and S3000AHV. It details the architecture and feature set for all functional sub-systems that make up the server boards.

Note: The term "server board" will be used throughout the document and applies to all three boards. When exceptions occur, the specific board will be called out by name.

1.1 Chapter Outline

This document is divided into the following chapters:

- Chapter 1 Introduction
- Chapter 2 Server Board Overview
- Chapter 3 Functional Architecture
- Chapter 4 System BIOS
- Chapter 5 Platform Management Architecture
- Chapter 6 Error Reporting and Handling
- Chapter 7 Connectors and Jumper Blocks
- Chapter 8 Absolute Maximum Ratings
- Chapter 9 Design and Environmental Specifications
- Chapter 10 Hardware Monitoring
- Appendix A Integration and Usage Tips
- Glossary
- Reference Documents

1.2 Server Board Use Disclaimer

Intel Corporation server boards support add-in peripherals and contain a number of high-density VLSI and power delivery components that need adequate airflow to cool. Intel ensures through its own chassis development and testing that when Intel server building blocks are used together, the fully integrated system will meet the intended thermal requirements of these components. It is the responsibility of the system integrator who chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation cannot be held responsible if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits.

2. Server Board Overview

The Intel® Server Boards S3000AHLX, S3000AH, and S3000AHV are monolithic printed circuit boards with features that are designed to support the entry server market.

2.1 Server Board Feature Set

The server board supports the following feature set:

- Processor and Front Side Bus (FSB) support
 - Supports Dual-Core Intel[®] Xeon[®] processor 3000 series, Dual-Core Intel[®] Xeon[®] processor 3200 series, Intel[®] Pentium[®] processor Extreme Edition (S3000AHLX and S3000AH only), Intel[®] Pentium[®] D processors, Intel[®] Pentium[®] 4 processors, and Intel[®] Celeron[®] D processors in the Intel[®] LGA775 package
 - Supports Intel[®] dual-core technology
 - Supports Hyper-Threading Technology
 - Supports Intel[®] Extended Memory System 64 Technology (Intel[®] EM64T)
- Intel[®] 3000 Chipset components
 - Intel® 3000 MCH Memory Controller Hub
 - Intel® ICH7R I/O Controller
 - Intel® 6702 PXH-V PCI-X* Hub (S3000AHLX SKU only)
 - 12-deep In-order Queue
- Memory System
 - Four DIMM sockets supporting DDR2 533/667MHz DIMMs
 - Data bandwidth per channel of 4.2GB/s or 8.4GB/s in dual channel when using DDR2 667MHz
 - Support for up to two DDR2 channels for a total of four DIMMs (2 DIMMs / Channel) providing up to 8GB max memory capacity
 - Support for 256MB, 512MB, 1GB and 2GB DRAM modules
- I/O Subsystem
 - Intel® Server Board S3000AHLX I/O Subsystem (Six independent PCI Buses):
 - Segment A: Two PCI 32-bit/33-MHz 3.3V Universal connectors supporting full length PCI add-in cards (Adapters which support 5V only are not supported) and one embedded Intel[®] 10/100/1000 82541PI Gigabit Ethernet Controller (Supports PCI Specification, Rev 2.3) and one embedded ATI* ES1000 video controller
 - Segment B: One x1 PCI Express* resource implemented as a single x4 PCI Express connector supporting x1/x2/x4 PCI Express add-in cards
 - Segment C: One x1 PCI Express* resource implemented as an embedded Intel[®] 10/100/1000 82573E Gigabit Ethernet Controller
 - Segment D: One x4 PCI Express* resource supporting a PXH-V PCI-X* Hub.

- Segment E: PXH-V supports one dedicated PCI-X* 66/100MHz slot and the PCI-X portion of the Intel[®] Adaptive Slot
- Segment F: One x8 PCI Express* resource supporting the PCI Express portion of the Intel[®] Adaptive Slot. Supports x1/x2/x4/x8 PCI Express add-in cards via a riser card
- Intel® Server Board S3000AH I/O Subsystem (Five independent PCI Buses):
 - Segment A: Two PCI 32-bit/33-MHz 3.3V Universal connectors supporting full length PCI add-in cards (Adapters which support 5V only are not supported) and one embedded Intel[®] 10/100/1000 82541PI Gigabit Ethernet Controller (Supports PCI Specification, Rev 2.3) and one embedded ATI* ES1000 video controller
 - Segment B: One x1 PCI Express* resource implemented as a single x4 PCI Express* connector supporting x1/x2/x4 PCI Express* add-in cards
 - Segment C: One x1 PCI Express* resource implemented as an embedded Intel® 10/100/1000 82573E Gigabit Ethernet Controller
 - Segment D: One x4 PCI Express* resource implemented as a single x8 PCI Express connector supporting x1/x2/x4/x8 PCI Express add-in cards
 - Segment F: One x8 PCI Express* resource implemented as a single x8 PCI Express connector supporting x1/x2/x4/x8 PCI Express* add-in cards
- Intel® Server Board S3000AHV I/O Subsystem (Four independent PCI Buses):
 - Segment A: Two PCI 32-bit/33-MHz 3.3V Universal connectors supporting full length PCI add-in cards (Adapters which support 5V only are not supported) and one embedded ATI* ES1000 video controller
 - Segment C: One x1 PCI Express* resource implemented as an embedded Intel® 10/100/1000 82573E Gigabit Ethernet Controller
 - Segment D: One x4 PCI Express* resource implemented as a single x8 PCI Express connector supporting x1/x2/x4/x8 PCI Express add-in cards
 - Segment F: One x8 PCI Express* resource implemented as a single x8 PCI Express connector supporting x1/x2/x4/x8 PCI Express add-in cards
- Serial ATA host controller
 - Four independent SATA ports support data transfer rates up to 3.0 Gb/s (300MB/s) per port
- IDE controller
 - One IDE connector, supporting a maximum of two ATA-100 compatible devices
- Universal Serial Bus 2.0 (USB)
 - Two external USB ports (located at the rear panel) with an additional internal header providing two optional USB ports for front panel support
 - Supports wake-up from sleeping states S1 and S4 (S3 not supported)
 - Supports legacy keyboard/mouse connections when using a PS2-USB dongle
- LPC (Low Pin Count) bus segment with one embedded device
 - Super I/O controller (SMSC* SCH5027D) providing all PC-compatible I/O (floppy, serial, keyboard, mouse, two serial comports) and integrated hardware monitoring.
- SSI-compliant connectors for SSI interface support
- Standard 24-pin SSI front panel, 2x12 main power connector, and 2x4 CPU power connector

- Fan Support
 - 5 general purpose 4-pin fan headers
 - o One 4-pin processor fan header (active heatsink required)
 - Four 4-pin system fan headers: SYS FAN1, SYS FAN2 and SYS FAN3 for Intel high density applications to support Intel[®] Server System SR1530AH; SYS FAN4 is for use in the Intel[®] Entry Server Chassis SC5295-E
- Diagnostic LEDs to display POST code indicators during boot
- On-Board SATA RAID
 - Intel® Matrix Storage Technology supports software SATA RAID 0, 1, 10 and 5.
 - o Microsoft Windows® driver support only
 - Intel[®] Embedded Server RAID Technology and the LSI* Logic SATA controller support software SATA RAID 0, 1 and 10.
 - Driver support available for all supported operating systems

The following figure shows the board layout of the Intel® Server Board S3000AHLX. Each connector and major component is identified by letter (shown in Table 1).

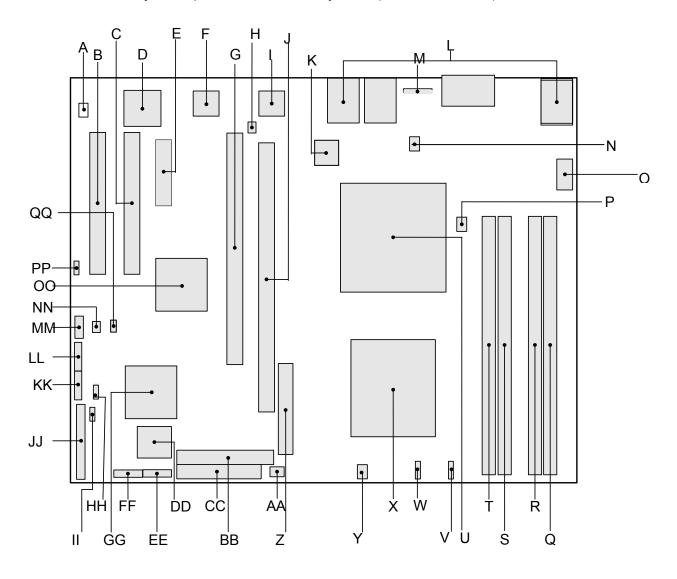


Figure 1. Intel® Server Board S3000AHLX Layout

Table 1. Intel® Server Board S3000AHLX Layout Reference

Ref	Description	Ref	Description	Ref	Description
Α	Video Memory	Р	CPU FAN	EE	SATA Port 3
В	PCI (32bit/33MHz) Slot 1	Q	Memory Slot DIMM 2B	FF	SATA Port 2
С	PCI (32bit/33MHz) Slot 2	R	Memory Slot DIMM 1B	GG	Intel® 82801GR (ICH7R)
D	ATI ES1000 Video Controller	S	Memory Slot DIMM 2A	НН	Clear CMOS Jumper
Е	PCI Express* x4 (x1 Lane) Slot 3	Т	Memory Slot DIMM 1A	II	System Maintenance Mode Jumper
F	Intel® 82541PI NIC Controller	U	775 Land (LGA) CPU Socket	JJ	Front Panel Connector
G	PCI-X* (64bit/133MHz) Slot 5	V	SYS FAN2	KK	SATA Port 1
Н	NIC SPI Flash	W	SYS FAN1	LL	SATA Port 0
I	Intel® 82573E NIC Controller	Х	Intel® 3000 MCH	MM	External USB Connector
J	Intel [®] Adaptive Slot, Slot 6	Υ	Chassis Intrusion Header	NN	BIOS SPI Flash
K	Clock Generator	Z	2 x 12 Main Power Connector	00	Intel® 6702 PXH-V Controller
L	Back Panel Connectors	AA	SYS FAN3	PP	SMBus Connector
М	Diagnostic POST LEDs	BB	PATA IDE Connector	QQ	SPI/FWH select header
N	SYS Fan4	CC	Floppy Connector		
0	2 x 4 CPU Power Connector	DD	SMsC* SH5027 SIO		

The following figure shows the board layout of the Intel® Server Board S3000AHLC. Each connector and major component is identified by letter (shown in Table 2).

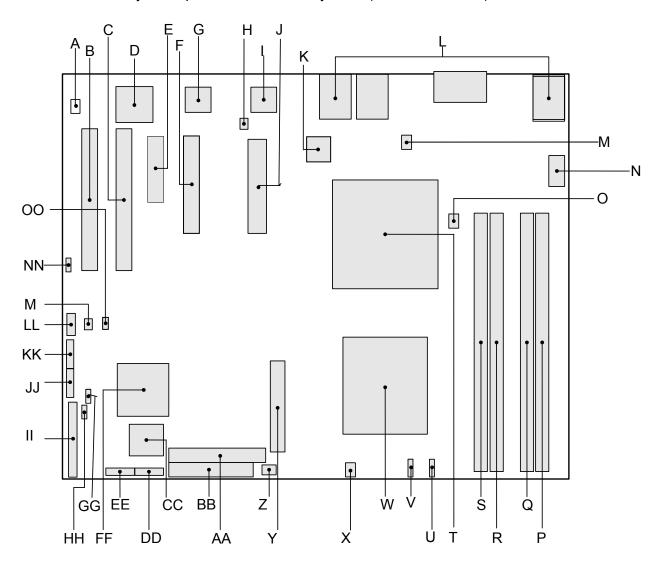


Figure 2. Intel® Server Board S3000AHLC Diagram

Table 2. Intel® Server Board S3000AHLC Layout Reference

Ref	Description	Ref	Description	Ref	Description
Α	Video Memory	0	CPU FAN	CC	SMSC* SH5027 SIO
В	PCI (32bit/33MHz) Slot 1	Р	Memory Slot DIMM 2B	DD	SATA Port 3
С	PCI (32bit/33MHz) Slot 2	Q	Memory Slot DIMM 1B	EE	SATA Port 2
D	ATI ES1000 Video Controller	R	Memory Slot DIMM 2A	FF	Intel® 82801GR (ICH7R)
Е	PCI Express* x4 (x1 Lane) Slot 3	S	Memory Slot DIMM 1A	GG	Clear CMOS Jumper
F	PCI Express* x8 (x4 lane)	Т	775 Land (LGA) CPU Socket	HH	System Maintenance Mode Jumper
G	Intel® 82541PI NIC Controller	U	Intel® 3000 MCH	II	Front Panel Connector
Н	NIC SPI Flash	V	SYS FAN2	JJ	SATA Port 1
I	Intel® 82573E NIC Controller	W	SYS FAN1	KK	SATA Port 0
J	PCI Express* x8 (x8 lane)	Х	Chassis Intrusion Header	LL	External USB Connector
K	Clock Generator	Υ	2 x 12 Main Power Connector	MM	BIOS SPI Flash
L	Back Panel Connectors	Z	SYS FAN3	NN	SMBus Connector
М	SYS FAN4	AA	PATA IDE Connector	00	SPI/FWH select header
N	2 x 4 CPU Power Connector	BB	Floppy Connector		

The following figure shows the board layout of the Intel® Server Board S3000AHV. Each connector and major component is identified by letter (shown in Table3).

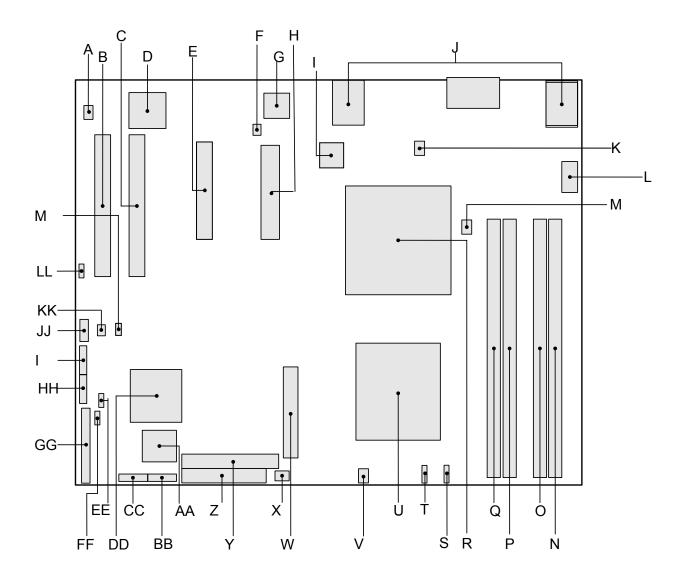


Figure 3. Intel® Server Board S3000AHV SKU Diagram

Table3. Intel® Server Board S3000AHV Layout Reference

Ref	Description	Ref	Description	Ref	Description
Α	Video Memory	N	Memory Slot DIMM 2B	AA	SMSC SH5027 SIO
В	PCI (32bit/33MHz) Slot 1	0	Memory Slot DIMM 1B	BB	SATA Port 3
С	PCI (32bit/33MHz) Slot 2	Р	Memory Slot DIMM 2A	CC	SATA Port 2
D	ATI ES1000 Video Controller	Q	Memory Slot DIMM 1A	DD	Intel® 82801GR (ICH7R)
Е	PCI Express* x8 (x4 lane)	R	775 Land (LGA) CPU Socket	EE	Clear CMOS Jumper
F	NIC SPI Flash	S	SYS FAN2	FF	System Maintenance Mode Jumper
G	Intel® 82573E NIC Controller	Т	SYS FAN1	GG	Front Panel Connector
Н	PCI Express* x8 (x8 lane)	U	Intel® 3000 MCH	HH	SATA Port 1
I	Clock Generator	V	Chassis Intrusion Header	II	SATA Port 0
J	Back Panel Connectors	W	2 x 12 Main Power Connector	JJ	External USB Connector
K	SYS FAN4	Х	SYS FAN3	KK	BIOS SPI Flash
L	2 x 4 CPU Power Connector	Υ	PATA IDE Connector	LL	SMBus Connector
M	CPU FAN	Z	Floppy Connector	MM	SPI/FWH select header

2.2 Server Board Layout

Figure 4. Intel® Server Board S3000AH

2.2.1 Server Board Mechanical Drawings

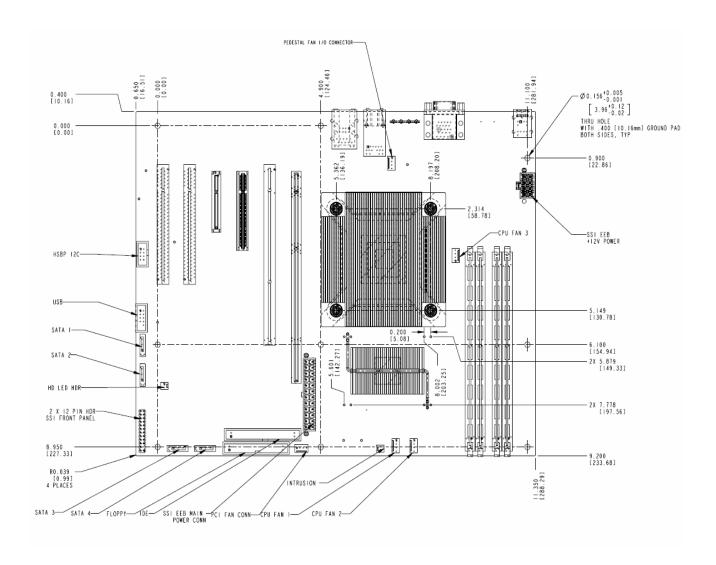


Figure 5. Intel[®] Server Board S3000AHLX – Hole and Component Positions (1 of 2)

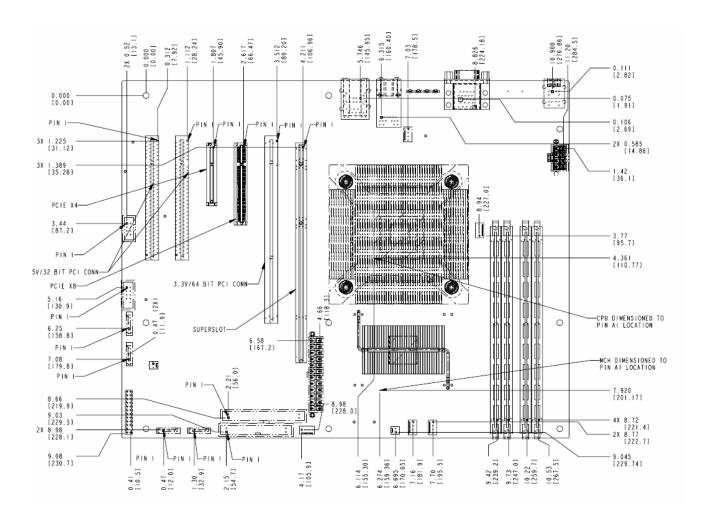


Figure 6. Intel[®] Server Board S3000AHLX – Hole and Component Positions (2 of 2)

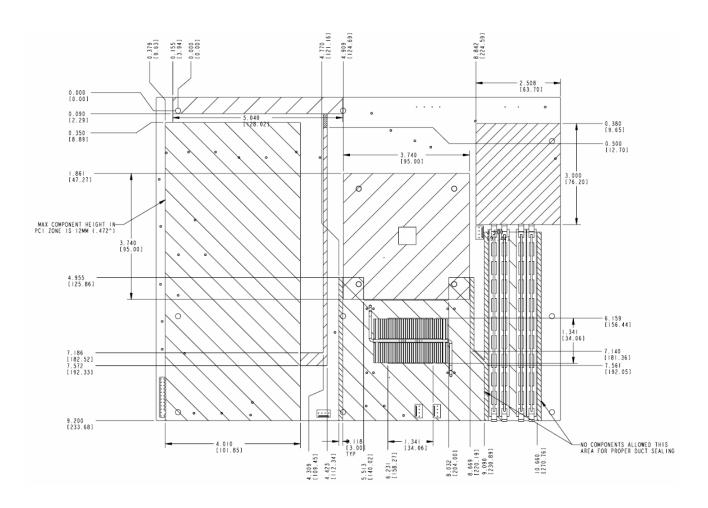


Figure 7. Intel[®] Server Board S3000AHLX – Restricted Areas

3. Functional Architecture

This chapter provides a high-level description of the functionality associated with the architectural blocks that make up the Intel[®] Server Boards S3000AHLX, S3000AH and S3000AHV.

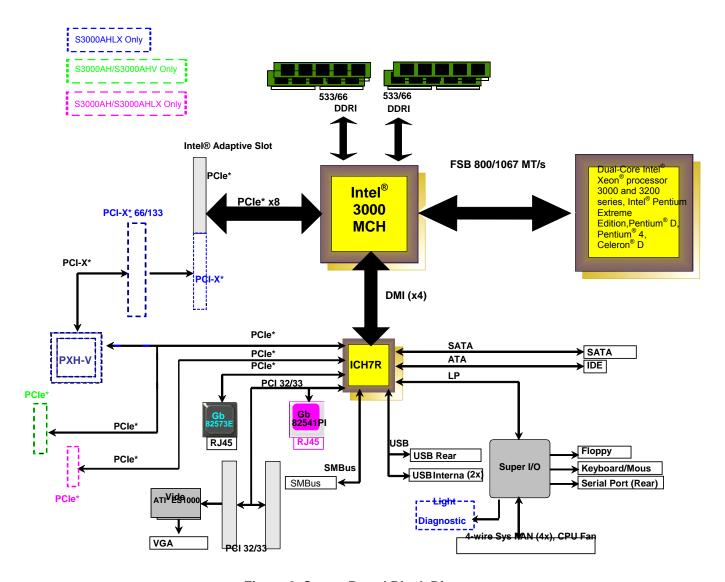


Figure 8. Server Board Block Diagram

3.1 Processor Sub-System

The server board supports the following processors:

- Dual-Core Intel[®] Xeon[®] processor 3000 series
- Dual-Core Intel[®] Xeon[®] processor 3200 series
- Intel[®] Pentium[®] processor Extreme Edition (S3000AHLX and S3000AH SKUs only)
- Intel[®] Pentium[®] D Processor
- Intel[®] Pentium[®] 4 Processor
- Intel[®] Celeron[®] D Processor

The processors built on 90nm and 65nm process technology in the 775-land package utilize Flip-Chip Land Grid Array (FC-LGA4) package technology, and plug into a 775-land LGA socket, referred to as the Intel[®] LGA775 socket.

The processors in the 775-land package are based on the same Pentium[®] 4 micro-architecture. They maintain compatibility with 32-bit software written for the IA-32 instruction set, while supporting 64-bit native mode operation when coupled with supported 64-bit operating systems and applications.

The Intel® Celeron® D processor is not available with Intel® dual-core technology, Hyper-Threading Technology or Intel® EM64T.

3.1.1 Processor Voltage Regulator Down (VRD)

The server board has a VRD (Voltage Regulator Down) to support one processor. It is compliant with the *VRD 11 DC-DC Converter Design Guide Line* and provides a maximum of 125A.

The board hardware monitors the processor VTTEN (Output enable for VTT) pin before turning on the VRD. If the VTTEN pin of the processors is not asserted, the Power ON Logic will not turn on the VRD.

3.1.2 Reset Configuration Logic

The BIOS determines the processor stepping and processor cache size through the CPUID instruction. The processor information is read at every system power-on.

Note: The processor speed is the processor power-on reset default value. No manual processor speed setting options exist either in the form of a BIOS setup option or jumpers.

Core **Process Name** Socket Cache size **FSB Frequency** Frequency Dual-Core Intel® Xeon® 1.86GHz -Intel[®] LGA775 2MB or 4MB 1006MHz processor 3000 series 2.66GHz Dual-Core Intel® Xeon® 2.13GHz -Intel® LGA775 8MB 1006MHz processor 3200 series 2.40GHz Intel® Pentium® 4 processor Intel[®] LGA775 1066MHz 3.73GHz 2MB L2 Extreme Edition Intel® Pentium® D Intel[®] LGA775 3.2 - 4.0 GHz2 x 1MB L2 800MHz Intel[®] Pentium[®] 4 Intel® LGA775 3.2 - 4.0 GHz1MB or 2MB L2 800MHz Intel® Celeron® D Intel® LGA775 2.26 - 3.2 GHz 256K L2 533MHz

Table 3. Processor Support Matrix

Note: For a complete list of all supported processors, please visit the Intel[®] Server Board S3000AH support site located at the following URL: http://support.intel.com/support/motherboards/server/S3000AH

3.2 Intel® 3000 Chipset

The Intel[®] Server Board S3000AH is designed around the Intel[®] 3000 Chipset. The chipset provides an integrated I/O bridge and memory controller, and a flexible I/O subsystem core (PCI Express*). The chipset consists of three primary components.

3.2.1 Memory Controller Hub (MCH)

3.2.1.1 Intel® 3000 Chipset MCH: Memory Control Hub

The MCH accepts access requests from the host (processor) bus and directs those accesses to memory or to one of the PCI Express* or PCI buses. The MCH monitors the host bus, examining addresses for each request. Accesses may be directed to the following:

- A memory request queue for subsequent forwarding to the memory subsystem
- An outbound request queue for subsequent forwarding to one of the PCI Express or PCI buses

The MCH also accepts inbound requests from the Intel[®] ICH7R. The MCH is responsible for generating the appropriate controls to control data transfer to and from memory.

The MCH is a 1210-ball FC-BGA device and uses the proven components of the following previous generations:

- Hub interface unit
- PCI Express* interface unit
- DDR2 memory interface unit

The MCH incorporates an integrated PCI Express interface. The PCI Express interface allows the MCH to directly interface with the PCI Express devices. The MCH also increases the main memory interface bandwidth and maximum memory configuration with a 72-bit wide memory interface.

The MCH integrates the following main functions:

- An integrated high performance main memory subsystem
- A PCI Express* bus which provides an interface to the PCI Express* devices (Fully compliant to the PCI Express* Base Specification, Rev 1.0a)
- A DMI which provides an interface to the Intel[®] ICH7R

Other features provided by the MCH include the following:

- Full support of ECC on the processor bus
- Twelve deep in-order queue, two deep defer queue
- Full support of un-buffered DDR2 ECC DIMMs
- Support for 512MB, 1 GB and 2 GB DDR2 memory modules

3.2.1.2 Segment F PCle* x8

The MCH PCIe* Lanes 0~7 provide a x8 PCIe connection directly to the MCH. This resource can support x1, x4, x 8 PCIe add-in cards or through the I/O riser when using the Intel[®] Adaptive Slot.

Table 4. Segment F Connections

Lane	Device
Lane 0~7	Slot 6 or Super Slot (PCI Express* x8)

3.2.1.3 MCH Memory Sub-System Overview

The MCH supports a 72-bit wide memory sub-system that can support a maximum of 8 GB of DDR2 memory using 2GB DIMMs. This configuration needs external registers for buffering the memory address and control signals. The four chip selects are registered inside the MCH and need no external registers for chip selects.

The memory interface runs at 533/667MT/s. The memory interface supports a 72-bit wide memory array. It uses seventeen address lines (BA [2:0] and MA [13:0]) and supports 512 MB, 1 GB, and 2 GB DRAM densities. The DDR DIMM interface supports single-bit error correction, and multiple bit error detection.

3.2.1.3.1 DDR2 Configurations

The DDR2 interface supports up to 8 GB of main memory and supports single- and double-density DIMMs. The DDR2 can be any industry-standard DDR2. The following table shows the DDR2 DIMM technology supported.

DDR2-533/667 Un-buffered SDRAM Module Matrix					
DIMM Capacity	DIMM Organization	SDRAM Density	SDRAM Organization	# SDRAM Devices/rows/Banks	# Address bits rows/Banks/column
512MB	64M x 72	256Mbit	32M x 8	18 / 2 / 4	13 / 2 / 10
512MB	64M x 72	512Mbit	64M x 8	9/1/4	14 / 2 / 10
1GB	128M x 72	512Mbit	64M x 8	18 / 2 / 4	14 / 2 / 10
1GB	128M x 72	1Gbit	128M x 8	9/1/8	14 / 4 / 10
2GB	256M x 72	2GB	128M x 8	18 / 2 / 8	14 / 8 / 10

Table 5. Supported DDR2 Modules

3.2.2 **PCI-X*** Hub (PXH)

PXH-V: PCI-X* Hub (S3000AHLX SKU Only) The PXH-V hub is a peripheral chip that performs PCI/PCI-X* bridging functions between the PCI Express* interface and the PCI/PCI-X bus. The PXH-V contains two PCI bus interfaces that can be independently configured to operate in PCI (33 or 66 MHz), PCI-X Mode1 (66,100,133), for either 32 or 64 bits.

3.2.2.1 Segment E 64bit/133MHz PCI-X* Subsystem

One 64-bit PCI-X* bus segment is directed through the PXH-V. This PCI-X segment, segment E, provides the following:

- One 3.3V 64-bit PCI-X slots and
- One 3.3V 64-bit PCI-X riser slot (S3000AHLX SKU only)

On Segment E, PCI-X is capable of speeds up to 133MHz operation and supports full-length PCI and PCI-X adapters. For slot 6 the Intel[®] Adaptive Slot, the PCI-X bus can run at maximum 100MHz speed with a PCI-X riser card.

3.2.2.1.1 Device IDs (IDSEL)

Each device under the PCI-X* hub bridge has its IDSEL signal connected to one bit of AD [31:16], which acts as a chip select on the PCI-X bus segment in configuration cycles. This determines a unique PCI-X device ID value for use in configuration cycles. The following table shows the bit to which each IDSEL signal is attached for P64-C devices and a corresponding device description.

Table 6. Segment E Configuration IDs

IDSEL Value	Device
18	PCI-X* Slot 5 (64bit/66-133MHz) (S3000AHLX SKU only)
17	Super Slot 6 (64bit/66-100MHz) (Riser, S3000AHLX SKU only)

3.2.2.1.2 Segment E Arbitration

PXH-V supports two PCI masters: two PCI-X* slots or one riser slot. All PCI masters must arbitrate for PCI access using resources supplied by the PXH-V. The host bridge PCI interface (PXH-V) arbitration lines REQx* and GNTx* are a special case in that they are internal to the host bridge. The following table defines the arbitration connections.

Table 7. Segment D Arbitration Connections

Baseboard Signals	Device
PCIX REQ_N1/GNT_N1	PCI-X Slot 5 (64bit/66-133MHz) (S3000AHLX SKU only)
PCIX REQ_N0/GNT_N0	Super Slot 6 (64bit/66-100MHz) (Riser, S3000AHLX SKU only)

3.2.3 I/O Controller Hub

3.2.3.1 Intel® ICH7R: I/O Controller Hub 7R

The Intel® ICH7R controller has several components. It provides the interface for a 32-bit/33-MHz PCI bus. The Intel® ICH7R can be both a master and a target on that PCI bus. The Intel® ICH7R includes a USB 2.0 controller and an IDE controller. The Intel® ICH7R is responsible for much of the power management functions with ACPI control registers built in. The Intel® ICH7R also provides a number of General Purpose I/O (GPIO) pins and has the Low Pin Count (LPC) bus to support low speed Legacy I/O.

The MCH and Intel[®] ICH7R chips provide the pathway between the processor and the I/O systems. The MCH is responsible for accepting access requests from the host (processor) bus, and directing all I/O accesses to one of the PCI buses or Legacy I/O locations. If the cycle is directed to one of the PCIe* segments, the MCH communicates with the PCIe Devices (add-in card, on board devices) through the PCIe interface. If the cycle is directed to the Intel[®] ICH7R, the cycle is output on the MCH's DMI bus. All I/O for the board, including PCI and PC-compatible I/O, is directed through the MCH and then through the Intel[®] ICH7R provided PCI buses.

The Intel® ICH7R is a multi-function device, housed in a 609-pin mBGA device. It provides the following:

- A DMI bus
- A PCI 32-bit/33 MHz interface
- An IDE interface
- An integrated Serial ATA Host controller
- A USB controller
- A PCle* x4 interface
- Two PCIe* x1 interfaces
- A power management controller

Each function within the Intel® ICH7R has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller sharing the same PCI bus interface.

The primary role of the Intel[®] ICH7R is providing the gateway to all PC-compatible I/O devices and features. The board uses the following the Intel[®] ICH7R features:

- PCI 32-bit/33MHz interface for PCI slots 1 and 2 and Intel[®] 82541PI Gigabit Ethernet Controllers, and an ATI* ES1000 video controller
- LPC bus interface
- x4 PCI Express* interface for PXH-V device (supplies PCI-X* on LX SKU only)
- x1 PCI Express* resource for dedicated x4 PCI Express* slot
- x1 PCI Express* interface for Intel[®] 82573E Gigabit Ethernet Controller
- DMI (Direct Media Interface)
- IDE interface, with Ultra ATA 100/66/33 capability
- Integrated guad-port Serial ATA Host controller
- Universal Serial Bus (USB) 2.0 interface
- PC-compatible timer/counter and DMA controllers
- APIC and 82C59 interrupt controller
- Power management
- System RTC
- Supports SMBus 2.0 Specification
- General purpose I/O (GPIO)

3.2.3.2 PCI Express*

3.2.3.2.1 PCI Express* x4 Subsystem

The Intel® ICH7R supports one PCI Express* x4-lane interface that can also be configured as a single x1 or x4-lane port. The PCI Express interface allows direct connection with the PXH-V or dedicated PCIe* devices. (Fully compliant to the PCI Express* Base Specification, Rev 1.0a).

3.2.3.2.2 PCI Express* x1 Subsystem

The Intel® ICH7R supports two x1 PCI Express* buses. One supports a dedicated x4 PCI Express slot. The other supports the Intel® 82573E Gigabit Ethernet controller.

3.2.3.3 PCI

One 32-bit PCI bus segment is directed through the Intel® ICH7R Interface defined as segment A. This PCI Segment A supports two PCI connectors, one embedded Intel® 82541PI LAN controller, and one ATI* ES1000 video controller. Refer to chapter 3.4.1 for more details about this segment.

3.2.3.4 IDE Interface (Bus Master Capability and Synchronous DMA Mode)

The Intel® ICH7R acts as a PCI-based Ultra ATA 100/66/33 IDE controller that supports programmed I/O transfers and bus master IDE transfers. The Intel® ICH7R supports one IDE channel, supporting two drives each (drives 0 and 1). The server board provides a 40-pin (2x20) IDE connector to access the IDE functionality.

The IDE interface supports Ultra ATA 100/66/33 Synchronous DMA Mode transfers on the 40-pin connector.

3.2.3.5 SATA Controller

The Intel® ICH7R contains four SATA ports. The data transfer rates up to 300Mbyte/s per port.

3.2.3.6 Compatibility Modules (DMA Controller, Timer/Counters, Interrupt Controller)

The Intel® ICH7R provides the functionality of two-cascaded 82C59 with the capability to handle 15 interrupts. It also supports processor system bus interrupts.

3.2.3.7 Advanced Programmable Interrupt Controller (APIC)

Interrupt generation and notification to the processor is done by the APICs in the Intel[®] ICH7R using messages on the front side bus.

3.2.3.8 Universal Serial Bus (USB) Controller

The Intel® ICH7R contains one EHCI USB 2.0 controller and can support four USB ports. The USB controller moves data between main memory and up to four USB connectors. All ports function identically and with the same bandwidth.

The server board provides two external USB ports on the rear panel of the server board. The dual-stack USB connector is located within the standard ATX I/O panel area. The Universal Serial Bus Specification, Revision 1.1, defines the external connectors.

The third/fourth USB port is optional and can be accessed by cabling from an internal 9-pin connector located on the base board to an external USB port located either in front or the rear of a given chassis.

3.2.3.9 **Enhanced Power Management**

One of the embedded functions of the Intel[®] ICH7R is a power management controller. This is used to implement ACPI-compliant power management features. The server board supports sleep states S1, S4, and S5.

Memory Sub-System 3.3

The server board supports up to four DIMM slots for a maximum memory capacity of 8 GB. The DIMM organization is x72, which includes eight ECC check bits. The memory interface runs at 533/667MTs. The memory controller supports the following:

- Single-bit error correction
- Multiple-bit error detection
- Memories using 512Mbit, 1Gbit, 2Gbit DRAM based on memory technology

Memory can be implemented with either single sided (one row) or double-sided (two row) DIMMs.

3.3.1 **Memory Configuration**

The memory interface between the MCH and the DIMMs is 72-bit (ECC) wide interface.

There are two banks of DIMMs, labeled 1 and 2. Bank 1 contains DIMM socket locations DIMM 1A and DIMM 2A. Bank 2 contains DIMM socket locations DIMM 1B and DIMM 2B. The sockets associated with each bank or "channel," are located next to each other and the DIMM socket identifiers are marked on the server board silkscreen, near the DIMM socket. Bank 1 is associated with Memory Channel A while Bank 2 is associated with Memory Channel B. When only two DIMM modules are being used, the population order must be DIMM 1A. DIMM 1B to ensure dual channel operating mode.

In order to operate in dual channel dynamic paging mode, the following conditions must be met:

- Two identical DIMMs are installed, one each in DIMM 1A and DIMM 1B
- Four identical DIMMs are installed (one in each socket location)

Note: Installing only three DIMMs is not supported. Do not use DIMMs that are not "matched" (same type and speed). Use of identical memory parts is preferred.

See Figure 9 on the following page for reference.

The system is designed to populate any rank on either channel, including either degenerate single channel case.

DIMM and memory configurations must adhere to the following:

DDR2 533/667, un-buffered, DDR2 DIMM modules

DIMM organization: x64 non-ECC or x72 ECC

Pin count: 240

DIMM capacity: 512 MB, 1 GB and 2 GB DIMMs

Serial PD: JEDEC Rev 2.0Voltage options: 1.8 V

Interface: SSTL2

Table 8. Memory Bank Labels and DIMM Population Order

Location	DIMM Label	Channel	Population Order
J8J1	(DIMM_1A)	Α	1
J8J2	(DIMM_2A)	Α	3
J9J1	(DIMM_1B)	В	2
J9J2	(DIMM_2B)	В	4

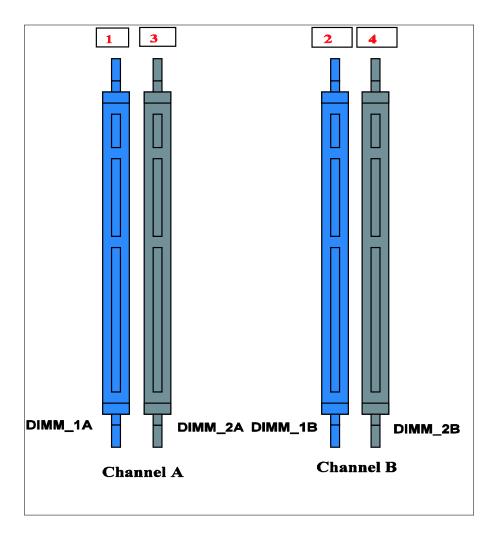


Figure 9. Memory Bank Label Definition

Table 9. Characteristics of Dual/Single Channel Configuration with or without Dynamic Mode

Throughput Level	Configuration	Characteristics	
Highest	Dual channel with dynamic paging mode	All DIMMs matched	
Dual channel without dynamic paging mode		DIMMs matched from Channel A to Channel B	
		DIMMs not matched within channels	
	Single channel with dynamic paging mode	Single DIMM or DIMMs matched within a channel	
Lowest	Single channel without dynamic paging mode	DIMMs not matched	

3.3.2 Memory DIMM Support

The board supports un-buffered (not registered) DDR2 533/667 ECC or Non-ECC DIMMs operating at 533/667MT/s. Only DIMMs tested and qualified by Intel or a designated memory test vendor are supported on this board. A list of qualified DIMMs is available at http://support.intel.com/support/motherboards/server/S3000AH. Note that all DIMMs are supported by design, but only fully qualified DIMMs will be supported on the board.

The minimum supported DIMM size is 512 MB. Therefore, the minimum main memory configuration is 1 x 512 MB or 512 MB. The largest size DIMM supported is 2 GB and as such, the maximum main memory configuration is 8 GB implemented by 4 x 2 GB DIMMs.

- Un-buffered DDR2 533/667 compliant, ECC x8 and Non-ECC x8 or x16 memory DIMMs are supported.
- ECC single-bit errors (SBE) can be detected and corrected. Multiple-bit error (MBE) can only be detected.
- The maximum memory capacity is 8 GB via four 2 GB DIMM modules.
- The minimum memory capacity is 512 MB via a single 512 MB DIMM module.

3.4 I/O Sub-System

3.4.1 PCI Subsystem

The primary I/O buses for the server board are five independent PCI bus segments providing PCI, PCIe* and PCI-X* resources (S3000AHLX SKU only). The PCI buses comply with the PCI Local Bus Specification, Rev 2.3.

PCI Segments A, B and C and D are directed through the Intel® ICH7R. PCI Segment E is independently configured to PXH-V that is through Intel® ICH7R by PCI Express* x4 interface. PCI Segment F is directed through the MCH by PCIe x8 interface. The table below lists the characteristics of the three PCI bus segments.

PCI Bus Segment	Voltage	Width	Speed	Туре	PCI I/O Card Slots
Α	3.3V	32 bits	33MHz	PCI 32	Slot 1, Slot 2, NIC 2, video
В	3.3V	1 lane	2.5GHz	X1 PCle*	Slot 3, X4 physical connector
С	3.3V	1 lane	2.5GHz	X1 PCle*	NIC 1
D	3.3V	4 lane	2.5GHz	X4 PCle*	Slot 4, PXH, X8 physical connector
E	3.3V	64 bits	66/100/133MHz	PCI-64	Slot 5, Slot 6 through riser card
F	3.3V	8 lanes	2.5GHz	x8 PCle*	Slot 6, X8 physical connector

Table 10. PCI Bus Segment Characteristics

3.4.1.1 P32-A: 32-bit, 33-MHz PCI Subsystem

The Intel® ICH7R provides a Legacy 32-bit PCI subsystem and acts as the central resource on this PCI interface. P32-A supports the following embedded devices and connectors:

- One Intel[®] 82541PI Fast Ethernet Controller
- One ATI* ES1000 Video Controller
- Two slots capable of supporting full length PCI add-in cards operating at 33 MHz

3.4.1.1.1 Device IDs (IDSEL)

IDSEL Value

21 20

17

16

Each device under the PCI hub bridge has its IDSEL signal connected to one bit of AD (31:16), which acts as a chip select on the PCI bus segment in configuration cycles. This determines a unique PCI device ID value for use in configuration cycles. The following table shows the bit to which each IDSEL signal is attached for Segment A devices and the corresponding device description.

Device
Intel® 82541PI LAN (NIC2)
ATI ES1000 Video Controller

Table 11. Segment A Configuration IDs

3.4.1.1.2 Segment A Arbitration

PCI Slot 1(32b/33MHz) PCI slot 2(32b/33MHz)

PCI Segment A supports two PCI devices: the Intel[®] ICH7R and one PCI bus master (NIC). All PCI masters must arbitrate for PCI access, using resources supplied by the Intel[®] ICH7R. The host bridge PCI interface (ICH7R) arbitration lines REQx* and GNTx* are a special case in that they are internal to the host bridge. The following table defines the arbitration connections.

Table 12. Segment A Arbitration Connections

Baseboard Signals	Device
PCI REQ_N5/GNT_N5	Intel® 82541PI LAN (NIC2)
PCI REQ_N1/GNT_N1	PCI Slot 1(32bit/33MHz)
PCI REQ_N0/GNT_N0	PCI Slot 2(32bit/33MHz)

3.4.1.2 PCI Interface for Video subsystem

The server board graphics subsystem is connected to the Intel® ICH7R via a 32/33MHz PCI bus.

3.4.2 Interrupt Routing

The board interrupt architecture accommodates both PC-compatible PIC mode and APIC mode interrupts through use of the integrated I/O APICs in the Intel[®] ICH7R.

3.4.2.1 Legacy Interrupt Routing

For PC-compatible mode, the Intel® ICH7R provides two 82C59-compatible interrupt controllers. The two controllers are cascaded with interrupt levels 8-15 entering on level 2 of the primary interrupt controller (standard PC configuration). A single interrupt signal is presented to the processor, to which the processor will respond for servicing. The Intel® ICH7R contains configuration registers that define which interrupt source logically maps to I/O APIC INTx pins.

The Intel® ICH7R handles both PCI and IRQ interrupts. The Intel® ICH7R translates these to the APIC bus. The numbers in the table below indicate the Intel® ICH7R PCI interrupt input pin to which the associated device interrupt (INTA, INTB, INTC, INTD, INTE, INTF, INTG, INTH for PCI bus and PXIRQ0, PXIRQ1, PXIRQ2, PXIRQ3 for PCI-X bus) is connected. The Intel® ICH7R I/O APIC exists on the I/O APIC bus with the processor.

Interrupt	INT A	INT B	INT C	INT D
Intel® 82541PI LAN (NIC2)	PIRQB			
ATI* ES1000 Video Controller	PIRQC			
PCI Slot 1 (PCI 32bit/33MHz)	PIRQG	PIRQF	PIRQE	PIRQH
PCI Slot 2 (PCI 32bit/33MHz)	PIRQF	PIRQG	PIRQH	PIRQE
PCI-X* Slot 5 (64bit/133MHz) (LX SKU only)	PXIRQ5	PXIRQ6	PXIRQ7	PXIRQ4
PCI-X* Slot 6 (64bit/133MHz) (Riser, LX SKU only)	PXIRQ0	PXIRQ1	PXIRQ2	PXIRQ3

Table 13. PCI AND PCI-X* Interrupt Routing/Sharing

3.4.2.2 APIC Interrupt Routing

For APIC mode, the server board interrupt architecture incorporates three Intel[®] I/O APIC devices to manage and broadcast interrupts to local APICs in each processor. The Intel[®] I/O APICs monitor each interrupt on each PCI device; including PCI slots in addition to the ISA compatibility interrupts IRQ (0-15).

When an interrupt occurs, a message corresponding to the interrupt is sent across a three-wire serial interface to the local APICs. The APIC bus minimizes interrupt latency time for compatibility interrupt sources. The I/O APICs can also supply greater than 16 interrupt levels to the processor(s). This APIC bus consists of an APIC clock and two bidirectional data lines.

3.4.2.3 Legacy Interrupt Sources

The table below recommends the logical interrupt mapping of interrupt sources on the board. The actual interrupt map is defined using configuration registers in the Intel[®] ICH7R.

Table 14. Interrupt Definitions

ISA Interrupt	Description
INTR	Processor interrupt.
NMI	NMI to processor.
IRQ0	System timer
IRQ1	Keyboard interrupt.
IRQ2	Slave PIC
IRQ3	Serial port 1 interrupt from Super I/O* device, user-configurable.
IRQ4	Serial port 1 interrupt from Super I/O* device, user-configurable.
IRQ5	
IRQ6	Floppy disk.
IRQ7	Generic
IRQ8_L	Active low RTC interrupt.
IRQ9	SCI*
IRQ10	Generic
IRQ11	Generic
IRQ12	Mouse interrupt.
IRQ13	Floaty processor.
IRQ14	Compatibility IDE interrupt from primary channel IDE devices 0 and 1.
IRQ15	Secondary IDE Cable
SMI*	System Management Interrupt. General purpose indicator sourced by the Intel® ICH7R to the processor.

3.4.2.4 Serialized IRQ Support

The server board supports a serialized interrupt delivery mechanism. Serialized Interrupt Requests (SERIRQ) consists of a start frame, a minimum of 17 IRQ / data channels, and a stop frame. Any slave device in the quiet mode may initiate the start frame. While in the continuous mode, the start frame is initiated by the host controller

3.4.3 PCI Error Handling

The PCI bus defines two error pins, PERR# and SERR#, for reporting PCI parity errors and system errors, respectively. In the case of PERR#, the PCI bus master has the option to retry the offending transaction, or to report it using SERR#. All other PCI-related errors are reported by SERR# is routed to NMI if enabled by BIOS.

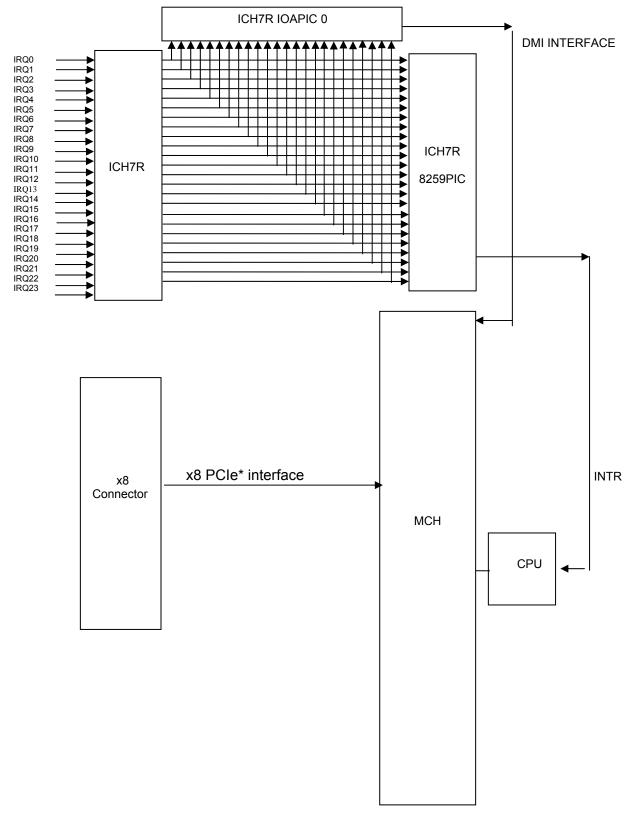


Figure 10. Interrupt Routing Diagram

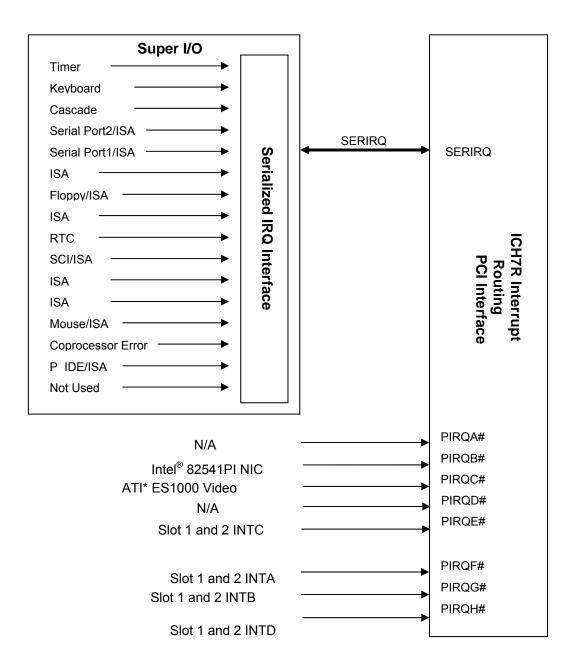


Figure 11. Intel[®] ICH7R Interrupt Routing Diagram

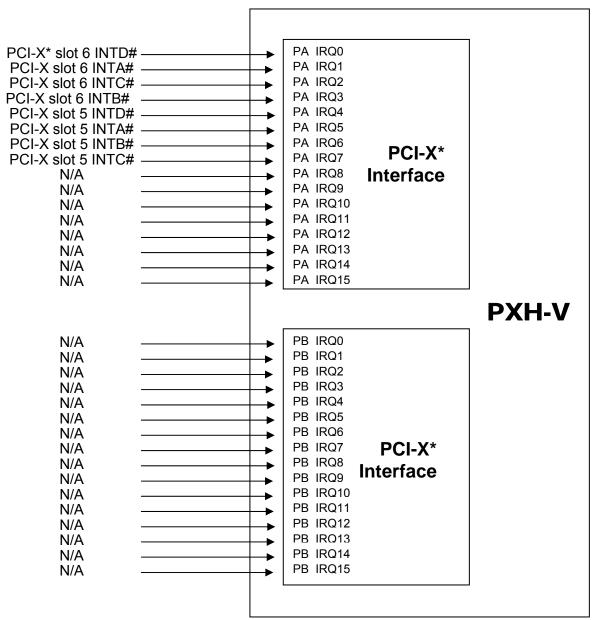


Figure 12. PXH-V Interrupt Routing Diagram

3.5 On Board Components

3.5.1 Video Support

The server board includes an integrated stand-alone ATI ES1000 graphics engine that supports standard VGA drivers with analog display capabilities. The graphics subsystem has 16 MB of dedicated memory to support the onboard video controller. The baseboard provides a standard 15-pin VGA connector at the rear of the system, in the standard ATX I/O opening area. The video controller is disabled by default in BIOS Setup when an off-board video adapter is detected in either the PCIe* or PCI slots.

3.5.1.1 Video Modes

Table 15. Video Modes

2D Mode	Refresh Rate (Hz)	2D Video Mode Support			
		8 bpp	16 bpp	24 bpp	32 bpp
640x480	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported
800x600	60, 70, 75, 90, 100	Supported	Supported	Supported	Supported
1024x768	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported
1280x1024	43, 60	Supported	Supported	Supported	Supported
1280x1024	70, 72	Supported	_	Supported	Supported
1600x1200	60, 66	Supported	Supported	Supported	Supported
1600x1200	76, 85	Supported	Supported	Supported	_
		•			•
3D Mode	Refresh Rate (Hz)	30	Video Mode Supp	ort with Z Buffer Er	
		8 bpp	16 bpp	24 bpp	32 bpp
640x480	60,72,75,90,100	Supported	Supported	Supported	Supported
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported
1024x768	60,72,75,90,100	Supported	Supported	Supported	Supported
1280x1024	43,60,70,72	Supported	Supported	_	_
1600x1200	60,66,76,85	Supported	_	_	_
		•			•
3D Mode	Refresh Rate (Hz)	3D	Video Mode Supp	ort with Z Buffer Dis	sabled
		8 bpp	16 bpp	24 bpp	32 bpp
640x480	60,72,75,90,100	Supported	Supported	Supported	Supported
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported
1024x768	60,72,75,90,100	Supported	Supported	Supported	Supported
1280x1024	43,60,70,72	Supported	Supported	Supported	
1600x1200	60,66,76,85	Supported	Supported	_	_

3.5.1.2 **Dual video**

Dual video mode is not supported using the on-board graphics controller. When an add-in video card is populated, the on-board video controller is automatically disabled.

3.5.2 Network Interface Controller (NIC)

The server board supports two 10/100/1000Base-T network interfaces.

- NIC 1 is an Intel[®] 82573E gigabit Ethernet controller resourced with an x1 PCI Express* interface from the Intel[®] ICH7R (PCI Segment C).
- NIC2 is an Intel[®] 82541PI Gigabit Ethernet Controller is resourced with a 32bit/33MHz PCI Segment from the Intel[®] ICH7R (PCI Segment A). (S3000AHLX and S3000AH SKU only)

Both the Intel® 82573E and Intel® 82541PI Gigabit Ethernet Controllers are single, compact components with an integrated gigabit Ethernet Media Access Control (MAC) and physical layer (PHY) function. The Intel® 82573E and Intel® 82541PI Gigabit Ethernet Controller allow for a gigabit Ethernet implementation in a very small area that is footprint compatible with current generation 10/100 Mbps Fast Ethernet designs. The Intel® 82541PI Gigabit Ethernet Controller and Intel® 82573E integrate the fourth and fifth generation (respectively) gigabit MAC design with fully integrated, physical layer circuitry to provide a standard IEEE 802.3 Ethernet interface for 1000BASE-T, 100BASE_TX, and 10BASE-T applications (802.3, 802.3u, and 802.3ab). The controller is capable of transmitting and receiving data at rates of 1000 Mbps, 100 Mbps, or 10 Mbps. In addition to managing MAC and PHY layer functions, 82541PI controller provides a 32-bit wide direct Peripheral Component Interconnect (PCI) 2.3 compliant interface capable of operating at 33 or 66MHz while 82573E/V provide PCI Express* x1 interface.

Both the Intel® 82573E and Intel® 82541PI Gigabit Ethernet Controllers can be disabled and enable by GPIO pins from the Intel® ICH7R, which is controlled through BIOS. Both NIC controllers support Wake ON LAN function to wake system back from S1 and S4 sleep states.

The Intel® 82573E Gigabit Ethernet Controller supports the Intel® AMT technology.

3.5.2.1 NIC Connector and Status LEDs

The NICs drive two LEDs located on each network interface connector; the NIC LEDs are compliant with tables 18 and 19.

LED	Color	LED State	Condition
		Off	LAN link is not established.
Left	Green	On	LAN link is established.
		Blinking	LAN activity is occurring.
	N/A	Off	10 Mbit/sec data rate is selected.
Right	Green	On	100 Mbit/sec data rate is selected.
	Yellow	On	1000 Mbit/sec data rate is selected.

Table 16. Intel[®] 82573E (NIC 1)

Table 17. Intel® 82541PI Gigabit Ethernet Controller (NIC 2)

LED	Color	LED State	Condition
		Off	LAN link is not established.
Left	Green	On	LAN link is established.
		Blinking	LAN activity is occurring.
	N/A	Off	10 Mbit/sec data rate is selected.
Right	Green	On	100 Mbit/sec data rate is selected.
	Yellow	On	1000 Mbit/sec data rate is selected.

3.5.3 Super I/O Chip

The SMsC* SCH5027D SIO devices contain all of the necessary circuitry to control serial/parallel ports, floppy disk, PS/2-compatible keyboard, mouse and hardware monitor controller. The server board implements the following features:

- GPIOs
- One serial port
- Floppy controller
- Keyboard and mouse
- Local hardware monitoring
- Wake up control
- System health support

3.5.3.1 **Serial Ports**

The server board provides a single serial port implemented as a stand-alone external 9-pin serial port. The following sections provide details on the use of the serial port.

3.5.3.1.1 Serial Port A

Serial Port A is a standard DB9 interface located at the rear I/O panel of the server board, below the video connector. Serial A is designated by "Serial A" on the silkscreen. The reference designator is J8A1.

Pin Signal Name Serial Port A Header Pin-out DCD 2 DSR 2 3 RX 3 4 4 RTS 5 TX 6 5 6 CTS 7 8 7 DTR 9 8 RI GND 9

Table 18. Serial A Header Pin-out

3.5.3.2 Floppy Disk Support

The floppy disk controller (FDC) in the super I/O is functionally compatible with floppy disk controllers in the DP8473 and N844077. All FDC functions are integrated into the super I/O including analog data separator and 16-byte FIFO. The server board provides a standard 34-pin interface for the floppy disk controller.

3.5.3.3 Keyboard and Mouse Support

Two external PS/2 ports, located on the back of the server board, are provided to access the keyboard or mouse functions.

3.5.3.4 Wake-up Control

The super I/O contains functionality that allows various events to control the power-on and power-off the system.

3.5.4 BIOS Flash

The server board incorporates an SPI flash memory which can work with 16 megabit SPI serial flash devices that provide 1024K x 8 or 512K x 8 of BIOS and non-volatile storage space. The flash device is connected through the SPI bus from the Intel® ICH7R.

3.5.5 System Health Support

SMBus 2.0 is the interface connected to the system health sensors of the super I/O.

- Three PWM-based fan controls
- Software or local temperature feedback control
- Voltage measurement and monitor
- Chassis intrusion detection

3.6 Replacing the Back-Up Battery

The lithium battery on the server board powers the RTC for up to ten years in the absence of power. When the battery starts to weaken, it loses voltage, and the server settings stored in CMOS RAM in the RTC (for example, the date and time) may be wrong. Contact your customer service representative or dealer for a list of approved devices.

WARNING

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions.

ADVARSEL!

Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandøren.

ADVARSEL

Lithiumbatteri - Eksplosjonsfare. Ved utskifting benyttes kun batteri som anbefalt av apparatfabrikanten. Brukt batteri returneres apparatleverandøren.

VARNING

Explosionsfara vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera använt batteri enligt fabrikantens instruktion.

VAROITUS

Paristo voi räjähtää, jos se on virheellisesti asennettu. Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.

4. System BIOS

4.1 BIOS Identification String

The BIOS Identification string is used to uniquely identify the revision of the BIOS being used on the server. The string is formatted as follows:

BoardFamilyID.OEMID.MajorRev.MinorRev.BuildID.BuildDateTime

Where:

- BoardFamilyID = String name for this board family.
- OEMID = Three-character OEM ID. "86B" is used for Intel server boards.
- MajorRev = Two decimal digits
- MinorRev = Two decimal digits
- BuildID = Four decimal digits
- BuildDateTime = Build date and time in MMDDYYYYHHMM format:
 - MM = Two-digit month
 - DD = Two-digit day of month
 - YYYY = Four-digit year
 - HH = Two-digit hour using 24 hour clock
 - MM = Two-digit minute

For example, Intel[®] Server Board S3000AH BIOS Build 3, generated on Jan 21, 2006 at 11:59 AM has the following BIOS ID string that will be displayed in the POST diagnostic screen:

```
S3000.86B.01.00.0003.012120061159
```

The BIOS version in the Setup Utility is displayed as:

```
S3000.86B.01.00.0003
```

The BIOS ID is used to identify the BIOS image. It is not used to designate either the board ID S3000AH or the BIOS phase (Alpha, Beta, etc). The Board ID is available in the SMBIOS type 2 structure in which the phase of the BIOS can be determined by the release notes associated with the image. The Board ID is also available via setup.

Support for INT15H, Function DA8Ch (Get BIOSID) has been removed. The BIOS ID must be read from the SMBIOS type 0 structure.

4.2 Logo / Diagnostic Window

The Logo / Diagnostic window may be in one of two forms. In quiet boot mode, a logo splash screen is displayed. In verbose mode, a system summary and diagnostic screen is displayed. The default is to display the logo in quiet boot mode. If no logo is present in the flash ROM, or if quiet boot mode is disabled in the system configuration, the summary and diagnostic screen is displayed.

The diagnostic screen consists of the following information

- BIOS ID.
- Total memory detected (Total size of all installed DIMMs)
- Processor information (Intel branded string, speed, and number of physical processors identified)
- Types of keyboards detected if plugged in (P/S2 and/or USB)
- Types of mouse devices detected if plugged in (P/S 2 and/or USB)

4.3 BIOS Setup Utility

The BIOS Setup utility is a text-based utility that allows the user to configure the system and view current settings and environment information for the platform devices. The Setup utility controls the platform's built-in devices.

The BIOS Setup interface consists of a number of pages or screens. Each page contains information or links to other pages. The first page in Setup displays a list of general categories as links. These links lead to pages containing specific category's configuration.

The following sections describe the look and behavior for platform Setup.

4.3.1 Operation

BIOS Setup has the following features:

- Localization. The BIOS is only available in English.
- BIOS Setup is functional via console redirection over various terminal emulation standards. This may limit some functionality for compatibility e.g. usage of colors or some keys or key sequences or support of pointing devices.

4.3.1.1 Setup Page Layout

The setup page layout is sectioned into functional areas. Each occupies a specific area of the screen and has dedicated functionality. The following table lists and describes each functional area.

Table 19. BIOS Setup Page Layout

Functional Area	Description
Title Bar	The title bar is located at the top of the screen and displays the title of the form (page) the user is currently viewing. It may also display navigational information.
Setup Item List	The Setup Item List is a set of controllable and informational items. Each item in the list occupies the left and center columns in the middle of the screen. The left column, the "Setup Item", is the subject of the item. The middle column, the "Option", contains an informational value or choices of the subject.
	A Setup Item may also be a hyperlink that is used to navigate form sets (pages). When it is a hyperlink, a Setup Item only occupies the "Setup Item" column.
Item Specific Help Area	The Item Specific Help area is located on the right side of the screen and contains help text for the highlighted Setup Item. Help information includes the meaning and usage of the item, allowable values, effects of the options, etc.
Keyboard Command Bar	The Keyboard Command Bar is located at the bottom right of the screen and continuously displays help for keyboard special keys and navigation keys. The keyboard command bar is context-sensitive—it displays keys relevant to current page and mode.
Status Bar	The Status Bar occupies the bottom line of the screen. This line would display the BIOS ID

4.3.1.2 Entering BIOS Setup

BIOS Setup is started by pressing <F2> during boot time when the OEM or Intel logo is displayed.

When Quiet Boot is disabled, there will be a message "press <F2> to enter setup" displayed on the diagnostics screen.

4.3.1.3 Keyboard Commands

The bottom right portion of the Setup screen provides a list of commands that are used to navigate through the Setup utility. These commands are displayed at all times.

Each Setup menu page contains a number of features. Except those used for informative purposes, each feature is associated with a value field. This field contains user-selectable parameters. Depending on the security option chosen and in effect by the password, a menu feature's value may or may not be changeable. If a value is non-changeable, the feature's value field is inaccessible. It displays as "grayed out."

The Keyboard Command Bar supports the following:

Table 20. BIOS Setup: Keyboard Command Bar

Key	Option	Description	
<enter></enter>	Execute Command	The <enter> key is used to activate sub-menus when the selected feature is a sub-menu, or to display a pick list if a selected option has a value field, or to select a sub-field for multi-valued features like time and date. If a pick list is displayed, the <enter> key will select the currently highlighted item, undo the pick list, and return the focus to the parent menu.</enter></enter>	
<esc></esc>	Exit	The <esc> key provides a mechanism for backing out of any field. This key will undo the pressing of the Enter key. When the <esc> key is pressed while editing any field or selecting features of a menu, the parent menu is re-entered. When the <esc> key is pressed in any sub-menu, the parent menu is re-entered. When the <esc> key is pressed in any major menu, the exit confirmation window is displayed and the user is asked whether changes can be discarded. If "No" is selected and the <enter> key is pressed, or if the <esc> key is pressed, the user is returned to where he/she was before <esc> was pressed, without affecting any existing any settings. If "Yes" is selected and the <enter> key is pressed, setup is exited and the BIOS returns to the main System Options Menu screen.</enter></esc></esc></enter></esc></esc></esc></esc>	
\uparrow	Select Item	The up arrow is used to select the previous value in a pick list, or the previous option in a menu item's option list. The selected item must then be activated by pressing the <enter> key.</enter>	
\	Select Item	The down arrow is used to select the next value in a menu item's option list, or a value field's pick list. The selected item must then be activated by pressing the <enter> key.</enter>	
\leftrightarrow	Select Menu	The left and right arrow keys are used to move between the major menu pages. The keys have no affect if a sub-menu or pick list is displayed.	
<tab></tab>	Select Field	The <tab> key is used to move between fields. For example, <tab> can be used to move from hours to minutes in the time item in the main menu.</tab></tab>	
-	Change Value	The minus key on the keypad is used to change the value of the current item to the previous value. This key scrolls through the values in the associated pick list without displaying the full list.	
+	Change Value	The plus key on the keypad is used to change the value of the current menu item to the next value. This key scrolls through the values in the associated pick list without displaying the full list. On 106-key Japanese keyboards, the plus key has a different scan code than the plus key on the other keyboard, but will have the same effect.	
<f9></f9>	Setup Defaults	Pressing <f9> causes the following to appear:</f9>	
		Load Optimized defaults? (Y/N)	
		If the <y> key is pressed, all Setup fields are set to their default values. If the <n> key is pressed, or if the <esc> key is pressed, the user is returned to where they were before <f9> was pressed without affecting any existing field values</f9></esc></n></y>	
<f10></f10>	Save and Exit	Pressing <f10> causes the following message to appear:</f10>	
		Save Configuration and Reset? (Y/N)	
		If the <y> key is pressed, all changes are saved and Setup is exited. If the <n> key is pressed, or the <esc> key is pressed, the user is returned to where they were before <f10> was pressed without affecting any existing values.</f10></esc></n></y>	

4.3.1.4 Menu Selection Bar

The Menu Selection Bar is located at the top of the screen. It displays the major menu selections available to the user.

4.3.2 Server Platform Setup Screens

The sections below describe the screens available for the configuration of a server platform. In these sections, tables are used to describe the contents of each screen. These tables follow the following guidelines:

- The text and values in the Setup Item, Options, and Help columns in the tables are displayed on the BIOS Setup screens.
- Bold text in the Options column of the tables indicates default values. These values are not displayed in bold on the setup screen. The bold text in this document is to serve as a reference point.
- The Comments column provides additional information where it may be helpful. This information does not appear in the BIOS Setup screens.
- Information in the screen shots that is enclosed in brackets (< >) indicates text that varies, depending on the option(s) installed. For example <Current Date> is replaced by the actual current date.
- Information that is enclosed in square brackets ([]) in the tables indicates areas where the user needs to type in text instead of selecting from a provided option.

4.3.2.1 Main Screen

The Main screen is the screen that is first displayed when BIOS Setup is entered.

Figure 13. Setup Utility — Main Screen Display

Table 21. Setup Utility — Main Screen Fields

Setup Item	Options	Help Text	Comment
BIOS Version	No entry allowed		Information only. Displays the current BIOS version.
			yy = major version
			xx = minor version
			zzzz = build number
BIOS Build Date	No entry allowed		Information only. Displays the current BIOS build date.
Quiet Boot	Enable	If enabled, BIOS splash screen is	
	Disable	displayed. If disabled, BIOS POST messages are displayed.	
POST Error Pause	Enable Disable	If enabled, the system will wait for user intervention on critical POST errors. If disabled, the system will boot with no intervention, if possible.	The POST pause will take the system to the error manager to review the errors.
System Date	[MM/DD/YYYY]	Month valid values are 1 to 12.	Help text depends on the subfield
		Day valid values are 1 to 31.	selected (Month, Day, or Year).
		Year valid values are 1998 to 2099.	
System Time	[HH:MM:SS]	Hours valid values are 0 to 23.	Help text depends on the subfield
		Minutes valid values are 0 to 59.	selected (Hours, Minutes,
		Seconds valid values are 0 to 59.	Seconds).

4.3.2.2 Advanced Screen

The Advanced screen provides an access point to choose to configure several options. On this screen, the user selects the option that is to be configured. Configurations are performed on the selected screen, not directly on the Advanced screen.

To access this screen from the Main screen, select Advanced.

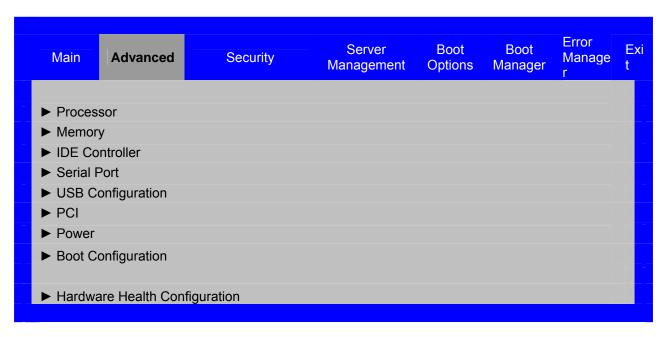


Figure 14. Setup Utility — Advanced Screen Display

4.3.2.2.1 Processor Screen

The Processor screen provides a place for the user to view the processor core frequency, system bus frequency, and enable or disable several processor options. The user can also select an option to view information about a specific processor.

To access this screen from the Main screen, select Advanced | Processor.

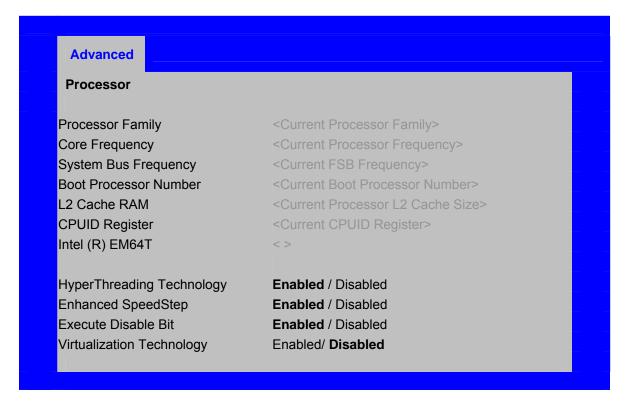


Figure 15. Setup Utility — Processor Configuration Screen Display

Table 22. Setup Utility — Processor Configuration Screen Fields

Setup Item	Options	Help Text	Comment
Processor Family	No entry allowed		Information only.
Core Frequency	No entry allowed	Frequency at which processors currently run.	Information only.
System Bus Frequency	No entry allowed	Current frequency of the processor front side bus.	Information only.
Boot Processor Number	No entry allowed		Information only.
L2 Cache RAM	No entry allowed		Information only.
CPUID Register	No entry allowed		Information only.
Intel (R) EM64T	No entry allowed		Information only.
HyperThreading Technology	Enable Disable	Enables or disables Intel(R) HyperThreading Technology on the processors. Select Disabled if your Operation System is Windows 2000.	
Enhanced SpeedStep	Enable Disable	Enhanced Intel SpeedStep® Technology. Select Enable to allow the OS to reduce power consumption.	

Setup Item	Options	Help Text	Comment
Virtualization Technology	Enable	When enabled, a Virtual Machine	Displayed only when the
	Disable	Monitor can utilize the additional hardware capabilities provided by Intel [®] Virtualization Technology	processor has the VT function.
Execute Disable Bit	Enable Disable	Execute Disable Bit feature (XD bit). Select Enabled to prevent data pages from being used by malicious software to execute code.	

4.3.2.2.2 Memory Screen

The Memory screen provides a place for the user to view details about the system memory DIMMs that are installed. On this screen, the user can select an option to open the Configure Memory RAS and Performance screen.

To access this screen from the Main screen, select Advanced | Memory.

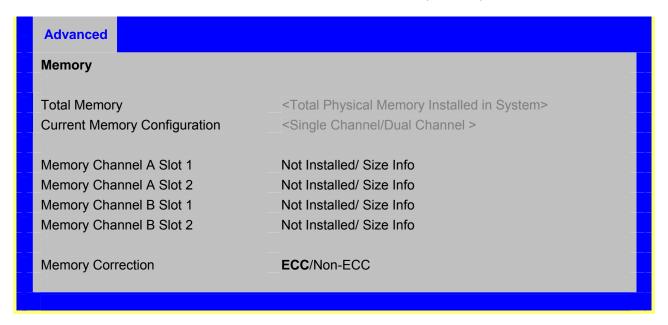


Figure 16. Setup Utility — Memory Configuration Screen Display

Table 23. Setup Utility — Memory Configuration Screen Fields

Setup Item	Options	Help Text	Comment
Total Memory	No entry allowed		Information only. The amount of memory available in the system in the form of installed DIMMs, in units of MB or GB.
Current Configuration	No entry allowed		Information only. Displays one of the following:
			Single Channel
			Dual Channel

Setup Item	Options	Help Text	Comment
DIMM #	No entry allowed		Displays the state of each DIMM slot present on the board. Each DIMM slot field reflects one of the following possible states:
			 Size Info: There is a DIMM installed on this slot and the size information is displayed
			Not Installed: There is no DIMM installed on this slot.
Memory Correction	ECC		• ECC
	Non-ECC		Non-ECC

4.3.2.2.3 IDE Controller Screen

The IDE Controller screen provides fields to configure PATA and SATA hard disk drives. It also provides information on the hard disk drives that are installed.

To access this screen from the Main screen, select Advanced | IDE Controller.

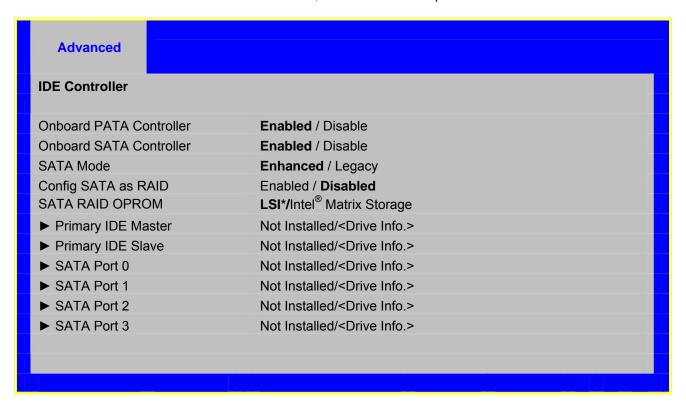


Figure 17. Setup Utility — IDE Controller Configuration Screen Display

Table 24. Setup Utility — ATA Controller Configuration Screen Fields

Setup Item	Option	Help Text	Comment
Onboard PATA Controller	Enable / Disable	Help: Onboard PATA Controller	
Onboard SATA Controller	Enable / Disable	Help: Onboard SATA Controller	When enabled, the SATA controller can be configured in IDE, RAID Mode.
SATA Mode	Enhanced / Legacy	Help: SATA Mode	In Legacy Mode, BIOS can enumerate only four drives. It provides four options to choose a mix of SATA and PATA drives.
			If "SATA only" is chosen, four SATA drives can be enumerated.
			If "PATA Only", is chosen, only two IDE drives will be enumerated.
			If "PATA Primary, SATA Secondary" is chosen, PATA will be the primary channel and SATA Ports 1 and 3 will emulate Secondary ATA channel Master/Slave.
			If "SATA Primary, PATA secondary is chosen", SATA Ports 0, 2 and both IDE ports will be enumerated.
			In Enhanced Mode, the BIOS is not limited to legacy PATA four-drive limitations, and can enumerate the two PATA drives and four SATA drives (totaling six drives), and can list/boot to the remaining two SATA drives.
			RAID Mode is supported only when SATA Mode is selected as "Enhanced".
Config SATA as RAID	Enable / Disable	Help: Configure SATA as RAID	This mode can be selected only when the SATA controller is in Enhanced Mode.
SATA RAID OPROM	LSI*/Intel® Matrix Storage	Help: Select SATA RAID OPROM	This mode can only show up when "Config SATA as RAID" is enabled.
Primary IDE Master	Disabled / Drive information		Information only
Primary IDE Slave	Disabled / Drive information		Information only
SATA Port 0	Disabled / Drive information		Information only; Unavailable when RAID Mode is enabled

SATA Port 1	Disabled / Drive information	Information only; This field is unavailable when RAID Mode is enabled
SATA Port 2	Disabled / Drive information	Information only; This field is unavailable when RAID Mode is enabled
SATA Port 3	Disabled / Drive information	Information only; This field is unavailable when RAID Mode is enabled

4.3.2.2.4 Serial Ports Screen

The Serial Ports screen provides fields to configure the Serial A [COM 1].

To access this screen from the Main screen, select Advanced | Serial Port.

Figure 18. Setup Utility — Serial Port Configuration Screen Display

Table 25. Setup Utility — Serial Ports Configuration Screen Fields

Setup Item	Option	Help Text	Comment
COM1	Enabled	Enables or disables COM1 port.	
Enable	Disabled		
Address	3F8h / 2F8h	Selects the base I/O address for COM1.	
IRQ	3/4	Selects the Interrupt Request line for COM1.	

4.3.2.2.5 USB Configuration Screen

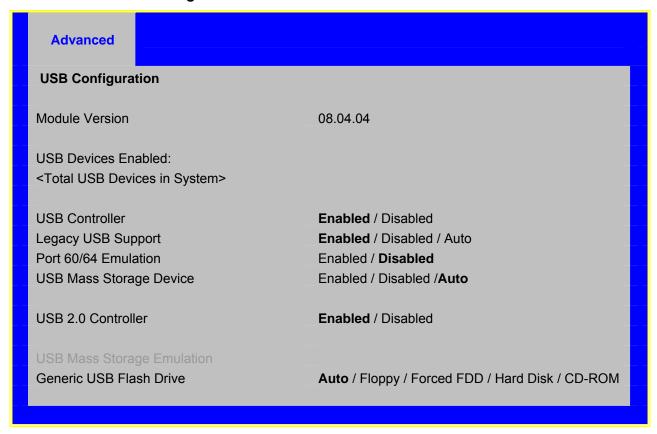


Figure 19. Setup Utility — USB Controller Configuration Screen Display

Table 26. Setup Utility — USB Controller Configuration Screen Fields

Setup Item	Option	Help Text	Comment
Module Version		USB Driver version	Information only
USB Devices Enabled:		shows number of USB devices in System	Information only
USB Controller	Enabled	If Disabled, all of the USB controllers will be	
	Disabled	turned off and inaccessible by the OS.	
Legacy USB	Enabled	Enables Legacy USB support. Auto option	
Support	Disabled	disables legacy support if no USB devices are connected.	
	Auto		
Port 60/64	Enabled /	Enables I/O Port 60h/64h emulation support.	
Emulation	Disabled	This should be enabled for the complete USB keyboard Legacy support for non-USB aware	
		OSes.	
USB 2.0	Enabled	If Disabled, all of the USB 2.0 controller will be	
Controller	Disabled	turned off and inaccessible by the OS.	

Generic USB	Auto	If Auto, USB device less than 530MB will be	
Flash Drive	Floppy Forced FDD Hard Disk CD-ROM	enumerated as floppy. Forced FDD option can be used to force HDD formatted drive to boot as FDD (e.g. ZIP drive)	

4.3.2.2.6 PCI Screen

The PCI Screen provides fields to configure the onboard NIC controllers.

To access this screen from the Main screen, select Advanced | PCI

Figure 20. Setup Utility — PCI Configuration Screen Display

Table 27. Setup Utility — PCI Configuration Screen Fields

Setup Item	Option	Help Text	Comment
Onboard NIC1	Enabled Disabled	Enables or Disables the primary Network controller. The name for Onboard NIC1 will be	
		automatically updated according to different SKUs: It is shown as "Intel® 82573E GbE"	
Onboard NIC2	Enabled Disabled	Enables or Disables the secondary Network controller. The name for Onboard NIC2 will be automatically updated according to different SKUs: For LC sku, it is shown as "Intel® 82541PI GbE"; for LX sku, "Intel® 82541PI GbE "; for V sku, it doesn't have NIC2.	

4.3.2.2.7 Power

The system power configuration page provides fields to configure the power state as required.

To access this screen from the Main screen, select Advanced | Power.

Figure 25. Setup Utility — Power Screen Display

Table 28. Setup Utility — Power Screen Fields

Setup Item	Option	Help Text	Comment
After Power Failure	Power Off Last state Power On	Determines the mode of operation if a power loss occurs. Stays off: system will remain off once power is restored. Last state: restores system to the same state it was on before power failed.	
Wake On LAN from S5	Power off Power on	Determines the action taken when the system power is off and a PCI Power Management wake up event occurs.	

4.3.2.2.8 Boot Configuration

The Boot Configuration screen provides the information of boot devices.

To access this screen from the Main screen, select Advanced | Boot Configuration

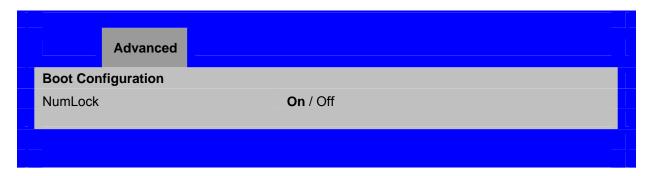


Figure 21. Setup Utility — Boot Configuration Screen Display

Table 29. Setup Utility — Boot Configuration Screen Fields

Setup Item	Option	Help Text	Comment
NumLock	On,	Turns keyboard Numlock on or	System boot
	Off	off	with NumLock default setting to ONor OFF.

4.3.2.2.9 Hardware Health Configuration

The Hardware Health Configuration screen provides the configuration and display of Hardware Monitor.

To access this screen from the Main screen, select Advanced | Hardware Health Configuration.

Figure 22. Setup Utility — Hardware Health Configuration Screen Display

Figure 23 Setup Utility — Hardware Health Configuration Screen Display

Setup Item	Option	Help Text	Comment
Hardware Monitor		View the Hardware Monitor information.	See section 4.3.2.3
Auto Fan Control	Enabled / Disabled	Enable / disable auto fan control. If enabled, fan speed will be adjusted automatically according to the temperature; if disabled, all fans will run at full speed.	

4.3.2.3 Hardware Monitor Screen

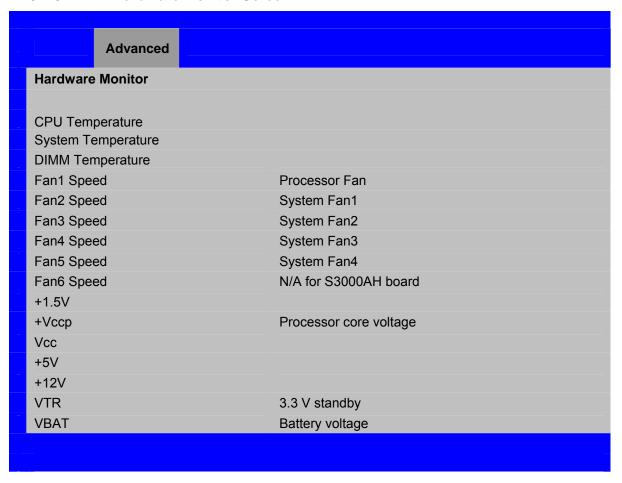


Figure 24 Setup Utility — Hardware Monitor Screen Display

4.3.2.4 Security Screen

The Security screen provides fields to enable and set the user and administrative password.

To access this screen from the Main screen, select the Security option.

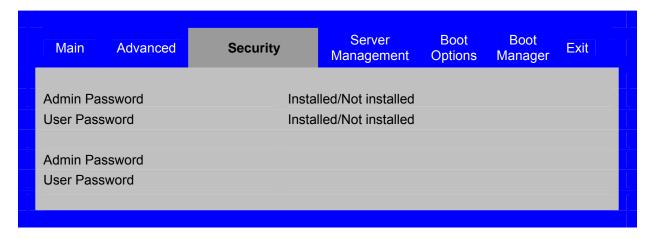


Figure 25. Setup Utility — Security Configuration Screen Display

Table 30. Setup Utility — Security Configuration Screen Fields

Setup Item	Option	Help Text	Comment	
Admin Password	Installed	Indicates the status of	Information only. Disabled if the	
	Not Installed	administrator password.	password is blank.	
User Password	Installed	Indicates the status of user	Information only, disabled if the	
	Not Installed	password.	password is blank.	
Admin Password		Sets Administrative password with maximum length of 7 characters.	This option is only to control access to setup. Administrator has full access to all setup items. Clearing the Admin password will also clear the user password.	
			The way to clear the admin password is to enter "enter" key and confirm again.	
User Password		Sets personal password with minimum length of 7 characters.	Available only if Administrator Password is Installed. This option only protects setup. User password only has limited access to setup items.	

4.3.2.5 Server Management Screen

The Server Management screen provides fields to configure several server management features. It also provides an access point to the screens for configuring console redirection and displaying system information.

To access this screen from the Main screen, select the Server Management option.

-	Main	Advanced	Security		Server Management	Boot Options	Boot Manager	Exit	
4	Cloor Cycl	tom Event Lea							
-		tem Event Log		Enabled / Disabled					H
	Event Log				oled / Disabled				
-	ECC Ever			Enak	oled / Disabled				
	Event Log	Area Status		Avail	able / Full				
_									
	O/S Boot \	WD Timer		Enab	oled / Disabled				
	ASF Supp	ort		Enab	led / Disabled				
	Enter AM7	ΓBx Setup		Enabled / Disabled					
	Reset Inte	l® AMT defaults							
	Boot To N	etwork		Enab	oled / Disabled				
-									
	► View Event Log								
-	► Console Redirection								
➤ System Information									
-									

Figure 26. Setup Utility — Server Management Configuration Screen Display

Table 31. Setup Utility — Server Management Configuration Screen Fields

Setup Item	Option	Help Text	Comment
Clear System Event Log	Enabled / Disabled	Clear System Event Log. Will reset to Disabled after reboot	
Event Logging	Enabled / Disabled	Enabled / Disabled Event Logging	
ECC Event Logging	Enabled / Disabled	Enabled / Disabled ECC Event Logging	
Event Log Area Status			Information only
O/S Boot WD Timer	Enabled / Disabled	O/S Boot Watchdog Timer	
ASF Support	Enabled / Disabled	Enable ASF Support or not	
Enter AMTBx Setup	Enabled / Disabled	Enable Intel® AMT (active management technology) or not	This item is hidden for non-Intel [®] AMT skus (both LC and V skus).
Reset Intel® AMT defaults		This allows user to reset Intel® AMT to its default state.	This item only shows up when "ASF Support" is enabled. Selecting this item will reset the Intel® AMT password.

Setup Item	Option	Help Text Comment	
Boot to Network	Enabled / Disabled	Enable Boot to Network (PXE) or not	
View Event Log		View the system event log.	Please refer to section 4.3.2.5.1
Console Redirection		Console Redirection	Please refer to section 4.3.2.5.2
System Information		System Information	Please refer to section 4.3.2.5.3

4.3.2.5.1 View Event Log

The View Event Log screen displays the events that were logged. Please refer to Chapter 6 for the events that may be displayed on the screen. The 'Time of Occurrence' will display the last occurrence time of one specific event.

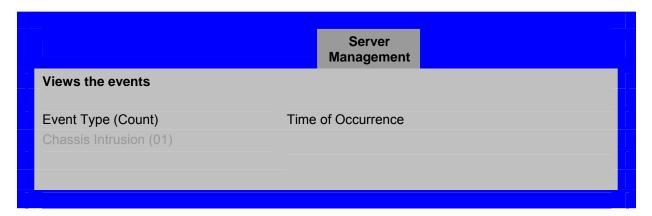


Figure 27. Setup Utility — View Event Log

4.3.2.5.2 Console Redirection Screen

The Console Redirection screen provides a way to enable or disable console redirection and to configure the connection options for this feature.

To access this screen from the Main screen, select Server Management. Select the Console Redirection option from the Server Management screen.

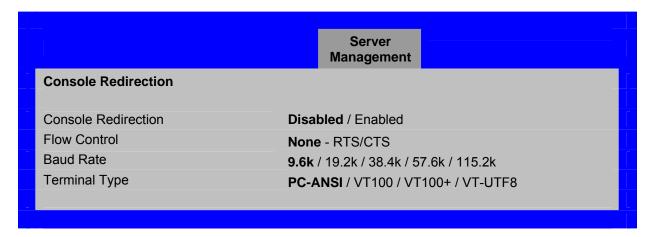


Figure 28. Setup Utility — Console Redirection Screen Display

Table 32. Setup Utility — Console Redirection Configuration Fields

Setup Item	Option	Help Text	Comment
Console Redirection	Disabled		Enables and disables the ability
	Enabled		of the system to redirect screen data across serial connection
Flow Control	None		Sets the handshake protocol the
	RTS/CTS		BIOS should expect from the remote console redirection application
Baud Rate	9.6K	Sets the communication for the redirection defined in the set of t	Sets the communication speed
	19.2K		for the redirection data
	36.4K		
	57.6K		
	115.2K		
Terminal Type	VT100		Sets the character formatting for
	VT100+		the console redirection screen
	VT-UTF8		
	PC-ANSI		

4.3.2.5.3 Server Management System Information Screen

The Server Management System Information screen provides a place to check system, board and chassis's vendor name, version etc.

To access this screen from the Main screen, select Server Management. Select the System Information option from the Server Management screen.

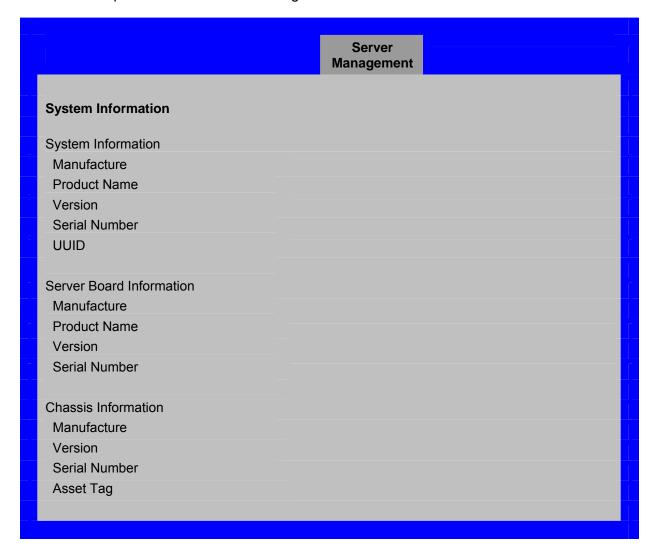


Figure 29. Setup Utility — Server Management System Information Screen Display

Table 33. Setup Utility — Server Management System Information Fields

Setup Item	Option	Help Text	Comment
System Information			Informational Display
Manufacture	Information Only		
Product Name	Information Only		
Version	Information Only		
Serial Number	Information Only		
UUID	Information Only		
Server Board Information			Informational Display
Manufacture	Information Only		

Setup Item	Option	Help Text	Comment
Product Name	Information Only		
Version	Information Only		
Serial Number	Information Only		
Chassis Information			Informational Display
Manufacture	Information Only		
Version	Information Only		
Serial Number	Information Only		
Asset Tag	Information Only		

4.3.2.6 Boot Options

The Boot Options screen displays all the boot devices and provides the user the approach to set the order of boot options.

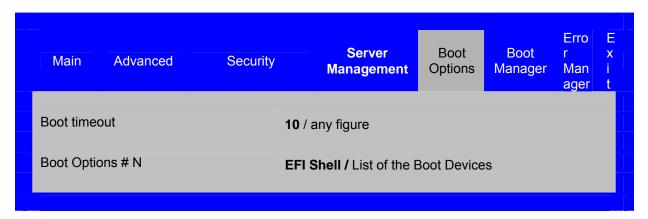


Figure 30. Setup Utility — Boot Options Display

Table 34. Setup Utility — Boot Options Display

Setup Item	Option	Help Text	Comment
Boot Timeout	10	Set the default timeout before system boot. A value of 65535 will disable the timeout completely.	User is able to set the time by simply tying the figure.
Boot Option #N	FI Shell / List of the Boot Devices	Set the system boot order	

4.3.2.7 Boot Manager

The Boot Manager screen displays all the boot devices and provides the user the approach to Boot system directly from the selected item without restarting the system, but to continue the boot process.

Figure 31. Setup Utility — Boot Options Display

Table 35. Setup Utility — Error Manager Screen Fields

Setup Item	Option	Help Text	Comment
A List of boot devices #		Boot system using the selected item	Can boot the system from the selected item by "enter"

4.3.2.8 Error Manager Screen

The Error Manager screen displays any errors encountered during POST.

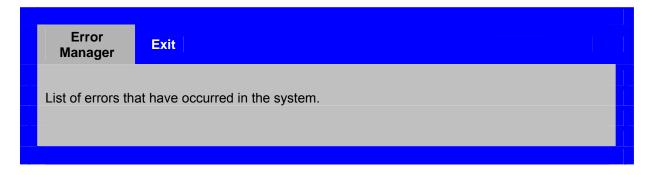


Figure 32. Setup Utility — Error Manager Screen Display

Table 36. Setup Utility — Error Manager Screen Fields

Setup Item	Option	Help Text	Comment
Displays System Errors			

4.3.2.9 Exit Screen

The Exit screen allows the user to choose to save or discard the configuration changes made on the other screens. It also provides a method to restore the server to the factory defaults or to save or restore a set of user defined default values. If Restore Defaults is selected, the default settings, noted in bold in the tables in this chapter, will be applied. If Restore User Default Values is selected, the system is restored to the default values that the user saved earlier, instead of being restored to the factory defaults.

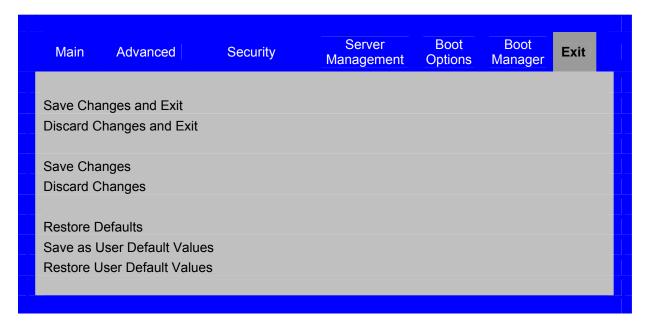


Figure 33. Setup Utility — Exit Screen Display

Table 37. Setup Utility — Exit Screen Fields

Setup Item	Option	Help Text	Comment
Save Changes and Exit		Apply current Setup values and exit BIOS Setup.	User is prompted for confirmation only if any of the setup fields were modified.
Discard Changes and Exit		Ignore changes made to values and exit BIOS Setup.	User is prompted for confirmation only if any of the setup fields were modified.
Save Changes		Apply current values and continue BIOS Setup.	User is prompted for confirmation only if any of the setup fields were modified.
Discard Changes		Undo changes made to values and continue BIOS Setup.	User is prompted for confirmation only if any of the setup fields were modified.

Setup Item	Option	Help Text	Comment
Restore Defaults		Restore default BIOS Setup values.	User is prompted for confirmation. The BIOS will load the defaults on the next reboot.
Save User Default Values		Save current values so they can be restored later.	
Restore User Default Values		Restore previously saved user default.	User is prompted for confirmation.

4.4 Loading BIOS Defaults

Different mechanisms exist for resetting the system configuration to the default values. When a request to reset the system configuration is detected, the BIOS loads the default system configuration values during the next POST. The request to reset the system to the defaults can be sent in the following ways:

- A request to reset the system configuration can be generated using the BIOS System Configuration Utility (Setup).
- A reset system configuration request can be generated by moving the clear system configuration jumper.

4.5 Multiple Boot Blocks

Two boot blocks are available on this server board.

Multiple Boot Blocks fault tolerant realization requires BIOS to: 1) recognize the second boot block and dispatch modules within it; 2) provide flash update interface (for utility) that has fault-tolerant flash update algorithm embedded, by which at any time point, there always exists a set of boot blocks that could recover the system back if the flash update is failed.

4.6 Recovery Mode

A recovery process can be initiated by setting the recovery jumper (called Force Recovery), or it can be invoked because of flash damaged.

A BIOS recovery can be accomplished from an ATAPI-CD. An ATAPI-CD image for recovery is created using the EI-Torito format image as per the published release notes.

The recovery media must contain the following image file: FV_MAIN.FV. The system should also contain a DOS bootable disk (HD, USB drives or CD, etc.) which must include the following image files:

- 1. IFLASH32.EXE
- 2. *.CAP
- 3. AUTOEXEC.BAT

The BIOS starts the recovery process by first loading and booting to the recovery image file (FV_MAIN.FV) on the root directory of the inserted ATAPI-CD. This process takes place before any video or console is available. Once the system boots to this recovery image file (FV_MAIN.FV), the user should select booting from the DOS disk, which contains the above file list. The process continues by loading and executing the AUTOEXEC.BAT file and the flash update application (IFLASH32.EXE). IFLASH32.EXE requires the supporting BIOS Capsule image file (*.CAP).

Once the recovery process is complete, it waits for a user to switch the recovery jumper back to normal operation and restart the system by doing a power cycle.

The following steps illustrate the recovery process:

- 1. Insert recovery media with the FV MAIN.FV on the root directory.
- 2. Insert the disk with all the required files (IFLASH32.EXE, AUTOEXEC.BAT, *.CAP). The user could also put all the files in both step 1 and 2 together into one disk.
- 3. Change the recovery mode jumper (BIOS RECV) from normal operation to recovery operation. The details of the jumper can be found in the server board EPS.
- 4. Power on the system.
- 5. The BIOS POST screen will appear and display the progress. BIOS continues to boot to DOS from the media.
- 6. The AUTOEXEC.BAT file is invoked and it will initiate the flash update (IFLASH32.EXE) with new capsule file (*.CAP). A message will be displayed if the flash update succeeds. If flash update fails, the user will be notified.
- 7. Once the flash update is completed, put the recovery jumper back to the default position for normal operation.
- 8. Perform the power cycle.

4.7 Intel[®] Matrix Storage Manager

Intel[®] Matrix Storage Manager provides software support for high-performance Serial ATA RAID 0 arrays, fault-tolerant Serial ATA RAID 1 arrays, high capacity and fault-tolerant Serial ATA RAID 5 arrays and high performance and fault-tolerant Serial ATA RAID 10 arrays on select supported chipsets using select operating systems. Intel[®] Matrix Storage Manager is the software that enables Intel[®] Matrix Storage Technology.

For detailed information and supported OSes, please refer to website: http://support.intel.com/support/chipsets/imsm/

4.8 Intel[®] Embedded Server RAID Technology

Intel[®] Embedded Server RAID Technology supports four Serial ATA ports, providing a cost-effective way to achieve higher transfer rates and reliability. Intel[®] Embedded Server RAID Technology supports

- •RAID level 0 data striping for improved performance
- •RAID level 1 data mirroring for improved data reliability
- •RAID level 10 data striping and mirroring for high data transfer rates and data redundancy

5. Error Reporting and Handling

This chapter defines following error handling features:

- Error Handling and Logging
- Error Messages and Beep Codes

5.1 Error Handling and Logging

This section defines how errors are handled by the system BIOS. In addition, error-logging techniques are described and beep codes for errors are defined.

5.1.1 Error Sources and Types

One of the major requirements of server management is to correctly and consistently handle system errors. System errors that can be enabled and disabled individually or as a group can be categorized as follows:

- PCI bus
- Memory single- and multi-bit errors
- Errors detected during POST, logged as POST errors

The error list that would be logged is as follows:

Table 38. Event List

Event Name	Description	When Error Is Caught
Processor thermal trip of last boot	Processor thermal trip happened on last boot.	POST
Memory channel A Multi-bit ECC error	Multi-bit ECC error happened on DIMM channel A.	POST / Runtime
Memory channel A Single-bit ECC error	Single-bit ECC error happened on DIMM channel A.	POST / Runtime
Memory channel B Multi-bit ECC error	Multi-bit ECC error happened on DIMM channel B.	POST / Runtime
Memory channel B Single-bit ECC error	Single-bit ECC error happened on DIMM channel B.	POST / Runtime
CMOS battery failure	CMOS battery failure or CMOS clear jumper is set to clear CMOS.	POST
CMOS checksum error	CMOS data crushed	POST
CMOS time not set	CMOS time is not set	POST
Keyboard not found	PS/2 KB is not found during POST	POST
Memory size decrease	Memory size is decreased compared with last boot	POST
Chassis intrusion detected	Chassis is open	POST
Bad SPD tolerance	Some fields of the DIMM SPD may not be supported, but could be tolerant by the Memory Reference	POST

	Code.	
PCI PERR error	PERR error happens on PCI bus	POST / Runtime
PCI SERR error	SERR error happens on PCI bus	POST / Runtime

5.1.2 Error Logging via SMI Handler

The SMI handler is used to handle and log system level events. The SMI handler pre-processes all system errors, even those that are normally considered to generate an NMI.

The SMI handler logs the event to NVRAM. For example, the BIOS programs the hardware to generate SMI on a single-bit memory error and logs the error in the NVRAM in the terms of SMBIOS Type 15. After the BIOS finishes logging the error it will assert the NMI if needed.

5.1.2.1 PCI Bus Error

The PCI bus defines two error pins, PERR# and SERR#. These are used for reporting PCI parity errors and system errors, respectively.

In the case of PERR#, the PCI bus master has the option to retry the offending transaction, or to report it using SERR#. All other PCI-related errors are reported by SERR#. All PCI-to-PCI bridges are configured so that they generate SERR# on the primary interface whenever there is SERR# on the secondary side. The format of the data bytes is described in Section 5.1.4

5.1.2.2 PCI Express* Errors

All uncorrectable PCI Express* errors are logged as PCI system errors and promoted to an NMI. All correctable PCI Express errors are logged as PCI parity errors.

5.1.2.3 Memory Errors

The hardware is programmed to generate an SMI on correctable data errors in the memory array. The SMI handler records the error to the NVRAM. The uncorrectable errors may have corrupted the contents of SMRAM. The SMI handler will log the error to the NVRAM if the SMRAM contents are still valid. The format of the data bytes is described in Section 5.1.4

5.1.3 SMBIOS Type 15

Errors are logged to NVRAM in the terms of SMBIOS Type 15 (System Event Log). Please refer to the SMBIOS Specification, version 2.4 for more detail information. The format of the records is also defined in following section.

5.1.4 Logging Format Conventions

BIOS logs an error into the NVRAM area with the following record format, which is also defined in the SMBIOS Specification, version 2.4.

Table 39. SMBIOS Type 15 Event Log record format

Offset	Name	Length	Description
00h	EventType	Byte	Specifies the "Type" of event noted in an event-log entry as defined in table.
01h	Length	Byte	Specifies the byte length of the event record, including the record's Type and Length fields.
02h	Year	Byte	Indicates the time when error is logged.
03h	Month	Byte	
04h	Day	Byte	
05h	Hour	Byte	
06h	Minute	Byte	
07h	Second	Byte	
08h	EventData1	DWORD	EFI_STATUS_CODE_TYPE
0Ch	EventData2	DWORD	EFI_STATUS_CODE_VALUE

Table 40. Event Type Definition Table

Value	Description	Used by this platform (Y/N)
00h	Reserved	N
01h	Single-bit ECC memory error	Υ
02h	Multi-bit ECC memory error	Υ
03h	Parity memory error	N
04h	Bus time-out	N
05h	I/O Channel Check	N
06h	Software NMI	N
07h	POST Memory Resize	N
08h	POST Error	Υ
09h	PCI Parity Error	Υ
0Ah	PCI System Error	Υ
0Bh	CPU Failure	N
0Ch	EISA FailSafe Timer time-out	N
0Dh	Correctable memory log disabled	N

0Eh	Logging disabled for a specific Event Type – too many errors of the same type received in a short amount of time	N
0Fh	Reserved	N
10h	System Limit Exceeded (e.g. voltage or temperature threshold exceeded)	Υ
11h	Asynchronous hardware timer expired and issued a system reset	N
12h	System configuration information	N
13h	Hard-disk information	N
14h	System reconfigured	N
15h	Uncorrectable CPU-complex error	N
16h	Log Area Reset/Cleared	Υ
17h	System boot. If implemented, this log entry is guaranteed to be the first one written on any system boot.	N
18h-7Fh	Unused, available for assignment by SMBIOS Specification Version 2.3.4.	N
80h-FEh	Available for system- and OEM-specific assignments	Υ
FFh	End-of-log. When an application searches through the event-log records, the end of the log is identified when a log record with this type is found.	Υ

For information on the EFI_STATUS_CODE_TYPE and EFI_STATUS_CODE_VALUE definitions, please refer to "Intel Platform Innovation Framework for EFI Status Codes Specification", version 0.92.

The errors will also be displayed on the BIOS Setup screen in Server Management / View EventLog menu in the format of following:

EventName (times) Time of Occurrence

EventName is the same as shown in the Table 38. It is followed by the occurrence time of the same event. The 'Time of Occurrence' is the last time the event occurs.

5.2 Error Messages and Error Codes

The system BIOS displays error messages on the video screen. Before video initialization, beep codes inform the user of errors. POST error codes are logged in the event log. The BIOS displays POST error codes on the video monitor.

5.2.1 Diagnostic LEDs

During the system boot process, the BIOS executes several platform configuration processes, each of which is assigned a specific hex POST code number. As each configuration routine is started, the BIOS will display the POST code on the POST code diagnostic LEDs found on the back edge of the server board. To assist in troubleshooting a system hang during the POST process, the diagnostic LEDs can be used to identify the last POST process to be executed.

Each POST code is represented by a combination of colors from the four LEDs. The LEDs are capable of displaying three colors: green, red, and amber. The POST codes are divided into an upper nibble and a lower nibble. Each bit in the upper nibble is represented by a red LED and each bit in the lower nibble is represented by a green LED. If both bits are set in the upper and lower nibbles then both red and green LEDs are lit, resulting in an amber color. If both bits are clear, then the LED is off.

In the below example, BIOS sends a value of ACh to the diagnostic LED decoder. The LEDs are decoded as follows:

- Red bits = 1010b = Ah
- Green bits = 1100b = Ch

Since the red bits correspond to the upper nibble and the green bits correspond to the lower nibble, the two are concatenated to be ACh.

	8h		4h		2h		1h	
LEDs	Red	Green	Red	Green	Red	Green	Red	Green
ACh	1	1	0	1	1	0	0	0
Result	Amber		Green		Red		Off	
	M:	SB					LS	SB

Table 41.: POST Progress Code LED Example

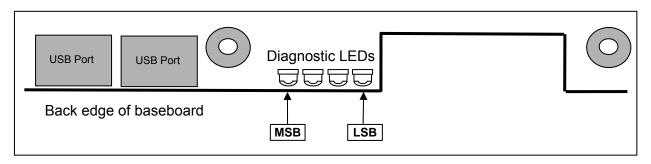


Figure 19. Location of Diagnostic LEDs on Server Board

5.2.2 POST Code Checkpoints

Table 42. POST Code Checkpoints

	Diagnostic LED Decoder				Description
Checkpoint		en, R=F	Red, A=A		
Host Proces	MSB			LSB	
		l off	OFF	_	Davis - initialization of the best consequence (best-to-
0x10h	OFF	OFF	OFF	R	Power-on initialization of the host processor (bootstrap processor)
0x11h	OFF	OFF	OFF	Α	Host processor cache initialization (including AP)
0x12h	OFF	OFF	G	R	Starting application processor initialization
0x13h	OFF	OFF	G	Α	SMM initialization
Chipset			1	ı	
0x21h	OFF	OFF	R	G	Initializing a chipset component
Memory					
0x22h	OFF	OFF	Α	OFF	Reading configuration data from memory (SPD on DIMM)
0x23h	OFF	OFF	Α	G	Detecting presence of memory
0x24h	OFF	G	R	OFF	Programming timing parameters in the memory controller
0x25h	OFF	G	R	G	Configuring memory parameters in the memory controller
0x26h	OFF	G	Α	OFF	Optimizing memory controller settings
0x27h	OFF	G	Α	G	Initializing memory, such as ECC init
0x28h	G	OFF	R	OFF	Testing memory
PCI Bus					
0x50h	OFF	R	OFF	R	Enumerating PCI busses
0x51h	OFF	R	OFF	Α	Allocating resources to PCI busses
0x52h	OFF	R	G	R	Hot Plug PCI controller initialization
0x53h	OFF	R	G	Α	Reserved for PCI bus
0x54h	OFF	Α	OFF	R	Reserved for PCI bus
0x55h	OFF	Α	OFF	Α	Reserved for PCI bus
0x56h	OFF	Α	G	R	Reserved for PCI bus
0x57h	OFF	Α	G	Α	Reserved for PCI bus
USB	l	1	I	l	I
0x58h	G	R	OFF	R	Resetting USB bus
0x59h	G	R	OFF	Α	Reserved for USB devices
ATA / ATAPI	/ SATA	I		l	
0x5Ah	G	R	G	R	Begin PATA / SATA bus initialization
0x5Bh	G	R	G	Α	Reserved for ATA
SMBUS	<u>I</u>		<u> </u>	l	
0x5Ch	G	Α	OFF	R	Resetting SMBUS
0x5Dh	G	Α	OFF	Α	Reserved for SMBUS
Local Conso		<u> </u>			<u>l</u>
0x70h	OFF	R	R	R	Resetting the video controller (VGA)
0x71h	OFF	R	R	A	Disabling the video controller (VGA)
0x71h	OFF	R	A	R	Enabling the video controller (VGA)
Remote Con				'`	
0x78h	G	R	R	R	Resetting the console controller
0 / 7 0 1 1	J	i.Z	17	i.	1.030tting the console controller

0x79h 0x7Ah Keyboard (PS: 0x90h 0x91h 0x92h 0x93h 0x94h 0x95h Mouse (PS2 of 0x98h	G G 2 or US R R R R R R R	R R	Red, A=A R A OFF OFF G G OFF	R R A R	Disabling the console controller Enabling the console controller Resetting the keyboard Disabling the keyboard
0x7Ah Keyboard (PS: 0x90h 0x91h 0x92h 0x93h 0x94h 0x95h Mouse (PS2 of	G G 2 or US R R R R	R B) OFF OFF OFF OFF	A OFF OFF G G	A R R A R	Enabling the console controller Resetting the keyboard Disabling the keyboard
0x7Ah Keyboard (PS: 0x90h 0x91h 0x92h 0x93h 0x94h 0x95h Mouse (PS2 of	G 2 or US R R R R R	R B) OFF OFF OFF OFF	A OFF OFF G G	R R A R	Enabling the console controller Resetting the keyboard Disabling the keyboard
0x90h 0x91h 0x92h 0x93h 0x94h 0x95h Mouse (PS2 of	2 or US R R R R R	OFF OFF OFF G	OFF OFF G	R A R	Resetting the keyboard Disabling the keyboard
0x90h 0x91h 0x92h 0x93h 0x94h 0x95h Mouse (PS2 of	R R R R R	OFF OFF OFF OFF	OFF G G	A R	Disabling the keyboard
0x91h 0x92h 0x93h 0x94h 0x95h Mouse (PS2 of	R R R R	OFF OFF OFF	OFF G G	A R	Disabling the keyboard
0x92h 0x93h 0x94h 0x95h Mouse (PS2 o	R R R R	OFF OFF G	G G	R	
0x93h 0x94h 0x95h Mouse (PS2 o	R R R	OFF G	G		Describing the Leadership
0x94h 0x95h Mouse (PS2 o	R R	G		٨	Resetting the keyboard
0x95h Mouse (PS2 or	R		OFF	Α	Enabling the keyboard
Mouse (PS2 o		G		R	Clearing keyboard input buffer
	r USB)		OFF	Α	Instructing keyboard controller to run Self Test (PS2 only)
OvOSh					
0,00011	Α	OFF	OFF	R	Resetting the mouse
0x99h	Α	OFF	OFF	Α	Detecting the mouse
0x9Ah	Α	OFF	G	R	Detecting the presence of mouse
0x9Bh	Α	OFF	G	Α	Enabling the mouse
Fixed Media			ı		
0xB0h	R	OFF	R	R	Resetting fixed media device
0xB1h	R	OFF	R	Α	Disabling fixed media device
0xB2h	R	OFF	Α	R	Detecting presence of a fixed media device (IDE hard drive detection, etc.)
0xB3h	R	OFF	Α	Α	Enabling / configuring a fixed media device
Removable Me	edia		I		
0xB8h	Α	OFF	R	R	Resetting removable media device
0xB9h	Α	OFF	R	Α	Disabling removable media device
0xBAh	Α	OFF	Α	R	Detecting presence of a removable media device (IDE CDROM detection, etc.)
0xBCh	Α	G	R	R	Enabling / configuring a removable media device
Boot Device S	electio	n	I		
0xD0	R	R	OFF	R	Trying boot device selection
0xD1	R	R	OFF	Α	Trying boot device selection
0xD2	R	R	G	R	Trying boot device selection
0xD3	R	R	G	Α	Trying boot device selection
0xD4	R	Α	OFF	R	Trying boot device selection
0xD5	R	Α	OFF	Α	Trying boot device selection
0xD6	R	Α	G	R	Trying boot device selection
0xD7	R	Α	G	Α	Trying boot device selection
0xD8	Α	R	OFF	R	Trying boot device selection
0xD9	Α	R	OFF	Α	Trying boot device selection
0XDA	Α	R	G	R	Trying boot device selection
0xDB	Α	R	G	Α	Trying boot device selection
0xDC	Α	Α	OFF	R	Trying boot device selection
0xDE	Α	Α	G	R	Trying boot device selection
0xDF	Α	Α	G	Α	Trying boot device selection
Pre-EFI Initiali	zation	(PEI) Co	ore		

	Diagnostic LED Decoder				Description		
Checkpoint		en, R=F	Red, A=				
	MSB			LSB			
0xE0h	R	R	R	OFF	Started dispatching an PEIM		
0xE1h	R	R	R	G	Completed dispatching an PEIM		
0xE2h	R	R	Α	OFF	Initial memory found, configured, and installed correctly		
0xE3h	R	R	Α	G	Reserved for initialization module use (PEIM)		
Driver Execu	tion Env	ironme	nt (DXE) Core			
0xE4h	R	Α	R	OFF	Entered EFI driver execution phase (DXE)		
0xE5h	R	Α	R	G	Reserved for DXE core use		
0xE6h	R	Α	Α	OFF	Started connecting drivers		
0xEBh	Α	R	Α	G	Started dispatching a driver		
0xECh	R	Α	Α	OFF	Completed dispatching a driver		
DXE Drivers		I	l				
0xE7h	R	Α	Α	G	Waiting for user input		
0xE8h	Α	R	R	OFF	Checking password		
0xE9h	Α	R	R	G	Entering BIOS setup		
0xEAh	Α	R	Α	OFF	Flash Update		
0xEEh	Α	Α	Α	OFF	Calling Int 19. One beep unless silent boot is enabled.		
0xEFh	Α	Α	Α	G	Reserved for DXE Drivers use		
Runtime Pha	se / EFI	Operati	ng Syst	em Boo	ot .		
0xF4h	R	Α	R	R	Entering Sleep state		
0xF5h	R	Α	R	Α	Exiting Sleep state		
0xF8h	Α	R	R	R	Operating system has requested EFI to close boot services (ExitBootServices () has been called)		
0xF9h	Α	R	R	Α	Operating system has switched to virtual address mode (SetVirtualAddressMap () has been called)		
0xFAh	Α	R	Α	R	Operating system has requested the system to reset (ResetSystem () has been called)		
Pre-EFI Initia	lization	Module	(PEIM)	/ Recov	very		
0x30h	OFF	OFF	R	R	Crisis recovery has been initiated because of a user request		
0x31h	OFF	OFF	R	Α	Crisis recovery has been initiated by software (corrupt flash)		
0x34h	OFF	G	R	R	Loading crisis recovery capsule		
0x35h	OFF	G	R	Α	Handing off control to the crisis recovery capsule		
0x3Fh	G	G	Α	Α	Unable to complete crisis recovery.		

5.2.3 POST Error Messages and Handling

Whenever possible, the BIOS will output the current boot progress codes on the video screen. Progress codes are 32-bit quantities plus optional data. The 32-bit numbers include class, subclass, and operation information. The class and subclass fields point to the type of hardware that is being initialized. The operation field represents the specific initialization activity. Based on the data bit availability to display progress codes, a progress code can be customized to fit the data width. The higher the data bit, the higher the granularity of information that can be sent on the progress port. The progress codes may be reported by the system BIOS or option ROMs.

The Response section in the following table is divided into two types:

- Pause: The message is displayed in the Error Manager screen, an error may be logged to the NVRAM, and user input is required to continue. The user can take immediate corrective action or choose to continue booting.
- **Halt:** The message is displayed in the Error Manager screen, an error is logged to the NVRAM, and the system cannot boot unless the error is resolved. The user needs to replace the faulty part and restart the system.

Table 43. POST Error Messages and Handling

Error Code	Error Message	Response	Log Error
	CMOS date / time not set	Pause	Υ
	Configuration cleared by jumper	Pause	Υ
	Configuration default loaded	Pause	N
	Password check failed	Halt	N
	PCI resource conflict	Pause	N
	Insufficient memory to shadow PCI ROM	Pause	N
	Processor thermal trip error on last boot	Pause	Υ

5.2.4 POST Error Beep Codes

The following table lists POST error beep codes. Prior to system Video initialization, BIOS uses these beep codes to inform users on error conditions. The beep code is followed by a user visible code on POST Progress LEDs.

Table 44. POST Error Beep Codes

Beeps	Error Message	POST Progress Code	Description
3	Memory error		System halted because a fatal error related to the memory was detected.

5.2.5 POST Error Pause Option

In case of POST error(s) that are listed as "Pause", the BIOS will enter the error manager and wait for user to press an appropriate key before booting the operating system or entering BIOS Setup.

The user can override this option by setting "POST Error Pause" to "disabled" in BIOS setup Main menu page. If "POST Error Pause" option is set to "disabled", the system will boot the operating system without user-intervention. The default value is set to "enabled".

6. Connectors and Jumper Blocks

6.1 Power Connectors

6.1.1 Main Power Connector

The following table defines the pin-out of the main power connector.

Table 45. Power Connector Pin-out (J4G1)

Pin	Signal	18 AWG Color	Pin	Signal	18 AWG Color
1*	+3.3VDC	Orange	13	+3.3VDC	Orange
	3.3V RS	Orange (24AWG)			
2	+3.3VDC	Orange	14	-12VDC	Blue
3*	COM	Black	15	COM	Black
	COM RS	Black (24AWG)			
4*	+5VDC	Red	16	PSON#	Green
	5V RS	Red (24AWG)			
5	COM	Black	17	COM	Black
6	+5VDC	Red	18	COM	Black
7	COM	Black	19	COM	Black
8	PWR OK	Gray	20	Reserved	N.C.
9	5 VSB	Purple	21	+5VDC	Red
10	+12V3	Yellow	22	+5VDC	Red
11	+12V3	Yellow	23	+5VDC	Red
12	+3.3VDC	Orange	24	COM	Black

Table 46. Auxiliary CPU Power Connector Pin-out (J9B2)

Pin	Signal	18 AWG color	Pin	Signal	18 AWG Color
1	COM	Black	5*	+12V1	White
				12V1 RS	Yellow (24AWG)
2	COM	Black	6	+12V1	White
3	COM	Black	7	+12V2	Brown
4	COM	Black	8*	+12V2	Brown
				12V2 RS	Yellow (24AWG)

6.2 Intel® Adaptive Slot

The Intel® Adaptive super slot supports one PCIe* x8 and one PCI-X* 66/100 interface. PCI x8 is available as a standard slot or through a PCIe riser card. PCI-X is only available through a PCI-X riser card, which is only available on the S3000AHLX SKU.

Table 47. Intel[®] Adaptive Slot Pin-out (J4B2)

Pin-Side B	PCI Spec Signal	Description	Pin-Side A	PCI Spec Signal	Description
1	12V		1	Presnt1#	
2	12V		2	12V	
3	12V		3	12V	
4	GND		4	GND	
5	SMCLK		5	JTAG-TCK	
6	SMDATA		6	JTAG-TDI	
7	GND		7	JTAG-TDO	
8	3.3V		8	JTAG-TMS	
9	JTAG- TRST#		9	3.3V	
10	3.3VAux		10	3.3V	
11	Wake#		11	PERST#	
KEY	KEY		KEY	KEY	
KEY	KEY		KEY	KEY	
12	RSVD		12	GND	
13	GND		13	REFCLK1+	
14	HSOp(0)		14	REFCLK1+	
15	HSOn(0)		15	GND	
16	GND		16	HSIp(0)	
17	Present2#		17	HSIn(0)	
18	GND	1X end	18	GND	
19	HSOp(1)		19	RSVD	
20	HSOn(1)		20	GND	
21	GND		21	HSIp(1)	
22	GND		22	HSIn(1)	
23	HSOp(2)		23	GND	
24	HSOn(2)		24	GND	
25	GND		25	HSIp(2)	
26	GND		26	HSIn(2)	
27	HSOp(3)		27	GND	
28	HSOn(3)		28	GND	
29	GND		29	HSIp(3)	
30	RSVD		30	HSIn(3)	
31	PRSNT2#		31	GND	
32	GND	4X end	32	REFCLK2+	second x4 clock
33	HSOp(4)		33	REFCLK2+	second x4 clock

Pin-Side B	PCI Spec Signal	Description	Pin-Side A	PCI Spec Signal	Description
34	HSOn(4)		34	GND	
35	GND		35	HSIp(4)	
36	GND		36	HSIn(4)	
37	HSOp(5)		37	GND	
38	HSOn(5)		38	GND	
39	GND		39	HSIp(5)	
40	GND		40	HSIn(5)	
41	HSOp(6)		41	GND	
42	HSOn(6)		42	GND	
43	GND		43	HSIp(6)	
44	GND		44	HSIn(6)	
45	HSOp(7)		45	GND	
46	HSOn(7)		46	GND	
47	GND		47	HSIp(7)	
48	PRSNT2#		48	HSIn(7)	
49	GND	8X end	49	GND	
KEY	KEY	Blocks a x16 PCI Express* board	KEY	KEY	and allows a x8 to be used instead
KEY	KEY	Blocks a x16 PCI Express* board	KEY	KEY	
50	-12V		50	12V	
51	+5V		51	INTB#	
52	INTD#		52	+5V	
53	+5V		53	+5V	
54	+5V		54	+5V	
55	INTA#		55	INTC#	
56	GND		56	GND	
57	CLK3		57	REQ3#	
58	GND		58	GND	
59	CLK2		59	GNT3#	
60	GND		60	GND	
61	REQ2#		61	RST#	
62	GND		62	+5V	
63	GND		63	RSVD	
64	CLK1		64	GND	
65	GND		65	GNT2#	
66	REQ1#		66	+3.3V	
67	+3.3V		67	GNT1#	
68	PME2#		68	GNT 1#	
69	AD[31]		69	PME1#	
70	AD[29]		70	PME3#	
71	GND		71		
				AD[30]	
72	AD[27]		72	+3.3V	

Pin-Side B	PCI Spec Signal	Description	Pin-Side A	PCI Spec Signal	Description
73	AD[25]		73	AD[28]	
74	+3.3V		74	AD[26]	
75	C/BE[3]#		75	GND	
76	AD[23]		76	AD[24]	
77	GND		77	AD[22]	
78	AD[21]		78	+3.3V	
79	AD[19]		79	AD[20]	
80	+3.3V		80	AD[18]	
81	AD[17]		81	GND	
82	C/BE[2]#		82	AD[16]	
83	GND		83	PCI-XCAP	
84	IRDY#		84	+3.3V	
85	+3.3V		85	FRAME#	
86	DEVSEL#		86	GND	
87	GND		87	TRDY#	
88	LOCK#		88	GND	
89	PERR#		89	STOP#	
90	+3.3V		90	+3.3V	
91	3.3V		91	SERR#	
92	C/BE[1]#		92	GND	
93	AD[14]		93	PAR	
94	GND		94	AD[15]	
95	AD[12]		95	+3.3V	
96	AD[10]		96	AD[13]	
97	M66EN		97	AD[11]	
98	GND		98	GND	
99	GND		99	AD[09]	
100	AD[08]		100	C/BE[0]#	
101	AD[07]		101	+3.3V	
102	+3.3V		102	AD[06]	
103	AD[05]		103	AD[04]	
104	AD[03]		104	GND	
105	GND		105	AD[02]	
106	AD[01]		106	AD[00]	
107	+3.3V		107	+3.3V	
108	ACK64#		108	REQ64#	
109	+5V		109	+5V	
110	+5V		110	+5V	
111	GND		111	C/BE[7]#	

Pin-Side B	PCI Spec Signal	Description	Pin-Side A	PCI Spec Signal	Description
112	C/BE[6]#		112	C/BE[5]#	
113	C/BE[4]#		113	GND	
114	GND		114	PAR64	
115	AD[63]		115	AD[62]	
116	AD[61]		116	3.3V	
117	3.3V		117	AD[60]	
118	AD[59]		118	AD[58]	
119	AD[57]		119	GND	
120	GND		120	AD[56]	
121	AD[55]		121	AD[54]	
122	AD[53]		122	3.3V	
123	GND		123	AD[52]	
124	AD[51]		124	AD[50]	
125	AD[49]		125	GND	
126	3.3V		126	AD[48]	
127	AD[47]		127	AD[46]	
128	AD[45]		128	GND	
129	GND		129	AD[44]	
130	AD[43]		130	AD[42]	
131	AD[41]		131	3.3V	
132	GND		132	AD[40]	
133	AD[39]		133	AD[38]	
134	AD[37]		134	GND	
135	3.3V		135	AD[36]	
136	AD[35]		136	AD[34]	
137	AD[33]		137	GND	
138	GND		138	AD[32]	
139	Type1	Type(1:0)	139	GND	
		(1U)00 = PCle*			
		(1U)01 = PCI			
		(1U)10 = N/A			
110	Turan	(1U)11 = N/A	110	Cina	0-411 4-011
140	Type0	(2U)00=2xPCle* + PCl	140	Size	0=1U, 1=2U
		(2U)01=3x PCI			
		(2U)10=PXH 3 PCI-X*			
		(2U)11=No Riser			
	Special Ris	er Signals			
	opecial Ris	Ci Olgitals			

6.3 SMBus Connector

Table 48. SMBus Connector Pin-out (J1E1)

Pin	Signal Name	Description
1	SMB_DAT_5V_BP	Data Line
2	GND	GROUND
3	SMB_CLK_5V_BP	Clock Line
4	TP_BP_I2C_HRD_4	Test Point

6.4 IDE Connector

The board provides one 40-pin ATA-100 IDE connector.

Table 49. ATA 40-pin Connector Pin-out (J3J2)

Pin	Signal Name	Pin	Signal Name
1	RESET#	2	GND
3	IDE_DD7	4	IDE_DD8
5	IDE_DD6	6	IDE_DD9
7	IDE_DD5	8	IDE_DD10
9	IDE_DD4	10	IDE_DD11
11	IDE_DD3	12	IDE_DD12
13	IDE_DD2	14	IDE_DD13
15	IDE_DD1	16	IDE_DD14
17	IDE_DD0	18	IDE_DD15
19	GND	20	KEY
21	IDE_DMAREQ	22	GND
23	IDE_IOW#	24	GND
25	IDE_IOR#	26	GND
27	IDE_IORDY	28	GND
29	IDE_DMAACK#	30	GND
31	IRQ_IDE	32	Test Point
33	IDE_A1	34	DIAG
35	IDE_A0	36	IDE_A2
37	IDE_DCS0#	38	IDE_DCS1#
39	IDE_HD_ACT#	40	GND

6.5 Front Panel Connector

A standard SSI 24-pin header is provided to support a system front panel. The header contains reset, NMI, power control buttons, and LED indicators. The following table details the pin-out of this header.

Table 50. Front Panel 24-Pin Header Pin-out (J1J3)

Signal Name	Pin	Signal Name	Pin
FP_PWR_LED_P1	1	P3V3_STBY	2
KEY	3	P5V_STBY	4
FP_GPIO_GRN_BLNK_HDR	5	FP_ID_LED_N	6
P3V3	7	TP_SSI_PIN8	8
LED_HD_N	9	TP_SSI_PIN10	10
FP_SW_ON_HDR_N	11	FP_NIC1_ACT_LED_R_N	12
GND	13	NIC1_LINK_1_N	14
FP_RST_FPHDR_N	15	TP_SSI_PIN16	16
GND	17	TP_SSI_PIN18	18
FP_ID_BTN_N	19	FP_Intruder_HDR_N	20
TP_FM_ONE_WIRE_TEMP_SENSOR	21	FP_NIC2_ACT_LED_R_N	22
TP_SSI_PIN23	23	NIC2_LINK_UP_N	24

6.6 I/O Connectors

6.6.1 VGA Connector

The following table details the pin-out of the VGA connector. This connector is stacked with the COM1 connector.

Table 51. VGA Connector Pin-out (J8A1)

Signal Name	Pin	Signal Name	Pin
RED	B1	Fused VCC (+5V)	В9
GREEN	B2	GND	B10
BLUE	B3	NC	B11
NC	B4	DDCDAT	B12
GND	B5	HSY	B13
GND	B6	VSY	B14
GND	B7	DDCCLK	B15
GND	В8		

Note: NC (No Connect)

6.6.2 NIC Connectors

The server board supports two NIC RJ45 connectors. The following tables detail the pin-out of the connectors.

Table 52. NIC2-Intel® 82541PI (10/100/1000) Connector Pin-out (JA6A1)

Signal Name	Pin	Signal Name	Pin
P1V8_NIC_RC	1	NIC1_DMI0_DN	10
NIC2_DMI2_DN	2	NIC1_DMI0_DNP	11
NIC2_DMI2_DP	3	P1V8_NIC_RC	12
NIC1_DMI2_DP	4	NIC2_LINK1000_N	13
NIC1_DMI2_DN	5	NIC2_LINK100_N	14
P1V8_NIC_RC	6	NIC2_ACT_LED_N	15
P1V8_NIC_RC	7	NIC2_LINK_UP_N	16
NIC1_DMI3_DP	8	GND	MP1
NIC1_DMI3_DN	9	GND	MP2

Table 53. NIC1- Intel[®] 82573E (10/100/1000) Connector Pin-out (JA5A1)

Signal Name	Pin	Signal Name	Pin
P2V5_NIC1	9	P3V3_AUX	20
NIC1_MDI0_DP	10	NIC1_LINK_0_N	21
NIC1_MDI0_DN	11	NIC1_LINK_2_N	22
NIC1_MDI1_DP	12	GND	MP1
NIC1_MDI1_DN	13	GND	MP2
NIC1_MDI2_DP	14	GND	MP3
NIC1_MDI2_DN	15	GND	MP4
NIC1_MDI3_DP	16	GND	MP5
NIC1_MDI3_DN	17	GND	MP6
GND	18	GND	MP7
NIC1_LINK_1_N	19	GND	MP8

6.6.3 SATA Connectors

The pin-out for the four SATA connectors is listed below.

Table 54. SATA Connector Pin-out (J1G2, J1H1, J1J2, J2J1)

Pin	Signal Name
1	GND
2	SATA0_TX_P
3	SATA0_TX_N
4	GND
5	SATA0_RX_N
6	SATA0_RX_P
7	GND

6.6.4 Floppy Controller Connector

The board provides a standard 34-pin interface to the floppy drive controller. The following table details the pin-out of the 34-pin floppy connector.

Table 55. Legacy 34-pin Floppy Connector Pin-out (J2J3)

Signal Name	Pin	Signal Name	Pin
GND	1	FDDENSEL	2
GND	3	Unused	4
KEY	5	FDDRATE0	6
GND	7	FDINDEX#	8
GND	9	FDMTR0#	10
GND	11	FDR1#	12
GND	13	FDR0#	14
GND	15	FDMTR1#	16
Unused	17	FDDIR	18
GND	19	FDSTEP#	20
GND	21	FDWDATA#	22
GND	23	FDWGATE#	24
GND	25	FDTRK0#	26
Unused	27	FLWP#	28
GND	29	FRDATA#	30
GND	31	FHDSEL#	32
GND	33	FDSKCHG#	34

6.6.5 Serial Port Connectors

One serial port is provided on the server board. A standard, external DB9 serial connector is located on the back edge of the server board to supply a serial interface. This connector is stacked with VGA connector (J8A1)

Table 56. External DB9 Serial A Port Pin-out (J8A1)

Signal Name	Pin	Signal Name	Pin
DCD-P	T1	DSR-P	T6
RXD-P	T2	RTS-P	T7
TXD-P	T3	CTS-P	T8
DTR-P	T4	RI-P	Т9
GND	T5		

6.6.6 Keyboard and Mouse Connector

Two PS/2 ports are provided for use by a keyboard and a mouse. The following table details the pin-out of the PS/2 connectors.

Table 57. Keyboard and Mouse PS/2 Connectors Pin-out (J9A1)

PS/2 Connectors	Pin	Signal Name
Keyboard	K1	RKBDATA
	K2	NC
	K3	GND
	K4	P5V_KB_MS
	K5	RKBCLK
	K6	NC
Mouse	M1	MSEDATA
	M2	NC
	M3	GND
	M4	P5V_KB_MS
	M5	RMSCLK
	M6	NC

6.6.7 USB Connector

The following table provides the pin-out for the dual external USB connectors. This connector is stacked with an RJ45 (connected to NIC1 LAN signals).

Table 58. USB Connectors Pin-out (JA5A1)

Pin	Signal Name
U1	P5V_USB_BP_MJ
U2	USB_BACK5_R_DN
U3	USB_BACK5_R_DP
U4	GND
U5	P5V_USB_BP_MJ
U6	USB_BACK4_R_DN
U7	USB_BACK4_R_DP
U8	GND

A header on the server board provides an option to support two additional USB connectors. The pin-out of the header is detailed in the following table.

Table 59. Optional USB Connection Header Pin-out (J1F2)

Signal Name	Pin	Signal Name	Pin
NC	1	Key	2
GND	3	GND	4
USB_FRONT1_INDUCTOR_DP	5	USB_FRONT2_INDUCTOR_DP	6
USB_FRONT1_INDUCTOR_DN	7	USB_FRONT2_INDUCTOR_DN	8
USB_FNT_PWR	9	USB_FNT_PWR	10

6.7 Fan Headers

The server board supports five general purpose fan headers. All fan headers are 4-pin fan headers (J7J1, J8D1, J4J1, and J6B1, J6J1) and have the same pin-out.

Table 60. Four-pin Fan Headers Pin-out (J7J1, J8D1, J4J1, and J6B1, J6J1)

Pin	Signal Name	Type	Description
1	Ground	Power	GROUND is the power supply ground
2	Fan Power	Power	Fan Power
3	Fan Tach	Out	FAN_TACH signal is connected to the Heceta* to monitor the FAN speed.
4	PWM	Control	Pulse Width Modulation – Fan Speed Control signal

6.8 Miscellaneous Headers and Connectors

6.8.1 Back Panel I/O Connectors

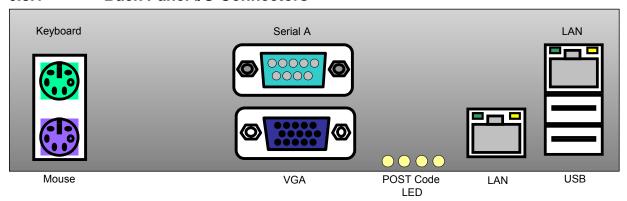


Figure 34. Intel[®] Server Board S3000AHLX Back Panel I/O connectors

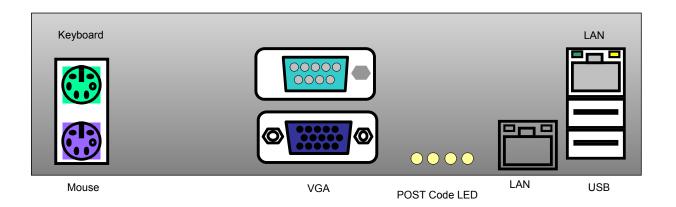


Figure 35. Intel® Server Board S3000AH Back Panel I/O connectors

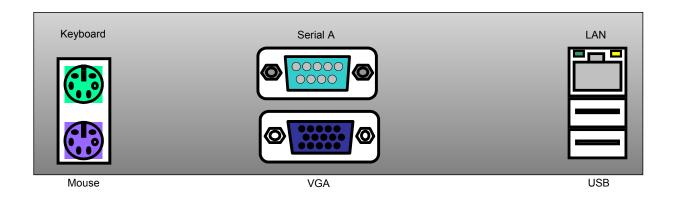


Figure 36. Intel® Server Board S3000AHV Back Panel I/O connectors

6.8.2 Chassis Intrusion Header

A 1x2 pin header (J6J2) is used in chassis that support a chassis intrusion switch. This header is monitored by the Intel[®] ICH7R. The pin-out definition for this header is shown below.

Table 61. Chassis Intrusion Header (J6J2) Pin-out

Pin	Signal Name			
1	FP_INTRUDER_HDR_P1			
2	FP_INTRUDER_HDR_N			

6.8.3 HDD ACTIVE LED Header

There is a 1x2 pin Header for HDD LED Connection. This jumper is reserved for PCI add-in cards that support the SCSI or SATA interface with an external HDD LED activity cable.

Table 62. HDD LED Header (J1H2) Pin-out

Pin	Signal Name			
1	FM_SIO_SCSI_ACT_N			
2	TP_SCSI_ACT_PIN2			

6.9 Jumper Blocks

This section describes the configuration jumper options on the server board.

6.9.1 NIC1 NVM Protect

The server board provides a 3-pin jumper block to perform Intel[®] 82573E/V firmware protected and unprotected options. The factory default is set to protected mode. The pin-out of the jumper is defined below.

Table 63. NIC1 NVM Protect Mode (J4A1)

Name	Pin – Pin	Function	Description
Default	1-2		Jumper in default position protects Intel [®] 82573E/V firmware from being programmed.
Update	2-3	Unprotected	Jumper in update mode allows Intel [®] 82573E/V firmware to be programmed.

6.9.2 Clear CMOS and System Maintenance Mode Jumpers

Both CMOS Clear and System Maintenance Mode jumpers consist of 3-pin headers (CMOS Clear = J1G3, Maintenance Mode = J1H3) located just beside the front panel and SATA 1 connectors. The server board provides a total of two 3-pin jumper blocks that are used to perform clearing of NVRAM, system BIOS recovery, and system maintenance mode options. The factory defaults are set to normal mode for each function.

The following tables describe each jumper option.

Table 64. System Maintenance Mode (J1H3)

Name	Pin – Pin	Function	Description
Normal	1-2		Allows normal system operation with correct BIOS settings. System will POST normally.
Maintenance Mode	2-3	Maintenance Mode	Intel® AMT setting/password reset.
Recovery Boot	Off	BIOS Recovery Mode	Used to recover from a corrupted BIOS. Bootable media with a valid BIOS ROM required.

Table 65. Clear CMOS Jumper Options (J1G3)

Name	Pin – Pin	Function	Description
Normal	1-2	Normal Operation	Jumper in normal position allows system to successfully POST and boot to OS environment. BIOS settings are kept intact.
CMOS Clear	2-3	Clears CMOS (NVRAM)	Jumper in clear position initiates a clearing of NVRAM following POST. A system message confirms the CMOS clear operation was successful. This setting enforces default BIOS settings, which can be changed by entering setup via F2, then exiting setup via F10 and saving changes.

6.9.3 SPI/FWH Selection Header

Table 66. SPI/FWH Selection Header (J1F1)

Name	Pin – Pin	Function	Description
Default	1-2	Select SPI	The jumper should always be connected on default pins.
	2-3	Select FWH	In production boards, the FWH part has been removed and cannot be used any more.

7. Absolute Maximum Ratings

Operating the server board at conditions beyond those shown in the following table may cause permanent damage to the system. The table is provided for stress testing purposes only. Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

Table 67. Absolute Maximum Ratings

Operating Temperature	5 °C to 50 °C ¹
Storage Temperature	-55 °C to +150 °C
Voltage on any signal with respect to ground	-0.3 V to Vdd + 0.3V ²
3.3 V Supply Voltage with Respect to ground	-0.3 V to 3.63 V
5 V Supply Voltage with Respect to ground	-0.3 V to 5.5 V

Notes:

- 1. Chassis design must provide proper airflow to avoid exceeding the processor maximum case temperature.
- 2. VDD is the supply voltage for the device.

7.1 Mean Time Between Failures (MTBF) Test Results

This section provides results of MTBF testing done by a third party testing facility. MTBF is a standard measure for the reliability and performance of the board under extreme working conditions. The MTBF was measured at TBD hours at 35 degrees C.

7.2 Calculated Mean Time Between Failures (MTBF)

The MTBF (Mean Time Between Failures) for the server boards as configured from the factory is shown in the table below.

Table 68. MTBF Data

Product Code	Calculated MTBF	Operating Temperature
Intel® Server Board S3000AH	282569 Hours	35 degrees C
Intel® Server Board S3000AH	111326 Hours	55 degrees C
Intel® Server Board S3000AHLX	265866 Hours	35 degrees C
Intel® Server Board S3000AHLX	104745 Hours	55 degrees C

8. Design and Environmental Specifications

8.1 Power Budget

The following table shows the power consumed on each supply line for the server board that is configured with one processor (128W max). This configuration includes four 1 GB DDR2 DIMMs stacked burst at 70% max. The numbers provided in the table should be used for reference purposes only. Different hardware configurations will produce different numbers. The numbers in the table reflect a common usage model operating at a higher than average stress levels.

Table 69. Power Budget

Watts			Power Supply Rail Voltages				Units		
				AMPS					
Functional Unit	Utilization	Power	3.3V	5.V	12.V	12V VRM	-12v	5VSB	
Baseboard Input Totals		290.73W	6.26W	8.47W	6.38W	9.28W	0.05W	1.67	
Baseboard Discrete Totals	50%	32.02W	1.51	1.17	0.00	0.00	0.00	0.00	
Baseboard Converters	Efficiency	41.90W	3.24	7.29	0.00	9.28	0.00	1.67	
Baseboard Config Totals		246.80W	1.52	0.00	6.38	0.00	0.05	0.00	
System Components		49W	0.00	3A	2.8A	0.00	0.00	0.00	
System Components – SR1530		87W	0.00	2.1A	6.4A	0.00	0.00	0.00	
System Totals		335.85W	6.26	10.87	9.14	9.28	0.05	1.67	Amps
System Totals – SR1530									
3.3v/5v Combined Power									
Power Supply Requirements – SC5295-E		350W	22A	21A	10A + 1	6A=26A	A8.0	2A	
Power supply Requirements – 350W EPS1U		350W peak							
3.3V/5V Combined Power		130W	1Amin	1Amin	2Amin	2Amin	0Amin	1Amin	

8.2 Power Supply Specifications

This section provides power supply design guidelines for the server board, including voltage and current specifications, and power supply on/off sequencing characteristics.

Parameter Tolerance Min Nom Max Units +3.46 + 3.3V - 5% / +5% +3.14 +3.30 Vrms + 5V - 5% / +5% +4.75 +5.00 +5.25 Vrms + 12V - 5% / +5% +11.40 +12.00 +12.60 Vrms - 12V - 10% / +10% -11.40 -12.00 -13.08 Vrms + 5VSB - 5% / +5% +4.75 +5.00 +5.25 Vrms

Table 70. Server Board Power Supply Voltage Specification

8.2.1 Power Timing Requirements

These are the timing requirements for the power supply operation. The output voltages must rise from 10% to within regulation limits (Tvout_rise) within 5 to 70ms, except for 5VSB - it is allowed to rise from 1.0 to 70ms. The +3.3V, +5V and +12V output voltages should start to rise approximately at the same time. **All outputs must rise monotonically**. The +5V output needs to be greater than the +3.3V output during any point of the voltage rise. The +5V output must never be greater than the +3.3V output by more than 2.25V. Each output voltage shall reach regulation within 50ms (Tvout_on) of each other during turn on of the power supply. Each output voltage shall fall out of regulation within 400msec (Tvout_off) of each other during turn off. Refer to the table below for the timing requirements for the power supply being turned on and off via the AC input, with PSON held low and the PSON signal, with the AC input applied.

UNITS Item Description MIN MAX Output voltage rise time from each main output. 5.0 * 70 * Tvout rise msec Tvout on All main outputs must be within regulation of each 50 msec other within this time. T vout_off All main outputs must leave regulation within this 400 msec time.

Table 71. Output Voltage Timing

The 5VSB output voltage rise time will be from 1.0ms to 25.0ms

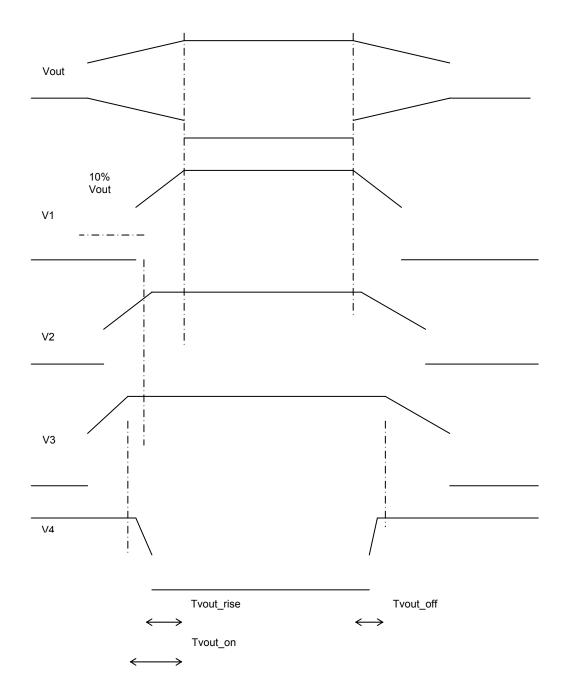


Figure 37. Output Voltage Timing

Table	72 .	Turn	On/Off	Timing
--------------	-------------	------	--------	---------------

Item	Description	Min	Max	Units
Tsb_on_delay	Delay from AC being applied to 5VSB being within regulation.		1500	msec
T ac_on_delay	Delay from AC being applied to all output voltages being within regulation.		2500	msec
Tvout_holdup	Time all output voltages stay within regulation after loss of AC.	21		msec
Tpwok_holdup	Delay from loss of AC to de-assertion of PWOK.	20		msec
Tpson_on_delay	Delay from PSON [#] active to output voltages within regulation limits.	5	400	msec
T pson_pwok	Delay from PSON [#] deactive to PWOK being de-asserted.		50	msec
Tpwok_on	Delay from output voltages within regulation limits to PWOK asserted at turn on.	100	1000	msec
T pwok_off	Delay from PWOK de-asserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits.	1	200	msec
Tpwok_low	Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON signal.	100		msec
Tsb_vout	Delay from 5VSB being in regulation to O/Ps being in regulation at AC turn on.	50	1000	msec
T5VSB_holdup	Time the 5VSB output voltage stays within regulation after loss of AC.	70		msec

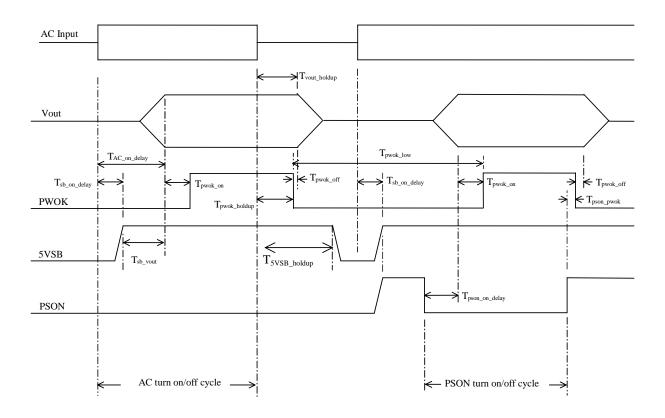


Figure 38. Turn On/Off Timing (Power Supply Signals)

8.2.2 Dynamic Loading

The output voltages shall remain within limits specified for the step loading and capacitive loading specified in the table below. The load transient repetition rate shall be tested between 50Hz and 5kHz at duty cycles ranging from 10%-90%. The load transient repetition rate is only a test specification. The Δ step load may occur anywhere within the MIN load to the MAX load conditions.

Output	Δ Step Load Size (See note 2)	Load Slew Rate	Test capacitive Load
+3.3V	5.0A	0.25 A/μsec	250 μF
+5V	6.0A	0.25 A/μsec	400 μF
12V	9.0A	0.25 A/μsec	500 μF
+5VSB	0.5A	0.25 A/μsec	20 μF

Table 73. Transient Load Requirements

Notes:

- 1. Step loads on each 12V output may happen simultaneously.
- 2. For Load Range 2 (light system loading), the tested step load size should be 60% of those listed.

8.2.3 AC Line Transient Specification

AC line transient conditions will be defined as "sag" and "surge" conditions. "Sag" conditions are also commonly referred to as "brownout"; these conditions will be defined as the AC line voltage dropping below nominal voltage conditions. "Surge" will be defined to refer to conditions when the AC line voltage rises above nominal voltage.

The power supply shall meet the requirements under the following AC line sag and surge conditions.

AC Line Sag				
Duration	Sag	Operating AC Voltage	Line Frequency	Performance Criteria
Continuous	10%	Nominal AC Voltage ranges	50/60Hz	No loss of function or performance.
0 to 1 AC cycle	95%	Nominal AC Voltage ranges	50/60Hz	No loss of function or performance.
> 1 AC cycle	>30%	Nominal AC Voltage ranges	50/60Hz	Loss of function acceptable, self recoverable.

Table 74. AC Line Sag Transient Performance

AC Line Surge				
Duration	Surge	Operating AC Voltage	Line Frequency	Performance Criteria
Continuous	10%	Nominal AC Voltages	50/60Hz	No loss of function or performance.
0 to ½ AC cycle	30%	Mid-point of nominal AC Voltages	50/60Hz	No loss of function or performance.

8.2.4 AC Line Fast Transient (EFT) Specification

The power supply shall meet the *EN61000-4-5* directive and any additional requirements in *IEC1000-4-5:1995* and the Level 3 requirements for surge-withstand capability, with the following conditions and exceptions:

- These input transients must not cause any out-of-regulation conditions, such as overshoot and undershoot, nor must it cause any nuisance trips for any of the power supply protection circuits.
- The surge-withstand test must not produce damage to the power supply.
- The supply must meet surge-withstand test conditions under maximum and minimum DC-output load conditions.

8.3 Product Regulatory Compliance

Intended Application – This product was evaluated as Information Technology Equipment (ITE), which may be installed in offices, schools, computer rooms, and similar commercial type locations. The suitability of this product for other product categories and environments (such as: medical, industrial, telecommunications, NEBS, residential, alarm systems, test equipment, etc.), other than an ITE application, may require further evaluation. This is an FCC Class A device. Integration of it into a Class B chassis does not result in a Class B device.

8.3.1 Product Safety Compliance

The server board complies with the following safety requirements:

- UL60950 CSA 60950(USA / Canada)
- EN60950 (Europe)
- IEC60950 (International)
- CB Certificate and Report, IEC60950 (report to include all country national deviations)
- CE Low Voltage Directive 73/23/EEE (Europe)

8.3.2 Product EMC Compliance – Class A Compliance

Note: Legally the product is required to comply with Class A emission requirements as it is intended for a commercial type market place.

- FCC /ICES-003 Emissions (USA/Canada) Verification
- CISPR 22 Class A Emissions (International)
- EN55022 Class A Emissions (Europe)
- EN55024 Immunity (Europe)
- CE EMC Directive 89/336/EEC (Europe)
- VCCI, Class A Emissions (Japan)
- AS/NZS 3548 Class A Emissions (Australia / New Zealand)
- BSMI CNS13438 Emissions (Taiwan)
- RRL MIC Notice No. 1997-41 (EMC) and 1997-42 (EMI) (Korea)

8.3.3 Certifications / Registrations / Declarations

- UL Certification (US/Canada)
- CB Certification (International)
- CE Declaration of Conformity (CENELEC Europe)
- FCC/ICES-003 Class A Attestation (USA/Canada)
- C-Tick Declaration of Conformity (Australia)
- MED Declaration of Conformity (New Zealand)
- BSMI Declaration (Taiwan)
- RRL Certification (Korea)

8.3.4 RoHS

Intel has a system in place to restrict the use of banned substances in accordance with the European Directive 2002/95/EC. Compliance is based on declaration that materials banned in the RoHS Directive are either (1) below all applicable substance threshold limits or (2) an approved/pending RoHS exemption applies.

Note: RoHS implementing details are not fully defined and may change.

Threshold limits and banned substances are noted below.

- Quantity limit of 0.1% by mass (1000 PPM) for:
 - Lead
 - Mercury
 - Hexavalent Chromium
 - Polybrominated Biphenyls Diphenyl Ethers (PBDE)
- Quantity limit of 0.01% by mass (100 PPM) for:
 - Cadmium

8.3.5 Product Regulatory Compliance Markings

This product is marked with the following Product Certification Markings:

Table 76. Product Certification Markings

Regulatory Compliance	Region	Marking
UL Mark	USA/Canada	C T US E139761
CE Mark	Europe	CE
EMC Marking (Class A)	Canada	CANADA ICES-003 CLASS A CANADA NMB-003 CLASSE A
BSMI Marking (Class A)	Taiwan	D33025 警告使用者: 這是甲類的資訊產品,在居住的環境中使用時,可能會造成射頻干擾,在這種情況下,使用者會被要求採取某些適當的對策
Ctick Marking	Australia / New Zealand	N232
RRL MIC Mark	Korea	인증번호: CPU-S3000AH (A)
Country of Origin	Exporting Requirements	MADE IN xxxxx
PB Free Marking	Environmental Requirements	Pb 2nd lvl intct @1

8.4 Electromagnetic Compatibility Notices

8.4.1 FCC (USA)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

For questions related to the EMC performance of this product, contact:

Intel Corporation 5200 N.E. Elam Young Parkway Hillsboro, OR 97124-6497 1-800-628-8686

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment to an outlet on a circuit other than the one to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment. The customer is responsible for ensuring compliance of the modified product.

Only peripherals (computer input/output devices, terminals, printers, etc.) that comply with FCC Class A or B limits may be attached to this computer product. Operation with noncompliant peripherals is likely to result in interference to radio and TV reception.

All cables used to connect to peripherals must be shielded and grounded. Operation with cables, connected to peripherals that are not shielded and grounded may result in interference to radio and TV reception.

8.4.2 ICES-003 (Canada)

Cet appareil numérique respecte les limites bruits radioélectriques applicables aux appareils numériques de Classe B prescrites dans la norme sur le matériel brouilleur: "Appareils Numériques", NMB-003 édictée par le Ministre Canadian des Communications.

English translation of the notice above:

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus set out in the interference-causing equipment standard entitled "Digital Apparatus." ICES-003 of the Canadian Department of Communications.

8.4.3 **Europe (CE Declaration of Conformity)**

This product has been tested in accordance too, and complies with the Low Voltage Directive (73/23/EEC) and EMC Directive (89/336/EEC). The product has been marked with the CE Mark to illustrate its compliance.

8.4.4 VCCI (Japan)

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準 に基づくクラスB情報技術装置です。この装置は、家庭環境で使用すること を目的としていますが、この装置がラジオやテレビジョン受信機に近接して 使用されると、受信障害を引き起こすことがあります。

取扱説明書に従って正しい取り扱いをして下さい。

English translation of the notice above:

This is a Class B product based on the standard of the Voluntary Control Council for Interference (VCCI) from Information Technology Equipment. If this is used near a radio or television receiver in a domestic environment, it may cause radio interference. Install and use the equipment according to the instruction manual.

8.4.5 Taiwan Declaration of Conformity (BSMI)

警告使用者:

這是甲類的資訊產品,在居住的環境中使用時, 可能會造成射頻干擾,在這種情況下,使用者會 被要求採取某些適當的對策

The BSMI Certification Marking and EMC warning is located on the outside rear area of the product.

101

8.4.6 Korean Compliance (RRL)

English translation of the notice above:

Type of Equipment (Model Name): On License and Product

Certification No.: On RRL certificate. Obtain certificate from local Intel representative

Name of Certification Recipient: Intel Corporation

Date of Manufacturer: Refer to date code on product

Manufacturer/Nation: Intel Corporation/Refer to country of origin marked on product

8.4.7 CNCA (CCC-China)

The CCC Certification Marking and EMC warning is located on the outside rear area of the product.

声明

此为 A 级产品,在生活环境中,该产品可能会造成 无线电干扰。在这种情况下,可能需要用户对其干 扰采取可行的措施。

8.5 Mechanical Specifications

The following figure shows the Intel® Server Board S3000AH mechanical drawing. This drawing will be updated in a future revision of this document.

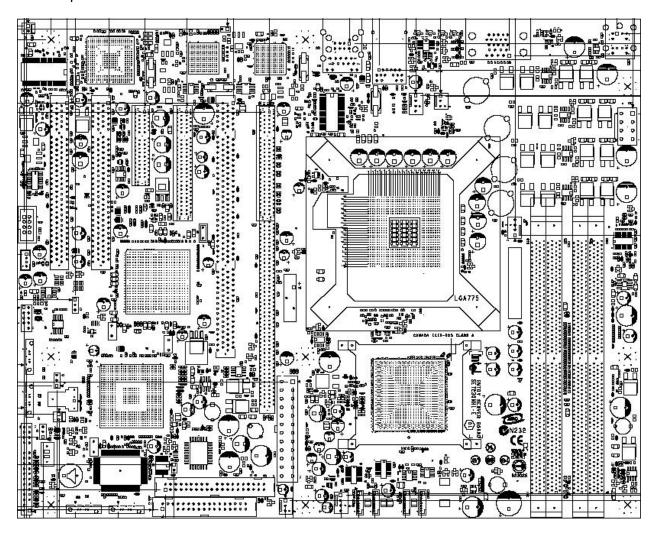


Figure 39. Intel[®] Server Board S3000AH Mechanical Drawing

The following figures show the I/O shield mechanical drawings for use in pedestal mount applications, such as the Intel[®] Entry Server Chassis SC5295-E, for the three board SKUs. The Intel[®] Server Board S3000AH and Intel[®] Server Board S3000AHLX share same I/O shield, and Intel[®] Server Board S3000AHV employs a separate I/O shield.

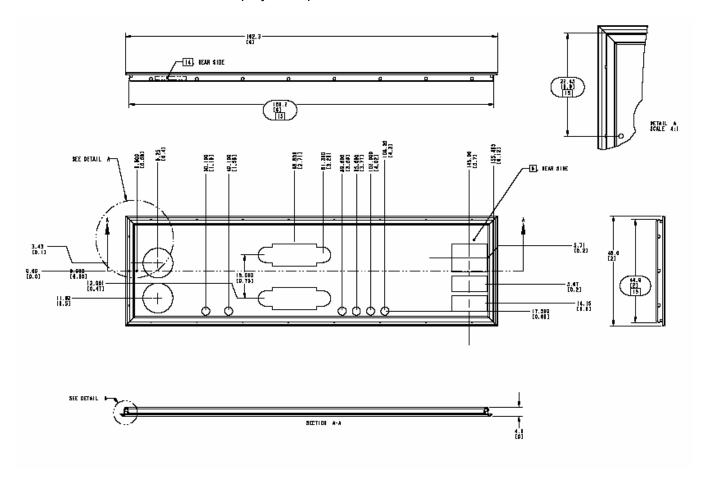


Figure 40. Pedestal Mount I/O Shield Mechanical Drawing for Intel® Server Board S3000AHV

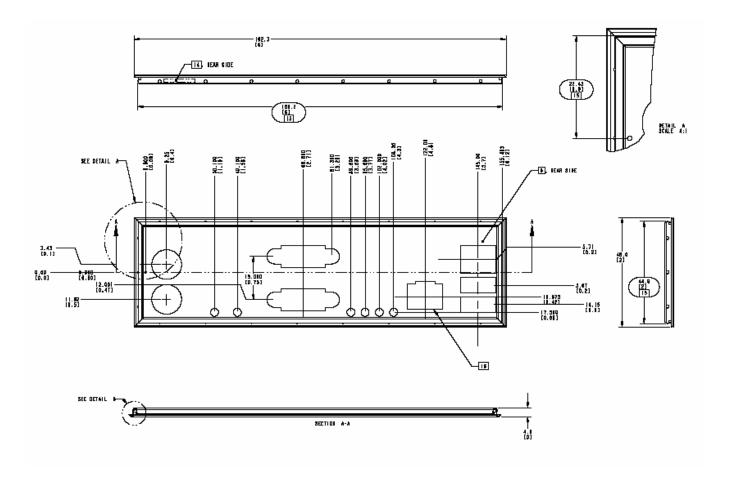


Figure 41. Pedestal Mount I/O Shield Mechanical Drawing for Intel $^{\tiny{(8)}}$ Server Boards S3000AH and S3000AHLX

9. Hardware Monitoring

9.1 Monitored Components

The server board has implemented hardware monitoring function into the super I/O SCH5027 chip. The chip provides basic server hardware monitoring which alerts a system administrator if a hardware problem occurs on the board. The SCH5027 chip has implemented some FAN speed control/monitor pins. Below is a table of monitored headers and sensors on the server board.

Table 77. Monitored Components

	Item	Description		
Voltage	VCCP (PIN #127)	Monitors processor voltage	Super I/O	
	P12V (PIN #1)	Monitors +12Vin for system +12V supply	Super I/O	
	P1V5 (PIN #128)	Monitors chipset 1.5V core voltage for MCH/ICH/PXH	Super I/O	
	P5V (PIN #2)	Monitors +5V	Super I/O	
Fan Speed	PWM1 (PIN #111)	Controls SYS FAN2 (J7J1)	Super I/O	
	PWM2 (PIN #110)	Controls SYS FAN4 and SYS FAN3 (J6B1 and J4J1)	Super I/O	
	PWM3 (PIN #109)	Controls CPU FAN and SYS FAN1 (J8D1 and J6J1)	Super I/O	
	TACH1 (PIN #115)	Monitors CPU FAN (J8D1)	Super I/O	
	TACH2 (PIN #114)	Monitors SYS FAN2 (J7J1)	Super I/O	
	TACH3 (PIN #113)	Monitors SYS FAN1 (J6J1)	Super I/O	
	TACH4 (PIN #112)	Monitors SYS FAN3 (J4J1)	Super I/O	
	TACHA (PIN #79)	Monitors SYS FAN4 (J6B1)	Super I/O	
Temperature	CPU_THEMP_DA/C	Monitors processor temperature	Super I/O	
	(PIN# 125/126)			
	SE_ZONE_DN/DP	Monitors DIMM voltage	Super I/O	
	(PIN# 123/124)			

9.1.1 Fan Speed Control

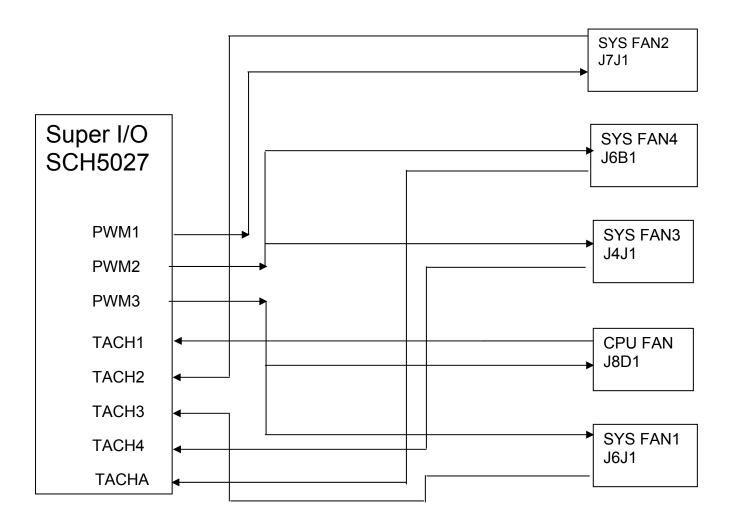


Figure 42. Fan Speed Control Block Diagram

9.2 Chassis Intrusion

The server board supports a chassis security feature that detects if the chassis cover is removed. For the chassis intrusion circuit to function, the chassis' power supply must be connected to AC power. The security feature uses a mechanical switch on the chassis that attaches to the chassis intrusion connector. When the chassis cover is removed, the mechanical switch is in the open position.

Glossary

This appendix contains important terms used in the preceding chapters. For ease of use, numeric entries are listed first (e.g., "82460GX") with alpha entries following (e.g., "AGP 4x"). Acronyms are then entered in their respective place, with non-acronyms following.

Term	Definition
ACPI	Advanced Configuration and Power Interface
ANSI	American National Standards Institute
AP	Application Processor
ASIC	Application Specific Integrated Circuit
ASR	Asynchronous Reset
BGA	Ball-grid Array
BIOS	Basic input/output system
Byte	8-bit quantity.
CMOS	In terms of this specification, this describes the PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the server board.
DCD	Data Carrier Detect
DMA	Direct Memory Access
DMTF	Distributed Management Task Force
ECC	Error Correcting Code
EMC	Electromagnetic Compatibility
EPS	External Product Specification
ESCD	Extended System Configuration Data
FDC	Floppy Disk Controller
FIFO	First-In, First-Out
FRU	Field replaceable unit
GB	1024 MB.
GPIO	General purpose I/O
GUID	Globally Unique ID
Hz	Hertz (1 cycle/second)
HDG	Hardware Design Guide
12C	Inter-integrated circuit bus
IA	Intel® architecture
ICMB	Intelligent Chassis Management Bus
IERR	Internal error
IMB	Inter Module Bus
IP	Internet Protocol
IRQ	Interrupt Request
ITP	In-target probe
KB	1024 bytes
KCS	Keyboard Controller Style
LAN	Local area network
LBA	Logical Block Address
LCD	Liquid crystal display
LPC	Low pin count

Term	Definition
LSB	Least Significant Bit
MB	1024 KB
MBE	Multi-Bit Error
Ms	milliseconds
MSB	Most Significant Bit
MTBF	Mean Time Between Failures
Mux	multiplexor
NIC	Network Interface Card
NMI	Non-maskable Interrupt
OEM	Original equipment manufacturer
Ohm	Unit of electrical resistance
PBGA	Pin Ball Grid Array
PERR	Parity Error
PIO	Programmable I/O
PMB	Private Management Bus
PMC	Platform Management Controller
PME	Power Management Event
PnP	Plug and Play
POST	Power-on Self Test
PWM	Pulse-Width Modulator
RAIDIOS	RAID I/O Steering
RAM	Random Access Memory
RI	Ring Indicate
RISC	Reduced instruction set computing
RMCP	Remote Management Control Protocol
ROM	Read Only Memory
RTC	Real Time Clock
SBE	Single-Bit Error
SCI	System Configuration Interrupt
SDR	Sensor Data Record
SDRAM	Synchronous Dynamic RAM
SEL	System event log
SERIRQ	Serialized Interrupt Requests
SERR	System Error
SM	Server Management
SMI	Server management interrupt. SMI is the highest priority nonmaskable interrupt
SMM	System Management Mode
SMS	System Management Software
SNMP	Simple Network Management Protocol
SPD	Serial Presence Detect
SSI	Server Standards Infrastructure
TPS	Technical Product Specification
	·
UART USB	Universal asynchronous receiver and transmitter Universal Serial Bus

Term	Definition	
VGA	Video Graphic Adapter	
VID	Voltage Identification	
VRM	Voltage Regulator Module	
Word	16-bit quantity	
ZCR	Zero Channel RAID	

Reference Documents

Refer to the following documents for additional information:

- Board Set Specification, Intel Corporation, document number xx-xxxx.
- System Specification, Intel Corporation, document number xx-xxxx.